CN106029293A - 槽与孔的激光加工 - Google Patents

槽与孔的激光加工 Download PDF

Info

Publication number
CN106029293A
CN106029293A CN201480075766.4A CN201480075766A CN106029293A CN 106029293 A CN106029293 A CN 106029293A CN 201480075766 A CN201480075766 A CN 201480075766A CN 106029293 A CN106029293 A CN 106029293A
Authority
CN
China
Prior art keywords
pulse
laser
glass
laser beam
goods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480075766.4A
Other languages
English (en)
Other versions
CN106029293B (zh
Inventor
S·马加诺维克
G·A·皮切
S·楚达
R·S·瓦格纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Priority to CN201910313717.4A priority Critical patent/CN109909622B/zh
Publication of CN106029293A publication Critical patent/CN106029293A/zh
Application granted granted Critical
Publication of CN106029293B publication Critical patent/CN106029293B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/08Severing cooled glass by fusing, i.e. by melting through the glass
    • C03B33/082Severing cooled glass by fusing, i.e. by melting through the glass using a focussed radiation beam, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/55Working by transmitting the laser beam through or within the workpiece for creating voids inside the workpiece, e.g. for forming flow passages or flow patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/04Cutting or splitting in curves, especially for making spectacle lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/15Sheet, web, or layer weakened to permit separation through thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

本发明涉及一种用于切割及分离薄透明材料基板、特别是玻璃中的内部轮廓的方法。该方法涉及利用超短脉冲激光在该基板中形成穿孔或孔,这之后可以是使用CO2激光束来促进在穿孔线周围的完全分离。

Description

槽与孔的激光加工
相关申请
本申请根据35U.S.C.§120要求2014年11月7日提交的美国申请序列号14/536009的优先权权益,该美国申请要求2013年12月17日提交的美国临时申请号61/917148与2014年7月10日提交的美国临时申请号62/022855的权益。这些申请的全部传授内容通过援引方式并入本申请。
背景
在薄透明材料基板(例如玻璃)中切割孔与槽可通过聚焦激光束完成,这些聚焦激光束用于沿着孔或槽的轮廓烧蚀材料,其中多次通过(pass)用于逐层移除材料,直到内塞(inner plug)不再附接到外基板件为止。此类加工的问题为它们需要激光束的多次通过(数十次或甚至更多)来逐层移除材料,它们产生将污染零件表面的大量烧蚀碎屑,并且它们会沿着轮廓边缘产生许多次表面损伤(>100μm)。
因此,存在对用于切割孔与槽的改良的方法的需求。
概述
在此描述的实施例涉及一种用于切割及分离薄透明材料基板、特别是玻璃中的内部轮廓的方法。
在一个实施例中,激光钻孔材料的方法包括沿着脉冲激光束传播方向观察,使该光束聚焦成激光束焦线,在第一位置将该激光束焦线引导至该材料中,该激光束焦线在该材料内产生诱导吸收,该诱导吸收在该材料内沿着该激光束焦线产生孔,使该材料与该脉冲激光束从该第一位置开始沿着第一闭合轮廓相对于彼此平移,从而在该材料内沿着该第一闭合轮廓激光钻出多个孔,使该材料与该脉冲激光束从该第一位置开始沿着第一闭合轮廓相对于彼此平移,从而在该材料内沿着该第一闭合轮廓激光钻出多个孔,以及围绕包含在该第一闭合轮廓内的第二闭合轮廓将二氧化碳(CO2)激光引导至该材料中,以促进沿着该第一闭合轮廓移除该材料的内塞。
附图的简要说明
本专利或申请文件含有至少一个彩色绘制的图。经请求并且支付必要费用后,专利局将提供具有一个或多个彩图的本专利或专利申请公开的副本。
前述内容将从以下对于本发明的示例实施例的更具体的描述中而变得清楚,如在附图中所阐明的,在这些附图中,在所有不同视图中相似的参考符号指示相同的部分。这些附图并不必须是按比例的,而是将重点放在展示本发明的多个实施例上。
图1是待从起始板中切出的零件的示意图。该零件具有外部与内部轮廓二者。通过添加附加切口或“释放线”,外部轮廓可轻易地从母板中被释放。
图2A及2B是定位激光束焦线的示意图,即沿着该焦线由于诱导吸收加工对于激光波长透明的材料。
图3A是用于激光钻孔的光学组件的示意图。
图3B-1至图3B-4是通过不同地相对于基板定位激光束焦线来加工基板的各种可能性的示意图。
图4是用于激光钻孔的第二光学组件的示意图。
图5A和5B是用于激光钻孔的第三光学组件的示意图。
图6是用于激光钻孔的第四光学组件的示意图。
图7A-7C是用于激光加工材料的不同状态(regime)的示意图。图7A展示了未聚焦激光束,图7B展示了用球面透镜聚集的激光束,并且图7C展示了用轴锥透镜或衍射菲涅耳(Fresnel)透镜聚集的激光束。
图8A示意性地展示了在示例性脉冲串内的激光脉冲对时间的相对强度,其中每一个示例性脉冲串具有3个脉冲。
图8B示意性地展示了在示例性脉冲串内的激光脉冲对时间的相对强度,其中每一个示例性脉冲串含有5个脉冲。
图8C是描绘出以定义内部轮廓并且移除此轮廓内的材料的不同激光步骤与路径的说明。
图9是描绘出以移除轮廓内的材料的CO2激光步骤与路径的说明。
图10是切割的并且然后从0.7mm厚的样品中分离的孔与槽的实例。该孔与槽是使用根据本发明的方法切割及移除的。
图11是在已用CO2烧蚀方法移除内部材料后,用在此描述方法形成的槽的内部边缘的有角度图像。
图12是0.7mm厚康宁(Corning)2320NIOX(未离子交换的)厚基板的直切条的边缘图像,外部轮廓。可以将此边缘与图11中所示非常类似的边缘进行比较。
图13是用在此描述的方法制作的槽的切割边缘的顶视图。在该轮廓的边缘上没有观察到碎裂或裂纹。此轮廓具有约2mm的半径。
图14A-14C是改性玻璃的具有等距的缺陷线或损伤轨迹的断裂线(或穿孔线)的示意图。
详细说明
以下是示例实施例的说明。
在此披露的是一种用于切割及分离薄透明材料基板、特别是玻璃中的内部轮廓的方法。该方法涉及利用超短脉冲激光在该基板中形成穿孔或孔,这之后可以是使用CO2激光束来促进在穿孔线周围的完全分离。下述激光方法以单次通过产生各种玻璃的通体切口,具有低的次表面损伤(<75μm)和优异的表面粗糙度(Ra<0.5μm)。次表面损伤(SSD)定义为垂直于玻璃件的切割边缘的裂缝或“裂纹”程度。这些裂缝延伸入该玻璃件的距离量级可以决定可能从用于改善玻璃边缘强度的研磨及抛光操作需要的稍后材料移除量。可通过使用共焦显微镜观察从裂缝散射的光,及确定裂缝在给定切割边缘内延伸入玻璃主体的最大距离,来测量SSD。
一个实施例涉及用分离方法来切割及分离材料如玻璃中的内部轮廓的方法,该分离方法使通过上述穿孔方法产生的高品质边缘暴露而不通过该分离方法损伤它。如图1所示,当从基板起始板中切割零件时,该零件可以包括外部或内部轮廓。如图1所示,通过添加附加切割线(称作“释放线”),可以完成从该板中释放该零件的外部轮廓。然而,对于内部轮廓,不能制作释放线,因为这些释放线会损伤所关心的零件。在一些情况下,对于高应力材料和足够大的内部轮廓,内部部分可以自分离并脱落。然而,对于小孔与槽(例如10mm的孔、宽度小于数毫米(例如≤3mm、或≤2mm、或甚至≤1mm的槽),甚至对于应力材料,内部部分将不会脱落。孔通常被定义为截面呈圆形或基本上圆形的特征。反之,槽通常具有高度椭圆的特征,例如具有>4:1(典型地≥5:1,例如1.5mm x 15mm、或3mm x 15mm、或1mm x 10mm、或1.5mm x 7mm等)的长度与宽度的深宽比(例如截面或如从顶部或底部观察时的)的特征。槽可以具有弧形拐角,或者这些拐角可以为尖锐(90度)特征。
分离内部轮廓(例如智能手机上“主(home)”或电源按钮所需的玻璃件内的孔)的挑战在于即使轮廓已被很好地穿孔并且裂缝在其周围扩展,材料的内塞可能受到压缩压力并被围绕该塞的材料锁定在原位。这意味着挑战部分是使塞脱落的自动释放方法。无论待切割材料是否为高应力且其中易形成裂缝,例如在像玻璃的化学强化玻璃基板的情况下,或如果材料是低应力,像在Eagle 玻璃的情况下,此问题都会发生。高应力玻璃是具有大于约24Mpa的中心(在玻璃厚度中心)张力的玻璃;而低应力玻璃典型地具有小于约24MPa的中心张力。
本申请总体上是针对以可控制方式从玻璃基板中精确切割及分离任意形状的激光方法和设备,具有可忽略不计的碎屑以及对零件边缘的最小损伤(保留强度)。所开发的激光方法依赖于对呈线性状态的激光波长的材料透明度、或低激光强度,这允许维持干净且原始的表面品质,并且依赖由激光焦点周围的高强度区域产生的减少的次表面损伤。此方法的关键促成要素之一为由超短脉冲激光形成的缺陷的高深宽比。它允许形成从待切割材料的顶部表面延伸到底部表面的断裂线。原则上,此缺陷可以通过单激光脉冲形成,并且必要时,可使用附加脉冲来增加受影响区域的延伸(深度与宽度)。
使用短脉冲皮秒激光和产生焦线的光学器件,在玻璃板中进行穿孔形成闭合轮廓。穿孔直径小于数微米,这些穿孔的典型间距为1-15μm,并且这些穿孔会完全地贯穿该玻璃板。
为产生弱点以促进材料移除,然后可以任选地用相同方法,在离第一轮廓内部数百微米处穿孔形成附加轮廓。
具有足够高功率密度用于烧蚀玻璃材料的聚焦CO2激光束接着围绕第二轮廓描迹,导致玻璃材料破碎及移除。可以使用该激光的一次或多次通过。高压辅助气体也与CO2光束共线通过喷嘴被压出,以提供额外力量来驱使玻璃材料离开较大玻璃件。
该切割及分离透明材料的方法本质上是基于用超短脉冲激光在待加工材料上形成断裂线。取决于材料特性(吸收、CTE、应力、组成等)与选择用于加工该确定的材料的激光参数,单独形成断裂线可以足以诱发自分离。对于具有显著(即大于约24MPa)内部或中心张力(CT)的大多数强化玻璃(在切割前已经经历离子交换的那些),情况是这样。在此情况下,无需二次分离过程,例如张力/弯曲力或CO2激光。
在一些情况下,形成的断裂线并不足以自动分离玻璃。显示玻璃经常是这种情况,例如EagleLotus或在任何离子交换步骤前切割的可离子交换的玻璃。因此,第二方法步骤可能是必需的。如果希望的话,则例如可以使用第二激光产生热应力以分离它。在康宁编码2320NIOX(非离子交换的玻璃3)的情况下,我们发现通过施加机械力或通过用红外线CO2激光束描绘现有断裂线以产生热应力并且迫使零件自分离,可在形成缺陷线后实现分离。另一种选择是使该CO2激光只启动分离并且手动完成分离。任选的CO2激光分离用散焦(即在玻璃上2-12mm直径的光斑尺寸)连续波激光实现,该连续波激光在10.6μm发射且具有通过控制其占空比调整的功率。焦点变化(即散焦程度)用于通过改变该光斑尺寸来改变诱导热应力。形成穿孔线后,CO2诱导分离可以总体上通过在玻璃上使用约40W的功率、约2mm的光斑尺寸和约14-20m/分钟的光束横向速率实现。
然而,即使在形成缺陷线后,玻璃具有足够的内部应力来启动自分离,切割轮廓的几何形状也会妨碍内部玻璃零件释放。对于大多数闭合或内部轮廓,例如简单的孔或槽,情况是这样。孔径的内部部分将由于玻璃板内存在的压缩力而保持在原位-裂缝会在这些穿孔缺陷之间扩展,但不存在允许该部件从母板中掉出的空间。
形成缺陷或穿孔线
对于第一方法步骤,有数种方法来形成缺陷线。形成线状焦点的光学方法可采取多种形式,使用圆环形激光束与球面透镜、轴锥透镜、衍射元件或其他方法来形成高强度线性区域。激光(皮秒、飞秒等)和波长(IR、绿光、UV等)类型也可以改变,只要达到产生基板材料崩解的足够的光学强度。此波长可以是例如1064、532、355或266纳米。
超短脉冲激光可以与产生焦线的光学器件组合使用,以完全打孔穿透一定范围的玻璃组成的主体。在一些实施例中,单独的脉冲的脉冲持续时间是在大于约1皮秒与小于约100皮秒之间(例如大于约5皮秒并且小于约20皮秒之间)的范围内,并且单独的脉冲的重复率可以是在约1kHz与4MHz之间的范围内,例如约10kHz与650kHz之间的范围内。
除了在上述单独的脉冲重复率下的单脉冲操作,还可在两个脉冲或更多(例如像3个脉冲、4个脉冲、5个脉冲、10个脉冲、15个脉冲、20个脉冲或更多)的串内产生脉冲,这些脉冲通过在该脉冲串内的单独脉冲之间的持续时间隔开,该持续时间是在约1纳秒与约50纳秒之间的范围内,例如10-50纳秒、或10至30纳秒,例如约20纳秒,并且该脉冲串重复频率可以是在约1kHz与约200kHz之间的范围内。(爆发或产生脉冲串是激光操作的类型,其中脉冲发射并非呈均匀且稳定的流,而是呈紧凑的脉冲簇。)脉冲串激光束可以具有选择为使得在此波长下材料是实质上透明的波长。在该材料处测量的每脉冲串的平均激光功率可以是大于40微焦耳/mm材料厚度,例如在40微焦耳/mm与2500微焦耳/mm之间或在200与800微焦耳/mm之间。例如,对于0.5mm-0.7mm厚的康宁2320非离子交换玻璃,可以使用200μJ脉冲串来切割及分离该玻璃,这给出285-400μJ/mm的示例范围。使玻璃相对于激光束移动(或该激光束相对于该玻璃平移),以产生描绘出任何希望的零件形状的穿孔线。
激光产生穿透玻璃的整个深度的类孔缺陷区(或损伤轨迹、或缺陷线),具有例如约1微米直径的内部开口。这些穿孔、缺陷区、损伤轨迹或缺陷线总体上相隔从1至15微米(例如2-12微米或3-10微米)。缺陷线例如延伸穿过玻璃板的厚度并且正交于玻璃板的主要(平坦)表面。
在一个实施例中,超短(约10皮秒)串脉冲激光用于以一致、可控制及可重复的方式形成此高深宽比的竖直缺陷线。使能够产生此竖直缺陷线的光学装置的细节在以下进行描述并且描述于2013年1月15日提交的美国申请号61/752,489中。此概念的本质是在光学透镜组件中使用轴锥透镜元件,以利用超短(皮秒或飞秒持续时间)贝塞尔(Bessel)光束形成高深宽比的无锥度的微通道区。换言之,该轴锥镜将激光束聚集到圆柱形形状且高深宽比(长的长度和小的直径)的区域内。由于用该聚集的激光束产生的高强度,激光电磁场与材料的非线性相互作用发生并且激光能被转移到基板。然而,重要的是认识到,在其中激光能量强度不高的区域(即,玻璃表面,围绕中心会聚线的玻璃体积)中,因激光强度低于非线性阀值,对于玻璃而言什么都不发生。
转向图2A以及2B,激光钻孔材料的方法包括沿着脉冲激光束2传播方向观察,使该光束聚焦成激光束焦线2b。如图3中所示,激光器3(未示出)发射激光束2,在光学组件6的光束入射侧被称为2a,该光束入射到光学组件6上。光学组件6在沿着光束方向的限定的扩大范围(焦线长度l)内使入射激光束转变为输出侧上的延伸激光束焦线2b。将待加工的平面基板1定位到光束路径中在该光学组件之后与激光束2的激光束焦线2b至少部分重叠。参考号1a指定平面基板的面向光学组件6或激光的表面,分别地,参考号1b指定基板1的通常平行隔开的反面。基板厚度(垂直于平面1a和1b,即垂直于基板平面测量的)用d标记。
如图2A描绘,基板1垂直于光束纵轴对齐并且因此在由光学组件6产生的同一焦线2b后面(该基板垂直于绘图平面),并且沿着光束方向观察,将该基板相对于焦线2b定位,其方式为使得在光束方向上观察的焦线2b在基板表面1a之前开始并且在基板表面1b之前停止,即仍在基板内。在激光束焦线2b与基板1重叠的区域中,即被焦线2b覆盖的基板材料中,沿着光束纵向观察,延伸激光束焦线2b因此产生(在沿着激光束焦线2b的适当激光强度的情况下,该强度由于激光束2聚焦于长度l的区段(即长度l的线状焦点)上而被确保)延伸区段2c,沿着该延伸区段在基板材料内产生诱导吸收,这诱发沿着区段2c在基板材料内形成缺陷线或裂缝。裂缝形成不仅在局部,而且在诱导吸收的延伸区段2c的整个长度上。区段2c的长度(即,终究,激光束聚焦线2b与基板1重叠的长度)用参考号L标记。诱导吸收区段(或经历裂缝形成的基板1的材料中的区段)的平均直径或平均延伸用参考号D标记。此平均延伸D基本上对应激光束焦线2b的平均直径δ,即,在约0.1μm与约5μm之间的范围内的平均光斑直径。
如图2A所示,对于激光束2的波长λ是透明的基板材料由于沿着焦线2b的诱导吸收而被加热。图2B概示了加温的材料最终将膨胀,这样使得相应诱导的张力导致微裂缝形成,其中张力在表面1a处最大。
下面将描述可应用于产生焦线2b的具体光学组件6和其中可应用这些光学组件的具体光学装置。所有组件或装置是基于以上描述,这样相同的参考号用于相同的部件或特征或在其功能上相等的那些部件或特征。因此,以下仅描述不同。
由于最终导致分离的分割面是或必须具有高品质(关于断裂强度、几何精度、粗糙度和避免再机械加工要求),应当使用下述光学组件(下文中,光学组件可替代地还称作激光光学器件)沿着分割线5产生待定位于基板表面上的单独的焦线。粗糙度特别地产生自焦线的光斑尺寸或光斑直径。在激光器3(与基板1的材料相互作用)的给定的波长λ的情况下,为了实现如0.5μm至2μm的低光斑尺寸,某些要求通常必须加于激光光学器件6的数值孔径上。通过下述激光光学器件6满足这些要求。
为了实现所需数值孔径,该光学器件一方面必须根据已知阿贝(Abbé)公式(N.A.=n sin(θ),n:待加工的玻璃的折射率,θ:孔径角的一半;θ=arctan(D/2f),D:孔径,f:焦距),解决给定焦距所需的开口。另一方面,激光束必须照射该光学器件直到所需孔径,这典型地借助于光束加宽利用激光与聚焦光学器件之间的加宽望远镜实现。
为了沿着焦线的均匀相互作用的目的,光斑尺寸不应变化太强烈。这可以例如通过以下方式确保(参见以下实施例):只在小的圆形区域内照射聚焦光学器件,这样使得光束开口以及因此数值孔径百分比仅稍微改变。
根据图3A(在激光辐射2的激光束丛(bundle)中的中心光束的水平处垂直于基板平面的截面;在此,激光束2的中心也优选地垂直入射到基板平面,即角度为0°,使得焦线2b或诱导吸收延伸区段2c平行于基板法线),将由激光器3发射的激光辐射2a先引导至圆形光阑8上,该光阑对所用激光辐射为完全不透明的。光阑8垂直于光束纵轴定向且中心在所描绘的光束丛2a的中心光束上。光阑8的直径以这样的方式进行选择,即,使得靠近光束丛2a的中心的这些光束丛或中心光束(在此用2aZ标记)撞击光阑并且被其完全吸收。只有光束丛2a的外周边范围内的光束(边缘光线,在此用2aR标记)由于与光束直径相比的减小的光阑尺寸而不被吸收,但是侧向地穿过光阑8并且撞击光学组件6的聚焦光学元件(在此设计为球形切割的双凸透镜7)的边缘区域。
以中心光束为中心的透镜7有意设计为呈常见的球形切割透镜形式的非校正、双凸聚焦透镜。换言之,有意使用此类透镜的球面像差。作为替代方案,还可以使用偏离理想校正系统的非球面或多透镜系统,这些系统不形成理想焦点,而是具有限定长度的不同的细长焦线(即,不具单焦点的透镜或系统)。因此该透镜的区域沿着焦线2b聚焦,经受与透镜中心的距离。光阑8横越光束方向的直径是光束丛直径(光束丛直径由减少至1/e2的延伸限定)(强度)的约90%且是光学组件6的透镜直径的约75%。因此使用非像差校正的球面透镜7的通过阻挡掉中心的光束丛而产生的焦线2b。图3A示出了通过中心光束的一个平面中的截面,当所描绘的光束绕着焦线2b旋转时,可看到完整的三维丛。
此焦线的一个缺点在于沿着焦线并且因此沿着材料中的希望的深度的条件(光斑尺寸、激光强度)改变,并且因此可能有可能仅在该焦线的一部分中选择希望的相互作用类型(无熔化、诱导吸收、热塑变形直到裂缝形成)。这进而意味着可能只有部分入射激光以希望的方式被吸收。以此方式,一方面损害该方法的效率(希望的分离速度所需的平均激光功率),并且另一方面,激光可能被传送到不希望的更深的地方(粘附到基板或基板保持夹具上的零件或层),并以不希望的方式(加热、扩散、吸收、不想要的改性)在那里相互作用。
图3B-1-4示出(不仅对于图3A中的光学组件,而且基本上还对于任何其他可应用的光学组件6)通过相对于基板1将光学组件6适当定位和/或对齐以及通过适当选择光学组件6的参数,可以不同地定位激光束焦线2b。如图3B-1概示,焦线2b的长度l可以按这样的方式调整,即,使得它超过基板厚度d(在此2倍)。如果基板1(在光束纵向上观察)置于焦线2b中心,则诱导吸收延伸区段2c在整个基板厚度内产生。
在图3B-2所示的情况下,产生具有长度l的焦线2b,该长度基本上与基板厚度d一样。因为相对于线2以这样的方式定位基板1,即,使得线2b从基板之前(即,基板外部)开始,诱导吸收延伸区段2c的长度L(在此从基板表面延伸到限定的基板深度,但未到反面1b)小于焦线2b的长度l。图3B-3示出其中基板1(沿着光束方向观察)部分定位在焦线2b的起始点之前的情况,使得在此同样地,它适用于线2b l>L的长度l(L=基板1中的诱导吸收区段的延伸2c)。因此焦线始于基板内并且在反面1b上延伸至超过该基板。图3B-4最后示出以下情况,其中产生的焦线长度l小于基板厚度d,使得-如果相对于焦线将基板进行中心定位(在入射方向上观察的)-则焦线始于基板内表面1a附近并且终止于基板内表面1b附近(l=0.75d)。
特别有利的是以这样的方式实现焦线定位,使得至少一个表面1a、1b被焦线覆盖,即,诱导吸收区段2c至少始于一个表面上。以此方式,有可能获得几乎理想的切割,避免表面处的烧蚀、羽化及微粒化。
图4描绘了另一种可应用的光学组件6。基本构造遵循图3A中描述的基本构造,所以以下仅描述不同之处。所描绘的光学组件是基于使用具有非球面自由表面的光学器件以便产生焦线2b,该焦线以这样的方式成形,即,使得形成具有限定长度l的焦线。为此目的,非球面透镜可以用作光学组件6的光学元件。在图4中,例如,使用所谓的圆锥形棱镜(还经常称作轴锥镜)。轴锥镜是特殊的圆锥形地切割的透镜,该透镜在沿着光轴的线上形成光斑源(或将激光束转换成环)。此类轴锥镜的布局原则上是本领域技术人员已知的;在该实例中,锥角为10°。在此用参考号9标记的轴锥镜的顶点指向入射方向并且以光束中心为中心。由于轴锥镜9的焦线2b已始于其内部,所以基板1(在此垂直于主光束轴对齐)可定位在光束路径中在轴锥镜9正后方。如图4所示,还有可能由于该轴锥镜的光学特性,沿着光束方向移动基板1,而不离开焦线2b的范围。因此,基板1材料中的诱导吸收延伸区段2c在整个基板厚度d内延伸。
然而,所描绘的布局受到下列限制:由于轴锥镜9的焦线已始于透镜内,所以在透镜与材料之间的有限距离的情况下,显著部分的激光能不会聚焦到焦线2b的部分2c(该部分位于该材料内)中。此外,对于轴锥镜9的可用折射率和锥角,焦线2b的长度l与光束直径有关,这是在较薄材料(数毫米)的情况下为什么总焦线太长,具有激光能再次不特别聚焦到该材料中的影响。
这是包含轴锥镜和聚焦透镜二者的增强的光学组件6的原因。图5A描绘了此类光学组件6,其中具有设计为形成延伸激光束焦线2b的非球面自由表面的第一光学元件(沿着光束方向观察)定位在激光器3的光束路径中。在图5A中所示的情况下,此第一光学元件是具有5°锥角的轴锥镜10,该轴锥镜垂直于光束方向定位并且以激光束3为中心。该轴锥镜的顶点朝向光束方向定向。第二聚焦光学元件,在此为平凸透镜11(其弯曲朝向该轴锥镜定向)在光束方向上与轴锥镜10相距距离z1定位。距离z1,在此情况下为约300mm,以这样的方式进行选择,即,使得由轴锥镜10形成的激光辐射圆形地入射到透镜11的边缘区域上。透镜11将该圆形辐射聚焦到与透镜11相距距离z2(在此情况下为约20mm)处的输出侧,在具有限定长度(在此情况下为1.5mm)的焦线2b上。透镜11的有效焦距在此为25mm。通过轴锥镜10的激光束的圆形转换用参考号SR标记。
图5B详细描绘了根据图5A形成焦线2b或基板1材料内的诱导吸收2c。元件10、11二者的光学特性及其定位以这样的方式进行选择,即,使得焦线2b在光束方向上的延伸l与基板1的厚度d完全相同。因此,需要沿着光束方向精确定位基板1,以便将焦线2b精确定位在基板1的两个表面1a与1b之间,如图5B中所示。
因此,如果距激光光学器件一定距离形成焦线并且如果激光辐射的更大部分聚焦到焦线的希望末端,则是有利的。如所述,这可以通过只在所需区域上圆形地照射主要聚焦元件11(透镜)实现,这一方面用于实现所需数值孔径以及因此所需光斑尺寸,另一方面,然而,由于形成基本上圆形光斑,漫射圈在光斑中心上的非常短的距离内的所需焦线2b之后强度减少。以此方式,裂缝形成在所需基板深度中的短距离内停止。轴锥镜10与聚焦透镜11的组合满足此要求。轴锥镜以两种不同方式起作用:由于轴锥镜10,通常圆形的激光光斑以环形式被发送到聚焦透镜11,并且轴锥镜10的非球面性具有在透镜焦面(而非在焦面中的焦点)之外形成焦线的作用。焦线2b的长度l可通过轴锥镜上的光束直径调整。另一方面,沿着焦线的数值孔径可通过轴锥镜-透镜距离z1并且通过轴锥镜的锥角调整。以此方式,全部激光能可集中在焦线中。
如果假定裂缝形成(即,缺陷线)继续到基板的出射侧,则圆形照射仍有以下优点:一方面,以尽可能最好的方式使用激光功率,由于大部分的激光光保持集中在所需焦线长度中,另一方面,有可能沿着焦线获得均匀的光斑尺寸-以及因此沿着焦线的均匀分离过程-由于圆形照射区与通过其他光学功能设置的希望的像差结合。
代替图5A中所描绘的平凸透镜,还有可能使用聚焦弯月形透镜或另一种更高校正聚焦透镜(非球面、多透镜系统)。
为了用图5A中所描绘的轴锥镜与透镜组合产生非常短的焦线2b,将必要的是选择入射到轴锥镜上的非常小的光束直径的激光束。这具有实际的缺点:将光束定中心在轴锥镜顶点上必须是非常精确的,并且因此结果对于激光的方向变化(光束漂移稳定性)是非常敏感的。此外,紧密准直的激光束是非常发散的,即由于光偏转,光束丛在短距离内变得模糊。
如图6所示,通过插入另一个透镜(准直透镜12),可避免这两种影响:该另外的正透镜12用于十分紧密地调整聚焦透镜11的圆形照射。准直透镜12的焦距f’是以这样的方式进行选择,即,使得希望的圆直径dr产生自从轴锥镜至准直透镜12的距离z1a(其等于f’)。希望的环宽度br可以经由距离z1b(准直透镜12至聚焦透镜11)调整。作为纯几何学问题,小的圆形照射宽度导致短焦线。在距离f’下可以实现最小值。
图6所描绘的光学组件6因此是基于图5A中所描绘的光学组件,这样以下仅描述不同之处。准直透镜12,在此还设计为平凸透镜(其弯曲朝向光束方向),另外置于在一侧的轴锥镜10(其顶点朝向光束方向)与在另一侧的平凸透镜11之间的光束路径中心。准直透镜12距轴锥镜10的距离称为z1a,聚焦透镜11距准直透镜12的距离称为z1b,并且产生的焦线2b距聚焦透镜11的距离称为z2(一直在光束方向上观察)。如图6所示,通过轴锥镜10形成的圆形辐射SR(发散地并且在圆直径dr下入射到准直透镜12上)对于在聚焦透镜11处的至少大致恒定的圆直径dr被调整成沿着距离z1b的所需的圆宽度br。在所示情况下,应当会产生非常短的焦线2b,这样使得由于透镜12的聚焦特性,透镜12处的约4mm的圆宽度br减少至透镜11处的约0.5mm(在此实例中,圆直径dr为22mm)。
在所描绘的实例中,有可能使用2mm的典型激光束直径、具有焦距f=25mm的聚焦透镜11和具有焦距f‘=150mm的准直透镜,实现小于0.5mm的焦线长度l。此外应用Z1a=Z1b=140mm并且Z2=15mm。
图7A-7C展示了处于不同激光强度状态的激光-物质相互作用。在图7A中所示的第一种情况下,未聚焦的激光束710穿过透明基板720而未对其引入任何改性。在此特定情况下,不存在非线性效应,因为激光能量密度(或被光束照射的每单位面积激光能量)低于诱发非线性效应所需的阀值。该能量密度越高,电磁场强度越强。因此,如图7B中所示,当激光光束通过球面透镜730聚焦成小光斑尺寸时,如图7B中所示,照射面积减小且能量密度增加,触发非线性效应,该非线性效应将改性材料以便允许只在满足该条件的体积中形成断裂线。以此方式,如果聚焦激光的束腰定位在基板表面,则表面改性将发生。反之,如果聚焦激光的束腰定位在基板表面下方,则能量密度低于非线性光学效应的阀值时,在表面不会发生任何事情。但在定位于基板720的本体中的焦点740处,激光强度高到足以触发多光子非线性效应,因此诱发对材料的损伤。最后,如图7C所示,在如图7C所示的轴锥镜的情况下,轴锥透镜750或可替代地菲涅耳轴锥镜的衍射图案产生干涉,该干涉产生贝塞尔形状的强度分布(高强度圆柱760),并且只有在该体积内的强度高到足以产生非线性吸收及对材料720的改性。圆柱760(其中贝塞尔形状的强度分布高到足以产生非线性吸收及对材料的改性)的直径还是如在此提及的激光束焦线的光斑直径。贝塞尔光束的光斑直径D可表示为D=(2.4048λ)/(2πB),其中λ是激光束波长并且B是轴锥镜角度的函数。
注意,在此所述的此类皮秒激光的典型操作产生脉冲500A的“脉冲串(pulseburst)”500。(例如参见图8A及8B)。每一个“脉冲串”(在此还称作“脉冲串”500)含有多个非常短的持续时间的单独的脉冲500A(例如至少2个脉冲、至少3个脉冲、至少4个脉冲、至少5个脉冲、至少10个脉冲、至少15个脉冲、至少20个脉冲或更多)。即,脉冲串是一“袋”脉冲,并且这些脉冲串彼此之间通过比每个脉冲串内相邻单独脉冲的间隔更长的持续时间间隔开。脉冲500A具有高达100皮秒(例如0.1皮秒、5皮秒、10皮秒、15皮秒、18皮秒、20皮秒、22皮秒、25皮秒、30皮秒、50皮秒、75皮秒或介于其间)的脉冲持续时间Td。该脉冲串内的每个单独脉冲500A的能量或强度可以等于该脉冲串内的其他脉冲的能量或强度,并且受控于激光设计,脉冲串500内多个脉冲的强度分布通常遵循时间上的指数衰减。优选地,在此所述示例性实施例的脉冲串500内的每个脉冲500A与该脉冲串内随后脉冲在时间上间隔了从1纳秒至50纳秒(例如10-50纳秒或10-30纳秒,其中时间通常受控于激光腔设计)的持续时间Tp。对于给定激光,脉冲串500内相邻脉冲之间的时间间隔Tp(脉冲到脉冲间隔)是相当均匀的(±10%)。例如,在一些实施例中,脉冲串内每个脉冲与随后脉冲在时间上间隔约20纳秒(50MHz)。例如,对于产生约20纳秒的脉冲间隔Tp的激光,脉冲串内的脉冲到脉冲间隔Tp维持在约±10%内或约±2纳秒内。每个脉冲“串”之间的时间(即,多个脉冲串之间的时间间隔Tb)将长得多(例如0.25≤Tb≤1000微秒,例如1-10微秒或3-8微秒)。在此所述的激光的一些示例性实施例中,对于具有约200kHz的脉冲串重复率或频率的激光,时间间隔Tb为约5微秒。激光脉冲串重复率与脉冲串内的第一脉冲与随后脉冲串内的第一脉冲之间的时间Tb有关(激光脉冲串重复率=1/Tb)。在一些实施例中,激光脉冲串重复频率可以是在约1kHz与约4MHz之间的范围内。更优选地,激光脉冲串重复率可以是例如在约10kHz与650kHz之间的范围内。每个脉冲串内的第一脉冲与随后脉冲串内的第一脉冲之间的时间Tb可为0.25微秒(4MHz脉冲串重复率)至1000微秒(1kHz脉冲串重复率),例如0.5微秒(2MHz脉冲串重复率)至40微秒(25kHz脉冲串重复率),或2微秒(500kHz脉冲串重复率)至20微秒(50kHz脉冲串重复率)。确切定时、脉冲持续时间和脉冲串重复率可以取决于激光设计改变,但具有高强度的短脉冲(Td<20皮秒,并且优选地,Td≤15皮秒)已经示出特别良好地工作。
改性材料所需的能量可以就脉冲串能量-脉冲串内含有的能量(每个脉冲串500含有一系列脉冲500A)而言或就单激光脉冲内含有的能量(其中多个可包含脉冲串)而言进行说明。对于这些应用,每脉冲串的能量可为从25-750μJ,更优选50-500μJ、或50-250μJ。在一些实施例中,每脉冲串的能量为100-250μJ。脉冲串内的单独脉冲的能量将较少,并且确切的单独激光脉冲能量将取决于脉冲串500内的脉冲500A的数量和激光脉冲随时间的衰减率(例如,指数衰减率),如在图8A及8B中所示。例如,对于恒定的能量/脉冲串,如果脉冲串含有10个单独的激光脉冲500A,则每个单独的激光脉冲500A将含有比如果同一脉冲串500仅具有2个单独的激光脉冲的情况下更少的能量。
使用能够产生此类脉冲串的激光有利于切割或改性透明材料,例如玻璃。与使用在时间上由单脉冲激光的重复率间隔开的单脉冲相比,使用脉冲串序列(其使激光能量在脉冲串500内的快速脉冲序列内散布)允许获得比使用单脉冲激光可能的与材料高强度相互作用的更大时间尺度。虽然单脉冲可以在时间上扩展,但若这样做,脉冲内的强度必须下降大致脉冲宽度分之一。因此,如果10皮秒单脉冲被扩展至10纳秒脉冲,则强度下降大致三个数量级。此种下降可能使光学强度降低到其中非线性吸收不再是显著的并且光-材料相互作用不再强到足以允许切割的点。相比之下,在脉冲串激光下,脉冲串500内的每个脉冲500A期间的强度可以维持得非常高-例如由约10纳秒在时间上间隔开的三个10皮秒脉冲500A仍允许每个脉冲内的强度比单一10皮秒脉冲的强度高约3倍,同时允许该激光在现在大三个数量级的时间尺度内与材料相互作用。脉冲串内的多个脉冲500A的这种调整因此允许按以下方式操纵激光-材料相互作用的时间尺度,这些方式可以促进更大或更小的与预先存在的等离子体羽流的光相互作用、更大或更小的与通过初始或先前的激光脉冲预先激发的原子和分子的光-材料相互作用,以及更大或更小的材料内的加热作用(可以促进受控的微裂缝生长)。改性材料所需的脉冲串能量的量将取决于基板材料组成和用于与该基板相互作用的线状焦点的长度。相互作用区越长,能量散布出的越多,并且将需要越高的脉冲串能量。确切定时、脉冲持续时间和脉冲串重复率可以取决于激光设计改变,但具有高强度的短脉冲(<15皮秒,或≤10皮秒)已经示出与此技术一起良好地工作。当单一脉冲串撞击玻璃上的基本上同一位置时,在材料中形成缺陷线或孔。即,单脉冲串内的多个激光脉冲对应于玻璃中的单一缺陷线或孔位置。当然,由于玻璃平移(例如通过不断移动的平台)(或光束相对于玻璃移动),脉冲串内的单独脉冲不能在该玻璃上的完全相同的空间位置处。然而,它们彼此很好地在1μm内-即,它们在基本上相同的位置撞击玻璃。例如,它们可以按彼此间隔sp撞击玻璃,其中0<sp≤500nm。例如,当玻璃位置被20个脉冲的脉冲串击中时,该脉冲串内的单独脉冲彼此在250nm内撞击该玻璃。因此,在一些实施例中,1nm<sp<250nm。在一些实施例中,1nm<sp<100nm。
多光子效应或多光子吸收(MPA)是同时吸收具有相同或不同频率的两个或更多个光子,以便将分子从一个状态(通常为基态)激发到更高能量的电子态(离子化)。涉及的分子的低与高态之间的能量差可以等于这两个光子的能量和。MPA,还称作诱导吸收,可以为二阶、三阶过程或更高阶过程,例如,比线性吸收弱了数个数量级。MPA与线性吸收的差别在于诱导吸收强度可以与光强度的平方或立方(或更高幂次)呈比例,例如,而非与光强度本身呈比例。因此,MPA是非线性光学方法。
当基板在聚焦激光束底下平移时,缺陷线(损伤轨迹)之间的横向间隔(节距)由激光的脉冲率决定。通常只需单皮秒激光脉冲串来形成整个孔,但可以使用多个脉冲串,如果希望的话。为了形成不同节距的损伤轨迹(缺陷线),可以以更长或更短间隔触发激光激发。对于切割操作,激光触发通常与光束底下的工件的平台驱动运动同步,所以按固定间隔触发激光脉冲串,例如像每1微米或每5微米。在一些实施例中,例如,沿着断裂线方向相邻穿孔或缺陷线之间的距离或周期性可以是大于0.1微米并且小于或等于约20微米。例如,相邻穿孔或缺陷线之间的间隔或周期性是在0.5与15微米之间、或在3与10微米之间、或在0.5微米与3.0微米之间。例如,在一些实施例中,周期性可为在2微米与8微米之间。
我们发现在线状焦点的大致圆柱形体积内使用具有一定脉冲体积能量密度(μJ/μm3)的脉冲串激光优选用于在玻璃中形成穿孔轮廓。这可以例如通过以下方式实现:使用脉冲串激光,优选地具有每脉冲串至少两个脉冲,并且在碱土硼铝硅酸盐玻璃(具有少量或不含碱金属)内提供约0.005μJ/μm3或更高的体积能量密度,以确保形成损伤轨迹,但小于0.100μJ/μm3,以便不过多损伤该玻璃,例如0.005μJ/μm3-0.100μJ/μm3
内部轮廓方法
图1展示了待解决的问题。从玻璃板20中切出零件22。为了释放零件的外部轮廓,可以在较大玻璃板中切割附加释放线,这些释放线使任何裂缝线延伸到该板的边缘,使得该玻璃分裂成可移除的区段。然而,对于内部轮廓,例如手机上的主按钮所需的那些,形成附加释放线会切穿所关心的零件。因此内部孔或槽被“锁定在原位”并且难以移除。即使该玻璃是高应力并且裂缝在该孔或槽的外径中从穿孔到穿孔扩展,内部玻璃将不释放,因为该材料将太硬并且通过压缩力保持。
释放较大孔的一种方式是先对该孔的轮廓进行穿孔,并且然后接着进行激光加热过程,例如用CO2激光,该过程加热内部玻璃件,直到该玻璃件软化并且然后足以顺从而脱落为止。这非常适用于较大孔直径和较薄材料。然而,随着玻璃塞的深宽比(厚度/直径)变得非常大,此类方法具有更大的困难。例如,用此类方法,可以从0.7mm厚玻璃中释放10mm直径的孔,但<4mm的孔不能总是以相同玻璃厚度释放。
图8C展示了解决此问题的方法,且已成功用于从0.7mm厚的编码2320玻璃(离子交换的与非离子交换的)中分离低到1.5mm直径的孔,并且用于形成具有小至1.5mm宽度与半径的槽。步骤1-使用定义待切割的轮廓(例如孔、槽)的希望的形状的皮秒脉冲串方法在玻璃板20中进行第一轮廓24的穿孔。例如,对于康宁编码2320、0.7mm厚的非离子交换玻璃,210μJ脉冲串用于定位以便将材料穿孔,并且用于以4μm节距产生损伤轨迹或缺陷线。取决于确切材料,还可以采用其他损伤轨迹间隔,例如1-15微米、或3-10微米或3-7微米。对于可离子交换的玻璃如上述那些,3-7微米节距很好地起作用,但对于其他玻璃,例如显示玻璃Eagle XG,更小的节距可能是优选的,例如1-3微米。在此所述的实施例中,典型的脉冲串激光功率为10瓦特-150瓦特,其中对于许多玻璃,25-60瓦特的激光功率是足够的(并且最优的)。
步骤2-使用相同的激光方法、但是在第一轮廓内约数百微米形成第二穿孔线26以在该第一轮廓内形成第二轮廓。此步骤是任选的,但是经常是优选的,因为额外穿孔被设计用于充当热阻障,并且当采用下一方法步骤时,用于促进孔内材料的破碎及移除。
步骤3-通过描绘出由上述第二穿孔轮廓定义的近似路径轨迹或略微在第二轮廓内侧(100μm),高度聚焦的CO2激光28用于烧蚀孔内材料。这将物理地熔化、烧蚀及驱除孔或槽内的玻璃材料。对于从康宁公司可获得的编码2320、0.7mm厚的非离子交换玻璃,使用具有约100μm直径的聚焦光斑尺寸的约14瓦特的CO2激光功率,并且该CO2激光以约0.35m/min的速度围绕路径平移,执行1-2次通过以便完全移除材料,通过次数开始取决于孔或槽的确切几何形状。通常,对于此方法步骤,CO2光束将被定义为“聚焦的”(如果其达到够高的强度),使得该玻璃材料通过该强度被熔化和/或烧蚀。例如,聚焦光斑的功率密度可以是约1750W/mm2,这可用上述条件实现,或取决于激光束跨越表面的希望的横越速度,可以是从500W/mm2至50000W/mm2
此外,如图9中所示,高速辅助气体(例如压缩空气或氮气)通过CO2激光头32周围的喷嘴吹出。这在该玻璃上的聚焦的CO2激光光斑处吹送被引导的气流,并且帮助强制松散的玻璃材料脱离该较大基板。取决于材料对强制移除的抵抗,可以使用相同的内半径或略微不同的内半径的CO2激光的多次通过。在以上的情况下,使用80psi的压力迫使高压压缩空气穿过约1mm的喷嘴。烧蚀期间,将喷嘴定位在玻璃基板上方约1mm处,并且该CO2光束被聚焦为使得它通过该喷嘴孔径而无渐晕。
图9示出以上此方法的侧视图,用以说明CO2烧蚀和空气喷嘴将如何产生松散材料并且迫使其脱离孔或槽内部。
样品结果:
图10示出用于典型的手持电话用盖板玻璃的方法的结果。长圆孔(主按钮)的几何形状为约5.2mm×16mm,具有约1.5mm的半径拐角,并且对于槽,它是15mm长、1.6mm宽,具有约0.75mm的末端半径。利用此方法在>100个零件上观察到极佳的边缘品质(约0.5微米的Ra,在100X放大倍率显微镜下未观察到碎裂)和一致的材料移除及分离。
图11示出内部边缘的有角度的视图。该边缘示出用由相同的损伤轨迹或成丝方法制作的外部轮廓获得的相同纹理的损伤轨迹或丝状结构,其在图12中示出用于比较。这表明上述CO2烧蚀方法在不损伤高品质、低粗糙度与低次表面的边缘(通常用上述皮秒穿孔方法产生)的情况下移除松散的内部材料。
图13示出由描述的方法制作的槽的切割边缘的顶视图。在该轮廓的边缘上没有观察到碎裂或裂纹。此轮廓具有约2mm的半径。
如在图14A-14C中所示,切割及分离透明材料(并且更具体地TFT玻璃组合物)的方法本质上基于用超短脉冲激光140在待加工的材料或工件130中形成断裂线110,该断裂线由多条竖直缺陷线120形成。缺陷线120例如延伸穿过玻璃板的厚度并且正交于该玻璃板的主要(平坦)表面。“断裂线”在此还称作“轮廓”。虽然断裂线或轮廓可以为线性的,像在图14A中所示的断裂线110,但这些断裂线或轮廓还可以是非线性的,具有曲率。例如,通过使工件130或者激光束140相对于彼此在二维而非一维中平移,可以产生弯曲的断裂线或轮廓。取决于材料特性(吸收、CTE、应力、组成等)与选择用于加工材料130的激光参数,单独形成断裂线110可以足以诱发自分离。在此情况下,二次分离过程,例如张力/弯曲力或例如通过CO2激光产生的热应力,不是必要的。如图14A中所示,多条缺陷线可定义轮廓。具有缺陷线的分离的边缘或表面由该轮廓定义。形成缺陷线的诱导吸收会在分离的边缘或表面产生具有小于3微米的平均直径的颗粒,导致非常干净的切割方法。
在一些情况下,形成的断裂线并不足以自发分离材料,并且第二步骤可能是必要的。虽然穿孔的玻璃零件可以置于腔室(例如烘箱)中以产生该玻璃零件的本体加热或冷却,以产生热应力来沿着缺陷线分离这些零件,但此类方法可能是缓慢的且可能需大型烘箱或腔室来容纳许多零件或大工件或穿孔玻璃。如果希望的话,则例如可以使用第二激光产生热应力以分离它。在TFT玻璃组合物的情况下,可以实现分离,在形成断裂线后,通过施加机械力或通过利用热源(例如红外线激光,例如CO2激光)产生热应力并且迫使材料分离。另一种选择是使该CO2激光只启动分离并且然后手动完成分离。任选的CO2激光分离是例如用散焦连续波(cw)激光实现,该散焦连续波激光在10.6微米发射且具有通过控制其占空比调节的功率。焦点变化(即,散焦达到的程度并且包括聚焦光斑尺寸)用于通过改变光斑尺寸来改变诱导的热应力。散焦激光束包括产生大于在激光波长尺寸数量级下的最小衍射极限的光斑尺寸的光斑尺寸的那些激光束。例如,1至20mm的CO2激光光斑尺寸(例如1至12mm、3至8mm、或约7mm、2mm和20mm)可用于CO2激光,例如具有10.6μm波长的CO2激光。还可使用其他激光,其发射波长也被该玻璃吸收,例如像具有在9-11微米范围内发射的波长的激光。在此情况下,可以使用具有在100与400瓦特之间的功率水平的CO2激光,并且该光束可以在50-500mm/秒的速度下沿着或邻接缺陷线进行扫描,这产生足够的热应力来引发分离。在特定范围内选择的确切功率水平、光斑尺寸和扫描速度可以取决于材料用途、其厚度、热膨胀系数(CTE)、弹性模量,因为所有这些因素都会影响在给定空间位置的由特定能量沉积速率所赋予的热应力的量。如果光斑尺寸太小(即<1mm),或CO2激光功率太高(>400W),或扫描速度太慢(低于10mm/秒),则该玻璃可能过热,在该玻璃中产生烧蚀、熔化或热产生的裂缝,这些是不希望的,因为它们将降低分离零件的边缘强度。优选地,该CO2激光束扫描速度为>50mm/秒,以便诱发有效且可靠的零件分离。然而,如果由CO2激光产生的光斑尺寸太大(>20mm),或激光功率太低(<10W,或在一些情况下<30W),或扫描速度太高(>500mm/秒),则不充分的加热发生,这导致热应力太低而不能诱发可靠的零件分离。
例如,在一些实施例中,可使用200瓦特的CO2激光功率,具有在玻璃表面处的约6mm的光斑直径,以及250mm/秒的扫描速度以诱发0.7mm厚的康宁Eagle 玻璃的零件分离,该玻璃已用上述皮秒激光进行穿孔。例如,与较薄Eagle 基板相比,更厚的康宁Eagle 玻璃基板可能需要每单位时间更多的CO2激光热能来分离,或者与具有更低CTE的玻璃相比,具有更低CTE的玻璃可能需要更多的CO2激光热能来分离。在CO2光斑通过给定位置后,将很快发生沿着穿孔线的分离(小于1秒),例如在100毫秒内、在50毫秒内或在25毫秒内。
在一些实施例中,例如,沿着断裂线110方向相邻缺陷线120之间的距离或周期性可以是大于0.1微米且小于或等于约20微米。例如,在一些实施例中,相邻缺陷线120之间的周期性可以是在0.5与15微米之间、或在3与10微米之间、或在0.5微米与3.0微米之间。例如,在一些实施例中,相邻缺陷线120之间的周期性可以是在0.5微米与1.0微米之间。
有数种方法来形成缺陷线。形成线状焦点的光学方法可采取多种形式,使用圆环形激光束与球面透镜、轴锥透镜、衍射元件或其他方法来形成高强度线性区域。激光(皮秒、飞秒等)和波长(IR、绿光、UV等)类型也可以改变,只要达到的光学强度足以在焦点区域内产生基板材料的崩解,以便产生基板材料或玻璃工件的崩解(通过非线性光学作用)。优选地,激光是脉冲串激光,该脉冲串激光允许通过调整在给定脉冲串内的脉冲数量而随时间控制能量沉积。
在本申请中,超短脉冲激光用于以一致、可控制及可重复的方式形成高深宽比的竖直缺陷线。使能够形成此竖直缺陷线的光学装置的细节在以下进行描述并且描述于2013年1月15日提交的美国申请号61/752,489中,所述申请的全部内容通过援引方式并入,就如同在此完全阐述一般。此概念的本质是使用光学器件来在透明零件内产生具有高强度激光束的线状焦点。此概念的一个变体是在光学透镜组件中使用轴锥透镜元件,以利用超短(皮秒或飞秒持续时间)贝塞尔光束形成高深宽比的无锥度的微通道区。换言之,该轴锥镜将激光束聚集到圆柱形形状且高深宽比(长的长度且小的直径)的高强度区域内。由于用该聚集的激光束产生的高强度,激光的电磁场与基板材料的非线性相互作用发生并且激光能被转移到该基板以便实现缺陷形成,这些缺陷变成断裂线的构成部分。然而,重要的是认识到,在其中激光能量强度不高的材料区域(例如围绕中心会聚线的基板的玻璃体积)中,该材料对于激光是透明的并且没有用于将能量从激光转移到该材料的机制。其结果是,当激光强度低于非线性阀值时,对玻璃或工件而言什么都不发生。
上述方法提供下列益处,这些益处可以转化成加强的激光加工能力以及成本节省以及因此更低的制造成本。切割方法提供:
1)完全分离被切割的内部轮廓:上述方法能够在玻璃零件经历化学强化前,以干净且受控的方式在如通过熔融拉制方法或其他玻璃成形方法生产的可离子交换的玻璃(例如玻璃、康宁玻璃编码2318、2319、2320等)中完全分离/切割孔与槽。
2)分离具有非常小的尺寸的孔/槽:其他方法可用于加热并且诱发玻璃塞软化,这可以使之从玻璃板中脱落。然而,随着玻璃塞的深宽比(厚度/直径)变得非常大,此类方法失效。例如,加热(不烧蚀)内部玻璃塞将从0.7mm厚玻璃中脱落10mm直径的孔,但如果孔直径减少至4mm,则此类方法将无法工作。然而,在此披露的方法已经用于在0.7mm厚玻璃中移除具有小至1.5mm(圆直径或槽宽度)尺寸的玻璃塞。
3)减少的次表面缺陷与极佳的边缘品质:由于激光与材料之间的超短脉冲相互作用,存在很少的热相互作用、以及因此最小的热影响区(可能导致不希望的应力与微裂缝)。此外,将激光束聚集到玻璃内的光学器件在零件表面形成典型地2至5微米的直径的缺陷线。分离后,次表面损伤是<75μm,并且可以调整至<25μm。分离的表面(或切割边缘)的粗糙度特别产生自焦线的光斑尺寸或光斑直径。分离(切割)的表面的粗糙度(例如可以为0.1至1微米,或例如0.25至1微米)可以例如特征为Ra表面粗糙度统计数值(采样表面的高度绝对值的粗糙度算术平均值,其包括产生自焦线的光斑直径的凸块高度)。通过此方法产生的表面粗糙度通常是<0.5μm(Ra)并且可以低至0.1μm(Ra)。这对零件的边缘强度具有重大影响,因为强度受控于缺陷数量,它们就尺寸与深度而言的统计分布。这些数量越高,零件边缘将越弱。此外,如果稍后用任何机械整理方法例如研磨及抛光来修改边缘形状,则对于具有较少次表面损伤的零件,需要的材料移除量将更低。这减少或消除整理步骤、降低零件成本。在此所述的孔与槽释放方法充分利用了通过这种线-焦点皮秒激光穿孔方法形成的高品质边缘-它确保了按以下方式完成内部玻璃材料的移除,该方式沿着此穿孔线干净地释放玻璃,并且不诱发对希望的零件边缘的烧蚀损伤、微裂缝或其他缺陷。
速度:不像使用聚焦激光纯粹烧蚀内部轮廓周围的材料的方法,这种激光方法是用于穿孔线的单一通过方法。仅取决于所涉及的阶段的加速能力,穿孔轮廓可以由在此所述的皮秒激光方法以80-1000mm/秒的速度形成。这与烧蚀孔与槽钻孔方法相反,在这些烧蚀孔与槽钻孔方法中材料被“逐层”移除,并且需要激光束的多次通过或每位置的长的停留时间。
方法洁净度:上述方法能够以干净及受控制的方式分离/切割玻璃或其他透明脆性材料。使用常规的烧蚀或热激光方法是非常具挑战性的,因为这些常规方法倾向于触发热影响区,这些热影响区诱发微裂缝并且使玻璃破碎成若干更小的片。所披露的方法的激光脉冲特性和与材料的诱导相互作用避免了全部这些问题,因为它们在非常短的时间尺度内发生,并且对于激光辐射的材料透明度使诱导的热效应最小化。由于缺陷线在物体内形成,所以在切割步骤期间的碎屑和粘附颗粒的存在几乎被消除。如果存在由形成的缺陷线产生的任何微粒,则这些微粒被很好地包含,直到零件被分离。
切割不同尺寸的复杂轮廓和形状
上述这些方法使切割/分离遵循很多形式与形状的玻璃和其他基板成为可能,这是其他竞争技术的局限性。可以切割紧密半径(<2mm),允许形成小孔与槽(例如手机应用中的扬声器/麦克风所需要的)。另外,因为缺陷线强有力地控制任何裂缝扩展的位置,所以那些方法给出对切口的空间位置的极大控制,并且允许切割及分离小至数百微米的结构和特征。
消除方法步骤
从引入的玻璃面板制造具有最终的尺寸与形状的玻璃板的方法涉及若干步骤,这些步骤包含切割该面板、切割到一定尺寸、整理及边缘成形、把零件薄化至其目标厚度、抛光,以及在一些情况下,甚至化学强化。就方法时间和资本花费而言,消除这些步骤中的任一个都将改善制造成本。上述方法可以通过以下方式减少步骤的数目,例如:
减少的碎屑与边缘缺陷产生-潜在消除洗涤及干燥站。
直接将样品切割成其最终尺寸、形状和厚度-消除整理线的需要。
因此,根据一些实施例,玻璃制品具有至少一个内部轮廓边缘,该内部轮廓边缘具有多条垂直于玻璃板的面延伸至少250μm的缺陷线,这些缺陷线各自具有小于或等于约5μm的直径。例如,玻璃制品具有至少一个内部轮廓边缘,该内部轮廓边缘具有多条垂直于玻璃板的主(即,相对于侧面大的)平坦面延伸至少250μm的缺陷线,这些缺陷线各自具有小于或等于约5μm的直径。在一些实施例中,由内部轮廓边缘限定的内部轮廓的最小尺寸或宽度为小于5mm,例如它可以是宽度(或直径)为0.1mm至3mm,例如0.5mm至2mm。根据一些实施例,该玻璃制品包含离子交换后玻璃。根据一些实施例,这些缺陷线延伸该至少一个内部轮廓边缘的整个厚度。根据至少一些实施例,该至少一个内部轮廓边缘具有小于约0.5μm的Ra表面粗糙度。根据至少一些实施例,该至少一个内部轮廓边缘具有高达小于或等于约75μm深度的次表面损伤。在至少一些实施例中,该玻璃制品的缺陷线延伸边缘的整个厚度。这些缺陷线之间的距离例如为小于或等于约7μm。
在此引用的所有专利、公开申请和参考文献的相关传授内容以其全文通过援引方式并入。
虽然在此已经披露了示例性实施例,但本领域的普通技术人员将理解的是,在不脱离由所附权利要求所涵盖的本发明的范围的情况下,可以在其中做出在形式和细节上的不同改变。

