JP2010093238A - 半導体装置及び半導体装置の作製方法 - Google Patents

半導体装置及び半導体装置の作製方法 Download PDF

Info

Publication number
JP2010093238A
JP2010093238A JP2009206653A JP2009206653A JP2010093238A JP 2010093238 A JP2010093238 A JP 2010093238A JP 2009206653 A JP2009206653 A JP 2009206653A JP 2009206653 A JP2009206653 A JP 2009206653A JP 2010093238 A JP2010093238 A JP 2010093238A
Authority
JP
Japan
Prior art keywords
electrode layer
layer
region
source
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009206653A
Other languages
English (en)
Other versions
JP2010093238A5 (ja
Inventor
Shunpei Yamazaki
舜平 山崎
Kengo Akimoto
健吾 秋元
Shigeki Komori
茂樹 小森
Hideki Uoji
秀貴 魚地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2009206653A priority Critical patent/JP2010093238A/ja
Publication of JP2010093238A publication Critical patent/JP2010093238A/ja
Publication of JP2010093238A5 publication Critical patent/JP2010093238A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0041Devices characterised by their operation characterised by field-effect operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Bipolar Transistors (AREA)

Abstract

【課題】電気特性及び信頼性の高い薄膜トランジスタを有する半導体装置、及び該半導体装置を量産高く作製する方法を提案することを課題とする。
【解決手段】ゲート絶縁層上に、ドレイン電極層またはソース電極層を形成した後、低抵抗な酸化物半導体層をソース領域またはドレイン領域として形成し、その上に半導体層として酸化物半導体膜を形成することを要旨とする。好ましくは、半導体層として酸素過剰酸化物半導体層を用い、ソース領域及びドレイン領域として酸素欠乏酸化物半導体層を用いる。
【選択図】図2

Description

チャネル形成領域に酸化物半導体膜を用いた薄膜トランジスタ(以下、TFTという)で構成された回路を有する半導体装置およびその作製方法に関する。例えば、液晶表示パネルに代表される電気光学装置や有機発光素子を有する発光表示装置を部品として搭載した電子機器に関する。
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
近年、マトリクス状に配置された表示画素毎にTFTからなるスイッチング素子を設けたアクティブマトリクス型の表示装置(液晶表示装置や発光表示装置や電気泳動式表示装置)が盛んに開発されている。アクティブマトリクス型の表示装置は、画素(又は1ドット)毎にスイッチング素子が設けられており、単純マトリクス方式に比べて画素密度が増えた場合に低電圧駆動できるので有利である。
また、チャネル形成領域に酸化物半導体膜を用いて薄膜トランジスタ(TFT)などを作製し、電子デバイスや光デバイスに応用する技術が注目されている。例えば、酸化物半導体膜として酸化亜鉛(ZnO)を用いるTFTや、InGaO(ZnO)を用いるTFTが挙げられる。これらの酸化物半導体膜を用いたTFTを、透光性を有する基板上に形成し、画像表示装置のスイッチング素子などに用いる技術が特許文献1及び特許文献2で開示されている。
特開2007−123861号公報 特開2007−96055号公報
チャネル形成領域に酸化物半導体膜を用いる薄膜トランジスタには、動作速度が速く、製造工程が比較的簡単であり、十分な信頼性が求められている。
薄膜トランジスタを形成するにあたり、ソース電極及びドレイン電極は、低抵抗な金属材料を用いる。特に、大面積の表示を行う表示装置を製造する際、配線の抵抗による信号の遅延問題が顕著になってくる。従って、配線や電極の材料としては、電気抵抗値の低い金属材料を用いることが望ましい。電気抵抗値の低い金属材料からなるソース電極及びドレイン電極と、酸化物半導体膜とが直接接する薄膜トランジスタ構造とすると、コンタクト抵抗が高くなる恐れがある。コンタクト抵抗が高くなる原因は、ソース電極及びドレイン電極と、酸化物半導体膜との接触面でショットキー接合が形成されることが要因の一つと考えられる。
加えて、ソース電極及びドレイン電極と、酸化物半導体膜とが直接接する部分には容量が形成され、周波数特性(f特性と呼ばれる)が低くなり、薄膜トランジスタの高速動作を妨げる恐れがある。
本発明の一形態は、酸化物半導体膜を用いる薄膜トランジスタにおいて、ソース電極またはドレイン電極のコンタクト抵抗を低減した薄膜トランジスタ及びその作製方法を提供することを課題の一つとする。
また、酸化物半導体膜を用いる薄膜トランジスタの動作特性や信頼性を向上させることも課題の一つとする。
また、酸化物半導体膜を用いる薄膜トランジスタの電気特性のバラツキを低減することも課題の一つとする。特に、液晶表示装置においては、個々の素子間でのバラツキが大きい場合、そのTFT特性のバラツキに起因する表示むらが発生する恐れがある。
また、発光素子を有する表示装置においても、画素電極に一定の電流が流れるように配置されたTFT(駆動回路または画素に配置される発光素子に電流を供給するTFT)のオン電流(Ion)のバラツキが大きい場合、表示画面において輝度のバラツキが生じる恐れがある。
以上、本発明の一形態は、上記課題の少なくとも一つを解決することを目的とする。
本発明の一形態は、ゲート絶縁層上に、ソース電極層またはドレイン電極層を形成した後、低抵抗な酸化物半導体層をソース領域またはドレイン領域として形成し、その上に半導体層として酸化物半導体膜を形成することを要旨とする。好ましくは、半導体層として酸素過剰酸化物半導体層を用い、ソース領域及びドレイン領域として酸素欠乏酸化物半導体層を用いる。このソース領域及びドレイン領域の酸素欠乏酸化物半導体層は直径1nm〜10nm、代表的には2nm〜4nm程度の結晶粒を有していてもよい。
また、低抵抗な酸化物半導体層からなるソース領域及びドレイン領域を、ゲート絶縁層とソース電極層及びドレイン電極層との間にも設けてもよい。この場合、ソース電極層及びドレイン電極層は上下に第1のソース領域又は第1のドレイン領域、及び第2のソース領域又は第2のドレイン領域に挟まれる構造となる。
半導体層として用いる酸化物半導体層(第1の酸化物半導体層)は、ソース領域及びドレイン領域として用いる酸化物半導体層(第2の酸化物半導体層)より酸素濃度が高い。第1の酸化物半導体層は酸素過剰酸化物半導体層であり、第2の酸化物半導体層は酸素欠乏酸化物半導体層と言える。
第2の酸化物半導体層はn型の導電型を示し、第1の酸化物半導体層より電気伝導度が高い。よってソース領域及びドレイン領域は、半導体層より抵抗が低くなる。
また第1の酸化物半導体層は非晶質構造を有し、第2の酸化物半導体層は非晶質構造の中に結晶粒を含む場合がある。
なお、第1、第2として付される序数詞は便宜上用いるものであり、工程順又は積層順を示すものではない。また、本明細書において発明を特定するための事項として固有の名称を示すものではない。
ソース電極層と酸化物半導体層とはオーミック性のコンタクトが必要であり、さらに、そのコンタクト抵抗は極力低減することが望まれる。同様に、ドレイン電極層と酸化物半導体層とはオーミック性のコンタクトが必要であり、さらに、そのコンタクト抵抗は極力低減することが望まれる。
そこで、ソース電極層及びドレイン電極層とゲート絶縁層の間に、酸化物半導体層よりもキャリア濃度の高いソース領域及びドレイン領域を意図的に設けることによってオーミック性のコンタクトを形成する。ソース領域及びドレイン領域として機能させる低抵抗な酸化物半導体層は、n型の導電型を有し、n領域ともいう。また、ソース領域及びドレイン領域をn領域と呼ぶ場合、チャネル形成領域として機能させる酸化物半導体層はI型領域ともいう。
本発明の半導体装置の一形態は、ゲート電極層と、ゲート電極層上にゲート絶縁層と、ゲート絶縁層上にソース電極層及びドレイン電極層と、ソース電極層及びドレイン電極層上にソース領域及びドレイン領域と、ゲート絶縁層、ソース電極層、ドレイン電極層、ソース領域及びドレイン領域上に酸化物半導体層とを含む薄膜トランジスタを有し、酸化物半導体層はゲート絶縁層を介してゲート電極層と重なり、酸化物半導体層の酸素濃度はソース領域及びドレイン領域の酸素濃度より高い。
本発明の半導体装置の他の一形態は、ゲート電極層と、ゲート電極層上にゲート絶縁層と、ゲート絶縁層上に第1のソース領域及び第1のドレイン領域と、第1のソース領域及び第1のドレイン領域上にソース電極層及びドレイン電極層と、ソース電極層及びドレイン電極層上に第2のソース領域及び第2のドレイン領域と、ゲート絶縁層、第1のソース領域、第1のドレイン領域、ソース電極層、ドレイン電極層、第2のソース領域及び第2のドレイン領域上に酸化物半導体層とを含む薄膜トランジスタを有し、酸化物半導体層はゲート絶縁層を介してゲート電極層と重なり、酸化物半導体層の酸素濃度は、第1のソース領域、第1のドレイン領域、第2のソース領域、及び第2のドレイン領域の酸素濃度より高い。
本発明は、上記課題の少なくとも一つを解決する。
上記構成において、ソース領域及びドレイン領域(第1のソース領域、第1のドレイン領域、第2のソース領域、及び第2のドレイン領域)は、インジウム、ガリウム、及び亜鉛を含む酸化物半導体層であり、かつサイズが1nm以上10nm以下の結晶粒を含む場合のある、半導体層に比べ低抵抗な膜である。また、ソース領域(第1のソース領域、第2のソース領域)の端面と、該端面と向かい合うドレイン領域(第1のドレイン領域、第2のドレイン領域)の端面は、半導体層と接している。
なお、半導体層、またはソース領域及びドレイン領域(第1のソース領域、第1のドレイン領域、第2のソース領域、及び第2のドレイン領域)としてIn、Ga、及びZnを含む酸化物半導体膜を用いることができる。また、In、Ga、及びZnのいずれか一をタングステン、モリブデン、チタン、ニッケル、又はアルミニウムと置換してもよい。
本明細書において、In、Ga、及びZnを含む酸化物半導体膜を用いて形成された半導体層を「IGZO半導体層」とも記す。IGZO半導体層は、非単結晶半導体層であり、少なくともアモルファス成分を含んでいるものとする。
また、半導体装置の作製方法も本発明の一つであり、ソース電極層およびドレイン電極層及びソース領域及びドレイン領域を形成した後、プラズマ処理を行う。さらに、プラズマ処理後に大気に触れることなくスパッタ法で半導体層を成膜する。半導体層の成膜前に被成膜基板が大気に触れた場合、水分などが付着し、界面状態に悪影響を与え、しきい値のバラツキや、電気特性の劣化、ノーマリーオンのTFTになってしまう症状などを引き起こす恐れがある。プラズマ処理は酸素ガスまたはアルゴンガスを用いる。アルゴンガスに変えて他の希ガスを用いてもよい。
本発明の半導体装置の作製方法の一形態は、基板上にゲート電極層を形成し、ゲート電極層上にゲート絶縁層を形成し、ゲート絶縁層上にソース電極層及びドレイン電極層を形成し、ソース電極層及びドレイン電極層上にソース領域又はドレイン領域を形成し、ゲート絶縁層、ソース電極層、ドレイン電極層、ソース領域、及びドレイン領域にプラズマ処理を行い、ゲート電極層と重なり、かつプラズマ処理されたゲート絶縁層、ソース電極層、ドレイン電極層、ソース領域、及びドレイン領域上に大気に曝さずに酸化物半導体層を形成し、酸化物半導体層の酸素濃度はソース領域及びドレイン領域の酸素濃度より高くする。
本発明の半導体装置の作製方法の他の一形態は、基板上にゲート電極層を形成し、ゲート電極層上にゲート絶縁層を形成し、ゲート絶縁層上に第1のソース領域及び第1のドレイン領域に形成し、第1のソース領域及び第1のドレイン領域上にソース電極層又はドレイン電極層を形成し、ソース電極層及びドレイン電極層上に第2のソース領域又は第2のドレイン領域を形成し、ゲート絶縁層、第1のソース領域、第1のドレイン領域、ソース電極層、ドレイン電極層、第2のソース領域、及び第2のドレイン領域にプラズマ処理を行い、ゲート電極層と重なり、かつプラズマ処理されたゲート絶縁層、第1のソース領域、第1のドレイン領域、ソース電極層、ドレイン電極層、第2のソース領域、及び第2のドレイン領域上に大気に曝さずに酸化物半導体層を形成し、酸化物半導体層の酸素濃度は第1のソース領域、第1のドレイン領域、第2のソース領域、及び第2のドレイン領域の酸素濃度より高くする。
プラズマ処理によって、露呈しているゲート絶縁層の表面、ソース電極層の表面、ドレイン電極層の表面、ソース領域及びドレイン領域の表面を洗浄することができる。半導体層(IGZO半導体層)の形成よりも先にソース電極層、ドレイン電極層、ソース領域及びドレイン領域をフォトリソグラフィ技術によってエッチング加工するため、表面に残った有機物と反応させて有機物などのゴミを除去するプラズマ処理を行うことは有用である。
特に、プラズマ処理後に大気に触れることなくスパッタ法で半導体層(IGZO半導体層)を成膜するため、プラズマ処理と半導体層(IGZO半導体層)の成膜の両方を同じチャンバーで行うことが可能な逆スパッタと呼ばれるプラズマ処理の一種を行うことが好ましい。逆スパッタとは、ターゲット側に電圧を印加せずに、酸素、又は酸素及びアルゴン雰囲気下で基板側に電圧を印加して基板にプラズマを形成して表面を改質する方法である。
また、チャンバーに酸素ガスを用いるプラズマ処理を行う場合、ゲート絶縁層表面に酸素ラジカルが照射されることによって、ゲート絶縁層表面を酸素過剰領域に改質し、後に成膜する半導体層(IGZO半導体層)との界面における酸素濃度を高くする。ゲート絶縁層に酸素ラジカル処理を行って半導体層を積層し、熱処理を行えば、半導体層(IGZO半導体層)のゲート絶縁層側の酸素濃度も高濃度とすることができる。従って、ゲート絶縁層と半導体層(IGZO半導体層)との界面に酸素濃度のピークを有し、かつゲート絶縁層の酸素濃度は濃度勾配を有し、その勾配はゲート絶縁層と半導体層(IGZO半導体層)との界面に近づくにつれて増加する。酸素過剰領域を有するゲート絶縁層と酸素過剰酸化物半導体層(IGZO半導体層)は相性がよく、良好な界面特性を得ることができる。
酸素ラジカルは、酸素を含むガスを用いてプラズマ発生装置により供給されてもよいし、又はオゾン発生装置により供給されてもよい。供給された酸素ラジカル又は酸素を薄膜に照射することによって膜表面を改質することができる。
また、酸素ラジカル処理に限定されず、アルゴンと酸素のラジカル処理を行ってもよい。アルゴンと酸素のラジカル処理とは、アルゴンガスと酸素ガスを導入してプラズマを発生させて薄膜表面の改質を行うことである。
電界が印加され放電プラズマが発生している反応空間中のAr原子(Ar)は、放電プラズマ中の電子(e)により励起又は電離され、アルゴンラジカル(Ar)やアルゴンイオン(Ar)や電子(e)となる。アルゴンラジカル(Ar)はエネルギーの高い準安定状態にあり、周辺にある同種又は異種の原子と反応し、それらの原子を励起又は電離させて安定状態に戻ろうとして雪崩れ現象的に反応が発生する。その時に周辺に酸素があると、酸素原子(O)が励起又は電離され、酸素ラジカル(O)や酸素イオン(O)や酸素(O)となる。その酸素ラジカル(O)が被処理物である薄膜表面の材料と反応し、表面改質が行われ、表面にある有機物と反応して有機物を除去するプラズマ処理が行われる。なお、アルゴンガスのラジカルは、反応性ガス(酸素ガス)のラジカルと比較して準安定状態が長く維持されるという特徴があり、そのためプラズマを発生させるのにアルゴンガスを用いるのが一般的である。
また、酸素ガスを用いる場合、プラズマ処理の条件によっては、ソース電極層及びドレイン電極層の表面が酸化される。本発明は、ソース電極層及びドレイン電極層上にソース領域及びドレイン領域を形成した後、プラズマ処理を行うので、ソース電極層及びドレイン電極層は露出している端部しか酸化されない。よってソース電極層及びドレイン電極層は半導体層に接する領域のみ酸化され、他の領域は酸化されないので低抵抗に保つことができる。また、ソース領域及びドレイン領域と半導体層との接触面積が広く、ソース領域またはドレイン領域は半導体層と電気的に接続させることができる。
また、使用するフォトマスクの枚数を削減するため、ソース領域とドレイン領域のエッチング加工後に、ソース領域とドレイン領域をマスクとして自己整合的にソース電極層及びドレイン電極層を形成してもよい。この場合、ソース領域(またはドレイン領域)の端面をソース電極層(またはドレイン電極層)の端面がほぼ一致するため、ソース領域とドレイン領域の間隔がソース電極層とドレイン電極層との間隔とほぼ同一となる。
IGZO半導体層、ソース電極層及びドレイン電極層、ソース領域及びドレイン領域はスパッタ法(スパッタリング法)で形成すればよい。
スパッタ法にはスパッタ用電源に高周波電源を用いるRFスパッタ法と、DCスパッタ法があり、さらにパルス的にバイアスを与えるパルスDCスパッタ法もある。RFスパッタ法は主に絶縁膜を成膜する場合に用いられ、DCスパッタ法は主に金属膜を成膜する場合に用いられる。
また、材料の異なるターゲットを複数設置できる多元スパッタ装置もある。多元スパッタ装置は、同一チャンバーで異なる材料膜を積層成膜することも、同一チャンバーで複数種類の材料を同時に放電させて成膜することもできる。
また、チャンバー内部に磁石機構を備えたマグネトロンスパッタ法を用いるスパッタ装置や、グロー放電を使わずマイクロ波を用いて発生させたプラズマを用いるECRスパッタ法を用いるスパッタ装置がある。
また、スパッタ法を用いる成膜方法として、成膜中にターゲット物質とスパッタガス成分とを化学反応させてそれらの化合物薄膜を形成するリアクティブスパッタ法や、成膜中に基板にも電圧をかけるバイアススパッタ法もある。
これら各種のスパッタ法を用いて半導体層、ソース領域及びドレイン領域、ソース電極層及びドレイン電極層を形成する。
また、半導体層にIGZO半導体層を用いる場合、ソース領域及びドレイン領域も、インジウム、ガリウム、及び亜鉛を含む酸化物層であり、IGZO半導体層の成膜条件とは異なる成膜条件で形成される。ソース領域及びドレイン領域の成膜条件は、成膜直後においてサイズが1nm以上10nm以下の結晶粒を含む条件が含まれる。例えば、In:Ga:ZnO=1:1:1としたターゲットを用い、DCスパッタ法でアルゴンガス流量:酸素流量を2:1の割合でチャンバーに導入する成膜条件、或いはアルゴンガスのみを導入する成膜条件とした場合、成膜直後においてサイズが1nm以上10nm以下の結晶粒を含む膜を得ることがある。なお、In:Ga:ZnO=1:1:1としたターゲットはアモルファス状の酸化物半導体膜を得るために、この比率として意図的に設計したものであるため、ソース領域及びドレイン領域をより結晶性の高い膜を得るためにターゲットの組成比を変更してもよい。プロセスの簡略化、または低コストを実現するためには、同じターゲットを用いて導入ガスを変更するだけでIGZO半導体層に用いる膜と、ソース領域及びドレイン領域に用いる膜とを作り分ける方が好ましい。
酸素欠乏酸化物半導体層をソース領域またはドレイン領域として積極的に設けることにより、金属層であるソース電極層またはドレイン電極層と、IGZO膜との間を良好な接合としてショットキー接合に比べて熱的にも安定動作を有せしめる。また、チャネルのキャリアを供給する(ソース側)、またはチャネルのキャリアを安定して吸収する(ドレイン側)、または抵抗成分をソース電極層(またはドレイン電極層)との界面に作らないためにも積極的にソース領域またはドレイン領域を設けることは重要である。高いドレイン電圧でも良好な移動度を保持するためにも低抵抗化は重要である。
また、ソース電極層及びドレイン電極層にチタン膜を用いることが好ましい。例えば、チタン膜、アルミニウム膜、チタン膜の積層を用いると低抵抗であり、かつアルミニウム膜にヒロックが発生しにくい。
また、スパッタ法はターゲットに対して強いエネルギーをArイオンで与えるため、本体、成膜されたIGZO半導体層中には強い歪エネルギーが内在すると考えられる。この歪エネルギーを解放するため200℃以上600℃以下、代表的には300℃以上500℃以下の熱処理を行うことが好ましい。この熱処理により原子レベルの再配列が行われる。この熱処理によりキャリアの移動を阻害する歪エネルギーが解放されるため、成膜と熱処理(光アニールも含む)は重要である。
本発明の一形態によって、光電流が少なく、寄生容量が小さく、オンオフ比の高い薄膜トランジスタを得ることができ、良好な動特性を有する薄膜トランジスタを作製できる。よって、電気特性が高く信頼性のよい薄膜トランジスタを有する半導体装置を提供することができる。
半導体装置の作製方法を説明する図。 半導体装置の作製方法を説明する図。 半導体装置の作製方法を説明する図。 半導体装置の作製方法を説明する図。 半導体装置の作製方法を説明する図。 半導体装置を説明する図。 半導体装置を説明する図。 半導体装置を説明する図。 半導体装置の作製方法を説明する図。 半導体装置の作製方法を説明する図。 半導体装置を説明する図。 半導体装置のブロック図を説明する図。 信号線駆動回路の構成を説明する図。 信号線駆動回路の動作を説明するタイミングチャート。 信号線駆動回路の動作を説明するタイミングチャート。 シフトレジスタの構成を説明する図。 図16に示すフリップフロップの接続構成を説明する図。 半導体装置の画素等価回路を説明する図。 半導体装置を説明する図。 半導体装置を説明する図。 半導体装置を説明する図。 半導体装置を説明する図。 電子ペーパーの使用形態の例を説明する図。 電子書籍の一例を示す外観図。 テレビジョン装置およびデジタルフォトフレームの例を示す外観図。 遊技機の例を示す外観図。 携帯電話機の一例を示す外観図。
本発明の実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する本発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態では、薄膜トランジスタ及びその作製工程について、図1乃至図7を用いて説明する。
図1(A)において、透光性を有する基板100にはバリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板を用いることができる。
次いで、導電層を基板100全面に形成した後、第1のフォトリソグラフィー工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去して配線及び電極(ゲート電極101を含むゲート配線、容量配線108、及び第1の端子121)を形成する。このとき少なくともゲート電極101の端部にテーパー形状が形成されるようにエッチングする。この段階での断面図を図1(A)に示した。なお、この段階での上面図が図3に相当する。
ゲート電極101を含むゲート配線と容量配線108、端子部の第1の端子121は、アルミニウム(Al)や銅(Cu)などの低抵抗導電性材料で形成することが望ましいが、Al単体では耐熱性が劣り、また腐蝕しやすい等の問題点があるので耐熱性導電性材料と組み合わせて形成する。耐熱性導電性材料としては、チタン(Ti)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、Nd(ネオジム)から選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組み合わせた合金膜、または上述した元素を成分とする窒化物で形成する。
次いで、ゲート電極101上にゲート絶縁層102を全面に成膜する。ゲート絶縁層102はスパッタ法などを用い、膜厚を50〜250nmとする。
例えば、ゲート絶縁層102としてスパッタ法により酸化シリコン膜を用い、100nmの厚さで形成する。勿論、ゲート絶縁層102はこのような酸化シリコン膜に限定されるものでなく、酸化窒化シリコン膜、窒化シリコン膜、酸化アルミニウム、酸化タンタル膜などの他の絶縁膜を用い、これらの材料から成る単層または積層構造として形成しても良い。
次に、ゲート絶縁層102上に金属材料からなる導電膜をスパッタ法や真空蒸着法で形成する。導電膜の材料としては、Al、Cr、Ta、Ti、Mo、Wから選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組み合わせた合金膜等が挙げられる。ここでは、導電膜としてTi膜と、そのTi膜上に重ねてアルミニウム(Al)膜を積層し、さらにその上にTi膜を成膜する3層構造とする。また、導電膜は、2層構造としてもよく、アルミニウム膜上にチタン膜を積層してもよい。また、導電膜は、シリコンを含むアルミニウム膜の単層構造や、チタン膜の単層構造としてもよい。
次に、導電膜上に第1の酸化物半導体膜(本実施の形態では第1のIGZO膜)をスパッタ法で成膜する。ここでは、In:Ga:ZnO=1:1:1としたターゲットを用い、成膜条件は、圧力を0.4Paとし、電力を500Wとし、成膜温度を室温とし、アルゴンガス流量40sccmを導入してスパッタ成膜を行う。In:Ga:ZnO=1:1:1としたターゲットを意図的に用いているにも関わらず、成膜直後で大きさ1nm〜10nmの結晶粒を含むIGZO膜が形成されることがある。なお、ターゲットの成分比、成膜圧力(0.1Pa〜2.0Pa)、電力(250W〜3000W:8インチφ)、温度(室温〜100℃)、反応性スパッタの成膜条件などを適宜調節することで結晶粒の有無や、結晶粒の密度や、直径サイズは、1nm〜10nmの範囲で調節されうると言える。第1のIGZO膜の膜厚は、5nm〜20nmとする。勿論、膜中に結晶粒が含まれる場合、含まれる結晶粒のサイズが膜厚を超える大きさとならない。本実施の形態では第1のIGZO膜の膜厚は、5nmとする。
ゲート絶縁層、導電膜、及び第1のIGZO膜は、スパッタ法で、チャンバーに導入するガスまたは設置するターゲットを適宣切り替えることにより大気に触れることなく連続成膜することができる。大気に触れることなく連続成膜すると、不純物の混入を防止することができる。大気に触れることなく連続成膜する場合、マルチチャンバー方式の製造装置を用いることが好ましい。
次に、第2のフォトリソグラフィー工程を行い、レジストマスクを形成し、第1のIGZO膜をエッチングする。ここではITO07N(関東化学社製)を用いたウェットエッチングにより、不要な部分を除去して第1のIGZO膜であるIGZO層111a、111bを形成する。なお、ここでのエッチングは、ウェットエッチングに限定されずドライエッチングを用いてもよい。
次に、第1のIGZO膜のエッチングと同じレジストマスクを用いて、エッチングにより不要な部分を除去してソース電極層105a及びドレイン電極層105bを形成する。この際のエッチング方法としてウエットエッチングまたはドライエッチングを用いる。ここでは、SiClとClとBClの混合ガスを反応ガスとしたドライエッチングにより、Ti膜とAl膜とTi膜を順次積層した導電膜をエッチングしてソース電極層105a及びドレイン電極層105bを形成する。この段階での断面図を図1(B)に示した。なお、この段階での上面図が図4に相当する。
また、この第2のフォトリソグラフィー工程において、ソース電極層105a及びドレイン電極層105bと同じ材料である第2の端子122を端子部に残す。なお、第2の端子122はソース配線(ソース電極層105aを含むソース配線)と電気的に接続されている。
また、容量部においては、容量配線108と重なる第1のIGZO膜が除去される。また、端子部においては、第2の端子122の上方に存在し、且つ、第2の端子と重なる第1のIGZO膜であるIGZO層123は残存する。
次に、レジストマスクを除去した後、プラズマ処理を行う。この段階での断面図を図1(C)に示す。ここでは酸素ガスとアルゴンガスを導入してプラズマを発生させる逆スパッタを行い、露出しているゲート絶縁層に酸素ラジカル又は酸素を照射する。こうして、表面に付着しているゴミを除去し、さらにゲート絶縁層表面を酸素過剰領域に改質する。ゲート絶縁層の表面に酸素ラジカル処理を行い、表面を酸素過剰領域とすることは、その後の工程での信頼性向上のための熱処理(200℃〜600℃)において、IGZO半導体層界面の改質のための酸素の供給源を作る上で有効である。
なお、プラズマ処理の条件によっては、露呈しているソース電極層105a及びドレイン電極層105bの側面は酸化膜(図示しない)が形成されるが、本構造においてはソース電極層105a及びドレイン電極層105bがチャネル形成領域と直接接する構造とするのではないため問題ないと言える。むしろ、この酸化膜によりソース領域またはドレイン領域を介してソース電極層105a及びドレイン電極層105bがチャネル形成領域と接する構造とすることができる。またソース電極層及びドレイン電極層上にソース領域及びドレイン領域を形成した後、プラズマ処理を行うので、ソース電極層及びドレイン電極層は露出している端部しか酸化されない。よってソース電極層及びドレイン電極層は半導体層に接する領域のみ酸化され、他の領域は酸化されないので低抵抗に保つことができる。また、ソース領域及びドレイン領域と半導体層との接触面積が広く、ソース領域またはドレイン領域は半導体層と電気的に接続させることができる。
次いで、プラズマ処理後、大気に曝すことなく第2の酸化物半導体膜(本実施の形態では第2のIGZO膜)を成膜する。プラズマ処理後、大気に曝すことなく第2のIGZO膜を成膜することは、ゲート絶縁層と半導体膜の界面にゴミや水分を付着させない点で有用である。ここでは、直径8インチのIn、Ga、及びZnを含む酸化物半導体ターゲット(In:Ga:ZnO=1:1:1)を用いて、基板とターゲットの間との距離を170mm、圧力0.4Pa、直流(DC)電源0.5kW、アルゴン又は酸素雰囲気下で成膜する。なお、パルス直流(DC)電源を用いると、ごみが軽減でき、膜厚分布も均一となるために好ましい。第2のIGZO膜の膜厚は、5nm〜200nmとする。本実施の形態では第2のIGZO膜の膜厚は、100nmとする。
第2のIGZO膜は、第1のIGZO膜の成膜条件と異ならせることで、第1のIGZO膜の膜中の酸素濃度より多くの酸素を第2のIGZO膜中に含ませる。例えば、第1のIGZO膜の成膜条件における酸素ガス流量とアルゴンガス流量の比よりも第2のIGZO膜の成膜条件における酸素ガス流量の占める比率が多い条件とする。具体的には、第1のIGZO膜の成膜条件は、希ガス(アルゴン、又はヘリウムなど)雰囲気下(または酸素ガス10%以下、アルゴンガス90%以上)とし、第2のIGZO膜の成膜条件は、酸素雰囲気下(又は酸素ガス流量がアルゴンガス流量と同量かそれ以上)とする。多くの酸素を第2のIGZO膜中に含ませることによって、第1のIGZO膜よりも導電率を低くすることができる。また、多くの酸素を第2のIGZO膜中に含ませることによってオフ電流の低減を図ることができるため、オンオフ比の高い薄膜トランジスタを得ることができる。
第2のIGZO膜の成膜は、先に逆スパッタを行ったチャンバーと同一チャンバーを用いてもよいし、大気に曝すことなく成膜できるのであれば、先に逆スパッタを行ったチャンバーと異なるチャンバーで成膜してもよい。
