CN108515838A - A kind of hybrid power system with limp-home module - Google Patents
A kind of hybrid power system with limp-home module Download PDFInfo
- Publication number
- CN108515838A CN108515838A CN201810100232.2A CN201810100232A CN108515838A CN 108515838 A CN108515838 A CN 108515838A CN 201810100232 A CN201810100232 A CN 201810100232A CN 108515838 A CN108515838 A CN 108515838A
- Authority
- CN
- China
- Prior art keywords
- gear
- limp
- motor
- shaft
- heel row
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/24—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/02—Arrangement or mounting of electrical propulsion units comprising more than one electric motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/26—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/36—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/36—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
- B60K6/365—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/38—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/40—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T1/00—Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
- B60T1/02—Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
- B60T1/06—Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels acting otherwise than on tread, e.g. employing rim, drum, disc, or transmission or on double wheels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Retarders (AREA)
- Structure Of Transmissions (AREA)
- Arrangement Of Transmissions (AREA)
Abstract
The invention discloses a kind of hybrid power systems with limp-home module, including central shaft, the first hollow shaft and the second hollow shaft, lock device, first motor, the second motor and the gear ring being set in together, the tail end of central shaft is equipped with heel row planet carrier, and heel row planet carrier is equipped with heel row planetary gear;The rear end of first hollow shaft is equipped with heel row sun gear, and the rear end of the second hollow shaft is equipped with front-seat sun gear;First motor passes through the second reduction gearing and the second hollow axis connection by the first reduction gearing and the first hollow axis connection, the second motor;Gear ring is engaged with front-seat planetary gear and heel row planetary gear jointly, and gear ring is connected with output shaft, and output shaft is used for exporting hybrid power, limp-home module, limp-home when for electric drive failure.The axial length of power assembly can be greatly decreased in the system, and trailer is avoided when realizing electric drive failure.
Description
Technical field
The present invention relates to hybrid power field, more particularly to a kind of hybrid drive train with limp-home module.
Background technology
Planetary gear mechanism has the characteristics that multiple degrees of freedom, and mostly it is limited using two motors in hybrid power system
Degree of freedom.It is full decoupled to the rotating speed of engine and torque respectively by two motors, so that engine working point is freely controlled
System realizes electrodeless variable-speed, and improves hybrid power system fuel economy to the maximum extent.
It mostly uses two or more planetary gear trains currently on the market to be combined, although using multiple planetary gear trains making
It is freer that power system architecture combination must be mixed, but it is various to also result in hybrid dynamic system configuration complexity, and increase power flow in system
To and system effectiveness influence factor complexity and diversity.
Existing mixed power city bus planet row hybrid power system has the disadvantages that:
The planet row hybrid power system that new energy urban bus is applied in the market at present is mainly bi-motor duplicate rows
The coaxially arranged scheme of star row, the main problems are as follows:
1, the maximum speed of two driving motors is relatively low, and peak torque is larger, and motor cost is high;
2, the coaxially arranged scheme causes power assembly axial length larger, requires arrangement space high, vehicle adaptability
Difference;
3, the system mostly uses split type encapsulation scheme, and there are multiple sealing rings, and not only sealing difficulty is larger, is easy leakage
Oil, and maintenance and repair difficulty is big;
4, the system is only capable of being applied individually to any urban bus, can not adapt to coach simultaneously, although can realize
Engine directly drives vehicle, but engine directly drive vehicle applied probability it is very low, vehicle suitability is poor;
5, the system does not have limp-home function, can only trailer once electric drive system fails.
It is an object of the invention to solve the problems, such as above five, it is dynamic to provide a kind of double electric machine double row planetary gear parallel arrangement mixing
Power assembly scheme.The system uses following scheme:
1, using high speed low torque permanent magnet synchronous motor, motor maximum speed is not less than 15000rpm;
2, bi-motor uses parallel shaft arrangement, and is connected respectively from different planet row sun gears by deceleration mechanism, energy
The axial length of power assembly is greatly decreased, reduces the arrangement space of power assembly, improves power assembly and different automobile types is fitted
Use range;
3, to using water-cooling pattern in motor, mechanical assembly part set, both reduce sealing element, improve sealing reliability and
Seal life, and lubrication can be synchronized to bearing, gear;
4, by designing the connection type of double planet wheel rows of mixing and engine, the use that engine directly drives vehicle operation is improved
Probability makes the transmission efficiency higher of power assembly system, reduces the fuel consumption of system;
5, can be the case where power drive system fail using limping function change-over device, limp-home avoids trailer;
6, the drive mechanism that this system uses, gear ring is shared by double planet wheel rows of mixing, can be by the uncoupled dynamic space of engine, one point
Portion passes to rear axle, and another part passes to first motor and generates electricity, and two planet rows decouple engine power, make
Start function to be fixed on optimal oil consumption point to work, not influenced by speed.
Invention content
The purpose of the present invention is to provide a kind of hybrid power systems with limp-home module, it is intended to solve the prior art
Middle power assembly axial length is big, arrangement space require high, sealing maintenance difficulties are big, engine directly drive vehicle probability it is low,
The problem of electric drive system failure cannot continue traveling.
To realize above-mentioned technical purpose and the technique effect, the invention is realized by the following technical scheme:
A kind of hybrid power system with limp-home module, including:Central shaft, the tail end of the central shaft are ranked after being equipped with
Carrier, the heel row planet carrier are equipped with heel row planetary gear, and the central shaft is used for inputting engine power;First hollow shaft,
It is set on center shaft, and the rear end of first hollow shaft is equipped with heel row sun gear, the heel row sun gear and the heel row
Planetary gear engages, and the front end outer wall of first hollow shaft is equipped with the first cannon pinion;Second hollow shaft is sleeved on
In one hollow shaft, the rear end of second hollow shaft is provided with the front-seat planet carrier being fixedly connected with the shell of system, before described
Rank carrier and be equipped with front-seat planetary gear, the rear end of second hollow shaft is equipped with front-seat sun gear, the front row sun gear with
The front row planetary gear engagement, the front end outer wall of second hollow shaft are equipped with the second cannon pinion;Gear ring, jointly with
The front row planetary gear and heel row planetary gear engagement, the gear ring are connected with output shaft, and the output shaft is used for exporting mixed
Close power;First motor and the second motor, the first motor are nibbled by the first reduction gearing and first cannon pinion
It closes, second motor is engaged by the second reduction gearing with second cannon pinion;The first motor and described
Two motors are arranged in parallel in the both sides of the central shaft;Second reduction gearing includes front-seat reduction gearing and heel row reducing gear
Wheel, the second motor coaxle driving front-seat reduction gearing and the heel row reduction gearing, the front row reduction gearing or
The heel row reduction gearing covers switching with engaging for second cannon pinion by first gear;Limp-home module, packet
The limp-home module output shaft for including limp-home module gear wheels group and being attached thereto;Using limp-home module, can be driven in electricity
The case where dynamic thrashing, limp-home avoids trailer;And input shaft, one end of the input shaft connects engine, another
End is equipped with total input gear, and total input gear is connect with the center shaft gear or total input gear and limp-home module
Gear set connection is covered by second gear to be switched, and the limp-home module output shaft connects gear ring.
Preferably, hybrid power system further includes the second motor output shaft, two level bevel gear, and the limp-home module is defeated
Shaft is connect with front-seat reduction gearing, and front-seat reduction gearing is connect with the second motor output shaft, and the second motor output shaft passes through the
One clutch is connect with two level bevel gear, and the two level bevel gear connect with gear ring.