Claims (25)

1.一种激光钻孔材料的方法,该方法包括:
沿着脉冲激光束传播方向观察,使该光束聚焦成激光束焦线;
在第一位置处将该激光束焦线引导至该材料中,该激光束焦线在该材料内产生诱导吸收,该诱导吸收在该材料内沿着该激光束焦线产生损伤轨迹;
使该材料与该脉冲激光束从该第一位置开始沿着第一闭合轮廓相对于彼此平移,从而在该材料内沿着该第一闭合轮廓激光钻出多个孔;以及
围绕包含在该第一闭合轮廓内的第二闭合轮廓将聚焦的二氧化碳(CO2)激光引导至该材料中,以促进沿着该第一闭合轮廓移除该材料的内塞。
2.一种玻璃制品,通过如权利要求1所述的方法制备。
3.一种玻璃制品,具有至少一个内部轮廓边缘,该内部轮廓边缘具有多条垂直于玻璃板的主面延伸至少250μm的缺陷线,所述缺陷线各自具有小于或等于约5μm的直径。
4.如权利要求1所述的方法或如权利要求2所述的制品,进一步包括:
在第二位置处将该激光束焦线引导至该材料中,该激光束焦线在该材料内产生诱导吸收,该诱导吸收在该材料内沿着该激光束焦线产生损伤轨迹;以及
使该材料与该脉冲激光束从该第二位置开始沿着第三闭合轮廓相对于彼此平移,从而在该材料内沿着该第三闭合轮廓激光钻出多个损伤轨迹,该第三闭合轮廓包含在该第一闭合轮廓内。
5.如权利要求4所述的方法或制品,其中该第二闭合轮廓和该第三闭合轮廓一致。
6.如权利要求4所述的方法或制品,其中该第二闭合轮廓包含在该第一闭合轮廓与该第三闭合轮廓之间。
7.如权利要求1-2或4-6中任一项所述的方法或制品,进一步包括将辅助气体引导朝向该材料并且与该CO2激光束共线。
8.如权利要求1-2或4-7中任一项所述的方法或制品,其中移除该内塞在该材料中定义开口,该开口具有在0.5mm与100mm之间的宽度。
9.如权利要求1-2或4-8中任一项所述的方法或制品,其中移除该内塞在该材料中定义槽,该槽具有在0.5mm与100mm之间的宽度。
10.如权利要求1-2或4-9中任一项所述的方法或制品,其中该诱导吸收在该材料内在该第一轮廓处产生高达小于或等于约75μm深度的次表面损伤。
11.如权利要求1-2或4-10中任一项所述的方法或制品,其中该诱导吸收在该第一轮廓处产生小于或等于约0.5μm的Ra表面粗糙度。
12.如任一前述权利要求所述的方法或制品,其中该材料具有在约100μm与约8mm之间的范围内的厚度。
13.如权利要求1-2或4-12中任一项所述的方法或制品,其中该材料与脉冲激光束以在约1毫米/秒与约3400毫米/秒之间的范围内的速度相对于彼此平移。
14.如权利要求1-2或4-13中任一项所述的方法或制品,其中该脉冲激光束的脉冲持续时间是在大于约1皮秒与小于约100皮秒之间的范围内。
15.如权利要求1-2或4-14中任一项所述的方法或制品,其中该脉冲激光束的重复率是在约1kHz与2MHz之间的范围内。
16.如权利要求1-2或4-15中任一项所述的方法或制品,其中该脉冲激光束具有在该材料处测量的每毫米材料厚度大于40μJ的每脉冲串能量。
17.如权利要求1-2和4-16中任一项所述的方法或制品,其中所述脉冲是以至少两个脉冲的脉冲串产生的,该至少两个脉冲被在约1纳秒与约50纳秒之间的范围内的持续时间间隔开,并且该脉冲串重复频率是在约1kHz与约650kHz之间的范围内。
18.如任一前述权利要求所述的方法或制品,其中该激光束焦线具有在约0.1mm与约100mm之间的范围内的长度。
19.如任一前述权利要求所述的玻璃制品或方法,其中由该内部轮廓边缘限定的内部轮廓的最小尺寸或宽度为小于5mm。
20.如权利要求19所述的玻璃制品,其中所述缺陷线之间的距离是小于或等于约7μm。
21.如权利要求1-2或4-20中任一项所述的方法或制品,其中该脉冲激光以每脉冲串至少两个脉冲产生脉冲串。
22.如权利要求1-2或4-21中任一项所述的方法或制品,其中该脉冲激光具有10W-150W的激光功率并且以每脉冲串至少两个脉冲产生脉冲串。
23.如权利要求1-2或4-22中任一项所述的方法或制品,其中该脉冲激光具有10W-100W的激光功率并且以每脉冲串至少2-25个脉冲产生脉冲串。
24.如权利要求1-2或4-23中任一项所述的方法或制品,其中该脉冲激光具有10W-100W的激光功率并且工件或该激光束以至少0.25m/秒的速率相对于彼此平移。
25.如权利要求2或3所述的玻璃制品,其中:
(i)玻璃板的所述主面是平坦的;和/或
(ii)由该内部轮廓边缘限定的内部轮廓的最小尺寸或宽度为小于5mm;和/或
(iii)该玻璃制品包括离子交换后玻璃;和/或
(iv)所述缺陷线延伸该至少一个内部轮廓边缘的整个厚度;和/或
(v)该至少一个内部轮廓边缘具有小于约0.5μm的Ra表面粗糙度。
CN201480075766.4A 2013-12-17 2014-12-16 槽与孔的激光加工 Active CN106029293B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910313717.4A CN109909622B (zh) 2013-12-17 2014-12-16 槽与孔的激光加工

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201361917148P 2013-12-17 2013-12-17
US61/917,148 2013-12-17
US201462022855P 2014-07-10 2014-07-10
US62/022,855 2014-07-10
US14/536,009 2014-11-07
US14/536,009 US20150165560A1 (en) 2013-12-17 2014-11-07 Laser processing of slots and holes
PCT/US2014/070531 WO2015095151A2 (en) 2013-12-17 2014-12-16 Laser processing of slots and holes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910313717.4A Division CN109909622B (zh) 2013-12-17 2014-12-16 槽与孔的激光加工

Publications (2)

Publication Number Publication Date
CN106029293A true CN106029293A (zh) 2016-10-12
CN106029293B CN106029293B (zh) 2019-05-14

Family

ID=53367281

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480075766.4A Active CN106029293B (zh) 2013-12-17 2014-12-16 槽与孔的激光加工
CN201910313717.4A Active CN109909622B (zh) 2013-12-17 2014-12-16 槽与孔的激光加工

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201910313717.4A Active CN109909622B (zh) 2013-12-17 2014-12-16 槽与孔的激光加工

Country Status (8)

Country Link
US (2) US20150165560A1 (zh)
EP (2) EP3511302B1 (zh)
KR (2) KR102270486B1 (zh)
CN (2) CN106029293B (zh)
MY (1) MY185774A (zh)
SG (2) SG11201605864RA (zh)
TW (2) TWI632975B (zh)
WO (1) WO2015095151A2 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106891097A (zh) * 2017-04-26 2017-06-27 信利光电股份有限公司 一种具有通孔的3d盖板制作方法及3d盖板
CN108161250A (zh) * 2018-01-30 2018-06-15 苏州德龙激光股份有限公司 多焦点动态分布激光加工脆性透明材料的方法及装置
CN109604838A (zh) * 2018-12-24 2019-04-12 大族激光科技产业集团股份有限公司 半导体激光加工装置
CN110678422A (zh) * 2017-04-25 2020-01-10 康宁公司 3d激光穿孔热下垂工艺
CN111770901A (zh) * 2018-02-26 2020-10-13 康宁股份有限公司 由透明母片激光形成透明制品以及原位加工透明制品的方法
CN111822877A (zh) * 2019-04-11 2020-10-27 三星显示有限公司 显示模块、用于制造显示模块的方法及激光加工方法
CN111977953A (zh) * 2019-05-22 2020-11-24 肖特股份有限公司 用于处理玻璃元件的方法和装置
CN114131212A (zh) * 2021-11-10 2022-03-04 江苏大学 一种透明材料封闭实心结构的激光改质切割与自动分离的方法
CN114178710A (zh) * 2020-08-24 2022-03-15 奥特斯(中国)有限公司 部件承载件及其制造方法
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US11919396B2 (en) 2017-09-13 2024-03-05 Corning Incorporated Curved vehicle displays
US11992894B2 (en) 2018-02-23 2024-05-28 Corning Incorporated Method of separating a liquid lens from an array of liquid lenses
US12048101B2 (en) 2020-08-24 2024-07-23 AT&S(China) Co. Ltd. Component carrier with well-defined outline sidewall cut by short laser pulse and/or green laser

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014079478A1 (en) 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials
EP2754524B1 (de) * 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie
EP2781296B1 (de) 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser
US11053156B2 (en) * 2013-11-19 2021-07-06 Rofin-Sinar Technologies Llc Method of closed form release for brittle materials using burst ultrafast laser pulses
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US20150166393A1 (en) * 2013-12-17 2015-06-18 Corning Incorporated Laser cutting of ion-exchangeable glass substrates
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US20150165560A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Laser processing of slots and holes
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
CN103831539B (zh) * 2014-01-10 2016-01-20 合肥鑫晟光电科技有限公司 激光打孔方法及激光打孔系统
JP6262039B2 (ja) 2014-03-17 2018-01-17 株式会社ディスコ 板状物の加工方法
JP6301203B2 (ja) * 2014-06-02 2018-03-28 株式会社ディスコ チップの製造方法
KR102445217B1 (ko) 2014-07-08 2022-09-20 코닝 인코포레이티드 재료를 레이저 가공하는 방법 및 장치
WO2016010954A2 (en) * 2014-07-14 2016-01-21 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
WO2016010949A1 (en) 2014-07-14 2016-01-21 Corning Incorporated Method and system for forming perforations
EP3169476A1 (en) 2014-07-14 2017-05-24 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
WO2016010943A2 (en) 2014-07-14 2016-01-21 Corning Incorporated Method and system for arresting crack propagation
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
CN107406293A (zh) 2015-01-12 2017-11-28 康宁股份有限公司 使用多光子吸收方法来对经热回火的基板进行激光切割
WO2016138054A1 (en) 2015-02-27 2016-09-01 Corning Incorporated Optical assembly having microlouvers
EP3274313A1 (en) 2015-03-27 2018-01-31 Corning Incorporated Gas permeable window and method of fabricating the same
EP3295226A1 (en) 2015-05-13 2018-03-21 Corning Incorporated Light guides with reduced hot spots and methods for making the same
WO2017011296A1 (en) 2015-07-10 2017-01-19 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
DE102015111491A1 (de) 2015-07-15 2017-01-19 Schott Ag Verfahren und Vorrichtung zum Abtrennen von Glas- oder Glaskeramikteilen
DE102015111490A1 (de) * 2015-07-15 2017-01-19 Schott Ag Verfahren und Vorrichtung zum lasergestützten Abtrennen eines Teilstücks von einem flächigen Glaselement
HUE057430T2 (hu) 2015-08-10 2022-05-28 Saint Gobain Eljárás vékony üvegréteg vágására
DE102015116846A1 (de) * 2015-10-05 2017-04-06 Schott Ag Verfahren zum Filamentieren eines Werkstückes mit einer von der Sollkontur abweichenden Form sowie durch Filamentation erzeugtes Werkstück
US10672603B2 (en) * 2015-10-23 2020-06-02 Infineon Technologies Ag System and method for removing dielectric material
CN108883545B (zh) 2016-03-24 2021-10-22 康宁股份有限公司 其中形成有孔的层压玻璃制品及其形成方法
KR102405144B1 (ko) * 2016-05-06 2022-06-07 코닝 인코포레이티드 투명 기판들로부터의 윤곽 형상들의 레이저 절단 및 제거
EP3455085B1 (en) 2016-05-31 2021-12-01 Corning Incorporated Anti-counterfeiting measures for glass articles
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
KR20190035805A (ko) 2016-07-29 2019-04-03 코닝 인코포레이티드 레이저 처리를 위한 장치 및 방법
EP3507057A1 (en) 2016-08-30 2019-07-10 Corning Incorporated Laser processing of transparent materials
CN109803786B (zh) 2016-09-30 2021-05-07 康宁股份有限公司 使用非轴对称束斑对透明工件进行激光加工的设备和方法
WO2018081031A1 (en) * 2016-10-24 2018-05-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US20180178322A1 (en) * 2016-12-28 2018-06-28 Metal Industries Research & Development Centre Laser processing device and laser processing method
DE102017100015A1 (de) * 2017-01-02 2018-07-05 Schott Ag Verfahren zum Trennen von Substraten
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US10264672B2 (en) * 2017-04-28 2019-04-16 AGC Inc. Glass substrate and glass substrate for high frequency device
DE102017208290A1 (de) * 2017-05-17 2018-11-22 Schott Ag Vorrichtung und Verfahren zum Bearbeiten eines Werkstücks entlang einer vorbestimmten Bearbeitungslinie
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
TW201919805A (zh) * 2017-08-25 2019-06-01 美商康寧公司 使用遠焦光束調整組件以雷射處理透明工件的設備與方法
US10586654B2 (en) 2017-12-21 2020-03-10 General Atomics Glass dielectric capacitors and manufacturing processes for glass dielectric capacitors
US20210061699A1 (en) * 2018-01-31 2021-03-04 Hoya Corporation Method for manufacturing disk-shaped glass blank and method for manufacturing glass substrate for magnetic disk
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11059131B2 (en) 2018-06-22 2021-07-13 Corning Incorporated Methods for laser processing a substrate stack having one or more transparent workpieces and a black matrix layer
TWI816897B (zh) * 2018-10-08 2023-10-01 美商伊雷克托科學工業股份有限公司 用於在基板中形成穿孔的方法
DE102018219465A1 (de) * 2018-11-14 2020-05-14 Flabeg Deutschland Gmbh Verfahren zum Schneiden eines Glaselements und Schneidsystem
WO2020169644A1 (en) * 2019-02-20 2020-08-27 Agc Glass Europe Method for manufacturing a partially textured glass article
KR20200104981A (ko) * 2019-02-27 2020-09-07 삼성디스플레이 주식회사 표시 장치 및 그 리페어 방법
TWI705871B (zh) * 2019-05-07 2020-10-01 鴻超環保能源股份有限公司 多雷射切割方法及其系統
CN110342806B (zh) * 2019-06-27 2021-11-09 大族激光科技产业集团股份有限公司 带通孔玻璃盖板的加工方法
US20220315472A1 (en) * 2019-07-16 2022-10-06 Nitto Denko Corporation Method for dividing composite material
RU2720791C1 (ru) 2019-09-06 2020-05-13 Общество с ограниченной ответственностью "НАУЧНО-ТЕХНИЧЕСКОЕ ОБЪЕДИНЕНИЕ "ИРЭ-Полюс" (ООО НТО "ИРЭ-Полюс") Способ лазерной обработки прозрачного хрупкого материала и устройство его реализующее
CN112620965A (zh) * 2019-10-08 2021-04-09 台湾丽驰科技股份有限公司 一种双雷射加工机及其加工方法
US11964343B2 (en) * 2020-03-09 2024-04-23 Applied Materials, Inc. Laser dicing system for filamenting and singulating optical devices
US11774676B2 (en) 2020-05-27 2023-10-03 Corning Research & Development Corporation Laser-cleaving of an optical fiber array with controlled cleaving angle
US11640031B2 (en) 2020-05-27 2023-05-02 Corning Research & Development Corporation Laser-cleaving of an optical fiber array with controlled cleaving angle
TWI733604B (zh) * 2020-06-10 2021-07-11 財團法人工業技術研究院 玻璃工件雷射處理系統及方法
CN111558785B (zh) * 2020-07-14 2020-10-23 武汉华工激光工程有限责任公司 一种用于透明材料三维轮廓加工的方法
US11851363B2 (en) 2020-10-26 2023-12-26 Flexi Glass Co., Ltd. Method for manufacturing ultra-thin glass substrate and method for manufacturing display panel
CN115159828B (zh) * 2022-06-13 2023-12-15 武汉华工激光工程有限责任公司 一种毛玻璃的激光切割方法及系统
US20240010544A1 (en) * 2022-07-07 2024-01-11 Corning Incorporated Methods for drilling features in a substrate using laser perforation and laser ablation
CN116237654B (zh) * 2023-02-22 2023-07-21 武汉荣科激光自动化设备有限公司 一种激光加工设备的智能控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154517A (ja) * 2001-11-21 2003-05-27 Seiko Epson Corp 脆性材料の割断加工方法およびその装置、並びに電子部品の製造方法
CN1196562C (zh) * 2000-10-21 2005-04-13 三星电子株式会社 用激光束切割非金属衬底的方法和装置
US20110132881A1 (en) * 2009-12-07 2011-06-09 Xinbing Liu Apparatus and methods for drilling holes with no taper or reverse taper
CN102233479A (zh) * 2010-04-16 2011-11-09 Qmc株式会社 激光处理方法和激光处理设备
CN102248302A (zh) * 2011-01-13 2011-11-23 苏州德龙激光有限公司 超短脉冲激光异形切割钢化玻璃的装置及其方法
CN102649199A (zh) * 2011-02-25 2012-08-29 三星钻石工业股份有限公司 基板加工装置及基板加工方法
CN102916081A (zh) * 2012-10-19 2013-02-06 张立国 一种薄膜太阳能电池的清边方法

Family Cites Families (408)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1790397A (en) 1931-01-27 Glass workins machine
US2682134A (en) 1951-08-17 1954-06-29 Corning Glass Works Glass sheet containing translucent linear strips
US2749794A (en) 1953-04-24 1956-06-12 Corning Glass Works Illuminating glassware and method of making it
GB1242172A (en) 1968-02-23 1971-08-11 Ford Motor Co A process for chemically cutting glass
US3647410A (en) 1969-09-09 1972-03-07 Owens Illinois Inc Glass ribbon machine blow head mechanism
US3775084A (en) 1970-01-02 1973-11-27 Owens Illinois Inc Pressurizer apparatus for glass ribbon machine
US3729302A (en) 1970-01-02 1973-04-24 Owens Illinois Inc Removal of glass article from ribbon forming machine by vibrating force
US3695498A (en) 1970-08-26 1972-10-03 Ppg Industries Inc Non-contact thermal cutting
US3695497A (en) 1970-08-26 1972-10-03 Ppg Industries Inc Method of severing glass
DE2231330A1 (de) 1972-06-27 1974-01-10 Agfa Gevaert Ag Verfahren und vorrichtung zur erzeugung eines scharfen fokus
DE2757890C2 (de) 1977-12-24 1981-10-15 Fa. Karl Lutz, 6980 Wertheim Verfahren und Vorrichtung zum Herstellen von Behältnissen aus Röhrenglas, insbesondere Ampullen
US4441008A (en) 1981-09-14 1984-04-03 Ford Motor Company Method of drilling ultrafine channels through glass
US4546231A (en) 1983-11-14 1985-10-08 Group Ii Manufacturing Ltd. Creation of a parting zone in a crystal structure
JPS6246930A (ja) 1985-08-21 1987-02-28 Bandou Kiko Kk ガラス板の割断装置
US4646308A (en) 1985-09-30 1987-02-24 Spectra-Physics, Inc. Synchronously pumped dye laser using ultrashort pump pulses
US4749400A (en) 1986-12-12 1988-06-07 Ppg Industries, Inc. Discrete glass sheet cutting
EP0272582B1 (en) 1986-12-18 1994-05-18 Sumitomo Chemical Company, Limited Light control sheets
US4918751A (en) 1987-10-05 1990-04-17 The University Of Rochester Method for optical pulse transmission through optical fibers which increases the pulse power handling capacity of the fibers
IL84255A (en) 1987-10-23 1993-02-21 Galram Technology Ind Ltd Process for removal of post- baked photoresist layer
JPH01179770A (ja) 1988-01-12 1989-07-17 Hiroshima Denki Gakuen 金属とセラミックスとの接合方法
US4764930A (en) 1988-01-27 1988-08-16 Intelligent Surgical Lasers Multiwavelength laser source
US4907586A (en) 1988-03-31 1990-03-13 Intelligent Surgical Lasers Method for reshaping the eye
US4929065A (en) 1988-11-03 1990-05-29 Isotec Partners, Ltd. Glass plate fusion for macro-gradient refractive index materials
US4891054A (en) 1988-12-30 1990-01-02 Ppg Industries, Inc. Method for cutting hot glass
US5112722A (en) 1989-04-12 1992-05-12 Nippon Sheet Glass Co., Ltd. Method of producing light control plate which induces scattering of light at different angles
US5104210A (en) 1989-04-24 1992-04-14 Monsanto Company Light control films and method of making
US5035918A (en) 1989-04-26 1991-07-30 Amp Incorporated Non-flammable and strippable plating resist and method of using same
US5040182A (en) 1990-04-24 1991-08-13 Coherent, Inc. Mode-locked laser
RU94030810A (ru) 1991-11-06 1996-06-20 Т.Лай Шуй Импульсный лазерный аппарат, способ для обеспечения гладкой абляции вещества, лазерный аппарат и способ роговичной хирургии
US5314522A (en) 1991-11-19 1994-05-24 Seikosha Co., Ltd. Method of processing photosensitive glass with a pulsed laser to form grooves
US5265107A (en) 1992-02-05 1993-11-23 Bell Communications Research, Inc. Broadband absorber having multiple quantum wells of different thicknesses
JPH05323110A (ja) 1992-05-22 1993-12-07 Hitachi Koki Co Ltd 多ビーム発生素子
US6016223A (en) 1992-08-31 2000-01-18 Canon Kabushiki Kaisha Double bessel beam producing method and apparatus
CA2112843A1 (en) 1993-02-04 1994-08-05 Richard C. Ujazdowski Variable repetition rate picosecond laser
JPH06318756A (ja) 1993-05-06 1994-11-15 Toshiba Corp レ−ザ装置
EP0656241B1 (en) 1993-06-04 1998-12-23 Seiko Epson Corporation Apparatus and method for laser machining
US6489589B1 (en) 1994-02-07 2002-12-03 Board Of Regents, University Of Nebraska-Lincoln Femtosecond laser utilization methods and apparatus and method for producing nanoparticles
JP3531199B2 (ja) 1994-02-22 2004-05-24 三菱電機株式会社 光伝送装置
US5436925A (en) 1994-03-01 1995-07-25 Hewlett-Packard Company Colliding pulse mode-locked fiber ring laser using a semiconductor saturable absorber
US5400350A (en) 1994-03-31 1995-03-21 Imra America, Inc. Method and apparatus for generating high energy ultrashort pulses
US5778016A (en) 1994-04-01 1998-07-07 Imra America, Inc. Scanning temporal ultrafast delay methods and apparatuses therefor
US5656186A (en) 1994-04-08 1997-08-12 The Regents Of The University Of Michigan Method for controlling configuration of laser induced breakdown and ablation
JP2526806B2 (ja) 1994-04-26 1996-08-21 日本電気株式会社 半導体レ―ザおよびその動作方法
WO1995031023A1 (en) 1994-05-09 1995-11-16 Massachusetts Institute Of Technology Dispersion-compensated laser using prismatic end elements
US5434875A (en) 1994-08-24 1995-07-18 Tamar Technology Co. Low cost, high average power, high brightness solid state laser
US6016324A (en) 1994-08-24 2000-01-18 Jmar Research, Inc. Short pulse laser system
US5776220A (en) 1994-09-19 1998-07-07 Corning Incorporated Method and apparatus for breaking brittle materials
US5696782A (en) 1995-05-19 1997-12-09 Imra America, Inc. High power fiber chirped pulse amplification systems based on cladding pumped rare-earth doped fibers
JPH09106243A (ja) 1995-10-12 1997-04-22 Dainippon Printing Co Ltd ホログラムの複製方法
US5736709A (en) 1996-08-12 1998-04-07 Armco Inc. Descaling metal with a laser having a very short pulse width and high average power
US7353829B1 (en) 1996-10-30 2008-04-08 Provectus Devicetech, Inc. Methods and apparatus for multi-photon photo-activation of therapeutic agents
JP4237827B2 (ja) 1996-11-13 2009-03-11 コーニング インコーポレイテッド 内部にチャンネルが形成されたガラス製品の製造方法
US6156030A (en) 1997-06-04 2000-12-05 Y-Beam Technologies, Inc. Method and apparatus for high precision variable rate material removal and modification
BE1011208A4 (fr) 1997-06-11 1999-06-01 Cuvelier Georges Procede de decalottage de pieces en verre.
DE19728766C1 (de) 1997-07-07 1998-12-17 Schott Rohrglas Gmbh Verwendung eines Verfahrens zur Herstellung einer Sollbruchstelle bei einem Glaskörper
US6078599A (en) 1997-07-22 2000-06-20 Cymer, Inc. Wavelength shift correction technique for a laser
JP3264224B2 (ja) 1997-08-04 2002-03-11 キヤノン株式会社 照明装置及びそれを用いた投影露光装置
DE19750320C1 (de) 1997-11-13 1999-04-01 Max Planck Gesellschaft Verfahren und Vorrichtung zur Lichtpulsverstärkung
GB2335603B (en) 1997-12-05 2002-12-04 Thermolase Corp Skin enhancement using laser light
US6501578B1 (en) 1997-12-19 2002-12-31 Electric Power Research Institute, Inc. Apparatus and method for line of sight laser communications
JPH11197498A (ja) 1998-01-13 1999-07-27 Japan Science & Technology Corp 無機材料内部の選択的改質方法及び内部が選択的に改質された無機材料
US6272156B1 (en) 1998-01-28 2001-08-07 Coherent, Inc. Apparatus for ultrashort pulse transportation and delivery
JPH11240730A (ja) 1998-02-27 1999-09-07 Nec Kansai Ltd 脆性材料の割断方法
JPH11269683A (ja) 1998-03-18 1999-10-05 Armco Inc 金属表面から酸化物を除去する方法及び装置
US6160835A (en) 1998-03-20 2000-12-12 Rocky Mountain Instrument Co. Hand-held marker with dual output laser
EP0949541B1 (en) 1998-04-08 2006-06-07 ASML Netherlands B.V. Lithography apparatus
US6256328B1 (en) 1998-05-15 2001-07-03 University Of Central Florida Multiwavelength modelocked semiconductor diode laser
JPH11347758A (ja) 1998-06-10 1999-12-21 Mitsubishi Heavy Ind Ltd 超精密加工装置
US6407360B1 (en) 1998-08-26 2002-06-18 Samsung Electronics, Co., Ltd. Laser cutting apparatus and method
DE19851353C1 (de) 1998-11-06 1999-10-07 Schott Glas Verfahren und Vorrichtung zum Schneiden eines Laminats aus einem sprödbrüchigen Werkstoff und einem Kunststoff
JP3178524B2 (ja) 1998-11-26 2001-06-18 住友重機械工業株式会社 レーザマーキング方法と装置及びマーキングされた部材
US7649153B2 (en) 1998-12-11 2010-01-19 International Business Machines Corporation Method for minimizing sample damage during the ablation of material using a focused ultrashort pulsed laser beam
US6445491B2 (en) 1999-01-29 2002-09-03 Irma America, Inc. Method and apparatus for optical sectioning and imaging using time-gated parametric image amplification
US6381391B1 (en) 1999-02-19 2002-04-30 The Regents Of The University Of Michigan Method and system for generating a broadband spectral continuum and continuous wave-generating system utilizing same
DE19908630A1 (de) 1999-02-27 2000-08-31 Bosch Gmbh Robert Abschirmung gegen Laserstrahlen
JP4218209B2 (ja) 1999-03-05 2009-02-04 三菱電機株式会社 レーザ加工装置
US6484052B1 (en) 1999-03-30 2002-11-19 The Regents Of The University Of California Optically generated ultrasound for enhanced drug delivery
EP1043110B1 (en) 1999-04-02 2006-08-23 Murata Manufacturing Co., Ltd. Laser method for machining through holes in a ceramic green sheet
US6373565B1 (en) 1999-05-27 2002-04-16 Spectra Physics Lasers, Inc. Method and apparatus to detect a flaw in a surface of an article
CN2388062Y (zh) 1999-06-21 2000-07-19 郭广宗 一层有孔一层无孔双层玻璃车船窗
US6449301B1 (en) 1999-06-22 2002-09-10 The Regents Of The University Of California Method and apparatus for mode locking of external cavity semiconductor lasers with saturable Bragg reflectors
US6259151B1 (en) 1999-07-21 2001-07-10 Intersil Corporation Use of barrier refractive or anti-reflective layer to improve laser trim characteristics of thin film resistors
US6573026B1 (en) 1999-07-29 2003-06-03 Corning Incorporated Femtosecond laser writing of glass, including borosilicate, sulfide, and lead glasses
JP2001130921A (ja) 1999-10-29 2001-05-15 Mitsuboshi Diamond Industrial Co Ltd 脆性基板の加工方法及び装置
DE19952331C1 (de) 1999-10-29 2001-08-30 Schott Spezialglas Gmbh Verfahren und Vorrichtung zum schnellen Schneiden eines Werkstücks aus sprödbrüchigem Werkstoff mittels Laserstrahlen
JP2001138083A (ja) 1999-11-18 2001-05-22 Seiko Epson Corp レーザー加工装置及びレーザー照射方法
JP4592855B2 (ja) 1999-12-24 2010-12-08 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6339208B1 (en) 2000-01-19 2002-01-15 General Electric Company Method of forming cooling holes
US6552301B2 (en) 2000-01-25 2003-04-22 Peter R. Herman Burst-ultrafast laser machining method
JP3530114B2 (ja) 2000-07-11 2004-05-24 忠弘 大見 単結晶の切断方法
JP2002040330A (ja) 2000-07-25 2002-02-06 Olympus Optical Co Ltd 光学素子切換え制御装置
JP4659300B2 (ja) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
US20020110639A1 (en) 2000-11-27 2002-08-15 Donald Bruns Epoxy coating for optical surfaces
US20020082466A1 (en) 2000-12-22 2002-06-27 Jeongho Han Laser surgical system with light source and video scope
JP4880820B2 (ja) 2001-01-19 2012-02-22 株式会社レーザーシステム レーザ支援加工方法
JP2002228818A (ja) 2001-02-05 2002-08-14 Taiyo Yuden Co Ltd レーザー加工用回折光学素子、レーザー加工装置及びレーザー加工方法
SG108262A1 (en) 2001-07-06 2005-01-28 Inst Data Storage Method and apparatus for cutting a multi-layer substrate by dual laser irradiation
JP3775250B2 (ja) 2001-07-12 2006-05-17 セイコーエプソン株式会社 レーザー加工方法及びレーザー加工装置
JP3823108B2 (ja) 2001-08-10 2006-09-20 三星ダイヤモンド工業株式会社 脆性材料基板の面取り方法
JP3795778B2 (ja) 2001-08-24 2006-07-12 株式会社ノリタケカンパニーリミテド 水添ビスフェノールa型エポキシ樹脂を用いたレジノイド研削砥石
JP2003114400A (ja) 2001-10-04 2003-04-18 Sumitomo Electric Ind Ltd レーザ光学システムおよびレーザ加工方法
US6720519B2 (en) 2001-11-30 2004-04-13 Matsushita Electric Industrial Co., Ltd. System and method of laser drilling
US6973384B2 (en) 2001-12-06 2005-12-06 Bellsouth Intellectual Property Corporation Automated location-intelligent traffic notification service systems and methods
JP2003238178A (ja) 2002-02-21 2003-08-27 Toshiba Ceramics Co Ltd ガス導入用シャワープレート及びその製造方法
KR100749972B1 (ko) 2002-03-12 2007-08-16 하마마츠 포토닉스 가부시키가이샤 가공 대상물 절단 방법
US6787732B1 (en) 2002-04-02 2004-09-07 Seagate Technology Llc Method for laser-scribing brittle substrates and apparatus therefor
US6744009B1 (en) 2002-04-02 2004-06-01 Seagate Technology Llc Combined laser-scribing and laser-breaking for shaping of brittle substrates
CA2396831A1 (en) 2002-08-02 2004-02-02 Femtonics Corporation Microstructuring optical wave guide devices with femtosecond optical pulses
JP2004209675A (ja) 2002-12-26 2004-07-29 Kashifuji:Kk 押圧切断装置及び押圧切断方法
KR100497820B1 (ko) 2003-01-06 2005-07-01 로체 시스템즈(주) 유리판절단장치
JP3775410B2 (ja) 2003-02-03 2006-05-17 セイコーエプソン株式会社 レーザー加工方法、レーザー溶接方法並びにレーザー加工装置
US8685838B2 (en) 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
RU2365547C2 (ru) 2003-04-22 2009-08-27 Дзе Кока-Кола Компани Способ и устройство для упрочнения стекла
US7511886B2 (en) 2003-05-13 2009-03-31 Carl Zeiss Smt Ag Optical beam transformation system and illumination system comprising an optical beam transformation system
FR2855084A1 (fr) 2003-05-22 2004-11-26 Air Liquide Optique de focalisation pour le coupage laser
JP2005000952A (ja) 2003-06-12 2005-01-06 Nippon Sheet Glass Co Ltd レーザー加工方法及びレーザー加工装置
WO2004113993A1 (en) 2003-06-26 2004-12-29 Risø National Laboratory Generation of a desired wavefront with a plurality of phase contrast filters
EP2332687B1 (en) 2003-07-18 2015-02-18 Hamamatsu Photonics K.K. Method of laser beam machining a machining target using pulsed laser beam and expanded tape for cutting a machining target
JP2005104819A (ja) 2003-09-10 2005-04-21 Nippon Sheet Glass Co Ltd 合せガラスの切断方法及び合せガラス切断装置
JP2005138143A (ja) 2003-11-06 2005-06-02 Disco Abrasive Syst Ltd レーザ光線を利用する加工装置
JP2005144487A (ja) 2003-11-13 2005-06-09 Seiko Epson Corp レーザ加工装置及びレーザ加工方法
EP1690660A1 (en) 2003-12-04 2006-08-16 Mitsuboshi Diamond Industrial Co., Ltd. Substrate machining method, substrate machining device, substrate carrying method, and substrate carrying mechanism
US7633033B2 (en) 2004-01-09 2009-12-15 General Lasertronics Corporation Color sensing for laser decoating
US20080099444A1 (en) 2004-01-16 2008-05-01 Hiroaki Misawa Micro-Fabrication Method
JP4074589B2 (ja) 2004-01-22 2008-04-09 Tdk株式会社 レーザ加工装置及びレーザ加工方法
TWI250910B (en) 2004-03-05 2006-03-11 Olympus Corp Apparatus for laser machining
DE102004014277A1 (de) * 2004-03-22 2005-10-20 Fraunhofer Ges Forschung Verfahren zum laserthermischen Trennen von Flachgläsern
JP4418282B2 (ja) 2004-03-31 2010-02-17 株式会社レーザーシステム レーザ加工方法
US7486705B2 (en) 2004-03-31 2009-02-03 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
JP4890746B2 (ja) 2004-06-14 2012-03-07 株式会社ディスコ ウエーハの加工方法
US7804043B2 (en) 2004-06-15 2010-09-28 Laserfacturing Inc. Method and apparatus for dicing of thin and ultra thin semiconductor wafer using ultrafast pulse laser
US7820941B2 (en) * 2004-07-30 2010-10-26 Corning Incorporated Process and apparatus for scoring a brittle material
JP3887394B2 (ja) 2004-10-08 2007-02-28 芝浦メカトロニクス株式会社 脆性材料の割断加工システム及びその方法
ATE520495T1 (de) 2004-10-25 2011-09-15 Mitsuboshi Diamond Ind Co Ltd Verfahren und vorrichtung zur bildung von rissen
JP4692717B2 (ja) 2004-11-02 2011-06-01 澁谷工業株式会社 脆性材料の割断装置
JP4222296B2 (ja) 2004-11-22 2009-02-12 住友電気工業株式会社 レーザ加工方法とレーザ加工装置
US7201965B2 (en) 2004-12-13 2007-04-10 Corning Incorporated Glass laminate substrate having enhanced impact and static loading resistance
KR101170587B1 (ko) 2005-01-05 2012-08-01 티에이치케이 인텍스 가부시키가이샤 워크의 브레이크 방법 및 장치, 스크라이브 및 브레이크방법, 및 브레이크 기능을 갖는 스크라이브 장치
US20060207976A1 (en) * 2005-01-21 2006-09-21 Bovatsek James M Laser material micromachining with green femtosecond pulses
JPWO2006082738A1 (ja) 2005-02-03 2008-06-26 株式会社ニコン オプティカルインテグレータ、照明光学装置、露光装置、および露光方法
JP2006248885A (ja) 2005-02-08 2006-09-21 Takeji Arai 超短パルスレーザによる石英の切断方法
US20060261118A1 (en) 2005-05-17 2006-11-23 Cox Judy K Method and apparatus for separating a pane of brittle material from a moving ribbon of the material
US7402773B2 (en) 2005-05-24 2008-07-22 Disco Corporation Laser beam processing machine
JP4490883B2 (ja) 2005-07-19 2010-06-30 株式会社レーザーシステム レーザ加工装置およびレーザ加工方法
DE102005039833A1 (de) 2005-08-22 2007-03-01 Rowiak Gmbh Vorrichtung und Verfahren zur Materialtrennung mit Laserpulsen
JP2007055000A (ja) * 2005-08-23 2007-03-08 Japan Steel Works Ltd:The 非金属材料製の被加工物の切断方法及びその装置
KR20070023958A (ko) 2005-08-25 2007-03-02 삼성전자주식회사 액정 표시 장치용 기판 절단 시스템 및 상기 시스템을이용한 액정 표시 장치용 기판 절단 방법
US7626138B2 (en) 2005-09-08 2009-12-01 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
US9138913B2 (en) 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
WO2007032501A1 (ja) 2005-09-12 2007-03-22 Nippon Sheet Glass Company, Limited 中間膜分離液及び中間膜分離方法
KR100792593B1 (ko) 2005-10-12 2008-01-09 한국정보통신대학교 산학협력단 극초단 펄스 레이저를 이용한 단일 펄스 패턴 형성방법 및시스템
JP2007142001A (ja) 2005-11-16 2007-06-07 Denso Corp レーザ加工装置およびレーザ加工方法
US20070111480A1 (en) 2005-11-16 2007-05-17 Denso Corporation Wafer product and processing method therefor
US7838331B2 (en) 2005-11-16 2010-11-23 Denso Corporation Method for dicing semiconductor substrate
US7977601B2 (en) 2005-11-28 2011-07-12 Electro Scientific Industries, Inc. X and Y orthogonal cut direction processing with set beam separation using 45 degree beam split orientation apparatus and method
KR101371265B1 (ko) 2005-12-16 2014-03-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 레이저 조사 장치, 레이저 조사 방법, 및 반도체 장치 제조방법
JP4483793B2 (ja) 2006-01-27 2010-06-16 セイコーエプソン株式会社 微細構造体の製造方法及び製造装置
US7418181B2 (en) 2006-02-13 2008-08-26 Adc Telecommunications, Inc. Fiber optic splitter module
KR100985428B1 (ko) 2006-02-15 2010-10-05 아사히 가라스 가부시키가이샤 유리 기판의 모따기 방법 및 장치
US7535634B1 (en) 2006-02-16 2009-05-19 The United States Of America As Represented By The National Aeronautics And Space Administration Optical device, system, and method of generating high angular momentum beams
JP4672689B2 (ja) 2006-02-22 2011-04-20 日本板硝子株式会社 レーザを用いたガラスの加工方法および加工装置
US20090013724A1 (en) 2006-02-22 2009-01-15 Nippon Sheet Glass Company, Limited Glass Processing Method Using Laser and Processing Device
EP1991388A2 (en) 2006-02-23 2008-11-19 Picodeon Ltd OY Surface treatment technique and surface treatment apparatus associated with ablation technology
JP2007253203A (ja) 2006-03-24 2007-10-04 Sumitomo Electric Ind Ltd レーザ加工用光学装置
US20070298529A1 (en) 2006-05-31 2007-12-27 Toyoda Gosei, Co., Ltd. Semiconductor light-emitting device and method for separating semiconductor light-emitting devices
ES2428826T3 (es) 2006-07-03 2013-11-11 Hamamatsu Photonics K.K. Procedimiento de procesamiento por láser y chip
DE102006035555A1 (de) 2006-07-27 2008-01-31 Eliog-Kelvitherm Industrieofenbau Gmbh Anordnung und Verfahren zur Verformung von Glasscheiben
US8168514B2 (en) 2006-08-24 2012-05-01 Corning Incorporated Laser separation of thin laminated glass substrates for flexible display applications
CN101130216A (zh) * 2006-08-25 2008-02-27 富士迈半导体精密工业(上海)有限公司 激光切割方法
JP2008062547A (ja) * 2006-09-08 2008-03-21 Hiroshima Univ レーザ照射による脆性材板割断の方法および装置。
KR101428823B1 (ko) 2006-09-19 2014-08-11 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법 및 레이저 가공 장치
DE102006051105B3 (de) 2006-10-25 2008-06-12 Lpkf Laser & Electronics Ag Vorrichtung zur Bearbeitung eines Werkstücks mittels Laserstrahlung
AT504726A1 (de) 2007-01-05 2008-07-15 Lisec Maschb Gmbh Verfahren und vorrichtung zum herstellen eines trennspalts in einer glasscheibe
US20100029460A1 (en) 2007-02-22 2010-02-04 Nippon Sheet Glass Company, Limited Glass for anodic bonding
WO2008104346A2 (en) 2007-02-27 2008-09-04 Carl Zeiss Laser Optics Gmbh Continuous coating installation and methods for producing crystalline thin films and solar cells
JP5784273B2 (ja) 2007-04-05 2015-09-24 チャーム エンジニアリング株式会社 レーザ加工方法及び切断方法並びに多層基板を有する構造体の分割方法
CN101279403B (zh) * 2007-04-06 2012-03-14 富士迈半导体精密工业(上海)有限公司 激光加工方法
DE102007018674A1 (de) 2007-04-18 2008-10-23 Lzh Laserzentrum Hannover E.V. Verfahren zum Bilden von Durchgangslöchern in Bauteilen aus Glas
US8236116B2 (en) 2007-06-06 2012-08-07 Centre Luxembourgeois De Recherches Pour Le Verre Et Al Ceramique S.A. (C.R.V.C.) Method of making coated glass article, and intermediate product used in same
US8169587B2 (en) 2007-08-16 2012-05-01 Apple Inc. Methods and systems for strengthening LCD modules
WO2009042212A2 (en) 2007-09-26 2009-04-02 Aradigm Corporation Impinging jet nozzles in stretched or deformed substrates
KR20090057161A (ko) 2007-12-01 2009-06-04 주식회사 이엔팩 초발수성 좌변기 시트
CN101462822B (zh) 2007-12-21 2012-08-29 鸿富锦精密工业(深圳)有限公司 具有通孔的脆性非金属工件及其加工方法
US20090183764A1 (en) 2008-01-18 2009-07-23 Tenksolar, Inc Detachable Louver System
JP5098665B2 (ja) 2008-01-23 2012-12-12 株式会社東京精密 レーザー加工装置およびレーザー加工方法
KR101303542B1 (ko) 2008-02-11 2013-09-03 엘지디스플레이 주식회사 평판표시패널 절단장치
CN105583526B (zh) 2008-03-21 2018-08-17 Imra美国公司 基于激光的材料加工方法和系统
JP5333816B2 (ja) 2008-03-26 2013-11-06 旭硝子株式会社 ガラス板の切線加工装置及び切線加工方法
US8237080B2 (en) 2008-03-27 2012-08-07 Electro Scientific Industries, Inc Method and apparatus for laser drilling holes with Gaussian pulses
JP5345334B2 (ja) 2008-04-08 2013-11-20 株式会社レミ 脆性材料の熱応力割断方法
JP5274085B2 (ja) 2008-04-09 2013-08-28 株式会社アルバック レーザー加工装置、レーザービームのピッチ可変方法、及びレーザー加工方法
US8358888B2 (en) 2008-04-10 2013-01-22 Ofs Fitel, Llc Systems and techniques for generating Bessel beams
PL2119512T3 (pl) 2008-05-14 2018-02-28 Gerresheimer Glas Gmbh Sposób i urządzenie do usuwania cząstek zanieczyszczeń z pojemników w automatycznym systemie wytwarzania
US8053704B2 (en) 2008-05-27 2011-11-08 Corning Incorporated Scoring of non-flat materials
JP2009297734A (ja) 2008-06-11 2009-12-24 Nitto Denko Corp レーザー加工用粘着シート及びレーザー加工方法
US8514476B2 (en) 2008-06-25 2013-08-20 View, Inc. Multi-pane dynamic window and method for making same
US7810355B2 (en) 2008-06-30 2010-10-12 Apple Inc. Full perimeter chemical strengthening of substrates
JP5155774B2 (ja) 2008-08-21 2013-03-06 株式会社ノリタケカンパニーリミテド プラトー面加工用レジノイド超砥粒砥石ホイール
JP2010075991A (ja) 2008-09-29 2010-04-08 Fujifilm Corp レーザ加工装置
JP5297139B2 (ja) 2008-10-09 2013-09-25 新光電気工業株式会社 配線基板及びその製造方法
US8895892B2 (en) 2008-10-23 2014-11-25 Corning Incorporated Non-contact glass shearing device and method for scribing or cutting a moving glass sheet
US8092739B2 (en) 2008-11-25 2012-01-10 Wisconsin Alumni Research Foundation Retro-percussive technique for creating nanoscale holes
US9346130B2 (en) 2008-12-17 2016-05-24 Electro Scientific Industries, Inc. Method for laser processing glass with a chamfered edge
EP2202545A1 (en) 2008-12-23 2010-06-30 Karlsruher Institut für Technologie Beam transformation module with an axicon in a double-pass mode
KR101020621B1 (ko) 2009-01-15 2011-03-09 연세대학교 산학협력단 광섬유를 이용하는 광소자 제조 방법, 광섬유를 이용하는 광소자 및 이를 이용한 광 트위저
US8341976B2 (en) 2009-02-19 2013-01-01 Corning Incorporated Method of separating strengthened glass
US8347651B2 (en) 2009-02-19 2013-01-08 Corning Incorporated Method of separating strengthened glass
US8327666B2 (en) 2009-02-19 2012-12-11 Corning Incorporated Method of separating strengthened glass
US8245540B2 (en) 2009-02-24 2012-08-21 Corning Incorporated Method for scoring a sheet of brittle material
BR122019015544B1 (pt) 2009-02-25 2020-12-22 Nichia Corporation método para fabricar um elemento semicondutor, e, elemento semicondutor
CN201357287Y (zh) 2009-03-06 2009-12-09 苏州德龙激光有限公司 新型皮秒激光加工装置
CN101502914A (zh) 2009-03-06 2009-08-12 苏州德龙激光有限公司 用于喷油嘴微孔加工的皮秒激光加工装置
JP5300544B2 (ja) 2009-03-17 2013-09-25 株式会社ディスコ 光学系及びレーザ加工装置
KR101041140B1 (ko) 2009-03-25 2011-06-13 삼성모바일디스플레이주식회사 기판 절단 방법
US20100252959A1 (en) 2009-03-27 2010-10-07 Electro Scientific Industries, Inc. Method for improved brittle materials processing
US20100279067A1 (en) 2009-04-30 2010-11-04 Robert Sabia Glass sheet having enhanced edge strength
CN102422406B (zh) 2009-05-06 2014-07-09 康宁股份有限公司 用于玻璃基片的支承件
ATE551304T1 (de) 2009-05-13 2012-04-15 Corning Inc Verfahren und anlagen zum formen von endlosen glasscheiben
US8132427B2 (en) 2009-05-15 2012-03-13 Corning Incorporated Preventing gas from occupying a spray nozzle used in a process of scoring a hot glass sheet
US8269138B2 (en) 2009-05-21 2012-09-18 Corning Incorporated Method for separating a sheet of brittle material
DE102009023602B4 (de) 2009-06-02 2012-08-16 Grenzebach Maschinenbau Gmbh Vorrichtung zum industriellen Herstellen elastisch verformbarer großflächiger Glasplatten in hoher Stückzahl
JP5525601B2 (ja) 2009-06-04 2014-06-18 コアレイズ オーワイ レーザを用いた基板加工方法
TWI395630B (zh) 2009-06-30 2013-05-11 Mitsuboshi Diamond Ind Co Ltd 使用雷射光之玻璃基板加工裝置
US8592716B2 (en) 2009-07-22 2013-11-26 Corning Incorporated Methods and apparatus for initiating scoring
CN101637849B (zh) 2009-08-07 2011-12-07 苏州德龙激光有限公司 皮秒激光加工设备的高精度z轴载物平台
CN201471092U (zh) 2009-08-07 2010-05-19 苏州德龙激光有限公司 皮秒激光加工设备的高精度z轴载物平台
JP5500914B2 (ja) 2009-08-27 2014-05-21 株式会社半導体エネルギー研究所 レーザ照射装置
US8943855B2 (en) 2009-08-28 2015-02-03 Corning Incorporated Methods for laser cutting articles from ion exchanged glass substrates
US8932510B2 (en) * 2009-08-28 2015-01-13 Corning Incorporated Methods for laser cutting glass substrates
KR101094284B1 (ko) * 2009-09-02 2011-12-19 삼성모바일디스플레이주식회사 기판 절단 장치 및 이를 이용한 기판 절단 방법
US20110088324A1 (en) 2009-10-20 2011-04-21 Wessel Robert B Apparatus and method for solar heat gain reduction in a window assembly
TWI472494B (zh) 2009-11-03 2015-02-11 Corning Inc 對以非固定速度移動的玻璃帶進行雷射刻痕
JP5795000B2 (ja) * 2009-11-30 2015-10-14 コーニング インコーポレイテッド ガラス基板のレーザスクライブおよび分離方法
US20120234807A1 (en) 2009-12-07 2012-09-20 J.P. Sercel Associates Inc. Laser scribing with extended depth affectation into a workplace
TWI438162B (zh) 2010-01-27 2014-05-21 Wintek Corp 強化玻璃切割方法及強化玻璃切割預置結構
US8743165B2 (en) 2010-03-05 2014-06-03 Micronic Laser Systems Ab Methods and device for laser processing
JP5249979B2 (ja) 2010-03-18 2013-07-31 三星ダイヤモンド工業株式会社 脆性材料基板の加工方法およびこれに用いるレーザ加工装置
US8654538B2 (en) 2010-03-30 2014-02-18 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
KR20130059325A (ko) 2010-04-20 2013-06-05 아사히 가라스 가부시키가이샤 반도체 디바이스 관통 전극용 유리 기판
US8821211B2 (en) 2010-04-21 2014-09-02 Lg Chem, Ltd. Device for cutting of glass sheet
DE202010006047U1 (de) 2010-04-22 2010-07-22 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Strahlformungseinheit zur Fokussierung eines Laserstrahls
US8245539B2 (en) 2010-05-13 2012-08-21 Corning Incorporated Methods of producing glass sheets
KR20130079395A (ko) 2010-05-19 2013-07-10 미쓰비시 가가꾸 가부시키가이샤 카드용 시트 및 카드
US8945904B2 (en) 2010-05-21 2015-02-03 Novartis Ag Influenza virus reassortment
GB2481190B (en) 2010-06-04 2015-01-14 Plastic Logic Ltd Laser ablation
TWI519414B (zh) 2010-06-29 2016-02-01 康寧公司 具有提高機械強度之玻璃片
DE102010025967B4 (de) 2010-07-02 2015-12-10 Schott Ag Verfahren zur Erzeugung einer Vielzahl von Löchern, Vorrichtung hierzu und Glas-Interposer
DE102010025965A1 (de) 2010-07-02 2012-01-05 Schott Ag Verfahren zur spannungsarmen Herstellung von gelochten Werkstücken
DE202010013161U1 (de) 2010-07-08 2011-03-31 Oerlikon Solar Ag, Trübbach Laserbearbeitung mit mehreren Strahlen und dafür geeigneter Laseroptikkopf
KR20130091313A (ko) 2010-07-12 2013-08-16 아사히 가라스 가부시키가이샤 임프린트 몰드용 TiO₂함유 석영 유리 기재 및 그 제조 방법
KR102088722B1 (ko) * 2010-07-12 2020-03-17 로핀-시나르 테크놀로지스 엘엘씨 레이저 필라멘테이션에 의한 재료 가공 방법
KR20120015366A (ko) 2010-07-19 2012-02-21 엘지디스플레이 주식회사 강화유리 절단방법 및 절단장치
JP5580129B2 (ja) 2010-07-20 2014-08-27 株式会社アマダ 固体レーザ加工装置
JP5669001B2 (ja) 2010-07-22 2015-02-12 日本電気硝子株式会社 ガラスフィルムの割断方法、ガラスロールの製造方法、及びガラスフィルムの割断装置
KR101940332B1 (ko) 2010-07-26 2019-01-18 하마마츠 포토닉스 가부시키가이샤 기판 가공 방법
EP2599583B1 (en) 2010-07-26 2020-04-01 Hamamatsu Photonics K.K. Substrate processing method
JP2012031018A (ja) 2010-07-30 2012-02-16 Asahi Glass Co Ltd 強化ガラス基板及び強化ガラス基板の溝加工方法と強化ガラス基板の切断方法
US8604380B2 (en) 2010-08-19 2013-12-10 Electro Scientific Industries, Inc. Method and apparatus for optimally laser marking articles
US8584354B2 (en) 2010-08-26 2013-11-19 Corning Incorporated Method for making glass interposer panels
US8720228B2 (en) 2010-08-31 2014-05-13 Corning Incorporated Methods of separating strengthened glass substrates
TWI402228B (zh) 2010-09-15 2013-07-21 Wintek Corp 強化玻璃切割方法、強化玻璃薄膜製程、強化玻璃切割預置結構及強化玻璃切割件
US8887529B2 (en) 2010-10-29 2014-11-18 Corning Incorporated Method and apparatus for cutting glass ribbon
JP5617556B2 (ja) 2010-11-22 2014-11-05 日本電気硝子株式会社 帯状ガラスフィルム割断装置及び帯状ガラスフィルム割断方法
US8616024B2 (en) 2010-11-30 2013-12-31 Corning Incorporated Methods for forming grooves and separating strengthened glass substrate sheets
CN103237771B (zh) 2010-11-30 2016-10-19 康宁股份有限公司 在玻璃中形成高密度孔阵列的方法
US8607590B2 (en) 2010-11-30 2013-12-17 Corning Incorporated Methods for separating glass articles from strengthened glass substrate sheets
TW201226345A (en) 2010-12-27 2012-07-01 Liefco Optical Inc Method of cutting tempered glass
KR101298019B1 (ko) 2010-12-28 2013-08-26 (주)큐엠씨 레이저 가공 장치
JP5727518B2 (ja) 2011-01-05 2015-06-03 清之 近藤 ビーム加工装置
WO2012096053A1 (ja) * 2011-01-11 2012-07-19 旭硝子株式会社 強化ガラス板の切断方法
JP5480169B2 (ja) * 2011-01-13 2014-04-23 浜松ホトニクス株式会社 レーザ加工方法
US8539794B2 (en) 2011-02-01 2013-09-24 Corning Incorporated Strengthened glass substrate sheets and methods for fabricating glass panels from glass substrate sheets
JP2012159749A (ja) 2011-02-01 2012-08-23 Nichia Chem Ind Ltd ベッセルビーム発生装置
US8933367B2 (en) * 2011-02-09 2015-01-13 Sumitomo Electric Industries, Ltd. Laser processing method
WO2012108052A1 (ja) 2011-02-10 2012-08-16 信越ポリマー株式会社 単結晶基板製造方法および内部改質層形成単結晶部材
US20130312460A1 (en) 2011-02-10 2013-11-28 National University Corporation Saitama University Manufacturing method of single crystal substrate and manufacturing method of internal modified layer-forming single crystal member
DE102011000768B4 (de) 2011-02-16 2016-08-18 Ewag Ag Laserbearbeitungsverfahren und Laserbearbeitungsvorrichtung mit umschaltbarer Laseranordnung
US8584490B2 (en) 2011-02-18 2013-11-19 Corning Incorporated Laser cutting method
US8776547B2 (en) 2011-02-28 2014-07-15 Corning Incorporated Local strengthening of glass by ion exchange
JP2012187618A (ja) 2011-03-11 2012-10-04 V Technology Co Ltd ガラス基板のレーザ加工装置
JP5107481B2 (ja) 2011-03-31 2012-12-26 AvanStrate株式会社 ガラス板の製造方法
KR101256931B1 (ko) 2011-04-07 2013-04-19 (주) 네톰 무선인식 태그 및 이를 구비한 전자제품 피씨비 및 전자제품 관리 시스템
US8986072B2 (en) 2011-05-26 2015-03-24 Corning Incorporated Methods of finishing an edge of a glass sheet
US20120299219A1 (en) 2011-05-27 2012-11-29 Hamamatsu Photonics K.K. Laser processing method
TWI547454B (zh) 2011-05-31 2016-09-01 康寧公司 於玻璃中高速製造微孔洞的方法
KR20140024919A (ko) 2011-06-15 2014-03-03 아사히 가라스 가부시키가이샤 유리판의 절단 방법
JP2013007842A (ja) 2011-06-23 2013-01-10 Toyo Seikan Kaisha Ltd 構造体形成装置、構造体形成方法及び構造体
JP5765421B2 (ja) 2011-06-28 2015-08-19 株式会社Ihi 脆性的な部材を切断する装置、方法、および切断された脆性的な部材
TWI572480B (zh) 2011-07-25 2017-03-01 康寧公司 經層壓及離子交換之強化玻璃疊層
DE112012003162T5 (de) 2011-07-29 2014-04-17 Ats Automation Tooling Systems Inc. Systeme und Verfahren zum Herstellen dünner Siliziumstäbe
KR101120471B1 (ko) 2011-08-05 2012-03-05 (주)지엘코어 다중 초점 방식의 펄스 레이저를 이용한 취성 재료 절단 장치
US8635887B2 (en) 2011-08-10 2014-01-28 Corning Incorporated Methods for separating glass substrate sheets by laser-formed grooves
JP2013043808A (ja) 2011-08-25 2013-03-04 Asahi Glass Co Ltd 強化ガラス板切断用保持具及び強化ガラス板の切断方法
DE112012003605T5 (de) 2011-08-29 2014-06-12 Asahi Glass Co., Ltd. Verfahren zum Schneiden einer Glasplatte mit erhöhter Festigkeit und Vorrichtung zum Schneiden einer Glasplatte mit erhöhter Festigkeit
KR20140053256A (ko) 2011-08-31 2014-05-07 아사히 가라스 가부시키가이샤 강화 유리판의 절단 방법 및 강화 유리판 절단 장치
CN102992600B (zh) 2011-09-09 2016-04-06 Hoya株式会社 离子交换玻璃制品的制造方法
WO2013039230A1 (ja) 2011-09-15 2013-03-21 日本電気硝子株式会社 ガラス板切断方法
KR101949777B1 (ko) 2011-09-15 2019-02-19 니폰 덴키 가라스 가부시키가이샤 유리판 절단방법 및 유리판 절단장치
US10239160B2 (en) 2011-09-21 2019-03-26 Coherent, Inc. Systems and processes that singulate materials
CN104025251B (zh) 2011-09-21 2018-01-09 雷蒂安斯公司 切割材料的系统和过程
JP5864988B2 (ja) 2011-09-30 2016-02-17 浜松ホトニクス株式会社 強化ガラス板切断方法
FR2980859B1 (fr) 2011-09-30 2013-10-11 Commissariat Energie Atomique Procede et dispositif de lithographie
DE102011084128A1 (de) 2011-10-07 2013-04-11 Schott Ag Verfahren zum Schneiden eines Dünnglases mit spezieller Ausbildung der Kante
JP2013091578A (ja) 2011-10-25 2013-05-16 Mitsuboshi Diamond Industrial Co Ltd ガラス基板のスクライブ方法
US8867568B2 (en) * 2011-10-28 2014-10-21 Emulex Corporation Method for parsing network packets having future defined tags
KR101269474B1 (ko) 2011-11-09 2013-05-30 주식회사 모린스 강화글라스 절단 방법
US20130129947A1 (en) 2011-11-18 2013-05-23 Daniel Ralph Harvey Glass article having high damage resistance
US8677783B2 (en) 2011-11-28 2014-03-25 Corning Incorporated Method for low energy separation of a glass ribbon
KR101258403B1 (ko) * 2011-12-09 2013-04-30 로체 시스템즈(주) 강화유리 기판 절단방법
KR20130065051A (ko) 2011-12-09 2013-06-19 삼성코닝정밀소재 주식회사 강화 글라스의 절단 방법 및 이를 이용한 터치스크린패널의 제조방법
CN103635438B (zh) 2011-12-12 2016-08-17 日本电气硝子株式会社 平板玻璃的切割分离方法
TW201332917A (zh) 2011-12-12 2013-08-16 Nippon Electric Glass Co 板玻璃的割斷分離方法以及板玻璃的割斷分離裝置
JP2013152986A (ja) 2012-01-24 2013-08-08 Disco Abrasive Syst Ltd ウエーハの加工方法
US9828277B2 (en) 2012-02-28 2017-11-28 Electro Scientific Industries, Inc. Methods for separation of strengthened glass
US9895771B2 (en) 2012-02-28 2018-02-20 General Lasertronics Corporation Laser ablation for the environmentally beneficial removal of surface coatings
WO2013130581A1 (en) 2012-02-28 2013-09-06 Electro Scientific Industries, Inc. Method and apparatus for separation of strengthened glass and articles produced thereby
KR20140131520A (ko) 2012-02-29 2014-11-13 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 강화 유리를 기계가공하기 위한 방법과 장치, 및 이에 의해 제조된 물품
US9082764B2 (en) 2012-03-05 2015-07-14 Corning Incorporated Three-dimensional integrated circuit which incorporates a glass interposer and method for fabricating the same
JP2013187247A (ja) 2012-03-06 2013-09-19 Nippon Hoso Kyokai <Nhk> インターポーザおよびその製造方法
TW201343296A (zh) 2012-03-16 2013-11-01 Ipg Microsystems Llc 使一工件中具有延伸深度虛飾之雷射切割系統及方法
TW201339111A (zh) 2012-03-29 2013-10-01 Global Display Co Ltd 強化玻璃的切割方法
JP2013203630A (ja) 2012-03-29 2013-10-07 Asahi Glass Co Ltd 強化ガラス板の切断方法
JP2013203631A (ja) 2012-03-29 2013-10-07 Asahi Glass Co Ltd 強化ガラス板の切断方法、及び強化ガラス板切断装置
JP2013216513A (ja) 2012-04-05 2013-10-24 Nippon Electric Glass Co Ltd ガラスフィルムの切断方法及びガラスフィルム積層体
IN2014DN08858A (zh) 2012-04-05 2015-05-22 Sage Electrochromics Inc
JP2015120604A (ja) 2012-04-06 2015-07-02 旭硝子株式会社 強化ガラス板の切断方法、及び強化ガラス板切断システム
FR2989294B1 (fr) 2012-04-13 2022-10-14 Centre Nat Rech Scient Dispositif et methode de nano-usinage par laser
US20130288010A1 (en) 2012-04-27 2013-10-31 Ravindra Kumar Akarapu Strengthened glass article having shaped edge and method of making
KR20130124646A (ko) 2012-05-07 2013-11-15 주식회사 엠엠테크 강화 유리 절단 방법
US9365446B2 (en) 2012-05-14 2016-06-14 Richard Green Systems and methods for altering stress profiles of glass
DE102012010635B4 (de) 2012-05-18 2022-04-07 Leibniz-Institut für Oberflächenmodifizierung e.V. Verfahren zur 3D-Strukturierung und Formgebung von Oberflächen aus harten, spröden und optischen Materialien
CN102672355B (zh) 2012-05-18 2015-05-13 杭州士兰明芯科技有限公司 Led衬底的划片方法
JP6009225B2 (ja) 2012-05-29 2016-10-19 浜松ホトニクス株式会社 強化ガラス板の切断方法
US9938180B2 (en) 2012-06-05 2018-04-10 Corning Incorporated Methods of cutting glass using a laser
JP6022223B2 (ja) 2012-06-14 2016-11-09 株式会社ディスコ レーザー加工装置
CN104428264A (zh) 2012-07-09 2015-03-18 旭硝子株式会社 强化玻璃板的切割方法
AT13206U1 (de) 2012-07-17 2013-08-15 Lisec Maschb Gmbh Verfahren und Anordnung zum Teilen von Flachglas
TW201417928A (zh) * 2012-07-30 2014-05-16 Raydiance Inc 具訂製邊形及粗糙度之脆性材料切割
WO2014022681A1 (en) 2012-08-01 2014-02-06 Gentex Corporation Assembly with laser induced channel edge and method thereof
KR101395054B1 (ko) 2012-08-08 2014-05-14 삼성코닝정밀소재 주식회사 강화유리 커팅 방법 및 강화유리 커팅용 스테이지
KR20140022981A (ko) 2012-08-14 2014-02-26 (주)하드램 기판 에지 보호유닛을 포함한 강화유리 레이저 절단 장치 및 방법
KR20140022980A (ko) 2012-08-14 2014-02-26 (주)하드램 강화유리 레이저 절단 장치 및 방법
US9446590B2 (en) 2012-08-16 2016-09-20 Hewlett-Packard Development Company, L.P. Diagonal openings in photodefinable glass
US20140047957A1 (en) 2012-08-17 2014-02-20 Jih Chun Wu Robust Torque-Indicating Wrench
JP5727433B2 (ja) 2012-09-04 2015-06-03 イムラ アメリカ インコーポレイテッド 超短パルスレーザでの透明材料処理
CN102923939B (zh) 2012-09-17 2015-03-25 江西沃格光电股份有限公司 强化玻璃的切割方法
CN102898014A (zh) 2012-09-29 2013-01-30 江苏太平洋石英股份有限公司 无接触激光切割石英玻璃制品的方法及其装置
LT6046B (lt) 2012-10-22 2014-06-25 Uab "Lidaris" Justiruojamų optinių laikiklių pakeitimo įrenginys ir sistema, turinti tokių įrenginių
US20140110040A1 (en) 2012-10-23 2014-04-24 Ronald Steven Cok Imprinted micro-louver structure method
DE102012110971A1 (de) 2012-11-14 2014-05-15 Schott Ag Trennen von transparenten Werkstücken
WO2014079478A1 (en) 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials
KR20140064220A (ko) 2012-11-20 2014-05-28 에스케이씨 주식회사 보안필름의 제조방법
KR20150120939A (ko) 2012-11-29 2015-10-28 코닝 인코포레이티드 레이저 드릴링 기판용 희생 커버 층 및 그에 대한 방법
JP6333282B2 (ja) 2012-11-29 2018-05-30 コーニング インコーポレイテッド レーザー損傷及びエッチングによってガラス物品を製造する方法
CN203021443U (zh) 2012-12-24 2013-06-26 深圳大宇精雕科技有限公司 玻璃板水射流切割机
CN103013374B (zh) 2012-12-28 2014-03-26 吉林大学 仿生防粘疏水疏油贴膜
CN104823239B (zh) 2012-12-29 2018-04-03 Hoya株式会社 磁盘用玻璃基板和磁盘
EP2754524B1 (de) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie
EP2950968A4 (en) * 2013-02-04 2016-10-19 Newport Corp METHOD AND DEVICE FOR LASER CUTTING TRANSPARENT AND SEMITRANSPARENT SUBSTRATES
JP6801846B2 (ja) 2013-02-05 2020-12-16 マサチューセッツ インスティテュート オブ テクノロジー 3dホログラフィックイメージングフローサイトメトリ
US9498920B2 (en) 2013-02-12 2016-11-22 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication
KR20150123845A (ko) 2013-02-25 2015-11-04 코닝 인코포레이티드 얇은 유리 패널 제조 방법
CN103143841B (zh) 2013-03-08 2014-11-26 西北工业大学 一种利用皮秒激光加工孔的方法
KR102209964B1 (ko) 2013-03-13 2021-02-02 삼성디스플레이 주식회사 피코초 레이저 가공 장치
US9481598B2 (en) 2013-03-15 2016-11-01 Kinestral Technologies, Inc. Laser cutting strengthened glass
EP2781296B1 (de) * 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser
US9764978B2 (en) 2013-04-04 2017-09-19 Lpkf Laser & Electronics Ag Method and device for separating a substrate
CN105102177B (zh) 2013-04-04 2018-02-27 Lpkf激光电子股份公司 在基板上引入穿孔的方法和装置以及以这种方式制造的基板
CN103273195B (zh) 2013-05-28 2015-03-04 江苏大学 激光间接冲击下金属薄板的微冲裁自动化装置及其方法
CN103316990B (zh) 2013-05-28 2015-06-10 江苏大学 脉冲激光驱动飞片加载薄板的微冲裁自动化装置及其方法
US9776891B2 (en) 2013-06-26 2017-10-03 Corning Incorporated Filter and methods for heavy metal remediation of water
KR101344368B1 (ko) 2013-07-08 2013-12-24 정우라이팅 주식회사 수직형 유리관 레이저 절단장치
CN103359948A (zh) 2013-07-12 2013-10-23 深圳南玻伟光导电膜有限公司 钢化玻璃的切割方法
KR20150009153A (ko) 2013-07-16 2015-01-26 동우 화인켐 주식회사 강화처리된 유리의 홀 형성 방법
US9102007B2 (en) * 2013-08-02 2015-08-11 Rofin-Sinar Technologies Inc. Method and apparatus for performing laser filamentation within transparent materials
US9102011B2 (en) 2013-08-02 2015-08-11 Rofin-Sinar Technologies Inc. Method and apparatus for non-ablative, photoacoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses
US9296646B2 (en) 2013-08-29 2016-03-29 Corning Incorporated Methods for forming vias in glass substrates
CN203509350U (zh) 2013-09-27 2014-04-02 东莞市盛雄激光设备有限公司 皮秒激光加工装置
CN103531414B (zh) 2013-10-14 2016-03-02 南京三乐电子信息产业集团有限公司 一种栅控行波管栅网的皮秒脉冲激光切割制备方法
US10017410B2 (en) 2013-10-25 2018-07-10 Rofin-Sinar Technologies Llc Method of fabricating a glass magnetic hard drive disk platter using filamentation by burst ultrafast laser pulses
US11053156B2 (en) 2013-11-19 2021-07-06 Rofin-Sinar Technologies Llc Method of closed form release for brittle materials using burst ultrafast laser pulses
US10005152B2 (en) 2013-11-19 2018-06-26 Rofin-Sinar Technologies Llc Method and apparatus for spiral cutting a glass tube using filamentation by burst ultrafast laser pulses
US9517929B2 (en) 2013-11-19 2016-12-13 Rofin-Sinar Technologies Inc. Method of fabricating electromechanical microchips with a burst ultrafast laser pulses
DE102013223637B4 (de) 2013-11-20 2018-02-01 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Behandeln eines lasertransparenten Substrats zum anschließenden Trennen des Substrats
JP2017501951A (ja) 2013-11-25 2017-01-19 コーニング インコーポレイテッド 実質的に柱面を成す鏡面反射面の形状を決定するための方法
US10144088B2 (en) 2013-12-03 2018-12-04 Rofin-Sinar Technologies Llc Method and apparatus for laser processing of silicon by filamentation of burst ultrafast laser pulses
CN103746027B (zh) 2013-12-11 2015-12-09 西安交通大学 一种在ito导电薄膜表面刻蚀极细电隔离槽的方法
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US20150165560A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Laser processing of slots and holes
US20150165563A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Stacked transparent material cutting with ultrafast laser beam optics, disruptive layers and other layers
US20150166393A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Laser cutting of ion-exchangeable glass substrates
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US9687936B2 (en) 2013-12-17 2017-06-27 Corning Incorporated Transparent material cutting with ultrafast laser and beam optics
CN103831539B (zh) 2014-01-10 2016-01-20 合肥鑫晟光电科技有限公司 激光打孔方法及激光打孔系统
WO2015127583A1 (en) 2014-02-25 2015-09-03 Schott Ag Chemically toughened glass article with low coefficient of thermal expansion
JP6318756B2 (ja) 2014-03-24 2018-05-09 東レ株式会社 ポリエステルフィルム
KR102445217B1 (ko) 2014-07-08 2022-09-20 코닝 인코포레이티드 재료를 레이저 가공하는 방법 및 장치
LT2965853T (lt) 2014-07-09 2016-11-25 High Q Laser Gmbh Medžiagos apdorojimas, naudojant pailgintuosius lazerio spindulius
WO2016010954A2 (en) 2014-07-14 2016-01-21 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
CN105481236A (zh) 2014-07-14 2016-04-13 康宁股份有限公司 用于切割叠层结构的系统和方法
KR102246728B1 (ko) * 2014-07-25 2021-04-30 삼성에스디아이 주식회사 절연층을 갖는 이차 전지
CN104344202A (zh) 2014-09-26 2015-02-11 张玉芬 一种有孔玻璃
EP3848334A1 (en) 2015-03-24 2021-07-14 Corning Incorporated Alkaline earth boro-aluminosilicate glass article with laser cut edge
JP2018537389A (ja) 2015-11-25 2018-12-20 コーニング インコーポレイテッド ガラスウェブを分離する方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1196562C (zh) * 2000-10-21 2005-04-13 三星电子株式会社 用激光束切割非金属衬底的方法和装置
JP2003154517A (ja) * 2001-11-21 2003-05-27 Seiko Epson Corp 脆性材料の割断加工方法およびその装置、並びに電子部品の製造方法
US20110132881A1 (en) * 2009-12-07 2011-06-09 Xinbing Liu Apparatus and methods for drilling holes with no taper or reverse taper
CN102233479A (zh) * 2010-04-16 2011-11-09 Qmc株式会社 激光处理方法和激光处理设备
CN102248302A (zh) * 2011-01-13 2011-11-23 苏州德龙激光有限公司 超短脉冲激光异形切割钢化玻璃的装置及其方法
CN102649199A (zh) * 2011-02-25 2012-08-29 三星钻石工业股份有限公司 基板加工装置及基板加工方法
CN102916081A (zh) * 2012-10-19 2013-02-06 张立国 一种薄膜太阳能电池的清边方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
CN110678422A (zh) * 2017-04-25 2020-01-10 康宁公司 3d激光穿孔热下垂工艺
CN106891097A (zh) * 2017-04-26 2017-06-27 信利光电股份有限公司 一种具有通孔的3d盖板制作方法及3d盖板
US11919396B2 (en) 2017-09-13 2024-03-05 Corning Incorporated Curved vehicle displays
CN108161250A (zh) * 2018-01-30 2018-06-15 苏州德龙激光股份有限公司 多焦点动态分布激光加工脆性透明材料的方法及装置
US11992894B2 (en) 2018-02-23 2024-05-28 Corning Incorporated Method of separating a liquid lens from an array of liquid lenses
CN111770901A (zh) * 2018-02-26 2020-10-13 康宁股份有限公司 由透明母片激光形成透明制品以及原位加工透明制品的方法
CN109604838A (zh) * 2018-12-24 2019-04-12 大族激光科技产业集团股份有限公司 半导体激光加工装置
CN111822877A (zh) * 2019-04-11 2020-10-27 三星显示有限公司 显示模块、用于制造显示模块的方法及激光加工方法
US11890700B2 (en) 2019-04-11 2024-02-06 Samsung Display Co., Ltd. Display module, method for manufacturing display module, and laser machining method
CN111977953B (zh) * 2019-05-22 2024-03-12 肖特股份有限公司 用于处理玻璃元件的方法和装置
CN111977953A (zh) * 2019-05-22 2020-11-24 肖特股份有限公司 用于处理玻璃元件的方法和装置
CN114178710A (zh) * 2020-08-24 2022-03-15 奥特斯(中国)有限公司 部件承载件及其制造方法
US12048101B2 (en) 2020-08-24 2024-07-23 AT&S(China) Co. Ltd. Component carrier with well-defined outline sidewall cut by short laser pulse and/or green laser
CN114131212A (zh) * 2021-11-10 2022-03-04 江苏大学 一种透明材料封闭实心结构的激光改质切割与自动分离的方法

Also Published As

Publication number Publication date
KR20160101103A (ko) 2016-08-24
EP3083511B1 (en) 2019-04-10
EP3511302A1 (en) 2019-07-17
TWI632975B (zh) 2018-08-21
KR102366530B1 (ko) 2022-02-23
CN109909622A (zh) 2019-06-21
WO2015095151A3 (en) 2015-09-11
TWI679077B (zh) 2019-12-11
WO2015095151A2 (en) 2015-06-25
US20150165560A1 (en) 2015-06-18
SG11201605864RA (en) 2016-08-30
TW201836752A (zh) 2018-10-16
US10233112B2 (en) 2019-03-19
SG10201902702XA (en) 2019-04-29
CN109909622B (zh) 2020-12-01
CN106029293B (zh) 2019-05-14
TW201536463A (zh) 2015-10-01
KR20210080612A (ko) 2021-06-30
KR102270486B1 (ko) 2021-06-29
US20160368809A1 (en) 2016-12-22
MY185774A (en) 2021-06-07
EP3083511A2 (en) 2016-10-26
EP3511302B1 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
CN106029293A (zh) 槽与孔的激光加工
US10179748B2 (en) Laser processing of sapphire substrate and related applications
CN106102980B (zh) 加工3d形状透明脆性基材
EP3083126B1 (en) Transparent material cutting with ultrafast laser and beam optics
EP3245166B1 (en) Laser cutting of thermally tempered substrates using the multi photon absorption method
CN106132886B (zh) 边缘倒角方法
US20180105451A1 (en) Creation of holes and slots in glass substrates
CN107073642A (zh) 使用长度和直径可调的激光束焦线来加工透明材料的系统和方法
CN107922237A (zh) 显示器玻璃组合物的激光切割和加工
CN106029588A (zh) 可离子交换玻璃基材的激光切割
CN106029590A (zh) 显示器玻璃组合物的激光切割
TW201919805A (zh) 使用遠焦光束調整組件以雷射處理透明工件的設備與方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
CB03 Change of inventor or designer information

Inventor after: T Hackett

Inventor after: Marjanovic Sasha

Inventor after: Piech Garrett A.

Inventor after: Tsuda Sergio

Inventor after: Wagner Robert S.

Inventor before: Marjanovic Sasha

Inventor before: Piech Garrett A.

Inventor before: Tsuda Sergio

Inventor before: Wagner Robert S.

COR Change of bibliographic data
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant