CN1867622A - 微孔pvdf膜和制造方法 - Google Patents

微孔pvdf膜和制造方法 Download PDF

Info

Publication number
CN1867622A
CN1867622A CNA2004800299569A CN200480029956A CN1867622A CN 1867622 A CN1867622 A CN 1867622A CN A2004800299569 A CNA2004800299569 A CN A2004800299569A CN 200480029956 A CN200480029956 A CN 200480029956A CN 1867622 A CN1867622 A CN 1867622A
Authority
CN
China
Prior art keywords
molded article
nucleator
multipolymer
poly
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800299569A
Other languages
English (en)
Other versions
CN1867622B (zh
Inventor
萨曼莎·D·史密斯
吉恩·H·希普曼
罗伯特·M·佛洛伊德
H·托德·弗里迈尔
史蒂文·J·哈姆罗克
迈克尔·A·扬德拉希奇
大卫·G·S·沃尔顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN1867622A publication Critical patent/CN1867622A/zh
Application granted granted Critical
Publication of CN1867622B publication Critical patent/CN1867622B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/00091Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching by evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00111Polymer pretreatment in the casting solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • C08J5/2281Heterogeneous membranes fluorine containing heterogeneous membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1079Inducing porosity into non porous precursors membranes, e.g. leaching, pore stretching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1083Starting from polymer melts other than monomer melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/46Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249958Void-containing component is synthetic resin or natural rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249959Void-containing component is wood or paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Cell Separators (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

用热诱导相分离(TIPS)方法,由聚偏二氟乙烯(PVDF)和成核剂制备成形微孔制品。所述的成形微孔制品在至少一个方向以拉伸比至少约1.1-1.0取向。所述成形制品也可包含稀释剂、三乙酸甘油酯。所述成形微孔制品的微孔也可用足量的离子传导电解质填充,使得所述膜用作离子传导膜。制备微孔制品的方法,包括以下步骤:熔融掺混聚偏二氟乙烯、成核剂和三乙酸甘油酯;形成所述混合物的成形制品;冷却所述成形制品使得所述聚偏二氟乙烯结晶和所述聚偏二氟乙烯和三乙酸甘油酯相分离;和在至少一个方向以拉伸比至少约1.1-1.0拉伸所述成形制品。

Description

微孔PVDF膜和制造方法
发明领域
本发明总体涉及微孔膜。特别地,本发明涉及由聚偏二氟乙烯形成的微孔膜和利用三乙酸甘油酯和成核剂制备其的方法。
背景技术
微孔膜具有能使流体和/或气体流过的结构。有效的孔径是流动分子平均自由程的至少几倍,就是说,从几微米下至约100埃。因为微孔膜的表面和内部结构散射可见光,所以微孔膜片通常是不透明的,即使使用原来透明的材料为原料制备。
微孔膜已经用于多种的应用,例如固体的过滤,胶体的超滤,扩散屏障和布基层压板。其它的应用包括:净化抗生素、啤酒、油类和细菌液体培养基;空气、微生物样品、静脉内的流体和疫苗的分析。
微孔膜也用于外科绷带、绷带和其他的流体传送的医药应用。
离子传导性膜(ICMs)也发展自微孔膜。离子传导性膜作为固体电解质在膜电极组件(MEAs)方面得到应用。MEA的一个具体的例子是氢/氧燃料电池。在MEA中,ICM位于阴极和阳极之间,从氢电极附近的催化剂传送质子到氧电极,从而使得从MEA得到电流。在这些应用中,ICMs特别有利,因为他们代替酸性液体电解质,例如用于磷酸燃料电池的,酸性液体电解质是很危险的。
离子传导性的膜也被用于氯碱应用,以分离盐水混合物,并形成氯气和氢氧化钠。薄膜选择性地传送钠离子通过,但拒绝氯化物离子。ICMs也用于扩散渗析领域,例如除去苛性碱溶液的杂质。由于膜传递极性物种的速率快于非极性物种,所以膜也用于蒸气渗透和分离操作。
微孔膜必须具有足够的强度,以用于这些各种应用。增加强度往往要求增加膜厚度,其可以通过例如降低离子传导性膜的离子电导度,影响膜的效用。厚度小(例如小于0.050mm)时内在地不牢固的膜,必须用另外的材料加强,导致最终产品具有增加的厚度。
发明内容
本发明涉及聚偏二氟乙烯的成形微孔制品,其另外包括成核剂。成形微孔制品在至少一个方向上以至少约1.1~1.0的拉伸比取向。成形制品也可能包含与聚偏二氟乙烯可混的化合物,其中聚偏二氟乙烯在聚偏二氟乙烯的熔融温度或以上溶解,一旦冷却到等于或低于结晶温度或聚偏二氟乙烯的相分离温度会发生相分离。
制备微孔制品的方法包括以下步骤:熔融掺混聚偏二氟乙烯、成核剂和三乙酸甘油酯;形成混合物的成形制品;冷却成形制品使聚偏二氟乙烯结晶和聚偏二氟乙烯与三乙酸甘油酯相分离;和以至少约1.1~1.0的拉伸比在至少一个方向拉伸成形制品。
本发明也涉及离子传导性的膜,其中聚偏二氟乙烯和成核剂的成形制品以至少约1.1~1.0的拉伸比在至少一个方向取向,以提供微孔网络。取向成形制品使得泡点孔径大于约0.4微米,和成形制品具有小于约1.5密耳(37.5微米)的厚度,和小于约10sec/50cc的Gurley。成形制品的微孔充满足量的离子传导电离质,以使得膜作为离子传导性膜。
附图说明
图1是能用于实施本发明的方法和生产本发明微孔膜的仪器的透视图。
图2是五层MEA的示意性截面图。
图3是显示膜结构的结点和纤丝特性的显微照片。
图4A和B是膜横截面的显微照片,显示没有和具有成核剂得到的微观结构。随较大球粒变化的球粒尺寸是由没有成核得到的(A),较小的球粒是成核的(B)。
图5A,B和C是分别显示具有不对称结构(见以下的实施例9)的微孔PVDF膜的空气侧面、轮状物侧面和横截面(轮状物侧面向上)的显微照片。
详细说明
本发明提供适合于各种应用的微孔聚偏二氟乙烯(PVDF)膜。本发明应用热引发相分离方法(TIPS),选择适当的稀释剂和成核剂,处理PVDF以生产微孔膜。在从PVDF生产微孔膜中,三乙酸甘油酯成功地用作稀释剂。通过水容易地从微孔膜除掉三乙酸甘油酯,并且是经济上和环境上有利的,因为副产品是无害的可直接排放的。发明另外提供几种用于新型PVDF微孔膜的成核剂。使用热引发相分离方法(TIPS)由聚偏二氟乙烯产生的微孔膜,可以定制为具有一定范围的微孔性能,与其他的传统的膜材料相比,包括改进的强度、耐化学性能和减小的厚度。
通过以下步骤制备具体应用的微孔膜:选择适当的热塑性聚合物;然后给聚合体配以稀释剂和成核剂,以得到希望的性能。如果得到的流延薄膜具有足够的强度,那么取向以在膜中产生希望的微孔特征。
聚偏二氟乙烯(PVDF)固有地耐化学、UV和耐火、低蛋白粘结性和电绝缘的。所以,希望应用这些热塑性聚合物,以开发微孔膜。然而,上述微孔膜的开发大部分集中在其他的热塑性材料上,例如聚丙烯。通常,一类聚合物的稀释剂和成核剂不当然地延伸到其他类聚合物。
被称为热引发相分离的方法,或TIPS,用来生产本发明的微孔PVDF膜。方法通常包括:熔融掺混热塑性聚合物或具有可混化合物的聚合物共混物,可混的化合物即为稀释剂,其中在热塑性材料的熔融温度,稀释剂与热塑性材料是可混的,但是冷却到热塑性材料的相分离温度以下时发生相分离。本发明中,术语″稀释剂″表示包括固体和液体的试剂。PVDF和稀释剂之间的相分离可为或者液体-液体或者液体-固体。在膜或制品相分离之后,在至少一个方向取向,以提供完全互连的微孔网络。另外,可混的化合物(即稀释剂)可在取向之前或之后除去,或可选择地保留在膜中以促进多孔结构的填充。
通常,TIPS方法涉及聚合物和稀释剂,其在高温下形成单一的均相。为加工TIPS膜,稀释剂和聚合物进料到挤压机,其一起加热并且混合稀释剂和聚合物以形成均匀的液体溶液。然后或者在空气冷却溶液,或者优选铸塑成膜状制品并且在与浇铸轮接触下冷却。在固体/液体TIPS结构的冷却过程期间,从溶液中结晶的聚合物导致固态聚合物相和液态稀释剂相的形成。由通过聚合物链连接纤丝结合在一起的球粒组成固相。对于液-液TIPS方法,溶液中分离出的聚合物形成聚合物-贫化材料的第二液相。
相分离之后,膜状制品通常是透明的,并可作为或者浸出稀释剂或者保留稀释剂产品加工成为微孔膜制品。
通过使用挥发性溶剂基本上浸出所有的稀释剂制备浸出稀释剂膜。然后蒸发溶剂留下稀释剂所处的孔,从而制造多孔的膜。然后取向或在至少一个方向拉伸,并优选在网下方(也称纵向的或机器)和横向的(也称横跨网)方向都拉伸,以增加孔体积。通过简单地绕过浸出步骤并取向膜制备保留稀释剂膜。取向之后,稀释剂保留在聚合物的非晶部份和多孔结构的内表面,使得多孔膜触摸时为干燥的。这些方法也避免昂贵的和限制速率的浸出步骤。
具体地说,TIPS方法包括四个步骤:
(1)熔融掺混以形成溶液,基于总溶液含量,溶液包括约10~90重量份数的聚合物组分和约90~10重量份数的稀释剂组分,所述稀释剂组分在聚合物组分的熔融温度之上或整个溶液的液-液相分离温度之上,是与聚合物组分可混的;
(2)使溶液成形;
(3)相分离成形溶液以形成相分离材料,即聚合物,通过或者(i)结晶聚合物以形成聚合物晶畴网络,或者(ii)液-液相分离以形成聚合物-贫相网络的区域;和
(4)制造邻近于材料区域的空气区域以形成多孔制品。
通过控制六个工艺参数改变结构:
(1)淬火速率(冷却聚合物/稀释剂溶液和相分离的的时间),(2)异质成核剂的存在和浓度(对于固/液TIPS有用),(3)聚合物组分与稀释剂组分的重量比,(4)拉伸,(5)稀释剂的浸出和(6)退火。
可通过(1)足够迅速的冷却溶液、(2)使用成核剂(固/液TIPS)或(3)两者相结合进行相分离步骤,以形成希望尺寸的材料区域。在TIPS中,可通过最大化热溶液与淬火表面或介质的紧密接触实现冷却。
通常通过固/液TIPS制备的微孔膜是通过浇铸在具有压花辊上冷却的。可选择地,微孔的TIPS也可浇铸在平滑的轮上;希望的性能决定优选的淬火方法。TIPS方法也记载于,例如美国专利5,976,686。
本发明的制品和方法中使用的PVDF不局限于单一的PVDF聚合物。PVDF通常包括PVDF树脂,均聚物,共聚物和聚合物共混物,其中大多数聚合物是PVDF。
PVDF也包括或指密切相关的PVDF衍生物。适用于本发明的PVDF的例子是得自Solvay Solexis of Thorofare,New Jersey的商品名HYLAR和SOLEF,和得自Ato Fina Chemicals,Inc.of Philadephia,Pennsylvania的商品名KYNAR。单独的树脂列于以下的实施例部分。这些PVDF树脂通常具有约0.3~约0.4的结晶度,但是本发明不这样限制。另外,使用的PVDF树脂可改变性质例如分子量和熔体流动。在230℃,5kg时的熔体流动指数通常为约0.13~约6.0。虽然众所周知长链或低的熔体流动可增加得到制品的强度,本发明限于此。
利用三乙酸甘油酯作为稀释剂,由TIPS方法生产微孔PVD膜。三乙酸甘油酯除在PVDF的TIPS方法中用作稀释剂之外,也具有与其无危害的本质相关的另外的优点。三乙酸甘油酯以前已经用作食品添加剂,因此是无毒的。三乙酸甘油酯可保持在膜中,或者部分或几乎完全地除去。使用水作为溶剂可容易地从PVDF微孔膜除掉三乙酸甘油酯。另外,副产品或流出物是甘油和乙酸,两者都是无毒的和可直接排放的。
不需要或不产生在除去工艺期间必须排放的有机溶剂,具有相当多的经济和环境优势。
基于希望的性质,本发明中PVDF与稀释剂的优选范围为约60∶40到约40∶60。
本发明中用作稀释剂的三乙酸甘油酯得自Eastman KodakCompany of Rochester,New York商品名TRIACETIN。特别优选的PVDF与三乙酸甘油酯范围是约50∶50~40∶60。
本发明的TIPS方法也使用成核剂以控制和改进PVDF膜的性能。成核剂通常提高结晶位的引发并诱导PVDF从液态结晶,从而增加结晶速率。结晶速率的增加通常导致结晶聚合物粒子或球粒的尺寸减小。因此,使用的成核剂应该在聚合物的结晶温度为固体。球粒尺寸成功减小的证据本身不确保成核剂有利于PVDF膜的生产,其中PVDF膜具有足够的强度以经得起取向,发展微孔结构。
根据本发明成核剂的使用基本上促进PVDF的结晶,从而致使更均一的,强度更大的微观结构。成功得自PVDF成核的强度更大更均一的微观结构,具有增加的每单位体积连接纤丝数量,并允许膜更大的拉伸或取向,以比以前可达到的提供较高的孔隙率和更大的拉伸强度。这些性质另外有利于较薄的膜的使用,膜小于2.0密耳(50um)同时具有足够的强度,使得不需要加固。虽然已知用于TIPS方法的成核剂和从其他的聚合物类型生产微孔制品,那些成核剂不容易应用于PVDF微孔膜的生产。
本发明利用称为″瓮型″颜料的一类特别的颜料,以使PVDF成核。这些有机颜料包括蒽醌、二萘嵌苯、黄烷士酮和靛蒽醌。通过给与化合物独特的″色彩指数名称(CI名称)和″色彩指数编号″(CI编号),鉴别各种颜料的色彩指数(CI)。通过或者化学组成或者颜色性能将颜料分组,进而进行颜料的分类。一些颜料是″无分类的″,例如靛蓝(CI69800颜料蓝60)。
二萘嵌苯颜料包括二萘嵌苯四羧酸的二酐和二酰亚胺和该二酰亚胺的衍生物。蒽醌颜料在结构上或合成上来源于蒽醌分子。
发现成功地使PVDF成核的材料包括但不限于:CI 67300瓮黄2,指定为阴丹士林黄GCN,得自TCI America of Portland,Oregon(″TCI″);CI 70600颜料黄24,指定为黄烷士酮也得自TCI;CI69800颜料蓝60,靛蒽醌以商标CHROMOPHTAL Blue A3R得自CibaSpecialty Chemicals Hawthorne,New York;CI 71130颜料红179,二萘嵌苯以商标PERRINDO Maroon R-6438得自Bayer Corporation-Coatingsand Colorants of Pittsburgh,Pennsylvania;和CI 58055:1颜料紫5:1,蒽醌,以商标FANCHON Maroon MV7013.得自BayerCorporation-Coatings and Colorants of Pittsburgh,Pennsylvania。用作成核剂的优选瓮型颜料为颜料蓝60(CI 69800)、颜料红179(CI 71130)、颜料紫5:1(CI 58055:1)、瓮黄2(CI 67300)和颜料黄24(CI 70600)。
另外,聚四氟乙烯(PTFE)的纳米尺寸的粒子也成功地使PVDF成核。与本发明的微孔膜相反,PTFE以前用于生产致密的、无孔的PVDF膜。为成功地使PVDF成核以生产微孔膜,PTFE的纳米尺寸粒子需要在整个PVDF中均匀地分散。因此,不希望PTFE粒子的聚集体。
本发明中分散PTFE用作成核剂的适当的方法的例子如下所述。
一种方法将PTFE的纳米尺寸粒子悬浮于水溶液,例如DYNEONTF-5235得自Dyneon Corp.of Oakdale,Minnesota.
PTFE纳米粒子的分散体系涂覆/铺展到PVDF树脂粒上。然后干燥PVDF粒,在应用于TIPS方法前,使PTFE涂敷在树脂粒上。溶液不局限于水。不与树脂粒或PTFE反应的,和可以挥发或保留在得到的制品中没有影响的任何溶液都可以使用。在TIPS方法期间,如果在树脂的熔融期间具有合适的排气口,可以省略分离的干燥步骤。
另一种方法使用PTFE的纳米尺寸粒子,以Metablen A-3000的形式得自Mitsubishi Rayon Corporation of NewYork,NY。PTFE粒子包在第二聚合物中,其中第二聚合物在熔体共混物(如下所述)中是可混的。一个例子是包埋于聚甲基丙烯酸甲酯(PMMA)的PTFE纳米尺寸粒子。在混合PVDF树脂,稀释剂和PTFE(以Metablen A-3000的形式)时,PMMA有助于PTFE粒子的分散。
在TIPS方法期间,随着PMMA熔融,PTFE的PMMA涂层脱落。PTFE粒子不熔融,接触使PVDF结晶成核。
通常,在TIPS方法期间,在熔融掺混该混合物前,成核剂与稀释剂或者可选择地,树脂预混合。例如,本发明中用作成核剂的颜料可以与三乙酸甘油酯,在旋转剪切搅拌机或Mini-Zeta砂磨机上混合。如上所述PTFE是预混合的,并通过颗粒加料器给料或者通过粉末加料器输送给熔体混合物。
另外,某些常规的添加剂可以与PVDF,或三乙酸甘油酯和/或其熔体混合物掺合。使用的时候,常规添加剂的量应该限于不影响微孔膜的形成,并不导致添加剂不希望的渗出。这种添加剂可包括抗静电的材料,染料,增塑剂,UV吸收剂等。
添加剂的量通常小于聚合物组分重量的10%,优选小于2wt%。
在TIPS方法中,使用PVDF,三乙酸甘油酯和具体的成核剂的微孔PVD膜的制造,进一步如下所述。
首先,制备熔体共混物,其包括PVDF树脂,三乙酸甘油酯和成核剂的混合物。在熔融前各种的组分可以预混合,例如本发明中记载的成核剂。术语熔体共混物指PVDF聚合物,三乙酸甘油酯和成核剂的共混物,其中至少PVDF和三乙酸甘油酯为熔融态,半液态或液态。通过混合约40~60wt%的可结晶的PVDF热塑性聚合物与约60~40wt%的三乙酸甘油酯和另外包括的成核剂制备熔体共混物。成核剂为熔体共混物总重量的约0.1~约1%,优选约0.25~约1%。可选择地,成核剂为聚合物的约0.2~约2.5wt%。加热熔体共混物至少到PVDF的熔融温度。为便于处理熔体共混物并易于其浇铸,在高于PVDF熔融温度的约25℃~约100℃的温度条件下,通过加热混合物引发熔体共混物的形成是适宜的。
通过由包括聚偏二氟乙烯,三乙酸甘油酯和成核剂的熔体共混物浇铸成形制品,例如板或层,制备本发明的微孔膜。微孔膜的性能取决于,但不限于,熔体共混物中聚合物与稀释剂的比,所用成核剂的类型和量,冷却速率和拉伸比与温度。在冷却期间,直到达到熔体共混物中PVDF的结晶温度才停止加热,并可开始PVDF的可控制的结晶与相分离。大于约125℃的在纯可结晶PVDF的平衡熔点以下的冷却温度致使熔体共混物快速淬火。通过取向使材料具有均匀的微孔,但是与在高温淬火的那些相比,洗或浸出稀释剂的条件内在地弱。作为对比,美国专利4,539,256记载超过约225℃的,在纯可结晶PVDF聚合物的平衡熔点以下的冷却温度也使熔体共混物快速淬火,并可导致单相的膜,其虽然强度高和透明的,但基本上不能通过取向得到均匀的微孔。需要高稀释剂水平时,使用小于约74℃的纯可结晶PVDF聚合物的平衡熔点以下的浇铸轮温度,以使PVDF缓慢地相分离(结晶),其没有另外的淬火润滑剂例如三乙酸甘油酯或水,会导致材料附着于提花轮上。因此,不用修改方法就可得到约71℃~131℃的纯的可结晶PVDF的平衡熔点以下的冷却温度,优选的温度为纯的可结晶PVDF的平衡熔点以下的82℃~124℃。
一个方法是在适当温度的淬火槽中冷却浇铸制品。另一种方法是使用浇铸轮,其中轮的温度控制到与淬火槽类似的所需冷却温度范围之内。
任选地除去稀释剂和取向以前,由TIPS方法形成的流延薄膜通常是固体并是透明的。流延薄膜的微观结构可以描述为PVDF的球粒和球粒的聚集体,和三乙酸甘油酯占据粒子之间的空间(见图3和图4A和B)。相邻的PVDF球粒和聚集体是分离的,但是它们具有多个连续区域。PVDF球粒和聚集体通常由三乙酸甘油酯包绕或涂敷,但不能完全地包绕或涂敷。相邻的PVDF球粒和聚集体之间具有接触区域,其中在这种连续区域中,从一个球粒/聚集体到其次相邻的球粒/聚集体具有PVDF的连续区。
取向时,撕开PVDF球粒和聚集体,永久地使连续区域中的聚合物变薄;从而形成纤丝,在涂敷的球粒和聚集体之间形成细微的孔,和制得互连微孔网络。本发明中,″取向″表示超过弹性极限地拉伸以使制品永久变形或拉长,通常长度至少增加约10%,或表示为比值约1.1~1.0。通常拉伸提供约10%~约1000%的拉长。
实际需要得拉伸量依赖于膜的组成和孔隙度(例如孔径大小)得需要。
拉伸可以通过任何适当的装置提供,该装置在至少一个方向可提供拉伸,和在该方向和横向可提供拉伸。拉伸可以连续地或同时在双向进行。例如,可以在机器方向和横向取向膜。拉伸应该均匀,以得到均匀的和可控制的孔。一个方向拉伸通常使膜在横向变窄或″颈缩″,所以例如使膜拉长50%的拉伸,不会使膜的表面面积增加50%。
这种永久的变薄也使得该制品永久地为半透明的。取向时,如果不除去稀释剂,稀释剂仍涂敷或包绕在得到的PVDF粒子的至少部分表面上。通常,根据常规的众所周知的方法通过加热取向膜同时保持在热稳定温度,微孔膜在尺寸上是稳定的。这也称为退火。
成核的膜具有微孔结构,其特征为多个空间(其彼此分离),随机地分散的、形状不均匀的、PVDF的通过纤丝连接的等轴粒子,和粒子内部的成核剂等轴表示沿各个方向具有近似相等的尺寸)。如果不除去稀释剂,PVDF的粒子也涂覆有三乙酸甘油酯。
三乙酸甘油酯稀释剂从该微孔膜除去时,得到PVDF独特的微孔网片和残留的成核剂。
得到的微孔膜可以吸收各种的材料,以提供各种特定功能的任何一种,从而提供独特的制品。膜可以在除去三乙酸甘油酯之后进行吸收,或者可选择地在吸收工艺之前,三乙酸甘油酯可保留在微孔PVD膜中。对于微孔膜的吸收众所周知的几种方法包括:多重浸渍,长浸,真空,水压和蒸气。可以用于本发明的吸收材料的例子包括但不限于:药物,香料,抗静电剂,表面活性剂,杀虫剂和固体颗粒材料。某些材料,可以不用事先除去三乙酸甘油酯稀释剂吸收例如抗静电剂或表面活性剂。
除去稀释剂之前或之后,通过使用各种已知的涂敷或沉积方法的任何一种,在微孔膜上沉积各种组合物的任何一种,可以进一步修饰微孔膜。例如,微孔膜可以通过汽相淀积或溅射方法涂覆金属,或涂覆粘合剂、水或溶剂基涂料组合物或染料。可以通过常规方法涂敷,例如辊式涂布,喷涂,浸渍涂敷或其他的任何涂布技术。
微孔膜可以层压到其他的各种结构的任何一种,例如其他的片材以提供复合结构。层压可通过常规方法完成例如胶合,点焊,或通过不破坏孔或对孔有其他负面影响或引起不希望有的孔隙度或孔的技术完成。
本发明的微孔PVD通常以片或膜的形式,但也考虑和可以形成其他的制品形状。例如,制品可以为片,管,细丝或中空纤维的形式。
如下所述,聚偏二氟乙烯(PVDF)微孔膜用作离子传导膜(ICMs),包括离子交换膜。
然而,PVDF膜不局限于该用途。它们的化学稳定性和相对强度也对各种的过滤器应用有用。通过本发明制备的微孔膜可以被用于各种应用,例如离子传导膜,电化学电池中的分离器,扩散屏障,病毒屏障吸收剂衬里和胶质的超滤作用。另外,PVDF膜具有低的特殊蛋白质结合性,使得可用于生物技术相关的应用。PVDF膜也固有地为阻燃的,不用加入其他的化学成分,在需要该特性的应用中可节省装置成本。
设定PVDF微孔膜的性能,以用作离子传导膜,其与现有技术的离子传导膜相比具有优点。现有技术的单组分膜具有两个主要的问题:强度和稳定性。
膜本身往往很易碎。因此,这种膜必须具有增加的厚度,和/或必须或者设制或否则连接到载体上,以避免戳穿和/或撕破。另外,仅由聚合物电解质制备的常规膜很昂贵和极其易碎。
离子传导膜形成气体屏障,阻断电化学电池结构内部反应物的流动,同时在阳极和位于膜对侧的阴极之间提供离子传导性。离子传导膜可以仅传导阳电荷或负电荷离子的任何一种,即或阳离子交换膜或阴离子交换膜;或仅有一种离子例如质子交换膜。质子交换膜(PEMs)为用于膜电极组件的一种离子传导膜,该膜电极组件可用于生产燃料电池,电解装置和电化学的反应器。本发明集中在用于燃料电池的复合离子传导膜,包括质子交换膜,虽然其直接类似于电解装置和电化学的反应器。
通常附图标记为50的五层MEA的例子如图2所示。电化学氧化燃料和还原氧化剂以产生电流的各种层包括:离子传导膜52,催化剂层54,56,和电极衬里层58,60。基于特别的设计,可在大范围改变电化学电池的组件的形状和尺寸。MEAs可包括:多孔金属膜或沉积在表面上的平面分布的金属微粒或负载于碳的催化剂粉末。图2另外表明反应物的典型的流动。
通过微孔PVD膜的微孔结构和离子导电材料的吸收,制备复合离子传导膜。
用于MEAs时,复合ICMs与单组分膜相比具有优良的性能。可制备更薄和强度更大的复合ICMs,同时用更小的电解质得到等效传导性,和具有更大的尺寸稳定性甚至在浸透水之后。然而,因为所用的膜开始为多孔的,所以得到膜的透气性部分地基于膜填充电解质的程度。
当为质子或其他的离子传导性时,包括微孔PVD膜的离子传导膜关于电子和气体反应剂为不传导的。为防止气体反应剂的通过,为机械稳定性离子传导膜应该具有足够的厚度,并应该有效地不渗透的(无小孔)。传导气体反应剂通过离子传导膜可导致反应物不希望的直接反应。
类似地,传导电子通过质子交换膜可导致不希望的电池短路。PVDF有利地为不传导的。
如果膜没有导致反应物的直接反应或短路,燃料与氧化剂反应释放的能量不能用于产生电流,从而达不到膜电极组件的目的。
在ICM应用中控制微孔膜的孔径大小。有效的孔径大小为流动分子平均自由程的至少几倍,并可以在从约几微米下至约100的范围内改变。在ICMs中,孔径大小需要足够大使得电解质能迁移入膜。例如,孔径大小大于约0.4微米为适当的。最好电解质装满或几乎完全地装满微孔膜的孔。如果膜的孔径大小太小,在电解质引入工艺期间膜事实上作为过滤器,从而导致无功能的或功能很差的ICM。因为膜强度和保持在膜内部的电解质的问题,也控制孔径大小范围的上限。
在本发明的一种实施方式中,合适地用离子传导电解质浸渍PVDF微孔膜,有效地装满膜的内部体积,用作PEM或其他类型的离子传导膜。
离子传导电解质应该为化学稳定的并与用于MEA的催化剂相容,以不使催化剂中毒。离子传导电解质优选聚合物电解质,往往指离聚物。
聚合物电解质可由各种聚合物制备,该聚合物包括,例如聚环氧乙烷,聚(乙烯琥珀酸酯),聚(β-丙内酯)和磺化含氟聚合物例如NAFION可商业得自E.I.DuPont De Nemoursand Company,Wilmington,Delaware。
用于填充微孔膜的电解质溶液的量应该足够得到所需的填充度,但是优选超过理论上充满膜的量。充满之后,吸收在孔或吸附在膜的纤丝上的电解质的量,应该足够充满孔体积的95%~100%。优选,充满超过95%的孔体积。最优选,填充95%~100%的孔体积。电解质可以作为多孔膜纤丝结构的涂层存在,或其可浸透膜充满一些孔全部的横截面。
微孔膜吸收的电解质溶液,更精确地描述为离子传导电解质与约260粒子的分散体,其在浓度通常5~20wt%的溶液中,使用小角度X射线散射(SAXS)测量胶束的回转半径来确定。重要的是微孔膜的孔有足够的尺寸以使得电解质进入膜。如果孔径大小太小,微孔膜反而作为过滤器从溶液除去电解质,同时不能使电解质进入膜的孔。根据电解质的性能确定需要的孔径大小。具有更高分子量和/或大量接支或交联的离子传导电解质通常比低分子量线型分子的离子传导电解质需要更大的孔径大小。
PVDF膜吸收离子传导电解质以前不必需除去三乙酸甘油酯稀释剂。其中没有除去稀释剂的微孔PVD膜被认为是″保留稀释剂″。除去稀释剂的微孔PVD膜,被指为″除去稀释剂″,也可成功地吸收离子传导电解质用作PEM。
除去稀释剂之后微孔PVD膜可变成疏水的。为协助疏水的除去稀释剂膜填充通常水和/或离子本质的电解质溶液,在填充之前处理膜。可以使用的方法包括:预湿法,辐射接枝,电晕处理或其他的化学处理法。例如,除去稀释剂的膜可以用正丙醇和甘油溶液预湿。在将微孔膜放入配制的电解质溶液之前,通过刮板除去过量的正丙醇/甘油。
实施例
下列实施例用于说明根据本发明制备的微孔材料。然而,很清楚下列例子仅有示例性的,不意欲全面包括可以根据本发明制备的许多不同的微孔材料。
材料
PVDF聚合物:
HYLARMP-20基于1,1-二氟乙烷的聚合物,熔融温度166-170℃,熔体流动指数1.57(Solvay Solexis,Thorofare,NJ)
HYLARMP-32基于1,1-二氟乙烷的聚合物,熔融温度166-170℃,熔体流动指数0.13(Solvay Solexis,Thorofare,NJ)
Kynar 1000HD基于1,1-二氟乙烷的聚合物、熔融温度166-170℃,熔体流动指数1.86(Atofina Chemicals Philadelphia,PA)
SOLEF 1010 PVDF聚合物熔融温度170-175℃、熔体流动指数5.33(Solvay Solexis,Thorofare,NJ)
SOLEF 1012 PVDF聚合物,熔融温度170-175℃,熔体流动指数1.3(Solvay Solexis,Thorofare,NJ)
SOLEF 1015 PVDF聚合物,熔融温度170-175℃,熔体流动指数0.14(Solvay Solexis,Thorofare,NJ)
稀释剂:
TRIACETIN三乙酸甘油酯(Eastman Kodak Co.,Rochester,NY)
成核剂:
CI 69800,颜料蓝60,靛蒽醌,CHROMOPHTAL蓝A3R(CibaSpecialty Chemicals,Hawthorne,NY)
CI 71130,颜料红179,二萘嵌苯,PERRINDO MaroonR-6438(BayerCoatings and Colorants Corp.,Pittsburgh,PA)
METABLEN A-3000涂覆聚甲基丙烯酸甲酯的纳米尺寸的PTFE粒子(Mitsubishi Rayon Corp.,NewYork,NY)
DYNEON TF-5235:225nmPTFE粒子的水分散体.(Dyneon Corp.,Oakdale,MN)
离子传导电解质:
NAFION 1000:聚四氟乙烯和全氟磺酰乙氧基乙烯基醚的水解共聚物溶液,同时磺酰基转化为磺酸基。溶液组成:固体21.53%、水21.33%、乙醇22.20%、丙醇33.71%和其他的1.23%。(DuPont ChemicalsCompany,Wilmington,DE)
试验方法
拉伸强度:
根据ASTM D882,使用INSTRON Model 1122拉力试验机,十字头速度25cm/min和抗拉试验的计量长度5cm,测量拉伸断裂强度。
测试样品的宽度为2.5cm。通过用断裂点的负载(力)除以样品的原始横截面积,计算样品断裂点的拉伸强度,以kg-力/cm2计量。通过用断裂点的拉长除以原始的抗拉试验的计量长度并乘以100计算断裂点伸长率。
Gurley孔隙度:
Gurley是测量膜对气流的阻力,表示为按照ASTM D726-58,方法A的记载,在标准大气条件下,给定体积的气体通过标准面积的膜需要的时间。Gurley是对于50立方厘米(cc)的空气,或别的规定体积,在124mm的水压力下,通过6.35cm2(一平方英寸)膜的时间,以秒计量。膜样品夹在圆筒环之间,最上面的含有活塞和规定体积的空气,释放的时候,活塞以其自重施加压力到上部的汽缸中的空气,测量规定体积的空气通过膜花费的时间。对于生产复合离子传导膜,优选Gurley值小于约10sec/50cc的膜。
泡点:
泡点孔径大小是表示根据ASTM-F-316-80,按微米计量的最大有效孔径大小的泡点值。
H泵:
H泵试验在阳极侧的膜电极组件上施加电流致使氢燃料分裂成质子。质子通过该膜并在阴极侧上再结合生成氢-H2。这种氢到氢的分裂和再结合成氢的反应用作识别。H泵测量氢离子在Z轴(垂直于膜)通过膜的阻力。能使用H泵值计算薄膜电阻。
H2穿过:
H2穿过测量氢通过膜的扩散。较高值的H2穿过通常表示H2更大的扩散。与常规的致密离聚物膜相比,复合的PVDF ICMs通常具有更小的氢扩散。在膜组装入MEA之前,H2穿过也用于确定膜中是否具有任何小孔。
0.8V&0.6V的MEA性能:
在0.8V的性能值和在0.6V的性能值用来评价MEA的性能,其通过在70℃获得电压相对于电流的图或MEA的极化曲线进行。这种电池用100%RH(相对湿度)的氢和100%RH的空气驱动。在阳极和阴极上的催化剂负载是0.4mg/cm2。得到的极化曲线涉及通过电池的电流与穿过电池的电势差。
穿透强度:
穿透强度试验测量膜的穿透峰值负荷。具体地说,穿透强度试验用来测量浇铸NAFION膜或复合的PVDF/NAFION膜的穿透峰值负荷。使用的仪器是具有ION测力计的INSTRON Series 5500R。穿透尖是设置在具有0.0030″(0.0076cm)尖头直径的0.090″(0.23cm)心轴上的NAJET Mandrel Mounted Series#_400-Material HSSC(项目0201)柄测量0.040″(0.10cm)。穿透强度测量穿透已知厚度的膜所必需的每平方厘米力。样品尺寸是1.5″(3.8cm)×1.5″(3.8cm)的正方形。十字头速度是2mm/min。
实施例1-7
使用如下所述的方法,用类似于图1所示的装置制备微孔PVD膜。这些膜的性能如下表1所示。表1说明CI 69800颜料蓝60,CI 71130颜料红179和PTFE作为成核剂与没有成核控制的PVDF膜相比的效果。所用的成核剂和量随膜变化,如表1所示,为熔体共混物总重量的百分比。测量各个膜的厚度,示于表1。测量膜在机器方向(MD)和横向(TD)的断裂拉伸强度。
与不能取向到任何明显程度的没有成核控制的膜相比,成核的膜显示优良的断裂强度和拉长。
参考图1,PVDF聚合物粒(SOLEF1012)被引入共旋转双螺杆挤压机的加料斗12,该双螺杆挤压机近似的总压出速度为每小时3.6-4.5千克,螺旋速度为150RPM。对于实施例1-5,粉末形式的成核剂与三乙酸甘油酯稀释剂,在Mini-Zeta砂磨机中预混合,然后与另外的稀释剂用进料装置13,通过挤压机壁中加料斗12和挤压机出口30中间的口11,进料到挤压机10。对于实施例6-7,如前所述,分散体形式的成核剂涂敷到PVDF粒上,然后通过加料斗12进料。根据使用的成核剂的量,稍微改变聚合物与稀释剂的比,但是通常为约0.41∶1.0。挤压机具有八个段,温度分布为段1 204℃,段2 266℃,段3 266℃,段4 221℃,段5 182℃,段6 182℃,段7 182℃和段8 182℃(图1中分别地显示为段16,18,20,22,24,26,和28)。熔融体随后经由双镀铬悬杆狭缝膜口模32泵出,浇铸到铬辊36上,该辊对于实施例2为52℃,对于实施例1和3-7为63℃,然后卷成卷形物。从卷形物上剪下膜样品并被放入15cm×28cm的金属框测量器中。然后该框被放入去离子水的小中间罐中20分钟(有效地从膜除去三乙酸甘油酯稀释剂)然后在环境空气中干燥。然后在132℃的TM Long FilmStretcher(TM Long Co.,Somerville,NJ)上以1.75×1.75双轴拉伸洗过的膜样品。拉伸后膜保持在拉伸器2-5分钟,以完全地使膜退火。
可选择地,层34可输送给液体骤冷浴或气体淬火槽,用水或其他适当的溶剂维持在结晶温度以下的适当的温度。淬火槽38使用水汽或其他适当的溶剂时,淬火槽用于除去三乙酸甘油酯稀释剂。膜然后指向拉伸设备42的机器方向和拉伸设备44的横向方向,然后到卷取辊46绕成卷形物。
表1
  实施例   %成核剂   厚度(μm)   MD抗断应力kg/cm2   MD断裂伸长%   D抗断应力kg/cm2   MD断裂伸长%
  对比例   无   --   --   --   --   --
  1   0.25 P.B.60   54.6   104   19.5   112   18.1
  2   0.5P.B.60   57.1   121   34.8   138   29.2
  3   0.25P.R.179   42.9   129   13.7   126   12.8
  4   0.5P.R.179   49.2   111   12.7   119   12.8
  5   1.0P.R.179   46.7   105   15.2   91   11.7
  6   0.25PTFE   57.5   102   15.7   116   12.9
  7   0.5PTFE   54.6   111   17.2   80   9.0
实施例8-19
如实施例1-7制备实施例10-17和19的微孔PVD膜(即切割样品并被放入15cm×28cm的测量框中,然后被放入去离子水的小中间罐中20分钟)。如以下表2所示,改变PVDF树脂的类型,聚合物与稀释剂的比,铬辊温度(即冷却速率)和拉伸比与温度,以产生一定范围懂得性能。P.B.60以熔体共混物总重量的各种百分比,用作成核剂。实施例8-12和14预洗掉50wt%含量的三乙酸甘油酯,实施例13预洗掉55wt%含量的三乙酸甘油酯和实施例15-19预洗掉58wt%含量的三乙酸甘油酯。铬辊为52℃~82℃。在铬辊之后,实施例8,9和18的淬火的压出物通过维持在环境温度(22℃)的水洗槽,以除去三乙酸甘油酯稀释剂。
实施例10-17和19的洗过的膜样品然后在132℃的TM Long FilmStretcher上双轴拉伸2×2。拉伸后膜保持在132℃的拉伸器2-5分钟,以完全地使膜退火。在长度取向器42和扩幅机44上,实施例8-9双轴拉伸2×2,实施例18双轴拉伸1.7×1.85,如图1所示。
表2
  实施例   %P.B.60成核剂   聚合物   厚度(μm)   铬辊温度(℃)   Gurleysec/50cc   B.P.孔尺寸μm
  8   0.5   SOLEF 1010   46   82   >>600   --
  9*   0.5   SOLEF 1010   61   60   166.0   -
  10   0.5   HYLAR MP-32   41   52   148.9   0.19
  11   0.5   HYLAR MP-32   38   63   155.7   0.26
  12   0.5   HYLAR MP-32   36   52   127.2   0.32
  13   0.5   HYLAR MP-32   43   57   30.7   0.58
  14   0.25   SOLEF 1012   41   52   96.9   0.84
  15   0.5   SOLEF 1012   46   52   7.0   1.01
  16   0.5   SOLEF 1012   48   63   6.0   1.14
  17   0.5   HYLAR MP-32   46   63   7.0   1.28
  18   0.25   SOLEF 1012   23   63   3.5   1.54
  19   0.5   HYLAR MP-32   43   63   4.5   1.66
*实施例9得到不对称的结构,其具有具有相对小孔的薄表层,具有相对大孔的厚芯层。表层相当于压出物浇铸到铬辊的侧面(见图5A,B,和C)。
实施例20-25
除在压出速度每小时9~11.4千克,机筒温度分布为216℃、271℃、221℃、188℃、188℃、188℃、和188℃的40mm共旋转双螺杆挤压机上制造膜之外,如实施例10-17和19制备用作PEMs的微孔PVD膜。所用的螺旋速度为150RPM。熔体共混物包含的PVDF与三乙酸甘油酯稀释剂的比为约45∶55~约40∶60。CI 69800颜料蓝60加入到熔体共混物的浓度为熔体共混物总重量的约0.4%。熔体共混物经由双镀铬悬杆狭缝膜口模泵出到冷却的压花铬辊。在铬辊上刻一系列交叉的压花线(25线/厘米),沿辊表面得到一系列隆起的棱锥结构,高度约140微米。
铬辊温度约35℃~约74℃。
不为除去稀释剂而洗膜。然后如实施例8-9和18使膜取向。
然后用离子传导电解质(NAFION 1000)浸渍PVDF微孔膜,有效地填充膜的内部体积,用作PEM。
用下列方法将等量的NATION 1000离子传导电解质溶液涂到膜的各个侧面,使微孔PVD膜进行吸收。用异丙醇和水的50∶50溶液清洗两个玻璃板。沿第一板的边缘铺微孔PVD膜然后覆盖相邻的第二板。用敷涂器量规,将控制量的离子导电溶液分配到第一板上。微孔膜放回第一板上,小心地放入分配的电解质以避免任何波纹和气泡。电解质溶液扩散通过膜10-30秒。然后控制量的电解质溶液分配到第一板支承的微孔膜上。然后微孔膜在90℃干燥10分钟并在160℃退火10分钟。
得到的离子传导膜(ICM)随后组装入膜电极组件,通过上述记载的试验方法试验。膜本质上是亲水的,这有利于用离聚物溶液涂敷膜。ICMs的孔隙度和电气性质显示在以下的表3和4。
表3
  实施例   浇铸轮温度(℃)   %三乙酸甘油酯稀释剂   Gurley sec/50cc(填充之前)   B.P.孔尺寸μm  厚度(μm)
  20   74   56   35.2   1.06  18
  21   63   56   24.3   1.25  18
  22   63   58   11.1   1.39  15
  23   63   58   11.1   1.39  20
  24   74   56   35.2   1.06  13
  25   63   58   11.1   1.39  31
表4
  实施例   H泵mOhm-cm2   H2穿过(10/0psi)mA/cm2   0.8V的性能A/cm2   0.6V的性能A/cm2
  20   300   1.1   0.12   0.43
  21   270   2.5   0.13   0.46
  22   210   5.1   0.16   0.54
  23   176   2.5   0.16   0.53
  24   320   2.5   0.12   0.43
  25   206   0.95   0.20   0.61
实施例26-30
如实施例8-9制备微孔PVD膜,并在铬辊之后立即用水洗槽洗出膜的三乙酸甘油酯稀释剂。除去该稀释剂之后微孔PVD膜变成疏水的,使得难以用离子传导溶液填充膜孔制备用作PEM的膜。为减少膜的疏水性,用下列的方法,用约65∶35~75∶25的正丙醇和甘油的溶液预湿膜。用异丙醇和水的50∶50溶液清洗两个玻璃板。
一片微孔膜铺到一个清洗过的板。端对端地放置板,然后用敷涂器量规,涂覆正丙醇/甘油溶液到″空白″玻璃板,并将膜小心地放置入溶液。用宽刮程的橡皮辊从膜上刮掉过量的溶液。用该清洗/刮擦敷涂器量规很快地涂覆NATION 1000离聚物溶液到第二板。然后放置入该离聚物溶液预湿膜,确保在膜中避免残留气泡或引起褶皱。
然后使得离聚物溶液扩散通过膜10-30秒。然后用敷涂器量规在膜顶部的涂覆所需厚度的离聚物溶液。然后在90℃干燥膜10分钟并另外在160℃退火10分钟。得到的离子传导膜(ICM)随后组装入膜电极组件,通过上述记载的试验方法试验。ICMs的孔隙度和电气性质显示在以下的表5和6。
表5
  实施例   %P.B.60成核剂   %三乙酸甘油酯稀释剂   Gurleysec/50cc   B.P.孔尺寸μm   厚度(μm)
  26   0.25   58   3.5   1.54   30.5
  27   0.5   58   4.3   1.29   30.5
  28   0.5   58   5.1   1.21   30.5
  29   0.5   58   6.5   0.93   25.4
  30   0.5   58   4.3   1.29   38.1
表6
  实施例   H2泵mOhm-cm2   H2穿过   性能@.8VA/cm2   性能@.6V A/cm2
  26   122   5.07   0.22   0.70
  27   115   1.18   0.24   0.74
  28   141   1.13   0.21   0.67
  29   128   1.18   0.24   0.70
  30   139   1.21   0.21   0.73
实施例20-24的PVDF ICMs也进行穿透试验,以显示它们同由NATION 1000溶液浇铸制备然后干燥的常规ICM相比较而言,改进的强度。制造并测量五种不同的NATION对比膜。通过强度除以厚度标准化膜的穿透强度以在每单位厚度的基础上显示,本发明的膜比常规的ICM强度高。
表7
  实施例   厚度(μm)   穿透强度峰值负载(g)   规格化穿透强度(gms/μm)
  20   17.8   16.9   0.95
  21   17.8   15.9   0.89
  22   15.2   12.9   0.85
  23   20.3   16.7   0.82
  24   12.7   13.1   1.03
  对比例2   30.5   16.9   0.55
  对比例3   30.5   15.9   0.52
  对比例4   26.5   12.9   0.49
  对比例5   31.8   16.7   0.53
  对比例6   26.2   13.2   0.50
即使复合的PVDF质子交换膜的厚度小于致密的膜的厚度,其整体穿透性能也比得上常规的致密聚合物电解质PEMs。本发明的微孔PVD膜成功地进行吸收,以在MEAs中用作PEMs。
虽然参考优选实施方案说明本发明,但本领域技术人员理解在不背离本发明精神和范围的前提下本发明可有形式和细节的变化。

Claims (43)

1.一种成形制品,包括:
a)聚偏二氟乙烯或其共聚物;和
b)足量的成核剂,与没有成核剂的结晶相比,以明显更大数量的结晶位引发聚偏二氟乙烯或其共聚物的结晶,
其中该成形制品是微孔的,并已经在至少一个方向以拉伸比至少约1.1~1.0取向。
2.如权利要求1的成形制品,其中足量的成核剂为聚偏二氟乙烯或其共聚物的约0.2wt%~约2.5wt%。
3.如权利要求2的成形制品,其中成核剂选自颜料蓝60、颜料红179、颜料紫5:1、瓮黄2、颜料黄24和聚四氟乙烯。
4.如权利要求1的成形制品,其中成形制品已经双轴取向。
5.如权利要求1的成形制品,其中所述成形制品具有微孔,并且微孔部分或完全地填充有另外的物质。
6.如权利要求1的成形制品,其中成形制品为管,片、细丝或中空纤维的形式。
7.如权利要求1的成形制品,其中成形制品涂覆有涂覆材料。
8.如权利要求1的成形制品,其中成形制品与至少一种其他材料结合以形成层状结构。
9.如权利要求1的成形制品,其中所述聚偏二氟乙烯或其共聚物是半结晶的,并且熔体流动指数为约0.13~约6.0。
10.一种成形制品,包括:
a)聚偏二氟乙烯或其共聚物;
b)足量的成核剂,与没有成核剂的结晶相比,以具有明显更大数量的结晶位引发聚偏二氟乙烯或其共聚物的结晶,
c)与所述聚偏二氟乙烯或其共聚物可混的稀释剂,并且所述聚偏二氟乙烯或其共聚物,在聚偏二氟乙烯或其共聚物的熔融温度以上溶解在其中,并且在一经冷却到等于或低于所述聚偏二氟乙烯或其共聚物的结晶或相分离温度时发生相分离;
其中该成形制品是微孔的,并已经在至少一个方向以拉伸比至少约1.1~1.0取向。
11.如权利要求10的成形制品,其中足量的成核剂为的聚偏二氟乙烯或其共聚物和所述稀释剂的约0.1wt%~约1.0wt%。
12.如权利要求11的成形制品,其中成核剂选自颜料蓝60、颜料红179、颜料紫5:1、瓮黄2、颜料黄24和聚四氟乙烯。
13.如权利要求10的成形制品,其中所述成形制品具有微孔,并且微孔部分地或完全地填充有另外的物质。
14.如权利要求10的成形制品,其中成形制品为管,片、细丝或中空纤维的形式。
15.如权利要求10的成形制品,其中成形制品已经双轴取向。
16.如权利要求10的成形制品,其中成形制品涂覆有涂覆材料。
17.一种制备微孔制品的方法,包括以下步骤:
a)熔融掺混以形成包括聚偏二氟乙烯聚合物或其共聚物、足够成核剂和三乙酸甘油酯的混合物,所述的成核剂,与没有所述成核剂的结晶相比,以具有明显更大数量的结晶位引发所述聚偏二氟乙烯或其共聚物的结晶;
b)形成所述混合物的成形制品;
c)冷却所述成形制品到所述成核剂引发所述混合物内部结晶位的温度,以使得所述三乙酸甘油酯和所述聚偏二氟乙烯或其共聚物之间发生相分离;和
d)在至少一个方向以拉伸比至少约1.1~1.0拉伸所述成形制品。
18.如权利要求17的方法,其中冷却包括将所述成形制品浸入液体冷却介质。
19.如权利要求17的方法,其中所述冷却包括浇铸所述成形制品到浇铸轮上。
20.如权利要求17的方法,其中所述取向是双轴取向的。
21.如权利要求17的方法,其中所述取向使所述制品的长度增加约10%~约1,000%所述制品的原始长度。
22.如权利要求17的方法,另外包括除去所述三乙酸甘油酯的步骤。
23.如权利要求22的方法,其中所述三乙酸甘油酯是溶剂可溶解的,并通过溶剂浸取除去。
24.如权利要求22的方法,其中通过所述三乙酸甘油酯的挥发除去所述三乙酸甘油酯。
25.如权利要求22的方法,还包括用另外的物质填充所述微孔。
26.如权利要求25的方法,其中所述另外的物质是离子传导电解质。
27.如权利要求25的方法,其中所述离子传导电解质是质子传导电解质。
28.如权利要求17的方法,还包括尺寸稳定制品的步骤,包括通过加热取向制品到热稳定的温度,同时在该热稳定温度下保持该制品。
29.如权利要求17的方法,还包括将所述微孔制品层压到第二制品的步骤。
30.如权利要求17的方法,还包括用另外的物质填充所述微孔制品。
31.如权利要求29的方法,其中所述另外的物质是离子传导电解质。
32.如权利要求31的方法,其中所述离子传导电解质是质子传导电解质。
33.一种离子传导膜包括:
a)一种成形制品,包括:
聚偏二氟乙烯或其共聚物,
足量的成核剂,与没有所述成核剂的结晶相比,以明显更大数量的结晶位引发所述聚偏二氟乙烯或其共聚物的结晶,和
其中所述成形制品已经在至少一个方向以拉伸比至少约1.1~1.0取向,以提供微孔网络,其中所述微孔尺寸大于约0.4微米,所述成形制品的厚度小于约1.5密耳,Gurley小于约10sec/50cc;和
b)所述微孔填充有足量的离子传导电解质,使得所述膜用作离子传导膜。
34.如权利要求33的离子传导膜,其中所述足量的成核剂为约0.2wt%~约2.5wt%的聚偏二氟乙烯或其共聚物。
35.如权利要求34的离子传导膜,其中所述成核剂选自颜料蓝60、颜料红179、颜料紫5:1、瓮黄2、颜料黄24和聚四氟乙烯。
36.如权利要求33的离子传导膜,其中所述聚偏二氟乙烯或其共聚物是半结晶的,并且熔体流动指数为约0.13~约6.0。
37.如权利要求33的离子传导膜,其中所述成形制品是以拉伸比为1.1~1.0双轴取向的。
38.如权利要求33的离子传导膜,其中离子传导电解质的足量是能足以填充所述膜孔体积的至少约95~100%或以上的离子传导电解质的量。
39.一种膜电极组件,包括如权利要求33所述的离子传导膜。
40.一种电化学器件,包括如权利要求39所述的膜电极组件。
41.一种燃料电池,包括如权利要求39所述的膜电极组件。
42.如权利要求1的成形制品,所述制品包括具有不对称结构的膜。
43.如权利要求10的成形制品,所述制品包括具有不对称结构的膜。
CN2004800299569A 2003-09-12 2004-07-06 微孔pvdf膜和制造方法 Expired - Fee Related CN1867622B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/661,908 US7338692B2 (en) 2003-09-12 2003-09-12 Microporous PVDF films
US10/661,908 2003-09-12
PCT/US2004/021609 WO2005035641A1 (en) 2003-09-12 2004-07-06 Microporous pvdf films and method of manufacturing

Publications (2)

Publication Number Publication Date
CN1867622A true CN1867622A (zh) 2006-11-22
CN1867622B CN1867622B (zh) 2011-06-22

Family

ID=34273969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800299569A Expired - Fee Related CN1867622B (zh) 2003-09-12 2004-07-06 微孔pvdf膜和制造方法

Country Status (10)

Country Link
US (3) US7338692B2 (zh)
EP (1) EP1678245B1 (zh)
JP (1) JP4824561B2 (zh)
KR (1) KR20060122829A (zh)
CN (1) CN1867622B (zh)
AT (1) ATE462748T1 (zh)
BR (1) BRPI0414260A (zh)
DE (1) DE602004026337D1 (zh)
MX (1) MXPA06002795A (zh)
WO (1) WO2005035641A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131568A (zh) * 2008-06-30 2011-07-20 3M创新有限公司 形成可再润湿非对称膜的方法
CN102167836A (zh) * 2011-03-01 2011-08-31 宜兴市高拓高分子材料有限公司 一种聚偏氟乙烯薄膜的制备方法
CN101820987B (zh) * 2007-10-11 2013-03-13 3M创新有限公司 具有相对大平均孔径的微孔膜及其制备方法
CN103537203A (zh) * 2013-10-28 2014-01-29 山东招金膜天有限责任公司 一种热致相分离聚偏氟乙烯中空纤维膜及其制备方法
CN103857462A (zh) * 2011-11-16 2014-06-11 Lg电子株式会社 亲水性聚偏氟乙烯系中空纤维分离膜及其制造方法
CN105214509A (zh) * 2015-10-14 2016-01-06 湖北聚孚膜科技有限公司 一种高强度中空纤维过滤膜及其制备方法
CN106661295A (zh) * 2014-07-25 2017-05-10 乐天化学株式会社 聚合物树脂组合物以及基于偏二氟乙烯的聚合物树脂模制产品
CN107706430A (zh) * 2017-09-30 2018-02-16 惠州市杜科新材料有限公司 一种氢能源电池双极石墨板的微孔填充剂
CN107866155A (zh) * 2016-09-26 2018-04-03 天津工业大学 一种采用热致相分离法制备聚合物基MOFs中空纤维超滤膜的方法
CN108943755A (zh) * 2017-05-22 2018-12-07 卡罗来纳·马尔尚特 用于生产双轴取向微孔膜的生产装置

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4427291B2 (ja) * 2003-09-03 2010-03-03 東亞合成株式会社 機能性膜の連続製造方法
US7338692B2 (en) * 2003-09-12 2008-03-04 3M Innovative Properties Company Microporous PVDF films
GB0509422D0 (en) * 2005-05-09 2005-06-15 Mabtech Ab Membranes
JP4969126B2 (ja) * 2005-07-07 2012-07-04 富士フイルム株式会社 固体電解質フィルム及びその製造方法、製造設備並びに電極膜複合体及び燃料電池
JP5044132B2 (ja) * 2005-07-07 2012-10-10 富士フイルム株式会社 固体電解質フィルムの製造方法及び製造設備
PT103318B (pt) * 2005-07-19 2009-01-22 Univ Do Minho Filmes não porosos na fase beta de poli(fluoreto de vinilideno) (pvdf) e método para o seu processamento
CN100404114C (zh) * 2005-09-02 2008-07-23 清华大学 热致相分离工艺制备聚偏氟乙烯平板微孔膜的方法
US20070128425A1 (en) * 2005-12-07 2007-06-07 3M Innovative Properties Company Reinforced ion-conductive membranes
EP1968792B1 (en) * 2005-12-30 2013-12-11 3M Innovative Properties Company Functionalized substrates
WO2007114489A1 (en) * 2006-03-30 2007-10-11 Fujifilm Corporation Solid electrolyte membrane, method and apparatus for producing the same, membrane electrode assembly and fuel cell
ATE445455T1 (de) * 2006-05-09 2009-10-15 Porex Corp Poröse materialzusammensatzungen für membranen und zugehöroge anwendungen
US8323815B2 (en) * 2006-06-16 2012-12-04 Porous Power Technology, LLC Optimized microporous structure of electrochemical cells
US20080107564A1 (en) 2006-07-20 2008-05-08 Shmuel Sternberg Medical fluid access site with antiseptic indicator
JP5118389B2 (ja) * 2007-05-26 2013-01-16 中村製作所株式会社 ワークへの凹所形成方法
US8513322B2 (en) * 2007-05-31 2013-08-20 3M Innovative Properties Company Polymeric beads and methods of making polymeric beads
US9125973B2 (en) 2007-07-20 2015-09-08 Baxter International Inc. Antimicrobial housing and cover for a medical device
USRE47452E1 (en) 2007-07-20 2019-06-25 Baxter International Inc. Antimicrobial housing and cover for a medical device
US20090045544A1 (en) * 2007-08-14 2009-02-19 General Electric Company Method for manufacturing ultra-thin polymeric films
US20090098359A1 (en) * 2007-10-11 2009-04-16 Waller Jr Clinton P Hydrophilic porous substrates
JP5612476B2 (ja) * 2007-11-26 2014-10-22 スリーエム イノベイティブ プロパティズ カンパニー 微多孔性及び抗菌物品の形成方法
CN101932624B (zh) 2007-12-12 2012-09-26 3M创新有限公司 制备一种或多种制品的方法
BRPI0820705A2 (pt) * 2007-12-12 2014-10-07 3M Innovative Properties Co Filme antimicrobiano microestruturado
US20090208832A1 (en) * 2008-02-17 2009-08-20 Porous Power Technologies, Llc Lamination Configurations for Battery Applications Using PVDF Highly Porous Film
US20090223155A1 (en) * 2008-03-05 2009-09-10 Bernard Perry Building Construction Applications for Porous Material
US20090222995A1 (en) * 2008-03-05 2009-09-10 Bernard Perry Bedding Applications for Porous Material
US20090226683A1 (en) * 2008-03-05 2009-09-10 Bernard Perry Porous Material Uses in Furniture
US20090227163A1 (en) * 2008-03-05 2009-09-10 Bernard Perry Protective Apparel with Porous Material Layer
CN101590375B (zh) * 2008-05-27 2013-04-17 北京三聚环保新材料股份有限公司 用于液化气脱除有机硫化物的复合膜及其制备方法
CN101590374B (zh) * 2008-05-27 2012-09-19 广州美能材料科技有限公司 一种聚偏氟乙烯中空纤维膜及其制备方法
CN102105213B (zh) 2008-05-30 2013-12-18 3M创新有限公司 配体官能化基底
WO2009148869A1 (en) 2008-05-30 2009-12-10 3M Innovative Properties Company Method of making ligand functionalized substrates
US20110091717A1 (en) 2008-06-30 2011-04-21 Weiss Douglas E Method for in situ formation of metal nanoclusters within a porous substrate field
WO2010002501A2 (en) * 2008-06-30 2010-01-07 3M Innovative Properties Company Method of forming an asymmetric membrane
JP2011526831A (ja) * 2008-06-30 2011-10-20 スリーエム イノベイティブ プロパティズ カンパニー 親水性膜の形成方法
KR20160105527A (ko) * 2008-07-10 2016-09-06 쓰리엠 이노베이티브 프로퍼티즈 컴파니 점탄성 도광체
KR20110043732A (ko) * 2008-08-08 2011-04-27 쓰리엠 이노베이티브 프로퍼티즈 컴파니 광을 처리하기 위한 점탄성층을 갖는 도광체
EP3255085B1 (en) 2008-09-19 2020-06-10 3M Innovative Properties Co. Ligand graft functionalized substrates
WO2010058590A1 (ja) * 2008-11-19 2010-05-27 独立行政法人理化学研究所 タンパク質の加水分解方法、加水分解装置、及び加水分解産物の分析装置
JP5603349B2 (ja) 2008-12-19 2014-10-08 スリーエム イノベイティブ プロパティズ カンパニー エチレン−クロロトリフルオロエチレンコポリマーからの微小多孔性材料とその製造方法
US20100183907A1 (en) * 2008-12-24 2010-07-22 Porous Power Technologies, Llc Hard Spacers in Microporous Membrane Matrix
US20100178567A1 (en) * 2008-12-24 2010-07-15 Porous Power Technologies, Llc Mat Forming Spacers in Microporous Membrane Matrix
EP2379209B1 (en) 2008-12-31 2017-08-30 3M Innovative Properties Company Method of making porous membranes with multiple zones having different pore sizes
EP2379697A2 (en) 2008-12-31 2011-10-26 3M Innovative Properties Company Sampling devices and methods for concentrating microorganisms
WO2010078404A1 (en) 2008-12-31 2010-07-08 3M Innovative Properties Company Methods, kits and systems for processing samples
WO2010078482A1 (en) 2008-12-31 2010-07-08 3M Innovative Properties Company Live bioload detection using microparticles
US20100210160A1 (en) * 2009-02-18 2010-08-19 3M Innovative Properties Company Hydrophilic porous substrates
US20100209693A1 (en) * 2009-02-18 2010-08-19 3M Innovative Properties Company Hydrophilic porous substrates
US8361611B2 (en) 2009-03-20 2013-01-29 Whiteoptics Llc Diffusively light reflective paint composition, method for making paint composition, and diffusively light reflective articles
WO2010135573A2 (en) 2009-05-20 2010-11-25 Porous Power Technologies, Llc Treatment and adhesive for microporous membranes
EP2446077B1 (en) 2009-06-23 2016-05-18 3M Innovative Properties Company Functionalized nonwoven article
JP5840126B2 (ja) 2009-06-25 2016-01-06 スリーエム イノベイティブ プロパティズ カンパニー 光活性化抗微生物性物品及び使用方法
CN102481385B (zh) 2009-06-30 2016-01-27 3M创新有限公司 光活化抗微生物制品及其使用方法
EP2504082A4 (en) * 2009-11-25 2016-11-09 Univ Sydney MEMBRANE AND MEMBRANE SEPARATION SYSTEM
CN102085457B (zh) * 2009-12-07 2013-01-02 广州美能材料科技有限公司 一种制备复合多层多孔中空纤维膜的方法及其装置和产品
EP2519355B1 (en) 2009-12-30 2017-01-25 3M Innovative Properties Company Live bioload detection using microparticles
US8377672B2 (en) 2010-02-18 2013-02-19 3M Innovative Properties Company Ligand functionalized polymers
KR101786140B1 (ko) 2010-03-03 2017-10-17 쓰리엠 이노베이티브 프로퍼티즈 컴파니 리간드 구아니디닐 기능화된 중합체
US9419300B2 (en) 2010-04-16 2016-08-16 3M Innovative Properties Company Proton conducting materials
KR101275850B1 (ko) * 2010-04-27 2013-06-14 에스케이씨 주식회사 단층 PVdF 필름 및 이의 제조방법
CN103004001B (zh) 2010-05-25 2016-02-17 3M创新有限公司 强化的电解质膜
CN102068922B (zh) * 2010-12-16 2012-12-26 天津膜天膜科技股份有限公司 一种聚偏氟乙烯复合增强型液体分离膜的制备方法
EP2666202B1 (en) * 2011-01-19 2019-06-05 Audi AG Porous nano-fiber mats to reinforce proton conducting membranes for pem applications
US9272246B2 (en) 2011-03-28 2016-03-01 3M Innovative Properties Company Ligand functional substrates
CN102764595A (zh) * 2011-05-03 2012-11-07 吕晓龙 一种聚偏氟乙烯分离膜及其制备方法
US20140246304A1 (en) 2011-10-10 2014-09-04 3M Innovative Properties Company Catalyst electrodes, and methods of making and using the same
CN102500300A (zh) * 2011-11-23 2012-06-20 浙江大学 一种混合相分离制备聚合物多孔微球的方法
CN102512970A (zh) * 2011-12-05 2012-06-27 天津工业大学 一种聚偏氟乙烯共混多孔膜的制备方法及其制品
KR101381080B1 (ko) * 2011-12-14 2014-04-02 김백암 열유도상분리에 의한 지지층과 비용매유도상분리에 의한 친수화 활성층으로 이루어진 복층구조의 친수성 중공사막 및 이의 제조방법
EP2855010B1 (en) 2012-06-05 2017-12-27 3M Innovative Properties Company Graft copolymer functionalized article
WO2014052215A1 (en) 2012-09-27 2014-04-03 3M Innovative Properties Company Ligand grafted substrates
EP2905068A4 (en) * 2012-10-02 2016-08-10 Jnc Corp MICROPOROUS MEMBRANE AND MANUFACTURING METHOD THEREFOR
FR2999590B1 (fr) 2012-12-13 2016-01-22 Arkema France Formulation d'une membrane fluoree poreuse mise en œuvre par un procede d'etirage
KR102205185B1 (ko) 2013-05-29 2021-01-20 쓰리엠 이노베이티브 프로퍼티즈 캄파니 미세다공성 폴리비닐리덴 플루오라이드 막
CN105308021B (zh) 2013-06-17 2018-05-04 3M创新有限公司 用于制备胍基官能化单体的方法
KR20160021203A (ko) 2013-06-18 2016-02-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 친수성 플루오로플라스틱 기재
JP6576335B2 (ja) 2013-10-03 2019-09-18 スリーエム イノベイティブ プロパティズ カンパニー 結合能力が向上したリガンド官能化基材
SG11201700151SA (en) 2014-07-22 2017-02-27 Arkema Inc High toughness hollow fiber membranes based on vinylidene fluoride polymers
TWI669152B (zh) 2014-11-03 2019-08-21 美商3M新設資產公司 微孔性聚偏二氟乙烯平面膜及其製造方法
CN112234315A (zh) * 2014-11-26 2021-01-15 赛尔格有限责任公司 用于锂离子可充电电池的改进的微孔膜隔板及相关方法
JP6504434B2 (ja) * 2015-01-07 2019-04-24 三菱ケミカル株式会社 フッ化ビニリデン系樹脂組成物製フィルム
CN104790206A (zh) * 2015-04-03 2015-07-22 陕西科技大学 一种自粗糙化多孔网状超疏水涤纶织物及其制备方法
EP3303657B1 (en) 2015-05-26 2023-06-28 3M Innovative Properties Company Oxygen evolution catalyst electrodes, and methods of making and using the same
KR101664721B1 (ko) * 2015-07-01 2016-10-12 현대자동차주식회사 막전극접합체의 미세 균열 측정 장치 및 막전극접합체의 미세 균열 예측방법
BR112018008250B1 (pt) 2015-10-23 2022-10-04 3M Innovative Properties Company Sequência de meio filtrante, dispositivo filtrante e método de fabricação de um fluido biológico
CN105536579A (zh) * 2016-01-29 2016-05-04 天津工业大学 一种基于静电纺丝技术的不对称多孔膜的制备方法
US11446613B2 (en) 2016-09-09 2022-09-20 3M Innovative Properties Company Functionalized copolymers and use thereof
JP7138096B2 (ja) 2016-09-09 2022-09-15 スリーエム イノベイティブ プロパティズ カンパニー 生物学的溶液中の単量体タンパク質から凝集タンパク質を分離するための方法
US20190267594A1 (en) * 2016-11-17 2019-08-29 The Hong Kong University Of Science And Technology Nanoporous ultra-high molecular weight polyethylene membrane
GB201703383D0 (en) 2017-03-02 2017-04-19 Gargle Tech Ltd Testing for particulates
CN110049811A (zh) * 2017-03-03 2019-07-23 瓦克化学股份公司 拉伸的硅酮膜
WO2018185617A1 (en) 2017-04-03 2018-10-11 3M Innovative Properties Company Water electrolyzers
CN110475907B (zh) 2017-04-03 2022-08-23 3M创新有限公司 水电解槽
US11414770B2 (en) 2017-04-03 2022-08-16 3M Innovative Properties Company Water electrolyzers
CN111511818B (zh) 2017-12-20 2022-10-25 3M创新有限公司 具有连接的聚合物链的聚合物基底
WO2019123176A1 (en) 2017-12-20 2019-06-27 3M Innovative Properties Company Polymeric substrates with attached thiocarbonylthio-containing groups
CN115430471A (zh) 2018-09-05 2022-12-06 英雄科学有限公司 微粒测试的设备及方法
US11560632B2 (en) 2018-09-27 2023-01-24 3M Innovative Properties Company Membrane, membrane electrode assembly, and water electrolyzer including the same
CN109301133B (zh) * 2018-10-05 2020-09-04 中山大学 一种用于高安全性、高能量密度锂离子电池的隔膜制备方法
JP2022514560A (ja) 2018-12-19 2022-02-14 スリーエム イノベイティブ プロパティズ カンパニー 水電解装置
CN110064309B (zh) * 2019-04-15 2021-06-15 沈阳环境科学研究院 一种mabr用复合膜及制备方法
US20220221627A1 (en) 2019-05-31 2022-07-14 3M Innovative Properties Company Composite cooling film and article including the same
US11906252B2 (en) 2019-05-31 2024-02-20 3M Innovative Properties Company Composite cooling film and article including the same
CN110721598B (zh) * 2019-09-27 2022-03-29 贵州省材料产业技术研究院 一种高通量多孔膜的制备方法
CN110721594A (zh) * 2019-11-03 2020-01-24 江苏美能膜材料科技有限公司 一种亲水性的聚偏氟乙烯复合多孔膜及其制备方法
WO2021105843A1 (en) 2019-11-25 2021-06-03 3M Innovative Properties Company Biotin-containing monomers and articles formed therefrom
EP4085174A1 (en) 2019-12-31 2022-11-09 3M Innovative Properties Co. Multi-surface passive cooling articles
CN110935331A (zh) * 2019-12-31 2020-03-31 北京中环膜材料科技有限公司 利用热致相分离法制备的聚偏氟乙烯超滤膜及制备方法
US20230203221A1 (en) 2020-04-14 2023-06-29 3M Innovative Properties Company Monomers, polymers, and articles for biomaterial capture
US20230213243A1 (en) 2020-05-06 2023-07-06 3M Innovative Properties Company Solar Energy Absorbing and Radiative Cooling Articles and Methods
CN111842072B (zh) * 2020-07-31 2023-01-06 中国人民解放军国防科技大学 疏水型隔热降温膜的应用
CN112072062B (zh) * 2020-09-04 2023-04-11 西北工业大学 一种用于质子电池的多羰基氮杂稠环材料及其电极的制备方法
US20240010674A1 (en) 2020-12-04 2024-01-11 3M Innovative Properties Company A filtration unit and a method for biomaterial purification
WO2022136968A1 (en) 2020-12-23 2022-06-30 3M Innovative Properties Company Method of separating a virus from a composition using copolymer-grafted nonwoven substrates
CA3202405A1 (en) 2021-01-06 2022-07-14 Zvi Feldman Filtration sampling devices
US20220348730A1 (en) * 2021-04-30 2022-11-03 Meta Platforms Technologies, Llc Ultra-high modulus and response pvdf thin films
WO2023089412A1 (en) 2021-11-19 2023-05-25 3M Innovative Properties Company Method for biomaterial purification
WO2023248020A1 (en) 2022-06-23 2023-12-28 3M Innovative Properties Company Block copolymers grafted to porous polymeric substrate
WO2024074906A1 (en) 2022-10-05 2024-04-11 Solventum Intellectual Properties Company Anion exchange separation article, methods of making, and methods of using

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462273A (en) * 1977-10-28 1979-05-19 Kureha Chem Ind Co Ltd Method of making microporous tube of vinylidene fluoride polymer
GB1553050A (en) 1977-01-27 1979-09-19 Kureha Chemical Ind Co Ltd Process for producing microporous tube of a vinylidene fluoride polymer
US4255376A (en) * 1979-06-01 1981-03-10 Celanese Corporation Solvent stretch process for preparing microporous films from precursor films of controlled crystalline structure
US4539256A (en) * 1982-09-09 1985-09-03 Minnesota Mining And Manufacturing Co. Microporous sheet material, method of making and articles made therewith
US4726989A (en) * 1986-12-11 1988-02-23 Minnesota Mining And Manufacturing Microporous materials incorporating a nucleating agent and methods for making same
US5022990A (en) * 1989-01-12 1991-06-11 Asahi Kasei Kogyo Kabushiki Kaisha Polyvinylidene fluoride porous membrane and a method for producing the same
US5013339A (en) * 1989-12-05 1991-05-07 The Dow Chemical Company Compositions useful for making microporous polyvinylidene fluoride membranes, and process
US5489406A (en) * 1990-05-09 1996-02-06 Memtec Limited Method of making polyvinylidene fluoride membrane
US5935370A (en) * 1991-10-18 1999-08-10 #M Innovative Properties Company Minnesota Mining And Manufacturing Co. Method for laminating a viral barrier microporous membrane to a nonwoven web to prevent transmission of viral pathogens
BE1006445A3 (nl) * 1992-12-03 1994-08-30 Dsm Nv Composietmembraan met hoge selectiviteit en flux en werkwijze voor het vervaardigen daarvan.
US5834523A (en) * 1993-09-21 1998-11-10 Ballard Power Systems, Inc. Substituted α,β,β-trifluorostyrene-based composite membranes
US6254978B1 (en) * 1994-11-14 2001-07-03 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US5962544A (en) * 1995-12-07 1999-10-05 3M Microporous materials of ethylene-vinyl alcohol copolymer and methods for making same
JPH09328566A (ja) * 1996-03-01 1997-12-22 Elf Atochem Japan Kk 熱可塑性フッ素系樹脂多孔体、その製造方法、および電池の製造方法
WO1998038029A1 (en) 1997-02-25 1998-09-03 Elf Atochem S.A. A thermoplastic fluororesin porous body, a method for the production thereof and use of said porous body for producing a battery cell
JPH1135765A (ja) * 1997-07-24 1999-02-09 Sharp Corp 高分子固体電解質とその製造方法
US6171723B1 (en) 1997-10-10 2001-01-09 3M Innovative Properties Company Batteries with porous components
US6042959A (en) * 1997-10-10 2000-03-28 3M Innovative Properties Company Membrane electrode assembly and method of its manufacture
US5910378A (en) * 1997-10-10 1999-06-08 Minnesota Mining And Manufacturing Company Membrane electrode assemblies
US5976686A (en) 1997-10-24 1999-11-02 3M Innovative Properties Company Diffuse reflective articles
US6096213A (en) 1998-08-14 2000-08-01 3M Innovative Properties Company Puncture-resistant polyolefin membranes
US6462484B2 (en) 1998-08-31 2002-10-08 Candescent Intellectual Property Services Procedures and apparatus for turning-on and turning-off elements within a field emission display device
JP4269576B2 (ja) * 2002-05-07 2009-05-27 東レ株式会社 微多孔膜の製造方法
US7338692B2 (en) 2003-09-12 2008-03-04 3M Innovative Properties Company Microporous PVDF films

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820987B (zh) * 2007-10-11 2013-03-13 3M创新有限公司 具有相对大平均孔径的微孔膜及其制备方法
CN102131568A (zh) * 2008-06-30 2011-07-20 3M创新有限公司 形成可再润湿非对称膜的方法
CN102131568B (zh) * 2008-06-30 2014-02-12 3M创新有限公司 形成可再润湿非对称膜的方法和可再润湿非对称膜
CN102167836A (zh) * 2011-03-01 2011-08-31 宜兴市高拓高分子材料有限公司 一种聚偏氟乙烯薄膜的制备方法
CN102167836B (zh) * 2011-03-01 2012-11-14 宜兴市高拓高分子材料有限公司 一种聚偏氟乙烯薄膜的制备方法
CN103857462B (zh) * 2011-11-16 2016-08-24 Lg电子株式会社 亲水性聚偏氟乙烯系中空纤维分离膜及其制造方法
CN103857462A (zh) * 2011-11-16 2014-06-11 Lg电子株式会社 亲水性聚偏氟乙烯系中空纤维分离膜及其制造方法
CN103537203B (zh) * 2013-10-28 2016-01-20 山东招金膜天有限责任公司 一种热致相分离聚偏氟乙烯中空纤维膜及其制备方法
CN103537203A (zh) * 2013-10-28 2014-01-29 山东招金膜天有限责任公司 一种热致相分离聚偏氟乙烯中空纤维膜及其制备方法
CN106661295A (zh) * 2014-07-25 2017-05-10 乐天化学株式会社 聚合物树脂组合物以及基于偏二氟乙烯的聚合物树脂模制产品
CN106661295B (zh) * 2014-07-25 2019-04-12 乐天化学株式会社 聚合物树脂组合物以及基于偏二氟乙烯的聚合物树脂模制产品
CN105214509A (zh) * 2015-10-14 2016-01-06 湖北聚孚膜科技有限公司 一种高强度中空纤维过滤膜及其制备方法
CN107866155A (zh) * 2016-09-26 2018-04-03 天津工业大学 一种采用热致相分离法制备聚合物基MOFs中空纤维超滤膜的方法
CN108943755A (zh) * 2017-05-22 2018-12-07 卡罗来纳·马尔尚特 用于生产双轴取向微孔膜的生产装置
CN107706430A (zh) * 2017-09-30 2018-02-16 惠州市杜科新材料有限公司 一种氢能源电池双极石墨板的微孔填充剂
CN107706430B (zh) * 2017-09-30 2019-11-15 惠州市杜科新材料有限公司 一种氢能源电池双极石墨板的微孔填充剂

Also Published As

Publication number Publication date
CN1867622B (zh) 2011-06-22
US8962214B2 (en) 2015-02-24
DE602004026337D1 (de) 2010-05-12
WO2005035641A1 (en) 2005-04-21
EP1678245A1 (en) 2006-07-12
EP1678245B1 (en) 2010-03-31
JP4824561B2 (ja) 2011-11-30
US20050058821A1 (en) 2005-03-17
BRPI0414260A (pt) 2006-11-07
ATE462748T1 (de) 2010-04-15
US8663868B2 (en) 2014-03-04
KR20060122829A (ko) 2006-11-30
US20140134518A1 (en) 2014-05-15
JP2007505185A (ja) 2007-03-08
US7338692B2 (en) 2008-03-04
MXPA06002795A (es) 2006-06-14
US20080113242A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
CN1867622A (zh) 微孔pvdf膜和制造方法
JP5057419B2 (ja) 複合微多孔膜及びその製造方法並びに用途
CN1134288C (zh) 复合膜
CN1286205C (zh) 电解质膜的制造方法以及固体高分子型燃料电池的制造方法
CN1223036C (zh) 用于聚合物电解质燃料电池的电解质膜及其制造方法
CN1080280C (zh) 温度敏感的微孔薄膜
CN1283702C (zh) 多孔质膜及其制造方法
CN1113077C (zh) 聚烯烃微孔膜
CN1217004A (zh) 整体多层离子交换复合膜
CN1142602C (zh) 一种用于二次锂电池的微孔聚合物隔膜及其制备方法
CN102015083A (zh) 具有高温热稳定性多孔层的微孔聚烯烃复合膜
CN1705505A (zh) 亲水微孔膜
CN1308651A (zh) 含有经交联油的微孔材料
CN1213339A (zh) 高度多孔的聚偏二氟乙烯膜
CN102017233A (zh) 具有高温热稳定层的多孔聚烯烃复合膜的制造方法
CN1840575A (zh) 多孔膜制备方法
CN101048434A (zh) 电解质材料、电解质膜及固体高分子型燃料电池用膜电极接合体
CN1527859A (zh) 拉伸膜的改进
CN1142603C (zh) 一种具有高温自封闭机制的微孔聚合物隔膜及其制备方法
CN105209527A (zh) 包含特定聚合物基体和由离子交换粒子组成的填料的离子交换复合材料的制备方法
CN1206754C (zh) 锌/溴二次电池用隔板及其制造方法
CN103030852B (zh) 一种聚合物微孔膜及其制备方法
CN1191646C (zh) 金属/卤素电池用隔板
CN101898091A (zh) 一种质子交换膜及其制备方法
JP2020161343A (ja) 電解質膜及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110622

Termination date: 20200706