CN104733511A - 一种在硅衬底上生长的氮化镓外延结构 - Google Patents

一种在硅衬底上生长的氮化镓外延结构 Download PDF

Info

Publication number
CN104733511A
CN104733511A CN201410057090.8A CN201410057090A CN104733511A CN 104733511 A CN104733511 A CN 104733511A CN 201410057090 A CN201410057090 A CN 201410057090A CN 104733511 A CN104733511 A CN 104733511A
Authority
CN
China
Prior art keywords
gallium nitride
layer
silicon substrate
gan
epitaxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410057090.8A
Other languages
English (en)
Inventor
陈振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGXI CHANGDA OPTOELECTRONICS TECHNOLOGY Co Ltd
Original Assignee
JIANGXI CHANGDA OPTOELECTRONICS TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGXI CHANGDA OPTOELECTRONICS TECHNOLOGY Co Ltd filed Critical JIANGXI CHANGDA OPTOELECTRONICS TECHNOLOGY Co Ltd
Priority to CN201410057090.8A priority Critical patent/CN104733511A/zh
Publication of CN104733511A publication Critical patent/CN104733511A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

一种在硅衬底上生长的氮化镓外延结构,包括硅衬底,该硅衬底上从下至上依次生长有AlN成核层,渐变AlXGa1-XN缓冲层,周期性GaN/AlGaN超晶格插入层,氮化镓层。本发明提供的这种氮化镓外延结构能够有效的阻止Si原子从衬底层扩散到GaN层中,减少了氮化镓外延层中的位错等缺陷密度,提高了半绝缘GaN的晶体质量和表面形貌,优化了生长工艺,降低了生长成本,提高了产品的良率。此外,该半绝缘氮化镓基高电子迁移率晶体管(HEMTs)具有更高的电子迁移速率、高功率密度等优点。

Description

一种在硅衬底上生长的氮化镓外延结构
技术领域
本发明涉及半导体技术领域,尤其涉及一种在硅衬底上生长的氮化镓外延结构。
背景技术
GaN具有较大的直接禁带宽度(3.4ev)、高热导率、高电子饱和漂移速度等特点,因此已经成为目前半导体技术领域的研究热点。特别地,氮化镓基高电子迁移率场效应晶体管(HEMT)是一种基于氮化物异质结构的新型电子器件。该器件具有高频、大功率的优异特性,广泛应用于无线通信基站、电力电子器件等信息收发、能量转换等领域。
由于AlGaN/GaN异质结构击穿电压大,因极化可产生高浓度二维电子气(2DEG),并具有很高的电子迁移率,因此在微波功率器件应用方面引起了广泛关注。如有时氮化镓晶体管的基板和有源器件之间的隔离电压超过300V,此时一高阻GaN层作为隔离层,这样使得氮化镓晶体管与底层绝缘,这种方法能以单片方式制造出任何结构的多个晶体管器件,并且本身就具有高效通用的散热机制,在器件和散热器之间不需要绝缘层,同时也减少漏电流,提高了AlGaN/GaN HEMT器件的功率密度及其高温、高频性能。因此在器件材料结构中外延生长高阻GaN层是十分必要的。
 
