JP2009158804A - 半導体材料、半導体材料の製造方法及び半導体素子 - Google Patents

半導体材料、半導体材料の製造方法及び半導体素子 Download PDF

Info

Publication number
JP2009158804A
JP2009158804A JP2007337167A JP2007337167A JP2009158804A JP 2009158804 A JP2009158804 A JP 2009158804A JP 2007337167 A JP2007337167 A JP 2007337167A JP 2007337167 A JP2007337167 A JP 2007337167A JP 2009158804 A JP2009158804 A JP 2009158804A
Authority
JP
Japan
Prior art keywords
layer
semiconductor material
composition
superlattice composite
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007337167A
Other languages
English (en)
Other versions
JP4592742B2 (ja
Inventor
Ryo Sakamoto
陵 坂本
Sei Shimizu
成 清水
Tsuneo Ito
統夫 伊藤
Takashi Egawa
孝志 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Nagoya Institute of Technology NUC
Original Assignee
Dowa Electronics Materials Co Ltd
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Nagoya Institute of Technology NUC filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2007337167A priority Critical patent/JP4592742B2/ja
Priority to US12/735,259 priority patent/US8344356B2/en
Priority to PCT/JP2008/072911 priority patent/WO2009084431A1/ja
Publication of JP2009158804A publication Critical patent/JP2009158804A/ja
Application granted granted Critical
Publication of JP4592742B2 publication Critical patent/JP4592742B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Led Devices (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】クラック及びピットの発生が少なく、結晶性に優れた窒化物半導体層を有する半導体材料及びその製造方法を提供することにある。
【解決手段】Si基板10上又はこの上に形成した中間層20上に、AlXGa1-XNの組成からなり、該組成中のAl含有比が結晶成長方向に連続又は不連続に減少するように組成を傾斜させた組成傾斜層30を形成し、該組成傾斜層30の上に、AlYGa1-YNの組成からなるからなる高Al含有層41とAlZGa1-ZNの組成からなる低Al含有層42とを交互に積層してなる超格子複合層40を形成し、該超格子複合層40の上に、窒化物半導体層50を形成してなる半導体材料を提供する。
【選択図】図1