次いで、200℃〜600℃、代表的には300℃〜500℃の熱処理を行うことが好ましい。ここでは炉に入れ、窒素雰囲気下で350℃、1時間の熱処理を行う。この熱処理によりIGZO膜の原子レベルの再配列が行われる。この熱処理によりキャリアの移動を阻害する歪が解放されるため、ここでの熱処理(光アニールも含む)は重要である。なお、熱処理を行うタイミングは、第2のIGZO膜の成膜後であれば特に限定されず、例えば画素電極形成後に行ってもよい。
次に、第3のフォトリソグラフィー工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去してIGZO半導体層103を形成する。ここではITO07N(関東化学社製)を用いたウェットエッチングにより、第2のIGZO膜を除去してIGZO半導体層103を形成する。なお、第1のIGZO膜と第2のIGZO膜は同じエッチャントを用いるため、ここでのエッチングにより第1のIGZO膜が除去される。従って、第2のIGZO膜で覆われた第1のIGZO膜の側面は保護されるが、図2(A)に示すように、露呈している第1のIGZO膜(IGZO層111a、111b)はエッチングされ、ソース領域104a、ドレイン領域104bが形成される。なお、IGZO半導体層103のエッチングは、ウェットエッチングに限定されずドライエッチングを用いてもよい。以上の工程でIGZO半導体層103をチャネル形成領域とする薄膜トランジスタ170が作製できる。この段階での断面図を図2(A)に示した。なお、この段階での上面図が図5に相当する。
次いで、レジストマスクを除去し、IGZO半導体層を覆う保護絶縁膜107を形成する。保護絶縁膜107はスパッタ法などを用いて得られる窒化シリコン膜、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜、酸化タンタル膜などを用いることができる。
次に、第4のフォトリソグラフィー工程を行い、レジストマスクを形成し、保護絶縁膜107のエッチングによりドレイン電極層105bに達するコンタクトホール125を形成する。また、ここでのエッチングにより第2の端子122に達するコンタクトホール127も形成する。なお、マスク数を削減するため、同じレジストマスクを用いてさらにゲート絶縁層をエッチングしてゲート電極に達するコンタクトホール126も同じレジストマスクで形成することが好ましい。この段階での断面図を図2(B)に示す。
次いで、レジストマスクを除去した後、透明導電膜を成膜する。透明導電膜の材料としては、酸化インジウム(In)や酸化インジウム酸化スズ合金(In―SnO、ITOと略記する)などをスパッタ法や真空蒸着法などを用いて形成する。このような材料のエッチング処理は塩酸系の溶液により行う。しかし、特にITOのエッチングは残渣が発生しやすいので、エッチング加工性を改善するために酸化インジウム酸化亜鉛合金(In―ZnO)を用いても良い。
次に、第5のフォトリソグラフィー工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去して画素電極110を形成する。
また、この第5のフォトリソグラフィー工程において、容量部におけるゲート絶縁層102及び保護絶縁膜107を誘電体として、容量配線108と画素電極110とで保持容量が形成される。
また、この第5のフォトリソグラフィー工程において、第1の端子及び第2の端子をレジストマスクで覆い端子部に形成された透明導電膜128、129を残す。透明導電膜128、129はFPCとの接続に用いられる電極または配線となる。第2の端子122上に形成された透明導電膜129は、ソース配線の入力端子として機能する接続用の端子電極である。
次いで、レジストマスクを除去し、この段階での断面図を図2(C)に示す。なお、この段階での上面図が図6に相当する。
また、図7(A1)、図7(A2)は、この段階でのゲート配線端子部の上面図及び断面図をそれぞれ図示している。図7(A1)は図7(A2)中のC1−C2線に沿った断面図に相当する。図7(A1)において、保護絶縁膜154上に形成される透明導電膜155は、入力端子として機能する接続用の端子電極である。また、図7(A1)において、端子部では、ゲート配線と同じ材料で形成される第1の端子151と、ソース配線と同じ材料で形成される接続電極153とがゲート絶縁層152を介して重なり、透明導電膜155で導通させている。なお、図2(C)に図示した透明導電膜128と第1の端子121とが接触している部分が、図7(A1)の透明導電膜155と第1の端子151が接触している部分に対応している。
また、図7(B1)、及び図7(B2)は、図2(C)に示すソース配線端子部とは異なるソース配線端子部の上面図及び断面図をそれぞれ図示している。また、図7(B1)は図7(B2)中のD1−D2線に沿った断面図に相当する。図7(B1)において、保護絶縁膜154上に形成される透明導電膜155は、入力端子として機能する接続用の端子電極である。また、図7(B1)において、端子部では、ゲート配線と同じ材料で形成される電極156が、ソース配線と電気的に接続される第2の端子150の下方にゲート絶縁層102を介して重なる。電極156は第2の端子150とは電気的に接続しておらず、電極156を第2の端子150と異なる電位、例えばフローティング、GND、0Vなどに設定すれば、ノイズ対策のための容量または静電気対策のための容量を形成することができる。また、第2の端子150は、保護絶縁膜154を介して透明導電膜155と電気的に接続している。
ゲート配線、ソース配線、及び容量配線は画素密度に応じて複数本設けられるものである。また、端子部においては、ゲート配線と同電位の第1の端子、ソース配線と同電位の第2の端子、容量配線と同電位の第3の端子などが複数並べられて配置される。それぞれの端子の数は、それぞれ任意な数で設ければ良いものとし、実施者が適宣決定すれば良い。
こうして5回のフォトリソグラフィー工程により、5枚のフォトマスクを使用して、ボトムゲート型のnチャネル型薄膜トランジスタである薄膜トランジスタ170を有する画素薄膜トランジスタ部、保持容量を完成させることができる。そして、これらを個々の画素に対応してマトリクス状に配置して画素部を構成することによりアクティブマトリクス型の表示装置を作製するための一方の基板とすることができる。本明細書では便宜上このような基板をアクティブマトリクス基板と呼ぶ。
アクティブマトリクス型の液晶表示装置を作製する場合には、アクティブマトリクス基板と、対向電極が設けられた対向基板との間に液晶層を設け、アクティブマトリクス基板と対向基板とを固定する。なお、対向基板に設けられた対向電極と電気的に接続する共通電極をアクティブマトリクス基板上に設け、共通電極と電気的に接続する第4の端子を端子部に設ける。この第4の端子は、共通電極を固定電位、例えばGND、0Vなどに設定するための端子である。
また、本発明は、図6の画素構成に限定されず、図6とは異なる上面図の例を図8に示す。図8では容量配線を設けず、画素電極を隣り合う画素のゲート配線と保護絶縁膜及びゲート絶縁層を介して重ねて保持容量を形成する例であり、この場合、容量配線及び容量配線と接続する第3の端子は省略することができる。なお、図8において、図6と同じ部分には同じ符号を用いて説明する。
アクティブマトリクス型の液晶表示装置においては、マトリクス状に配置された画素電極を駆動することによって、画面上に表示パターンが形成される。詳しくは選択された画素電極と該画素電極に対応する対向電極との間に電圧が印加されることによって、画素電極と対向電極との間に配置された液晶層の光学変調が行われ、この光学変調が表示パターンとして観察者に認識される。
液晶表示装置の動画表示において、液晶分子自体の応答が遅いため、残像が生じる、または動画のぼけが生じるという問題がある。液晶表示装置の動画特性を改善するため、全面黒表示を1フレームおきに行う、所謂、黒挿入と呼ばれる駆動技術がある。
また、通常の垂直周期を1.5倍若しくは2倍以上にすることで動画特性を改善する、所謂、倍速駆動と呼ばれる駆動技術もある。
また、液晶表示装置の動画特性を改善するため、バックライトとして複数のLED(発光ダイオード)光源または複数のEL光源などを用いて面光源を構成し、面光源を構成している各光源を独立して1フレーム期間内で間欠点灯駆動する駆動技術もある。面光源として、3種類以上のLEDを用いてもよいし、白色発光のLEDを用いてもよい。独立して複数のLEDを制御できるため、液晶層の光学変調の切り替えタイミングに合わせてLEDの発光タイミングを同期させることもできる。この駆動技術は、LEDを部分的に消灯することができるため、特に一画面を占める黒い表示領域の割合が多い映像表示の場合には、消費電力の低減効果が図れる。
これらの駆動技術を組み合わせることによって、液晶表示装置の動画特性などの表示特性を従来よりも改善することができる。
本実施の形態で得られるnチャネル型のトランジスタは、IGZO半導体層をチャネル形成領域に用いており、良好な動特性を有するため、これらの駆動技術を組み合わせることができる。
また、発光表示装置を作製する場合、有機発光素子の一方の電極(カソードとも呼ぶ)は、低電源電位、例えばGND、0Vなどに設定するため、端子部に、カソードを低電源電位、例えばGND、0Vなどに設定するための第4の端子が設けられる。また、発光表示装置を作製する場合には、ソース配線、及びゲート配線に加えて電源供給線を設ける。従って、端子部には、電源供給線と電気的に接続する第5の端子を設ける。
本実施の形態によって、光電流が少なく、寄生容量が小さく、オンオフ比の高い薄膜トランジスタを得ることができ、良好な動特性を有する薄膜トランジスタを作製できる。よって、電気特性が高く信頼性のよい薄膜トランジスタを有する半導体装置を提供することができる。
(実施の形態2)
本実施の形態では、実施の形態1の薄膜トランジスタにおいてソース領域及びドレイン領域をソース電極層及びドレイン電極層の上下に設ける例である。実施の形態1と異なる構造を有する薄膜トランジスタ及びその作製工程について、図9及び図10を用いて説明する。
本実施の形態では、実施の形態1と一部異なるだけであるため、図1乃至図8と同じ箇所には同じ符号を用い、同じ工程の繰り返しの説明は省略して以下に説明する。
まず、実施の形態1と同様に、基板100上に導電層を形成した後、第1のフォトリソグラフィー工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去して配線及び電極(ゲート電極101を含むゲート配線、容量配線108、及び第1の端子121)を形成する。この段階での断面図が図9(A)であり、図9(A)は図1(A)と同一である。従って、図3の上面図と図9(A)は対応している。
次いで、実施の形態1と同様に、ゲート電極101上にゲート絶縁層102を全面に成膜する。ゲート絶縁層102はスパッタ法などを用い、膜厚を50〜250nmとする。例えば、ゲート絶縁層102としてスパッタ法により酸化シリコン膜を用い、110nmの厚さで形成する。
次に、ゲート絶縁層102上に第1の酸化物半導体膜(本実施の形態では第1のIGZO膜)をスパッタ法で成膜する。ここでは、In:Ga:ZnO=1:1:1としたターゲットを用い、成膜条件は、圧力を0.4Paとし、電力を500Wとし、成膜温度を室温とし、アルゴンガス流量40sccmを導入してスパッタ成膜を行う。In:Ga:ZnO=1:1:1としたターゲットを意図的に用いているにも関わらず、成膜直後で大きさ1nm〜10nmの結晶粒を含むIGZO膜が得られる場合がある。なお、ターゲットの成分比、成膜圧力(0.1Pa〜2.0Pa)、電力(250W〜3000W:8インチφ)、温度(室温〜100℃)、反応性スパッタの成膜条件などを適宜調節することで結晶粒の有無や、結晶粒の密度や、直径サイズは、1nm〜10nmの範囲で調節されうると言える。第1のIGZO膜の膜厚は、5nm〜20nmとする。勿論、膜中に結晶粒が含まれる場合、含まれる結晶粒のサイズが膜厚を超える大きさとならない。本実施の形態では第1のIGZO膜の膜厚は、5nmとする。
次に、第1のIGZO膜上に金属材料からなる導電膜をスパッタ法や真空蒸着法で形成する。導電膜の材料としては、Al、Cr、Ta、Ti、Mo、Wから選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組み合わせた合金膜等が挙げられる。ここでは、導電膜としてTi膜と、そのTi膜上に重ねてアルミニウム(Al)膜を積層し、さらにその上にTi膜を成膜する3層構造とする。また、導電膜は、2層構造としてもよく、アルミニウム膜上にチタン膜を積層してもよい。また、導電膜は、シリコンを含むアルミニウム膜の単層構造や、チタン膜の単層構造としてもよい。
次に、導電膜上に第2の酸化物半導体膜(本実施の形態では第2のIGZO膜)をスパッタ法で成膜する。この第2のIGZO膜は、第1のIGZO膜と同じ成膜条件を用いて形成することができる。第2のIGZO膜は、成膜直後で大きさ1nm〜10nmの結晶粒を含む場合のあるIGZO膜を用いる。第2のIGZO膜の膜厚は、5nm〜20nmとする。本実施の形態では第2のIGZO膜の膜厚は、5nmとする。
ゲート絶縁層、第1のIGZO膜、導電膜、及び第2のIGZO膜は、スパッタ法で、チャンバーに導入するガスまたは設置するターゲットを適宣切り替えることにより大気に触れることなく連続成膜することができる。大気に触れることなく連続成膜すると、不純物の混入を防止することができる。大気に触れることなく連続成膜する場合、マルチチャンバー方式の製造装置を用いることが好ましい。
次に、第2のフォトリソグラフィー工程を行い、第2のIGZO膜上にレジストマスクを形成し、エッチングにより不要な部分を除去して第1のソース領域106a及び第1のドレイン領域106b、ソース電極層105a及びドレイン電極層105b、第2のIGZO膜であるIGZO層111a、111bを形成する。この際のエッチング方法としてウエットエッチングまたはドライエッチングを用いる。ここでは、ITO07N(関東化学社製)を用いたウェットエッチングにより、IGZO層111a、111bを形成した後、SiClとClとBClの混合ガスを反応ガスとしたドライエッチングにより、Ti膜とAl膜とTi膜を順次積層した導電膜をエッチングしてソース電極層105a及びドレイン電極層105bを形成する。その後、同じレジストマスクを用いてITO07N(関東化学社製)を用いたウェットエッチングにより、第1のソース領域106a及び第1のドレイン領域106bを形成する。この段階での断面図を図9(B)に示した。なお、この段階での上面図が図4に相当する。
また、容量部においては、容量配線108と重なる第1のIGZO膜及び第2のIGZO膜は除去される。また、端子部においては、第2の端子122上に第2のIGZO膜であるIGZO層123が残存する。また、第2の端子122の下方に存在し、かつ、第2の端子と重なる第1のIGZO膜であるIGZO層130は残存する。
次に、レジストマスクを除去した後、プラズマ処理を行う。この段階での断面図を図9(C)に示す。ここでは酸素ガスとアルゴンガスを導入してプラズマを発生させる逆スパッタを行い、露出しているゲート絶縁層に酸素ラジカル又は酸素を照射する。こうして、表面に付着しているゴミを除去し、さらにゲート絶縁層表面を酸素過剰領域に改質する。ゲート絶縁層の表面に酸素ラジカル処理を行い、表面を酸素過剰領域とすることは、その後の工程での信頼性向上のための熱処理(200℃〜600℃)において、IGZO半導体層界面の改質のための酸素の供給源を作る上で有効である。
また、ソース電極層105a及びドレイン電極層105b上にはIGZO層111a、111bが設けられているため、プラズマダメージが低減される。また、IGZO層111a、111bが設けられているため、ソース電極層105a及びドレイン電極層105bの酸化による配線抵抗の増大を抑えることができる。
なお、プラズマ処理の条件によっては、露呈しているソース電極層105a及びドレイン電極層105bの側面は酸化膜(図示しない)が形成されるが、本構造においてはソース電極層105a及びドレイン電極層105bがチャネル形成領域と直接接する構造とするのではないため問題ないと言える。むしろ、この酸化膜によりソース領域またはドレイン領域を介してソース電極層105a及びドレイン電極層105bがチャネル形成領域と接する構造とすることができる。
次いで、プラズマ処理後、大気に曝すことなく第3の酸化物半導体膜(本実施の形態では第3のIGZO膜)を成膜する。プラズマ処理後、大気に曝すことなく第3のIGZO膜を成膜することは、ゲート絶縁層と半導体膜の界面にゴミや水分を付着させない点で有用である。ここでは、直径8インチのIn、Ga、及びZnを含む酸化物半導体ターゲット(In:Ga:ZnO=1:1:1)を用いて、基板とターゲットの間との距離を170mm、圧力0.4Pa、直流(DC)電源0.5kW、アルゴン又は酸素雰囲気下で成膜する。なお、パルス直流(DC)電源を用いると、ごみが軽減でき、膜厚分布も均一となるために好ましい。第3のIGZO膜の膜厚は、5nm〜200nmとする。本実施の形態では第3のIGZO膜の膜厚は、100nmとする。
第3のIGZO膜は、第1及び第2のIGZO膜の成膜条件と異ならせることで、第1及び第2のIGZO膜の膜中の酸素濃度より多くの酸素を第3のIGZO膜中に含ませる。例えば、第1及び第2のIGZO膜の成膜条件における酸素ガス流量とアルゴンガス流量の比よりも第3のIGZO膜の成膜条件における酸素ガス流量の占める比率が多い条件とする。
具体的には、第1及び第2のIGZO膜の成膜条件は、希ガス(アルゴン、又はヘリウムなど)雰囲気下(または酸素ガス10%以下、アルゴンガス90%以上)とし、第3のIGZO膜の成膜条件は、酸素雰囲気下(又は酸素ガス流量がアルゴンガス流量と同量かそれ以上)とする。
多くの酸素を第3のIGZO膜中に含ませることによって、第1及び第2のIGZO膜よりも導電率を低くすることができる。また、多くの酸素を第3のIGZO膜中に含ませることによってオフ電流の低減を図ることができるため、オンオフ比の高い薄膜トランジスタを得ることができる。
第3のIGZO膜の成膜は、先に逆スパッタを行ったチャンバーと同一チャンバーを用いてもよいし、大気に曝すことなく成膜できるのであれば、先に逆スパッタを行ったチャンバーと異なるチャンバーで成膜してもよい。
次いで、200℃〜600℃、代表的には300℃〜500℃の熱処理を行うことが好ましい。ここでは炉に入れ、窒素雰囲気下で350℃、1時間の熱処理を行う。この熱処理によりIGZO膜の原子レベルの再配列が行われる。この熱処理によりキャリアの移動を阻害する歪エネルギーが解放されるため、ここでの熱処理(光アニールも含む)は重要である。なお、熱処理を行うタイミングは、第3のIGZO膜の成膜後であれば特に限定されず、例えば画素電極形成後に行ってもよい。
次に、第3のフォトリソグラフィー工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去してIGZO半導体層103を形成する。以上の工程でIGZO半導体層103をチャネル形成領域とする薄膜トランジスタ171が作製できる。この段階での断面図を図10(A)に示した。なお、この段階での上面図が図5に相当する。ここではITO07N(関東化学社製)を用いたウェットエッチングにより、第3のIGZO膜を除去してIGZO半導体層103を形成する。なお、第1のIGZO膜、第2のIGZO膜、及び第3のIGZO膜は同じエッチャントを用いるため、ここでのエッチングにより第1のIGZO膜の一部及び第2のIGZO膜の一部が除去される。第3のIGZO膜で覆われ、残存した第2のIGZO膜は、それぞれ第2のソース領域104a、及び第2のドレイン領域104bとなる。また、第3のIGZO膜で覆われた第1のIGZO膜の側面は保護されるが、図10(A)に示すように、もう一方の第1のIGZO膜の側面は露呈し、若干エッチングされるため端面の形状が変化する。なお、IGZO半導体層103のエッチングは、ウェットエッチングに限定されずドライエッチングを用いてもよい。
また、ここでのエッチングにより、端子部においては、第2の端子122上に設けられた第2のIGZO膜であるIGZO層123は除去される。
次いで、実施の形態1と同様に、IGZO半導体層を覆う保護絶縁膜107を形成する。以降の工程は、実施の形態1と同一であるため、ここでは簡略な説明のみとする。
保護絶縁膜107を形成した後、第4のフォトリソグラフィー工程を行い、レジストマスクを形成し、保護絶縁膜107のエッチングによりコンタクトホール125、126、127を形成する。この段階での断面図を図10(B)に示した。
次いで、レジストマスクを除去した後、透明導電膜を成膜する。次いで、第5のフォトリソグラフィー工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去して画素電極110を形成し、端子部に形成された透明導電膜128、129を残す。次いで、レジストマスクを除去し、この段階での断面図を図10(C)に示す。なお、この段階での上面図が図6に相当する。
こうして5回のフォトリソグラフィー工程により、5枚のフォトマスクを使用して、ボトムゲート型のnチャネル型薄膜トランジスタである薄膜トランジスタ171を有する画素薄膜トランジスタ部、保持容量を完成させることができる。
本実施の形態に示したnチャネル型薄膜トランジスタ171は、複数のソース領域、複数のドレイン領域が設けられており、オン電流を実施の形態1よりも大きくすることができる。
本実施の形態では、ソース領域又はドレイン領域(In、Ga、及びZnを含む酸素欠乏酸化物半導体層)を設け、ゲート電極層、ゲート絶縁層、ソース領域又はドレイン領域(In、Ga、及びZnを含む酸素欠乏酸化物半導体層)、ソース電極層及びドレイン電極層、半導体層(In、Ga、及びZnを含む酸素過剰酸化物半導体層)という積層構造を有する薄膜トランジスタとしている。よって、ゲート電極層とソース電極層又はドレイン電極層との距離を遠くすることができるため、半導体層の膜厚が薄膜であっても寄生容量を抑制することができる。
なお、本実施の形態は、実施の形態1と自由に組み合わせることができる。
(実施の形態3)
本実施の形態では、本発明の半導体装置の一例である表示装置において、同一基板上に少なくとも駆動回路の一部と、画素部に配置する薄膜トランジスタを作製する例について以下に説明する。
画素部に配置する薄膜トランジスタは、実施の形態1又は実施の形態2に従って形成する。また、実施の形態1又は実施の形態2に示す薄膜トランジスタはnチャネル型TFTであるため、駆動回路のうち、nチャネル型TFTで構成することができる駆動回路の一部を画素部の薄膜トランジスタと同一基板上に形成する。
本発明の半導体装置の一例であるアクティブマトリクス型液晶表示装置のブロック図の一例を図12(A)に示す。図12(A)に示す表示装置は、基板5300上に表示素子を備えた画素を複数有する画素部5301と、各画素を選択する走査線駆動回路5302と、選択された画素へのビデオ信号の入力を制御する信号線駆動回路5303とを有する。
画素部5301は、信号線駆動回路5303から列方向に伸張して配置された複数の信号線S1〜Sm(図示せず。)により信号線駆動回路5303と接続され、走査線駆動回路5302から行方向に伸張して配置された複数の走査線G1〜Gn(図示せず。)により走査線駆動回路5302と接続され、信号線S1〜Sm並びに走査線G1〜Gnに対応してマトリクス状に配置された複数の画素(図示せず。)を有する。そして、各画素は、信号線Sj(信号線S1〜Smのうちいずれか一)、走査線Gi(走査線G1〜Gnのうちいずれか一)と接続される。
また、実施の形態1又は実施の形態2に示す薄膜トランジスタは、nチャネル型TFTであり、nチャネル型TFTで構成する信号線駆動回路について図13を用いて説明する。
図13に示す信号線駆動回路は、ドライバIC5601、スイッチ群5602_1〜5602_M、第1の配線5611、第2の配線5612、第3の配線5613及び配線5621_1〜5621_Mを有する。スイッチ群5602_1〜5602_Mそれぞれは、第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cを有する。
ドライバIC5601は第1の配線5611、第2の配線5612、第3の配線5613及び配線5621_1〜5621_Mに接続される。そして、スイッチ群5602_1〜5602_Mそれぞれは、第1の配線5611、第2の配線5612、第3の配線5613及びスイッチ群5602_1〜5602_Mそれぞれに対応した配線5621_1〜5621_Mに接続される。そして、配線5621_1〜5621_Mそれぞれは、第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cを介して、3つの信号線に接続される。例えば、J列目の配線5621_J(配線5621_1〜配線5621_Mのうちいずれか一)は、スイッチ群5602_Jが有する第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cを介して、信号線Sj−1、信号線Sj、信号線Sj+1に接続される。
なお、第1の配線5611、第2の配線5612、第3の配線5613には、それぞれ信号が入力される。
なお、ドライバIC5601は、単結晶基板上に形成されていることが望ましい。さらに、スイッチ群5602_1〜5602_Mは、画素部と同一基板上に形成されていることが望ましい。したがって、ドライバIC5601とスイッチ群5602_1〜5602_MとはFPCなどを介して接続するとよい。
次に、図13に示した信号線駆動回路の動作について、図14のタイミングチャートを参照して説明する。なお、図14のタイミングチャートは、i行目の走査線Giが選択されている場合のタイミングチャートを示している。さらに、i行目の走査線Giの選択期間は、第1のサブ選択期間T1、第2のサブ選択期間T2及び第3のサブ選択期間T3に分割されている。さらに、図13の信号線駆動回路は、他の行の走査線が選択されている場合でも図14と同様の動作をする。
なお、図14のタイミングチャートは、J列目の配線5621_Jが第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cを介して、信号線Sj−1、信号線Sj、信号線Sj+1に接続される場合について示している。
なお、図14のタイミングチャートは、i行目の走査線Giが選択されるタイミング、第1の薄膜トランジスタ5603aのオン・オフのタイミング5703a、第2の薄膜トランジスタ5603bのオン・オフのタイミング5703b、第3の薄膜トランジスタ5603cのオン・オフのタイミング5703c及びJ列目の配線5621_Jに入力される信号5721_Jを示している。
なお、配線5621_1〜配線5621_Mには第1のサブ選択期間T1、第2のサブ選択期間T2及び第3のサブ選択期間T3において、それぞれ別のビデオ信号が入力される。例えば、第1のサブ選択期間T1において配線5621_Jに入力されるビデオ信号は信号線Sj−1に入力され、第2のサブ選択期間T2において配線5621_Jに入力されるビデオ信号は信号線Sjに入力され、第3のサブ選択期間T3において配線5621_Jに入力されるビデオ信号は信号線Sj+1に入力される。さらに、第1のサブ選択期間T1、第2のサブ選択期間T2及び第3のサブ選択期間T3において、配線5621_Jに入力されるビデオ信号をそれぞれData_j−1、Data_j、Data_j+1とする。
図14に示すように、第1のサブ選択期間T1において第1の薄膜トランジスタ5603aがオンし、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cがオフする。このとき、配線5621_Jに入力されるData_j−1が、第1の薄膜トランジスタ5603aを介して信号線Sj−1に入力される。第2のサブ選択期間T2では、第2の薄膜トランジスタ5603bがオンし、第1の薄膜トランジスタ5603a及び第3の薄膜トランジスタ5603cがオフする。このとき、配線5621_Jに入力されるData_jが、第2の薄膜トランジスタ5603bを介して信号線Sjに入力される。第3のサブ選択期間T3では、第3の薄膜トランジスタ5603cがオンし、第1の薄膜トランジスタ5603a及び第2の薄膜トランジスタ5603bがオフする。このとき、配線5621_Jに入力されるData_j+1が、第3の薄膜トランジスタ5603cを介して信号線Sj+1に入力される。
以上のことから、図13の信号線駆動回路は、1ゲート選択期間を3つに分割することで、1ゲート選択期間中に1つの配線5621から3つの信号線にビデオ信号を入力することができる。したがって、図13の信号線駆動回路は、ドライバIC5601が形成される基板と、画素部が形成されている基板との接続数を信号線の数に比べて約1/3にすることができる。接続数が約1/3になることによって、図13の信号線駆動回路は、信頼性、歩留まりなどを向上できる。
なお、図13のように、1ゲート選択期間を複数のサブ選択期間に分割し、複数のサブ選択期間それぞれにおいて、ある1つの配線から複数の信号線それぞれにビデオ信号を入力することができれば、薄膜トランジスタの配置や数、駆動方法などは限定されない。
例えば、3つ以上のサブ選択期間それぞれにおいて1つの配線から3つ以上の信号線それぞれにビデオ信号を入力する場合は、薄膜トランジスタ及び薄膜トランジスタを制御するための配線を追加すればよい。ただし、1ゲート選択期間を4つ以上のサブ選択期間に分割すると、1つのサブ選択期間が短くなる。したがって、1ゲート選択期間は、2つ又は3つのサブ選択期間に分割されることが望ましい。
別の例として、図15のタイミングチャートに示すように、1つのゲート選択期間をプリチャージ期間Tp、第1のサブ選択期間T1、第2のサブ選択期間T2、第3のサブ選選択期間T3に分割してもよい。さらに、図15のタイミングチャートは、i行目の走査線Giが選択されるタイミング、第1の薄膜トランジスタ5603aのオン・オフのタイミング5803a、第2の薄膜トランジスタ5603bのオン・オフのタイミング5803b、第3の薄膜トランジスタ5603cのオン・オフのタイミング5803c及びJ列目の配線5621_Jに入力される信号5821_Jを示している。図15に示すように、プリチャージ期間Tpにおいて第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cがオンする。このとき、配線5621_Jに入力されるプリチャージ電圧Vpが第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cを介してそれぞれ信号線Sj−1、信号線Sj、信号線Sj+1に入力される。第1のサブ選択期間T1において第1の薄膜トランジスタ5603aがオンし、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cがオフする。このとき、配線5621_Jに入力されるData_j−1が、第1の薄膜トランジスタ5603aを介して信号線Sj−1に入力される。第2のサブ選択期間T2では、第2の薄膜トランジスタ5603bがオンし、第1の薄膜トランジスタ5603a及び第3の薄膜トランジスタ5603cがオフする。このとき、配線5621_Jに入力されるData_jが、第2の薄膜トランジスタ5603bを介して信号線Sjに入力される。第3のサブ選択期間T3では、第3の薄膜トランジスタ5603cがオンし、第1の薄膜トランジスタ5603a及び第2の薄膜トランジスタ5603bがオフする。このとき、配線5621_Jに入力されるData_j+1が、第3の薄膜トランジスタ5603cを介して信号線Sj+1に入力される。
以上のことから、図15のタイミングチャートを適用した図13の信号線駆動回路は、サブ選択期間の前にプリチャージ選択期間を設けることによって、信号線をプリチャージできるため、画素へのビデオ信号の書き込みを高速に行うことができる。なお、図15において、図14と同様なものに関しては共通の符号を用いて示し、同一部分又は同様な機能を有する部分の詳細な説明は省略する。
また、走査線駆動回路の構成について説明する。走査線駆動回路は、シフトレジスタ、バッファを有している。また場合によってはレベルシフタを有していても良い。走査線駆動回路において、シフトレジスタにクロック信号(CLK)及びスタートパルス信号(SP)が入力されることによって、選択信号が生成される。生成された選択信号はバッファにおいて緩衝増幅され、対応する走査線に供給される。走査線には、1ライン分の画素のトランジスタのゲート電極が接続されている。そして、1ライン分の画素のトランジスタを一斉にONにしなくてはならないので、バッファは大きな電流を流すことが可能なものが用いられる。
走査線駆動回路の一部に用いるシフトレジスタの一形態について図16及び図17を用いて説明する。
図16にシフトレジスタの回路構成を示す。図16に示すシフトレジスタは、複数のフリップフロップ(フリップフロップ5701_1〜5701_n)で構成される。また、第1のクロック信号、第2のクロック信号、スタートパルス信号、リセット信号が入力されて動作する。
図16のシフトレジスタの接続関係について説明する。図16のシフトレジスタは、i段目のフリップフロップ5701_i(フリップフロップ5701_1〜5701_nのうちいずれか一)は、図17に示した第1の配線5501が第7の配線5717_i−1に接続され、図17に示した第2の配線5502が第7の配線5717_i+1に接続され、図17に示した第3の配線5503が第7の配線5717_iに接続され、図17に示した第6の配線5506が第5の配線5715に接続される。
また、図17に示した第4の配線5504が奇数段目のフリップフロップでは第2の配線5712に接続され、偶数段目のフリップフロップでは第3の配線5713に接続され、図17に示した第5の配線5505が第4の配線5714に接続される。
ただし、1段目のフリップフロップ5701_1の図17に示す第1の配線5501は第1の配線5711に接続され、n段目のフリップフロップ5701_nの図17に示す第2の配線5502は第6の配線5716に接続される。
なお、第1の配線5711、第2の配線5712、第3の配線5713、第6の配線5716を、それぞれ第1の信号線、第2の信号線、第3の信号線、第4の信号線と呼んでもよい。さらに、第4の配線5714、第5の配線5715を、それぞれ第1の電源線、第2の電源線と呼んでもよい。
次に、図16に示すフリップフロップの詳細について、図17に示す。図17に示すフリップフロップは、第1の薄膜トランジスタ5571、第2の薄膜トランジスタ5572、第3の薄膜トランジスタ5573、第4の薄膜トランジスタ5574、第5の薄膜トランジスタ5575、第6の薄膜トランジスタ5576、第7の薄膜トランジスタ5577及び第8の薄膜トランジスタ5578を有する。なお、第1の薄膜トランジスタ5571、第2の薄膜トランジスタ5572、第3の薄膜トランジスタ5573、第4の薄膜トランジスタ5574、第5の薄膜トランジスタ5575、第6の薄膜トランジスタ5576、第7の薄膜トランジスタ5577及び第8の薄膜トランジスタ5578は、nチャネル型トランジスタであり、ゲート・ソース間電圧(Vgs)がしきい値電圧(Vth)を上回ったとき導通状態になるものとする。
次に、図16に示すフリップフロップの接続構成について、以下に示す。
第1の薄膜トランジスタ5571の第1の電極(ソース電極またはドレイン電極の一方)が第5の配線5504に接続され、第1の薄膜トランジスタ5571の第2の電極(ソース電極またはドレイン電極の他方)が第3の配線5503に接続される。
第2の薄膜トランジスタ5572の第1の電極が第6の配線5506に接続され、第2の薄膜トランジスタ5572第2の電極が第3の配線5503に接続される。
第3の薄膜トランジスタ5573の第1の電極が第5の配線5505に接続され、第3の薄膜トランジスタ5573の第2の電極が第2の薄膜トランジスタ5572のゲート電極に接続され、第3の薄膜トランジスタ5573のゲート電極が第5の配線5505に接続される。
第4の薄膜トランジスタ5574の第1の電極が第6の配線5506に接続され、第4の薄膜トランジスタ5574の第2の電極が第2の薄膜トランジスタ5572のゲート電極に接続され、第4の薄膜トランジスタ5574のゲート電極が第1の薄膜トランジスタ5571のゲート電極に接続される。
第5の薄膜トランジスタ5575の第1の電極が第5の配線5505に接続され、第5の薄膜トランジスタ5575の第2の電極が第1の薄膜トランジスタ5571のゲート電極に接続され、第5の薄膜トランジスタ5575のゲート電極が第1の配線5501に接続される。
第6の薄膜トランジスタ5576の第1の電極が第6の配線5506に接続され、第6の薄膜トランジスタ5576の第2の電極が第1の薄膜トランジスタ5571のゲート電極に接続され、第6の薄膜トランジスタ5576のゲート電極が第2の薄膜トランジスタ5572のゲート電極に接続される。
第7の薄膜トランジスタ5577の第1の電極が第6の配線5506に接続され、第7の薄膜トランジスタ5577の第2の電極が第1の薄膜トランジスタ5571のゲート電極に接続され、第7の薄膜トランジスタ5577のゲート電極が第2の配線5502に接続される。第8の薄膜トランジスタ5578の第1の電極が第6の配線5506に接続され、第8の薄膜トランジスタ5578の第2の電極が第2の薄膜トランジスタ5572のゲート電極に接続され、第8の薄膜トランジスタ5578のゲート電極が第1の配線5501に接続される。
なお、第1の薄膜トランジスタ5571のゲート電極、第4の薄膜トランジスタ5574のゲート電極、第5の薄膜トランジスタ5575の第2の電極、第6の薄膜トランジスタ5576の第2の電極及び第7の薄膜トランジスタ5577の第2の電極の接続箇所をノード5543とする。さらに、第2の薄膜トランジスタ5572のゲート電極、第3の薄膜トランジスタ5573の第2の電極、第4の薄膜トランジスタ5574の第2の電極、第6の薄膜トランジスタ5576のゲート電極及び第8の薄膜トランジスタ5578の第2の電極の接続箇所をノード5544とする。
なお、第1の配線5501、第2の配線5502、第3の配線5503及び第4の配線5504を、それぞれ第1の信号線、第2の信号線、第3の信号線、第4の信号線と呼んでもよい。さらに、第5の配線5505を第1の電源線、第6の配線5506を第2の電源線と呼んでもよい。
また、信号線駆動回路及び走査線駆動回路を実施の形態1又は実施の形態2に示すnチャネル型TFTのみで作製することも可能である。実施の形態1又は実施の形態2に示すnチャネル型TFTはトランジスタの移動度が大きいため、駆動回路の駆動周波数を高くすることが可能となる。また、実施の形態1又は実施の形態2に示すnチャネル型TFTはインジウム、ガリウム、及び亜鉛を含む酸素欠乏酸化物半導体層であるソース領域又はドレイン領域により寄生容量が低減されるため、周波数特性(f特性と呼ばれる)が高い。例えば、実施の形態1又は実施の形態2に示すnチャネル型TFTを用いた走査線駆動回路は、高速に動作させることが出来るため、フレーム周波数を高くすること、または、黒画面挿入を実現することなども実現することが出来る。
さらに、走査線駆動回路のトランジスタのチャネル幅を大きくすることや、複数の走査線駆動回路を配置することなどによって、さらに高いフレーム周波数を実現することが出来る。複数の走査線駆動回路を配置する場合は、偶数行の走査線を駆動する為の走査線駆動回路を片側に配置し、奇数行の走査線を駆動するための走査線駆動回路をその反対側に配置することにより、フレーム周波数を高くすることを実現することが出来る。
また、本発明の半導体装置の一例であるアクティブマトリクス型発光表示装置を作製する場合、少なくとも一つの画素に複数の薄膜トランジスタを配置するため、走査線駆動回路を複数配置することが好ましい。アクティブマトリクス型発光表示装置のブロック図の一例を図12(B)に示す。
図12(B)に示す発光表示装置は、基板5400上に表示素子を備えた画素を複数有する画素部5401と、各画素を選択する第1の走査線駆動回路5402及び第2の走査線駆動回路5404と、選択された画素へのビデオ信号の入力を制御する信号線駆動回路5403とを有する。
図12(B)に示す発光表示装置の画素に入力されるビデオ信号をデジタル形式とする場合、画素はトランジスタのオンとオフの切り替えによって、発光もしくは非発光の状態となる。よって、面積階調法または時間階調法を用いて階調の表示を行うことができる。面積階調法は、1画素を複数の副画素に分割し、各副画素を独立にビデオ信号に基づいて駆動させることによって、階調表示を行う駆動法である。また時間階調法は、画素が発光する期間を制御することによって、階調表示を行う駆動法である。
発光素子は、液晶素子などに比べて応答速度が高いので、液晶素子よりも時間階調法に適している。具体的に時間階調法で表示を行なう場合、1フレーム期間を複数のサブフレーム期間に分割する。そしてビデオ信号に従い、各サブフレーム期間において画素の発光素子を発光または非発光の状態にする。複数のサブフレーム期間に分割することによって、1フレーム期間中に画素が実際に発光する期間のトータルの長さを、ビデオ信号により制御することができ、階調を表示することができる。
なお、図12(B)に示す発光表示装置では、一つの画素にスイッチング用TFTと、電流制御用TFTとの2つを配置する場合、スイッチング用TFTのゲート配線である第1の走査線に入力される信号を第1走査線駆動回路5402で生成し、電流制御用TFTのゲート配線である第2の走査線に入力される信号を第2の走査線駆動回路5404で生成している例を示しているが、第1の走査線に入力される信号と、第2の走査線に入力される信号とを、共に1つの走査線駆動回路で生成するようにしても良い。また、例えば、スイッチング素子が有する各トランジスタの数によって、スイッチング素子の動作を制御するのに用いられる第1の走査線が、各画素に複数設けられることもあり得る。この場合、複数の第1の走査線に入力される信号を、全て1つの走査線駆動回路で生成しても良いし、複数の各走査線駆動回路で生成しても良い。
また、発光表示装置においても、駆動回路のうち、nチャネル型TFTで構成することができる駆動回路の一部を画素部の薄膜トランジスタと同一基板上に形成することができる。また、信号線駆動回路及び走査線駆動回路を実施の形態1又は実施の形態2に示すnチャネル型TFTのみで作製することも可能である。
また、上述した駆動回路は、液晶表示装置や発光表示装置に限らず、スイッチング素子と電気的に接続する素子を利用して電子インクを駆動させる電子ペーパーに用いてもよい。電子ペーパーは、電気泳動表示装置(電気泳動ディスプレイ)も呼ばれており、紙と同じ読みやすさ、他の表示装置に比べ低消費電力、薄くて軽い形状とすることが可能という利点を有している。
電気泳動ディスプレイは、様々な形態が考えられ得るが、プラスの電荷を有する第1の粒子と、マイナスの電荷を有する第2の粒子とを含むマイクロカプセルが溶媒または溶質に複数分散されたものであり、マイクロカプセルに電界を印加することによって、マイクロカプセル中の粒子を互いに反対方向に移動させて一方側に集合した粒子の色のみを表示するものである。なお、第1の粒子または第2の粒子は染料を含み、電界がない場合において移動しないものである。また、第1の粒子の色と第2の粒子の色は異なるもの(無色を含む)とする。
このように、電気泳動ディスプレイは、誘電定数の高い物質が高い電界領域に移動する、いわゆる誘電泳動的効果を利用したディスプレイである。電気泳動ディスプレイは、液晶表示装置には必要な偏光板、対向基板も電気泳動表示装置には必要なく、厚さや重さが半減する。
上記マイクロカプセルを溶媒中に分散させたものが電子インクと呼ばれるものであり、この電子インクはガラス、プラスチック、布、紙などの表面に印刷することができる。また、カラーフィルタや色素を有する粒子を用いることによってカラー表示も可能である。
また、アクティブマトリクス基板上に適宜、二つの電極の間に挟まれるように上記マイクロカプセルを複数配置すればアクティブマトリクス型の表示装置が完成し、マイクロカプセルに電界を印加すれば表示を行うことができる。例えば、実施の形態1又は実施の形態2の薄膜トランジスタによって得られるアクティブマトリクス基板を用いることができる。
なお、マイクロカプセル中の第1の粒子および第2の粒子は、導電体材料、絶縁体材料、半導体材料、磁性材料、液晶材料、強誘電性材料、エレクトロルミネセント材料、エレクトロクロミック材料、磁気泳動材料から選ばれた一種の材料、またはこれらの複合材料を用いればよい。
以上の工程により、半導体装置として信頼性の高い表示装置を作製することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態4)
本発明の薄膜トランジスタを作製し、該薄膜トランジスタを画素部、さらには駆動回路に用いて表示機能を有する半導体装置(表示装置ともいう)を作製することができる。また、本発明の薄膜トランジスタを駆動回路の一部または全体を、画素部と同じ基板上に一体形成し、システムオンパネルを形成することができる。
表示装置は表示素子を含む。表示素子としては液晶素子(液晶表示素子ともいう)、発光素子(発光表示素子ともいう)を用いることができる。発光素子は、電流または電圧によって輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electro Luminescence)素子、有機EL素子等が含まれる。また、電子インクなど、電気的作用によりコントラストが変化する表示媒体も適用することができる。
また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラを含むIC等を実装した状態にあるモジュールとを含む。さらに本発明の一形態は、該表示装置を作製する過程における、表示素子が完成する前の一形態に相当する素子基板に関し、該素子基板は、電流を表示素子に供給するための手段を複数の各画素に備える。素子基板は、具体的には、表示素子の画素電極のみが形成された状態であっても良いし、画素電極となる導電膜を成膜した後であって、エッチングして画素電極を形成する前の状態であっても良いし、あらゆる形態があてはまる。
なお、本明細書中における表示装置とは、画像表示デバイス、表示デバイス、もしくは光源(照明装置含む)を指す。また、コネクター、例えばFPC(Flexible printed circuit)もしくはTAB(Tape Automated Bonding)テープもしくはTCP(Tape Carrier Package)が取り付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュール、または表示素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも全て表示装置に含むものとする。
本実施の形態では、本発明の半導体装置の一形態に相当する液晶表示パネルの外観及び断面について、図20を用いて説明する。図20は、第1の基板4001上に形成された酸素ラジカル処理をされたゲート絶縁層、ソース電極層、ドレイン電極層、ソース領域及びドレイン領域上に酸素過剰酸化物半導体層、並びにソース領域及びドレイン領域として酸素欠乏酸化物半導体層を含む信頼性の高い薄膜トランジスタ4010、4011、及び液晶素子4013を、第2の基板4006との間にシール材4005によって封止した、パネルの上面図であり、図20(B)は、図20(A1)(A2)のM−Nにおける断面図に相当する。
第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲むようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回路4004の上に第2の基板4006が設けられている。よって画素部4002と、走査線駆動回路4004とは、第1の基板4001とシール材4005と第2の基板4006とによって、液晶層4008と共に封止されている。また第1の基板4001上のシール材4005によって囲まれている領域とは異なる領域に、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜で形成された信号線駆動回路4003が実装されている。
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG方法、ワイヤボンディング方法、或いはTAB方法などを用いることができる。図20(A1)は、COG方法により信号線駆動回路4003を実装する例であり、図20(A2)は、TAB方法により信号線駆動回路4003を実装する例である。
また第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004は、薄膜トランジスタを複数有しており、図20(B)では、画素部4002に含まれる薄膜トランジスタ4010と、走査線駆動回路4004に含まれる薄膜トランジスタ4011とを例示している。薄膜トランジスタ4010、4011上には絶縁層4020、4021が設けられている。
薄膜トランジスタ4010、4011は、酸素ラジカル処理をされたゲート絶縁層、ソース電極層、ドレイン電極層、ソース領域及びドレイン領域上に酸素過剰酸化物半導体層、並びにソース領域及びドレイン領域として酸素欠乏酸化物半導体層を含む信頼性の高い薄膜トランジスタに相当し、実施の形態1又は実施の形態2に示す薄膜トランジスタを適用することができる。本実施の形態において、薄膜トランジスタ4010、4011はnチャネル型薄膜トランジスタである。
また、液晶素子4013が有する画素電極層4030は、薄膜トランジスタ4010と電気的に接続されている。そして液晶素子4013の対向電極層4031は第2の基板4006上に形成されている。画素電極層4030と対向電極層4031と液晶層4008とが重なっている部分が、液晶素子4013に相当する。なお、画素電極層4030、対向電極層4031はそれぞれ配向膜として機能する絶縁層4032、4033が設けられ、絶縁層4032、4033を介して液晶層4008を挟持している。
なお、第1の基板4001、第2の基板4006としては、ガラス、金属(代表的にはステンレス)、セラミックス、プラスチックを用いることができる。プラスチックとしては、FRP(Fiberglass−Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、ポリエステルフィルム、ポリエステルフィルムまたはアクリル樹脂フィルムを用いることができる。また、アルミニウムホイルをPVFフィルムやポリエステルフィルムで挟んだ構造のシートを用いることもできる。
また4035は絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであり、画素電極層4030と対向電極層4031との間の距離(セルギャップ)を制御するために設けられている。なお球状のスペーサを用いていても良い。
また、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために5重量%以上のカイラル剤を混合させた液晶組成物を用いて液晶層4008に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が10μs〜100μsと短く、光学的等方性であるため配向処理が不要であり、視野角依存性が小さい。
なお本実施の形態は透過型液晶表示装置の例であるが、本発明の一形態は反射型液晶表示装置でも半透過型液晶表示装置でも適用できる。
また、本実施の形態の液晶表示装置では、基板の外側(視認側)に偏光板を設け、内側に着色層、表示素子に用いる電極層という順に設ける例を示すが、偏光板は基板の内側に設けてもよい。また、偏光板と着色層の積層構造も本実施の形態に限定されず、偏光板及び着色層の材料や作製工程条件によって適宜設定すればよい。また、ブラックマトリクスとして機能する遮光膜を設けてもよい。
また、本実施の形態では、薄膜トランジスタの表面凹凸を低減するため、及び薄膜トランジスタの信頼性を向上させるため、実施の形態1で得られた薄膜トランジスタを保護膜や平坦化絶縁膜として機能する絶縁層(絶縁層4020、絶縁層4021)で覆う構成となっている。なお、保護膜は、大気中に浮遊する有機物や金属物、水蒸気などの汚染不純物の侵入を防ぐためのものであり、緻密な膜が好ましい。保護膜は、スパッタ法を用いて、酸化珪素膜、窒化珪素膜、酸化窒化珪素膜、窒化酸化珪素膜、酸化アルミニウム膜、窒化アルミニウム膜、酸化窒化アルミニウム膜、又は窒化酸化アルミニウム膜の単層、又は積層で形成すればよい。本実施の形態では保護膜をスパッタ法で形成する例を示すが、特に限定されず種々の方法で形成すればよい。
ここでは、保護膜として積層構造の絶縁層4020を形成する。ここでは、絶縁層4020の一層目として、スパッタ法を用いて酸化珪素膜を形成する。保護膜として酸化珪素膜を用いると、ソース電極層及びドレイン電極層として用いるアルミニウム膜のヒロック防止に効果がある。
また、保護膜の二層目として絶縁層を形成する。ここでは、ここでは、絶縁層4020の二層目として、スパッタ法を用いて窒化珪素膜を形成する。保護膜として窒化珪素膜を用いると、ナトリウム等の可動イオンが半導体領域中に侵入して、TFTの電気特性を変化させることを抑制することができる。
また、保護膜を形成した後に、IGZO半導体層のアニール(300℃〜400℃)を行ってもよい。
また、平坦化絶縁膜として絶縁層4021を形成する。絶縁層4021としては、ポリイミド、アクリル、ポリイミド、ベンゾシクロブテン、ポリアミド、エポキシ等の、耐熱性を有する有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いることができる。シロキサン系樹脂は、置換基に水素の他、フッ素、アルキル基、またはアリール基のうち少なくとも1種を有していてもよい。なお、これらの材料で形成される絶縁膜を複数積層させることで、絶縁層4021を形成してもよい。
なおシロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi−O−Si結合を含む樹脂に相当する。シロキサン系樹脂は、置換基に水素の他、フッ素、アルキル基、または芳香族炭化水素のうち、少なくとも1種を有していてもよい。
絶縁層4021の形成法は、特に限定されず、その材料に応じて、スパッタ法、SOG法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリーン印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコーター等を用いることができる。絶縁層4021を材料液を用いて形成する場合、ベークする工程で同時に、IGZO半導体層のアニール(300℃〜400℃)を行ってもよい。絶縁層4021の焼成工程とIGZO半導体層のアニールを兼ねることで効率よく半導体装置を作製することが可能となる。
画素電極層4030、対向電極層4031は、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性材料を用いることができる。
また、画素電極層4030、対向電極層4031として、導電性高分子(導電性ポリマーともいう)を含む導電性組成物を用いて形成することができる。導電性組成物を用いて形成した画素電極は、シート抵抗が10000Ω/□以下、波長550nmにおける透光率が70%以上であることが好ましい。また、導電性組成物に含まれる導電性高分子の抵抗率が0.1Ω・cm以下であることが好ましい。
導電性高分子としては、いわゆるπ電子共役系導電性高分子が用いることができる。例えば、ポリアニリンまたはその誘導体、ポリピロールまたはその誘導体、ポリチオフェンまたはその誘導体、若しくはこれらの2種以上の共重合体などがあげられる。
また別途形成された信号線駆動回路4003と、走査線駆動回路4004または画素部4002に与えられる各種信号及び電位は、FPC4018から供給されている。
本実施の形態では、接続端子電極4015が、液晶素子4013が有する画素電極層4030と同じ導電膜から形成され、端子電極4016は、薄膜トランジスタ4010、4011のソース電極層及びドレイン電極層と同じ導電膜で形成されている。
接続端子電極4015は、FPC4018が有する端子と、異方性導電膜4019を介して電気的に接続されている。
また図20においては、信号線駆動回路4003を別途形成し、第1の基板4001に実装している例を示しているが、本実施の形態はこの構成に限定されない。走査線駆動回路を別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部のみを別途形成して実装しても良い。
図21は、本発明を適用して作製されるTFT基板2600を用いて半導体装置として液晶表示モジュールを構成する一例を示している。
図21は液晶表示モジュールの一例であり、TFT基板2600と対向基板2601がシール材2602により固着され、その間にTFT等を含む画素部2603、液晶層を含む表示素子2604、着色層2605が設けられ表示領域を形成している。着色層2605はカラー表示を行う場合に必要であり、RGB方式の場合は、赤、緑、青の各色に対応した着色層が各画素に対応して設けられている。TFT基板2600と対向基板2601の外側には偏光板2606、偏光板2607、拡散板2613が配設されている。光源は冷陰極管2610と反射板2611により構成され、回路基板2612は、フレキシブル配線基板2609によりTFT基板2600の配線回路部2608と接続され、コントロール回路や電源回路などの外部回路が組みこまれている。また偏光板と、液晶層との間に位相差板を有した状態で積層してもよい。
液晶表示モジュールには、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、MVA(Multi−domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optical Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)などを用いることができる。
以上の工程により、半導体装置として信頼性の高い液晶表示パネルを作製することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態5)
本実施の形態では、本発明の一形態の半導体装置として電子ペーパーの例を示す。
図11は、本発明を適用した半導体装置の例としてアクティブマトリクス型の電子ペーパーを示す。半導体装置に用いられる薄膜トランジスタ581としては、実施の形態1で示す薄膜トランジスタと同様に作製でき、酸素ラジカル処理をされたゲート絶縁層、ソース電極層、ドレイン電極層、ソース領域及びドレイン領域上に酸素過剰酸化物半導体層、並びにソース領域及びドレイン領域として酸素欠乏酸化物半導体層を含む信頼性の高い薄膜トランジスタである。また、実施の形態2で示す薄膜トランジスタも本実施の薄膜トランジスタ581として適用することもできる。
図11の電子ペーパーは、ツイストボール表示方式を用いた表示装置の例である。ツイストボール表示方式とは、白と黒に塗り分けられた球形粒子を表示素子に用いる電極層である第1の電極層及び第2の電極層の間に配置し、第1の電極層及び第2の電極層に電位差を生じさせての球形粒子の向きを制御することにより、表示を行う方法である。
薄膜トランジスタ581はボトムゲート構造の薄膜トランジスタであり、ソース電極層又はドレイン電極層によって第1の電極層587と、絶縁層583、584、585に形成する開口で接しており電気的に接続している。第1の電極層587と第2の電極層588との間には黒色領域590a及び白色領域590bを有し、周りに液体で満たされているキャビティ594を含む球形粒子589が設けられており、球形粒子589の周囲は樹脂等の充填材595で充填されている(図11参照。)。
また、ツイストボールの代わりに、電気泳動素子を用いることも可能である。透明な液体と、正に帯電した白い微粒子と負に帯電した黒い微粒子とを封入した直径10μm〜200μm程度のマイクロカプセルを用いる。第1の電極層と第2の電極層との間に設けられるマイクロカプセルは、第1の電極層と第2の電極層によって、電場が与えられると、白い微粒子と、黒い微粒子が逆の方向に移動し、白または黒を表示することができる。この原理を応用した表示素子が電気泳動表示素子であり、一般的に電子ペーパーとよばれている。電気泳動表示素子は、液晶表示素子に比べて反射率が高いため、補助ライトは不要であり、また消費電力が小さく、薄暗い場所でも表示部を認識することが可能である。また、表示部に電源が供給されない場合であっても、一度表示した像を保持することが可能であるため、電波発信源から表示機能付き半導体装置(単に表示装置、又は表示装置を具備する半導体装置ともいう)を遠ざけた場合であっても、表示された像を保存しておくことが可能となる。
以上の工程により、半導体装置として信頼性の高い電子ペーパーを作製することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態6)
本実施の形態では、本発明の半導体装置として発光表示装置の例を示す。表示装置の有する表示素子としては、ここではエレクトロルミネッセンスを利用する発光素子を用いて示す。エレクトロルミネッセンスを利用する発光素子は、発光材料が有機化合物であるか、無機化合物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子と呼ばれている。
有機EL素子は、発光素子に電圧を印加することにより、一対の電極から電子および正孔がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャリア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形成し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このような発光素子は、電流励起型の発光素子と呼ばれる。
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−アクセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明する。
図18は、本発明を適用した半導体装置の例としてデジタル時間階調駆動を適用可能な画素構成の一例を示す図である。
デジタル時間階調駆動を適用可能な画素の構成及び画素の動作について説明する。ここでは酸化物半導体層(IGZO半導体層)をチャネル形成領域に用いるnチャネル型のトランジスタを1つの画素に2つ用いる例を示す。
画素6400は、スイッチング用トランジスタ6401、駆動用トランジスタ6402、発光素子6404及び容量素子6403を有している。スイッチング用トランジスタ6401はゲートが走査線6406に接続され、第1電極(ソース電極及びドレイン電極の一方)が信号線6405に接続され、第2電極(ソース電極及びドレイン電極の他方)が駆動用トランジスタ6402のゲートに接続されている。駆動用トランジスタ6402は、ゲートが容量素子6403を介して電源線6407に接続され、第1電極が電源線6407に接続され、第2電極が発光素子6404の第1電極(画素電極)に接続されている。発光素子6404の第2電極は共通電極6408に相当する。
なお、発光素子6404の第2電極(共通電極6408)には低電源電位が設定されている。なお、低電源電位とは、電源線6407に設定される高電源電位を基準にして低電源電位<高電源電位を満たす電位であり、低電源電位としては例えばGND、0Vなどが設定されていても良い。この高電源電位と低電源電位との電位差を発光素子6404に印加して、発光素子6404に電流を流して発光素子6404を発光させるため、高電源電位と低電源電位との電位差が発光素子6404の順方向しきい値電圧以上となるようにそれぞれの電位を設定する。
なお、容量素子6403は駆動用トランジスタ6402のゲート容量を代用して省略することも可能である。駆動用トランジスタ6402のゲート容量については、チャネル領域とゲート電極との間で容量が形成されていてもよい。
ここで、電圧入力電圧駆動方式の場合には、駆動用トランジスタ6402のゲートには、駆動用トランジスタ6402が十分にオンするか、オフするかの二つの状態となるようなビデオ信号を入力する。つまり、駆動用トランジスタ6402は線形領域で動作させる。駆動用トランジスタ6402は線形領域で動作させるため、電源線6407の電圧よりも高い電圧を駆動用トランジスタ6402のゲートにかける。なお、信号線6405には、(電源線電圧+駆動用トランジスタ6402のVth)以上の電圧をかける。
また、デジタル時間階調駆動に代えて、アナログ階調駆動を行う場合、信号の入力を異ならせることで、図18と同じ画素構成を用いることができる。
アナログ階調駆動を行う場合、駆動用トランジスタ6402のゲートに発光素子6404の順方向電圧+駆動用トランジスタ6402のVth以上の電圧をかける。発光素子6404の順方向電圧とは、所望の輝度とする場合の電圧を指しており、少なくとも順方向しきい値電圧を含む。なお、駆動用トランジスタ6402が飽和領域で動作するようなビデオ信号を入力することで、発光素子6404に電流を流すことができる。駆動用トランジスタ6402を飽和領域で動作させるため、電源線6407の電位は、駆動用トランジスタ6402のゲート電位よりも高くする。ビデオ信号をアナログとすることで、発光素子6404にビデオ信号に応じた電流を流し、アナログ階調駆動を行うことができる。
なお、図18に示す画素構成は、これに限定されない。例えば、図18に示す画素に新たにスイッチ、抵抗素子、容量素子、トランジスタ又は論理回路などを追加してもよい。
次に、発光素子の構成について、図19を用いて説明する。ここでは、駆動用TFTがn型の場合を例に挙げて、画素の断面構造について説明する。図19(A)(B)(C)の半導体装置に用いられる駆動用TFTであるTFT7001、7011、7021は、実施の形態1で示す薄膜トランジスタと同様に作製でき、酸素ラジカル処理をされたゲート絶縁層、ソース電極層、ドレイン電極層、ソース領域及びドレイン領域上に酸素過剰酸化物半導体層、並びにソース領域及びドレイン領域として酸素欠乏酸化物半導体層を含む信頼性の高い薄膜トランジスタである。また、実施の形態2で示す薄膜トランジスタをTFT7001、7011、7021として適用することもできる。
発光素子は発光を取り出すために少なくとも陽極又は陰極の一方が透明であればよい。そして、基板上に薄膜トランジスタ及び発光素子を形成し、基板とは逆側の面から発光を取り出す上面射出や、基板側の面から発光を取り出す下面射出や、基板側及び基板とは反対側の面から発光を取り出す両面射出構造の発光素子があり、本発明の画素構成はどの射出構造の発光素子にも適用することができる。
上面射出構造の発光素子について図19(A)を用いて説明する。
図19(A)に、駆動用TFTであるTFT7001がn型で、発光素子7002から発せられる光が陽極7005側に抜ける場合の、画素の断面図を示す。図19(A)では、発光素子7002の陰極7003と駆動用TFTであるTFT7001が電気的に接続されており、陰極7003上に発光層7004、陽極7005が順に積層されている。陰極7003は仕事関数が小さく、なおかつ光を反射する導電膜であれば様々の材料を用いることができる。例えば、Ca、Al、CaF、MgAg、AlLi等が望ましい。そして発光層7004は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。複数の層で構成されている場合、陰極7003上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積層する。なおこれらの層を全て設ける必要はない。陽極7005は光を透過する透光性を有する導電性材料を用いて形成し、例えば酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いても良い。
陰極7003及び陽極7005で発光層7004を挟んでいる領域が発光素子7002に相当する。図19(A)に示した画素の場合、発光素子7002から発せられる光は、矢印で示すように陽極7005側に射出する。
次に、下面射出構造の発光素子について図19(B)を用いて説明する。駆動用TFT7011がn型で、発光素子7012から発せられる光が陰極7013側に射出する場合の、画素の断面図を示す。図19(B)では、駆動用TFT7011と電気的に接続された透光性を有する導電膜7017上に、発光素子7012の陰極7013が成膜されており、陰極7013上に発光層7014、陽極7015が順に積層されている。なお、陽極7015が透光性を有する場合、陽極上を覆うように、光を反射または遮蔽するための遮蔽膜7016が成膜されていてもよい。陰極7013は、図19(A)の場合と同様に、仕事関数が小さい導電性材料であれば様々な材料を用いることができる。ただしその膜厚は、光を透過する程度(好ましくは、5nm〜30nm程度)とする。例えば20nmの膜厚を有するアルミニウム膜を、陰極7013として用いることができる。そして発光層7014は、図19(A)と同様に、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。陽極7015は光を透過する必要はないが、図19(A)と同様に、透光性を有する導電性材料を用いて形成することができる。そして遮蔽膜7016は、例えば光を反射する金属等を用いることができるが、金属膜に限定されない。例えば黒の顔料を添加した樹脂等を用いることもできる。
陰極7013及び陽極7015で、発光層7014を挟んでいる領域が発光素子7012に相当する。図19(B)に示した画素の場合、発光素子7012から発せられる光は、矢印で示すように陰極7013側に射出する。
次に、両面射出構造の発光素子について、図19(C)を用いて説明する。図19(C)では、駆動用TFT7021と電気的に接続された透光性を有する導電膜7027上に、発光素子7022の陰極7023が成膜されており、陰極7023上に発光層7024、陽極7025が順に積層されている。陰極7023は、図19(A)の場合と同様に、仕事関数が小さい導電性材料であれば様々な材料を用いることができる。ただしその膜厚は、光を透過する程度とする。例えば20nmの膜厚を有するAlを、陰極7023として用いることができる。そして発光層7024は、図19(A)と同様に、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。陽極7025は、図19(A)と同様に、光を透過する透光性を有する導電性材料を用いて形成することができる。
陰極7023と、発光層7024と、陽極7025とが重なっている部分が発光素子7022に相当する。図19(C)に示した画素の場合、発光素子7022から発せられる光は、矢印で示すように陽極7025側と陰極7023側の両方に射出する。
なお、ここでは、発光素子として有機EL素子について述べたが、発光素子として無機EL素子を設けることも可能である。
なお本実施の形態では、発光素子の駆動を制御する薄膜トランジスタ(駆動用TFT)と発光素子が電気的に接続されている例を示したが、駆動用TFTと発光素子との間に電流制御用TFTが接続されている構成であってもよい。
なお本実施の形態で示す半導体装置は、図19に示した構成に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。
次に、本発明の半導体装置の一形態に相当する発光表示パネル(発光パネルともいう)の外観及び断面について、図22を用いて説明する。図22は、第1の基板上に形成された酸素ラジカル処理をされたゲート絶縁層、ソース電極層、ドレイン電極層、ソース領域及びドレイン領域上に酸素過剰酸化物半導体層、並びにソース領域及びドレイン領域として酸素欠乏酸化物半導体層を含む信頼性の高い薄膜トランジスタ及び発光素子を、第2の基板との間にシール材によって封止した、パネルの上面図であり、図22(B)は、図22(A)のH−Iにおける断面図に相当する。
第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bを囲むようにして、シール材4505が設けられている。また画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bの上に第2の基板4506が設けられている。よって画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは、第1の基板4501とシール材4505と第2の基板4506とによって、充填材4507と共に密封されている。このように外気に曝されないように気密性が高く、脱ガスの少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィルム等)やカバー材でパッケージング(封入)することが好ましい。
また第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは、薄膜トランジスタを複数有しており、図22(B)では、画素部4502に含まれる薄膜トランジスタ4510と、信号線駆動回路4503aに含まれる薄膜トランジスタ4509とを例示している。
薄膜トランジスタ4509、4510は、酸素ラジカル処理をされたゲート絶縁層、ソース電極層、ドレイン電極層、ソース領域及びドレイン領域上に酸素過剰酸化物半導体層、並びにソース領域及びドレイン領域として酸素欠乏酸化物半導体層を含む信頼性の高い薄膜トランジスタに相当し、実施の形態1又は実施の形態2に示す薄膜トランジスタを適用することができる。本実施の形態において、薄膜トランジスタ4509、4510はnチャネル型薄膜トランジスタである。
また4511は発光素子に相当し、発光素子4511が有する画素電極である第1の電極層4517は、薄膜トランジスタ4510のソース電極層またはドレイン電極層と電気的に接続されている。なお発光素子4511の構成は、第1の電極層4517、電界発光層4512、第2の電極層4513の積層構造であるが、本実施の形態に示した構成に限定されない。発光素子4511から取り出す光の方向などに合わせて、発光素子4511の構成は適宜変えることができる。
隔壁4520は、有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。特に感光性の材料を用い、第1の電極層4517上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。
電界発光層4512は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。
発光素子4511に酸素、水素、水分、二酸化炭素等が侵入しないように、第2の電極層4513及び隔壁4520上に保護膜を形成してもよい。保護膜としては、窒化珪素膜、窒化酸化珪素膜、DLC膜等を形成することができる。
また、信号線駆動回路4503a、4503b、走査線駆動回路4504a、4504b、または画素部4502に与えられる各種信号及び電位は、FPC4518a、4518bから供給されている。
本実施の形態では、接続端子電極4515が、発光素子4511が有する第1の電極層4517と同じ導電膜から形成され、端子電極4516は、薄膜トランジスタ4509、4510が有するソース電極層及びドレイン電極層と同じ導電膜から形成されている。
接続端子電極4515は、FPC4518aが有する端子と、異方性導電膜4519を介して電気的に接続されている。
発光素子4511からの光の取り出し方向に位置する第2の基板4506は透光性でなければならない。その場合には、ガラス板、プラスチック板、ポリエステルフィルムまたはアクリルフィルムのような透光性を有する材料を用いる。
また、充填材4507としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、ポリイミド、エポキシ樹脂、シリコ−ン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)を用いることができる。本実施の形態は充填材として窒素を用いた。
また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよい。また、偏光板又は円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜によって形成された駆動回路で実装されていてもよい。また、信号線駆動回路のみ、或いは一部、又は走査線駆動回路のみ、或いは一部のみを別途形成して実装しても良く、本実施の形態は図22の構成に限定されない。
以上の工程により、半導体装置として信頼性の高い発光表示装置(表示パネル)を作製することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態7)
本発明の半導体装置は、電子ペーパーとして適用することができる。電子ペーパーは、情報を表示するものであればあらゆる分野の電子機器に用いることが可能である。例えば、電子ペーパーを用いて、電子書籍(電子ブック)、ポスター、電車などの乗り物の車内広告、クレジットカード等の各種カードにおける表示等に適用することができる。電子機器の一例を図23、図24に示す。
図23(A)は、電子ペーパーで作られたポスター2631を示している。広告媒体が紙の印刷物である場合には、広告の交換は人手によって行われるが、本発明を適用した電子ペーパーを用いれば短時間で広告の表示を変えることができる。また、表示も崩れることなく安定した画像が得られる。なお、ポスターは無線で情報を送受信できる構成としてもよい。
また、図23(B)は、電車などの乗り物の車内広告2632を示している。広告媒体が紙の印刷物である場合には、広告の交換は人手によって行われるが、本発明を適用した電子ペーパーを用いれば人手を多くかけることなく短時間で広告の表示を変えることができる。また表示も崩れることなく安定した画像が得られる。なお、車内広告は無線で情報を送受信できる構成としてもよい。
また、図24は、電子書籍2700の一例を示している。例えば、電子書籍2700は、筐体2701および筐体2703の2つの筐体で構成されている。筐体2701および筐体2703は、軸部2711により一体とされており、該軸部2711を軸として開閉動作を行うことができる。このような構成により、紙の書籍のような動作を行うことが可能となる。
筐体2701には表示部2705が組み込まれ、筐体2703には表示部2707が組み込まれている。表示部2705および表示部2707は、続き画面を表示する構成としてもよいし、異なる画面を表示する構成としてもよい。異なる画面を表示する構成とすることで、例えば右側の表示部(図24では表示部2705)に文章を表示し、左側の表示部(図24では表示部2707)に画像を表示することができる。
また、図24では、筐体2701に操作部などを備えた例を示している。例えば、筐体2701において、電源2721、操作キー2723、スピーカ2725などを備えている。操作キー2723により、頁を送ることができる。なお、筐体の表示部と同一面にキーボードやポインティングディバイスなどを備える構成としてもよい。また、筐体の裏面や側面に、外部接続用端子(イヤホン端子、USB端子、またはACアダプタおよびUSBケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構成としてもよい。さらに、電子書籍2700は、電子辞書としての機能を持たせた構成としてもよい。
また、電子書籍2700は、無線で情報を送受信できる構成としてもよい。無線により、電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすることも可能である。
(実施の形態8)
本発明に係る半導体装置は、さまざまな電子機器(遊技機も含む)に適用することができる。電子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
図25(A)は、テレビジョン装置9600の一例を示している。テレビジョン装置9600は、筐体9601に表示部9603が組み込まれている。表示部9603により、映像を表示することが可能である。また、ここでは、スタンド9605により筐体9601を支持した構成を示している。
テレビジョン装置9600の操作は、筐体9601が備える操作スイッチや、別体のリモコン操作機9610により行うことができる。リモコン操作機9610が備える操作キー9609により、チャンネルや音量の操作を行うことができ、表示部9603に表示される映像を操作することができる。また、リモコン操作機9610に、当該リモコン操作機9610から出力する情報を表示する表示部9607を設ける構成としてもよい。
なお、テレビジョン装置9600は、受信機やモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図25(B)は、デジタルフォトフレーム9700の一例を示している。例えば、デジタルフォトフレーム9700は、筐体9701に表示部9703が組み込まれている。表示部9703は、各種画像を表示することが可能であり、例えばデジタルカメラなどで撮影した画像データを表示させることで、通常の写真立てと同様に機能させることができる。
なお、デジタルフォトフレーム9700は、操作部、外部接続用端子(USB端子、USBケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構成とする。これらの構成は、表示部と同一面に組み込まれていてもよいが、側面や裏面に備えるとデザイン性が向上するため好ましい。例えば、デジタルフォトフレームの記録媒体挿入部に、デジタルカメラで撮影した画像データを記憶したメモリを挿入して画像データを取り込み、取り込んだ画像データを表示部9703に表示させることができる。
また、デジタルフォトフレーム9700は、無線で情報を送受信出来る構成としてもよい。無線により、所望の画像データを取り込み、表示させる構成とすることもできる。
図26(A)は携帯型遊技機であり、筐体9881と筐体9891の2つの筐体で構成されており、連結部9893により、開閉可能に連結されている。筐体9881には表示部9882が組み込まれ、筐体9891には表示部9883が組み込まれている。また、図26(A)に示す携帯型遊技機は、その他、スピーカ部9884、記録媒体挿入部9886、LEDランプ9890、入力手段(操作キー9885、接続端子9887、センサ9888(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9889)等を備えている。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも本発明に係る半導体装置を備えた構成であればよく、その他付属設備が適宜設けられた構成とすることができる。図26(A)に示す携帯型遊技機は、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能や、他の携帯型遊技機と無線通信を行って情報を共有する機能を有する。なお、図26(A)に示す携帯型遊技機が有する機能はこれに限定されず、様々な機能を有することができる。
図26(B)は大型遊技機であるスロットマシン9900の一例を示している。スロットマシン9900は、筐体9901に表示部9903が組み込まれている。また、スロットマシン9900は、その他、スタートレバーやストップスイッチなどの操作手段、コイン投入口、スピーカなどを備えている。もちろん、スロットマシン9900の構成は上述のものに限定されず、少なくとも本発明に係る半導体装置を備えた構成であればよく、その他付属設備が適宜設けられた構成とすることができる。
図27は、携帯電話機1000の一例を示している。携帯電話機1000は、筐体1001に組み込まれた表示部1002の他、操作ボタン1003、外部接続ポート1004、スピーカ1005、マイク1006などを備えている。
図27に示す携帯電話機1000は、表示部1002を指などで触れることで、情報を入力ことができる。また、電話を掛ける、或いはメールを打つなどの操作は、表示部1002を指などで触れることにより行うことができる。
表示部1002の画面は主として3つのモードがある。第1は、画像の表示を主とする表示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部1002を文字の入力を主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合、表示部1002の画面のほとんどにキーボードまたは番号ボタンを表示させることが好ましい。
また、携帯電話機1000内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを有する検出装置を設けることで、携帯電話機1000の向き(縦か横か)を判断して、表示部1002の画面表示を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部1002を触れること、又は筐体1001の操作ボタン1003の操作により行われる。また、表示部1002に表示される画像の種類によって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画のデータであれば表示モード、テキストデータであれば入力モードに切り替える。
また、入力モードにおいて、表示部1002の光センサで検出される信号を検知し、表示部1002のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モードから表示モードに切り替えるように制御してもよい。
表示部1002は、イメージセンサとして機能させることもできる。例えば、表示部1002に掌や指を触れることで、掌紋、指紋等を撮像することで、本人認証を行うことができる。また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシング用光源を用いれば、指静脈、掌静脈などを撮像することもできる。

Claims (10)

  1. ゲート電極層と、前記ゲート電極層上にゲート絶縁層と、前記ゲート絶縁層上にソース電極層及びドレイン電極層と、前記ソース電極層及び前記ドレイン電極層上にソース領域及びドレイン領域と、前記ゲート絶縁層、前記ソース電極層、前記ドレイン電極層、前記ソース領域及び前記ドレイン領域上に酸化物半導体層とを含む薄膜トランジスタを有し、
    前記酸化物半導体層は前記ゲート絶縁層を介して前記ゲート電極層と重なり、前記酸化物半導体層の酸素濃度は前記ソース領域及び前記ドレイン領域の酸素濃度より高いことを特徴とする半導体装置。
  2. 請求項1において、前記酸化物半導体層、前記ソース領域及び前記ドレイン領域はインジウム、ガリウム、及び亜鉛を含む酸化物半導体層であることを特徴とする半導体装置。
  3. ゲート電極層と、前記ゲート電極層上にゲート絶縁層と、前記ゲート絶縁層上に第1のソース領域及び第1のドレイン領域と、前記第1のソース領域及び前記第1のドレイン領域上にソース電極層及びドレイン電極層と、前記ソース電極層及び前記ドレイン電極層上に第2のソース領域及び第2のドレイン領域と、前記ゲート絶縁層、前記第1のソース領域、前記第1のドレイン領域、前記ソース電極層、前記ドレイン電極層、前記第2のソース領域及び前記第2のドレイン領域上に酸化物半導体層とを含む薄膜トランジスタを有し、
    前記酸化物半導体層は前記ゲート絶縁層を介して前記ゲート電極層と重なり、前記酸化物半導体層の酸素濃度は、前記第1のソース領域、前記第1のドレイン領域、前記第2のソース領域、及び前記第2のドレイン領域の酸素濃度より高いことを特徴とする半導体装置。
  4. 請求項3において、前記酸化物半導体層、前記第1のソース領域、前記第1のドレイン領域、前記第2のソース領域、及び前記第2のドレイン領域はインジウム、ガリウム、及び亜鉛を含む酸化物半導体層であることを特徴とする半導体装置。
  5. 基板上にゲート電極層を形成し、
    前記ゲート電極層上にゲート絶縁層を形成し、
    前記ゲート絶縁層上にソース電極層及びドレイン電極層を形成し、
    前記ソース電極層及び前記ドレイン電極層上にソース領域又はドレイン領域を形成し、
    前記ゲート絶縁層、前記ソース電極層、前記ドレイン電極層、前記ソース領域、及び前記ドレイン領域にプラズマ処理を行い、
    前記ゲート電極層と重なり、かつ前記プラズマ処理されたゲート絶縁層、前記ソース電極層、前記ドレイン電極層、前記ソース領域、及び前記ドレイン領域上に大気に曝さずに酸化物半導体層を形成し、
    前記酸化物半導体層の酸素濃度は前記ソース領域及び前記ドレイン領域の酸素濃度より高くすることを特徴とする半導体装置の作製方法。
  6. 請求項5において、前記酸化物半導体層、前記ソース領域及びドレイン領域を200℃以上600℃以下で加熱することを特徴とする半導体装置の作製方法。
  7. 請求項5又は請求項6において、前記ゲート絶縁層、前記ソース電極層、前記ドレイン電極層、前記ソース領域、前記ドレイン領域、及び前記酸化物半導体層はスパッタ法によって形成することを特徴とする半導体装置の作製方法。
  8. 基板上にゲート電極層を形成し、
    前記ゲート電極層上にゲート絶縁層を形成し、
    前記ゲート絶縁層上に第1のソース領域及び第1のドレイン領域に形成し、
    前記第1のソース領域及び前記第1のドレイン領域上にソース電極層又はドレイン電極層を形成し、
    前記ソース電極層及び前記ドレイン電極層上に第2のソース領域又は第2のドレイン領域を形成し、
    前記ゲート絶縁層、前記第1のソース領域、前記第1のドレイン領域、前記ソース電極層、前記ドレイン電極層、前記第2のソース領域、及び前記第2のドレイン領域にプラズマ処理を行い、
    前記ゲート電極層と重なり、かつ前記プラズマ処理された前記ゲート絶縁層、前記第1のソース領域、前記第1のドレイン領域、前記ソース電極層、前記ドレイン電極層、前記第2のソース領域、及び前記第2のドレイン領域上に大気に曝さずに酸化物半導体層を形成し、
    前記酸化物半導体層の酸素濃度は前記第1のソース領域、前記第1のドレイン領域、前記第2のソース領域、及び前記第2のドレイン領域の酸素濃度より高くすることを特徴とする半導体装置の作製方法。
  9. 請求項8において、前記酸化物半導体層、前記第1のソース領域、前記第1のドレイン領域、前記第2のソース領域、及び前記第2のドレイン領域を200℃以上600℃以下で加熱することを特徴とする半導体装置の作製方法。
  10. 請求項8又は請求項9において、前記ゲート絶縁層、前記第1のソース領域、前記第1のドレイン領域、前記ソース電極層、前記ドレイン電極層、前記第2のソース領域、前記第2のドレイン領域、及び前記酸化物半導体層はスパッタ法によって形成することを特徴とする半導体装置の作製方法。
JP2009206653A 2008-09-12 2009-09-08 半導体装置及び半導体装置の作製方法 Withdrawn JP2010093238A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009206653A JP2010093238A (ja) 2008-09-12 2009-09-08 半導体装置及び半導体装置の作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008234603 2008-09-12
JP2009206653A JP2010093238A (ja) 2008-09-12 2009-09-08 半導体装置及び半導体装置の作製方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015094498A Division JP6087980B2 (ja) 2008-09-12 2015-05-05 半導体装置

Publications (2)

Publication Number Publication Date
JP2010093238A true JP2010093238A (ja) 2010-04-22
JP2010093238A5 JP2010093238A5 (ja) 2012-11-29

Family

ID=42005117

Family Applications (9)

Application Number Title Priority Date Filing Date
JP2009206653A Withdrawn JP2010093238A (ja) 2008-09-12 2009-09-08 半導体装置及び半導体装置の作製方法
JP2015094498A Expired - Fee Related JP6087980B2 (ja) 2008-09-12 2015-05-05 半導体装置
JP2017017709A Active JP6312972B2 (ja) 2008-09-12 2017-02-02 半導体装置
JP2017221581A Active JP6767344B2 (ja) 2008-09-12 2017-11-17 表示装置
JP2019119270A Active JP6803429B2 (ja) 2008-09-12 2019-06-27 表示装置
JP2020198063A Active JP7038182B2 (ja) 2008-09-12 2020-11-30 表示装置
JP2022034392A Active JP7200415B2 (ja) 2008-09-12 2022-03-07 表示装置
JP2022204291A Withdrawn JP2023052008A (ja) 2008-09-12 2022-12-21 半導体装置
JP2024092361A Pending JP2024123047A (ja) 2008-09-12 2024-06-06 液晶表示装置

Family Applications After (8)

Application Number Title Priority Date Filing Date
JP2015094498A Expired - Fee Related JP6087980B2 (ja) 2008-09-12 2015-05-05 半導体装置
JP2017017709A Active JP6312972B2 (ja) 2008-09-12 2017-02-02 半導体装置
JP2017221581A Active JP6767344B2 (ja) 2008-09-12 2017-11-17 表示装置
JP2019119270A Active JP6803429B2 (ja) 2008-09-12 2019-06-27 表示装置
JP2020198063A Active JP7038182B2 (ja) 2008-09-12 2020-11-30 表示装置
JP2022034392A Active JP7200415B2 (ja) 2008-09-12 2022-03-07 表示装置
JP2022204291A Withdrawn JP2023052008A (ja) 2008-09-12 2022-12-21 半導体装置
JP2024092361A Pending JP2024123047A (ja) 2008-09-12 2024-06-06 液晶表示装置

Country Status (5)

Country Link
US (4) US9257594B2 (ja)
JP (9) JP2010093238A (ja)
KR (3) KR101623224B1 (ja)
TW (6) TWI802277B (ja)
WO (1) WO2010029859A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114432A (ja) * 2008-10-10 2010-05-20 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2012216806A (ja) * 2011-04-01 2012-11-08 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2012238905A (ja) * 2010-06-11 2012-12-06 Semiconductor Energy Lab Co Ltd 半導体装置
US9384976B2 (en) 2009-11-06 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2018022901A (ja) * 2010-04-23 2018-02-08 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2018221294A1 (ja) * 2017-05-31 2018-12-06 シャープ株式会社 アクティブマトリクス基板およびその製造方法
JP2019197888A (ja) * 2012-06-29 2019-11-14 株式会社半導体エネルギー研究所 半導体装置
US10741690B2 (en) 2017-02-16 2020-08-11 Mitsubishi Electric Corporation Thin film transistor, thin film transistor substrate, and liquid crystal display device
JP2023060339A (ja) * 2010-07-26 2023-04-27 株式会社半導体エネルギー研究所 半導体装置の作製方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101545460B1 (ko) * 2008-09-12 2015-08-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 생산 방법
KR101772377B1 (ko) 2008-09-12 2017-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
KR101490148B1 (ko) * 2008-09-19 2015-02-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
CN101719493B (zh) 2008-10-08 2014-05-14 株式会社半导体能源研究所 显示装置
TWI606593B (zh) * 2008-11-28 2017-11-21 半導體能源研究所股份有限公司 半導體裝置和其製造方法
KR101218090B1 (ko) * 2009-05-27 2013-01-18 엘지디스플레이 주식회사 산화물 박막 트랜지스터 및 그 제조방법
KR101506124B1 (ko) * 2009-09-04 2015-03-25 가부시끼가이샤 도시바 박막 트랜지스터 및 그 제조 방법
WO2011043162A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
WO2011043164A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
KR101812683B1 (ko) 2009-10-21 2017-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작방법
WO2011055668A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011055645A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102008754B1 (ko) * 2010-01-24 2019-08-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치와 이의 제조 방법
KR101636008B1 (ko) * 2010-04-23 2016-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
KR102344452B1 (ko) 2010-04-23 2021-12-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
US8422272B2 (en) 2010-08-06 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
TWI615920B (zh) * 2010-08-06 2018-02-21 半導體能源研究所股份有限公司 半導體裝置及其製造方法
US8816425B2 (en) 2010-11-30 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5636304B2 (ja) * 2011-02-08 2014-12-03 株式会社ジャパンディスプレイ 薄膜トランジスタ回路基板及びその製造方法
TWI658516B (zh) 2011-03-11 2019-05-01 日商半導體能源研究所股份有限公司 半導體裝置的製造方法
US8797303B2 (en) * 2011-03-21 2014-08-05 Qualcomm Mems Technologies, Inc. Amorphous oxide semiconductor thin film transistor fabrication method
US9960278B2 (en) * 2011-04-06 2018-05-01 Yuhei Sato Manufacturing method of semiconductor device
US9379254B2 (en) 2011-11-18 2016-06-28 Qualcomm Mems Technologies, Inc. Amorphous oxide semiconductor thin film transistor fabrication method
US9190525B2 (en) * 2012-07-06 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor layer
TWI627483B (zh) 2012-11-28 2018-06-21 半導體能源研究所股份有限公司 顯示裝置及電視接收機
US8835236B2 (en) 2013-02-08 2014-09-16 Chunghwa Picture Tubes, Ltd. Oxide semiconductor thin film transistor and method for manufacturing the same
JP6391917B2 (ja) * 2013-07-03 2018-09-19 株式会社ジャパンディスプレイ 発光素子表示装置及びその製造方法
JP2017201651A (ja) * 2016-05-02 2017-11-09 株式会社神戸製鋼所 酸化物半導体の製造方法
US10644140B2 (en) * 2016-06-30 2020-05-05 Intel Corporation Integrated circuit die having back-end-of-line transistors
CN106229347B (zh) * 2016-08-24 2019-06-07 武汉华星光电技术有限公司 一种低温多晶硅薄膜晶体管及其制造方法
KR102691132B1 (ko) * 2016-10-31 2024-08-01 엘지디스플레이 주식회사 액정표시장치
CN110651358A (zh) * 2017-05-19 2020-01-03 株式会社半导体能源研究所 半导体装置、显示装置以及半导体装置的制造方法
KR102441566B1 (ko) * 2017-08-07 2022-09-07 삼성디스플레이 주식회사 발광 장치 및 발광 장치의 제조 방법
CN107768307A (zh) * 2017-11-21 2018-03-06 深圳市华星光电半导体显示技术有限公司 背沟道蚀刻型tft基板及其制作方法
KR102126553B1 (ko) * 2017-12-19 2020-06-24 엘지디스플레이 주식회사 표시 장치
KR102418612B1 (ko) 2018-01-03 2022-07-08 엘지전자 주식회사 이동 단말기
CN108321152B (zh) * 2018-04-04 2024-10-18 京东方科技集团股份有限公司 指纹识别传感器及其制备方法以及指纹识别设备
GB2574265B (en) * 2018-06-01 2022-04-06 Flexenable Ltd Transistor Arrays
JP2020141001A (ja) * 2019-02-27 2020-09-03 キオクシア株式会社 半導体装置および半導体装置の製造方法
TWI813217B (zh) * 2021-12-09 2023-08-21 友達光電股份有限公司 半導體裝置及其製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165527A (ja) * 2004-11-10 2006-06-22 Canon Inc 電界効果型トランジスタ

Family Cites Families (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JP3210437B2 (ja) * 1991-09-24 2001-09-17 株式会社東芝 液晶表示装置
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JPH0675246A (ja) 1992-08-28 1994-03-18 Toshiba Corp アクティブマトリックス型液晶表示素子の製造方法
EP0592063A3 (en) 1992-09-14 1994-07-13 Toshiba Kk Active matrix liquid crystal display device
US5610414A (en) 1993-07-28 1997-03-11 Sharp Kabushiki Kaisha Semiconductor device
JP3466530B2 (ja) 1993-10-27 2003-11-10 シャープ株式会社 液晶表示装置およびそれに用いられる半導体装置の製造方法
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
WO1997006554A2 (en) 1995-08-03 1997-02-20 Philips Electronics N.V. Semiconductor device provided with transparent switching element
US5835177A (en) * 1995-10-05 1998-11-10 Kabushiki Kaisha Toshiba Array substrate with bus lines takeout/terminal sections having multiple conductive layers
JP3625598B2 (ja) * 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
KR980002529U (ko) 1996-06-28 1998-03-30 자동차의 리어 도어 스트라이커 린 포스먼트
KR100255591B1 (ko) 1997-03-06 2000-05-01 구본준 박막 트랜지스터 어레이의 배선 연결 구조 및 그 제조 방법
JP3208658B2 (ja) 1997-03-27 2001-09-17 株式会社アドバンスト・ディスプレイ 電気光学素子の製法
KR100299686B1 (ko) 1997-10-14 2001-10-27 윤종용 정전기방전기능을가지는액정표시장치및그제조방법
TW440736B (en) 1997-10-14 2001-06-16 Samsung Electronics Co Ltd Liquid crystal displays and manufacturing methods thereof
JP4516638B2 (ja) * 1997-10-14 2010-08-04 三星電子株式会社 液晶表示装置用基板、液晶表示装置及びその製造方法
JPH10186410A (ja) 1998-01-29 1998-07-14 Hitachi Ltd 液晶表示装置
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) * 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
KR100299537B1 (ko) * 1999-08-31 2001-11-01 남상희 엑스-선 검출용 박막트랜지스터 기판 제조방법
JP4390991B2 (ja) 1999-08-31 2009-12-24 シャープ株式会社 液晶表示装置
TW460731B (en) * 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP3712899B2 (ja) * 1999-09-21 2005-11-02 株式会社日立製作所 液晶表示装置
JP2001092378A (ja) * 1999-09-27 2001-04-06 Sharp Corp アクティブマトリクス基板
JP5057613B2 (ja) 2000-04-27 2012-10-24 株式会社半導体エネルギー研究所 半導体装置及び電子機器
US6747289B2 (en) 2000-04-27 2004-06-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating thereof
JP4410912B2 (ja) 2000-06-07 2010-02-10 Nec液晶テクノロジー株式会社 静電保護回路
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) * 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
US6757031B2 (en) 2001-02-09 2004-06-29 Prime View International Co., Ltd. Metal contact structure and method for thin film transistor array in liquid crystal display
JP4831874B2 (ja) * 2001-02-26 2011-12-07 株式会社半導体エネルギー研究所 発光装置及び電子機器
JP3997731B2 (ja) * 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
KR100799463B1 (ko) 2001-03-21 2008-02-01 엘지.필립스 엘시디 주식회사 액정표시장치 및 그 제조방법
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
KR100780711B1 (ko) 2001-07-28 2007-11-30 엘지.필립스 엘시디 주식회사 박막 트랜지스터 표시소자 및 그 제조방법
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
US7061014B2 (en) * 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) * 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) * 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) * 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
JP4267253B2 (ja) * 2002-05-14 2009-05-27 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4493933B2 (ja) 2002-05-17 2010-06-30 株式会社半導体エネルギー研究所 表示装置
US7256421B2 (en) 2002-05-17 2007-08-14 Semiconductor Energy Laboratory, Co., Ltd. Display device having a structure for preventing the deterioration of a light emitting device
US7339187B2 (en) * 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) * 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) * 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
KR101061882B1 (ko) * 2002-09-11 2011-09-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광장치 및 그의 제조방법
US7067843B2 (en) * 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4100178B2 (ja) 2003-01-24 2008-06-11 ソニー株式会社 表示装置
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP2004288786A (ja) 2003-03-20 2004-10-14 Renesas Technology Corp 半導体装置
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) * 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
KR101034181B1 (ko) * 2003-08-21 2011-05-12 엘지디스플레이 주식회사 액정표시장치용 어레이기판 제조방법
KR100551046B1 (ko) * 2003-08-28 2006-02-09 삼성에스디아이 주식회사 유기 이엘 소자
US6874718B1 (en) * 2003-09-16 2005-04-05 Liang-Jen Chang Fishing spinning reel
JP4170235B2 (ja) * 2004-01-29 2008-10-22 シャープ株式会社 表示装置
CN100451784C (zh) 2004-01-29 2009-01-14 夏普株式会社 显示装置
CN100504553C (zh) 2004-02-06 2009-06-24 三星电子株式会社 薄膜晶体管阵列面板及包括该薄膜晶体管阵列面板的液晶显示器
US7282782B2 (en) * 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7145174B2 (en) * 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
JP4620046B2 (ja) * 2004-03-12 2011-01-26 独立行政法人科学技術振興機構 薄膜トランジスタ及びその製造方法
US7297977B2 (en) * 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
KR101086477B1 (ko) * 2004-05-27 2011-11-25 엘지디스플레이 주식회사 표시 소자용 박막 트랜지스터 기판 제조 방법
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
KR101051012B1 (ko) * 2004-08-06 2011-07-21 삼성전자주식회사 표시 패널용 모기판 및 그의 제조 방법
JP4906029B2 (ja) 2004-08-20 2012-03-28 株式会社半導体エネルギー研究所 表示装置の作製方法
JP2006100760A (ja) * 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) * 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) * 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
WO2006051995A1 (en) * 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
US7829444B2 (en) * 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7791072B2 (en) * 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7453065B2 (en) * 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
JP5126730B2 (ja) 2004-11-10 2013-01-23 キヤノン株式会社 電界効果型トランジスタの製造方法
CA2708335A1 (en) * 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
AU2005302963B2 (en) * 2004-11-10 2009-07-02 Cannon Kabushiki Kaisha Light-emitting device
US7863611B2 (en) * 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
KR100635885B1 (ko) * 2004-12-14 2006-10-18 한국기초과학지원연구원 고균등 고자장 발생용 초전도 자석의 설계방법
US7566952B2 (en) * 2005-01-05 2009-07-28 International Business Machines Corporation On-chip circuit pad structure
US7579224B2 (en) * 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
US7608531B2 (en) * 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI562380B (en) * 2005-01-28 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) * 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) * 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) * 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) * 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
JP2006267605A (ja) 2005-03-24 2006-10-05 Mitsubishi Electric Corp 表示装置
WO2006105077A2 (en) * 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) * 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) * 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
KR20060118208A (ko) * 2005-05-16 2006-11-23 삼성전자주식회사 박막 트랜지스터 표시판
JP2006344849A (ja) * 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) * 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) * 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) * 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) * 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
US7838347B2 (en) * 2005-08-12 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of display device
JP2007059128A (ja) * 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4850457B2 (ja) * 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP5116225B2 (ja) * 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP2007073705A (ja) * 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4280736B2 (ja) * 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
EP3614442A3 (en) 2005-09-29 2020-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufactoring method thereof
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
JP5037808B2 (ja) * 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
TWI279920B (en) 2005-10-24 2007-04-21 Chunghwa Picture Tubes Ltd Thin film transistor array substrate and liquid crystal display panel
KR101117948B1 (ko) 2005-11-15 2012-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 디스플레이 장치 제조 방법
JP5089139B2 (ja) * 2005-11-15 2012-12-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5250929B2 (ja) * 2005-11-30 2013-07-31 凸版印刷株式会社 トランジスタおよびその製造方法
TWI292281B (en) * 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) * 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) * 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) * 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) * 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) * 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
JP2007286150A (ja) * 2006-04-13 2007-11-01 Idemitsu Kosan Co Ltd 電気光学装置、並びに、電流制御用tft基板及びその製造方法
US20070252928A1 (en) * 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
KR100847640B1 (ko) 2006-05-23 2008-07-21 가시오게산키 가부시키가이샤 표시장치
JP2007316104A (ja) * 2006-05-23 2007-12-06 Casio Comput Co Ltd 表示装置
CN101460890B (zh) 2006-05-31 2011-04-06 Nec液晶技术株式会社 半透过型液晶显示装置
JP5028033B2 (ja) * 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
KR20080007813A (ko) 2006-07-18 2008-01-23 삼성전자주식회사 박막 트랜지스터 어레이 기판
TWI427702B (zh) 2006-07-28 2014-02-21 Semiconductor Energy Lab 顯示裝置的製造方法
JP4999400B2 (ja) * 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
US8400599B2 (en) * 2006-08-16 2013-03-19 Samsung Display Co., Ltd. Liquid crystal display panel having a light blocking electrode
JP4332545B2 (ja) * 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) * 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) * 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP2008112136A (ja) * 2006-10-04 2008-05-15 Mitsubishi Electric Corp 表示装置及びその製造方法
JP5100076B2 (ja) 2006-10-04 2012-12-19 株式会社ジャパンディスプレイウェスト 表示装置
US7622371B2 (en) * 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
KR20080032905A (ko) * 2006-10-11 2008-04-16 삼성전자주식회사 표시 기판 및 그 제조 방법
US7456432B2 (en) * 2006-11-20 2008-11-25 Tpo Displays Corp. System having electrostatic discharge protection structure and method for manufacturing the same
KR101425635B1 (ko) 2006-11-29 2014-08-06 삼성디스플레이 주식회사 산화물 박막 트랜지스터 기판의 제조 방법 및 산화물 박막트랜지스터 기판
US7772021B2 (en) * 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
TW200823965A (en) * 2006-11-30 2008-06-01 Nat Univ Tsing Hua Manufacturing method for imprinting lithograph template
JP2008140684A (ja) * 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
JP5105842B2 (ja) 2006-12-05 2012-12-26 キヤノン株式会社 酸化物半導体を用いた表示装置及びその製造方法
KR20080052107A (ko) 2006-12-07 2008-06-11 엘지전자 주식회사 산화물 반도체층을 구비한 박막 트랜지스터
KR101303578B1 (ko) * 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
JP2008170757A (ja) * 2007-01-12 2008-07-24 Epson Imaging Devices Corp 表示装置及びこれを搭載した電子機器
JP5090745B2 (ja) 2007-01-17 2012-12-05 株式会社ジャパンディスプレイイースト 表示装置および表示装置の製造方法
US8207063B2 (en) * 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
JP4934599B2 (ja) 2007-01-29 2012-05-16 キヤノン株式会社 アクティブマトリクス表示装置
US20080204618A1 (en) * 2007-02-22 2008-08-28 Min-Kyung Jung Display substrate, method for manufacturing the same, and display apparatus having the same
KR100805124B1 (ko) 2007-03-05 2008-02-21 삼성에스디아이 주식회사 표시 장치의 제조 방법 및 표시 장치
KR100851215B1 (ko) * 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) * 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) * 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) * 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) * 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) * 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) * 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5215158B2 (ja) * 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
JP5480554B2 (ja) 2008-08-08 2014-04-23 株式会社半導体エネルギー研究所 半導体装置
US9082857B2 (en) * 2008-09-01 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor layer
JP4623179B2 (ja) * 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) * 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
KR101218090B1 (ko) 2009-05-27 2013-01-18 엘지디스플레이 주식회사 산화물 박막 트랜지스터 및 그 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165527A (ja) * 2004-11-10 2006-06-22 Canon Inc 電界効果型トランジスタ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114432A (ja) * 2008-10-10 2010-05-20 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US9384976B2 (en) 2009-11-06 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2018022901A (ja) * 2010-04-23 2018-02-08 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2012238905A (ja) * 2010-06-11 2012-12-06 Semiconductor Energy Lab Co Ltd 半導体装置
TWI550862B (zh) * 2010-06-11 2016-09-21 半導體能源研究所股份有限公司 半導體裝置
US9755082B2 (en) 2010-06-11 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor with an insulating film including galliium and oxygen
JP2023060339A (ja) * 2010-07-26 2023-04-27 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2012216806A (ja) * 2011-04-01 2012-11-08 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2019197888A (ja) * 2012-06-29 2019-11-14 株式会社半導体エネルギー研究所 半導体装置
US10741690B2 (en) 2017-02-16 2020-08-11 Mitsubishi Electric Corporation Thin film transistor, thin film transistor substrate, and liquid crystal display device
WO2018221294A1 (ja) * 2017-05-31 2018-12-06 シャープ株式会社 アクティブマトリクス基板およびその製造方法
US11069722B2 (en) 2017-05-31 2021-07-20 Sharp Kabushiki Kaisha Active matrix substrate and method of manufacturing same

Also Published As

Publication number Publication date
TWI481036B (zh) 2015-04-11
JP2023052008A (ja) 2023-04-11
TW201843795A (zh) 2018-12-16
US10181545B2 (en) 2019-01-15
JP7200415B2 (ja) 2023-01-06
JP6803429B2 (ja) 2020-12-23
TWI711146B (zh) 2020-11-21
WO2010029859A1 (en) 2010-03-18
TW201027752A (en) 2010-07-16
JP2022095620A (ja) 2022-06-28
JP2018041101A (ja) 2018-03-15
US9257594B2 (en) 2016-02-09
TWI557867B (zh) 2016-11-11
JP6087980B2 (ja) 2017-03-01
US20210288210A1 (en) 2021-09-16
TWI759934B (zh) 2022-04-01
KR20160063402A (ko) 2016-06-03
US20190027640A1 (en) 2019-01-24
TWI641102B (zh) 2018-11-11
US11024763B2 (en) 2021-06-01
TW201519395A (zh) 2015-05-16
KR20110063828A (ko) 2011-06-14
JP7038182B2 (ja) 2022-03-17
JP6312972B2 (ja) 2018-04-18
JP6767344B2 (ja) 2020-10-14
JP2021047429A (ja) 2021-03-25
US20130092932A1 (en) 2013-04-18
TW202127621A (zh) 2021-07-16
TWI802277B (zh) 2023-05-11
JP2015188092A (ja) 2015-10-29
TW202224131A (zh) 2022-06-16
JP2017122915A (ja) 2017-07-13
US20100065838A1 (en) 2010-03-18
JP2019179264A (ja) 2019-10-17
JP2024123047A (ja) 2024-09-10
KR101812935B1 (ko) 2018-01-30
TW201640640A (zh) 2016-11-16
KR101623224B1 (ko) 2016-05-20
KR20170027872A (ko) 2017-03-10

Similar Documents

Publication Publication Date Title
JP7323586B2 (ja) 半導体装置
JP7038182B2 (ja) 表示装置
JP6359737B2 (ja) 表示装置
JP5567809B2 (ja) 表示装置
JP5288625B2 (ja) 表示装置
JP2010109357A (ja) 表示装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150217

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150513