CN108312837A - Hybrid power system with limp-home module - Google Patents
Hybrid power system with limp-home module Download PDFInfo
- Publication number
- CN108312837A CN108312837A CN201810102069.3A CN201810102069A CN108312837A CN 108312837 A CN108312837 A CN 108312837A CN 201810102069 A CN201810102069 A CN 201810102069A CN 108312837 A CN108312837 A CN 108312837A
- Authority
- CN
- China
- Prior art keywords
- gear
- shaft
- limp
- motor
- hollow shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/24—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/02—Arrangement or mounting of electrical propulsion units comprising more than one electric motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/26—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/36—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/36—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
- B60K6/365—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/38—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/40—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T1/00—Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
- B60T1/02—Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
- B60T1/06—Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels acting otherwise than on tread, e.g. employing rim, drum, disc, or transmission or on double wheels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Retarders (AREA)
- Structure Of Transmissions (AREA)
- Arrangement Of Transmissions (AREA)
Abstract
The invention discloses a kind of hybrid power systems with limp-home module, including central shaft, the first hollow shaft, the second hollow shaft, first motor and the second motor, limp-home module, input shaft and the bi-directional brake being set in together;Wherein, first motor passes through the second reduction gearing and the second hollow axis connection by the first reduction gearing and the first hollow axis connection, the second motor;Gear ring is engaged with front-seat planetary gear and heel row planetary gear jointly, and gear ring is connected with output shaft, and output shaft is used for exporting hybrid power.Limp-home module includes limp-home module gear wheels group and limp-home module output shaft, and bi-directional brake is arranged in the front end of first hollow shaft, for being braked to central shaft or the first hollow shaft.The axial length of power assembly can be greatly decreased in the hybrid power system of the present invention, improve the use probability that engine directly drives vehicle operation.
Description
Technical field
The present invention relates to technical field of hybrid power, more particularly to a kind of hybrid power system with limp-home module
System.
Background technology
Planetary gear mechanism has the characteristics that multiple degrees of freedom, and mostly it is limited using two motors in hybrid power system
Degree of freedom.It is full decoupled to the rotating speed of engine and torque respectively by two motors, so that engine working point is freely controlled
System to realize electrodeless variable-speed, and improves the fuel economy of hybrid power system to the maximum extent.
It mostly uses two or more planetary gear trains currently on the market to be combined, although using multiple planetary gear trains making
It is freer that power system architecture combination must be mixed, but it is various to also result in hybrid power system configuration complexity, and increase system
The complexity and diversity of the influence factor of interior power flow direction and system effectiveness.
The planet row hybrid power system that new energy urban bus is applied in the market at present is mainly bi-motor duplicate rows
The coaxially arranged scheme of star row, the main problems are as follows:
1, the maximum speed of two driving motors is relatively low, and peak torque is larger, and motor cost is high;
2, coaxially arranged scheme causes power assembly axial length larger, requires arrangement space high, vehicle bad adaptability;
3, split type encapsulation scheme is mostly used, there are multiple sealing rings, and not only sealing difficulty is larger, are easy oil leak, and
Maintenance and repair difficulty is big;
4, it is only capable of being applied individually to any urban bus, coach can not be adapted to simultaneously, although engine can be realized
Directly drive vehicle, but engine directly drive vehicle applied probability it is very low, vehicle suitability is poor;
5, do not have limp-home function, once electric drive system fails, trailer can only be used to rescue.
Being disclosed in the information of the background technology part, it is only intended to increase understanding of the overall background of the invention, without answering
It has been the prior art well known to persons skilled in the art when being considered as recognizing or imply that the information is constituted in any form.
Invention content
The purpose of the present invention is to provide a kind of hybrid power systems with limp-home module, to overcome engine
The low using probability of vehicle operation is directly driven, does not have the shortcomings that limping function.
To achieve the above object, the present invention provides a kind of hybrid power system with limp-home module, features
It is, which includes:The tail end of central shaft, the central shaft is provided with heel row planet carrier, during the other end is provided with
Spindle gear, heel row planetary gear is provided on heel row planet carrier, and central shaft is used for inputting engine power;First hollow shaft,
On center shaft, the rear end of the first hollow shaft is provided with heel row sun gear to suit, and heel row sun gear is engaged with heel row planetary gear;The
Two hollow shafts are sleeved in the first hollow shaft, and the back-end location of the second hollow shaft is provided with the front row being fixedly connected with the casing
Planet carrier is provided with front-seat planetary gear on front-seat planet carrier, and the rear end of the second hollow shaft is provided with front-seat sun gear, the front-seat sun
Wheel is engaged with the front-seat planetary gear;Gear ring is engaged with front-seat planetary gear and heel row planetary gear jointly, and gear ring is connected with output
Axis, output shaft are used for exporting hybrid power;First motor and the second motor, first motor are connect with the first Hollow Shaft Transmission, the
Two motors are connect with the second Hollow Shaft Transmission;Limp-home module comprising limp-home module gear wheels group and and limp-home
The limp-home module output shaft of module gear wheels group connection;One end of input shaft, input shaft connects engine, and the other end is provided with
Total input gear, realized by first gear set total input gear connect with center shaft gear or total input gear with walk lamely
The switching of module gear wheels group of going home connection, limp-home module export the second hollow shaft described in axis connection;And bi-directional brake,
It is arranged in the front end of the first hollow shaft, and bi-directional brake is used for braking central shaft or the first hollow shaft.
In a preferred embodiment, bi-directional brake includes second gear set, and the outer ring of second gear set is outside
Spline tooth is connect with the internal spline on shell, and the inner ring of second gear set is provided with inner spline gear, and the front end of the first hollow shaft is set
It is equipped with the first brake tooth, second brake tooth arranged side by side with the first brake tooth is provided on central shaft, bi-directional brake passes through movement
Second gear set is connect with the first brake tooth or the second brake tooth, and then is braked to the first hollow shaft or central shaft.
In a preferred embodiment, the connection of first motor and the first hollow shaft, the second motor and the second hollow shaft
Mode is one kind in reduction gearing, transmission chain or transmission belt.
In a preferred embodiment, the second hollow shaft front end is provided with third reduction gearing, limp-home module
Output shaft is transmitted transmission by third reduction gearing and is turned round by third reduction gearing and the second hollow axis connection, limp-home module
Square.
In a preferred embodiment, the output shaft of limp-home module passes through the second reduction gearing and the second hollow shaft
Connection, limp-home module transmit driving torque by the second reduction gearing.
In a preferred embodiment, first gear set, second gear set realize slide handover by automatically controlled mode.
In a preferred embodiment, first motor and the second motor are integrated in shell.
In a preferred embodiment, output shaft stretches out the rear end of shell, and input shaft stretches out the front end of shell, and passes through
Flexible disk or clutch are connect with engine.
In a preferred embodiment, first motor and the second motor are arranged in parallel in the both sides of central shaft.
Compared with prior art, the hybrid power system according to the present invention with limp-home module is with following beneficial
Effect:Bi-motor uses parallel shaft arrangement, and is connected respectively from different planet row sun gears by deceleration mechanism, can substantially subtract
The axial length of few power assembly, reduces the arrangement space of power assembly, improves applicable model of the power assembly to different automobile types
It encloses.By the connection type of design double planet wheel rows of mixing and engine, the use power that engine directly drives vehicle operation is improved,
The transmission efficiency higher for making power assembly system, reduces the fuel consumption of system.Gear ring is shared by double planet wheel rows of mixing, can will be started
The uncoupled dynamic space of machine, a part pass to rear axle, and another part passes to first motor and generates electricity.Using limping function switch
Device, can be the case where power drive system fails, and limp-home avoids trailer from rescuing.