Description

本発明は、例えば、発光ダイオード(LED)、電界効果トランジスタ(FET)等の半導体素子に用いられる半導体材料であって、特にクラック及びピットの発生を抑制でき、結晶品質の優れた半導体材料及びその製造方法、並びに半導体素子に関するものである。
窒化物半導体は、電界効果トランジスタ等の電子デバイス、または、可視光領域から紫外光領域の短波長帯における発光デバイスの活性材料として、近年盛んに研究および技術開発が行われている。
一般的に、前記窒化物半導体は、サファイア、SiC又はSi等からなる基板上に形成される。特に、Si基板は、大面積が低価格で入手でき、結晶性及び放熱性に優れ、さらに、へき開やエッチングが容易で、プロセス技術が成熟しているといった多くの利点を具えている。
しかし、前記窒化物半導体と、Si基板とでは、格子定数や熱膨張係数が大きく異なるため、Si基板上に窒化物半導体を成長させた場合、成長した窒化物半導体には、クラックやピット(点状欠陥)が発生するという問題があった。クラックやピットは、リーク電流の原因となり、デバイス特性に大きな悪影響を及ぼすことから、これらの発生を抑制することは、重要な課題となっている。
上記問題を解決するための手段としては、前記Si基板と窒化物半導体層との間にバッファ層を形成することで、クラックを抑制する技術が知られている。例えば、特許文献1に開示されているように、Si基板の上に、窒化物半導体からなる中間層を設け、組成的に勾配を付けたAlXGa1-XN等からなるバッファ層を形成し、該転移層の上に窒化ガリウムを形成してなる半導体材料が挙げられる。
また、上記問題を解決する別の方法として、特許文献2に開示されているように、Si基板上に、高Al含有層と、低Al含有層とを交互に複数層積層してなるAlN系超格子複合層を形成し、該AlN系超格子複合バッファ層上に窒化物半導体層を形成してなる窒化物半導体素子が挙げられる。
しかしながら、特許文献1及び2に記載の半導体材料のみでは、いずれも前記窒化物半導体層に発生するクラックの抑制については効果を有するものの、ピットの発生を抑制する効果は十分ではなく、ピットの発生に起因したデバイス特性の劣化を防ぐことはできなかった。また、半導体材料をパワーデバイス用途として用いる場合、高い耐圧性が要求されることから、前記窒化物半導体層の膜厚を厚くする必要があり、そのためには前記窒化物半導体の結晶性の向上が望まれるが、引用文献2の半導体材料は、結晶性の向上についての効果を有していない。
特開2004−524250号公報 特開2007−67077号公報
本発明の目的は、Si基板又はこの上に形成した中間層と窒化物半導体層との間に、所定のバッファ層を形成することにより、クラック及びピットの発生が共に少なく、結晶性に優れた窒化物半導体層を有する半導体材料及びその製造方法、並びに窒化物半導体素子を提供することにある。
上記目的を達成するため、本発明の要旨構成は以下の通りである。
(1)Si基板上又はこの上に形成した中間層上に、AlXGa1-XNの組成からなり、該組成中のAl含有比が結晶成長方向に連続又は不連続に減少するように組成を傾斜させた組成傾斜層を形成し、該組成傾斜層の上に、AlYGa1-YN(ただし、0.5≦Y≦1とする。)の組成からなる高Al含有層と、AlZGa1-ZN(ただし、0≦Z≦0.5とする。)の組成からなる低Al含有層とを交互に積層してなる超格子複合層を形成し、該超格子複合層の上に、窒化物半導体層を形成してなることを特徴とする半導体材料。
(2)前記超格子複合層は、前記高Al含有層がAlN層(Y=1)であり、前記低Al含有層がAlZGa1-ZN層(ただし、0≦Z≦0.3とする。)であることを特徴とする上記(1)記載の半導体材料。
(3)前記超格子複合層は、前記高Al含有層と前記低Al含有層との合計数が、2〜100層であることを特徴とする上記(1)又は(2)記載の半導体材料。
(4)前記超格子複合層は、それを構成する最下層が高Al含有層であり、最上層が低Al含有層であることを特徴とする上記(1)、(2)又は(3)記載の半導体材料。
(5)前記傾斜層は、前記AlXGa1-XNのXの値が、前記Si基板又は前記中間層と接する下面で0.5〜1の範囲であり、前記超格子複合層と接する上面で0〜0.5の範囲であることを特徴とする上記(1)〜(4)のいずれか1項記載の半導体材料。
(6)前記窒化物半導体層は、GaN層であることを特徴とする上記(1)〜(5)のいずれか1項記載の半導体材料。
(7)前記GaN層のピット密度は1000個/cm2以下であることを特徴とする上記(6)記載の半導体材料。
(8)上記(1)〜(7)のいずれか1項記載の半導体材料を用い、該半導体材料に電極を設けてなる半導体素子。
(9)Si基板上又はこの上に形成した中間層上に、AlXGa1-XNの組成からなり、該組成中のAl含有比が結晶成長方向に連続又は不連続に減少するように組成を傾斜させた組成傾斜層を形成し、該組成傾斜層の上に、AlYGa1-YN(ただし、0.5≦Y≦1とする。)の組成からなる高Al含有層と、AlZGa1-ZN(ただし、0≦Z≦0.5とする。)の組成からなる低Al含有層とを交互に積層させて超格子複合層を形成し、該超格子複合層の上に、窒化物半導体層を形成することを特徴とする半導体材料の製造方法。
(10)前記超格子複合層を形成する工程は、前記高Al含有層としてAlN層を形成し、前記低Al含有層としてAlZGa1-ZN層(0≦Z≦0.3)を形成することを特徴とする上記(9)記載の半導体材料の製造方法。
(11)前記超格子複合層を形成する工程は、前記高Al含有層と前記低Al含有層とを、合計で2〜100層積層させることを特徴とする上記(9)又は(10)記載の半導体材料の製造方法。
この発明によれば、クラック等の発生を抑制するためのバッファ層として、AlXGa1-XNの組成からなり、該組成中のAl含有比が結晶成長方向に連続又は不連続に漸減するように組成を傾斜させた組成傾斜層を形成し、該組成傾斜層の上に、AlYGa1-YN(ただし、0.5≦Y≦1とする。)の組成からなる高Al含有層と、AlZGa1-ZN(ただし、0≦Z≦0.5とする。)の組成からなる低Al含有層とを交互に積層してなる超格子複合層を形成することにより、従来の半導体材料に比べて、クラック及びピットの発生が共に少なく、結晶性に優れた窒化物半導体層を有する半導体材料及びその製造方法、並びに半導体素子を提供することが可能となった。
次に、本発明の実施形態について図面を参照しながら説明する。図1は、本発明に従う半導体材料1を側方から見た状態を模式的に示した図である。
本発明による半導体材料1は、図1に示すように、Si基板10上又はこの上に形成した中間層20上に、AlXGa1-XNの組成からなり、該組成中のAl含有比が結晶成長方向に連続又は不連続に漸減するように組成を傾斜させた組成傾斜層30を形成し、該組成傾斜層30の上に、AlYGa1-YNの組成からなるからなる高Al含有層41とAlZGa1-ZNの組成からなる低Al含有層42とを交互に積層してなる超格子複合層40を形成し、該超格子複合層40の上に、窒化物半導体層50を形成してなる。
本発明者らは、クラック及びピットの発生が少なく、結晶性に優れた窒化物半導体層を有する半導体材料について鋭意研究を行った結果、従来のように、前記組成傾斜層30や、前記超格子複合層40をそれぞれ単独で用いた層構成では、上記性能の全てを満足することができず、前記組成傾斜層30の上に、前記超格子複合層40を形成することによって、初めて、従来技術と同様にクラックの発生を抑制しつつ、それぞれの層30、40が異なる欠陥を遮断することにより、ピットの原因となる欠陥を遮断することができ、ピットの発生を抑制できることを見出した。さらに、それぞれの層30、40が異なる欠陥を遮断することと、前記Si基板10と、前記窒化物半導体層50との格子定数の差を、より緩和できるようになる結果、結晶性に優れた前記窒化物半導体層50を得られることも見出した。
なお、本発明の半導体材料1は、前記組成傾斜層30の上に、前記超格子複合層40を形成しているが、逆に、前記超格子複合層40の上に、前記組成傾斜層30を形成した場合には同様の効果を得ることはできない。これは傾斜組成層内でピットの発生源となる転位が再発生し、前記窒化物半導体層50へ伝搬するためと考えられる。
(Si基板及び中間層)
本発明のSi基板10としては、特に限定はされないが、通常使用される高品質の単結晶シリコンからなる基板を用いることができる。