目前主要采用异质外延生长的办法在蓝宝石、SiC等衬底材料生长GaN外延层及器件。但是这两种衬底价格昂贵,而且这两种衬底的尺寸都比较小,增加了器件的制作成本。此外,蓝宝石衬底还有硬度极高,导电差,导热差等特点,对器件的制作和性能不利。Si作为目前最成熟的半导体材料,具有价格便宜,尺寸大,晶体质量高,导热能力好等优点,用Si作为外延层的衬底可大大降低器件的制作成本,提高经济效益。
但是,在Si衬底上生长一高阻厚膜GaN层的一个主要问题是在生长的过程中,特别是刚开始生长过程中,衬底上的Si原子会扩散到GaN层中,增加了Si施主的浓度,降低GaN的绝缘性,同时回炉时Ga原子会扩散到Si衬底上形成合金,并且Si原子会与N原子形成SixNy非晶薄膜,SixNy会阻止GaN在Si衬底表面的沉积,降低GaN的质量和表面形貌。
在硅衬底上生长高质量的GaN厚膜,超晶格结构因为能够消除应力和阻挡穿透位错被看作是有效的生长结构。目前主要采用而AlN/GaN超晶格层缓冲层的方法也有存在的问题,由于直接在Si衬底上生长超晶格比较困难,这样超晶格缓冲层的作用也比较微弱,也不能在很大程度上阻止Si原子以及Ga原子的扩散。
发明内容
本发明的目是提供一种在硅衬底上生长的氮化镓外延结构,该结构能有效的消除应力和阻挡穿透位错,阻止Si原子扩散到GaN层,并减少GaN层裂纹的形成。
本发明采用以下技术方案予以实现:一种在硅衬底上生长的氮化镓外延结构,从下到上依次包括硅衬底层,氮化铝成核层,渐变AlXGa1-XN缓冲层,周期性GaN/AlGaN超晶格插入层,氮化镓层。
优选地,所述硅衬底为硅(111)衬底。
优选地,所述AlN成核层的生长温度为1020-1060℃,厚度为95-350nm优选地,所述渐变AlXGa1-XN缓冲层中Al摩尔含量从下至上由0渐变到X,X为0.08-0.4。
优选地,所述缓冲层AlXGa1-XN的厚度为200-1000nm。
优选地,所述周期性GaN/AlGaN超晶格插入层的生长温度为1000-1300℃,生长周期为5-100,每周期生长GaN的厚度为1-20nm,AlGaN的厚度为1-20nm。
优选地,所述氮化镓层的厚度为0.5-3μm。
本发明的有益效果:本发明提供的这种氮化镓外延结构能够有效的阻止Si原子从衬底层扩散到GaN层中,减少了氮化镓外延层中的位错等缺陷密度,提高了半绝缘GaN的晶体质量和表面形貌,优化了生长工艺,降低了生长成本,提高了产品的良率。此外,该半绝缘氮化镓基高电子迁移率晶体管(HEMTs)具有更高的电子迁移速率、高功率密度等优点。
附图说明  
图1为本发明所述的在硅衬底上生长的氮化镓外延结构示意图。
具体实施方式
下面结合附图和具体的实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均在本申请所附权利要求所限定的范围。
实施例1
如图1所示,一种在硅衬底上生长的氮化镓外延结构,它是在硅衬底101上通过MOCVD技术依次生长Al金属层102、AlN成核层103、渐变AlXGa1-XN缓冲层104、GaN/AlGaN超晶格插入层105、氮化镓层106,具体如下:选择硅(111)衬底101,利用MOCVD技术生长;将硅衬底101在1060℃的H2环境中表面处理5分钟;温度保持不变,在硅衬底101衬底上生长一铝金属层102;在铝金属层102表面生长一厚度为0.3um 的AlN成核层103;在AlN成核层103上生长一厚度为0.2um且组分渐变的AlXGa1-XN缓冲层104,Al组分X从下到上由0渐变到0.09;在AlXGa1-XN缓冲层104上生长一层周期性GaN/AlGaN超晶格插入层105,生长厚度分别为3nm/6nm,生长周期为30;在周期性GaN/AlGaN超晶格插入层105上生长一厚度为1.2um的氮化镓层106;关闭气体并降至室温。
实施例2
一种在硅衬底上生长的氮化镓外延结构,它是在硅衬底上通过MOCVD技术依次生长Al金属层、AlN成核层、渐变的AlxGa1-XN缓冲层、周期性GaN/AlGaN超晶格插入层、氮化镓层,具体如下:选择硅(111)衬底,利用MOCVD技术生长;将硅衬底101在1020℃的H2环境中表面处理5分钟;温度保持不变,在硅衬底衬底上生长一铝金属层;在铝金属层表面生长一厚度为0.15um 的AlN成核层;在AlN成核层上生长一厚度为0.3um且组分渐变的AlXGa1-XN缓冲层,Al组分X从下到上由0渐变到0.25;在AlXGa1-XN缓冲层上生长一层周期性GaN/AlGaN超晶格插入层,生长厚度分别为8nm/12nm,生长周期为20;在周期性GaN/AlGaN超晶格插入层上生长一厚度为1.3um的氮化镓层;关闭气体并降至室温。

Claims (7)

1.一种在硅衬底上生长的氮化镓外延结构,其特征在于:从下到上依次包括硅衬底层,氮化铝成核层,渐变AlXGa1-XN缓冲层,周期性GaN/AlGaN超晶格插入层,氮化镓层。
2.根据权利要求1所述一种在硅衬底上生长的氮化镓外延结构,其特征在于:所述硅衬底为硅(111)衬底。
3.根据权利要求1所述一种在硅衬底上生长的氮化镓外延结构,其特征在于:所述AlN成核层的生长温度为1020-1060℃,厚度为95-350nm。
4.根据权利要求1所述一种在硅衬底上生长的氮化镓外延结构,其特征在于:所述渐变AlXGa1-XN缓冲层中Al摩尔含量从下至上由0渐变到X,X为0.08-0.4。
5.根据权利要求1或4所述一种在硅衬底上生长的氮化镓外延结构,其特征在于:所述缓冲层AlXGa1-XN的厚度为200-1000nm。
6.根据权利要求1所述一种在硅衬底上生长的氮化镓外延结构,其特征在于:所述周期性GaN/AlGaN超晶格的生长温度为1000-1300℃,生长周期为5-100,每周期生长GaN的厚度为1-20nm,AlGaN的厚度为1-20nm。
7.根据权利要求1所述一种在硅衬底上生长的氮化镓外延结构,其特征在于:所述氮化镓外延层的厚度为0.5-3μm。
CN201410057090.8A 2013-12-21 2014-02-20 一种在硅衬底上生长的氮化镓外延结构 Pending CN104733511A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410057090.8A CN104733511A (zh) 2013-12-21 2014-02-20 一种在硅衬底上生长的氮化镓外延结构

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201310709403 2013-12-21
CN2013107094039 2013-12-21
CN201410057090.8A CN104733511A (zh) 2013-12-21 2014-02-20 一种在硅衬底上生长的氮化镓外延结构

Publications (1)

Publication Number Publication Date
CN104733511A true CN104733511A (zh) 2015-06-24

Family

ID=53457227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410057090.8A Pending CN104733511A (zh) 2013-12-21 2014-02-20 一种在硅衬底上生长的氮化镓外延结构

Country Status (1)

Country Link
CN (1) CN104733511A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981415A (zh) * 2017-04-19 2017-07-25 华南理工大学 GaN高电子迁移率晶体管的氮化镓薄膜及其纳米外延过生长方法
CN107068750A (zh) * 2016-12-31 2017-08-18 华南理工大学 一种基于Si衬底的GaN基高压HEMT器件外延结构及其制造方法
CN112670164A (zh) * 2020-12-24 2021-04-16 南京百识电子科技有限公司 一种氮化镓外延底层超晶格的生长方法
CN112930605A (zh) * 2018-09-07 2021-06-08 苏州晶湛半导体有限公司 半导体结构及其制备方法
CN113725331A (zh) * 2021-08-11 2021-11-30 广州市众拓光电科技有限公司 一种硅基led外延结构及其生长方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244100A1 (en) * 2009-03-26 2010-09-30 Covalent Materials Corporation Compound semiconductor substrate
US20110001127A1 (en) * 2007-12-27 2011-01-06 Dowa Electronics Materials Co., Ltd. Semiconductor material, method of making the same, and semiconductor device
CN102969341A (zh) * 2012-11-09 2013-03-13 中国电子科技集团公司第五十五研究所 组分渐变AlyGa1-yN缓冲层的氮化物高电子迁移率晶体管外延结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110001127A1 (en) * 2007-12-27 2011-01-06 Dowa Electronics Materials Co., Ltd. Semiconductor material, method of making the same, and semiconductor device
US20100244100A1 (en) * 2009-03-26 2010-09-30 Covalent Materials Corporation Compound semiconductor substrate
CN102969341A (zh) * 2012-11-09 2013-03-13 中国电子科技集团公司第五十五研究所 组分渐变AlyGa1-yN缓冲层的氮化物高电子迁移率晶体管外延结构

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107068750A (zh) * 2016-12-31 2017-08-18 华南理工大学 一种基于Si衬底的GaN基高压HEMT器件外延结构及其制造方法
CN107068750B (zh) * 2016-12-31 2024-04-19 华南理工大学 一种基于Si衬底的GaN基高压HEMT器件外延结构及其制造方法
CN106981415A (zh) * 2017-04-19 2017-07-25 华南理工大学 GaN高电子迁移率晶体管的氮化镓薄膜及其纳米外延过生长方法
CN112930605A (zh) * 2018-09-07 2021-06-08 苏州晶湛半导体有限公司 半导体结构及其制备方法
CN112670164A (zh) * 2020-12-24 2021-04-16 南京百识电子科技有限公司 一种氮化镓外延底层超晶格的生长方法
CN112670164B (zh) * 2020-12-24 2023-01-24 南京百识电子科技有限公司 一种氮化镓外延底层超晶格的生长方法
CN113725331A (zh) * 2021-08-11 2021-11-30 广州市众拓光电科技有限公司 一种硅基led外延结构及其生长方法
CN113725331B (zh) * 2021-08-11 2024-04-26 广州市众拓光电科技有限公司 一种硅基led外延结构及其生长方法

Similar Documents

Publication Publication Date Title
JP3836697B2 (ja) 半導体素子
EP2538434B1 (en) Epitaxial substrate and method for producing same
CN102646700B (zh) 复合缓冲层的氮化物高电子迁移率晶体管外延结构
JP2005167275A (ja) 半導体素子
CN104576714B (zh) 一种硅上高迁移率GaN基异质结构及其制备方法
EP1875515A1 (en) Binary group iii-nitride based high electron mobility transistors and methods of fabricating same
CN104733511A (zh) 一种在硅衬底上生长的氮化镓外延结构
CN102969341A (zh) 组分渐变AlyGa1-yN缓冲层的氮化物高电子迁移率晶体管外延结构
CN103594509A (zh) 一种氮化镓高电子迁移率晶体管及其制备方法
JP2009231561A (ja) 窒化物半導体結晶薄膜およびその作製方法、半導体装置およびその製造方法
CN102931229B (zh) 一种AlGaN/GaN/InGaN双异质结材料及其生产方法
JP2009049121A (ja) ヘテロ接合型電界効果トランジスタ及びその製造方法
JP2013021330A (ja) 窒化物系半導体素子
JP2015527749A (ja) Inganチャネルのn極のganhemt特性
CN105322009A (zh) 氮化镓基高电子迁移率晶体管外延结构及其制造方法
JP2016139655A (ja) 半導体装置及び半導体装置の製造方法
CN101471245A (zh) Si衬底上横向外延生长氮化镓的方法
Luo et al. Growth and fabrication of AlGaN/GaN HEMT based on Si (1 1 1) substrates by MOCVD
JP7069584B2 (ja) 基板生産物の製造方法
CN104733510A (zh) 一种半绝缘GaN外延结构
JP5223202B2 (ja) 半導体基板及び半導体装置
JP2004289005A (ja) エピタキシャル基板、半導体素子および高電子移動度トランジスタ
JP2017139390A (ja) 半導体装置、電源装置及び増幅器
CN109599437A (zh) 基于InGaN双沟道异质结构的高电子迁移率晶体管及其制备方法
JP5776344B2 (ja) 半導体装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150624