Description of the drawings
Fig. 1 is the structure chart of the first embodiment of the hybrid power system with limp-home module of the present invention.
Fig. 2 is the structure chart of second of embodiment of the hybrid power system with limp-home module of the present invention.
Fig. 3 is the structure chart of the third embodiment of the hybrid power system with limp-home module of the present invention.
Fig. 4 is the structure chart of the 4th kind of embodiment of the hybrid power system with limp-home module of the present invention.
Fig. 5 is the structure chart of the 5th kind of embodiment of the hybrid power system with limp-home module of the present invention.
Fig. 6 is the structure chart of the 6th kind of embodiment of the hybrid power system with limp-home module of the present invention.
Main appended drawing reference explanation:
1, engine, 10, bi-directional brake, 11, flexible disk, 12, total input gear, 21, first motor, the 22, second electricity
Machine, the 211, first reduction gearing, the 221, second reduction gearing, 3, limp-home module, 31 limp-home module gear wheels groups, 32 is lame
Capable module output shaft of going home, 4 central shafts, 41 center shaft gears, 42 second brake tooths, 5 first hollow shafts, 51 first brake tooths,
52 first cannon pinions, 53 heel row sun gears, 54 heel row planetary gears, 6 second hollow shafts, 62 front-seat planet carriers are ranked before 63
Star-wheel, 61 front-seat sun gears, 64 second cannon pinions, 71 gear rings, 72 heel row planet carriers, 8 shells, 91 first gear sets, 92
Second gear set, 521, chain or belt, 522, belt or chain, 33, third reduction gearing.
Specific implementation mode
Below in conjunction with the accompanying drawings, the specific implementation mode of the present invention is described in detail, it is to be understood that the guarantor of the present invention
Shield range is not restricted by specific implementation.
Unless otherwise explicitly stated, otherwise in entire disclosure and claims, term " comprising " or its change
It changes such as "comprising" or " including " etc. and will be understood to comprise stated element or component, and do not exclude other members
Part or other component parts.
Such as Fig. 1 to shown, the hybrid power system according to the preferred embodiment of the present invention with limp-home module, packet
It includes:Central shaft 4, the first hollow shaft 5, the second hollow shaft 6, gear ring 71, first motor 21, the second motor 22, limp-home module
3, input shaft and bi-directional brake 10.
Wherein, the tail end of central shaft 4 is provided with heel row planet carrier 72, and the other end is provided with center shaft gear 41, rear to rank
Heel row planetary gear 54 is provided in carrier 72, central shaft 4 is used for inputting engine power.First hollow shaft 5, is sleeved on center
On axis 4, the rear end of the first hollow shaft 5 is equipped with heel row sun gear 53, and heel row sun gear 53 is engaged with heel row planetary gear 54.First is empty
The front end of mandrel 5 is provided with the first cannon pinion 52.Second hollow shaft sleeve is mounted in the first hollow shaft 5, the second hollow shaft 6
Back-end location is provided with the front-seat planet carrier 62 being fixedly connected with shell 8, and front-seat planet carrier 62 is equipped with front-seat planetary gear 63, the
The rear end of two hollow shafts 6 is equipped with front-seat sun gear 61, and front-seat sun gear 61 is engaged with front-seat planetary gear 63.
Gear ring 71 is engaged with front-seat planetary gear 63 and heel row planetary gear 54 jointly, and gear ring 71 is connected with output shaft, output shaft
For exporting hybrid power.First motor 21 and the first hollow shaft 5 are sequentially connected, and the second motor 22 and the second hollow shaft 6 are driven
Connection;
Limp-home module 3 includes limp-home module gear wheels group 31 and is connect with limp-home module gear wheels group 31 lame
Capable module output shaft 32 of going home.One end of input shaft connects engine 1, and the other end is provided with total input gear 12, always inputs tooth
Wheel 12 is connect with center shaft gear 41 or total input gear 12 connect with limp-home module gear wheels group 31 and passes through first gear set
91 switchings, limp-home module output shaft 32 connect the second hollow shaft 6.Bi-directional brake 10 is arranged before the first hollow shaft 5
End, bi-directional brake 10 are used for braking central shaft 4 or the first hollow shaft 5.
As a preferred embodiment, bi-directional brake 10 includes second gear set 92, outside second gear set 92
Circle is connect by external spline teeth with the internal spline on shell 8, and the inner ring of second gear set 92 is equipped with inner spline gear, the first hollow shaft
5 front end is equipped with the second brake tooth 51, and central shaft is equipped with and 51 first brake tooth 42 arranged side by side of the second brake tooth, bi-directional braking
Device pair first hollow shaft 5 or described by mobile second gear set 92 is connect with the first brake tooth 42 or the second brake tooth 51
Central shaft 4 is braked.
As a preferred embodiment, first motor 21 and the first hollow shaft 5 are connected by the first reduction gearing 211
It connects, the second motor 22 is connect with the second hollow shaft 6 by the second reduction gearing 221, as shown in Figure 1.Above-mentioned connection relation, may be used also
By have it is following it is several in the form of:First motor 21 is connect with the first hollow shaft 5 by belt or chain 521;Second motor 22 and
Two hollow shafts 6 are connected by chain or belt 522, as shown in figures 2-6.
As a preferred embodiment, 6 front end of the second hollow shaft is provided with third reduction gearing 33, limp-home mould
Block output shaft 32 is connect by third reduction gearing 33 with the second hollow shaft 6, and limp-home module driving torque is subtracted by third
Fast gear 33 transmits, as seen in figures 3-6.
As a preferred embodiment, limp-home module output shaft 32 passes through the second reduction gearing 221 and second
Hollow shaft 6 connects, and limp-home module 3 transmits driving torque by the second reduction gearing 221.As shown in Figure 1, 2.
In said program, first gear set 91, second gear set 92 realize slide handover by automatically controlled mode.First motor
21 and second motor 22 be integrated in shell 8.Output shaft stretches out the rear end of shell 8, and input shaft stretches out the front end of shell 8, passes through
Flexible disk 11 (or clutch) is connect with engine.First motor 21 and the second motor 22 are arranged in parallel in the both sides of central shaft 4.
In conclusion double planet wheel rows of mixing used by the hybrid power system of the present invention can effectively solve the problem that currently on the market is mixed
The problem of contact system, and have the advantage that:
(1) peak torque of double drive motor can at least reduce 50%, and motor size is obviously reduced, the cost of driving motor
About 45% can be reduced, the core competitiveness of product can be promoted from cost;
(2) bi-motor uses parallel shaft arrangement mode, the axial dimension of power assembly can be greatly decreased, in limited public transport
In car installation space, arrangement is more flexible, and can be suitably used for different automobile types, expands adaptation vehicle range;
(3) in each drive mode of double planet wheel rows of mixing series-parallel connection scheme, the highest pattern of transmission efficiency is that engine directly drives vehicle
, to be supplied to the high transmission efficiency of system, multipurpose engine directly drives vehicle, therefore by second gear set and the first hollow shaft phase
Even, it can be achieved that engine directly drives, Full Vehicle System rate of economizing gasoline is improved;The system can be applied to urban bus and length simultaneously
Way bullet train;
(4) have limp-home function, when power drive system fails, trailer rescue is can avoid, using limp-home mould
Formula continues to run with;
(5) second gear set 92 is connected with central shaft 4, can realize that bi-motor drives vehicle in a manner of pure electric drive jointly,
Compared to other planet row schemes pure electric vehicle driving when can only single motor work for, which can reduce the torsion of the second motor 22
Square, power reduce system cost.
(6) have a wide range of application, can be used for urban bus, highway passenger vehicle, coach, new energy truck, new energy
The fields such as automobile.
The description of the aforementioned specific exemplary embodiment to the present invention is in order to illustrate and illustration purpose.These descriptions
It is not wishing to limit the invention to disclosed precise forms, and it will be apparent that according to the above instruction, can much be changed
And variation.The purpose of selecting and describing the exemplary embodiment is that explaining the specific principle of the present invention and its actually answering
With so that those skilled in the art can realize and utilize the present invention a variety of different exemplary implementation schemes and
Various chooses and changes.The scope of the present invention is intended to be limited by claims and its equivalents.
Claims (9)
1. a kind of hybrid power system with limp-home module, which is characterized in that the hybrid power system includes:
The tail end of central shaft, the central shaft is provided with heel row planet carrier, and the other end is provided with center shaft gear, the rear rows of planetary
Heel row planetary gear is provided on frame, the central shaft is used for inputting engine power;
First hollow shaft is sleeved on the central shaft, and the rear end of first hollow shaft is provided with heel row sun gear, described
Heel row sun gear is engaged with the heel row planetary gear;
Second hollow shaft is sleeved in first hollow shaft, and the back-end location of second hollow shaft is provided with and shell
The front-seat planet carrier being fixedly connected, it is described front row planet carrier on be provided with front-seat planetary gear, the rear end of second hollow shaft is set
It is equipped with front-seat sun gear, the front row sun gear is engaged with the front-seat planetary gear;
Gear ring is engaged with the front-seat planetary gear and the heel row planetary gear jointly, and the gear ring is connected with output shaft, described
Output shaft is used for exporting hybrid power;
First motor and the second motor, the first motor are connect with first Hollow Shaft Transmission, second motor and institute
State the connection of the second Hollow Shaft Transmission;
Limp-home module comprising limp-home module gear wheels group and the limping being connect with the limp-home module gear wheels group
Module of going home output shaft;
Input shaft, one end of the input shaft connect engine, and the other end is provided with total input gear, by first gear set come
Realize that total input gear is connect or total input gear and the limp-home module tooth with the center shaft gear
The switching of wheel group connection, the limp-home module export the second hollow shaft described in axis connection;And
Bi-directional brake is arranged in the front end of first hollow shaft, the bi-directional brake be used for the central shaft or
First hollow shaft is braked.
2. hybrid power system according to claim 1, which is characterized in that the bi-directional brake includes second gear
The outer ring of set, the second gear set is connect by external spline teeth with the internal spline on the shell, the second gear set
Inner ring is provided with inner spline gear, and the front end of first hollow shaft is provided with the first brake tooth, be provided on the central shaft with
First brake tooth the second brake tooth arranged side by side, the bi-directional brake pass through the movement second gear set and described first
Brake tooth or second brake tooth connection, and then first hollow shaft or the central shaft are braked.
3. hybrid power system according to claim 2, which is characterized in that the first motor and described first hollow
The connection type of axis, second motor and second hollow shaft is one kind in reduction gearing, transmission chain or transmission belt.
4. hybrid power system according to claim 3, which is characterized in that second hollow shaft front end is provided with third
Reduction gearing, the output shaft of limp-home module are described to walk lamely back by third reduction gearing and the described second hollow axis connection
Family's module transmits driving torque by the third reduction gearing.
5. hybrid power system according to claim 3, which is characterized in that the output shaft of the limp-home module passes through
Second reduction gearing and the described second hollow axis connection, the limp-home module are transmitted by second reduction gearing and are driven
Torque.
6. hybrid power system according to claim 1, which is characterized in that the first gear set, the second gear
Set realizes slide handover by automatically controlled mode.
7. hybrid power system according to claim 1, which is characterized in that the first motor and the second motor collection
At in shell.
8. hybrid power system according to claim 7, which is characterized in that after the output shaft stretches out the shell
End, the input shaft stretches out the front end of the shell, and is connected with the engine by flexible disk or clutch.
9. hybrid power system according to claim 1, which is characterized in that the first motor and second motor are flat
Row is arranged in the both sides of the central shaft.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2017109976963 | 2017-10-24 | ||
CN201710997696.3A CN107599820A (en) | 2017-10-24 | 2017-10-24 | Hybrid drive train |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108312837A true CN108312837A (en) | 2018-07-24 |
Family
ID=61079463
Family Applications (71)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710997696.3A Withdrawn CN107599820A (en) | 2017-10-24 | 2017-10-24 | Hybrid drive train |
CN201810102069.3A Pending CN108312837A (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module |
CN201810101704.6A Active CN108312835B (en) | 2017-10-24 | 2018-02-01 | Parallel shaft type double-motor double-planet-row hybrid power system with limp home module |
CN201820176757.XU Active CN208101683U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201810101305.XA Pending CN108297671A (en) | 2017-10-24 | 2018-02-01 | Two grades of parallel-axis type double electric machine double row planetary gear hybrid power systems |
CN201820180363.1U Active CN208149053U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201810101683.8A Pending CN108407597A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201810103486.XA Pending CN108372780A (en) | 2017-10-24 | 2018-02-01 | The double electric machine double row planetary gear hybrid power assembly of locking device |
CN201820175772.2U Active CN207790305U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module |
CN201820175782.6U Active CN207942918U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201810102083.3A Active CN108372779B (en) | 2017-10-24 | 2018-02-01 | Hybrid powertrain with limp home module and shift mechanism |
CN201820179255.2U Active CN207916556U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module and gearshift |
CN201810102100.3A Active CN108407599B (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp home module |
CN201820172349.7U Active CN208247955U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear two keeps off hybrid power assembly |
CN201810100810.2A Pending CN108297670A (en) | 2017-10-24 | 2018-02-01 | Two grades of hybrid power assemblies of parallel-axis type double electric machine double row planetary gear with limping system |
CN201820175775.6U Active CN207772871U (en) | 2017-10-24 | 2018-02-01 | Parallel-axis type double electric machine double row planetary gear hybrid power system with limp-home module |
CN201810100551.3A Active CN108297669B (en) | 2017-10-24 | 2018-02-01 | Hybrid power assembly with limp home module |
CN201810100040.1A Active CN108515837B (en) | 2017-10-24 | 2018-02-01 | Hybrid power assembly with limp home module |
CN201820177000.2U Active CN207942919U (en) | 2017-10-24 | 2018-02-01 | The double electric machine double row planetary gear hybrid power assembly of locking device |
CN201820173585.0U Active CN207916552U (en) | 2017-10-24 | 2018-02-01 | A kind of two gear hybrid power assembly of three sleeve shaft-type uni-directional brake double electric machine double row planetary gear |
CN201820180280.2U Active CN208069391U (en) | 2017-10-24 | 2018-02-01 | Two grades of parallel-axis type double electric machine double row planetary gear hybrid power systems |
CN201810102084.8A Pending CN108284739A (en) | 2017-10-24 | 2018-02-01 | A kind of double electric machine double row planetary gear hybrid power system |
CN201810100046.9A Pending CN108372777A (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201810101701.2A Pending CN108263193A (en) | 2017-10-24 | 2018-02-01 | Hybrid power system |
CN201810101684.2A Pending CN108454379A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820174106.7U Active CN208101682U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201820176297.0U Active CN208602303U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module |
CN201820172407.6U Active CN208149049U (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201810101349.2A Pending CN108297672A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820180323.7U Active CN208232804U (en) | 2017-10-24 | 2018-02-01 | A kind of double electric machine double row planetary gear hybrid power system |
CN201810101377.4A Active CN108284738B (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp home module |
CN201820175784.5U Active CN207772868U (en) | 2017-10-24 | 2018-02-01 | A kind of three sets of axis locking structure hybrid power systems of double planet wheel rows of mixing |
CN201820176280.5U Active CN207772869U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with three sets of axis locking structures of double planet wheel rows of mixing |
CN201820179253.3U Active CN207916555U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820174242.6U Active CN208149051U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201810102309.XA Active CN108382181B (en) | 2017-10-24 | 2018-02-01 | Hybrid power assembly with limp home module |
CN201810100758.0A Active CN108263195B (en) | 2017-10-24 | 2018-02-01 | Two-gear parallel shaft type double-motor double-planet-row hybrid power assembly with limp system |
CN201820176279.2U Active CN207790302U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system |
CN201810101642.9A Pending CN108454378A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820180374.XU Active CN208149054U (en) | 2017-10-24 | 2018-02-01 | Hybrid drive train with limp-home module |
CN201820179252.9U Active CN208198093U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201810102060.2A Active CN108312836B (en) | 2017-10-24 | 2018-02-01 | Hybrid powertrain with limp home module |
CN201820172367.5U Active CN208134059U (en) | 2017-10-24 | 2018-02-01 | hybrid power assembly with limp-home module |
CN201810102300.9A Active CN108297673B (en) | 2017-10-24 | 2018-02-01 | Hybrid powertrain system |
CN201810100232.2A Active CN108515838B (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp home module |
CN201810100538.8A Pending CN108263192A (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201820174505.3U Active CN208035933U (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201810101380.6A Pending CN108297667A (en) | 2017-10-24 | 2018-02-01 | A kind of three sets of axis locking structure hybrid power systems of double planet wheel rows of mixing |
CN201810100777.3A Pending CN108454376A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201810100819.3A Pending CN108312833A (en) | 2017-10-24 | 2018-02-01 | Three sleeve shaft-type dual brake double electric machine double row planetary gears, two gear hybrid power assembly |
CN201820174150.8U Active CN208149050U (en) | 2017-10-24 | 2018-02-01 | Three sleeve shaft-type dual brake double electric machine double row planetary gears, two gear hybrid power assembly |
CN201810100539.2A Pending CN108372778A (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201820180242.7U Active CN207916557U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201810101738.5A Active CN108407598B (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp home module |
CN201810101702.7A Pending CN108263196A (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with three sets of axis locking structures of double planet wheel rows of mixing |
CN201820174202.1U Active CN207942917U (en) | 2017-10-24 | 2018-02-01 | Two grades of parallel-axis type double electric machine double row planetary gear hybrid power assemblies with limping system |
CN201810100025.7A Pending CN108312832A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear two keeps off hybrid power assembly |
CN201820175783.0U Active CN207997760U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201820176997.XU Active CN208149052U (en) | 2017-10-24 | 2018-02-01 | hybrid power assembly with limp-home module |
CN201810100760.8A Pending CN108407589A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201820173594.XU Active CN208035931U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201820177771.1U Active CN207790307U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201820177761.8U Active CN207790306U (en) | 2017-10-24 | 2018-02-01 | Hybrid drive train |
CN201810101348.8A Pending CN108454377A (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module |
CN201810101362.8A Pending CN108312834A (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201810100522.7A Pending CN108263194A (en) | 2017-10-24 | 2018-02-01 | A kind of two gear hybrid power assembly of three sleeve shaft-type uni-directional brake double electric machine double row planetary gear |
CN201820179251.4U Active CN208035934U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820174205.5U Active CN208035932U (en) | 2017-10-24 | 2018-02-01 | Two grades of hybrid power assemblies of parallel-axis type double electric machine double row planetary gear with limping system |
CN201820173584.6U Withdrawn - After Issue CN208118929U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power assembly with limp-home module |
CN201820176093.7U Active CN207772872U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201810103477.0A Pending CN108297674A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710997696.3A Withdrawn CN107599820A (en) | 2017-10-24 | 2017-10-24 | Hybrid drive train |
Family Applications After (69)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810101704.6A Active CN108312835B (en) | 2017-10-24 | 2018-02-01 | Parallel shaft type double-motor double-planet-row hybrid power system with limp home module |
CN201820176757.XU Active CN208101683U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201810101305.XA Pending CN108297671A (en) | 2017-10-24 | 2018-02-01 | Two grades of parallel-axis type double electric machine double row planetary gear hybrid power systems |
CN201820180363.1U Active CN208149053U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201810101683.8A Pending CN108407597A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201810103486.XA Pending CN108372780A (en) | 2017-10-24 | 2018-02-01 | The double electric machine double row planetary gear hybrid power assembly of locking device |
CN201820175772.2U Active CN207790305U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module |
CN201820175782.6U Active CN207942918U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201810102083.3A Active CN108372779B (en) | 2017-10-24 | 2018-02-01 | Hybrid powertrain with limp home module and shift mechanism |
CN201820179255.2U Active CN207916556U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module and gearshift |
CN201810102100.3A Active CN108407599B (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp home module |
CN201820172349.7U Active CN208247955U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear two keeps off hybrid power assembly |
CN201810100810.2A Pending CN108297670A (en) | 2017-10-24 | 2018-02-01 | Two grades of hybrid power assemblies of parallel-axis type double electric machine double row planetary gear with limping system |
CN201820175775.6U Active CN207772871U (en) | 2017-10-24 | 2018-02-01 | Parallel-axis type double electric machine double row planetary gear hybrid power system with limp-home module |
CN201810100551.3A Active CN108297669B (en) | 2017-10-24 | 2018-02-01 | Hybrid power assembly with limp home module |
CN201810100040.1A Active CN108515837B (en) | 2017-10-24 | 2018-02-01 | Hybrid power assembly with limp home module |
CN201820177000.2U Active CN207942919U (en) | 2017-10-24 | 2018-02-01 | The double electric machine double row planetary gear hybrid power assembly of locking device |
CN201820173585.0U Active CN207916552U (en) | 2017-10-24 | 2018-02-01 | A kind of two gear hybrid power assembly of three sleeve shaft-type uni-directional brake double electric machine double row planetary gear |
CN201820180280.2U Active CN208069391U (en) | 2017-10-24 | 2018-02-01 | Two grades of parallel-axis type double electric machine double row planetary gear hybrid power systems |
CN201810102084.8A Pending CN108284739A (en) | 2017-10-24 | 2018-02-01 | A kind of double electric machine double row planetary gear hybrid power system |
CN201810100046.9A Pending CN108372777A (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201810101701.2A Pending CN108263193A (en) | 2017-10-24 | 2018-02-01 | Hybrid power system |
CN201810101684.2A Pending CN108454379A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820174106.7U Active CN208101682U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201820176297.0U Active CN208602303U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module |
CN201820172407.6U Active CN208149049U (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201810101349.2A Pending CN108297672A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820180323.7U Active CN208232804U (en) | 2017-10-24 | 2018-02-01 | A kind of double electric machine double row planetary gear hybrid power system |
CN201810101377.4A Active CN108284738B (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp home module |
CN201820175784.5U Active CN207772868U (en) | 2017-10-24 | 2018-02-01 | A kind of three sets of axis locking structure hybrid power systems of double planet wheel rows of mixing |
CN201820176280.5U Active CN207772869U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with three sets of axis locking structures of double planet wheel rows of mixing |
CN201820179253.3U Active CN207916555U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820174242.6U Active CN208149051U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201810102309.XA Active CN108382181B (en) | 2017-10-24 | 2018-02-01 | Hybrid power assembly with limp home module |
CN201810100758.0A Active CN108263195B (en) | 2017-10-24 | 2018-02-01 | Two-gear parallel shaft type double-motor double-planet-row hybrid power assembly with limp system |
CN201820176279.2U Active CN207790302U (en) | 2017-10-24 | 2018-02-01 | Hybrid power system |
CN201810101642.9A Pending CN108454378A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820180374.XU Active CN208149054U (en) | 2017-10-24 | 2018-02-01 | Hybrid drive train with limp-home module |
CN201820179252.9U Active CN208198093U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201810102060.2A Active CN108312836B (en) | 2017-10-24 | 2018-02-01 | Hybrid powertrain with limp home module |
CN201820172367.5U Active CN208134059U (en) | 2017-10-24 | 2018-02-01 | hybrid power assembly with limp-home module |
CN201810102300.9A Active CN108297673B (en) | 2017-10-24 | 2018-02-01 | Hybrid powertrain system |
CN201810100232.2A Active CN108515838B (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp home module |
CN201810100538.8A Pending CN108263192A (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201820174505.3U Active CN208035933U (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201810101380.6A Pending CN108297667A (en) | 2017-10-24 | 2018-02-01 | A kind of three sets of axis locking structure hybrid power systems of double planet wheel rows of mixing |
CN201810100777.3A Pending CN108454376A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201810100819.3A Pending CN108312833A (en) | 2017-10-24 | 2018-02-01 | Three sleeve shaft-type dual brake double electric machine double row planetary gears, two gear hybrid power assembly |
CN201820174150.8U Active CN208149050U (en) | 2017-10-24 | 2018-02-01 | Three sleeve shaft-type dual brake double electric machine double row planetary gears, two gear hybrid power assembly |
CN201810100539.2A Pending CN108372778A (en) | 2017-10-24 | 2018-02-01 | Three sets of axle construction hybrid power assemblies of double planet wheel rows of mixing |
CN201820180242.7U Active CN207916557U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201810101738.5A Active CN108407598B (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp home module |
CN201810101702.7A Pending CN108263196A (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with three sets of axis locking structures of double planet wheel rows of mixing |
CN201820174202.1U Active CN207942917U (en) | 2017-10-24 | 2018-02-01 | Two grades of parallel-axis type double electric machine double row planetary gear hybrid power assemblies with limping system |
CN201810100025.7A Pending CN108312832A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear two keeps off hybrid power assembly |
CN201820175783.0U Active CN207997760U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201820176997.XU Active CN208149052U (en) | 2017-10-24 | 2018-02-01 | hybrid power assembly with limp-home module |
CN201810100760.8A Pending CN108407589A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201820173594.XU Active CN208035931U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201820177771.1U Active CN207790307U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
CN201820177761.8U Active CN207790306U (en) | 2017-10-24 | 2018-02-01 | Hybrid drive train |
CN201810101348.8A Pending CN108454377A (en) | 2017-10-24 | 2018-02-01 | Hybrid power system with limp-home module |
CN201810101362.8A Pending CN108312834A (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system |
CN201810100522.7A Pending CN108263194A (en) | 2017-10-24 | 2018-02-01 | A kind of two gear hybrid power assembly of three sleeve shaft-type uni-directional brake double electric machine double row planetary gear |
CN201820179251.4U Active CN208035934U (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power system |
CN201820174205.5U Active CN208035932U (en) | 2017-10-24 | 2018-02-01 | Two grades of hybrid power assemblies of parallel-axis type double electric machine double row planetary gear with limping system |
CN201820173584.6U Withdrawn - After Issue CN208118929U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power assembly with limp-home module |
CN201820176093.7U Active CN207772872U (en) | 2017-10-24 | 2018-02-01 | A kind of hybrid power system with limp-home module |
CN201810103477.0A Pending CN108297674A (en) | 2017-10-24 | 2018-02-01 | Double electric machine double row planetary gear hybrid power assembly |
Country Status (1)
Country | Link |
---|---|
CN (71) | CN107599820A (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107599820A (en) * | 2017-10-24 | 2018-01-19 | 广西玉柴机器股份有限公司 | Hybrid drive train |
CN109177716B (en) * | 2018-08-17 | 2019-11-26 | 宁波上中下自动变速器有限公司 | Dynamical system for hybrid vehicle |
CN109080427A (en) * | 2018-09-21 | 2018-12-25 | 广州市新域动力技术有限公司 | Bi-motor hybrid engine multimode dynamical system and its driving method |
CN111098695B (en) * | 2018-10-26 | 2021-10-22 | 比亚迪股份有限公司 | Hybrid power driving system and vehicle |
CN109927703B (en) * | 2019-03-01 | 2020-09-18 | 中国第一汽车股份有限公司 | Auxiliary oil pump device for hybrid electric vehicle and control method |
CN110065381B (en) * | 2019-03-26 | 2024-03-22 | 中国汽车技术研究中心有限公司 | Dual-input-shaft three-mode hybrid power device for vehicle and working method |
CN109941091B (en) * | 2019-03-26 | 2023-08-25 | 中国汽车技术研究中心有限公司 | Hybrid power system with power splitting and range extending functions and working method |
CN109941092A (en) * | 2019-04-19 | 2019-06-28 | 广州市新域动力技术有限公司 | Bi-motor hybrid engine planet row power assembly |
CN112389194B (en) * | 2019-08-19 | 2023-01-06 | 比亚迪股份有限公司 | Integrated axle assembly and vehicle |
DE102019129864B4 (en) * | 2019-11-06 | 2023-04-20 | Schaeffler Technologies AG & Co. KG | Anvil tool and method of joining machine parts |
CN110962580B (en) * | 2019-11-21 | 2022-01-25 | 北京航空航天大学 | Electromechanical coupling transmission device and system and hybrid electric vehicle |
CN110901366A (en) * | 2019-12-26 | 2020-03-24 | 株洲齿轮有限责任公司 | Hybrid power gearbox, hybrid power driving system and automobile |
CN111071029A (en) * | 2019-12-30 | 2020-04-28 | 天津中德传动有限公司 | Power assembly with coaxial hybrid two-gear gearbox |
CN112224006A (en) * | 2020-08-28 | 2021-01-15 | 广西玉柴机器股份有限公司 | Three-gear parallel shaft type double-motor three-planet-row hybrid power system |
CN111976463B (en) * | 2020-08-31 | 2023-12-26 | 东风汽车集团有限公司 | Hybrid vehicle driving system capable of realizing single-motor two-gear driving |
CN112959881B (en) * | 2021-03-24 | 2022-06-10 | 广西玉柴机器股份有限公司 | Three-gear parallel shaft type lameable double-motor single-row planet row hybrid power system with power take-off module |
CN115352270A (en) * | 2021-04-30 | 2022-11-18 | 南京邦奇自动变速箱有限公司 | Shunting type hybrid power device for automobile |
CN113173067A (en) * | 2021-06-08 | 2021-07-27 | 上海爱跻企业管理咨询合伙企业(有限合伙) | Hybrid power device, control system and automobile |
CN113580917B (en) * | 2021-08-06 | 2024-04-05 | 广西玉柴机器股份有限公司 | Four-gear claudication double-motor double-planetary-row hybrid power system with power take-off module |
CN113858939A (en) * | 2021-10-08 | 2021-12-31 | 宁波吉利罗佑发动机零部件有限公司 | Power transmission device |
CN113858936B (en) * | 2021-10-29 | 2024-10-15 | 清华大学苏州汽车研究院(吴江) | P2 hybrid power module |
CN114475217B (en) * | 2022-03-25 | 2023-10-10 | 中国重汽集团济南动力有限公司 | Three-power-source coupling hybrid system suitable for heavy truck |
CN114523839A (en) * | 2022-04-24 | 2022-05-24 | 潍柴动力股份有限公司 | Hybrid power system and control method thereof |
CN115009001A (en) * | 2022-04-29 | 2022-09-06 | 东风商用车有限公司 | Single-planet multi-motor series-parallel stepless variable transmission device for commercial vehicle |
CN115009002A (en) * | 2022-04-29 | 2022-09-06 | 东风商用车有限公司 | Double-planet multi-motor series-parallel stepless variable transmission device for commercial vehicle |
CN114919394B (en) * | 2022-06-15 | 2023-08-29 | 中国第一汽车股份有限公司 | Single-row hybrid power system |
CN117681641B (en) * | 2023-12-29 | 2024-08-06 | 中联重科股份有限公司 | Hybrid power system and tractor |
CN118494160A (en) * | 2024-07-18 | 2024-08-16 | 山东中科先进技术有限公司 | Single-gear-ring double-planet-row hybrid power coupling structure and control method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010114955A (en) * | 2008-11-04 | 2010-05-20 | Toyota Motor Corp | Drive unit for vehicle |
US9212734B1 (en) * | 2014-09-23 | 2015-12-15 | Hyundai Motor Company | Transmission system of hybrid electric vehicle |
CN206351629U (en) * | 2017-01-06 | 2017-07-25 | 广州市新域动力技术有限公司 | Six disk brake type multimode plug-in hybrid devices |
CN107599820A (en) * | 2017-10-24 | 2018-01-19 | 广西玉柴机器股份有限公司 | Hybrid drive train |
Family Cites Families (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6146302A (en) * | 1997-12-26 | 2000-11-14 | Fuji Jukogyo Kabushiki Kaisha | Power transmitting system for a hybrid motor vehicle |
JP3641243B2 (en) * | 2002-02-26 | 2005-04-20 | 日産自動車株式会社 | Hybrid transmission |
JP3612711B2 (en) * | 2002-07-03 | 2005-01-19 | トヨタ自動車株式会社 | Automobile |
US6962545B2 (en) * | 2002-09-23 | 2005-11-08 | Bae Systems Onctrols | Multi-range parallel-hybrid continuously variable transmission |
JP3941058B2 (en) * | 2003-06-12 | 2007-07-04 | 本田技研工業株式会社 | Drive device |
JP3864950B2 (en) * | 2003-11-18 | 2007-01-10 | 日産自動車株式会社 | Hybrid transmission |
JP4140647B2 (en) * | 2006-10-24 | 2008-08-27 | トヨタ自動車株式会社 | Power output device and hybrid vehicle |
CN101323243B (en) * | 2008-07-24 | 2011-07-20 | 上海交通大学 | Hybrid power vehicle double electric machine double row planetary gear single clutch drive apparatus |
AR075776A1 (en) * | 2009-03-03 | 2011-04-27 | Honda Motor Co Ltd | POWER TRANSMISSION DEVICE FOR HYBRID VEHICLE |
JP5630718B2 (en) * | 2009-03-09 | 2014-11-26 | リ,ヨン ス | Power transmission device using planetary gears |
JP5133935B2 (en) * | 2009-05-07 | 2013-01-30 | Udトラックス株式会社 | Power transmission mechanism of parallel hybrid vehicle |
JP2010269692A (en) * | 2009-05-21 | 2010-12-02 | Toyota Motor Corp | Driving device of hybrid vehicle |
CN101992679B (en) * | 2009-08-24 | 2013-09-25 | 上海华普国润汽车有限公司 | Double planetary row four-axis hybrid power transmission device |
CN201506247U (en) * | 2009-08-24 | 2010-06-16 | 上海华普国润汽车有限公司 | Double planet-row four-axis hybrid speed variator |
CN201856622U (en) * | 2010-01-17 | 2011-06-08 | 王少辉 | Dynamic coupling mechanism assembly capable of being applied to hybrid electric vehicle |
DE102010008754A1 (en) * | 2010-02-15 | 2011-08-18 | Dr. Ing. h.c. F. Porsche Aktiengesellschaft, 70435 | Drive system, in particular for a motor vehicle |
CN201646354U (en) * | 2010-04-02 | 2010-11-24 | 中国汽车技术研究中心 | Hybrid driver |
JP2012126198A (en) * | 2010-12-14 | 2012-07-05 | Daimler Ag | Running control apparatus of hybrid electric vehicle |
JP2012233511A (en) * | 2011-04-28 | 2012-11-29 | Toyota Motor Corp | Vehicle driving device |
KR101326822B1 (en) * | 2011-11-10 | 2013-11-11 | 기아자동차주식회사 | System for fail safety control of hybrid vehicle and method thereof |
WO2013146467A1 (en) * | 2012-03-27 | 2013-10-03 | 本田技研工業株式会社 | Motive power device |
CN202743038U (en) * | 2012-08-02 | 2013-02-20 | 石传龙 | Hybrid power drive device for vehicle |
CN102767594B (en) * | 2012-08-07 | 2015-12-16 | 福建省福工动力技术有限公司 | Based on hybrid electric vehicle brake power recovering device and the method for the controlled speedup of motor |
JP2014108775A (en) * | 2012-12-04 | 2014-06-12 | Toyota Motor Corp | Power transmission device for hybrid vehicle and hybrid system |
US9387752B2 (en) * | 2012-12-18 | 2016-07-12 | Fca Us Llc | Multi-mode hybrid variable drive unit |
DE112014000581B4 (en) * | 2013-01-28 | 2021-04-08 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle |
SE1350393A1 (en) * | 2013-03-27 | 2014-09-28 | Scania Cv Ab | Gearbox, vehicles with such gearbox, method for controlling such gearbox, computer program for controlling such gearbox, and a computer software product comprising program code |
DE102013211225A1 (en) * | 2013-06-17 | 2014-12-18 | Zf Friedrichshafen Ag | Hybrid propulsion system |
JP5794260B2 (en) * | 2013-08-05 | 2015-10-14 | トヨタ自動車株式会社 | Control device for hybrid vehicle |
DE102013220835A1 (en) * | 2013-10-15 | 2015-04-16 | Schaeffler Technologies Gmbh & Co. Kg | Planetary gear, in particular axle for a motor vehicle |
KR101509704B1 (en) * | 2013-10-28 | 2015-04-07 | 현대자동차 주식회사 | Power transmission system of hybrid electric vehicle |
KR101509732B1 (en) * | 2013-10-28 | 2015-04-08 | 현대자동차 주식회사 | Transmission system of hybrid electric vehicle |
KR101558368B1 (en) * | 2013-11-27 | 2015-10-08 | 현대자동차 주식회사 | Power transmission system of hybrid electric vehicle |
KR101518948B1 (en) * | 2013-12-18 | 2015-05-12 | 현대자동차 주식회사 | Power transmission apparatus for hybrid electric vehicle |
KR20150071604A (en) * | 2013-12-18 | 2015-06-26 | 현대자동차주식회사 | Power transmission apparatus for hybrid electric vehicle |
CN203727161U (en) * | 2014-01-08 | 2014-07-23 | 上海馨联动力系统有限公司 | Locking type double-motor single-planet-row double reduction hybrid power system of engine |
CN103660911A (en) * | 2014-01-08 | 2014-03-26 | 上海馨联动力系统有限公司 | Engine locking double-motor single-planetary-line two-stage speed reduction hybrid power system |
CN103832264B (en) * | 2014-02-27 | 2016-01-20 | 长城汽车股份有限公司 | For vehicle power drive system and there is its vehicle |
KR101575272B1 (en) * | 2014-08-26 | 2015-12-07 | 현대자동차 주식회사 | Transmission system of hybrid electric vehicle |
CN104191954B (en) * | 2014-09-13 | 2016-06-29 | 吉林大学 | Planetary type dual-mode petrol-electric parallel-serial hybrid power system |
KR101610089B1 (en) * | 2014-09-23 | 2016-04-07 | 현대자동차 주식회사 | Transmission system of hybrid electric vehicle |
CN104442346B (en) * | 2014-12-02 | 2016-06-01 | 吉林大学 | Double-rotor machine compound planetary row's formula hybrid power system |
CN204296444U (en) * | 2014-12-02 | 2015-04-29 | 吉林大学 | Double-rotor machine compound planetary row formula hybrid power system |
CN204451991U (en) * | 2014-12-31 | 2015-07-08 | 上海交通大学 | The second gear multimode stepless speed-changing fax integrated dynamic system that high-mobility, multipurpose, wheeled vehicle adapts to |
CN104494415B (en) * | 2014-12-31 | 2018-05-04 | 上海交通大学 | Two grades of multimode stepless speed-changing fax integrated dynamic systems that multipurpose adapts to |
CN204506518U (en) * | 2015-04-01 | 2015-07-29 | 吉林大学 | Single mode hybrid power by-pass type hybrid power system |
CN104760494A (en) * | 2015-04-01 | 2015-07-08 | 吉林大学 | Single-mode combined power split-flow type hybrid power system |
JP2016210313A (en) * | 2015-05-11 | 2016-12-15 | アイシン・エーアイ株式会社 | Driving device |
CN104890495A (en) * | 2015-05-26 | 2015-09-09 | 吉林大学 | Dual-clutch planetary petrol-electric hybrid dual-mode hybrid power system |
CN104859420B (en) * | 2015-05-26 | 2017-04-05 | 吉林大学 | Planetary oil electricity series-parallel connection bimodulus hybrid power system |
CN106427547B (en) * | 2015-08-07 | 2018-09-14 | 广州汽车集团股份有限公司 | Vehicle hybrid power drive system and hybrid vehicle |
DE102015216896A1 (en) * | 2015-09-03 | 2017-03-09 | Bayerische Motoren Werke Aktiengesellschaft | Drive device for a motor vehicle |
CN105172570B (en) * | 2015-11-04 | 2017-12-19 | 科力远混合动力技术有限公司 | A kind of double mode hybrid transmissions |
CN205059228U (en) * | 2015-11-04 | 2016-03-02 | 中国汽车技术研究中心 | Novel automobile-used bimodulus hybrid drive device |
CN105402334B (en) * | 2015-12-21 | 2017-12-05 | 江苏大学 | Fourth gear automatic speed changer for machine power assembly system based on planetary gears |
CN205365218U (en) * | 2016-01-26 | 2016-07-06 | 李冰洋 | Hybrid transmission of platformization |
CN105835683B (en) * | 2016-02-02 | 2017-12-29 | 苏州凯博易控驱动技术有限公司 | Electrohydraulic mixed power drive system |
CN105691195B (en) * | 2016-03-15 | 2017-10-31 | 吉林大学 | A kind of series parallel type double planet wheel rows of mixing bimodulus hybrid electric vehicle gearshift case |
CN105599588A (en) * | 2016-03-22 | 2016-05-25 | 上海纳铁福传动系统有限公司 | Multi-mode hybrid power stepless speed change system |
CN107234963B (en) * | 2016-03-28 | 2020-06-09 | 长城汽车股份有限公司 | Power transmission system and vehicle with same |
JP2017194103A (en) * | 2016-04-19 | 2017-10-26 | トヨタ自動車株式会社 | Gear change control device of vehicle |
CN205905759U (en) * | 2016-07-01 | 2017-01-25 | 山东德瑞博新能源汽车制造有限公司 | Insert electric formula hybrid power system |
CN106184198B (en) * | 2016-07-11 | 2018-09-11 | 中国第一汽车股份有限公司 | A kind of failure limping control method and device for hybrid vehicle |
CN106114190B (en) * | 2016-07-13 | 2018-11-16 | 上海迪鲲机电科技有限公司 | Electromechanical power coupling device based on modified simpson planetary gear mechanism |
CN206031051U (en) * | 2016-07-15 | 2017-03-22 | 吴燕开 | Multi -mode platform hybrid transmission |
CN205930236U (en) * | 2016-07-18 | 2017-02-08 | 吴燕开 | A hybrid transmission for indulging put actuating system |
CN106042888B (en) * | 2016-07-27 | 2018-07-20 | 苏州亚太金属有限公司 | A kind of hybrid electric drive system and its driving method |
CN106274443B (en) * | 2016-08-25 | 2023-07-21 | 上海交通大学 | Double-synchronous clutch and planetary gear coupling double-motor power system |
CN106183780B (en) * | 2016-08-30 | 2023-07-25 | 上海交通大学 | Double-planetary gear train double-motor coaxial coupling driving system |
CN106394226B (en) * | 2016-09-19 | 2018-10-26 | 北京科技大学 | The hybrid power gearbox of High-Powered Vehicle |
CN206086367U (en) * | 2016-09-19 | 2017-04-12 | 福州大学 | Formula electric drive assembly is arranged to double row star |
CN106347112B (en) * | 2016-09-19 | 2018-07-20 | 福州大学 | A kind of double planet row-type electric drive assembly and its driving method |
CN106560336B (en) * | 2016-12-06 | 2018-04-10 | 广州市新域动力技术有限公司 | Bi-motor multi-mode composite forerunner's plug-in hybrid system |
CN106494215B (en) * | 2016-10-21 | 2017-09-29 | 广州市新域动力技术有限公司 | Multi-mode composite planet hybrid power assembly |
CN106627117B (en) * | 2016-10-28 | 2019-01-29 | 科力远混合动力技术有限公司 | A kind of transmission device for longitudinal rear-guard hybrid vehicle |
CN206264779U (en) * | 2016-11-25 | 2017-06-20 | 上海电驱动股份有限公司 | A kind of hybrid power system of use double planet wheel rows of mixing configuration |
CN206394422U (en) * | 2016-11-25 | 2017-08-11 | 上海电驱动股份有限公司 | A kind of hybrid power system of use multimode dynamic coupling device |
CN206394434U (en) * | 2016-12-19 | 2017-08-11 | 吴燕开 | A kind of many gear automotive trannsmission systems of integrated single motor |
CN206416834U (en) * | 2017-01-10 | 2017-08-18 | 上海汽车变速器有限公司 | Double-motor hybrid vehicle drive system |
CN206386425U (en) * | 2017-01-20 | 2017-08-08 | 山东德瑞博新能源汽车制造有限公司 | A kind of castellated bi-directional braking clutch |
CN106882032B (en) * | 2017-02-14 | 2019-03-26 | 北京理工大学 | Front drive vehicle double mode hybrid transmissions |
CN106956582B (en) * | 2017-05-10 | 2018-04-13 | 吉林大学 | A kind of planetary parallel-serial hybrid power system using one-way clutch |
-
2017
- 2017-10-24 CN CN201710997696.3A patent/CN107599820A/en not_active Withdrawn
-
2018
- 2018-02-01 CN CN201810102069.3A patent/CN108312837A/en active Pending
- 2018-02-01 CN CN201810101704.6A patent/CN108312835B/en active Active
- 2018-02-01 CN CN201820176757.XU patent/CN208101683U/en active Active
- 2018-02-01 CN CN201810101305.XA patent/CN108297671A/en active Pending
- 2018-02-01 CN CN201820180363.1U patent/CN208149053U/en active Active
- 2018-02-01 CN CN201810101683.8A patent/CN108407597A/en active Pending
- 2018-02-01 CN CN201810103486.XA patent/CN108372780A/en active Pending
- 2018-02-01 CN CN201820175772.2U patent/CN207790305U/en active Active
- 2018-02-01 CN CN201820175782.6U patent/CN207942918U/en active Active
- 2018-02-01 CN CN201810102083.3A patent/CN108372779B/en active Active
- 2018-02-01 CN CN201820179255.2U patent/CN207916556U/en active Active
- 2018-02-01 CN CN201810102100.3A patent/CN108407599B/en active Active
- 2018-02-01 CN CN201820172349.7U patent/CN208247955U/en active Active
- 2018-02-01 CN CN201810100810.2A patent/CN108297670A/en active Pending
- 2018-02-01 CN CN201820175775.6U patent/CN207772871U/en active Active
- 2018-02-01 CN CN201810100551.3A patent/CN108297669B/en active Active
- 2018-02-01 CN CN201810100040.1A patent/CN108515837B/en active Active
- 2018-02-01 CN CN201820177000.2U patent/CN207942919U/en active Active
- 2018-02-01 CN CN201820173585.0U patent/CN207916552U/en active Active
- 2018-02-01 CN CN201820180280.2U patent/CN208069391U/en active Active
- 2018-02-01 CN CN201810102084.8A patent/CN108284739A/en active Pending
- 2018-02-01 CN CN201810100046.9A patent/CN108372777A/en active Pending
- 2018-02-01 CN CN201810101701.2A patent/CN108263193A/en active Pending
- 2018-02-01 CN CN201810101684.2A patent/CN108454379A/en active Pending
- 2018-02-01 CN CN201820174106.7U patent/CN208101682U/en active Active
- 2018-02-01 CN CN201820176297.0U patent/CN208602303U/en active Active
- 2018-02-01 CN CN201820172407.6U patent/CN208149049U/en active Active
- 2018-02-01 CN CN201810101349.2A patent/CN108297672A/en active Pending
- 2018-02-01 CN CN201820180323.7U patent/CN208232804U/en active Active
- 2018-02-01 CN CN201810101377.4A patent/CN108284738B/en active Active
- 2018-02-01 CN CN201820175784.5U patent/CN207772868U/en active Active
- 2018-02-01 CN CN201820176280.5U patent/CN207772869U/en active Active
- 2018-02-01 CN CN201820179253.3U patent/CN207916555U/en active Active
- 2018-02-01 CN CN201820174242.6U patent/CN208149051U/en active Active
- 2018-02-01 CN CN201810102309.XA patent/CN108382181B/en active Active
- 2018-02-01 CN CN201810100758.0A patent/CN108263195B/en active Active
- 2018-02-01 CN CN201820176279.2U patent/CN207790302U/en active Active
- 2018-02-01 CN CN201810101642.9A patent/CN108454378A/en active Pending
- 2018-02-01 CN CN201820180374.XU patent/CN208149054U/en active Active
- 2018-02-01 CN CN201820179252.9U patent/CN208198093U/en active Active
- 2018-02-01 CN CN201810102060.2A patent/CN108312836B/en active Active
- 2018-02-01 CN CN201820172367.5U patent/CN208134059U/en active Active
- 2018-02-01 CN CN201810102300.9A patent/CN108297673B/en active Active
- 2018-02-01 CN CN201810100232.2A patent/CN108515838B/en active Active
- 2018-02-01 CN CN201810100538.8A patent/CN108263192A/en active Pending
- 2018-02-01 CN CN201820174505.3U patent/CN208035933U/en active Active
- 2018-02-01 CN CN201810101380.6A patent/CN108297667A/en active Pending
- 2018-02-01 CN CN201810100777.3A patent/CN108454376A/en active Pending
- 2018-02-01 CN CN201810100819.3A patent/CN108312833A/en active Pending
- 2018-02-01 CN CN201820174150.8U patent/CN208149050U/en active Active
- 2018-02-01 CN CN201810100539.2A patent/CN108372778A/en active Pending
- 2018-02-01 CN CN201820180242.7U patent/CN207916557U/en active Active
- 2018-02-01 CN CN201810101738.5A patent/CN108407598B/en active Active
- 2018-02-01 CN CN201810101702.7A patent/CN108263196A/en active Pending
- 2018-02-01 CN CN201820174202.1U patent/CN207942917U/en active Active
- 2018-02-01 CN CN201810100025.7A patent/CN108312832A/en active Pending
- 2018-02-01 CN CN201820175783.0U patent/CN207997760U/en active Active
- 2018-02-01 CN CN201820176997.XU patent/CN208149052U/en active Active
- 2018-02-01 CN CN201810100760.8A patent/CN108407589A/en active Pending
- 2018-02-01 CN CN201820173594.XU patent/CN208035931U/en active Active
- 2018-02-01 CN CN201820177771.1U patent/CN207790307U/en active Active
- 2018-02-01 CN CN201820177761.8U patent/CN207790306U/en active Active
- 2018-02-01 CN CN201810101348.8A patent/CN108454377A/en active Pending
- 2018-02-01 CN CN201810101362.8A patent/CN108312834A/en active Pending
- 2018-02-01 CN CN201810100522.7A patent/CN108263194A/en active Pending
- 2018-02-01 CN CN201820179251.4U patent/CN208035934U/en active Active
- 2018-02-01 CN CN201820174205.5U patent/CN208035932U/en active Active
- 2018-02-01 CN CN201820173584.6U patent/CN208118929U/en not_active Withdrawn - After Issue
- 2018-02-01 CN CN201820176093.7U patent/CN207772872U/en active Active
- 2018-02-01 CN CN201810103477.0A patent/CN108297674A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010114955A (en) * | 2008-11-04 | 2010-05-20 | Toyota Motor Corp | Drive unit for vehicle |
US9212734B1 (en) * | 2014-09-23 | 2015-12-15 | Hyundai Motor Company | Transmission system of hybrid electric vehicle |
CN206351629U (en) * | 2017-01-06 | 2017-07-25 | 广州市新域动力技术有限公司 | Six disk brake type multimode plug-in hybrid devices |
CN107599820A (en) * | 2017-10-24 | 2018-01-19 | 广西玉柴机器股份有限公司 | Hybrid drive train |
CN208602303U (en) * | 2017-10-24 | 2019-03-15 | 广西玉柴机器股份有限公司 | Hybrid power system with limp-home module |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN208602303U (en) | Hybrid power system with limp-home module | |
CN207809039U (en) | Hybrid electric drive system and vehicle | |
CN207328114U (en) | Hybrid electric drive system and vehicle | |
CN207809035U (en) | Hybrid electric drive system and vehicle | |
CN207328115U (en) | Hybrid electric drive system and vehicle | |
CN207416537U (en) | Hybrid electric drive system and vehicle | |
CN109986945A (en) | Power-driven system and vehicle | |
CN109591577A (en) | Hybrid electric drive system and vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180724 |
|
RJ01 | Rejection of invention patent application after publication |