また、前記Si基板10の厚さについても、特に限定はされないが、基板の剛性を確保し且つデバイスの放熱効果の点から、0.2〜1mmとすることが好ましい。
さらに、本発明では、必要に応じて、図1に示すように、前記Si基板の上に中間層20を形成することができる。この中間層20を形成することで、さらに前記窒化物半導体層50の応力を低減させることができる点で有効であり、また、バッファ層としての前記組成傾斜層30や、前記超格子複合層40の膜厚を薄くすることができる効果も有する。
前記中間層20は、前記Si基板10と前記窒化物半導体層50との緩衝作用を有していれば、その組成については特に限定はされず、AlN、GaN、AlXInYN、InXGa1-XN又はAlXInYGa1-X-YN等を用いることができるが、SiとGaは反応しやすく良質の結晶を得ることが困難の点から、AlNからなる層を用いることが好ましい。
(組成傾斜層)
本発明の組成傾斜層30は、図1に示すように、AlXGa1-XNの組成からなり、該組成中のAl含有比が結晶成長方向Lに連続又は不連続に減少(漸減)するように組成を傾斜させた層である。前記Al含有比を結晶成長方向Lに漸減するように組成を傾斜させることで、前記AlXGa1-XNの熱膨張率が、前記組成傾斜層30中の前記基板10と接する下面21ではSiに近づき、前記超格子複合層40と接する上面22ではその窒化物半導体層の熱膨張率に近づくため、前記窒化物半導体層50内の内部応力を低減させる結果、クラックの発生を抑制することができる。
また、前記傾斜層30は、前記AlXGa1-XNのXの値が、前記下面21で0.5〜1の範囲であり、前記上面22で0〜0.5の範囲であることが好ましい。下面21及び上面22でのXの値を上記範囲とすれば、前記Si基板10と、組成傾斜層30との格子定数の差を緩和する結果、前記窒化物半導体層50の結晶性を向上させることができるからである。さらに、前記下面21の組成がAlNとなり、前記上面22の組成がGaNとなることがより好適である。
さらに、前記組成傾斜層30の前記AlXGa1-XNのAl含有比(X)は、結晶成長方向Lに漸減すれば、連続的でも不連続的でもよく、また、含有比が漸減する割合は、一定であっても、不規則であっても構わない。
さらに、前記組成傾斜層30の膜厚は、1〜10μmであることが好ましい。1μm未満では、十分に前記窒化物半導体層50内の内部応力を低減させることができず、10μm超えでは、組成傾斜層とSi基板の熱膨張係数の差から、ウエハの反りが大きくなりデバイスの加工面で不具合が生じるためである。
(超格子複合層)
本発明の超格子複合層40は、図1に示すように、前記組成傾斜層30の上に形成され、AlYGa1-YN(ただし、0.5≦Y≦1とする。)の組成からなる高Al含有層41と、AlZGa1-ZN(ただし、0≦Z≦0.5とする。)の組成からなる低Al含有層42とを交互に積層してなる複合層である。この超格子複合層40を形成すれば、前記Si基板10と前記窒化物半導体層50との、格子定数や熱膨張率差を緩和することができる結果、前記窒化物半導体層50に発生するクラックを抑制することができる。さらに、上述したように、前記組成傾斜層30の上に形成することで、前記窒化物半導体層50に発生するピットについても抑制できるという効果を奏する。
また、前記超格子複合層40は、前記高Al含有層41がAlN層であり、前記低Al含有層42がAlZGa1-ZN層(ただし、0≦Z≦0.3とする。)であることが好ましい。前記高Al含有層41をAlNとすれば、前記Si基板10の熱膨張率及び格子定数に近づくため、緩衝層としての効果を有効に発揮できるからであり、また、前記低Al含有層42のZの値が0.3を超えた場合は、組成傾斜層30の終点および窒化物半導体層50と、超格子複合層全体でのみなしの格子定数との差が大きくなるため、前記窒化物半導体層50にピットが増加し、クラックが発生する恐れがあるからである。さらに、Zの値を0.1〜2.0の範囲、最適には0.15とすれば、より優れた効果を得ることができる。
ここで図2(a)、(b)は、図1に示すように、Si基板10上に中間層20として、膜厚100nmのAlN層を形成し、該AlN層上に、AlXGa1-XNのXの値がX=1からX=0となるように連続的に変化する膜厚3.5μmの組成傾斜層30を形成し、該組成傾斜層30の上に、前記高Al含有層41としての膜厚5.0nmのAlN層と、前記低Al含有層42として膜厚20nmの4種類のAlZGa1-ZN層(Z=0、0.15、0.3、0.4)のいずれかのAlZGa1-ZN層とを、交互に50層ずつ積層させた超格子複合層40を形成し、該超格子複合層40の上に、窒化物半導体層50として膜厚1.0μmのGaN層を形成してなる4種類の半導体材料1について、前記低AlN含有層42のZの値に対するGaN層の結晶性(X線回折の半値幅)の関係を表したグラフ(図2(a))、及び前記低AlN含有層42のZの値に対するGaN層の単位面積(1cm2)当たりのピット数の関係を表したグラフ(図2(b))である。図2(a)及び(b)からもわかるように、超格子複合層40の低Al含有層42を構成するAlZGa1-ZNのZの値が0.3を超えた場合、結晶性が劣化するとともに(半値幅が大きくなる)(図2(a))、ピット数が大幅に増加している(図2(b))。
さらに、前記超格子複合層40は、前記高Al含有層41と前記低Al含有層42との合計が、2〜100層であることが好ましい。本発明の効果を得るためには、前記高Al含有層41と前記低Al含有層42を、少なくとも1層ずつ積層させる必要があり、合計が100層を超える場合、前記窒化物半導体層50にクラックが発生しやすくなるからである。
さらにまた、前記超格子複合層40は、図1に示すように、それを構成する最下層が高Al含有層41であり、最上層が低Al含有層42であることが、前記窒化物半導体層50のクラック及びピットの発生を抑制する効果がより発揮される点で好ましい。
ここで図3(a)、(b)は、図1に示すように、Si基板10上に中間層20として、膜厚100nmのAlN層を形成し、該AlN層上に、AlXGa1-XNのXの値がX=1からX=0となるように連続的に変化する膜厚3.5μmの組成傾斜層30を形成し、該組成傾斜層30の上に、前記高Al含有層41としての膜厚5nmのAlN層と、前記低Al含有層42としての膜厚20nmのAl0.15Ga0.85N層を交互に積層させて、5種類の異なる合計積層数(0層、2層、20層、40層、100層、200層)の超格子複合層40をそれぞれ形成し、該超格子複合層40の上に、窒化物半導体層50として膜厚1μmのGaN層を形成してなる半導体材料1について、前記超格子複合層40を構成するAlN層とAl0.15Ga0.85N層との合計積層数に対するGaN層の結晶性(X線回折の半値幅)の関係を表したグラフ(図3(a))、前記超格子複合層40を構成するAlN層とAl0.15Ga0.85N層との合計積層数に対するGaN層の単位面積(1cm2)当たりのピット数の関係を表したグラフ(図3(b))である。図3(a)及び(b)からもわかるように、合計積層数が2以上の場合には、結晶性が顕著に向上し(半値幅が大きくなる)(図3(a))、ピット数が大幅に抑制されている(図3(b))。合計積層数が200層の場合でも、結晶性がよくピット数が抑制されているが、クラックが発生した。従って、前記超格子複合層40は、前記高Al含有層41と前記低Al含有層42との合計層数が、2〜100層であることが好ましい。
また、前記高Al含有層41及び前記低Al含有層42の膜厚は、特に限定はしないが、薄すぎる場合には、前記Si基板10との熱膨張率差に起因する応力を有効に緩和することができず、一方、厚すぎる場合には、前記高Al含有層41又は前記低Al含有層42の成長中に格子緩和が起こり、ピットが増える原因となってしまう恐れがあることから、前記高Al含有層41の膜厚は、1〜30nm、前記低Al含有層42の膜厚は5〜80nmの範囲であることが好ましい。なお、図1では、前記超格子複合層40の構成をわかりやすくするため、実際の割合に比べて、前記高Al含有層41及び前記低Al含有層42の膜厚が厚く示してある。
(窒化物半導体層)
本発明の窒化物半導体層50は、図1に示すように、前記超格子複合層50の上に形成される層である。窒化物半導体の種類としては、例えば、GaN、AlXGa1-XN、InXGa1-XN又はAlXInYGa1-X-YN等が挙げられる。
