CN105322009A - 氮化镓基高电子迁移率晶体管外延结构及其制造方法 - Google Patents

氮化镓基高电子迁移率晶体管外延结构及其制造方法 Download PDF

Info

Publication number
CN105322009A
CN105322009A CN201510757512.7A CN201510757512A CN105322009A CN 105322009 A CN105322009 A CN 105322009A CN 201510757512 A CN201510757512 A CN 201510757512A CN 105322009 A CN105322009 A CN 105322009A
Authority
CN
China
Prior art keywords
epitaxial structure
layer
high electronic
algan
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510757512.7A
Other languages
English (en)
Inventor
陈振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGXI CHANGDA OPTOELECTRONICS TECHNOLOGY Co Ltd
Original Assignee
JIANGXI CHANGDA OPTOELECTRONICS TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGXI CHANGDA OPTOELECTRONICS TECHNOLOGY Co Ltd filed Critical JIANGXI CHANGDA OPTOELECTRONICS TECHNOLOGY Co Ltd
Priority to CN201510757512.7A priority Critical patent/CN105322009A/zh
Publication of CN105322009A publication Critical patent/CN105322009A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种氮化镓基高电子迁移率晶体管外延结构及其制造方法。该外延结构包括衬底层,在该衬底层上从下至上依次生长有AlN成核层、AlGaN缓冲层、Al掺杂GaN模板层和AlGaN势垒层。本发明通过在制造氮化镓基高电子迁移率晶体管外延结构时,利用Al掺杂形成GaN模板层的方法,能够降低材料的位错密度,改善界面的平整度,提高材料的电子迁移率,减少异质外延AlGaN势垒层表面态密度,进而降低了器件的漏电流,提高了器件的击穿电压且工艺简单易行。

Description

氮化镓基高电子迁移率晶体管外延结构及其制造方法
技术领域
本发明涉及半导体技术领域,尤其涉及一种氮化镓基高电子迁移率晶体管外延结构及其制造方法。
背景技术
GaN具有较大的直接禁带宽度(3.4ev)、高热导率、高电子饱和漂移速度等特点,因此已经成为目前半导体技术领域的研究热点。特别地,氮化镓基高电子迁移率场效应晶体管(HEMT)是一种基于氮化物异质结构的新型电子器件。该器件具有高频、大功率的优异特性,广泛应用于无线通信基站、电力电子器件等信息收发、能量转换等领域。
高电子迁移率晶体管(HEMT)的原理是由于组成异质结构的两种材料的禁带宽度不同,在异质结界面处形成了势垒和势阱,由极化效应或调制掺杂产生的自由电子,积累在非掺杂的氮化镓层靠近界面的三角形势阱中,形成二维电子气,由于势阱中的这些电子与势垒中的电离杂质空间分离,大大降低了库伦散射,从而提高了材料的电子迁移率。研制成器件后,通过调节栅电极偏压可以控制异质结界面处的二维电子气密度,在一定的直流偏压下,可以对高频微波信号进行放大。
现有技术氮化镓基HEMTs器件的外延结构一般如图1所示。其生长过程是:先在Si衬底上依次生长一AlN成核层和AlGaN缓冲层;再在缓冲层上生长一GaN沟道层;随后再生长一AlGaN势垒层。但是由于AlGaN势垒层和GaN沟道层之间存在晶格失配和热失配,使得AlGaN异质外延生长时会产生高密度的位错。AlGaN/GaN异质结中高密度的位错不但增加了缓冲层和栅极的漏电流,而且对二维电子气的密度和迁移速率产生巨大的影响。如失配位错、合金混乱以及界面粗糙等缺陷都对二维电子气有很强的散射作用,进而降低了AlGaN/GaN基高电子迁移率晶体管的射频性能。
发明内容
针对上述现有技术的不足,本发明的一个目的是提供一种结构简单、位错密度小且集成电压高的氮化镓基高电子迁移率晶体管外延结构。
为了实现上述目的,本发明采用以下技术方案:一种氮化镓基高电子迁移率晶体管外延结构,包括SiC或Si衬底层,在该衬底层上从下至上依次形成AlN成核层、AlGaN缓冲层、GaN沟道层、Si掺杂AlGaN势垒层和GaN盖帽层。
优选地,所述Si掺杂AlGaN势垒层中Si掺杂的浓度为1×1017cm-3-2×1019cm-3
为了实现上述氮化镓基高电子迁移率晶体管外延结构,本发明的另一个目的是提供一种氮化镓基高电子迁移率晶体管外延结构的制造方法,该方法包括:一种氮化镓基高电子迁移率晶体管外延结构的制造方法,该方法包括,在SiC或Si衬底上依次生长完AlN成核层、AlGaN缓冲层、GaN沟道层后,再生长Si掺杂AlGaN势垒层,最后生长GaN盖帽层。
优选地,所述Si掺杂AlGaN势垒层中Si掺杂的浓度为1×1017cm-3-2×1019cm-3
本发明的有益效果是:利用Si掺杂形成AlGaN势垒层的方法,能够降低材料的位错密度,改善界面的平整度,提高材料的电子迁移率,减少异质外延AlGaN势垒层表面态密度,进而降低了器件的漏电流,提高了器件的击穿电压且工艺简单易行。
附图说明
图1为现有技术氮化镓基HEMTs器件的外延结构示意图。
图2为本发明所述的一个氮化镓基高电子迁移率晶体管结构示意图。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步的详细说明。
实施例一
本实施例提供一个氮化镓基高电子迁移率晶体管,如图2所示,在SiC或Si衬底210上生长一层AlN成核层220,再生长AlGaN缓冲层230,随后生长GaN沟道层240,然后生长一Si掺杂浓度为1×1017cm-3的AlGaN势垒层250和一掺杂或非掺杂GaN盖帽层260,最后制作器件源、漏欧姆接触电极和栅电极(图2中未标出)。
实施例二
本实施例提供一个氮化镓基高电子迁移率晶体管,在SiC或Si衬底上生长一层AlN成核层,再生长缓冲层,随后生长沟道层,然后生长一Si掺杂浓度为2×1019cm-3的AlGaN势垒层和一掺杂或非掺杂GaN盖帽层,最后制作器件源、漏欧姆接触电极和栅电极。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变换或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (4)

1.一种氮化镓基高电子迁移率晶体管外延结构的制造方法,其特征在于,在SiC或Si衬底上依次生长完AlN成核层、AlGaN缓冲层、GaN沟道层后,再生长Si掺杂AlGaN势垒层,最后生长GaN盖帽层。
2.根据权利要求1所述的一种氮化镓基高电子迁移率晶体管外延结构的制造方法,其特征在于,所述Si掺杂AlGaN势垒层中Si掺杂的浓度为1×1017cm-3-2×1019cm-3
3.一种氮化镓基高电子迁移率晶体管外延结构,其特征在于,所述氮化镓基高电子迁移率晶体管外延结构中包括SiC或Si衬底层,在该衬底层上从下至上依次形成AlN成核层、AlGaN缓冲层、GaN沟道层、AlGaN势垒层和GaN盖帽层,所述AlGaN势垒层为Si掺杂AlGaN势垒层。
4.根据权利要求3所述的一种氮化镓基高电子迁移率晶体管外延结构,其特征在于,所述Si掺杂AlGaN势垒层中Si掺杂的浓度为1×1017cm-3-2×1019cm-3
CN201510757512.7A 2015-11-09 2015-11-09 氮化镓基高电子迁移率晶体管外延结构及其制造方法 Pending CN105322009A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510757512.7A CN105322009A (zh) 2015-11-09 2015-11-09 氮化镓基高电子迁移率晶体管外延结构及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510757512.7A CN105322009A (zh) 2015-11-09 2015-11-09 氮化镓基高电子迁移率晶体管外延结构及其制造方法

Publications (1)

Publication Number Publication Date
CN105322009A true CN105322009A (zh) 2016-02-10

Family

ID=55249026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510757512.7A Pending CN105322009A (zh) 2015-11-09 2015-11-09 氮化镓基高电子迁移率晶体管外延结构及其制造方法

Country Status (1)

Country Link
CN (1) CN105322009A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230621A (zh) * 2016-03-25 2017-10-03 北京大学 氮化镓晶体管的制造方法
CN107946358A (zh) * 2017-11-21 2018-04-20 华南理工大学 一种与Si‑CMOS工艺兼容的AlGaN/GaN异质结HEMT器件及其制作方法
CN108346687A (zh) * 2018-01-03 2018-07-31 东南大学 一种氮化镓基高电子迁移率晶体管
WO2019095923A1 (zh) * 2017-11-14 2019-05-23 厦门市三安集成电路有限公司 一种覆盖纳米柱势垒的GaN晶体管及其制备方法
CN111244163A (zh) * 2019-12-11 2020-06-05 叶顺闵 一种应用有新型氮化铝铟势垒层的高电子迁移率晶体管

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1728349A (zh) * 2004-07-28 2006-02-01 中国科学院半导体研究所 铝镓氮/氮化镓高电子迁移率晶体管的制作方法
CN1787229A (zh) * 2004-12-09 2006-06-14 中国科学院半导体研究所 双异质结构氮化镓基高电子迁移率晶体管结构及制作方法
CN1797787A (zh) * 2004-12-30 2006-07-05 中国科学院半导体研究所 改善氮化镓基高电子迁移率晶体管栅极肖特基性能的结构
CN101136432A (zh) * 2006-09-01 2008-03-05 中国科学院半导体研究所 宽带隙氮化镓基异质结场效应晶体管结构及制作方法
CN201532950U (zh) * 2009-03-02 2010-07-21 杭州电子科技大学 一种氮化镓高电子迁移率晶体管
CN201927612U (zh) * 2010-11-23 2011-08-10 深圳市科瑞半导体有限公司 一种氮化镓高电子迁移率晶体管
CN103594509A (zh) * 2013-11-26 2014-02-19 电子科技大学 一种氮化镓高电子迁移率晶体管及其制备方法
CN105336770A (zh) * 2014-08-06 2016-02-17 江西省昌大光电科技有限公司 氮化镓基高电子迁移率晶体管外延结构及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1728349A (zh) * 2004-07-28 2006-02-01 中国科学院半导体研究所 铝镓氮/氮化镓高电子迁移率晶体管的制作方法
CN1787229A (zh) * 2004-12-09 2006-06-14 中国科学院半导体研究所 双异质结构氮化镓基高电子迁移率晶体管结构及制作方法
CN1797787A (zh) * 2004-12-30 2006-07-05 中国科学院半导体研究所 改善氮化镓基高电子迁移率晶体管栅极肖特基性能的结构
CN101136432A (zh) * 2006-09-01 2008-03-05 中国科学院半导体研究所 宽带隙氮化镓基异质结场效应晶体管结构及制作方法
CN201532950U (zh) * 2009-03-02 2010-07-21 杭州电子科技大学 一种氮化镓高电子迁移率晶体管
CN201927612U (zh) * 2010-11-23 2011-08-10 深圳市科瑞半导体有限公司 一种氮化镓高电子迁移率晶体管
CN103594509A (zh) * 2013-11-26 2014-02-19 电子科技大学 一种氮化镓高电子迁移率晶体管及其制备方法
CN105336770A (zh) * 2014-08-06 2016-02-17 江西省昌大光电科技有限公司 氮化镓基高电子迁移率晶体管外延结构及其制造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230621A (zh) * 2016-03-25 2017-10-03 北京大学 氮化镓晶体管的制造方法
WO2019095923A1 (zh) * 2017-11-14 2019-05-23 厦门市三安集成电路有限公司 一种覆盖纳米柱势垒的GaN晶体管及其制备方法
CN107946358A (zh) * 2017-11-21 2018-04-20 华南理工大学 一种与Si‑CMOS工艺兼容的AlGaN/GaN异质结HEMT器件及其制作方法
WO2019100793A1 (zh) * 2017-11-21 2019-05-31 华南理工大学 一种与 Si-CMOS 工艺兼容的 AlGaN/GaN 异质结 HEMT 器件及其制作方法
CN108346687A (zh) * 2018-01-03 2018-07-31 东南大学 一种氮化镓基高电子迁移率晶体管
CN108346687B (zh) * 2018-01-03 2021-02-09 东南大学 一种氮化镓基高电子迁移率晶体管
CN111244163A (zh) * 2019-12-11 2020-06-05 叶顺闵 一种应用有新型氮化铝铟势垒层的高电子迁移率晶体管

Similar Documents

Publication Publication Date Title
CN100495724C (zh) 氮化镓基异质结场效应晶体管结构及制作方法
CN105336770A (zh) 氮化镓基高电子迁移率晶体管外延结构及其制造方法
CN105322009A (zh) 氮化镓基高电子迁移率晶体管外延结构及其制造方法
CN104201202B (zh) 一种具有复合势垒层的氮化镓基异质结场效应管
CN102931229B (zh) 一种AlGaN/GaN/InGaN双异质结材料及其生产方法
CN108140563A (zh) 半导体元件用外延基板、半导体元件和半导体元件用外延基板的制造方法
CN102969341A (zh) 组分渐变AlyGa1-yN缓冲层的氮化物高电子迁移率晶体管外延结构
CN102427084B (zh) 氮化镓基高电子迁移率晶体管及制作方法
CN102789982A (zh) 一种增强型AlN/GaN高电子迁移率晶体管及其制作方法
CN102646700A (zh) 复合缓冲层的氮化物高电子迁移率晶体管外延结构
JP2009049121A (ja) ヘテロ接合型電界効果トランジスタ及びその製造方法
CN102931230B (zh) 铝镓氮做高阻层的双异质结氮化镓基hemt及制作方法
CN102569390A (zh) 高击穿氮化镓基场效应晶体管器件及其制作方法
Kikkawa et al. Current status and future prospects of GaN HEMTs for high power and high frequency applications
CN103123934A (zh) 具势垒层的氮化镓基高电子迁移率晶体管结构及制作方法
CN104752162A (zh) 一种半绝缘GaN薄膜及其制备方法
Zhu et al. Effects of rapid thermal annealing on ohmic contact of AlGaN/GaN HEMTs
CN104465403B (zh) 增强型AlGaN/GaN HEMT器件的制备方法
CN102544086B (zh) 氮化镓基高电子迁移率晶体管及其制作方法
CN108352327A (zh) 半导体元件用外延基板、半导体元件和半导体元件用外延基板的制造方法
CN105957881A (zh) 具有背势垒的AlGaN/GaN极化掺杂场效应晶体管及制造方法
CN102842613A (zh) 双异质结构氮化镓基高电子迁移率晶体管结构及制作方法
CN106601790A (zh) 纵向调制掺杂氮化镓基场效应晶体管结构及其制作方法
CN105428395A (zh) 高电子迁移率晶体管及其外延结构、及外延结构制造方法
CN109888009B (zh) 具有AlGaN/GaN异质结的横向晶体管及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160210