CN1542966A - 可同时具有部分空乏晶体管与完全空乏晶体管的芯片及其制作方法 - Google Patents
可同时具有部分空乏晶体管与完全空乏晶体管的芯片及其制作方法 Download PDFInfo
- Publication number
- CN1542966A CN1542966A CNA031565328A CN03156532A CN1542966A CN 1542966 A CN1542966 A CN 1542966A CN A031565328 A CNA031565328 A CN A031565328A CN 03156532 A CN03156532 A CN 03156532A CN 1542966 A CN1542966 A CN 1542966A
- Authority
- CN
- China
- Prior art keywords
- mentioned
- depleted transistor
- transistor
- chip
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 70
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 92
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 92
- 239000010703 silicon Substances 0.000 claims abstract description 92
- 239000004065 semiconductor Substances 0.000 claims description 160
- 238000004519 manufacturing process Methods 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 23
- 238000002955 isolation Methods 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical group [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 18
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 12
- 230000004888 barrier function Effects 0.000 claims description 12
- 239000003989 dielectric material Substances 0.000 claims description 11
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 10
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 10
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 9
- 229920005591 polysilicon Polymers 0.000 claims description 9
- 229910021332 silicide Inorganic materials 0.000 claims description 9
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 9
- 229910052732 germanium Inorganic materials 0.000 claims description 6
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 6
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 6
- WEAMLHXSIBDPGN-UHFFFAOYSA-N (4-hydroxy-3-methylphenyl) thiocyanate Chemical compound CC1=CC(SC#N)=CC=C1O WEAMLHXSIBDPGN-UHFFFAOYSA-N 0.000 claims description 5
- 206010010144 Completed suicide Diseases 0.000 claims description 5
- 229910006249 ZrSi Inorganic materials 0.000 claims description 5
- CEPICIBPGDWCRU-UHFFFAOYSA-N [Si].[Hf] Chemical compound [Si].[Hf] CEPICIBPGDWCRU-UHFFFAOYSA-N 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 229910021355 zirconium silicide Inorganic materials 0.000 claims description 5
- 239000012212 insulator Substances 0.000 abstract description 16
- 230000000694 effects Effects 0.000 description 17
- 238000000059 patterning Methods 0.000 description 13
- 230000005669 field effect Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- KZNMRPQBBZBTSW-UHFFFAOYSA-N [Au]=O Chemical compound [Au]=O KZNMRPQBBZBTSW-UHFFFAOYSA-N 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 10
- 238000005530 etching Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000003870 refractory metal Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000012940 design transfer Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 230000036651 mood Effects 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical group 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/84—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1203—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66787—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
- H01L29/66795—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
- H01L29/7843—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
- H01L29/7853—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection
- H01L29/7854—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection with rounded corners
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明主要提出两种不同型态的完全空乏晶体管,并且将完全空乏晶体管与部分空乏晶体管整合于单一芯片上。可透过调整闸极层的长度,以决定平面晶体管是完全空乏或是部分空乏。完全空乏晶体管的闸极层长度较部分空乏晶体管的闸极层长度为长。或是透过调整晶体管主动区的宽度,以决定晶体管是完全空乏或是部分空乏。完全空乏晶体管的主动区宽度较部分空乏晶体管的主动区宽度为窄。不断地减少主动区的宽度,可以形成一多重闸极晶体管,当该多重闸极晶体管的主动区宽度减少至小于空乏区宽度的两倍时,该多重闸极晶体管便是完全空乏。如此一来,在单一芯片上就可同时制备完全空乏晶体管与部分空乏晶体管。
Description
技术领域
本发明是有关于一种半导体集成电路技术,且特别是有关于一种可同时具有部分空乏晶体管与完全空乏晶体管的芯片及其制作方法。
背景技术
随着半导体集积度的增加,半导体组件的尺寸必须随的缩小。而为了提供更良好的组件性能,绝缘层上覆硅(silicon on insulator;SOI)的半导体基底被提出来,绝缘层上覆硅(semiconductor on insulator;SOI)的集成电路组件是将传统的组件(active devices)设置于一绝缘层上有半导体层的晶圆(silicon on insulator wafer)上,上述晶圆例如为一绝缘层上有硅的晶圆(silicon on insulator wafer)。绝缘层上覆硅(SOI)具有以下优点(1)降低短通道效应(Short Channel Effect)(2)消除闭锁现象(Latch up Effect)(3)降低寄生汲极/源极电容(ParasiticSource/Drain Capacitance)(4)减少软错效应(Soft Error Effect)(5)降低基材漏电流(Substrate Leakage Current)(6)制程简化容易与硅晶制程兼容等等。因此,借由SOI技术可形成具有较佳速度表现、较高积集度以及较低消耗功率的集成电路组件。
绝缘层上覆硅(SOI)又可分为部分空乏绝缘层上覆硅(partially-depleted SOI)与完全空乏绝缘层上覆硅(fully-depletedSOI)两种。部分空乏金氧半导体场效应晶体管(metal-oxide-semiconductor field effect transistors;MOSFET)的通道区厚度大于最大空乏层宽度,而部分空乏金氧半导体场效应晶体管(metal-oxide-semiconductor field effect transistors;MOSFET)的通道区厚度小于最大空乏层宽度。部分空乏金氧半导体场效应晶体管(PDMOSFET)的电荷载子会累积在汲极/源极附近的通道区下方硅层基底内,造成通道区电位改变,而产生浮体效应(floating body effect),进而造成电流的突变(kink),导致组件功能退化。
改善浮体效应的方法的一为将通道区下方的硅层基底外接一电性导体,以搜集冲击离子化(impact ionization)所产生的电流,针对这方面技术已有许多方法被提出来,但仍有许多缺点有待改进。美国专利第4946799号与第6387739号都是揭示有关改善浮体效应的方法。
克服浮体效应的另一种有效方法,便是采用完全空乏金氧半导体场效应晶体管(FD MOSFET)。
美国专利第6222234号提供一种于单一基底上制作完全空乏金氧半导体场效应晶体管(FD MOSFET)与部分空乏金氧半导体场效应晶体管(PDMOSFET)的方法。
美国专利第6414355号与第6448114号都揭示有关于厚度不均匀的绝缘层上覆硅基底的半导体技术。
美国专利第6448114号更是揭示将完全空乏金氧半导体场效应晶体管(FD MOSFET)制作于一厚度较薄的硅层基底,而部分空乏金氧半导体场效应晶体管(PD MOSFET)则制作于一厚度较厚的硅层基底。
然而,完全空乏金氧半导体场效应晶体管的硅层基底厚度较薄或被施以离子掺杂。制作完全空乏金氧半导体场效应晶体管(FD MOSFET)需要选择性磊晶(selective epitaxy),技术尚未发展成熟,不仅良率不佳,并且价格昂贵,急需发展更佳的制造技术。
有鉴于此,为了解决上述问题,本发明主要目的在于提供一种可同时具有部分空乏晶体管与完全空乏晶体管的芯片,可适用于绝缘层上覆硅基底的单一芯片。
发明内容
本发明的目的之一在于提供一种可同时具有部分空乏晶体管与完全空乏晶体管的芯片,具有新的完全空乏晶体管结构,以提供良好的组件功能。
本发明的目的之二在于提供一种可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,可运用习知既有的半导体制程技术,步骤不复杂,容易掌控。
本发明主要提出两种不同型态的完全空乏晶体管,并且将完全空乏晶体管与部分空乏晶体管整合于单一芯片上。
本发明的第一主要特征在于透过调整闸极层的长度,以决定平面晶体管是完全空乏或是部分空乏。完全空乏晶体管的闸极层长度较部分空乏晶体管的闸极层长度为长。如此一来,在单一芯片上就可同时制备完全空乏晶体管与部分空乏晶体管。
为获致上述的目的,本发明提出一种可同时具有部分空乏晶体管与完全空乏晶体管的芯片,主要是包括:
一半导体基底;一完全空乏平面晶体管,具有一长闸极层,且设置于上述半导体基底上;以及一部分空乏平面晶体管,具有一短闸极层,且设置于上述半导体基底上;其中上述长闸极层的长度大于上述短闸极层。
如前所述,上述半导体基底可由一依序堆栈的一第一硅层、一绝缘层与一第二硅层所构成。
如前所述,上述完全空乏平面晶体管下方的上述第二硅层具有浓度大体为1016~1018cm-3的掺杂物,而上述部分空乏平面晶体管下方的上述第二硅层具有浓度大体为1018~2*1019cm-3的掺杂物。
如前所述,上述完全空乏平面晶体管的上述长闸极层的长度大于宽度,而上述部分空乏平面晶体管的上述短闸极层的宽度大于长度。
如前所述,上述第二硅层的厚度大体为10~2000。
如前所述,上述完全空乏平面晶体管的上述长闸极层的长度大体为120~1000nm,而上述部分空乏平面晶体管的上述短闸极层的长度大体为9~100nm。
如前所述,本发明的芯片更包括:一多重闸极晶体管,设置于上述半导体基底上方。上述多重闸极晶体管可以为完全空乏,上述多重闸极晶体管的宽度小于70nm。
本发明的第二主要特征在于透过调整晶体管主动区的宽度,以决定晶体管是完全空乏或是部分空乏。完全空乏晶体管的主动区宽度较部分空乏晶体管的主动区宽度为窄。不断地减少主动区的宽度,可以形成一多重闸极晶体管,当该多重闸极晶体管的主动区宽度减少至小于空乏区宽度的两倍时,该多重闸极晶体管便是完全空乏。如此一来,在单一芯片上就可同时制备完全空乏晶体管与部分空乏晶体管。
为获致上述的目的,本发明提出一种可同时具有部分空乏晶体管与完全空乏晶体管的芯片,主要包括:
一半导体基底;以及一多重闸极晶体管,设置于上述半导体基底上。上述多重闸极晶体管,包括:
一鳍形半导体层,位于上述半导体基底上,其中上述鳍形半导体层具有一源极、一汲极以及位于上述源极和上述汲极之间的一通道区,且上述鳍形半导体层中具有一应变;
一闸极介电层,位于上述鳍形半导体层的上述通道区表面;以及
一闸极电极,位于上述闸极介电层上,并包覆对应于上述通道区的上述鳍形半导体层的两侧壁和一顶面;其中,上述鳍形半导体层的宽度小于空乏区最大宽度的两倍。
如前所述,本发明的芯片包括:一平面晶体管,设置于上述半导体基底上。上述平面晶体管可以为完全空乏,也可以为部分空乏。当上述平面晶体管为完全空乏,则具有一长闸极层,且上述长闸极层的长度大于宽度,上述长闸极层的长度大体为120~1000nm。当上述平面晶体管为部分空乏,则具有一短闸极层,且上述短闸极层的长度小于宽度,上述短闸极层的长度大体为9~100nm。
根据本发明,上述多重闸板晶体管为完全空乏,上述鳍形半导体层的宽度小于70nm。上述鳍形半导体层的厚度大体为20~1000。
如前所述,上述多重闸极晶体管更可包括:一应力膜层,位于上述源极和上述汲极上。上述应力膜层的材质可包括氮化硅。
如前所述,上述鳍形半导体层可具有圆滑化的上部边角(roundedcorner),上述圆滑化的上部边角的半径大体为200。
如前所述,上述鳍形半导体层中的上述应变为沿上述源极至上述汲极方向的拉伸应变。上述鳍形半导体层中的上述拉伸应变量为0.1%至2%。
如前所述,上述闸极介电层的材质例如为氧化硅、氮氧化硅、或相对电容率(relative permittivity)大于5的介电材质。上述相对电容率大于5的介电材质可以为氧化铝(Al2O3)、氧化铪(HfO2)、氮氧化硅铪(HfSiNxOy)、硅化铪(HfSi4)、氧化锆(ZrO2)、硅化锆(ZrSi4)或氧化镧(La2O3)。
如前所述,上述闸极介电层的等效氧化层厚度例如为3~100。上述鳍形半导体层的侧壁的上述闸极介电层的厚度可以不同于顶部的厚度,例如:上述鳍形半导体层的侧壁的上述闸极介电层的厚度小于顶部的厚度,则上述鳍形半导体层的顶部的上述闸极介电层的等效氧化层厚度约小于20。
如前所述,上述闸极电极为一金属、一金属硅化物或一金属氮化物,其材质包括一多晶硅或一多晶锗。
如前所述,上述多重闸极晶体管更包括:一间隔物,设置于上述闸极电极沿上述汲极与上述源极方向的两侧壁上。上述间隔物沿着上述汲极与上述源极的延伸宽度大体为500。
如前所述,上述闸极电极的闸极长度小于65nm。
如前所述,本发明的芯片更包括:一隔离区,包围于上述多重闸极晶体管周围,以提供电性隔离。上述隔离区是可以由一绝缘物所构成,则上述鳍形半导体层表面与上述隔离区表面的高度差大体为200~400。上述隔离区也可以借由一平台式隔离达成电性隔离,则上述鳍形半导体层表面与上述平台式隔离表面的高度差大体为200~400。
合并前述第一主要特征与第二主要特征,本发明又提出一种可同时具有部分空乏晶体管与完全空乏晶体管的芯片,主要包括:
一半导体基底;一平面晶体管,设置于上述半导体基底上;以及一多重闸极晶体管,设置于上述半导体基底上。上述多重闸极晶体管包括:
一鳍形半导体层,位于上述半导体基底上,其中上述鳍形半导体层具有一源极、一汲极以及位于上述源极和上述汲极之间的一通道区,且上述鳍形半导体层中具有一应变;
一闸极介电层,位于上述鳍形半导体层的上述通道区表面;以及
一闸极电极,位于上述闸极介电层上,并包覆对应于上述通道区的上述鳍形半导体层的两侧壁和一顶面。
为获上述目的,本发明更提出一种可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,包括:
首先,提供一半导体基底。然后,形成一平面晶体管于上述半导体基底上方。并且,形成一多重闸极晶体管于上述半导体基底上方,其中上述多重闸极晶体管包括:
一鳍形半导体层,位于上述半导体基底上,其中上述鳍形半导体层具有一源极、一汲极以及位于上述源极和上述汲极之间的一通道区,且上述鳍形半导体层中具有一应变;
一闸极介电层,位于上述鳍形半导体层的上述通道区表面;以及
一闸极电极,位于上述闸极介电层上,并包覆对应于上述通道区的上述鳍形半导体层的两侧壁和一顶面。
附图说明
图1A至图1G是显示本发明的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法的一较佳实施例的制程立体图;
图2A与图2B是显示不同主动区宽度的晶体管的电性分析结果;
图3A与图3B是显示不同主动区宽度与不同通道长度之下,部分空乏晶体管与完全空乏晶体管之间的关系示意图。
符号说明:
108~半导体基底
120~部分空乏平面晶体管
130~完全空乏平面晶体管
140~多重闸极晶体管
122a、122b、122c~闸极层
124a、124b、124c~闸极介电层
126a、126b、126c~间隔物
S/D~汲极/源极
102~第一硅层
104~绝缘层
106~第二硅层
106a~鳍形半导体层
150~应力膜层
STI~隔离区
106b、106c~图案化第二硅层
具体实施方式
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合附图,作详细说明如下:
本发明将一部分空乏绝缘层上覆硅与一完全空乏绝缘层上覆硅晶体管同时整合于一芯片上,并且增大应变效应,以改善超大(ultra-scaled)集成电路的载子迁移率(carrier mobility)与组件功能。
本发明提供两种不同结构的完全空乏晶体管,利用两种手段1.调整信道的长度并且配合调整通道掺杂的浓度,2.调整主动区的宽度,来达成备制部分空乏(PD)晶体管与完全空乏(FD)晶体管于单一芯片上,如此一来,就可以在一厚度薄的硅层上,制备出部分空乏晶体管与完全空乏晶体管。
以下将配合图1A至图1G的立体图,详细说明本发明的可同时具有部分空乏晶体管与完全空乏晶体管的芯片及其制作方法。
请先参照图1F,说明本发明的可同时具有部分空乏晶体管与完全空乏晶体管的芯片结构的一较佳实施例。根据本发明的芯片主要包括:一半导体基底102、设置于半导体基底102上的至少一平面晶体管120、130、设置于半导体基底102上的一多重闸极晶体管140。其中,平面晶体管120、130可以为部分空乏晶体管120,也可以为完全空乏晶体管130。多重闸极晶体管140是为完全空乏晶体管。
部分空乏平面晶体管120如同一般习知平面晶体管,包括:设置于半导体基底102上的一闸极层122b、设置于闸极层122b与半导体基底102之间的一闸极介电层124b、设置于闸极层122b侧壁的一间隔物(spacer)126b以及形成于闸极层122b外侧的半导体基底102表面的汲极与源极S/D。闸极层122b的长度小于宽度。闸极层122b的长度大体为40~60nm。
根据本发明的第一主要技术特征,即延长闸极层122b的长度,可使平面晶体管由部分空乏转变成完全空乏。便获得完全空乏平面晶体管130,包括:设置于半导体基底102上的一闸极层122c、设置于闸极层122c与半导体基底102之间的一闸极介电层124c、设置于闸极层122c侧壁的一间隔物126b以及形成于闸极层122c外侧的半导体基底102表面的汲极与源极S/D。完全空乏平面晶体管130的闸极层120c长度较部分空乏平面晶体管120的闸极层122b长度为长。闸极层120c的长度大于宽度。闸极层120c的长度大体为120~1000nm。值得注意的是,这里所指的闸极层长度,是指与沿着汲极经由信道(channel)至源极的方向相互平行的方向的尺寸,即为图1F中的LL’方向的尺寸,也就是熟知此技艺人士所指的通道长度。
另外,半导体基底102是由一依序堆栈的一第一硅层102、一绝缘层104与一第二硅层106所构成。绝缘层104例如为埋入式氧化硅层,第二硅层106的厚度大体为10~2000。完全空乏平面晶体管130下方的第二硅层106具有浓度大体为1016~1018cm-3的掺杂物,而部分空乏平面晶体管120下方的第二硅层106具有浓度大体为1018~2*1019cm-3的掺杂物。
根据本发明的第二主要特征,缩窄晶体管主动区的宽度,可使平面晶体管由部分空乏转变成完全空乏。便获得完全空乏平面晶体管140,包括:一鳍形半导体层106a、一闸极介电层124a、一闸极电极122a、一汲极与源极S/D以及一间隔物126a。其中,鳍形半导体层106a,位于半导体基底102上,其中鳍形半导体层106a具有一源极/汲极S/D以及位于源极/汲极S/D之间的一通道区。另外,闸极介电层124a,位于鳍形半导体层122a的通道区表面。并且,闸极电极122a,位于闸极介电层124a上,并包覆对应于通道区的鳍形半导体层122a的两侧壁和一顶面。完全空乏多重闸极晶体管140的宽度(也就是其主动区宽度)较部分空乏平面晶体管120的宽度为窄。值得注意的是,这里所指的晶体管宽度,是指与前述闸极层长度同一平面且垂直于闸极层长度方向的空间尺寸,即为第1F图中的WW’方向的尺寸。当多重闸极晶体管140的主动区宽度减少至小于其空乏区最大宽度的两倍时,则多重闸极晶体管140便是完全空乏。
根据本发明的完全空乏多重闸极晶体管140,鳍形半导体层106a的宽度小于70nm。并且,请参照图1G,多重闸极晶体管140更包括:一应力膜层150,位于源极和汲极S/D上,使源极和汲极S/D具有一应变,其中应力膜层150的材质包括氮化硅,此应变可为沿上述源极至上述汲极方向的拉伸应变,拉伸应变量约为0.1%至2%。鳍形半导体层106a具有圆滑化的上部边角(rounded corner),其厚度大体为20~1000,圆滑化的上部边角的半径大约为200。再者,闸极介电层124a的材质例如为氧化硅、氮氧化硅、或相对电容率(relative permittivity)大于5的介电材质,其中相对电容率大于5的介电材质包括氧化铝(Al2O3)、氧化铪(HfO2)、氮氧化硅铪(HfSiNxOy)、硅化铪(HfSi4)、氧化锆(ZrO2)、硅化锆(ZrSi4)或氧化镧(La2O3)。闸极介电层124a的等效氧化层厚度可为3~100。并且,鳍形半导体层106a的侧壁的闸极介电层124a的厚度可以不同于顶部的厚度,鳍形半导体层106a的侧壁的闸极介电层124a的厚度最好小于顶部的厚度,顶部的闸极介电层124a的等效氧化层厚度例如小于20。再者,闸极电极122a可为一金属、一金属硅化物或一金属氮化物,其材质包括一多晶硅或一多晶锗,其长度约小于65nm。另外,多重闸极晶体管140更包括:一间隔物126a,设置于闸极电极140沿汲极与源极S/D方向的两例壁上,其宽度大约为500。
根据本发明的芯片上更包括:材质例如为绝缘物的一隔离区(STI),包围各晶体管120、130、140周围,以提供电性隔离,而隔离区(STI)可以由一绝缘物所构成,本发明的多重闸极晶体管140周围的隔离区(STI)绝缘层厚度可以较其它区域隔离区绝缘物为薄,使得鳍形半导体层106a表面与隔离区(STI)表面的高度差大约为200~400,甚至多重闸极晶体管140隔离区的绝缘物可以完全去除,再此定义为一平台式隔离(mesaisolation),而在后段制程制作内联机线时,会填入内层介电层,以达成电性隔离,如此鳍形半导体层106a表面与平台式隔离表面的高度差大体为200~400。
如此一来,在单一芯片上就可同时制备完全空乏晶体管130、140与部分空乏晶体管120,而完全空乏晶体管可以由具有长闸极层的平面晶体管130所构成,也可以由具有窄主动区宽度的多重闸极晶体管140所构成。为了清楚起见,本实施例的芯片共包括了3种型态晶体管,并非一芯片必须同时皆包括此3种型态晶体管,熟知此技艺人士可视实际需求调整芯片上前述晶体管的种类数及其组合,例如:单一芯片包括一部分空乏平面晶体管与一完全空乏平面晶体管、单一芯片包括一部分空乏平面晶体管与一完全空乏多重闸极晶体管或单一芯片包括一部分空乏平面晶体管、完全空乏平面晶体管与一完全空乏多重闸极晶体管等,在此并不加以设限。
以下请参照图1A至图1G,说明本发明的可同时具有部分空乏晶体管与完全空乏晶体管的芯片制作方法的一较佳实施例。
请参照图1A,首先提供一半导体基底102,可以为一半导体层/绝缘层迭置型基底,例如为一硅层/氧化硅层迭置型基底(silicon oninsulator substrate;SOI substrate)108,其包括一第一硅层102、一绝缘层104和一第二硅层106,其中绝缘层104例如为埋入式氧化硅层。在此实施例中是以该种型式的基底为例,当然半导体层的材质和绝缘层的材质并不限定于此,例如硅锗亦可做为半导体层。
接着请参照图1B,于第二硅层106中预计形成平面晶体管120、130的区域定义出主动区硅层106b、106c,且在预计形成多重闸极晶体管140的区域定义出鳍形硅层(silicon fins)106a,以做为通道层之用。其中鳍形硅层106a的宽度小于70nm,高度约为20~1000。完全空乏平面晶体管130的闸极层长度约为120~1000nm。并且第二硅层106被施以掺杂物。预计形成完全空乏平面晶体管130的第二硅层106c具有浓度大体为1016~1018cm-3的掺杂物,而预计形成部分空乏平面晶体管120的第二硅层106b具有浓度大体为1018~2*1019cm-3的掺杂物。部分空乏平面晶体管120的闸极层122b的长度大约为9~100nm。完全空乏平面晶体管130的闸极层120c的长度大体为120~1000nm,定义主动区时需做应对调整。
定义第二硅层106的方法例如是于第二硅层106上形成一罩幕层,并以该罩幕层为蚀刻罩幕,以将该罩幕层的图案转移至其下方的第二硅层106中。此罩幕层可为光阻层(photoresist layer)、能量敏感层(energysensitive layer)、氧化硅层、氮化硅层、或其它材质的罩幕层。
接着,可对鳍形硅层106a进行侧表面平滑化处理,以降低鳍形硅层106a侧表面的粗糙度。侧表面平滑化处理的方法为牺牲性氧化处理和侧壁处理,其中侧壁处理的方法例如是在1000℃含氢(H2)的环境下进行高温回火。当鳍形硅层106a的侧表面经牺牲性氧化处理时,会于表面氧化生成一层氧化硅,借此修复表面于蚀刻过程中所受到的伤害,并将上部边角圆滑化,如图2所示,再将氧化硅移除。表面平滑化的目的在于使组件具有好的载子迁移率,以及利于后续形成可靠度佳的闸极介电层。将鳍形半导体层106a上部边角圆滑化I,可以避免因为应力集中于角落所导致缺陷传播和延伸的问题,可以使闸极电流稳定。缺陷可能是由于制程不良率或组件退化所产生的。
接着,将具有干净且平整表面的图案化第二硅层106a、106b、106c上方的罩幕层移除。移除的方法可为电浆蚀刻或湿蚀刻,湿蚀刻所使用的蚀刻剂可为稀释的氢氟酸(DHF)。在此蚀刻过程中,图案化第二硅层106a、106b、106c底部可能发生底切(undercut)或凹槽(notch)。
接着,如图1C所示,形成一浅沟槽隔离物(shallow trenchisolation;STI)于图案化硅层106a、106b、106c周围的半导体基底102表面。例如先全面性以适当沉积法,例如化学气相沉积(chemical vapordeposition;CVD)形成一材质例如为氧化物的隔离物于半导体基底102表面,然后经过化学机械研磨与选择性蚀刻,将部分隔离物去除,仅留下平面晶体管120、130、140的图案化硅层106a、106b、106c周围隔离物,以做为晶体管之间的浅沟槽隔离物(STI),其中多重闸极晶体管140周围的隔离物STI厚度较其它区域隔离区绝缘物为薄,使得鳍形半导体层106a表面与隔离区(STI)表面的高度差大约为200~400,甚至多重闸极晶体管140隔离区的绝缘物可以完全去除,以平台式隔离(mesa isolation)做电性隔离。
接着,如图1D所示,分别于图案化第二硅层106a、106b、106c表面形成一层闸极介电层124a、124b、124c,平面晶体管120、130的闸极介电层124b、124c是形成于图案化第二硅层106b、106c顶部,而多重闸极介电层140的闸极介电层124a形成于鳍形硅层106a的顶部与侧壁,其形成方法例如是热氧化法、化学气相沉积法、溅镀等,其材质可为氧化硅、或氮氧化硅。通常,鳍形硅层106a的侧壁和顶部的闸极介电层124a具有不同的厚度,通常是顶部的闸极介电层124a的厚度较侧壁为厚,其厚度约为3埃至100埃,较佳的是10埃以下,顶部部分的厚度较佳的是20埃以下;或者为高介电常数的材质,例如氧化铝(Al2O5)、氧化铪(HfO2)、氧化锆(ZrO2)、或其它类似此性质者,其等效氧化层厚度(equivalentoxide thickness)约为3至100埃。
接着,形成一层导电层于闸极介电层124a、124b、124c上,其材质可为多晶硅、多晶硅锗、耐火金属(refractory metal)、类金属化合物、或其它导电材质,其中耐火金属可为钼(Mo)、钨(W)等,类金属化合物可为氮化钛。
接着,于导电层上覆盖一图案化罩幕层,并借由蚀刻,将图案化罩幕层的图案转移至导电层中,以形成闸极电极122a、122b、122c,平面晶体管120、130的闸极层122b、122c形成于闸极介电层124b、124c上方,而多重闸极晶体管140的闸极层122a则形成于闸极介电层124a上,并包覆对应于通道区的鳍形半导体层106a的两侧壁和一顶面,如图1E所示。以材质为多晶硅的导电层以及材质为氮氧化硅的闸极介电层124a、124b、124c为例,其蚀刻条件例如是含氯和溴的蚀刻气体进行电浆蚀刻,其多晶硅对氮氧化硅的蚀刻选择比超过2000。
在完成闸极电极122a、122b、122c的定义后,则移除其上方的图案化罩幕层。
接着,进行源极/汲极的淡掺杂制程,其形成方法例是以离子植入、电浆侵入式离子植入(plasma immersion ion implantation,PIII)、或是其它的技术来进行。
接着,借由沉积以及选择性非等向性地蚀刻介电材质,以于闸极电极122a、122b、122c的侧壁形成间隙壁126a、126b、126c,间隙壁126的材质可为氮化硅或氧化硅,如图1F所示。之后进行源极/汲极的浓掺杂制程,其形成方法例是以离子植入、电浆侵入式离子植入、固体源扩散(solid source diffusion)、或是其它的技术。在此步骤中,亦可以根据需要,同时将离子掺杂入闸极电极122a、122b、122c,借此提高其导电性。任何植入的伤害或非晶化可借由后续高温回火制程而获得改善。经过上述的源极/汲极的淡掺杂制程和浓掺杂制程后,于闸极电极122a、122b、122c两侧的图案化第二硅层106a、106b、106c中形成具有浅掺杂汲极结构(lightly doped drain)LDD的源极/汲极S/D。并且,平面晶体管120、130的图案化硅层106b、106c的通道区可以施以一super halo布植,由于部分空乏晶体管120的信道长度短,所以信道两侧的superhalo布植区域会在信道中间区域重迭。
接着,为了降低源极/汲极S/D的片电阻,可以在源极/汲极S/D表面形成一层导电层,意即,此导电层形成于鳍形硅层106a的顶部和侧壁以及图案化硅层106b、106c的汲极/源极S/D表面。导电层的材质例如是以自动对准金属硅化物制程(self-aligned silicide process,salicideprocess)形成的金属硅化物,例如硅化钴。该材质亦可为金属、多晶硅、或是磊晶硅。
之后,沉积一层高应力膜层150覆盖于多重闸极晶体管140的闸极电极122a上,其厚度约为50~1000埃,如图1G所示。由于鳍形硅层106a和高应力膜层150两者之间的热膨胀系数(thermal expansioncoefficient)及杨氏系数(Young’s modulus)有很大的差异,使得在经过半导体制程中所需的高温沉积或热回火制程后,高应力膜层150自高温降温时的收缩速度和鳍形硅层106a的收缩速度会有很大的差异,因此会将应力导入鳍形硅层106a的通道区中,产生的应力可能是数百MPa甚至超过1GPa。
如果高应力膜层150的热膨胀系数小于鳍形硅层106a,则鳍形硅层106a会感受到压缩应变(compressive strain)。若高应力膜层150施与通道区的应变为压缩应变,则电洞载子的迁移率可获得提升。因此,覆盖于高应力膜层150下方的闸极电极122a和源极/汲极S/D构成的晶体管为PMOS晶体管。上述的应变是指沿源极至汲极方向的压缩应变,鳍形硅层106a中的压缩应变强度为0.1%至2%,较佳的是1%至2%,应力约为-500~1500MPa,,其中负值代表是一压缩应力,则正值代表是一拉伸应力。
如果高应力膜层150的热膨胀系数大于鳍形硅层26a,则鳍形硅层106a会感受到拉伸应变(tensile strain)。若高应力膜层150施与通道区的应变为拉伸应变,则电子和电洞载子两者的迁移率均可获得提升。因此,覆盖于高应力膜层150下方的闸极电极122a和源极/汲极S/D构成的晶体管可为PMOS晶体管和NMOS晶体管。上述的应变是指沿源极至汲极方向的拉伸应变,鳍形硅层106a中的拉伸应变强度为0.1%至2%,较佳的是1%至2%。
就高应力膜层150而言,借由控制形成的条件,可以调整所形成的膜层的应力大小,根据研究,可控制应力的因素有温度、压力或制程气体的流速比。举例而言,利用电浆增强型化学气相沉积的氮化硅(plasma-enhanced chemical vapor deposited silicon nitride)可以导入至通道区中的应力可为拉伸应力或压缩应力,端视沉积的条件而定。此外,若选择氧化硅制备高应力膜层150,还可以借由改变掺杂的物质及掺杂的浓度来改变其热膨胀系数及杨氏系数,可以掺杂的物质例如是锗(Ga)、氮(N)或耐火的金属(refractory metal)。
发明功效:
当主动区的宽度W越小,则应力膜层与鳍状半导体基底接触的面积则越大,因此,应力效应会随着主动区宽度W的减少而增强。如图2A与图2B所示,当主动区宽度W由1200nm(图2A)减少至110nm(图2B),在晶体管关闭状态(off-state)下,漏电流(leakage)约为300nA/mm,应变感应驱动电流由10%增加到17%。
关于通道长度、主动区宽度与完全空乏晶体管、部分空乏晶体管之间的关系,经由实验,得到以下结果。图3A与图3B是显示部分空乏晶体管与完全空乏晶体管的主动区宽度W与通道长度Lg的关系示意图。图3A是一N型晶体管的实验结果,平面部分空乏晶体管与平面完全空乏晶体管的主动区大于50nm,而非平面式多重闸极完全空乏晶体管的主动区宽度小于50nm。图3B是一P型晶体管的实验结果。在主动区宽度固定的情况下,欲将部分空乏晶体管转变成完全空乏晶体管的方法为增加闸极长度。另外,当主动区宽度小于50nm以下,便会形成多重闸极晶体管。第3B图中P型晶体管可形成部分空乏的范围较第3A图中N型晶体管可形成部分空乏的范围为小。这是因为P形晶体管中的冲击离子化引发寄生双极化反应(impact ionization induced parasitic bipolar action)较弱。
发明优点:
1.根据本发明的具有长通道的完全空乏平面晶体管或多重闸极完全空乏晶体管皆可有效克服浮体效应(floating body effect)的问题。
2.根据本发明的多重闸极晶体管,可视为三个并联的晶体管,分别位于鳍形硅层两侧及顶面。该结构可有效提高组件的电流量,并且无须缩短通道长度,可以有效控制短通道效应(short-channel effect)。
3.根据本发明的应力膜层,可使应力导入通道区中,以提高载子的迁移率,进而提升组件的操作效能。
4.本发明的具有多重闸极及应变的通道层的晶体管,借由其垂直型的结构,使晶体管的积集度可以有效地提升。
Claims (103)
1.一种可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于所述芯片包括:
一半导体基底;
一完全空乏平面晶体管,具有一长闸极层,且设置于上述半导体基底上;以及
一部分空乏平面晶体管,具有一短闸极层,且设置于上述半导体基底上;
其中上述长闸极层的长度大于上述短闸极层。
2.根据权利要求1所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述半导体基底是由一依序堆栈的一第一硅层、一绝缘层与一第二硅层所构成。
3.根据权利要求2所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述完全空乏平面晶体管下方的上述第二硅层具有浓度为1016~1018cm-3的掺杂物。
4.根据权利要求2所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述部分空乏平面晶体管下方的上述第二硅层具有浓度为1018~2*1019cm-3的掺杂物。
5.根据权利要求2所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述第二硅层的厚度为10~2000。
6.根据权利要求1所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述完全空乏平面晶体管的上述长闸极层的长度大于宽度。
7.根据权利要求1所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述部分空乏平面晶体管的上述短闸极层的宽度大于长度。
8.根据权利要求1所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述完全空乏平面晶体管的上述长闸极层的长度为120~1000nm。
9.根据权利要求1所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述部分空乏平面晶体管的上述短闸极层的长度为9~100nm。
10.根据权利要求1所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于所述芯片更包括:一多重闸极晶体管,设置于上述半导体基底上方。
11.根据权利要求10所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述多重闸极晶体管是完全空乏,上述多重闸极晶体管的宽度小于70nm。
12.根据权利要求10所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于上述多重闸极晶体管包括:
一鳍形半导体层,位于上述半导体基底上,其中上述鳍形半导体层具有一源极、一汲极以及位于上述源极和上述汲极之间的一通道区,且上述鳍形半导体层中具有一应变;
一闸极介电层,位于上述鳍形半导体层的上述通道区表面;以及
一闸极电极,位于上述闸极介电层上,并包覆对应于上述通道区的上述鳍形半导体层的两侧壁和一顶面。
13.根据权利要求12所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于所述芯片更包括:一应力膜层,位于上述源极和上述汲极上。
14.根据权利要求13所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述应力膜层的材质包括氮化硅。
15.根据权利要求12所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层的厚度为20~1000。
16.根据权利要求12所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层的宽度为20~1000。
17.根据权利要求12所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层具有圆滑化的上部边角(rounded corner)。
18.根据权利要求12所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层中的上述应变为沿上述源极至上述汲极方向的拉伸应变。
19.根据权利要求18所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层中的上述拉伸应变量为0.1%至2%。
20.根据权利要求12所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述闸极介电层的材质为氧化硅、氮氧化硅、或相对电容率(relative permittivity)大于5的介电材质。
21.根据权利要求20所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述相对电容率大于5的介电材质为氧化铝(Al2O3)、氧化铪(HfO2)、氮氧化硅铪(HfSiNxOy)、硅化铪(HfSi4)、氧化锆(ZrO2)、硅化锆(ZrSi4)或氧化镧(La2O3)。
22.根据权利要求12所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述闸极介电层的等效氧化层厚度为3~100。
23.根据权利要求12所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其中上述鳍形半导体层的侧壁的上述闸极介电层的厚度不同于顶部的厚度。
24.根据权利要求12所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层的侧壁的上述闸极介电层的厚度小于顶部的厚度。
25.根据权利要求12所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层的顶部的上述闸极介电层的等效氧化层厚度小于20。
26.根据权利要求12所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述闸极电极为一金属、一金属硅化物或一金属氮化物,其材质包括一多晶硅或一多晶锗。
27.根据权利要求12所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于所述芯片更包括:一间隔物,设置于上述闸极电极沿上述汲极与上述源极方向的两侧壁上。
28.根据权利要求27所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述间隔物沿着上述汲极与上述源极的延伸宽度为100~800。
29.根据权利要求12所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述闸极电极的闸极长度小于65nm。
30.根据权利要求12所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于所述芯片更包括:一隔离区,包围于上述多重闸极晶体管周围,以提供电性隔离。
31.根据权利要求30所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述隔离区是由一绝缘物所构成。
32.根据权利要求30所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层表面与上述隔离区表面的高度差为200~1000。
33.根据权利要求30所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述隔离区是借由一平台式隔离达成电性隔离。
34.一种可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于所述芯片包括:
一半导体基底;以及
一多重闸极晶体管,设置于上述半导体基底上,包括:
一鳍形半导体层,位于上述半导体基底上,其中上述鳍形半导体层具有一源极、一汲极以及位于上述源极和上述汲极之间的一通道区,且上述鳍形半导体层中具有一应变;
一闸极介电层,位于上述鳍形半导体层的上述通道区表面;以及
一闸极电极,位于上述闸极介电层上,并包覆对应于上述通道区的上述鳍形半导体层的两侧壁和一顶面;
其中,上述鳍形半导体层的宽度小于空乏区最大宽度的两倍。
35.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于所述芯片更包括:一平面晶体管,设置于上述半导体基底上。
36.根据权利要求35所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述平面晶体管是完全空乏。
37.根据权利要求36所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述平面晶体管具有一长闸极层,且上述长闸极层的长度大于宽度。
38.根据权利要求37所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述长闸极层的长度为120~1000nm。
39.根据权利要求35所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述平面晶体管是部分空乏。
40.根据权利要求39所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述平面晶体管具有一短闸极层,且上述短闸极层的长度小于宽度。
41.根据权利要求40所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述短闸极层的长度为9~100nm。
42.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述半导体基底是由一依序堆栈的一第一硅层、一绝缘层与一第二硅层所构成。
43.根据权利要求36所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述平面晶体管下方的上述第二硅层具有浓度为1016~1018cm-3的掺杂物。
44.根据权利要求39所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述平面晶体管下方的上述第二硅层具有浓度为1018~2*1019cm-3的掺杂物。
45.根据权利要求42所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述第二硅层的厚度为10~2000。
46.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述多重闸极晶体管是完全空乏,上述鳍形半导体层的宽度小于70nm。
47.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于上述多重闸极晶体管更包括:一应力膜层,位于上述源极和上述汲极上。
48.根据权利要求47所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述应力膜层的材质包括氮化硅。
49.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层的厚度为20~1000。
50.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层具有圆滑化的上部边角(rounded corner)。
51.根据权利要求50所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述圆滑化的上部边角的半径为200。
52.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层中的上述应变为沿上述源极至上述汲极方向的拉伸应变。
53.根据权利要求52所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层中的上述拉伸应变量为0.1%至2%。
54.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述闸极介电层的材质为氧化硅、氮氧化硅、或相对电容率(relative permittivity)大于5的介电材质。
55.根据权利要求54所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述相对电容率大于5的介电材质为氧化铝(Al2O3)、氧化铪(HfO2)、氮氧化硅铪(HfSiNxOy)、硅化铪(HfSi4)、氧化锆(ZrO2)、硅化锆(ZrSi4)或氧化镧(La2O3)。
56.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述闸极介电层的等效氧化层厚度为3~100。
57.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层的侧壁的上述闸极介电层的厚度不同于顶部的厚度。
58.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层的侧壁的上述闸极介电层的厚度小于顶部的厚度。
59.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层的顶部的上述闸极介电层的等效氧化层厚度小于20。
60.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述闸极电极为一金属、一金属硅化物或一金属氮化物,其材质包括一多晶硅或一多晶锗。
61.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述多重闸极晶体管更包括:一间隔物,设置于上述闸极电极沿上述汲极与上述源极方向的两侧壁上。
62.根据权利要求61所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述间隔物沿着上述汲极与上述源极的延伸宽度为100~800。
63.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述闸极电极的闸极长度小于65nm。
64.根据权利要求34所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于所述芯片更包括:一隔离区,包围于上述多重闸极晶体管周围,以提供电性隔离。
65.根据权利要求64所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述隔离区是由一绝缘物所构成。
66.根据权利要求64所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层表面与上述隔离区表面的高度差为200~1000。
67.根据权利要求64所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述隔离区是借由一平台式隔离达成电性隔离。
68.根据权利要求67所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片,其特征在于:上述鳍形半导体层表面与上述平台式隔离表面的高度差为200~1000。
69.一种可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,包括:
提供一半导体基底;
形成一平面晶体管于上述半导体基底上方;以及
形成一多重闸极晶体管于上述半导体基底上方,其中上述多重闸极晶体管包括:
一鳍形半导体层,位于上述半导体基底上,其中上述鳍形半导体层具有一源极、一汲极以及位于上述源极和上述汲极之间的一通道区,且上述鳍形半导体层中具有一应变;
一闸极介电层,位于上述鳍形半导体层的上述通道区表面;以及
一闸极电极,位于上述闸极介电层上,并包覆对应于上述通道区的上述鳍形半导体层的两侧壁和一顶面。
70.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述平面晶体管是完全空乏。
71.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述平面晶体管具有一长闸极层,且上述长闸极层的长度大于宽度。
72.根据权利要求71所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述长闸极层的长度为120~1000nm。
73.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述平面晶体管是部分空乏。
74.根据权利要求73所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述平面晶体管具有一短闸极层,且上述短闸极层的长度小于宽度。
75.根据权利要求74所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述短闸极层的长度为9~100nm。
76.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述半导体基底是由一依序堆栈的一第一硅层、一绝缘层与一第二硅层所构成。
77.根据权利要求70所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述平面晶体管下方的上述第二硅层具有浓度为1016~1018cm-3的掺杂物。
78.根据权利要求73所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述平面晶体管下方的上述第二硅层具有浓度为1018~2*1019cm-3的掺杂物。
79.根据权利要求76所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述第二硅层的厚度为10~2000。
80.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述多重闸极晶体管是完全空乏,上述鳍形半导体层的宽度小于70nm。
81.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述多重闸极晶体管更包括:一应力膜层,位于上述源极和上述汲极上。
82.根据权利要求81所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述应力膜层的材质包括氮化硅。
83.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述鳍形半导体层的厚度为20~1000。
84.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述鳍形半导体层具有圆滑化的上部边角(rounded corner)。
85.根据权利要求84所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述圆滑化的上部边角的半径为200。
86.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述鳍形半导体层中的上述应变为沿上述源极至上述汲极方向的拉伸应变。
87.根据权利要求86所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述鳍形半导体层中的上述拉伸应变量为0.1%至2%。
88.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述闸极介电层的材质为氧化硅、氮氧化硅、或相对电容率(relative permittivity)大于5的介电材质。
89.根据权利要求88所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述相对电容率大于5的介电材质为氧化铝(Al2O3)、氧化铪(HfO2)、氮氧化硅铪(HfSiNxOy)、硅化铪(HfSi4)、氧化锆(i)、硅化锆(ZrSi4)或氧化镧(La2O3)。
90.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述闸极介电层的等效氧化层厚度为3~100。
91.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述鳍形半导体层的侧壁的上述闸极介电层的厚度不同于顶部的厚度。
92.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述鳍形半导体层的侧壁的上述闸极介电层的厚度小于顶部的厚度。
93.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述鳍形半导体层的顶部的上述闸极介电层的等效氧化层厚度小于20。
94.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述闸极电极为一金属、一金属硅化物或一金属氮化物,其材质包括一多晶硅或一多晶锗。
95.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述多重闸极晶体管更包括:一间隔物,设置于上述闸极电极沿上述汲极与上述源极方向的两侧壁上。
96.根据权利要求95所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述间隔物沿着上述汲极与上述源极的延伸宽度为100~800。
97.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述闸极电极的闸极长度小于65nm。
98.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中更包括:一隔离区,包围于上述多重闸极晶体管周围,以提供电性隔离。
99.根据权利要求98所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述隔离区是由一绝缘物所构成。
100.根据权利要求99所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述鳍形半导体层表面与上述隔离区表面的高度差为200~1000。
101.根据权利要求98所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述隔离区是借由一平台式隔离达成电性隔离。
102.根据权利要求101所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述鳍形半导体层表面与上述平台式隔离表面的高度差为200~1000。
103.根据权利要求69所述的可同时具有部分空乏晶体管与完全空乏晶体管的芯片的制作方法,其中上述鳍形半导体层的宽度小于空乏区最大宽度的两倍。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/426,566 US6867433B2 (en) | 2003-04-30 | 2003-04-30 | Semiconductor-on-insulator chip incorporating strained-channel partially-depleted, fully-depleted, and multiple-gate transistors |
US10/426,566 | 2003-04-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1542966A true CN1542966A (zh) | 2004-11-03 |
CN1293635C CN1293635C (zh) | 2007-01-03 |
Family
ID=33309898
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031565328A Expired - Lifetime CN1293635C (zh) | 2003-04-30 | 2003-09-03 | 可同时具有部分耗尽晶体管与完全耗尽晶体管的芯片及其制作方法 |
CNU2004200483757U Expired - Lifetime CN2704927Y (zh) | 2003-04-30 | 2004-04-23 | 可同时具有部分空乏晶体管与完全空乏晶体管的芯片 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU2004200483757U Expired - Lifetime CN2704927Y (zh) | 2003-04-30 | 2004-04-23 | 可同时具有部分空乏晶体管与完全空乏晶体管的芯片 |
Country Status (4)
Country | Link |
---|---|
US (2) | US6867433B2 (zh) |
CN (2) | CN1293635C (zh) |
SG (1) | SG143035A1 (zh) |
TW (1) | TWI255043B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101989617A (zh) * | 2009-07-31 | 2011-03-23 | 台湾积体电路制造股份有限公司 | 用于半导体晶体管的垂直鳍状结构及其制造方法 |
Families Citing this family (232)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6503783B1 (en) * | 2000-08-31 | 2003-01-07 | Micron Technology, Inc. | SOI CMOS device with reduced DIBL |
US7074623B2 (en) * | 2002-06-07 | 2006-07-11 | Amberwave Systems Corporation | Methods of forming strained-semiconductor-on-insulator finFET device structures |
KR100483425B1 (ko) * | 2003-03-17 | 2005-04-14 | 삼성전자주식회사 | 반도체소자 및 그 제조 방법 |
US6867433B2 (en) * | 2003-04-30 | 2005-03-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor-on-insulator chip incorporating strained-channel partially-depleted, fully-depleted, and multiple-gate transistors |
US7812340B2 (en) * | 2003-06-13 | 2010-10-12 | International Business Machines Corporation | Strained-silicon-on-insulator single-and double-gate MOSFET and method for forming the same |
US6992354B2 (en) * | 2003-06-25 | 2006-01-31 | International Business Machines Corporation | FinFET having suppressed parasitic device characteristics |
US6909151B2 (en) * | 2003-06-27 | 2005-06-21 | Intel Corporation | Nonplanar device with stress incorporation layer and method of fabrication |
US7456476B2 (en) * | 2003-06-27 | 2008-11-25 | Intel Corporation | Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication |
US7078742B2 (en) * | 2003-07-25 | 2006-07-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | Strained-channel semiconductor structure and method of fabricating the same |
US7301206B2 (en) * | 2003-08-01 | 2007-11-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor-on-insulator SRAM configured using partially-depleted and fully-depleted transistors |
US8008136B2 (en) * | 2003-09-03 | 2011-08-30 | Advanced Micro Devices, Inc. | Fully silicided gate structure for FinFET devices |
JP2005086024A (ja) * | 2003-09-09 | 2005-03-31 | Toshiba Corp | 半導体装置及びその製造方法 |
KR100555518B1 (ko) * | 2003-09-16 | 2006-03-03 | 삼성전자주식회사 | 이중 게이트 전계 효과 트랜지스터 및 그 제조방법 |
JP4904815B2 (ja) * | 2003-10-09 | 2012-03-28 | 日本電気株式会社 | 半導体装置及びその製造方法 |
WO2005038931A1 (ja) * | 2003-10-20 | 2005-04-28 | Nec Corporation | 半導体装置及び半導体装置の製造方法 |
US6946377B2 (en) | 2003-10-29 | 2005-09-20 | Texas Instruments Incorporated | Multiple-gate MOSFET device with lithography independent silicon body thickness and methods for fabricating the same |
US7888201B2 (en) * | 2003-11-04 | 2011-02-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor-on-insulator SRAM configured using partially-depleted and fully-depleted transistors |
US6962843B2 (en) * | 2003-11-05 | 2005-11-08 | International Business Machines Corporation | Method of fabricating a finfet |
US7247534B2 (en) * | 2003-11-19 | 2007-07-24 | International Business Machines Corporation | Silicon device on Si:C-OI and SGOI and method of manufacture |
US7105390B2 (en) * | 2003-12-30 | 2006-09-12 | Intel Corporation | Nonplanar transistors with metal gate electrodes |
US7268058B2 (en) * | 2004-01-16 | 2007-09-11 | Intel Corporation | Tri-gate transistors and methods to fabricate same |
KR100585131B1 (ko) | 2004-02-20 | 2006-06-01 | 삼성전자주식회사 | 반도체 소자 및 그 제조 방법 |
KR100532353B1 (ko) * | 2004-03-11 | 2005-11-30 | 삼성전자주식회사 | 핀 전계 효과 트랜지스터 및 그 제조방법 |
US6872640B1 (en) * | 2004-03-16 | 2005-03-29 | Micron Technology, Inc. | SOI CMOS device with reduced DIBL |
KR100540478B1 (ko) * | 2004-03-22 | 2006-01-11 | 주식회사 하이닉스반도체 | 전하 트랩을 갖는 게이트유전체를 포함한 휘발성 메모리셀 트랜지스터 및 그 제조 방법 |
US7154118B2 (en) * | 2004-03-31 | 2006-12-26 | Intel Corporation | Bulk non-planar transistor having strained enhanced mobility and methods of fabrication |
US7321155B2 (en) * | 2004-05-06 | 2008-01-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Offset spacer formation for strained channel CMOS transistor |
US7361973B2 (en) * | 2004-05-21 | 2008-04-22 | International Business Machines Corporation | Embedded stressed nitride liners for CMOS performance improvement |
US7579280B2 (en) * | 2004-06-01 | 2009-08-25 | Intel Corporation | Method of patterning a film |
JP2006012898A (ja) * | 2004-06-22 | 2006-01-12 | Toshiba Corp | 半導体装置及びその製造方法 |
TWI463526B (zh) * | 2004-06-24 | 2014-12-01 | Ibm | 改良具應力矽之cmos元件的方法及以該方法製備而成的元件 |
US6984564B1 (en) * | 2004-06-24 | 2006-01-10 | International Business Machines Corporation | Structure and method to improve SRAM stability without increasing cell area or off current |
JP2006013303A (ja) * | 2004-06-29 | 2006-01-12 | Toshiba Corp | 半導体装置及びその製造方法 |
US7042009B2 (en) * | 2004-06-30 | 2006-05-09 | Intel Corporation | High mobility tri-gate devices and methods of fabrication |
JP2006019578A (ja) * | 2004-07-02 | 2006-01-19 | Toshiba Corp | 半導体装置及びその製造方法 |
KR100618852B1 (ko) * | 2004-07-27 | 2006-09-01 | 삼성전자주식회사 | 높은 동작 전류를 갖는 반도체 소자 |
KR100555569B1 (ko) | 2004-08-06 | 2006-03-03 | 삼성전자주식회사 | 절연막에 의해 제한된 채널영역을 갖는 반도체 소자 및 그제조방법 |
US7348284B2 (en) | 2004-08-10 | 2008-03-25 | Intel Corporation | Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow |
US7009250B1 (en) * | 2004-08-20 | 2006-03-07 | Micron Technology, Inc. | FinFET device with reduced DIBL |
US7271453B2 (en) * | 2004-09-20 | 2007-09-18 | International Business Machines Corporation | Buried biasing wells in FETS |
US7332439B2 (en) * | 2004-09-29 | 2008-02-19 | Intel Corporation | Metal gate transistors with epitaxial source and drain regions |
US7422946B2 (en) * | 2004-09-29 | 2008-09-09 | Intel Corporation | Independently accessed double-gate and tri-gate transistors in same process flow |
US7361958B2 (en) | 2004-09-30 | 2008-04-22 | Intel Corporation | Nonplanar transistors with metal gate electrodes |
US20060086977A1 (en) * | 2004-10-25 | 2006-04-27 | Uday Shah | Nonplanar device with thinned lower body portion and method of fabrication |
DE102004057762B4 (de) * | 2004-11-30 | 2010-11-11 | Advanced Micro Devices Inc., Sunnyvale | Verfahren zur Herstellung einer Halbleiterstruktur mit Ausbilden eines Feldeffekttransistors mit einem verspannten Kanalgebiet |
US7193254B2 (en) * | 2004-11-30 | 2007-03-20 | International Business Machines Corporation | Structure and method of applying stresses to PFET and NFET transistor channels for improved performance |
US20060113603A1 (en) * | 2004-12-01 | 2006-06-01 | Amberwave Systems Corporation | Hybrid semiconductor-on-insulator structures and related methods |
US7393733B2 (en) | 2004-12-01 | 2008-07-01 | Amberwave Systems Corporation | Methods of forming hybrid fin field-effect transistor structures |
US7198993B2 (en) | 2004-12-13 | 2007-04-03 | Texas Instruments Incorporated | Method of fabricating a combined fully-depleted silicon-on-insulator (FD-SOI) and partially-depleted silicon-on-insulator (PD-SOI) devices |
US7297577B2 (en) * | 2004-12-30 | 2007-11-20 | Sony Corporation | SOI SRAM device structure with increased W and full depletion |
US7193279B2 (en) * | 2005-01-18 | 2007-03-20 | Intel Corporation | Non-planar MOS structure with a strained channel region |
US7256081B2 (en) * | 2005-02-01 | 2007-08-14 | International Business Machines Corporation | Structure and method to induce strain in a semiconductor device channel with stressed film under the gate |
US7224033B2 (en) * | 2005-02-15 | 2007-05-29 | International Business Machines Corporation | Structure and method for manufacturing strained FINFET |
US7518196B2 (en) * | 2005-02-23 | 2009-04-14 | Intel Corporation | Field effect transistor with narrow bandgap source and drain regions and method of fabrication |
KR100578818B1 (ko) | 2005-02-24 | 2006-05-11 | 삼성전자주식회사 | 핀 전계 효과 트랜지스터 및 이의 형성 방법 |
US20060202266A1 (en) * | 2005-03-14 | 2006-09-14 | Marko Radosavljevic | Field effect transistor with metal source/drain regions |
US7410841B2 (en) * | 2005-03-28 | 2008-08-12 | Texas Instruments Incorporated | Building fully-depleted and partially-depleted transistors on same chip |
US7410840B2 (en) * | 2005-03-28 | 2008-08-12 | Texas Instruments Incorporated | Building fully-depleted and bulk transistors on same chip |
US20060228872A1 (en) * | 2005-03-30 | 2006-10-12 | Bich-Yen Nguyen | Method of making a semiconductor device having an arched structure strained semiconductor layer |
US8324660B2 (en) | 2005-05-17 | 2012-12-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
JP5063594B2 (ja) * | 2005-05-17 | 2012-10-31 | 台湾積體電路製造股▲ふん▼有限公司 | 転位欠陥密度の低い格子不整合半導体構造およびこれに関連するデバイス製造方法 |
US9153645B2 (en) | 2005-05-17 | 2015-10-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
US20070267722A1 (en) * | 2006-05-17 | 2007-11-22 | Amberwave Systems Corporation | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
US7858481B2 (en) | 2005-06-15 | 2010-12-28 | Intel Corporation | Method for fabricating transistor with thinned channel |
US7547637B2 (en) | 2005-06-21 | 2009-06-16 | Intel Corporation | Methods for patterning a semiconductor film |
US8105908B2 (en) * | 2005-06-23 | 2012-01-31 | Applied Materials, Inc. | Methods for forming a transistor and modulating channel stress |
US7279375B2 (en) * | 2005-06-30 | 2007-10-09 | Intel Corporation | Block contact architectures for nanoscale channel transistors |
JP5481067B2 (ja) * | 2005-07-26 | 2014-04-23 | 台湾積體電路製造股▲ふん▼有限公司 | 代替活性エリア材料の集積回路への組み込みのための解決策 |
US7402875B2 (en) | 2005-08-17 | 2008-07-22 | Intel Corporation | Lateral undercut of metal gate in SOI device |
US7326617B2 (en) * | 2005-08-23 | 2008-02-05 | United Microelectronics Corp. | Method of fabricating a three-dimensional multi-gate device |
US7638842B2 (en) * | 2005-09-07 | 2009-12-29 | Amberwave Systems Corporation | Lattice-mismatched semiconductor structures on insulators |
US7606066B2 (en) | 2005-09-07 | 2009-10-20 | Innovative Silicon Isi Sa | Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same |
US20070090416A1 (en) * | 2005-09-28 | 2007-04-26 | Doyle Brian S | CMOS devices with a single work function gate electrode and method of fabrication |
US7479421B2 (en) * | 2005-09-28 | 2009-01-20 | Intel Corporation | Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby |
US20070090408A1 (en) * | 2005-09-29 | 2007-04-26 | Amlan Majumdar | Narrow-body multiple-gate FET with dominant body transistor for high performance |
US8513066B2 (en) * | 2005-10-25 | 2013-08-20 | Freescale Semiconductor, Inc. | Method of making an inverted-T channel transistor |
US7452768B2 (en) * | 2005-10-25 | 2008-11-18 | Freescale Semiconductor, Inc. | Multiple device types including an inverted-T channel transistor and method therefor |
US7575975B2 (en) * | 2005-10-31 | 2009-08-18 | Freescale Semiconductor, Inc. | Method for forming a planar and vertical semiconductor structure having a strained semiconductor layer |
US7655511B2 (en) | 2005-11-03 | 2010-02-02 | International Business Machines Corporation | Gate electrode stress control for finFET performance enhancement |
KR100653712B1 (ko) * | 2005-11-14 | 2006-12-05 | 삼성전자주식회사 | 핀펫에서 활성영역과 실질적으로 동일한 상면을 갖는소자분리막이 배치된 반도체 장치들 및 그 형성방법들 |
KR100660327B1 (ko) * | 2005-11-18 | 2006-12-22 | 동부일렉트로닉스 주식회사 | 반도체 소자의 트랜지스터 및 그 형성방법 |
KR100720510B1 (ko) * | 2005-11-18 | 2007-05-22 | 동부일렉트로닉스 주식회사 | 반도체 소자의 트랜지스터 및 그 형성방법 |
US7485503B2 (en) | 2005-11-30 | 2009-02-03 | Intel Corporation | Dielectric interface for group III-V semiconductor device |
US7396711B2 (en) * | 2005-12-27 | 2008-07-08 | Intel Corporation | Method of fabricating a multi-cornered film |
US7473593B2 (en) * | 2006-01-11 | 2009-01-06 | International Business Machines Corporation | Semiconductor transistors with expanded top portions of gates |
JP4490927B2 (ja) * | 2006-01-24 | 2010-06-30 | 株式会社東芝 | 半導体装置 |
US7456055B2 (en) | 2006-03-15 | 2008-11-25 | Freescale Semiconductor, Inc. | Process for forming an electronic device including semiconductor fins |
US7419866B2 (en) * | 2006-03-15 | 2008-09-02 | Freescale Semiconductor, Inc. | Process of forming an electronic device including a semiconductor island over an insulating layer |
US7777250B2 (en) | 2006-03-24 | 2010-08-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures and related methods for device fabrication |
US7365401B2 (en) * | 2006-03-28 | 2008-04-29 | International Business Machines Corporation | Dual-plane complementary metal oxide semiconductor |
US7449373B2 (en) * | 2006-03-31 | 2008-11-11 | Intel Corporation | Method of ion implanting for tri-gate devices |
US7492632B2 (en) | 2006-04-07 | 2009-02-17 | Innovative Silicon Isi Sa | Memory array having a programmable word length, and method of operating same |
US7670895B2 (en) * | 2006-04-24 | 2010-03-02 | Freescale Semiconductor, Inc | Process of forming an electronic device including a semiconductor layer and another layer adjacent to an opening within the semiconductor layer |
US7491622B2 (en) * | 2006-04-24 | 2009-02-17 | Freescale Semiconductor, Inc. | Process of forming an electronic device including a layer formed using an inductively coupled plasma |
US20070249127A1 (en) * | 2006-04-24 | 2007-10-25 | Freescale Semiconductor, Inc. | Electronic device including a semiconductor layer and a sidewall spacer and a process of forming the same |
WO2007128738A1 (en) | 2006-05-02 | 2007-11-15 | Innovative Silicon Sa | Semiconductor memory cell and array using punch-through to program and read same |
US7573108B2 (en) * | 2006-05-12 | 2009-08-11 | Micron Technology, Inc | Non-planar transistor and techniques for fabricating the same |
US7528078B2 (en) * | 2006-05-12 | 2009-05-05 | Freescale Semiconductor, Inc. | Process of forming electronic device including a densified nitride layer adjacent to an opening within a semiconductor layer |
US8069377B2 (en) | 2006-06-26 | 2011-11-29 | Micron Technology, Inc. | Integrated circuit having memory array including ECC and column redundancy and method of operating the same |
US7542340B2 (en) | 2006-07-11 | 2009-06-02 | Innovative Silicon Isi Sa | Integrated circuit including memory array having a segmented bit line architecture and method of controlling and/or operating same |
US7462916B2 (en) * | 2006-07-19 | 2008-12-09 | International Business Machines Corporation | Semiconductor devices having torsional stresses |
US8143646B2 (en) | 2006-08-02 | 2012-03-27 | Intel Corporation | Stacking fault and twin blocking barrier for integrating III-V on Si |
KR100751803B1 (ko) * | 2006-08-22 | 2007-08-23 | 삼성전자주식회사 | 반도체 소자의 제조 방법 |
US7790540B2 (en) | 2006-08-25 | 2010-09-07 | International Business Machines Corporation | Structure and method to use low k stress liner to reduce parasitic capacitance |
US8173551B2 (en) | 2006-09-07 | 2012-05-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Defect reduction using aspect ratio trapping |
WO2008036256A1 (en) * | 2006-09-18 | 2008-03-27 | Amberwave Systems Corporation | Aspect ratio trapping for mixed signal applications |
WO2008039495A1 (en) * | 2006-09-27 | 2008-04-03 | Amberwave Systems Corporation | Tri-gate field-effect transistors formed by aspect ratio trapping |
US7875958B2 (en) | 2006-09-27 | 2011-01-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures |
WO2008051503A2 (en) * | 2006-10-19 | 2008-05-02 | Amberwave Systems Corporation | Light-emitter-based devices with lattice-mismatched semiconductor structures |
US20080128797A1 (en) * | 2006-11-30 | 2008-06-05 | International Business Machines Corporation | Structure and method for multiple height finfet devices |
US20080157225A1 (en) * | 2006-12-29 | 2008-07-03 | Suman Datta | SRAM and logic transistors with variable height multi-gate transistor architecture |
US8558278B2 (en) * | 2007-01-16 | 2013-10-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained transistor with optimized drive current and method of forming |
US20080173942A1 (en) * | 2007-01-22 | 2008-07-24 | International Business Machines Corporation | STRUCTURE AND METHOD OF MANUFACTURING A STRAINED FinFET WITH STRESSED SILICIDE |
KR101277402B1 (ko) | 2007-01-26 | 2013-06-20 | 마이크론 테크놀로지, 인코포레이티드 | 게이트형 바디 영역으로부터 격리되는 소스/드레인 영역을 포함하는 플로팅-바디 dram 트랜지스터 |
US7399664B1 (en) * | 2007-02-28 | 2008-07-15 | International Business Machines Corporation | Formation of spacers for FinFETs (Field Effect Transistors) |
US7452758B2 (en) * | 2007-03-14 | 2008-11-18 | International Business Machines Corporation | Process for making FinFET device with body contact and buried oxide junction isolation |
US7960234B2 (en) * | 2007-03-22 | 2011-06-14 | Texas Instruments Incorporated | Multiple-gate MOSFET device and associated manufacturing methods |
WO2009031052A2 (en) | 2007-03-29 | 2009-03-12 | Innovative Silicon S.A. | Zero-capacitor (floating body) random access memory circuits with polycide word lines and manufacturing methods therefor |
DE102007015504B4 (de) * | 2007-03-30 | 2014-10-23 | Advanced Micro Devices, Inc. | SOI-Transistor mit Drain- und Sourcegebieten mit reduzierter Länge und einem dazu benachbarten verspannten dielektrischen Material und Verfahren zur Herstellung |
US8304805B2 (en) | 2009-01-09 | 2012-11-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor diodes fabricated by aspect ratio trapping with coalesced films |
US7825328B2 (en) | 2007-04-09 | 2010-11-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Nitride-based multi-junction solar cell modules and methods for making the same |
US8237151B2 (en) | 2009-01-09 | 2012-08-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Diode-based devices and methods for making the same |
US9508890B2 (en) | 2007-04-09 | 2016-11-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photovoltaics on silicon |
US8064274B2 (en) | 2007-05-30 | 2011-11-22 | Micron Technology, Inc. | Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same |
US8085594B2 (en) | 2007-06-01 | 2011-12-27 | Micron Technology, Inc. | Reading technique for memory cell with electrically floating body transistor |
US8736016B2 (en) * | 2007-06-07 | 2014-05-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained isolation regions |
US8329541B2 (en) | 2007-06-15 | 2012-12-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | InP-based transistor fabrication |
US8344242B2 (en) * | 2007-09-07 | 2013-01-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-junction solar cells |
US8194487B2 (en) * | 2007-09-17 | 2012-06-05 | Micron Technology, Inc. | Refreshing data of memory cells with electrically floating body transistors |
US8115254B2 (en) | 2007-09-25 | 2012-02-14 | International Business Machines Corporation | Semiconductor-on-insulator structures including a trench containing an insulator stressor plug and method of fabricating same |
US7910994B2 (en) * | 2007-10-15 | 2011-03-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | System and method for source/drain contact processing |
JP5525127B2 (ja) * | 2007-11-12 | 2014-06-18 | ピーエスフォー ルクスコ エスエイアールエル | 半導体装置及びその製造方法 |
US8492846B2 (en) | 2007-11-15 | 2013-07-23 | International Business Machines Corporation | Stress-generating shallow trench isolation structure having dual composition |
US8536628B2 (en) | 2007-11-29 | 2013-09-17 | Micron Technology, Inc. | Integrated circuit having memory cell array including barriers, and method of manufacturing same |
US8349662B2 (en) | 2007-12-11 | 2013-01-08 | Micron Technology, Inc. | Integrated circuit having memory cell array, and method of manufacturing same |
EP2070533B1 (en) * | 2007-12-11 | 2014-05-07 | Apoteknos Para La Piel, s.l. | Use of a compound derived from P-hydroxyphenyl propionic acid for the treatment of psoriasis |
US8773933B2 (en) | 2012-03-16 | 2014-07-08 | Micron Technology, Inc. | Techniques for accessing memory cells |
US8014195B2 (en) | 2008-02-06 | 2011-09-06 | Micron Technology, Inc. | Single transistor memory cell |
US8189376B2 (en) | 2008-02-08 | 2012-05-29 | Micron Technology, Inc. | Integrated circuit having memory cells including gate material having high work function, and method of manufacturing same |
US7943961B2 (en) * | 2008-03-13 | 2011-05-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strain bars in stressed layers of MOS devices |
US7957206B2 (en) | 2008-04-04 | 2011-06-07 | Micron Technology, Inc. | Read circuitry for an integrated circuit having memory cells and/or a memory cell array, and method of operating same |
JP5285947B2 (ja) * | 2008-04-11 | 2013-09-11 | 株式会社東芝 | 半導体装置、およびその製造方法 |
US8183667B2 (en) | 2008-06-03 | 2012-05-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Epitaxial growth of crystalline material |
US8362566B2 (en) | 2008-06-23 | 2013-01-29 | Intel Corporation | Stress in trigate devices using complimentary gate fill materials |
US8274097B2 (en) | 2008-07-01 | 2012-09-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reduction of edge effects from aspect ratio trapping |
US8981427B2 (en) | 2008-07-15 | 2015-03-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Polishing of small composite semiconductor materials |
EP2335273A4 (en) | 2008-09-19 | 2012-01-25 | Taiwan Semiconductor Mfg | FORMATION OF EQUIPMENT BY EXCESSIVE GROWTH OF THE EPITAXIAL LAYER |
US20100072515A1 (en) * | 2008-09-19 | 2010-03-25 | Amberwave Systems Corporation | Fabrication and structures of crystalline material |
US8253211B2 (en) | 2008-09-24 | 2012-08-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor sensor structures with reduced dislocation defect densities |
US7947543B2 (en) | 2008-09-25 | 2011-05-24 | Micron Technology, Inc. | Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation |
US7808051B2 (en) * | 2008-09-29 | 2010-10-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Standard cell without OD space effect in Y-direction |
US7933140B2 (en) | 2008-10-02 | 2011-04-26 | Micron Technology, Inc. | Techniques for reducing a voltage swing |
US7924630B2 (en) | 2008-10-15 | 2011-04-12 | Micron Technology, Inc. | Techniques for simultaneously driving a plurality of source lines |
US8223574B2 (en) | 2008-11-05 | 2012-07-17 | Micron Technology, Inc. | Techniques for block refreshing a semiconductor memory device |
JP2010118621A (ja) * | 2008-11-14 | 2010-05-27 | Nec Electronics Corp | 半導体装置及びその製造方法 |
US8213226B2 (en) | 2008-12-05 | 2012-07-03 | Micron Technology, Inc. | Vertical transistor memory cell and array |
US8227867B2 (en) * | 2008-12-23 | 2012-07-24 | International Business Machines Corporation | Body contacted hybrid surface semiconductor-on-insulator devices |
US8319294B2 (en) | 2009-02-18 | 2012-11-27 | Micron Technology, Inc. | Techniques for providing a source line plane |
WO2010102106A2 (en) * | 2009-03-04 | 2010-09-10 | Innovative Silicon Isi Sa | Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device |
WO2010114890A1 (en) | 2009-03-31 | 2010-10-07 | Innovative Silicon Isi Sa | Techniques for providing a semiconductor memory device |
CN101853882B (zh) * | 2009-04-01 | 2016-03-23 | 台湾积体电路制造股份有限公司 | 具有改进的开关电流比的高迁移率多面栅晶体管 |
JP5705207B2 (ja) | 2009-04-02 | 2015-04-22 | 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. | 結晶物質の非極性面から形成される装置とその製作方法 |
US8110467B2 (en) | 2009-04-21 | 2012-02-07 | International Business Machines Corporation | Multiple Vt field-effect transistor devices |
US8139418B2 (en) | 2009-04-27 | 2012-03-20 | Micron Technology, Inc. | Techniques for controlling a direct injection semiconductor memory device |
US8508994B2 (en) | 2009-04-30 | 2013-08-13 | Micron Technology, Inc. | Semiconductor device with floating gate and electrically floating body |
US8498157B2 (en) | 2009-05-22 | 2013-07-30 | Micron Technology, Inc. | Techniques for providing a direct injection semiconductor memory device |
US9768305B2 (en) | 2009-05-29 | 2017-09-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Gradient ternary or quaternary multiple-gate transistor |
US8617976B2 (en) | 2009-06-01 | 2013-12-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Source/drain re-growth for manufacturing III-V based transistors |
US8537610B2 (en) | 2009-07-10 | 2013-09-17 | Micron Technology, Inc. | Techniques for providing a semiconductor memory device |
US9076543B2 (en) | 2009-07-27 | 2015-07-07 | Micron Technology, Inc. | Techniques for providing a direct injection semiconductor memory device |
US8199595B2 (en) | 2009-09-04 | 2012-06-12 | Micron Technology, Inc. | Techniques for sensing a semiconductor memory device |
US8218353B1 (en) | 2009-09-16 | 2012-07-10 | Altera Corporation | Memory element circuitry with stressed transistors |
CN102034863B (zh) * | 2009-09-28 | 2012-10-31 | 中芯国际集成电路制造(上海)有限公司 | 半导体器件、含包围圆柱形沟道的栅的晶体管及制造方法 |
US9373694B2 (en) | 2009-09-28 | 2016-06-21 | Semiconductor Manufacturing International (Shanghai) Corporation | System and method for integrated circuits with cylindrical gate structures |
US8946028B2 (en) * | 2009-10-06 | 2015-02-03 | International Business Machines Corporation | Merged FinFETs and method of manufacturing the same |
US8138543B2 (en) | 2009-11-18 | 2012-03-20 | International Business Machines Corporation | Hybrid FinFET/planar SOI FETs |
US8174881B2 (en) | 2009-11-24 | 2012-05-08 | Micron Technology, Inc. | Techniques for reducing disturbance in a semiconductor device |
CN101726274B (zh) * | 2009-12-01 | 2011-04-27 | 中国科学院上海微系统与信息技术研究所 | 利用mosfet输入输出特性确定mosfet bsim模型参数宽度偏移量的方法 |
US8455334B2 (en) * | 2009-12-04 | 2013-06-04 | International Business Machines Corporation | Planar and nanowire field effect transistors |
US8310893B2 (en) | 2009-12-16 | 2012-11-13 | Micron Technology, Inc. | Techniques for reducing impact of array disturbs in a semiconductor memory device |
US8765532B2 (en) * | 2010-01-11 | 2014-07-01 | International Business Machines Corporation | Fabrication of field effect devices using spacers |
US8138791B1 (en) | 2010-01-27 | 2012-03-20 | Altera Corporation | Stressed transistors with reduced leakage |
US8416636B2 (en) | 2010-02-12 | 2013-04-09 | Micron Technology, Inc. | Techniques for controlling a semiconductor memory device |
US8411513B2 (en) | 2010-03-04 | 2013-04-02 | Micron Technology, Inc. | Techniques for providing a semiconductor memory device having hierarchical bit lines |
US8576631B2 (en) | 2010-03-04 | 2013-11-05 | Micron Technology, Inc. | Techniques for sensing a semiconductor memory device |
US8369177B2 (en) | 2010-03-05 | 2013-02-05 | Micron Technology, Inc. | Techniques for reading from and/or writing to a semiconductor memory device |
US8278179B2 (en) * | 2010-03-09 | 2012-10-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | LDD epitaxy for FinFETs |
CN102812552B (zh) | 2010-03-15 | 2015-11-25 | 美光科技公司 | 半导体存储器装置及用于对半导体存储器装置进行偏置的方法 |
US8598006B2 (en) * | 2010-03-16 | 2013-12-03 | International Business Machines Corporation | Strain preserving ion implantation methods |
US9312179B2 (en) * | 2010-03-17 | 2016-04-12 | Taiwan-Semiconductor Manufacturing Co., Ltd. | Method of making a finFET, and finFET formed by the method |
US8411524B2 (en) | 2010-05-06 | 2013-04-02 | Micron Technology, Inc. | Techniques for refreshing a semiconductor memory device |
US8378394B2 (en) | 2010-09-07 | 2013-02-19 | International Business Machines Corporation | Method for forming and structure of a recessed source/drain strap for a MUGFET |
US8753942B2 (en) | 2010-12-01 | 2014-06-17 | Intel Corporation | Silicon and silicon germanium nanowire structures |
TWI627756B (zh) | 2011-03-25 | 2018-06-21 | 半導體能源研究所股份有限公司 | 場效電晶體及包含該場效電晶體之記憶體與半導體電路 |
US8649209B1 (en) * | 2011-03-25 | 2014-02-11 | Altera Corporation | Memory element circuitry with reduced oxide definition width |
US8531878B2 (en) | 2011-05-17 | 2013-09-10 | Micron Technology, Inc. | Techniques for providing a semiconductor memory device |
US9559216B2 (en) | 2011-06-06 | 2017-01-31 | Micron Technology, Inc. | Semiconductor memory device and method for biasing same |
EP2761647B1 (en) | 2011-09-30 | 2020-09-23 | Intel Corporation | Method of fabrication of a non-planar transistor |
US8659097B2 (en) | 2012-01-16 | 2014-02-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Control fin heights in FinFET structures |
FR2986369B1 (fr) * | 2012-01-30 | 2016-12-02 | Commissariat Energie Atomique | Procede pour contraindre un motif mince et procede de fabrication de transistor integrant ledit procede |
FR2987959B1 (fr) * | 2012-03-06 | 2014-03-14 | Soitec Silicon On Insulator | Multiplexeur, table de correspondance et fgpa |
US20130237026A1 (en) * | 2012-03-09 | 2013-09-12 | Taiwan Semiconductor Manufacturing Company, Ltd., ("Tsmc") | Finfet device having a strained region |
JP6013201B2 (ja) * | 2012-03-22 | 2016-10-25 | 三菱マテリアル電子化成株式会社 | 多結晶シリコンインゴット及び多結晶シリコンインゴットの製造方法 |
CN103378152B (zh) * | 2012-04-24 | 2016-02-17 | 中芯国际集成电路制造(上海)有限公司 | 鳍式场效应管及其形成方法 |
US20130320453A1 (en) * | 2012-06-01 | 2013-12-05 | Abhijit Jayant Pethe | Area scaling on trigate transistors |
US8772117B2 (en) * | 2012-12-05 | 2014-07-08 | Globalfoundries Inc. | Combination FinFET and planar FET semiconductor device and methods of making such a device |
US9142674B2 (en) * | 2013-03-15 | 2015-09-22 | GlobalFoundries, Inc. | FINFET devices having a body contact and methods of forming the same |
US20140264490A1 (en) | 2013-03-18 | 2014-09-18 | International Business Machines Corporation | Replacement gate electrode with a self-aligned dielectric spacer |
US8957478B2 (en) | 2013-06-24 | 2015-02-17 | International Business Machines Corporation | Semiconductor device including source/drain formed on bulk and gate channel formed on oxide layer |
US9059041B2 (en) | 2013-07-02 | 2015-06-16 | International Business Machines Corporation | Dual channel hybrid semiconductor-on-insulator semiconductor devices |
US9553012B2 (en) * | 2013-09-13 | 2017-01-24 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and the manufacturing method thereof |
US9391202B2 (en) * | 2013-09-24 | 2016-07-12 | Samsung Electronics Co., Ltd. | Semiconductor device |
US9337195B2 (en) * | 2013-12-18 | 2016-05-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor devices and methods of manufacture thereof |
US9236397B2 (en) * | 2014-02-04 | 2016-01-12 | Globalfoundries Inc. | FinFET device containing a composite spacer structure |
US9443769B2 (en) | 2014-04-21 | 2016-09-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Wrap-around contact |
JP6537341B2 (ja) * | 2014-05-07 | 2019-07-03 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US9484270B2 (en) | 2014-09-16 | 2016-11-01 | International Business Machines Corporation | Fully-depleted silicon-on-insulator transistors |
US9472575B2 (en) * | 2015-02-06 | 2016-10-18 | International Business Machines Corporation | Formation of strained fins in a finFET device |
US9401334B1 (en) | 2015-03-13 | 2016-07-26 | International Business Machines Corporation | Preventing unauthorized use of integrated circuits for radiation-hard applications |
WO2017052587A1 (en) * | 2015-09-25 | 2017-03-30 | Intel Corporation | Passivation of transistor channel region interfaces |
US9496363B1 (en) | 2015-10-14 | 2016-11-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | FinFET isolation structure and method for fabricating the same |
US20190363135A1 (en) * | 2016-09-29 | 2019-11-28 | Intel Corporation | Resistive random access memory cell |
US11757004B2 (en) | 2016-09-30 | 2023-09-12 | Intel Corporation | Transistors including source/drain employing double-charge dopants |
CN107958873B (zh) * | 2016-10-18 | 2020-11-27 | 中芯国际集成电路制造(上海)有限公司 | 鳍式场效应管及其形成方法 |
TWI736644B (zh) * | 2017-06-29 | 2021-08-21 | 聯華電子股份有限公司 | 場效電晶體及元件 |
FR3070220A1 (fr) * | 2017-08-16 | 2019-02-22 | Stmicroelectronics (Crolles 2) Sas | Cointegration de transistors sur substrat massif, et sur semiconducteur sur isolant |
US20190088766A1 (en) | 2017-09-21 | 2019-03-21 | Globalfoundries Inc. | Methods of forming epi semiconductor material in source/drain regions of a transistor device formed on an soi substrate |
CN109671777B (zh) * | 2017-10-13 | 2021-10-15 | 中芯国际集成电路制造(上海)有限公司 | 半导体结构及其形成方法 |
US10971402B2 (en) * | 2019-06-17 | 2021-04-06 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device including interface layer and method of fabricating thereof |
US11393915B2 (en) | 2020-12-09 | 2022-07-19 | Globalfoundries U.S. Inc. | Epi semiconductor structures with increased epi volume in source/drain regions of a transistor device formed on an SOI substrate |
US11810951B2 (en) | 2021-12-16 | 2023-11-07 | Globalfoundries U.S. Inc. | Semiconductor-on-insulator field effect transistor with performance-enhancing source/drain shapes and/or materials |
CN114121613B (zh) * | 2022-01-27 | 2022-04-22 | 广东省大湾区集成电路与系统应用研究院 | 一种改善fdsoi外延生长的薄膜工艺优化方法 |
Family Cites Families (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4069094A (en) | 1976-12-30 | 1978-01-17 | Rca Corporation | Method of manufacturing apertured aluminum oxide substrates |
JPS551103A (en) | 1978-06-06 | 1980-01-07 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Semiconductor resistor |
US4497683A (en) | 1982-05-03 | 1985-02-05 | At&T Bell Laboratories | Process for producing dielectrically isolated silicon devices |
US4631803A (en) | 1985-02-14 | 1986-12-30 | Texas Instruments Incorporated | Method of fabricating defect free trench isolation devices |
US4892614A (en) | 1986-07-07 | 1990-01-09 | Texas Instruments Incorporated | Integrated circuit isolation process |
JPH0640583B2 (ja) | 1987-07-16 | 1994-05-25 | 株式会社東芝 | 半導体装置の製造方法 |
US4946799A (en) | 1988-07-08 | 1990-08-07 | Texas Instruments, Incorporated | Process for making high performance silicon-on-insulator transistor with body node to source node connection |
JPH0394479A (ja) | 1989-06-30 | 1991-04-19 | Hitachi Ltd | 感光性を有する半導体装置 |
US5155571A (en) | 1990-08-06 | 1992-10-13 | The Regents Of The University Of California | Complementary field effect transistors having strained superlattice structure |
JP3019430B2 (ja) | 1991-01-21 | 2000-03-13 | ソニー株式会社 | 半導体集積回路装置 |
US5338960A (en) | 1992-08-05 | 1994-08-16 | Harris Corporation | Formation of dual polarity source/drain extensions in lateral complementary channel MOS architectures |
US5461250A (en) | 1992-08-10 | 1995-10-24 | International Business Machines Corporation | SiGe thin film or SOI MOSFET and method for making the same |
US5273915A (en) | 1992-10-05 | 1993-12-28 | Motorola, Inc. | Method for fabricating bipolar junction and MOS transistors on SOI |
EP0655785B1 (en) | 1993-11-30 | 2001-10-17 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory device and its manufacturing method |
KR950034754A (ko) | 1994-05-06 | 1995-12-28 | 윌리엄 이. 힐러 | 폴리실리콘 저항을 형성하는 방법 및 이 방법으로부터 제조된 저항 |
US5534713A (en) | 1994-05-20 | 1996-07-09 | International Business Machines Corporation | Complementary metal-oxide semiconductor transistor logic using strained SI/SIGE heterostructure layers |
US5479033A (en) | 1994-05-27 | 1995-12-26 | Sandia Corporation | Complementary junction heterostructure field-effect transistor |
US5447884A (en) | 1994-06-29 | 1995-09-05 | International Business Machines Corporation | Shallow trench isolation with thin nitride liner |
US6433382B1 (en) | 1995-04-06 | 2002-08-13 | Motorola, Inc. | Split-gate vertically oriented EEPROM device and process |
US5629544A (en) | 1995-04-25 | 1997-05-13 | International Business Machines Corporation | Semiconductor diode with silicide films and trench isolation |
US5955766A (en) | 1995-06-12 | 1999-09-21 | Kabushiki Kaisha Toshiba | Diode with controlled breakdown |
US5708288A (en) | 1995-11-02 | 1998-01-13 | Motorola, Inc. | Thin film silicon on insulator semiconductor integrated circuit with electrostatic damage protection and method |
US6399970B2 (en) | 1996-09-17 | 2002-06-04 | Matsushita Electric Industrial Co., Ltd. | FET having a Si/SiGeC heterojunction channel |
US5789807A (en) | 1996-10-15 | 1998-08-04 | International Business Machines Corporation | On-chip power distribution for improved decoupling |
US5811857A (en) | 1996-10-22 | 1998-09-22 | International Business Machines Corporation | Silicon-on-insulator body-coupled gated diode for electrostatic discharge (ESD) and analog applications |
US5763315A (en) | 1997-01-28 | 1998-06-09 | International Business Machines Corporation | Shallow trench isolation with oxide-nitride/oxynitride liner |
US5714777A (en) | 1997-02-19 | 1998-02-03 | International Business Machines Corporation | Si/SiGe vertical junction field effect transistor |
JP4053647B2 (ja) | 1997-02-27 | 2008-02-27 | 株式会社東芝 | 半導体記憶装置及びその製造方法 |
US5906951A (en) | 1997-04-30 | 1999-05-25 | International Business Machines Corporation | Strained Si/SiGe layers on insulator |
DE19720008A1 (de) | 1997-05-13 | 1998-11-19 | Siemens Ag | Integrierte CMOS-Schaltungsanordnung und Verfahren zu deren Herstellung |
US5894152A (en) | 1997-06-18 | 1999-04-13 | International Business Machines Corporation | SOI/bulk hybrid substrate and method of forming the same |
CA2295069A1 (en) | 1997-06-24 | 1998-12-30 | Eugene A. Fitzgerald | Controlling threading dislocation densities in ge on si using graded gesi layers and planarization |
US6221709B1 (en) | 1997-06-30 | 2001-04-24 | Stmicroelectronics, Inc. | Method of fabricating a CMOS integrated circuit device with LDD N-channel transistor and non-LDD P-channel transistor |
US6103599A (en) | 1997-07-25 | 2000-08-15 | Silicon Genesis Corporation | Planarizing technique for multilayered substrates |
EP0923116A1 (en) | 1997-12-12 | 1999-06-16 | STMicroelectronics S.r.l. | Process for manufacturing integrated multi-crystal silicon resistors in MOS technology and integrated MOS device comprising multi-crystal silicon resistors |
US6100153A (en) | 1998-01-20 | 2000-08-08 | International Business Machines Corporation | Reliable diffusion resistor and diffusion capacitor |
US5972722A (en) | 1998-04-14 | 1999-10-26 | Texas Instruments Incorporated | Adhesion promoting sacrificial etch stop layer in advanced capacitor structures |
JP3265569B2 (ja) | 1998-04-15 | 2002-03-11 | 日本電気株式会社 | 半導体装置及びその製造方法 |
US6558998B2 (en) | 1998-06-15 | 2003-05-06 | Marc Belleville | SOI type integrated circuit with a decoupling capacity and process for embodiment of such a circuit |
JP3403076B2 (ja) | 1998-06-30 | 2003-05-06 | 株式会社東芝 | 半導体装置及びその製造方法 |
US6008095A (en) | 1998-08-07 | 1999-12-28 | Advanced Micro Devices, Inc. | Process for formation of isolation trenches with high-K gate dielectrics |
US6387739B1 (en) | 1998-08-07 | 2002-05-14 | International Business Machines Corporation | Method and improved SOI body contact structure for transistors |
US6015993A (en) | 1998-08-31 | 2000-01-18 | International Business Machines Corporation | Semiconductor diode with depleted polysilicon gate structure and method |
JP2000132990A (ja) | 1998-10-27 | 2000-05-12 | Fujitsu Ltd | 冗長判定回路、半導体記憶装置及び冗長判定方法 |
US5965917A (en) * | 1999-01-04 | 1999-10-12 | Advanced Micro Devices, Inc. | Structure and method of formation of body contacts in SOI MOSFETS to elimate floating body effects |
US6258664B1 (en) | 1999-02-16 | 2001-07-10 | Micron Technology, Inc. | Methods of forming silicon-comprising materials having roughened outer surfaces, and methods of forming capacitor constructions |
US6358791B1 (en) | 1999-06-04 | 2002-03-19 | International Business Machines Corporation | Method for increasing a very-large-scale-integrated (VLSI) capacitor size on bulk silicon and silicon-on-insulator (SOI) wafers and structure formed thereby |
US6362082B1 (en) | 1999-06-28 | 2002-03-26 | Intel Corporation | Methodology for control of short channel effects in MOS transistors |
US6339232B1 (en) | 1999-09-20 | 2002-01-15 | Kabushika Kaisha Toshiba | Semiconductor device |
US6303479B1 (en) * | 1999-12-16 | 2001-10-16 | Spinnaker Semiconductor, Inc. | Method of manufacturing a short-channel FET with Schottky-barrier source and drain contacts |
US7391087B2 (en) | 1999-12-30 | 2008-06-24 | Intel Corporation | MOS transistor structure and method of fabrication |
US6255175B1 (en) | 2000-01-07 | 2001-07-03 | Advanced Micro Devices, Inc. | Fabrication of a field effect transistor with minimized parasitic Miller capacitance |
TW503439B (en) | 2000-01-21 | 2002-09-21 | United Microelectronics Corp | Combination structure of passive element and logic circuit on silicon on insulator wafer |
US6475838B1 (en) | 2000-03-14 | 2002-11-05 | International Business Machines Corporation | Methods for forming decoupling capacitors |
US6281059B1 (en) | 2000-05-11 | 2001-08-28 | Worldwide Semiconductor Manufacturing Corp. | Method of doing ESD protective device ion implant without additional photo mask |
DE10025264A1 (de) | 2000-05-22 | 2001-11-29 | Max Planck Gesellschaft | Feldeffekt-Transistor auf der Basis von eingebetteten Clusterstrukturen und Verfahren zu seiner Herstellung |
JP2001338988A (ja) | 2000-05-25 | 2001-12-07 | Hitachi Ltd | 半導体装置及びその製造方法 |
AU2001263211A1 (en) | 2000-05-26 | 2001-12-11 | Amberwave Systems Corporation | Buried channel strained silicon fet using an ion implanted doped layer |
JP3843708B2 (ja) | 2000-07-14 | 2006-11-08 | 日本電気株式会社 | 半導体装置およびその製造方法ならびに薄膜コンデンサ |
US6429061B1 (en) | 2000-07-26 | 2002-08-06 | International Business Machines Corporation | Method to fabricate a strained Si CMOS structure using selective epitaxial deposition of Si after device isolation formation |
FR2812764B1 (fr) | 2000-08-02 | 2003-01-24 | St Microelectronics Sa | Procede de fabrication d'un substrat de type substrat-sur- isolant ou substrat-sur-vide et dispositif obtenu |
JP2002076287A (ja) | 2000-08-28 | 2002-03-15 | Nec Kansai Ltd | 半導体装置およびその製造方法 |
JP4044276B2 (ja) * | 2000-09-28 | 2008-02-06 | 株式会社東芝 | 半導体装置及びその製造方法 |
US6413802B1 (en) | 2000-10-23 | 2002-07-02 | The Regents Of The University Of California | Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of manufacture |
WO2002047168A2 (en) | 2000-12-04 | 2002-06-13 | Amberwave Systems Corporation | Cmos inverter circuits utilizing strained silicon surface channel mosfets |
US6414355B1 (en) | 2001-01-26 | 2002-07-02 | Advanced Micro Devices, Inc. | Silicon-on-insulator (SOI) chip having an active layer of non-uniform thickness |
US6894324B2 (en) | 2001-02-15 | 2005-05-17 | United Microelectronics Corp. | Silicon-on-insulator diodes and ESD protection circuits |
US6518610B2 (en) | 2001-02-20 | 2003-02-11 | Micron Technology, Inc. | Rhodium-rich oxygen barriers |
US6475869B1 (en) * | 2001-02-26 | 2002-11-05 | Advanced Micro Devices, Inc. | Method of forming a double gate transistor having an epitaxial silicon/germanium channel region |
US6593181B2 (en) | 2001-04-20 | 2003-07-15 | International Business Machines Corporation | Tailored insulator properties for devices |
US6586311B2 (en) | 2001-04-25 | 2003-07-01 | Advanced Micro Devices, Inc. | Salicide block for silicon-on-insulator (SOI) applications |
JP2002329861A (ja) | 2001-05-01 | 2002-11-15 | Mitsubishi Electric Corp | 半導体装置およびその製造方法 |
US6952040B2 (en) | 2001-06-29 | 2005-10-04 | Intel Corporation | Transistor structure and method of fabrication |
US6576526B2 (en) | 2001-07-09 | 2003-06-10 | Chartered Semiconductor Manufacturing Ltd. | Darc layer for MIM process integration |
US6891209B2 (en) | 2001-08-13 | 2005-05-10 | Amberwave Systems Corporation | Dynamic random access memory trench capacitors |
JP2003124345A (ja) * | 2001-10-11 | 2003-04-25 | Oki Electric Ind Co Ltd | 半導体装置及びその製造方法 |
US6521952B1 (en) | 2001-10-22 | 2003-02-18 | United Microelectronics Corp. | Method of forming a silicon controlled rectifier devices in SOI CMOS process for on-chip ESD protection |
US6621131B2 (en) | 2001-11-01 | 2003-09-16 | Intel Corporation | Semiconductor transistor having a stressed channel |
JP4173658B2 (ja) * | 2001-11-26 | 2008-10-29 | 株式会社ルネサステクノロジ | 半導体装置及びその製造方法 |
US6657259B2 (en) * | 2001-12-04 | 2003-12-02 | International Business Machines Corporation | Multiple-plane FinFET CMOS |
US6657276B1 (en) | 2001-12-10 | 2003-12-02 | Advanced Micro Devices, Inc. | Shallow trench isolation (STI) region with high-K liner and method of formation |
US6600170B1 (en) | 2001-12-17 | 2003-07-29 | Advanced Micro Devices, Inc. | CMOS with strained silicon channel NMOS and silicon germanium channel PMOS |
US6784101B1 (en) | 2002-05-16 | 2004-08-31 | Advanced Micro Devices Inc | Formation of high-k gate dielectric layers for MOS devices fabricated on strained lattice semiconductor substrates with minimized stress relaxation |
AU2003238963A1 (en) | 2002-06-07 | 2003-12-22 | Amberwave Systems Corporation | Semiconductor devices having strained dual channel layers |
US6812103B2 (en) | 2002-06-20 | 2004-11-02 | Micron Technology, Inc. | Methods of fabricating a dielectric plug in MOSFETS to suppress short-channel effects |
US6617643B1 (en) | 2002-06-28 | 2003-09-09 | Mcnc | Low power tunneling metal-oxide-semiconductor (MOS) device |
JP4376490B2 (ja) | 2002-07-19 | 2009-12-02 | 富士通マイクロエレクトロニクス株式会社 | 半導体装置の製造方法 |
US6686247B1 (en) | 2002-08-22 | 2004-02-03 | Intel Corporation | Self-aligned contacts to gates |
JP4030383B2 (ja) | 2002-08-26 | 2008-01-09 | 株式会社ルネサステクノロジ | 半導体装置およびその製造方法 |
US6573172B1 (en) | 2002-09-16 | 2003-06-03 | Advanced Micro Devices, Inc. | Methods for improving carrier mobility of PMOS and NMOS devices |
US6730573B1 (en) | 2002-11-01 | 2004-05-04 | Chartered Semiconductor Manufacturing Ltd. | MIM and metal resistor formation at CU beol using only one extra mask |
US6720619B1 (en) * | 2002-12-13 | 2004-04-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor-on-insulator chip incorporating partially-depleted, fully-depleted, and multiple-gate devices |
US6919233B2 (en) | 2002-12-31 | 2005-07-19 | Texas Instruments Incorporated | MIM capacitors and methods for fabricating same |
US6921913B2 (en) | 2003-03-04 | 2005-07-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Strained-channel transistor structure with lattice-mismatched zone |
US6794764B1 (en) | 2003-03-05 | 2004-09-21 | Advanced Micro Devices, Inc. | Charge-trapping memory arrays resistant to damage from contact hole information |
US6762448B1 (en) * | 2003-04-03 | 2004-07-13 | Advanced Micro Devices, Inc. | FinFET device with multiple fin structures |
US6867433B2 (en) * | 2003-04-30 | 2005-03-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor-on-insulator chip incorporating strained-channel partially-depleted, fully-depleted, and multiple-gate transistors |
US20040266116A1 (en) * | 2003-06-26 | 2004-12-30 | Rj Mears, Llc | Methods of fabricating semiconductor structures having improved conductivity effective mass |
US6891192B2 (en) | 2003-08-04 | 2005-05-10 | International Business Machines Corporation | Structure and method of making strained semiconductor CMOS transistors having lattice-mismatched semiconductor regions underlying source and drain regions |
US6872610B1 (en) | 2003-11-18 | 2005-03-29 | Texas Instruments Incorporated | Method for preventing polysilicon mushrooming during selective epitaxial processing |
US7224068B2 (en) * | 2004-04-06 | 2007-05-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Stable metal structure with tungsten plug |
US7115974B2 (en) * | 2004-04-27 | 2006-10-03 | Taiwan Semiconductor Manfacturing Company, Ltd. | Silicon oxycarbide and silicon carbonitride based materials for MOS devices |
-
2003
- 2003-04-30 US US10/426,566 patent/US6867433B2/en not_active Expired - Lifetime
- 2003-07-29 TW TW092120623A patent/TWI255043B/zh not_active IP Right Cessation
- 2003-09-03 CN CNB031565328A patent/CN1293635C/zh not_active Expired - Lifetime
-
2004
- 2004-03-31 SG SG200401733-1A patent/SG143035A1/en unknown
- 2004-04-23 CN CNU2004200483757U patent/CN2704927Y/zh not_active Expired - Lifetime
- 2004-11-29 US US10/999,564 patent/US7268024B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101989617A (zh) * | 2009-07-31 | 2011-03-23 | 台湾积体电路制造股份有限公司 | 用于半导体晶体管的垂直鳍状结构及其制造方法 |
CN101989617B (zh) * | 2009-07-31 | 2013-03-27 | 台湾积体电路制造股份有限公司 | 用于半导体晶体管的垂直鳍状结构及其制造方法 |
US8629478B2 (en) | 2009-07-31 | 2014-01-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fin structure for high mobility multiple-gate transistor |
Also Published As
Publication number | Publication date |
---|---|
SG143035A1 (en) | 2008-06-27 |
US6867433B2 (en) | 2005-03-15 |
US20040217420A1 (en) | 2004-11-04 |
CN1293635C (zh) | 2007-01-03 |
US7268024B2 (en) | 2007-09-11 |
US20050093067A1 (en) | 2005-05-05 |
TWI255043B (en) | 2006-05-11 |
TW200423403A (en) | 2004-11-01 |
CN2704927Y (zh) | 2005-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1293635C (zh) | 可同时具有部分耗尽晶体管与完全耗尽晶体管的芯片及其制作方法 | |
CN100345301C (zh) | 整合型晶体管及其制造方法 | |
CN1235291C (zh) | 半导体器件和半导体器件的制造方法 | |
CN1284245C (zh) | 使用多栅极晶体管的互补金属氧化物半导体晶体管反向器 | |
CN2751447Y (zh) | 多重栅极晶体管 | |
CN1293637C (zh) | 具有应变沟道的互补式金属氧化物半导体及其制作方法 | |
CN100352020C (zh) | 场效应晶体管器件及其制造方法 | |
CN100337334C (zh) | 双栅极场效应晶体管及其制造方法 | |
US20070181941A1 (en) | High voltage semiconductor devices and methods for fabricating the same | |
CN1503372A (zh) | 具有多重闸极及应变的通道层的晶体管及其制造方法 | |
CN1674298A (zh) | 场效应晶体管 | |
CN107527945B (zh) | 外延结构、半导体装置以及其制造方法 | |
US20120273903A1 (en) | Semiconductor device | |
WO2013037167A1 (zh) | Mosfet及其制造方法 | |
CN1830090A (zh) | 利用自对准后栅极控制前栅极绝缘体上硅mosfet的器件阈值 | |
JP2002184973A (ja) | 半導体装置及びその製造方法 | |
CN101030541A (zh) | 半导体晶体管元件及其制作方法 | |
CN1236999A (zh) | “绝缘体上的硅”半导体装置及其制造方法 | |
CN101604705B (zh) | 四周环绕栅极鳍栅晶体管及其制作方法 | |
CN1424761A (zh) | 半导体装置及其制造方法 | |
CN1695254A (zh) | 半导体装置及其制造方法 | |
CN1819271A (zh) | 硅覆盖绝缘层装置、晶片及其形成方法 | |
US11282705B2 (en) | Semiconductor device and method of forming the same | |
US6501135B1 (en) | Germanium-on-insulator (GOI) device | |
CN1812060A (zh) | 半导体器件的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20070103 |
|
CX01 | Expiry of patent term |