また、前記窒化物半導体層50は、高濃度のGaを含有し、Al及びInの含有量が少ないほうが、例えばHEMTに用いた場合、動作速度が高くなる点で好ましく、GaN層であることが好ましい。
さらに、本発明の効果により、クラック及びピットの発生を抑制することができるため、前記窒化物半導体層50のピット密度が1000個/cm2以下(より好ましくは200個/cm2以下)の高品質の半導体材料1を得ることができる。
さらにまた、必要に応じて、コンタクト層、チャネル層、パッシベーション層等としての役目を果たす、カバー層60を設けることができる。前記カバー層60の種類としては、例えば、GaN、AlXGa1-XN、InXGa1-XN又はAlXInYGa1-X-YN等が挙げられる。
なお、本発明による半導体材料を用い、該半導体材料に電極等を設けることにより、リーク電流によるデバイス特性の劣化がない、優れた半導体素子を得ることができる。
次に、本発明による半導体材料の製造方法について説明する。
本発明による半導体材料の製造方法は、Si基板上又はこの上に形成した中間層上に、AlXGa1-XNの組成からなり、該組成中のAl含有比が結晶成長方向に連続又は不連続に漸減するように組成を傾斜させた組成傾斜層を形成し、該組成傾斜層の上に、AlYGa1-YN(ただし、0.5≦Y≦1、好ましくはY=1とする。)の組成からなる高Al含有層と、AlZGa1-ZN(ただし、0≦Z≦0.5、好ましくは0≦Z≦0.3とする。)の組成からなる低Al含有層とを交互に積層、好ましくは合計で2〜100層積層させて超格子複合層を形成し、該超格子複合層の上に、窒化物半導体層を形成する。
本発明の製造を用いて半導体材料を製造すれば、前記組成傾斜層の上に、前記超格子複合層を形成したものが、クラック等の発生を抑制するためのバッファ層としての機能を果たすため、従来の半導体材料に比べて、クラック及びピットの発生が少なく、結晶性に優れた窒化物半導体層を有する半導体材料を提供することができる。
なお、上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。
また、組成傾斜層、超格子複合層ともに、AlGaN系の窒化物であるが、AlGaInN系の窒化物としても同様の効果が期待できる。
次に、本発明に従う半導体材料を試作し、性能を評価した。
(実施例1)
実施例1は、図1に示すように、直径4インチで結晶面が(111)、膜厚525umのSi基板10を用意し、MOCVD法を用い、水素及び窒素雰囲気中で、前記Si基板10を1100℃に加熱した後、トリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、NH3の供給量を調整することにより、前記Si基板10上に、膜厚100nmの中間層20であるAlN層を形成し、該AlN層上に、AlXGa1-XNの組成からなり、該組成中のAl含有比Xが結晶成長方向にX=1からX=0となるように連続的に変化する組成傾斜層30(膜厚3.5μm)を形成した。その後、トリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、NH3の供給量を調整することにより、前記組成傾斜層30の上に、AlNからなる高Al含有層41(膜厚5nm)とAl0.15Ga0.85Nからなる低Al含有層42(膜厚20nm)を交互に50層ずつ、計100層積層させた超格子複合層40を形成し、更にその上に厚さ1μmのGaN層50と薄いAl0.26Ga0.74N層60を順次形成することで、サンプルとなる半導体材料を作製した。
(実施例2)
実施例2は、超格子複合層40を、AlNからなる高Al含有層41(膜厚5nm)とGaNからなる低Al含有層42(膜厚20nm)を交互に20層ずつ、計40層積層させて形成したこと以外は、実施例1と同様の方法により、サンプルとなる半導体材料を作製した。
(実施例3)
実施例3は、超格子複合層40を、AlNからなる高Al含有層41(膜厚5nm)とAl0.15Ga0.85Nからなる低Al含有層42(膜厚20nm)を交互に1層ずつ、計2層積層させて形成したこと以外は、実施例1と同様の方法により、サンプルとなる半導体材料を作製した。
(比較例1)
比較例1は、図4に示すように、図1の半導体材料と同様の条件により、前記Si基板10上に、AlNからなる第一中間層20を形成し、その上にAlGaNからなる第二中間層21を形成し、その上に前記組成傾斜層30を形成することなく、AlNからなる高Al含有層41(膜厚5nm)とAl0.15Ga0.85Nからなる低Al含有層42(膜厚20nm)を交互に160層ずつ、計320層積層させた超格子複合層40を形成し、その上に厚さ1μmのGaN層と、Al0.26Ga0.74N層60とを順次形成することで、サンプルとなる半導体材料を作製した。
(比較例2)
比較例2は、図5に示すように、図1の半導体材料と同様の条件により、前記Si基板10上に、AlNからなる中間層20を形成し、該中間層20上に、組成傾斜層30を形成した。その後、前記組成傾斜層30上に、超格子複合層40を形成することなく、厚さ1μmのGaN層と、Al0.26Ga0.74N層60とを順次形成することで、サンプルとなる半導体材料を作製した。
上記実施例及び比較例で作製した各半導体材料について評価を行った。評価方法を以下に示す。
(評価方法)
(1)ピット数
上記実施例及び比較例で作製した半導体材料の、GaN層50の表面を光学顕微鏡(倍率100倍)を用いて観察し、4インチウエハの任意の5点の視野範囲のピット数を計測し視野面積よりピット密度(個/cm)に換算、以下の基準に従って評価した。
○:1000個/cm以下
×:1000個/cm超え
(2)クラックの有無
上記実施例及び比較例で作製した半導体材料の、GaN層50の表面を光学顕微鏡(倍率100倍)を用いて観察し、クラックの有無を観察し、以下の基準に従って評価した。
○:4インチウエハ外周5mm以内にクラック無し
×:4インチウエハ外周5mm以内にクラック有り
(3)結晶性
上記実施例及び比較例で作製した半導体材料の、GaN層50の結晶面(2024)面を、X線回折装置を用いて、回折線の半値幅を測定し、以下の基準に従って評価した。
○:1200arcsec以下
△:1200arcsec以上、1300arcsec以下
×:1300arcsec超え
上記の評価(1)〜(3)の結果を表1に示す。
Figure 2009158804
表1の結果から、実施例1、2及び3のサンプルは、比較例1及び2のサンプルと比較して、クラックの数については、大きな差はないものの、ピットの数は大きく減少し、同じAl含有量の超格子複合層を持つ実施例1、3および比較例1とを比較すると、実施例で半値幅が小さくなっていることから、ピットの発生を大幅に抑制することができ、結晶性に優れている半導体材料が得られることがわかった。
本発明によれば、従来の半導体材料に比べて、クラック及びピットの発生が少なく、結晶性に優れた窒化物半導体層を有する半導体材料及びその製造方法を提供することが可能となり、その半導体材料を用いた、高品質の半導体素子の提供についても可能となる。
本発明による半導体材料の断面図である。 本発明の半導体材料について、低Al含有層(AlZGa1-ZN層)のAl含有比(Z=0、0.15、0.3、0.5)と、GaN層の品質との関係を示したグラフであり、(a)は、低Al含有層のAl含有比と、GaN層のX線回折の半値幅との関係を示し、(b)は、低Al含有層のAl含有比と、GaN層の単位面積当たりに発生するピット数との関係を示している。 本発明の半導体材料について、超格子複合層を構成するAlN層とAl0.15Ga0.85N層との合計積層数(0、2、40、100、200)と、GaN層の品質との関係を示したグラフであり、(a)は、超格子複合を構成するAlN層とAl0.15Ga0.85N層との合計積層数と、GaN層のX線回折の半値幅との関係を示し、(b)は、超格子複合を構成するAlN層とAl0.15Ga0.85N層との合計積層数と、GaN層の単位面積当たりに発生するピット数との関係を示している。 比較例1で作製した半導体材料の断面図である。 比較例2で作製した半導体材料の断面図である。
符号の説明
1 半導体材料
10 Si基板
20 中間層
21 第二中間層
30 組成傾斜層
31 下面
32 上面
40 超格子複合層
41 高Al含有層
42 低Al含有層
50 窒化物半導体層
60 カバー層
L 結晶の成長方向

Claims (11)

  1. Si基板上又はこの上に形成した中間層上に、AlXGa1-XNの組成からなり、該組成中のAl含有比が結晶成長方向に連続又は不連続に減少するように組成を傾斜させた組成傾斜層を形成し、該組成傾斜層の上に、AlYGa1-YN(ただし、0.5≦Y≦1とする。)の組成からなる高Al含有層と、AlZGa1-ZN(ただし、0≦Z≦0.5とする。)の組成からなる低Al含有層とを交互に積層してなる超格子複合層を形成し、該超格子複合層の上に、窒化物半導体層を形成してなることを特徴とする半導体材料。
  2. 前記超格子複合層は、前記高Al含有層がAlN層(Y=1)であり、前記低Al含有層がAlZGa1-ZN層(ただし、0≦Z≦0.3とする。)であることを特徴とする請求項1記載の半導体材料。
  3. 前記超格子複合層は、前記高Al含有層と前記低Al含有層との合計数が、2〜100層であることを特徴とする請求項1又は2記載の半導体材料。
  4. 前記超格子複合層は、それを構成する最下層が高Al含有層であり、最上層が低Al含有層であることを特徴とする請求項1、2又は3記載の半導体材料。
  5. 前記傾斜層は、前記AlXGa1-XNのXの値が、前記Si基板又は前記中間層と接する下面で0.5〜1の範囲であり、前記超格子複合層と接する上面で0〜0.5の範囲であることを特徴とする請求項1〜4のいずれか1項記載の半導体材料。
  6. 前記窒化物半導体層は、GaN層であることを特徴とする請求項1〜5のいずれか1項記載の半導体材料。
  7. 前記GaN層のピット密度は1000個/cm2以下であることを特徴とする請求項6記載の半導体材料。
  8. 請求項1〜7のいずれか1項記載の半導体材料を用い、該半導体材料に電極を設けてなる半導体素子。
  9. Si基板上又はこの上に形成した中間層上に、AlXGa1-XNの組成からなり、該組成中のAl含有比が結晶成長方向に連続又は不連続に減少するように組成を傾斜させた組成傾斜層を形成し、該組成傾斜層の上に、AlYGa1-YN(ただし、0.5≦Y≦1とする。)の組成からなる高Al含有層と、AlZGa1-ZN(ただし、0≦Z≦0.5とする。)の組成からなる低Al含有層とを交互に積層させて超格子複合層を形成し、該超格子複合層の上に、窒化物半導体層を形成することを特徴とする半導体材料の製造方法。
  10. 前記超格子複合層を形成する工程は、前記高Al含有層としてAlN層を形成し、前記低Al含有層としてAlZGa1-ZN層(0≦Z≦0.3)を形成することを特徴とする請求項9記載の半導体材料の製造方法。
  11. 前記超格子複合層を形成する工程は、前記高Al含有層と前記低Al含有層とを、合計で2〜100層積層させることを特徴とする請求項9又は10記載の半導体材料の製造方法。
JP2007337167A 2007-12-27 2007-12-27 半導体材料、半導体材料の製造方法及び半導体素子 Active JP4592742B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007337167A JP4592742B2 (ja) 2007-12-27 2007-12-27 半導体材料、半導体材料の製造方法及び半導体素子
US12/735,259 US8344356B2 (en) 2007-12-27 2008-12-17 Semiconductor material, method of making the same, and semiconductor device
PCT/JP2008/072911 WO2009084431A1 (ja) 2007-12-27 2008-12-17 半導体材料、半導体材料の製造方法及び半導体素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007337167A JP4592742B2 (ja) 2007-12-27 2007-12-27 半導体材料、半導体材料の製造方法及び半導体素子

Publications (2)

Publication Number Publication Date
JP2009158804A true JP2009158804A (ja) 2009-07-16
JP4592742B2 JP4592742B2 (ja) 2010-12-08

Family

ID=40824151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007337167A Active JP4592742B2 (ja) 2007-12-27 2007-12-27 半導体材料、半導体材料の製造方法及び半導体素子

Country Status (3)

Country Link
US (1) US8344356B2 (ja)
JP (1) JP4592742B2 (ja)
WO (1) WO2009084431A1 (ja)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024979A1 (ja) * 2009-08-24 2011-03-03 Dowaエレクトロニクス株式会社 窒化物半導体素子およびその製造方法
JP2011066333A (ja) * 2009-09-18 2011-03-31 Dowa Electronics Materials Co Ltd 電子デバイス用エピタキシャル基板およびその製造方法ならびにiii族窒化物電子デバイス用エピタキシャル基板
WO2011055774A1 (ja) * 2009-11-06 2011-05-12 日本碍子株式会社 半導体素子用エピタキシャル基板、半導体素子、および半導体素子用エピタキシャル基板の製造方法
JP2011187654A (ja) * 2010-03-08 2011-09-22 Toyoda Gosei Co Ltd Iii族窒化物半導体からなるhemt、およびその製造方法
CN102214701A (zh) * 2010-04-08 2011-10-12 松下电器产业株式会社 氮化物半导体元件
WO2011135963A1 (ja) * 2010-04-28 2011-11-03 日本碍子株式会社 エピタキシャル基板およびエピタキシャル基板の製造方法
JP2011243644A (ja) * 2010-05-14 2011-12-01 Sumitomo Electric Ind Ltd Iii族窒化物半導体電子デバイス、iii族窒化物半導体電子デバイスを作製する方法
JP2011249843A (ja) * 2010-03-01 2011-12-08 Dowa Electronics Materials Co Ltd 半導体素子およびその製造方法
JP2012094802A (ja) * 2010-10-25 2012-05-17 Jiaotong Univ 窒化ガリウム層を有する多層構造基板及びその製造方法
WO2013008461A1 (ja) * 2011-07-11 2013-01-17 Dowaエレクトロニクス株式会社 Iii族窒化物エピタキシャル基板およびその製造方法
JP2013026321A (ja) * 2011-07-19 2013-02-04 Sharp Corp 窒化物系半導体層を含むエピタキシャルウエハ
JP2013513944A (ja) * 2009-12-11 2013-04-22 ナショナル セミコンダクター コーポレーション ガリウム窒化物又は他の窒化物ベースの半導体デバイスの裏側応力補償
JP2013077822A (ja) * 2011-09-29 2013-04-25 Samsung Electronics Co Ltd 高電子移動度トランジスタ及びその製造方法
JP2013084913A (ja) * 2012-08-15 2013-05-09 Toshiba Corp 窒化物半導体ウェーハ、窒化物半導体装置及び窒化物半導体結晶の成長方法
JP2013128103A (ja) * 2011-11-17 2013-06-27 Sanken Electric Co Ltd 窒化物半導体装置及び窒化物半導体装置の製造方法
WO2013108733A1 (ja) * 2012-01-16 2013-07-25 シャープ株式会社 ヘテロ接合型電界効果トランジスタ用のエピタキシャルウエハ
JP2013531361A (ja) * 2010-04-27 2013-08-01 フォン ケネル ハンス 基板のパターン化を使用するマスクレスプロセスによる転位及び応力管理と装置製造のための方法
JP5362085B1 (ja) * 2012-09-05 2013-12-11 株式会社東芝 窒化物半導体ウェーハ、窒化物半導体素子及び窒化物半導体ウェーハの製造方法
JP2014003056A (ja) * 2012-06-15 2014-01-09 Nagoya Institute Of Technology 半導体積層構造およびこれを用いた半導体素子
JP2014022685A (ja) * 2012-07-23 2014-02-03 Nagoya Institute Of Technology 半導体積層構造およびこれを用いた半導体素子
JP2014053607A (ja) * 2013-09-02 2014-03-20 Toshiba Corp 半導体発光素子及び半導体発光素子の製造方法
JP2014072429A (ja) * 2012-09-28 2014-04-21 Fujitsu Ltd 半導体装置
JP5492984B2 (ja) * 2010-04-28 2014-05-14 日本碍子株式会社 エピタキシャル基板およびエピタキシャル基板の製造方法
US8742396B2 (en) 2012-01-13 2014-06-03 Dowa Electronics Materials Co., Ltd. III nitride epitaxial substrate and deep ultraviolet light emitting device using the same
US8809101B2 (en) 2011-05-16 2014-08-19 Kabushiki Kaisha Toshiba Semiconductor light emitting device, nitride semiconductor wafer, and method for manufacturing nitride semiconductor layer
JP2014222730A (ja) * 2013-05-14 2014-11-27 シャープ株式会社 窒化物半導体エピタキシャルウェハ
WO2015005157A1 (ja) * 2013-07-09 2015-01-15 シャープ株式会社 窒化物半導体および電界効果トランジスタ
JP2015512148A (ja) * 2012-02-03 2015-04-23 トランスフォーム インコーポレーテッド 異種基板を有するiii族窒化物デバイスに適するバッファ層構造
JP2015185809A (ja) * 2014-03-26 2015-10-22 住友電気工業株式会社 半導体基板の製造方法及び半導体装置
WO2016039178A1 (ja) * 2014-09-10 2016-03-17 シャープ株式会社 窒化物半導体積層構造及びそれを用いた電子デバイス
JP2016074549A (ja) * 2014-10-03 2016-05-12 古河機械金属株式会社 自立基板、及び、自立基板の製造方法
JP2016149410A (ja) * 2015-02-10 2016-08-18 Dowaエレクトロニクス株式会社 電子デバイス用エピタキシャル基板および高電子移動度トランジスタならびにそれらの製造方法
JPWO2015152411A1 (ja) * 2014-04-04 2017-04-13 古河電気工業株式会社 窒化物半導体装置およびその製造方法、ならびにダイオードおよび電界効果トランジスタ
US9660133B2 (en) 2013-09-23 2017-05-23 Sensor Electronic Technology, Inc. Group III nitride heterostructure for optoelectronic device
KR101823685B1 (ko) * 2011-08-10 2018-03-14 엘지이노텍 주식회사 성장기판, 반도체 소자 및 그 제조방법
JP2018067712A (ja) * 2017-10-19 2018-04-26 国立大学法人 名古屋工業大学 半導体積層構造およびこれを用いた半導体素子
KR20200066141A (ko) * 2018-11-30 2020-06-09 한국산업기술대학교산학협력단 질화알루미늄 기반 트랜지스터의 제조 방법
WO2020111789A3 (ko) * 2018-11-30 2020-07-16 한국산업기술대학교산학협력단 질화알루미늄 기반 트랜지스터의 제조 방법
US11955520B2 (en) 2020-12-11 2024-04-09 Kabushiki Kaisha Toshiba Nitride semiconductor with multiple nitride regions of different impurity concentrations, wafer, semiconductor device and method for manufacturing the same

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5634681B2 (ja) * 2009-03-26 2014-12-03 住友電工デバイス・イノベーション株式会社 半導体素子
JP5334057B2 (ja) * 2009-11-04 2013-11-06 Dowaエレクトロニクス株式会社 Iii族窒化物積層基板
EP2538435B1 (en) * 2010-02-16 2019-09-11 NGK Insulators, Ltd. Epitaxial substrate and method for producing same
CN102870196A (zh) * 2010-06-08 2013-01-09 日本碍子株式会社 外延基板以及外延基板的制造方法
JP5781292B2 (ja) 2010-11-16 2015-09-16 ローム株式会社 窒化物半導体素子および窒化物半導体パッケージ
JP6018360B2 (ja) * 2010-12-02 2016-11-02 富士通株式会社 化合物半導体装置及びその製造方法
US20120153351A1 (en) * 2010-12-21 2012-06-21 International Rectifier Corporation Stress modulated group III-V semiconductor device and related method
US8633468B2 (en) * 2011-02-11 2014-01-21 Sensor Electronic Technology, Inc. Light emitting device with dislocation bending structure
US8957454B2 (en) * 2011-03-03 2015-02-17 International Rectifier Corporation III-Nitride semiconductor structures with strain absorbing interlayer transition modules
KR101855063B1 (ko) * 2011-06-24 2018-05-04 엘지이노텍 주식회사 발광 소자
WO2013096821A1 (en) * 2011-12-21 2013-06-27 Massachusetts Institute Of Technology Aluminum nitride based semiconductor devices
US9691855B2 (en) * 2012-02-17 2017-06-27 Epistar Corporation Method of growing a high quality III-V compound layer on a silicon substrate
WO2013137476A1 (ja) * 2012-03-16 2013-09-19 次世代パワーデバイス技術研究組合 半導体積層基板、半導体素子、およびその製造方法
JP6151487B2 (ja) * 2012-07-10 2017-06-21 富士通株式会社 化合物半導体装置及びその製造方法
JP5768027B2 (ja) * 2012-09-20 2015-08-26 株式会社東芝 窒化物半導体層の形成方法
CN105144345B (zh) * 2013-03-15 2018-05-08 晶体公司 与赝配电子和光电器件的平面接触
JP2014220407A (ja) * 2013-05-09 2014-11-20 ローム株式会社 窒化物半導体素子
JP6138359B2 (ja) * 2013-06-11 2017-05-31 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 窒化物系化合物半導体素子を製造する方法
TWI574407B (zh) * 2013-08-16 2017-03-11 晶元光電股份有限公司 半導體功率元件
WO2015029578A1 (ja) * 2013-08-27 2015-03-05 富士電機株式会社 半導体装置の製造方法および半導体装置
US20150115327A1 (en) * 2013-10-30 2015-04-30 International Rectifier Corporation Group III-V Device Including a Buffer Termination Body
CN103633134B (zh) * 2013-12-12 2016-09-14 中山大学 一种厚膜高阻氮化物半导体外延结构及其生长方法
CN104733511A (zh) * 2013-12-21 2015-06-24 江西省昌大光电科技有限公司 一种在硅衬底上生长的氮化镓外延结构
US9847401B2 (en) * 2014-02-20 2017-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of forming the same
US10199535B2 (en) 2014-02-22 2019-02-05 Sensor Electronic Technology, Inc. Semiconductor structure with stress-reducing buffer structure
US9412902B2 (en) 2014-02-22 2016-08-09 Sensor Electronic Technology, Inc. Semiconductor structure with stress-reducing buffer structure
TWI566430B (zh) 2015-05-06 2017-01-11 嘉晶電子股份有限公司 氮化物半導體結構
JP6653750B2 (ja) * 2016-02-26 2020-02-26 サンケン電気株式会社 半導体基体及び半導体装置
WO2017179944A1 (ko) * 2016-04-15 2017-10-19 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 발광모듈
CN106098749A (zh) * 2016-06-30 2016-11-09 中国电子科技集团公司第五十五研究所 一种硅衬底上AlGaN/GaN异质结构及其生长方法
US10636899B2 (en) 2016-11-15 2020-04-28 Infineon Technologies Austria Ag High electron mobility transistor with graded back-barrier region
CN107634128A (zh) * 2017-09-14 2018-01-26 厦门三安光电有限公司 氮化物半导体元件
TWI631668B (zh) 2017-11-22 2018-08-01 聯鈞光電股份有限公司 氮化物半導體結構
JP2019110168A (ja) 2017-12-15 2019-07-04 スタンレー電気株式会社 光半導体素子
US11515407B2 (en) * 2018-12-26 2022-11-29 Intel Corporation High breakdown voltage structure for high performance GaN-based HEMT and MOS devices to enable GaN C-MOS
WO2022170564A1 (zh) * 2021-02-10 2022-08-18 重庆康佳光电技术研究院有限公司 外延结构、发光器件和外延结构的制作方法
TWI818379B (zh) * 2021-12-08 2023-10-11 財團法人工業技術研究院 高電子遷移率電晶體元件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230447A (ja) * 2000-02-16 2001-08-24 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子の製造方法
JP2001358407A (ja) * 2000-04-10 2001-12-26 Fuji Photo Film Co Ltd 半導体レーザ装置
JP2006222191A (ja) * 2005-02-09 2006-08-24 Nippon Telegr & Teleph Corp <Ntt> 半導体装置
JP2007088426A (ja) * 2005-08-25 2007-04-05 Furukawa Electric Co Ltd:The 半導体電子デバイス
JP2007258230A (ja) * 2006-03-20 2007-10-04 Dowa Holdings Co Ltd 半導体基板及び半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6535536B2 (en) 2000-04-10 2003-03-18 Fuji Photo Film Co., Ltd. Semiconductor laser element
US6649287B2 (en) 2000-12-14 2003-11-18 Nitronex Corporation Gallium nitride materials and methods
JP2007067077A (ja) 2005-08-30 2007-03-15 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体素子およびその製造方法
US7619238B2 (en) * 2006-02-04 2009-11-17 Sensor Electronic Technology, Inc. Heterostructure including light generating structure contained in potential well

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230447A (ja) * 2000-02-16 2001-08-24 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子の製造方法
JP2001358407A (ja) * 2000-04-10 2001-12-26 Fuji Photo Film Co Ltd 半導体レーザ装置
JP2006222191A (ja) * 2005-02-09 2006-08-24 Nippon Telegr & Teleph Corp <Ntt> 半導体装置
JP2007088426A (ja) * 2005-08-25 2007-04-05 Furukawa Electric Co Ltd:The 半導体電子デバイス
JP2007258230A (ja) * 2006-03-20 2007-10-04 Dowa Holdings Co Ltd 半導体基板及び半導体装置

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102598316B (zh) * 2009-08-24 2015-08-05 同和电子科技有限公司 氮化物半导体器件及其生产方法
KR101313989B1 (ko) * 2009-08-24 2013-10-01 도와 일렉트로닉스 가부시키가이샤 질화물 반도체 소자 및 그 제조 방법
US8680509B2 (en) 2009-08-24 2014-03-25 Dowa Electronics Materials Co., Ltd. Nitride semiconductor device and method of producing the same
JP2011205053A (ja) * 2009-08-24 2011-10-13 Dowa Electronics Materials Co Ltd 窒化物半導体素子およびその製造方法
WO2011024979A1 (ja) * 2009-08-24 2011-03-03 Dowaエレクトロニクス株式会社 窒化物半導体素子およびその製造方法
CN102598316A (zh) * 2009-08-24 2012-07-18 同和电子科技有限公司 氮化物半导体器件及其生产方法
JP2011066333A (ja) * 2009-09-18 2011-03-31 Dowa Electronics Materials Co Ltd 電子デバイス用エピタキシャル基板およびその製造方法ならびにiii族窒化物電子デバイス用エピタキシャル基板
WO2011055774A1 (ja) * 2009-11-06 2011-05-12 日本碍子株式会社 半導体素子用エピタキシャル基板、半導体素子、および半導体素子用エピタキシャル基板の製造方法
US8415690B2 (en) 2009-11-06 2013-04-09 Ngk Insulators, Ltd. Epitaxial substrate for semiconductor element, semiconductor element, and method for producing epitaxial substrate for semiconductor element
JPWO2011055774A1 (ja) * 2009-11-06 2013-03-28 日本碍子株式会社 半導体素子用エピタキシャル基板、半導体素子、および半導体素子用エピタキシャル基板の製造方法
JP2014099623A (ja) * 2009-11-06 2014-05-29 Ngk Insulators Ltd 半導体素子用エピタキシャル基板、半導体素子、および半導体素子用エピタキシャル基板の製造方法
JP5524235B2 (ja) * 2009-11-06 2014-06-18 日本碍子株式会社 半導体素子用エピタキシャル基板および半導体素子用エピタキシャル基板の製造方法
JP2018190988A (ja) * 2009-12-11 2018-11-29 ナショナル セミコンダクター コーポレーションNational Semiconductor Corporation ガリウム窒化物又は他の窒化物ベースの半導体デバイスの裏側応力補償
JP2021158391A (ja) * 2009-12-11 2021-10-07 ナショナル セミコンダクター コーポレーションNational Semiconductor Corporation ガリウム窒化物又は他の窒化物ベースの半導体デバイスの裏側応力補償
JP2013513944A (ja) * 2009-12-11 2013-04-22 ナショナル セミコンダクター コーポレーション ガリウム窒化物又は他の窒化物ベースの半導体デバイスの裏側応力補償
JP7273279B2 (ja) 2009-12-11 2023-05-15 ナショナル セミコンダクター コーポレーション ガリウム窒化物又は他の窒化物ベースの半導体デバイスの裏側応力補償
JP2011249843A (ja) * 2010-03-01 2011-12-08 Dowa Electronics Materials Co Ltd 半導体素子およびその製造方法
US8735938B2 (en) 2010-03-01 2014-05-27 Dowa Electronics Materials Co., Ltd. Semiconductor device and method of producing the same
JP2011187654A (ja) * 2010-03-08 2011-09-22 Toyoda Gosei Co Ltd Iii族窒化物半導体からなるhemt、およびその製造方法
JP2011222722A (ja) * 2010-04-08 2011-11-04 Panasonic Corp 窒化物半導体素子
CN102214701A (zh) * 2010-04-08 2011-10-12 松下电器产业株式会社 氮化物半导体元件
JP2013531361A (ja) * 2010-04-27 2013-08-01 フォン ケネル ハンス 基板のパターン化を使用するマスクレスプロセスによる転位及び応力管理と装置製造のための方法
JP5492984B2 (ja) * 2010-04-28 2014-05-14 日本碍子株式会社 エピタキシャル基板およびエピタキシャル基板の製造方法
WO2011135963A1 (ja) * 2010-04-28 2011-11-03 日本碍子株式会社 エピタキシャル基板およびエピタキシャル基板の製造方法
CN102870195A (zh) * 2010-04-28 2013-01-09 日本碍子株式会社 外延基板以及外延基板的制造方法
JP2011243644A (ja) * 2010-05-14 2011-12-01 Sumitomo Electric Ind Ltd Iii族窒化物半導体電子デバイス、iii族窒化物半導体電子デバイスを作製する方法
TWI414004B (zh) * 2010-10-25 2013-11-01 Univ Nat Chiao Tung 具有氮化鎵層的多層結構基板及其製法
JP2012094802A (ja) * 2010-10-25 2012-05-17 Jiaotong Univ 窒化ガリウム層を有する多層構造基板及びその製造方法
US9478706B2 (en) 2011-05-16 2016-10-25 Kabushiki Kaisha Toshiba Semiconductor light emitting device, nitride semiconductor wafer, and method for manufacturing nitride semiconductor layer
US8809101B2 (en) 2011-05-16 2014-08-19 Kabushiki Kaisha Toshiba Semiconductor light emitting device, nitride semiconductor wafer, and method for manufacturing nitride semiconductor layer
JP2013021124A (ja) * 2011-07-11 2013-01-31 Dowa Electronics Materials Co Ltd Iii族窒化物エピタキシャル基板およびその製造方法
US10727303B2 (en) 2011-07-11 2020-07-28 Dowa Electronics Materials Co., Ltd. Group III nitride epitaxial substrate and method for manufacturing the same
WO2013008461A1 (ja) * 2011-07-11 2013-01-17 Dowaエレクトロニクス株式会社 Iii族窒化物エピタキシャル基板およびその製造方法
JP2013026321A (ja) * 2011-07-19 2013-02-04 Sharp Corp 窒化物系半導体層を含むエピタキシャルウエハ
KR101823685B1 (ko) * 2011-08-10 2018-03-14 엘지이노텍 주식회사 성장기판, 반도체 소자 및 그 제조방법
JP2013077822A (ja) * 2011-09-29 2013-04-25 Samsung Electronics Co Ltd 高電子移動度トランジスタ及びその製造方法
JP2013128103A (ja) * 2011-11-17 2013-06-27 Sanken Electric Co Ltd 窒化物半導体装置及び窒化物半導体装置の製造方法
US8742396B2 (en) 2012-01-13 2014-06-03 Dowa Electronics Materials Co., Ltd. III nitride epitaxial substrate and deep ultraviolet light emitting device using the same
WO2013108733A1 (ja) * 2012-01-16 2013-07-25 シャープ株式会社 ヘテロ接合型電界効果トランジスタ用のエピタキシャルウエハ
JP2013145821A (ja) * 2012-01-16 2013-07-25 Sharp Corp ヘテロ接合型電界効果トランジスタ用のエピタキシャルウエハ
US9111839B2 (en) 2012-01-16 2015-08-18 Sharp Kabushiki Kaisha Epitaxial wafer for heterojunction type field effect transistor
JP2015512148A (ja) * 2012-02-03 2015-04-23 トランスフォーム インコーポレーテッド 異種基板を有するiii族窒化物デバイスに適するバッファ層構造
US9685323B2 (en) 2012-02-03 2017-06-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
JP2014003056A (ja) * 2012-06-15 2014-01-09 Nagoya Institute Of Technology 半導体積層構造およびこれを用いた半導体素子
JP2014022685A (ja) * 2012-07-23 2014-02-03 Nagoya Institute Of Technology 半導体積層構造およびこれを用いた半導体素子
JP2013084913A (ja) * 2012-08-15 2013-05-09 Toshiba Corp 窒化物半導体ウェーハ、窒化物半導体装置及び窒化物半導体結晶の成長方法
US9053931B2 (en) 2012-09-05 2015-06-09 Kabushiki Kaisha Toshiba Nitride semiconductor wafer, nitride semiconductor device, and method for manufacturing nitride semiconductor wafer
JP5362085B1 (ja) * 2012-09-05 2013-12-11 株式会社東芝 窒化物半導体ウェーハ、窒化物半導体素子及び窒化物半導体ウェーハの製造方法
KR101528428B1 (ko) * 2012-09-05 2015-06-11 가부시끼가이샤 도시바 반도체 발광 디바이스, 및 반도체 발광 디바이스의 제조 방법
JP2014072429A (ja) * 2012-09-28 2014-04-21 Fujitsu Ltd 半導体装置
JP2014222730A (ja) * 2013-05-14 2014-11-27 シャープ株式会社 窒化物半導体エピタキシャルウェハ
WO2015005157A1 (ja) * 2013-07-09 2015-01-15 シャープ株式会社 窒化物半導体および電界効果トランジスタ
JP2014053607A (ja) * 2013-09-02 2014-03-20 Toshiba Corp 半導体発光素子及び半導体発光素子の製造方法
US9660133B2 (en) 2013-09-23 2017-05-23 Sensor Electronic Technology, Inc. Group III nitride heterostructure for optoelectronic device
USRE48943E1 (en) 2013-09-23 2022-02-22 Sensor Electronic Technology, Inc. Group III nitride heterostructure for optoelectronic device
US10535793B2 (en) 2013-09-23 2020-01-14 Sensor Electronic Technology, Inc. Group III nitride heterostructure for optoelectronic device
JP2015185809A (ja) * 2014-03-26 2015-10-22 住友電気工業株式会社 半導体基板の製造方法及び半導体装置
JPWO2015152411A1 (ja) * 2014-04-04 2017-04-13 古河電気工業株式会社 窒化物半導体装置およびその製造方法、ならびにダイオードおよび電界効果トランジスタ
WO2016039178A1 (ja) * 2014-09-10 2016-03-17 シャープ株式会社 窒化物半導体積層構造及びそれを用いた電子デバイス
JP2016074549A (ja) * 2014-10-03 2016-05-12 古河機械金属株式会社 自立基板、及び、自立基板の製造方法
JP2016149410A (ja) * 2015-02-10 2016-08-18 Dowaエレクトロニクス株式会社 電子デバイス用エピタキシャル基板および高電子移動度トランジスタならびにそれらの製造方法
JP2018067712A (ja) * 2017-10-19 2018-04-26 国立大学法人 名古屋工業大学 半導体積層構造およびこれを用いた半導体素子
KR20200066141A (ko) * 2018-11-30 2020-06-09 한국산업기술대학교산학협력단 질화알루미늄 기반 트랜지스터의 제조 방법
WO2020111789A3 (ko) * 2018-11-30 2020-07-16 한국산업기술대학교산학협력단 질화알루미늄 기반 트랜지스터의 제조 방법
KR102211209B1 (ko) * 2018-11-30 2021-02-03 한국산업기술대학교산학협력단 질화알루미늄 기반 트랜지스터의 제조 방법
US11978629B2 (en) 2018-11-30 2024-05-07 Korea Polytechnic University Industry Academic Cooperation Foundation Method for manufacturing aluminum nitride-based transistor
US11955520B2 (en) 2020-12-11 2024-04-09 Kabushiki Kaisha Toshiba Nitride semiconductor with multiple nitride regions of different impurity concentrations, wafer, semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP4592742B2 (ja) 2010-12-08
WO2009084431A1 (ja) 2009-07-09
US8344356B2 (en) 2013-01-01
US20110001127A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP4592742B2 (ja) 半導体材料、半導体材料の製造方法及び半導体素子
JP5665676B2 (ja) Iii族窒化物エピタキシャル基板およびその製造方法
JP5631034B2 (ja) 窒化物半導体エピタキシャル基板
TWI655790B (zh) 包含在緩衝層堆疊上的三五族主動半導體層的半導體結構以及用於產生半導體結構的方法
JP4670055B2 (ja) 半導体基板及び半導体装置
JP5133927B2 (ja) 化合物半導体基板
JP5334057B2 (ja) Iii族窒化物積層基板
JP2004524250A (ja) 窒化ガリウム材料および方法
JP2006100501A (ja) 半導体素子の形成に使用するための板状基体及びその製造方法
JP2010010678A (ja) 量子ドットデバイスおよびその製造方法
US8946773B2 (en) Multi-layer semiconductor buffer structure, semiconductor device and method of manufacturing the semiconductor device using the multi-layer semiconductor buffer structure
JP6265328B2 (ja) 半導体積層構造およびこれを用いた半導体素子
JPH11145514A (ja) 窒化ガリウム系半導体素子およびその製造方法
KR20110120019A (ko) 반도체 소자
JP2009130010A (ja) 窒化物半導体装置の製造方法
JP5159858B2 (ja) 窒化ガリウム系化合物半導体基板とその製造方法
JP6512669B2 (ja) 半導体積層構造およびこれを用いた半導体素子
JP2006310403A (ja) エピタキシャル基板およびそれを用いた半導体装置並びにその製造方法
JP6138974B2 (ja) 半導体基板
JP2014022685A (ja) 半導体積層構造およびこれを用いた半導体素子
JP5824814B2 (ja) 半導体ウエーハ及び半導体素子及びその製造方法
JP6226627B2 (ja) Iii族窒化物半導体エピタキシャル基板およびその製造方法
EP2525417A2 (en) Nitride semiconductor device, nitride semiconductor wafer and method for manufacturing nitride semiconductor layer
Mino et al. Characteristics of epitaxial lateral overgrowth AlN templates on (111) Si substrates for AlGaN deep‐UV LEDs fabricated on different direction stripe patterns
JP2014003056A (ja) 半導体積層構造およびこれを用いた半導体素子

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100412

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100412

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4592742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250