Preferably, the first hollow shaft front end is equipped with lock device, and the lock device is for locking the first hollow shaft, the locking
The shell of device one end and system is slidably connected, and the other end is slidably connected by sliding with the first hollow shaft.
Preferably, first gear set, second gear set realize slide handover by automatically controlled mode.
Preferably, first motor and second motor are integrated in the shell of system.
Preferably, output shaft stretches out the rear end of the shell of the system, and the input shaft stretches out the front end of the shell of system,
Pass through a kind of connection in flexible disk or clutch with the engine.
The operation principle of the present invention is that:Limp-home module has power transmission path handoff functionality, under normal circumstances, the
Two geared sleeves slide to the left, and center shaft gear is connect with total input gear, and total input gear is covered by first gear and central shaft
Gear connects, and engine torque is directly delivered on heel row planet carrier, and rear axle, the second electricity are passed to after certain speedup subtracts torsion
Machine imparts power to front-seat planetary mechanism by the second hollow shaft, final output to output shaft, realizes engine and motor
Combination drive pattern;When electric drive failure, limp-home, second gear set slides to the right, changes torque transfer route, makes hair
Motivation torque is transmitted to gear ring after gear set, front-seat reduction gearing and two level bevel gear torque, and realization starts function direct
Make vehicle start, realization that function be started directly to make vehicle start.
The present invention technique effect be:
1, the peak torque of double drive motor can at least reduce 50%, and motor size is obviously reduced, the cost of driving motor
About 45% can be reduced, the cost of hybrid power system is reduced;
2, bi-motor uses parallel shaft arrangement mode, the axial dimension of power assembly can be greatly decreased, in limited public transport
In car installation space, arrangement is more flexible, and can be suitably used for different automobile types, expands adaptation vehicle range;
3, this system has limp-home function, when power drive system fails, trailer is can avoid, using limp-home mould
Formula continues to run with;
4, have a wide range of application, can be used for urban bus, highway passenger vehicle, coach, new energy truck, new energy vapour
The fields such as vehicle.
Description of the drawings
Fig. 1 is a kind of structural schematic diagram of the hybrid power system with limp-home module of the present invention.
In figure:1, engine;11, flexible disk;12, the shell of system;13, input shaft;131, total input gear;2, it walks lamely
It goes home module;21, limp-home module gear wheels group;22, limp-home module output shaft;24, first gear set;3, lock device;
4, first motor;41, the first reduction gearing;5, the second motor;51, front-seat reduction gearing;52, heel row reduction gearing;53, second
Motor output shaft;54, two level bevel gear;55, first gear set;56, first clutch;6, central shaft;61, center shaft gear;
7, the first hollow shaft;71, heel row sun gear;72, heel row planet carrier;73, heel row planetary gear;74, the first cannon pinion;75、
8, the second hollow shaft;81, front-seat sun gear;82, front-seat planet carrier;83, front-seat planetary gear;84, the second cannon pinion;9, tooth
Circle;10, output shaft.
Specific implementation mode
Below in conjunction with the accompanying drawings, the specific implementation mode of the present invention is described in detail, it is to be understood that the guarantor of the present invention
Shield range is not restricted by specific implementation.
As shown in Figure 1, a kind of hybrid power system with limp-home module, including such as lower component:
The tail end of central shaft 6, the central shaft 6 is equipped with heel row planet carrier 72, and the heel row planet carrier 72 is ranked after being equipped with
Star-wheel 73, the central shaft 6 are used for inputting engine power;
First hollow shaft 7, is sleeved on central shaft 6, and the rear end of first hollow shaft 7 is equipped with heel row sun gear 71,
The heel row sun gear 71 is engaged with the heel row planetary gear 73, and the front end outer wall of first hollow shaft 7 is equipped with the first sky
Spindle gear 74;
Second hollow shaft 8 is sleeved on 7 in the first hollow shaft, and the rear end of second hollow shaft 8 is provided with and system
The front-seat planet carrier 82 that shell is fixedly connected, the front row planet carrier 82 are equipped with front-seat planetary gear 83, second hollow shaft 8
Rear end be equipped with front-seat sun gear 81, the front row sun gear 81 is engaged with the front row planetary gear 83, second hollow shaft 8
Front end outer wall be equipped with the second cannon pinion 84;
Gear ring 9 is engaged with the front-seat planetary gear 83 and the heel row planetary gear 73 jointly, and the gear ring 9 is connected with
Output shaft 10, the output shaft 10 are used for exporting hybrid power;
First motor 4 and the second motor 5, the first motor 4 pass through the first reduction gearing 41 and first hollow shaft
Gear 74 engages, and second motor 5 is engaged by the second reduction gearing with second cannon pinion 84;Described second subtracts
Fast gear includes front-seat reduction gearing 51 and heel row reduction gearing 52, front-seat reducing gear described in 5 Driven by Coaxial of the second motor
Wheel 51 and the heel row reduction gearing 52, the front row reduction gearing 51 or the heel row reduction gearing 52 and described second hollow
The engagement of shaft gear 84 passes through 55 switching of first gear set;By moving left and right for first gear set 55, two grades of drives of motor are realized
It is dynamic.
Limp-home module 2, including limp-home module gear wheels group 21 and the limp-home module output shaft that is attached thereto
22;, can be the case where power drive system fail using limp-home module 2, limp-home avoids trailer;
One end of input shaft 13, the input shaft 13 connects engine 1, and the other end is equipped with total input gear 131, total to input
Gear 131 is connect with the center shaft gear 61 or total input gear 131 connect with limp-home module gear wheels group 21 and leads to
24 switching of second gear set is crossed, the limp-home module output shaft 23 connects gear ring 9.
Wherein, the hybrid power system in the above embodiment further includes the second motor output shaft 53, two level bevel gear 54,
The limp-home module output shaft 22 is connect with front-seat reduction gearing 51, front-seat reduction gearing 51 and the second motor output shaft 53
Connection, the second motor output shaft 53 are connect by first clutch 56 with two level bevel gear 54, the two level bevel gear 54 and tooth
9 connection of circle.2 driving torque of limp-home module is transmitted by two level bevel gear 54.
7 front end of the first hollow shaft in the above embodiment is equipped with lock device 3, and the lock device 3 is empty for locking first
The shell 12 of mandrel 7,3 one end of the lock device and system is slidably connected, and the other end is connected by sliding and the sliding of the first hollow shaft 7
It connects, by the lock device 3 that horizontally slips, realizes the locking and unlock of the first hollow shaft 7.During limping, the locking of lock device 3 first
Hollow shaft 7, total input gear 131 are connect with limp-home module gear wheels group 21, by the gear set of limp-home inside modules,
Front-seat reduction gearing 51 and two level bevel gear 54 are transmitted to gear ring 9, realize deceleration torque limp-home.
First motor 4 and second motor 5 in the above embodiment are arranged in parallel in the both sides of the central shaft 6.
First gear set 55, second gear set 24 in the above embodiment realize slide handover by automatically controlled mode.
First motor 4 and second motor 5 in the above embodiment are integrated in the shell 12 of system, output shaft 10
The rear end of the shell 12 of the system is stretched out, the input shaft 13 stretches out the front end of the shell 12 of system, logical with the engine 1
The connection of flexible disk 11 is crossed, can also be connected by clutch.To using the type of cooling in motor, mechanical assembly part set, both reduced
Sealing element improves the reliability and seal life of sealing, and can synchronize lubrication to bearing, gear.
Claims (7)
1. a kind of hybrid power system with limp-home module, which is characterized in that including:
The tail end of central shaft, the central shaft is equipped with heel row planet carrier, and the heel row planet carrier is equipped with heel row planetary gear, in described
Mandrel is used for inputting engine power;
First hollow shaft, on center shaft, the rear end of first hollow shaft is equipped with heel row sun gear to suit, and the heel row is too
Sun wheel is engaged with the heel row planetary gear, and the front end outer wall of first hollow shaft is equipped with the first cannon pinion;
Second hollow shaft is sleeved in the first hollow shaft, and the rear end of second hollow shaft is provided with to be consolidated with the shell of system
Surely the front-seat planet carrier connected, the front row planet carrier are equipped with front-seat planetary gear, before the rear end of second hollow shaft is equipped with
Sun gear is arranged, the front row sun gear is engaged with the front-seat planetary gear, and the front end outer wall of second hollow shaft is equipped with the
Two cannon pinions;
Gear ring is engaged with the front-seat planetary gear and the heel row planetary gear jointly, and the gear ring is connected with output shaft, described
Output shaft is used for exporting hybrid power;
First motor and the second motor, the first motor are engaged by the first reduction gearing with first cannon pinion,
Second motor is engaged by the second reduction gearing with second cannon pinion;Second reduction gearing includes front row
Reduction gearing and heel row reduction gearing, the second motor coaxle driving front-seat reduction gearing and the heel row reducing gear
Wheel, the front row reduction gearing or the heel row reduction gearing are engaged with second cannon pinion through first gear set
Switching;
Limp-home module, including limp-home module gear wheels group and the limp-home module output shaft that is attached thereto;With
Input shaft, one end of the input shaft connect engine, and the other end is equipped with total input gear, total input gear with it is described in
Spindle gear connects or total input gear connect to cover by second gear with limp-home module gear wheels group and switch, described lame
Capable module output shaft connection gear ring of going home.
2. a kind of hybrid power system with limp-home module according to claim 1, which is characterized in that the mixing
Dynamical system further includes the second motor output shaft, two level bevel gear, the limp-home module output shaft and front-seat reduction gearing
Connection, front-seat reduction gearing are connect with the second motor output shaft, and the second motor output shaft bores tooth by first clutch and two level
Wheel connection, the two level bevel gear connect with gear ring.
3. a kind of hybrid power system with limp-home module as claimed in any of claims 1 to 2, feature
It is, first hollow shaft front end is equipped with lock device, and the lock device is for locking the first hollow shaft, described lock device one end
It is slidably connected with the shell of system, the other end is slidably connected by sliding with the first hollow shaft.
4. a kind of hybrid power system with limp-home module as claimed in any of claims 1 to 2, feature
It is, the first motor and second motor are arranged in parallel in the both sides of the central shaft.
5. a kind of hybrid power system with limp-home module as claimed in any of claims 1 to 2, feature
It is, the first gear set, second gear set realize slide handover by automatically controlled mode.
6. a kind of hybrid power system with limp-home module as claimed in any of claims 1 to 2, feature
It is, the first motor and second motor are integrated in the shell of system.
7. a kind of hybrid power system with limp-home module according to claim 6, which is characterized in that the output shaft
The rear end of the shell of the system is stretched out, the input shaft stretches out the front end of the shell of system, passes through flexibility with the engine
A kind of connection in disk or clutch.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2017109976963 | 2017-10-24 | ||
CN201710997696.3A CN107599820A (en) | 2017-10-24 | 2017-10-24 | Hybrid drive train |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108515838A true CN108515838A (en) | 2018-09-11 |
CN108515838B CN108515838B (en) | 2023-07-18 |
Family
ID=61079463
Family Applications (71)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710997696.3A Withdrawn CN107599820A (en) | 2017-10-24 | 2017-10-24 | Hybrid drive train |
CN201810102069.3A Pending CN108312837A (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module |
CN201810101704.6A Active CN108312835B (en) | 2017-10-24 | 2018-02-01 | Parallel shaft type double-motor double-planet-row hybrid power system with limp home module |
CN201820176757.XU Active CN208101683U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201810101305.XA Pending CN108297671A (en) | 2017-10-24 | 2018-02-01 | Two grades of parallel-axis type double electric machine double row planetary gear hybrid power systems |
CN201820180363.1U Active CN208149053U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201810101683.8A Pending CN108407597A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201810103486.XA Pending CN108372780A (en) | 2017-10-24 | 2018-02-01 | The double electric machine double row planetary gear hybrid power assembly of locking device |
CN201820175772.2U Active CN207790305U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module |
CN201820175782.6U Active CN207942918U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201810102083.3A Active CN108372779B (en) | 2017-10-24 | 2018-02-01 | Hybrid powertrain with limp home module and shift mechanism |
CN201820179255.2U Active CN207916556U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module and gearshift |
CN201810102100.3A Active CN108407599B (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp home module |
CN201820172349.7U Active CN208247955U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear two keeps off hybrid power assembly |
CN201810100810.2A Pending CN108297670A (en) | 2017-10-24 | 2018-02-01 | Two grades of hybrid power assemblies of parallel-axis type double electric machine double row planetary gear with limping system |
CN201820175775.6U Active CN207772871U (en) | 2017-10-24 | 2018-02-01 | Parallel-axis type double electric machine double row planetary gear hybrid power system with limp-home module |
CN201810100551.3A Active CN108297669B (en) | 2017-10-24 | 2018-02-01 | Hybrid power assembly with limp home module |
CN201810100040.1A Active CN108515837B (en) | 2017-10-24 | 2018-02-01 | Hybrid power assembly with limp home module |
CN201820177000.2U Active CN207942919U (en) | 2017-10-24 | 2018-02-01 | The double electric machine double row planetary gear hybrid power assembly of locking device |
CN201820173585.0U Active CN207916552U (en) | 2017-10-24 | 2018-02-01 | A kind of two gear hybrid power assembly of three sleeve shaft-type uni-directional brake double electric machine double row planetary gear |
CN201820180280.2U Active CN208069391U (en) | 2017-10-24 | 2018-02-01 | Two grades of parallel-axis type double electric machine double row planetary gear hybrid power systems |
CN201810102084.8A Pending CN108284739A (en) | 2017-10-24 | 2018-02-01 | A kind of double electric machine double row planetary gear hybrid power system |
CN201810100046.9A Pending CN108372777A (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201810101701.2A Pending CN108263193A (en) | 2017-10-24 | 2018-02-01 | Hybrid power system |
CN201810101684.2A Pending CN108454379A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820174106.7U Active CN208101682U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201820176297.0U Active CN208602303U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module |
CN201820172407.6U Active CN208149049U (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201810101349.2A Pending CN108297672A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820180323.7U Active CN208232804U (en) | 2017-10-24 | 2018-02-01 | A kind of double electric machine double row planetary gear hybrid power system |
CN201810101377.4A Active CN108284738B (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp home module |
CN201820175784.5U Active CN207772868U (en) | 2017-10-24 | 2018-02-01 | A kind of three sets of axis locking structure hybrid power systems of double planet wheel rows of mixing |
CN201820176280.5U Active CN207772869U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with three sets of axis locking structures of double planet wheel rows of mixing |
CN201820179253.3U Active CN207916555U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820174242.6U Active CN208149051U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201810102309.XA Active CN108382181B (en) | 2017-10-24 | 2018-02-01 | Hybrid power assembly with limp home module |
CN201810100758.0A Active CN108263195B (en) | 2017-10-24 | 2018-02-01 | Two-gear parallel shaft type double-motor double-planet-row hybrid power assembly with limp system |
CN201820176279.2U Active CN207790302U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system |
CN201810101642.9A Pending CN108454378A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820180374.XU Active CN208149054U (en) | 2017-10-24 | 2018-02-01 | Hybrid drive train with limp-home module |
CN201820179252.9U Active CN208198093U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201810102060.2A Active CN108312836B (en) | 2017-10-24 | 2018-02-01 | Hybrid powertrain with limp home module |
CN201820172367.5U Active CN208134059U (en) | 2017-10-24 | 2018-02-01 | hybrid power assembly with limp-home module |
CN201810102300.9A Active CN108297673B (en) | 2017-10-24 | 2018-02-01 | Hybrid powertrain system |
CN201810100232.2A Active CN108515838B (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp home module |
CN201810100538.8A Pending CN108263192A (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201820174505.3U Active CN208035933U (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201810101380.6A Pending CN108297667A (en) | 2017-10-24 | 2018-02-01 | A kind of three sets of axis locking structure hybrid power systems of double planet wheel rows of mixing |
CN201810100777.3A Pending CN108454376A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201810100819.3A Pending CN108312833A (en) | 2017-10-24 | 2018-02-01 | Three sleeve shaft-type dual brake double electric machine double row planetary gears, two gear hybrid power assembly |
CN201820174150.8U Active CN208149050U (en) | 2017-10-24 | 2018-02-01 | Three sleeve shaft-type dual brake double electric machine double row planetary gears, two gear hybrid power assembly |
CN201810100539.2A Pending CN108372778A (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201820180242.7U Active CN207916557U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201810101738.5A Active CN108407598B (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp home module |
CN201810101702.7A Pending CN108263196A (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with three sets of axis locking structures of double planet wheel rows of mixing |
CN201820174202.1U Active CN207942917U (en) | 2017-10-24 | 2018-02-01 | Two grades of parallel-axis type double electric machine double row planetary gear hybrid power assemblies with limping system |
CN201810100025.7A Pending CN108312832A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear two keeps off hybrid power assembly |
CN201820175783.0U Active CN207997760U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201820176997.XU Active CN208149052U (en) | 2017-10-24 | 2018-02-01 | hybrid power assembly with limp-home module |
CN201810100760.8A Pending CN108407589A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201820173594.XU Active CN208035931U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201820177771.1U Active CN207790307U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201820177761.8U Active CN207790306U (en) | 2017-10-24 | 2018-02-01 | Hybrid drive train |
CN201810101348.8A Pending CN108454377A (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module |
CN201810101362.8A Pending CN108312834A (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201810100522.7A Pending CN108263194A (en) | 2017-10-24 | 2018-02-01 | A kind of two gear hybrid power assembly of three sleeve shaft-type uni-directional brake double electric machine double row planetary gear |
CN201820179251.4U Active CN208035934U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820174205.5U Active CN208035932U (en) | 2017-10-24 | 2018-02-01 | Two grades of hybrid power assemblies of parallel-axis type double electric machine double row planetary gear with limping system |
CN201820173584.6U Withdrawn - After Issue CN208118929U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power assembly with limp-home module |
CN201820176093.7U Active CN207772872U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201810103477.0A Pending CN108297674A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
Family Applications Before (44)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710997696.3A Withdrawn CN107599820A (en) | 2017-10-24 | 2017-10-24 | Hybrid drive train |
CN201810102069.3A Pending CN108312837A (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module |
CN201810101704.6A Active CN108312835B (en) | 2017-10-24 | 2018-02-01 | Parallel shaft type double-motor double-planet-row hybrid power system with limp home module |
CN201820176757.XU Active CN208101683U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201810101305.XA Pending CN108297671A (en) | 2017-10-24 | 2018-02-01 | Two grades of parallel-axis type double electric machine double row planetary gear hybrid power systems |
CN201820180363.1U Active CN208149053U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201810101683.8A Pending CN108407597A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201810103486.XA Pending CN108372780A (en) | 2017-10-24 | 2018-02-01 | The double electric machine double row planetary gear hybrid power assembly of locking device |
CN201820175772.2U Active CN207790305U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module |
CN201820175782.6U Active CN207942918U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201810102083.3A Active CN108372779B (en) | 2017-10-24 | 2018-02-01 | Hybrid powertrain with limp home module and shift mechanism |
CN201820179255.2U Active CN207916556U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module and gearshift |
CN201810102100.3A Active CN108407599B (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp home module |
CN201820172349.7U Active CN208247955U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear two keeps off hybrid power assembly |
CN201810100810.2A Pending CN108297670A (en) | 2017-10-24 | 2018-02-01 | Two grades of hybrid power assemblies of parallel-axis type double electric machine double row planetary gear with limping system |
CN201820175775.6U Active CN207772871U (en) | 2017-10-24 | 2018-02-01 | Parallel-axis type double electric machine double row planetary gear hybrid power system with limp-home module |
CN201810100551.3A Active CN108297669B (en) | 2017-10-24 | 2018-02-01 | Hybrid power assembly with limp home module |
CN201810100040.1A Active CN108515837B (en) | 2017-10-24 | 2018-02-01 | Hybrid power assembly with limp home module |
CN201820177000.2U Active CN207942919U (en) | 2017-10-24 | 2018-02-01 | The double electric machine double row planetary gear hybrid power assembly of locking device |
CN201820173585.0U Active CN207916552U (en) | 2017-10-24 | 2018-02-01 | A kind of two gear hybrid power assembly of three sleeve shaft-type uni-directional brake double electric machine double row planetary gear |
CN201820180280.2U Active CN208069391U (en) | 2017-10-24 | 2018-02-01 | Two grades of parallel-axis type double electric machine double row planetary gear hybrid power systems |
CN201810102084.8A Pending CN108284739A (en) | 2017-10-24 | 2018-02-01 | A kind of double electric machine double row planetary gear hybrid power system |
CN201810100046.9A Pending CN108372777A (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201810101701.2A Pending CN108263193A (en) | 2017-10-24 | 2018-02-01 | Hybrid power system |
CN201810101684.2A Pending CN108454379A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820174106.7U Active CN208101682U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201820176297.0U Active CN208602303U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module |
CN201820172407.6U Active CN208149049U (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201810101349.2A Pending CN108297672A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820180323.7U Active CN208232804U (en) | 2017-10-24 | 2018-02-01 | A kind of double electric machine double row planetary gear hybrid power system |
CN201810101377.4A Active CN108284738B (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp home module |
CN201820175784.5U Active CN207772868U (en) | 2017-10-24 | 2018-02-01 | A kind of three sets of axis locking structure hybrid power systems of double planet wheel rows of mixing |
CN201820176280.5U Active CN207772869U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with three sets of axis locking structures of double planet wheel rows of mixing |
CN201820179253.3U Active CN207916555U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820174242.6U Active CN208149051U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201810102309.XA Active CN108382181B (en) | 2017-10-24 | 2018-02-01 | Hybrid power assembly with limp home module |
CN201810100758.0A Active CN108263195B (en) | 2017-10-24 | 2018-02-01 | Two-gear parallel shaft type double-motor double-planet-row hybrid power assembly with limp system |
CN201820176279.2U Active CN207790302U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system |
CN201810101642.9A Pending CN108454378A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820180374.XU Active CN208149054U (en) | 2017-10-24 | 2018-02-01 | Hybrid drive train with limp-home module |
CN201820179252.9U Active CN208198093U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201810102060.2A Active CN108312836B (en) | 2017-10-24 | 2018-02-01 | Hybrid powertrain with limp home module |
CN201820172367.5U Active CN208134059U (en) | 2017-10-24 | 2018-02-01 | hybrid power assembly with limp-home module |
CN201810102300.9A Active CN108297673B (en) | 2017-10-24 | 2018-02-01 | Hybrid powertrain system |
Family Applications After (26)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810100538.8A Pending CN108263192A (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201820174505.3U Active CN208035933U (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201810101380.6A Pending CN108297667A (en) | 2017-10-24 | 2018-02-01 | A kind of three sets of axis locking structure hybrid power systems of double planet wheel rows of mixing |
CN201810100777.3A Pending CN108454376A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201810100819.3A Pending CN108312833A (en) | 2017-10-24 | 2018-02-01 | Three sleeve shaft-type dual brake double electric machine double row planetary gears, two gear hybrid power assembly |
CN201820174150.8U Active CN208149050U (en) | 2017-10-24 | 2018-02-01 | Three sleeve shaft-type dual brake double electric machine double row planetary gears, two gear hybrid power assembly |
CN201810100539.2A Pending CN108372778A (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201820180242.7U Active CN207916557U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201810101738.5A Active CN108407598B (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp home module |
CN201810101702.7A Pending CN108263196A (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with three sets of axis locking structures of double planet wheel rows of mixing |
CN201820174202.1U Active CN207942917U (en) | 2017-10-24 | 2018-02-01 | Two grades of parallel-axis type double electric machine double row planetary gear hybrid power assemblies with limping system |
CN201810100025.7A Pending CN108312832A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear two keeps off hybrid power assembly |
CN201820175783.0U Active CN207997760U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201820176997.XU Active CN208149052U (en) | 2017-10-24 | 2018-02-01 | hybrid power assembly with limp-home module |
CN201810100760.8A Pending CN108407589A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201820173594.XU Active CN208035931U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201820177771.1U Active CN207790307U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201820177761.8U Active CN207790306U (en) | 2017-10-24 | 2018-02-01 | Hybrid drive train |
CN201810101348.8A Pending CN108454377A (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module |
CN201810101362.8A Pending CN108312834A (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201810100522.7A Pending CN108263194A (en) | 2017-10-24 | 2018-02-01 | A kind of two gear hybrid power assembly of three sleeve shaft-type uni-directional brake double electric machine double row planetary gear |
CN201820179251.4U Active CN208035934U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820174205.5U Active CN208035932U (en) | 2017-10-24 | 2018-02-01 | Two grades of hybrid power assemblies of parallel-axis type double electric machine double row planetary gear with limping system |
CN201820173584.6U Withdrawn - After Issue CN208118929U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power assembly with limp-home module |
CN201820176093.7U Active CN207772872U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201810103477.0A Pending CN108297674A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
Country Status (1)
Country | Link |
---|---|
CN (71) | CN107599820A (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107599820A (en) * | 2017-10-24 | 2018-01-19 | 广西玉柴机器股份有限公司 | Hybrid drive train |
CN109177716B (en) * | 2018-08-17 | 2019-11-26 | 宁波上中下自动变速器有限公司 | Dynamical system for hybrid vehicle |
CN109080427A (en) * | 2018-09-21 | 2018-12-25 | 广州市新域动力技术有限公司 | Bi-motor hybrid engine multimode dynamical system and its driving method |
CN111098695B (en) * | 2018-10-26 | 2021-10-22 | 比亚迪股份有限公司 | Hybrid power driving system and vehicle |
CN109927703B (en) * | 2019-03-01 | 2020-09-18 | 中国第一汽车股份有限公司 | Auxiliary oil pump device for hybrid electric vehicle and control method |
CN110065381B (en) * | 2019-03-26 | 2024-03-22 | 中国汽车技术研究中心有限公司 | Dual-input-shaft three-mode hybrid power device for vehicle and working method |
CN109941091B (en) * | 2019-03-26 | 2023-08-25 | 中国汽车技术研究中心有限公司 | Hybrid power system with power splitting and range extending functions and working method |
CN109941092A (en) * | 2019-04-19 | 2019-06-28 | 广州市新域动力技术有限公司 | Bi-motor hybrid engine planet row power assembly |
CN112389194B (en) * | 2019-08-19 | 2023-01-06 | 比亚迪股份有限公司 | Integrated axle assembly and vehicle |
DE102019129864B4 (en) * | 2019-11-06 | 2023-04-20 | Schaeffler Technologies AG & Co. KG | Anvil tool and method of joining machine parts |
CN110962580B (en) * | 2019-11-21 | 2022-01-25 | 北京航空航天大学 | Electromechanical coupling transmission device and system and hybrid electric vehicle |
CN110901366A (en) * | 2019-12-26 | 2020-03-24 | 株洲齿轮有限责任公司 | Hybrid power gearbox, hybrid power driving system and automobile |
CN111071029A (en) * | 2019-12-30 | 2020-04-28 | 天津中德传动有限公司 | Power assembly with coaxial hybrid two-gear gearbox |
CN112224006A (en) * | 2020-08-28 | 2021-01-15 | 广西玉柴机器股份有限公司 | Three-gear parallel shaft type double-motor three-planet-row hybrid power system |
CN111976463B (en) * | 2020-08-31 | 2023-12-26 | 东风汽车集团有限公司 | Hybrid vehicle driving system capable of realizing single-motor two-gear driving |
CN112959881B (en) * | 2021-03-24 | 2022-06-10 | 广西玉柴机器股份有限公司 | Three-gear parallel shaft type lameable double-motor single-row planet row hybrid power system with power take-off module |
CN115352270A (en) * | 2021-04-30 | 2022-11-18 | 南京邦奇自动变速箱有限公司 | Shunting type hybrid power device for automobile |
CN113173067A (en) * | 2021-06-08 | 2021-07-27 | 上海爱跻企业管理咨询合伙企业(有限合伙) | Hybrid power device, control system and automobile |
CN113580917B (en) * | 2021-08-06 | 2024-04-05 | 广西玉柴机器股份有限公司 | Four-gear claudication double-motor double-planetary-row hybrid power system with power take-off module |
CN113858939A (en) * | 2021-10-08 | 2021-12-31 | 宁波吉利罗佑发动机零部件有限公司 | Power transmission device |
CN113858936B (en) * | 2021-10-29 | 2024-10-15 | 清华大学苏州汽车研究院(吴江) | P2 hybrid power module |
CN114475217B (en) * | 2022-03-25 | 2023-10-10 | 中国重汽集团济南动力有限公司 | Three-power-source coupling hybrid system suitable for heavy truck |
CN114523839A (en) * | 2022-04-24 | 2022-05-24 | 潍柴动力股份有限公司 | Hybrid power system and control method thereof |
CN115009001A (en) * | 2022-04-29 | 2022-09-06 | 东风商用车有限公司 | Single-planet multi-motor series-parallel stepless variable transmission device for commercial vehicle |
CN115009002A (en) * | 2022-04-29 | 2022-09-06 | 东风商用车有限公司 | Double-planet multi-motor series-parallel stepless variable transmission device for commercial vehicle |
CN114919394B (en) * | 2022-06-15 | 2023-08-29 | 中国第一汽车股份有限公司 | Single-row hybrid power system |
CN117681641B (en) * | 2023-12-29 | 2024-08-06 | 中联重科股份有限公司 | Hybrid power system and tractor |
CN118494160A (en) * | 2024-07-18 | 2024-08-16 | 山东中科先进技术有限公司 | Single-gear-ring double-planet-row hybrid power coupling structure and control method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040254039A1 (en) * | 2003-06-12 | 2004-12-16 | Honda Motor Co., Ltd. | Drive system |
US20150148172A1 (en) * | 2012-12-18 | 2015-05-28 | Dumitru Puiu | Multi-mode hybrid variable drive unit |
CN105452078A (en) * | 2013-08-05 | 2016-03-30 | 丰田自动车株式会社 | Control system for hybrid vehicle |
CN106183780A (en) * | 2016-08-30 | 2016-12-07 | 上海交通大学 | The coaxial coupling drive system of dual planetary gear system bi-motor |
CN106494215A (en) * | 2016-10-21 | 2017-03-15 | 广州市新域动力技术有限公司 | Multi-mode composite planet hybrid power assembly |
CN207772872U (en) * | 2017-10-24 | 2018-08-28 | 广西玉柴机器股份有限公司 | A kind of hybrid power system with limp-home module |
Family Cites Families (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6146302A (en) * | 1997-12-26 | 2000-11-14 | Fuji Jukogyo Kabushiki Kaisha | Power transmitting system for a hybrid motor vehicle |
JP3641243B2 (en) * | 2002-02-26 | 2005-04-20 | 日産自動車株式会社 | Hybrid transmission |
JP3612711B2 (en) * | 2002-07-03 | 2005-01-19 | トヨタ自動車株式会社 | Automobile |
US6962545B2 (en) * | 2002-09-23 | 2005-11-08 | Bae Systems Onctrols | Multi-range parallel-hybrid continuously variable transmission |
JP3864950B2 (en) * | 2003-11-18 | 2007-01-10 | 日産自動車株式会社 | Hybrid transmission |
JP4140647B2 (en) * | 2006-10-24 | 2008-08-27 | トヨタ自動車株式会社 | Power output device and hybrid vehicle |
CN101323243B (en) * | 2008-07-24 | 2011-07-20 | 上海交通大学 | Hybrid power vehicle double electric machine double row planetary gear single clutch drive apparatus |
JP2010114955A (en) * | 2008-11-04 | 2010-05-20 | Toyota Motor Corp | Drive unit for vehicle |
AR075776A1 (en) * | 2009-03-03 | 2011-04-27 | Honda Motor Co Ltd | POWER TRANSMISSION DEVICE FOR HYBRID VEHICLE |
JP5630718B2 (en) * | 2009-03-09 | 2014-11-26 | リ,ヨン ス | Power transmission device using planetary gears |
JP5133935B2 (en) * | 2009-05-07 | 2013-01-30 | Udトラックス株式会社 | Power transmission mechanism of parallel hybrid vehicle |
JP2010269692A (en) * | 2009-05-21 | 2010-12-02 | Toyota Motor Corp | Driving device of hybrid vehicle |
CN101992679B (en) * | 2009-08-24 | 2013-09-25 | 上海华普国润汽车有限公司 | Double planetary row four-axis hybrid power transmission device |
CN201506247U (en) * | 2009-08-24 | 2010-06-16 | 上海华普国润汽车有限公司 | Double planet-row four-axis hybrid speed variator |
CN201856622U (en) * | 2010-01-17 | 2011-06-08 | 王少辉 | Dynamic coupling mechanism assembly capable of being applied to hybrid electric vehicle |
DE102010008754A1 (en) * | 2010-02-15 | 2011-08-18 | Dr. Ing. h.c. F. Porsche Aktiengesellschaft, 70435 | Drive system, in particular for a motor vehicle |
CN201646354U (en) * | 2010-04-02 | 2010-11-24 | 中国汽车技术研究中心 | Hybrid driver |
JP2012126198A (en) * | 2010-12-14 | 2012-07-05 | Daimler Ag | Running control apparatus of hybrid electric vehicle |
JP2012233511A (en) * | 2011-04-28 | 2012-11-29 | Toyota Motor Corp | Vehicle driving device |
KR101326822B1 (en) * | 2011-11-10 | 2013-11-11 | 기아자동차주식회사 | System for fail safety control of hybrid vehicle and method thereof |
WO2013146467A1 (en) * | 2012-03-27 | 2013-10-03 | 本田技研工業株式会社 | Motive power device |
CN202743038U (en) * | 2012-08-02 | 2013-02-20 | 石传龙 | Hybrid power drive device for vehicle |
CN102767594B (en) * | 2012-08-07 | 2015-12-16 | 福建省福工动力技术有限公司 | Based on hybrid electric vehicle brake power recovering device and the method for the controlled speedup of motor |
JP2014108775A (en) * | 2012-12-04 | 2014-06-12 | Toyota Motor Corp | Power transmission device for hybrid vehicle and hybrid system |
DE112014000581B4 (en) * | 2013-01-28 | 2021-04-08 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle |
SE1350393A1 (en) * | 2013-03-27 | 2014-09-28 | Scania Cv Ab | Gearbox, vehicles with such gearbox, method for controlling such gearbox, computer program for controlling such gearbox, and a computer software product comprising program code |
DE102013211225A1 (en) * | 2013-06-17 | 2014-12-18 | Zf Friedrichshafen Ag | Hybrid propulsion system |
DE102013220835A1 (en) * | 2013-10-15 | 2015-04-16 | Schaeffler Technologies Gmbh & Co. Kg | Planetary gear, in particular axle for a motor vehicle |
KR101509704B1 (en) * | 2013-10-28 | 2015-04-07 | 현대자동차 주식회사 | Power transmission system of hybrid electric vehicle |
KR101509732B1 (en) * | 2013-10-28 | 2015-04-08 | 현대자동차 주식회사 | Transmission system of hybrid electric vehicle |
KR101558368B1 (en) * | 2013-11-27 | 2015-10-08 | 현대자동차 주식회사 | Power transmission system of hybrid electric vehicle |
KR101518948B1 (en) * | 2013-12-18 | 2015-05-12 | 현대자동차 주식회사 | Power transmission apparatus for hybrid electric vehicle |
KR20150071604A (en) * | 2013-12-18 | 2015-06-26 | 현대자동차주식회사 | Power transmission apparatus for hybrid electric vehicle |
CN203727161U (en) * | 2014-01-08 | 2014-07-23 | 上海馨联动力系统有限公司 | Locking type double-motor single-planet-row double reduction hybrid power system of engine |
CN103660911A (en) * | 2014-01-08 | 2014-03-26 | 上海馨联动力系统有限公司 | Engine locking double-motor single-planetary-line two-stage speed reduction hybrid power system |
CN103832264B (en) * | 2014-02-27 | 2016-01-20 | 长城汽车股份有限公司 | For vehicle power drive system and there is its vehicle |
KR101575272B1 (en) * | 2014-08-26 | 2015-12-07 | 현대자동차 주식회사 | Transmission system of hybrid electric vehicle |
CN104191954B (en) * | 2014-09-13 | 2016-06-29 | 吉林大学 | Planetary type dual-mode petrol-electric parallel-serial hybrid power system |
KR101610089B1 (en) * | 2014-09-23 | 2016-04-07 | 현대자동차 주식회사 | Transmission system of hybrid electric vehicle |
KR101610090B1 (en) * | 2014-09-23 | 2016-04-20 | 현대자동차주식회사 | Transmission system of hybrid electric vehicle |
CN104442346B (en) * | 2014-12-02 | 2016-06-01 | 吉林大学 | Double-rotor machine compound planetary row's formula hybrid power system |
CN204296444U (en) * | 2014-12-02 | 2015-04-29 | 吉林大学 | Double-rotor machine compound planetary row formula hybrid power system |
CN204451991U (en) * | 2014-12-31 | 2015-07-08 | 上海交通大学 | The second gear multimode stepless speed-changing fax integrated dynamic system that high-mobility, multipurpose, wheeled vehicle adapts to |
CN104494415B (en) * | 2014-12-31 | 2018-05-04 | 上海交通大学 | Two grades of multimode stepless speed-changing fax integrated dynamic systems that multipurpose adapts to |
CN204506518U (en) * | 2015-04-01 | 2015-07-29 | 吉林大学 | Single mode hybrid power by-pass type hybrid power system |
CN104760494A (en) * | 2015-04-01 | 2015-07-08 | 吉林大学 | Single-mode combined power split-flow type hybrid power system |
JP2016210313A (en) * | 2015-05-11 | 2016-12-15 | アイシン・エーアイ株式会社 | Driving device |
CN104890495A (en) * | 2015-05-26 | 2015-09-09 | 吉林大学 | Dual-clutch planetary petrol-electric hybrid dual-mode hybrid power system |
CN104859420B (en) * | 2015-05-26 | 2017-04-05 | 吉林大学 | Planetary oil electricity series-parallel connection bimodulus hybrid power system |
CN106427547B (en) * | 2015-08-07 | 2018-09-14 | 广州汽车集团股份有限公司 | Vehicle hybrid power drive system and hybrid vehicle |
DE102015216896A1 (en) * | 2015-09-03 | 2017-03-09 | Bayerische Motoren Werke Aktiengesellschaft | Drive device for a motor vehicle |
CN105172570B (en) * | 2015-11-04 | 2017-12-19 | 科力远混合动力技术有限公司 | A kind of double mode hybrid transmissions |
CN205059228U (en) * | 2015-11-04 | 2016-03-02 | 中国汽车技术研究中心 | Novel automobile-used bimodulus hybrid drive device |
CN105402334B (en) * | 2015-12-21 | 2017-12-05 | 江苏大学 | Fourth gear automatic speed changer for machine power assembly system based on planetary gears |
CN205365218U (en) * | 2016-01-26 | 2016-07-06 | 李冰洋 | Hybrid transmission of platformization |
CN105835683B (en) * | 2016-02-02 | 2017-12-29 | 苏州凯博易控驱动技术有限公司 | Electrohydraulic mixed power drive system |
CN105691195B (en) * | 2016-03-15 | 2017-10-31 | 吉林大学 | A kind of series parallel type double planet wheel rows of mixing bimodulus hybrid electric vehicle gearshift case |
CN105599588A (en) * | 2016-03-22 | 2016-05-25 | 上海纳铁福传动系统有限公司 | Multi-mode hybrid power stepless speed change system |
CN107234963B (en) * | 2016-03-28 | 2020-06-09 | 长城汽车股份有限公司 | Power transmission system and vehicle with same |
JP2017194103A (en) * | 2016-04-19 | 2017-10-26 | トヨタ自動車株式会社 | Gear change control device of vehicle |
CN205905759U (en) * | 2016-07-01 | 2017-01-25 | 山东德瑞博新能源汽车制造有限公司 | Insert electric formula hybrid power system |
CN106184198B (en) * | 2016-07-11 | 2018-09-11 | 中国第一汽车股份有限公司 | A kind of failure limping control method and device for hybrid vehicle |
CN106114190B (en) * | 2016-07-13 | 2018-11-16 | 上海迪鲲机电科技有限公司 | Electromechanical power coupling device based on modified simpson planetary gear mechanism |
CN206031051U (en) * | 2016-07-15 | 2017-03-22 | 吴燕开 | Multi -mode platform hybrid transmission |
CN205930236U (en) * | 2016-07-18 | 2017-02-08 | 吴燕开 | A hybrid transmission for indulging put actuating system |
CN106042888B (en) * | 2016-07-27 | 2018-07-20 | 苏州亚太金属有限公司 | A kind of hybrid electric drive system and its driving method |
CN106274443B (en) * | 2016-08-25 | 2023-07-21 | 上海交通大学 | Double-synchronous clutch and planetary gear coupling double-motor power system |
CN106394226B (en) * | 2016-09-19 | 2018-10-26 | 北京科技大学 | The hybrid power gearbox of High-Powered Vehicle |
CN206086367U (en) * | 2016-09-19 | 2017-04-12 | 福州大学 | Formula electric drive assembly is arranged to double row star |
CN106347112B (en) * | 2016-09-19 | 2018-07-20 | 福州大学 | A kind of double planet row-type electric drive assembly and its driving method |
CN106560336B (en) * | 2016-12-06 | 2018-04-10 | 广州市新域动力技术有限公司 | Bi-motor multi-mode composite forerunner's plug-in hybrid system |
CN106627117B (en) * | 2016-10-28 | 2019-01-29 | 科力远混合动力技术有限公司 | A kind of transmission device for longitudinal rear-guard hybrid vehicle |
CN206264779U (en) * | 2016-11-25 | 2017-06-20 | 上海电驱动股份有限公司 | A kind of hybrid power system of use double planet wheel rows of mixing configuration |
CN206394422U (en) * | 2016-11-25 | 2017-08-11 | 上海电驱动股份有限公司 | A kind of hybrid power system of use multimode dynamic coupling device |
CN206394434U (en) * | 2016-12-19 | 2017-08-11 | 吴燕开 | A kind of many gear automotive trannsmission systems of integrated single motor |
CN206351629U (en) * | 2017-01-06 | 2017-07-25 | 广州市新域动力技术有限公司 | Six disk brake type multimode plug-in hybrid devices |
CN206416834U (en) * | 2017-01-10 | 2017-08-18 | 上海汽车变速器有限公司 | Double-motor hybrid vehicle drive system |
CN206386425U (en) * | 2017-01-20 | 2017-08-08 | 山东德瑞博新能源汽车制造有限公司 | A kind of castellated bi-directional braking clutch |
CN106882032B (en) * | 2017-02-14 | 2019-03-26 | 北京理工大学 | Front drive vehicle double mode hybrid transmissions |
CN106956582B (en) * | 2017-05-10 | 2018-04-13 | 吉林大学 | A kind of planetary parallel-serial hybrid power system using one-way clutch |
-
2017
- 2017-10-24 CN CN201710997696.3A patent/CN107599820A/en not_active Withdrawn
-
2018
- 2018-02-01 CN CN201810102069.3A patent/CN108312837A/en active Pending
- 2018-02-01 CN CN201810101704.6A patent/CN108312835B/en active Active
- 2018-02-01 CN CN201820176757.XU patent/CN208101683U/en active Active
- 2018-02-01 CN CN201810101305.XA patent/CN108297671A/en active Pending
- 2018-02-01 CN CN201820180363.1U patent/CN208149053U/en active Active
- 2018-02-01 CN CN201810101683.8A patent/CN108407597A/en active Pending
- 2018-02-01 CN CN201810103486.XA patent/CN108372780A/en active Pending
- 2018-02-01 CN CN201820175772.2U patent/CN207790305U/en active Active
- 2018-02-01 CN CN201820175782.6U patent/CN207942918U/en active Active
- 2018-02-01 CN CN201810102083.3A patent/CN108372779B/en active Active
- 2018-02-01 CN CN201820179255.2U patent/CN207916556U/en active Active
- 2018-02-01 CN CN201810102100.3A patent/CN108407599B/en active Active
- 2018-02-01 CN CN201820172349.7U patent/CN208247955U/en active Active
- 2018-02-01 CN CN201810100810.2A patent/CN108297670A/en active Pending
- 2018-02-01 CN CN201820175775.6U patent/CN207772871U/en active Active
- 2018-02-01 CN CN201810100551.3A patent/CN108297669B/en active Active
- 2018-02-01 CN CN201810100040.1A patent/CN108515837B/en active Active
- 2018-02-01 CN CN201820177000.2U patent/CN207942919U/en active Active
- 2018-02-01 CN CN201820173585.0U patent/CN207916552U/en active Active
- 2018-02-01 CN CN201820180280.2U patent/CN208069391U/en active Active
- 2018-02-01 CN CN201810102084.8A patent/CN108284739A/en active Pending
- 2018-02-01 CN CN201810100046.9A patent/CN108372777A/en active Pending
- 2018-02-01 CN CN201810101701.2A patent/CN108263193A/en active Pending
- 2018-02-01 CN CN201810101684.2A patent/CN108454379A/en active Pending
- 2018-02-01 CN CN201820174106.7U patent/CN208101682U/en active Active
- 2018-02-01 CN CN201820176297.0U patent/CN208602303U/en active Active
- 2018-02-01 CN CN201820172407.6U patent/CN208149049U/en active Active
- 2018-02-01 CN CN201810101349.2A patent/CN108297672A/en active Pending
- 2018-02-01 CN CN201820180323.7U patent/CN208232804U/en active Active
- 2018-02-01 CN CN201810101377.4A patent/CN108284738B/en active Active
- 2018-02-01 CN CN201820175784.5U patent/CN207772868U/en active Active
- 2018-02-01 CN CN201820176280.5U patent/CN207772869U/en active Active
- 2018-02-01 CN CN201820179253.3U patent/CN207916555U/en active Active
- 2018-02-01 CN CN201820174242.6U patent/CN208149051U/en active Active
- 2018-02-01 CN CN201810102309.XA patent/CN108382181B/en active Active
- 2018-02-01 CN CN201810100758.0A patent/CN108263195B/en active Active
- 2018-02-01 CN CN201820176279.2U patent/CN207790302U/en active Active
- 2018-02-01 CN CN201810101642.9A patent/CN108454378A/en active Pending
- 2018-02-01 CN CN201820180374.XU patent/CN208149054U/en active Active
- 2018-02-01 CN CN201820179252.9U patent/CN208198093U/en active Active
- 2018-02-01 CN CN201810102060.2A patent/CN108312836B/en active Active
- 2018-02-01 CN CN201820172367.5U patent/CN208134059U/en active Active
- 2018-02-01 CN CN201810102300.9A patent/CN108297673B/en active Active
- 2018-02-01 CN CN201810100232.2A patent/CN108515838B/en active Active
- 2018-02-01 CN CN201810100538.8A patent/CN108263192A/en active Pending
- 2018-02-01 CN CN201820174505.3U patent/CN208035933U/en active Active
- 2018-02-01 CN CN201810101380.6A patent/CN108297667A/en active Pending
- 2018-02-01 CN CN201810100777.3A patent/CN108454376A/en active Pending
- 2018-02-01 CN CN201810100819.3A patent/CN108312833A/en active Pending
- 2018-02-01 CN CN201820174150.8U patent/CN208149050U/en active Active
- 2018-02-01 CN CN201810100539.2A patent/CN108372778A/en active Pending
- 2018-02-01 CN CN201820180242.7U patent/CN207916557U/en active Active
- 2018-02-01 CN CN201810101738.5A patent/CN108407598B/en active Active
- 2018-02-01 CN CN201810101702.7A patent/CN108263196A/en active Pending
- 2018-02-01 CN CN201820174202.1U patent/CN207942917U/en active Active
- 2018-02-01 CN CN201810100025.7A patent/CN108312832A/en active Pending
- 2018-02-01 CN CN201820175783.0U patent/CN207997760U/en active Active
- 2018-02-01 CN CN201820176997.XU patent/CN208149052U/en active Active
- 2018-02-01 CN CN201810100760.8A patent/CN108407589A/en active Pending
- 2018-02-01 CN CN201820173594.XU patent/CN208035931U/en active Active
- 2018-02-01 CN CN201820177771.1U patent/CN207790307U/en active Active
- 2018-02-01 CN CN201820177761.8U patent/CN207790306U/en active Active
- 2018-02-01 CN CN201810101348.8A patent/CN108454377A/en active Pending
- 2018-02-01 CN CN201810101362.8A patent/CN108312834A/en active Pending
- 2018-02-01 CN CN201810100522.7A patent/CN108263194A/en active Pending
- 2018-02-01 CN CN201820179251.4U patent/CN208035934U/en active Active
- 2018-02-01 CN CN201820174205.5U patent/CN208035932U/en active Active
- 2018-02-01 CN CN201820173584.6U patent/CN208118929U/en not_active Withdrawn - After Issue
- 2018-02-01 CN CN201820176093.7U patent/CN207772872U/en active Active
- 2018-02-01 CN CN201810103477.0A patent/CN108297674A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040254039A1 (en) * | 2003-06-12 | 2004-12-16 | Honda Motor Co., Ltd. | Drive system |
US20150148172A1 (en) * | 2012-12-18 | 2015-05-28 | Dumitru Puiu | Multi-mode hybrid variable drive unit |
CN105452078A (en) * | 2013-08-05 | 2016-03-30 | 丰田自动车株式会社 | Control system for hybrid vehicle |
CN106183780A (en) * | 2016-08-30 | 2016-12-07 | 上海交通大学 | The coaxial coupling drive system of dual planetary gear system bi-motor |
CN106494215A (en) * | 2016-10-21 | 2017-03-15 | 广州市新域动力技术有限公司 | Multi-mode composite planet hybrid power assembly |
CN207772872U (en) * | 2017-10-24 | 2018-08-28 | 广西玉柴机器股份有限公司 | A kind of hybrid power system with limp-home module |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN207772872U (en) | A kind of hybrid power system with limp-home module | |
CN107521326B (en) | Series parallel type drive system and hybrid vehicle for hybrid vehicle | |
US9701187B2 (en) | Drive device for a vehicle and vehicle comprising the drive device | |
US10308104B2 (en) | HyBrid transaxle | |
CN209208475U (en) | Hybrid power coupled system and vehicle | |
CN102941801A (en) | Drive device of hybrid car | |
CN207809037U (en) | Hybrid electric drive system and vehicle | |
CN207416537U (en) | Hybrid electric drive system and vehicle | |
CN109591577A (en) | Hybrid electric drive system and vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |