KR101428823B1 - 레이저 가공 방법 및 레이저 가공 장치 - Google Patents

레이저 가공 방법 및 레이저 가공 장치 Download PDF

Info

Publication number
KR101428823B1
KR101428823B1 KR1020097003105A KR20097003105A KR101428823B1 KR 101428823 B1 KR101428823 B1 KR 101428823B1 KR 1020097003105 A KR1020097003105 A KR 1020097003105A KR 20097003105 A KR20097003105 A KR 20097003105A KR 101428823 B1 KR101428823 B1 KR 101428823B1
Authority
KR
South Korea
Prior art keywords
laser light
processed
laser
light
region
Prior art date
Application number
KR1020097003105A
Other languages
English (en)
Other versions
KR20090064529A (ko
Inventor
다케시 사카모토
Original Assignee
하마마츠 포토닉스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 하마마츠 포토닉스 가부시키가이샤 filed Critical 하마마츠 포토닉스 가부시키가이샤
Publication of KR20090064529A publication Critical patent/KR20090064529A/ko
Application granted granted Critical
Publication of KR101428823B1 publication Critical patent/KR101428823B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/009Working by laser beam, e.g. welding, cutting or boring using a non-absorbing, e.g. transparent, reflective or refractive, layer on the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/221Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • C03B33/074Glass products comprising an outer layer or surface coating of non-glass material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Abstract

가공 대상물(1)의 레이저 광 입사면인 표면(3)에 대향하는 금속막(17)의 표면(17a)에서 반사된 레이저 광(L)의 반사광을 실리콘 웨이퍼(11)에 조사함으로써, 6열의 용융 처리 영역(131, 132) 중 금속막(17)의 표면(17a)에 가장 가까운 용융 처리 영역(131)을 형성한다. 이에 의해, 용융 처리 영역(131)을 금속막(17)의 표면(17a)의 극근방에 형성할 수 있다.
가공 대상물, 레이저 광 입사면, 금속막, 반사광, 용융 처리 영역, 실리콘 웨이퍼

Description

레이저 가공 방법 및 레이저 가공 장치{LASER PROCESSING METHOD AND LASER PROCESSING APPARATUS}
본 발명은 판 모양의 가공 대상물을 절단 예정 라인을 따라서 절단하기 위한 레이저 가공 방법 및 레이저 가공 장치에 관한 것이다.
종래의 레이저 가공 방법으로서, 판 모양의 가공 대상물에 레이저 광을 조사함으로써, 가공 대상물의 절단 예정 라인을 따라서 가공 대상물의 두께 방향으로 나란하도록, 절단의 기점이 되는 복수 열의 개질 영역을 가공 대상물의 내부에 형성하는 방법이 알려져 있다(예를 들어, 특허문헌 1 참조).
특허 문헌 1: 일본 특개2004-343008호 공보
<발명이 해결하고자 하는 과제>
그러나, 상술한 바와 같은 레이저 가공 방법에서는, 가공 대상물에 있어서 레이저 광이 입사하는 레이저 광 입사면(예를 들어, 가공 대상물의 표면)에 대향하는 소정의 면(예를 들어, 가공 대상물의 이면)에 가장 가까운 개질 영역은 소정의 면의 극근방(極近傍)에 형성되는 것이 바람직하다. 또, 레이저 광 입사면에 가장 가까운 개질 영역은 레이저 광 입사면의 극근방에 형성되는 것이 바람직하다. 왜냐하면, 이들 개질 영역이 소정의 면이나 레이저 광 입사면으로부터 떨어진 위치에 형성되면, 가공 대상물을 절단했을 때에 가공 대상물의 두께 방향에 있어서의 절단면의 각 단부가 절단 예정 라인으로부터 크게 이탈될 우려가 있기 때문이다.
그러나, 상술한 바와 같은 레이저 가공 방법에 있어서는, 소정의 면에 가장 가까운 개질 영역을 소정의 면의 극근방에 형성하려 해도, 예를 들어 가공 대상물의 두께가 절단 예정 라인을 따라서 변화하고 있으면, 소정의 면에 가장 가까운 개질 영역이 부분적으로 소정의 면으로부터 떨어진 위치에 형성될 우려가 있다. 또, 레이저 광 입사면에 가장 가까운 개질 영역을 레이저 광 입사면의 극근방에 형성하려고 해도, 예를 들어 흡수 계수의 온도 의존성(상세한 것은 후술한다)에 의해 레이저 광 입사면이 용융 등의 손상을 받을 우려가 있다. 이와 같이, 소정의 면에 가장 가까운 개질 영역을 소정의 면의 극근방에 형성하려고 해도 곤란한 일이 많았다.
따라서, 본 발명은 이와 같은 사정을 감안하여 이루어진 것이며, 소정의 면에 가장 가까운 개질 영역을 소정의 면의 극근방에 형성하거나, 레이저 광 입사면에 가장 가까운 개질 영역을 레이저 광 입사면의 극근방에 형성하거나 할 수 있는 레이저 가공 방법 및 레이저 가공 장치를 제공하는 것을 목적으로 한다.
<과제를 해결하기 위한 수단>
상기 목적을 달성하기 위해서, 본 발명에 관계된 레이저 가공 방법은 판 모양의 가공 대상물에 레이저 광을 조사함으로써, 가공 대상물의 절단 예정 라인을 따라서 가공 대상물의 두께 방향으로 나란하도록, 절단의 기점이 되는 복수 열의 개질 영역을 가공 대상물의 내부에 형성하는 레이저 가공 방법으로서, 가공 대상물에 있어서 레이저 광이 입사하는 레이저 광 입사면에 대향하는 소정의 면에서 반사된 레이저 광의 반사광을 가공 대상물에 조사함으로써, 복수 열의 개질 영역 중 소정의 면에 가장 가까운 개질 영역 및 레이저 광 입사면에 가장 가까운 개질 영역의 적어도 1열을 포함하는 1열 또는 복수 열의 개질 영역을 형성하는 것을 특징으로 한다.
이 레이저 가공 방법에서는, 가공 대상물에 있어서 레이저 광이 입사하는 레이저 광 입사면에 대향하는 소정의 면에서 반사된 레이저 광의 반사광을 가공 대상물에 조사함으로써, 복수 열의 개질 영역 중 소정의 면에 가장 가까운 개질 영역 및 레이저 광 입사면에 가장 가까운 개질 영역의 적어도 1열을 포함하는 1열 또는 복수 열의 개질 영역을 형성한다. 이에 의해, 소정의 면에 가장 가까운 개질 영역을 소정의 면의 극근방에 형성하거나, 레이저 광 입사면에 가장 가까운 개질 영역을 레이저 광 입사면의 극근방에 형성하거나 하는 것이 가능해진다.
또한, 각 개질 영역은 가공 대상물에 레이저 광을 조사함으로써, 가공 대상물의 내부에 있어서 다광자 흡수 그 외의 광 흡수를 일으키게 함으로써 형성된다.
본 발명에 관계된 레이저 가공 방법에 있어서는, 소정의 면은 가공 대상물이 구비하는 금속막에 있어서의 레이저 광 입사면측의 면인 경우가 있다.
본 발명에 관계된 레이저 가공 방법에 있어서는, 복수 열의 개질 영역을 절단의 기점으로 하고, 절단 예정 라인을 따라서 가공 대상물을 절단하는 것이 바람직하다. 이에 의해, 가공 대상물을 절단 예정 라인을 따라서 정밀도 좋게 절단할 수 있다.
본 발명에 관계된 레이저 가공 방법에 있어서는, 가공 대상물은 반도체 기판을 구비하며, 개질 영역은 용융 처리 영역을 포함하는 경우가 있다.
<발명의 효과>
본 발명에 의하면, 제어성 좋게 소정의 면에 가장 가까운 개질 영역을 소정의 면의 극근방에 형성하거나, 레이저 광 입사면에 가장 가까운 개질 영역을 레이저 광 입사면의 극근방에 형성하거나 할 수 있다.
도 1은 본 실시형태에 관계된 레이저 가공 방법에 의한 레이저 가공 중의 가공 대상물의 평면도이다.
도 2는 도 1에 나타낸 가공 대상물의 II-II선을 따른 단면도이다.
도 3은 본 실시형태에 관계된 레이저 가공 방법에 의한 레이저 가공 후의 가공 대상물의 평면도이다.
도 4는 도 3에 나타낸 가공 대상물의 IV-IV선을 따른 단면도이다.
도 5는 도 3에 나타낸 가공 대상물의 V-V선을 따른 단면도이다.
도 6은 본 실시형태에 관계된 레이저 가공 방법에 의해 절단된 가공 대상물의 평면도이다.
도 7은 본 실시형태에 관계된 레이저 가공 방법에 있어서의 피크 파워 밀도와 크랙 스폿 크기의 관계를 나타내는 그래프이다.
도 8은 본 실시형태에 관계된 레이저 가공 방법의 제1 공정에 있어서의 가공 대상물의 단면도이다.
도 9는 본 실시형태에 관계된 레이저 가공 방법의 제2 공정에 있어서의 가공 대상물의 단면도이다.
도 10은 본 실시형태에 관계된 레이저 가공 방법의 제3 공정에 있어서의 가공 대상물의 단면도이다.
도 11은 본 실시형태에 관계된 레이저 가공 방법의 제4 공정에 있어서의 가공 대상물의 단면도이다.
도 12는 본 실시형태에 관계된 레이저 가공 방법에 의해 절단된 실리콘 웨이퍼의 일부에 있어서의 단면 사진을 나타낸 도면이다.
도 13은 본 실시형태에 관계된 레이저 가공 방법에 있어서의 레이저 광의 파장과 실리콘 기판의 내부 투과율의 관계를 나타내는 그래프이다.
도 14는 본 실시형태의 레이저 가공 방법의 대상이 되는 가공 대상물의 평면도이다.
도 15는 도 14에 나타낸 XV-XV선을 따른 부분 단면도이다.
도 16은 본 실시형태의 레이저 가공 방법을 설명하기 위한 가공 대상물의 부분 단면도이다.
도 17은 본 실시형태의 레이저 가공 방법을 설명하기 위한 가공 대상물의 부분 단면도이다.
도 18은 본 실시형태의 레이저 가공 방법을 설명하기 위한 가공 대상물의 부분 단면도이다.
도 19는 본 실시형태의 레이저 가공 방법을 설명하기 위한 가공 대상물의 부분 단면도이다.
도 20은 도 14에 나타낸 XX-XX선을 따른 부분 단면도이다.
도 21은 본 실시형태의 레이저 가공 방법의 제1 원리를 설명하기 위한 도면이다.
도 22는 본 실시형태의 레이저 가공 방법의 제2 원리를 설명하기 위한 도면이다.
도 23은 본 실시형태의 다른 레이저 가공 방법을 설명하기 위한 가공 대상물의 부분 단면도이다.
도 24는 도 14에 나타낸 XX-XX선을 따른 부분 단면도이다.
도 25는 도 14에 나타낸 XX-XX선을 따른 부분 단면도이다.
도 26은 본 실시형태의 레이저 가공 장치의 개략 구성도이다.
도 27은 본 실시형태의 다른 레이저 가공 방법을 설명하기 위한 가공 대상물의 부분 단면도이다.
<부호의 설명>
1…가공 대상물, 3…표면(레이저 광 입사면), 5…절단 예정 라인, 11…실리콘 웨이퍼(반도체 기판), 131, 132…용융 처리 영역(개질 영역), 17…금속막, 17a…표면(소정의 면), L…레이저 광, RL…반사광.
이하, 본 발명의 바람직한 실시형태에 대하여 도면을 참조하여 상세하게 설명한다. 본 실시형태의 레이저 가공 방법에서는, 가공 대상물의 내부에 개질 영역을 형성하기 위해서 다광자 흡수라고 하는 현상을 이용한다. 따라서, 맨 먼저 다광자 흡수에 의해 개질 영역을 형성하기 위한 레이저 가공 방법에 대하여 설명한다.
재료의 흡수의 밴드 갭 EG보다 광자의 에너지 hν가 작으면 광학적으로 투명해진다. 따라서, 재료에 흡수가 생기는 조건은 hν>EG이다. 그러나, 광학적으로 투명하더라도, 레이저 광의 강도를 아주 크게 하면 nhν>EG의 조건(n=2, 3, 4, …)에서 재료에 흡수가 생긴다. 이 현상을 다광자 흡수라 한다. 펄스파의 경우, 레이저 광의 강도는 레이저 광의 집광점의 피크 파워 밀도(W/㎠)로 정해지며, 예를 들어 피크 파워 밀도가 1× 108(W/㎠) 이상의 조건에서 다광자 흡수가 생긴다. 피크 파워 밀도는 (집광점에 있어서의 레이저 광의 1 펄스당의 에너지)÷ (레이저 광의 빔 스폿 단면적× 펄스폭)에 의해 구해진다. 또, 연속파의 경우, 레이저 광의 강도는 레이저 광의 집광점의 전계 강도(W/㎠)로 정해진다.
이와 같은 다광자 흡수를 이용하는 본 실시형태에 관계된 레이저 가공 방법의 원리에 대하여, 도 1~도 6을 참조하여 설명한다. 도 1에 나타낸 바와 같이, 웨이퍼 모양(판 모양)의 가공 대상물(1)의 표면(3)에는 가공 대상물(1)을 절단하기 위한 절단 예정 라인(5)이 있다. 절단 예정 라인(5)은 직선 모양으로 연장된 가상선이다. 본 실시형태에 관계된 레이저 가공 방법에서는, 도 2에 나타낸 바와 같 이, 다광자 흡수가 생기는 조건으로 가공 대상물(1)의 내부에 집광점(P)을 맞추고 레이저 광(L)을 조사하여 개질 영역(7)을 형성한다. 또한, 집광점(P)이란, 레이저 광(L)이 집광하는 개소이다. 또, 절단 예정 라인(5)은 직선 모양으로 한정되지 않고 곡선 모양이어도 되며, 가상선에 한정되지 않고 가공 대상물(1)에 실제로 그어진 선이어도 된다.
그리고, 레이저 광(L)을 절단 예정 라인(5)을 따라서(즉, 도 1의 화살표 A방향으로) 상대적으로 이동시킴으로써 집광점(P)을 절단 예정 라인(5)을 따라서 이동시킨다. 이에 의해, 도 3~도 5에 나타낸 바와 같이, 개질 영역(7)이 절단 예정 라인(5)을 따라서 가공 대상물(1)의 내부에 형성되며, 이 개질 영역(7)이 절단 기점 영역(8)이 된다. 여기서, 절단 기점 영역(8)이란, 가공 대상물(1)이 절단될 때에 절단(갈라짐)의 기점이 되는 영역을 의미한다. 이 절단 기점 영역(8)은 개질 영역(7)이 연속적으로 형성됨으로써 형성되는 경우도 있고, 개질 영역(7)이 단속적으로 형성됨으로써 형성되는 경우도 있다.
본 실시형태에 관계된 레이저 가공 방법은, 가공 대상물(1)이 레이저 광(L)을 흡수함으로써 가공 대상물(1)을 발열시켜서 개질 영역(7)을 형성하는 것이 아니다. 가공 대상물(1)에 레이저 광(L)을 투과시켜 가공 대상물(1)의 내부에 다광자 흡수를 발생시켜서 개질 영역(7)을 형성하고 있다. 따라서, 가공 대상물(1)의 표면(3)에서는 레이저 광(L)이 거의 흡수되지 않기 때문에 가공 대상물(1)의 표면(3)이 용융하는 일은 없다.
가공 대상물(1)의 내부에 절단 기점 영역(8)을 형성하면, 이 절단 기점 영 역(8)을 기점으로 하여 갈라짐이 발생하기 쉬워지기 때문에, 도 6에 나타낸 바와 같이, 비교적 작은 힘으로 가공 대상물(1)을 절단할 수 있다. 따라서, 가공 대상물(1)의 표면(3)에 불필요한 갈라짐을 발생시키지 않고 가공 대상물(1)을 고정밀도로 절단하는 것이 가능해진다.
이 절단 기점 영역(8)을 기점으로 한 가공 대상물(1)의 절단에는, 다음의 2가지 방법을 생각할 수 있다. 하나는, 절단 기점 영역(8)을 형성한 후, 가공 대상물(1)에 인위적인 힘이 인가됨으로써, 절단 기점 영역(8)을 기점으로 하여 가공 대상물(1)이 갈라져서 가공 대상물(1)이 절단되는 경우이다. 이것은, 예를 들어 가공 대상물(1)의 두께가 큰 경우의 절단이다. 인위적인 힘이 인가된다는 것은, 예를 들어, 가공 대상물(1)의 절단 기점 영역(8)을 따라서 가공 대상물(1)에 굽힘 응력이나 전단 응력을 가하거나, 가공 대상물(1)에 온도차를 부여함으로써 열응력을 발생시키거나 하는 것이다. 다른 하나는, 절단 기점 영역(8)을 형성함으로써, 절단 기점 영역(8)을 기점으로 하여 가공 대상물(1)의 단면 방향(두께 방향)을 향하여 자연스럽게 갈라져서, 결과적으로 가공 대상물(1)이 절단되는 경우이다. 이것은, 예를 들어 가공 대상물(1)의 두께가 작은 경우에는, 1열의 개질 영역(7)에 의해 절단 기점 영역(8)이 형성됨으로써 가능해지며, 가공 대상물(1)의 두께가 큰 경우에는, 두께 방향으로 복수 열 형성된 개질 영역(7)에 의해 절단 기점 영역(8)이 형성됨으로써 가능해진다. 또한, 이 자연스럽게 갈라지는 경우에도, 절단하는 개소에 있어서, 절단 기점 영역(8)이 형성되어 있지 않은 부위에 대응하는 부분의 표면(3)상에까지 갈라짐이 앞질러 일어나는 일이 없고, 절단 기점 영역(8)을 형성한 부위에 대응하는 부분만을 할단(割斷)(클리빙)(cleaving)할 수 있기 때문에 할단을 잘 제어할 수 있다. 근년, 실리콘 웨이퍼 등의 가공 대상물(1)의 두께는 얇아지는 경향에 있기 때문에, 이와 같은 제어성이 좋은 할단 방법은 아주 유효하다.
그러나, 본 실시형태에 관계되는 레이저 가공 방법에 있어서, 다광자 흡수에 의해 형성되는 개질 영역으로는, 다음의 (1)~(3)의 경우가 있다.
(1) 개질 영역이 1개 또는 복수의 크랙을 포함하는 크랙 영역의 경우
가공 대상물(예를 들어, 유리나 LiTaO3으로 이루어진 압전(壓電) 재료)의 내부에 집광점을 맞추고, 집광점에 있어서의 전계 강도가 1× 108(W/㎠) 이상이며 또한 펄스폭이 1㎲ 이하인 조건으로 레이저 광을 조사한다. 이 펄스폭의 크기는, 다광자 흡수를 일으키게 하면서 가공 대상물의 표면에 불필요한 손상을 주지 않고, 가공 대상물의 내부에만 크랙 영역을 형성할 수 있는 조건이다. 이에 의해, 가공 대상물의 내부에는 다광자 흡수에 의한 광학적 손상이라는 현상이 발생한다. 이 광학적 손상에 의해 가공 대상물의 내부에 열변형이 야기되며, 이에 의해 가공 대상물의 내부에 크랙 영역이 형성된다. 전계 강도의 상한치로는, 예를 들어 1× 1012(W/㎠)이다. 펄스폭은 예를 들어 1㎱~200㎱가 바람직하다. 또한, 다광자 흡수에 의한 크랙 영역의 형성은, 예를 들어 제45회 레이저 열가공 연구회 논문집(1998년. 12월)의 제23페이지~제28페이지의 「고체 레이저 고조파(高調波)에 의한 유리 기판의 내부 마킹」에 기재되어 있다.
본 발명자는 전계 강도와 크랙의 크기와의 관계를 실험에 의해 구하였다. 실험 조건은 다음과 같다.
(A) 가공 대상물: 파이렉스(등록상표) 유리(두께 700㎛)
(B) 레이저
광원: 반도체 레이저 여기 Nd:YAG 레이저
파장: 1064㎚
레이저 광 스폿 단면적: 3.14× 10-8
발진 형태: Q 스위치 펄스
반복 주파수: 100kHz
펄스폭: 30㎱
출력: 출력<1mJ/펄스
레이저 광 품질: TEM00
편광 특성: 직선 편광
(C) 집광용 렌즈
레이저 광 파장에 대한 투과율: 60 퍼센트
(D) 가공 대상물이 재치(載置)되는 재치대의 이동 속도: 100㎜/초
또한, 레이저 광 품질이 TEM00란, 집광성이 높고 레이저 광의 파장 정도까지 집광 가능함을 의미한다.
도 7은 상기 실험의 결과를 나타내는 그래프이다. 가로축은 피크 파워 밀도이며, 레이저 광이 펄스 레이저 광이므로 전계 강도는 피크 파워 밀도로 표시된다. 세로축은 1 펄스의 레이저 광에 의해 가공 대상물의 내부에 형성된 크랙 부분(크랙 스폿)의 크기를 나타내고 있다. 크랙 스폿이 모여 크랙 영역이 된다. 크랙 스폿의 크기는 크랙 스폿의 형상 중 최대 길이가 되는 부분의 크기이다. 그래프 중의 검은색 동그라미로 나타낸 데이터는 집광용 렌즈(C)의 배율이 100배, 개구수(NA)가 0.80인 경우이다. 한편, 그래프 중의 흰색 동그라미로 나타낸 데이터는 집광용 렌즈(C)의 배율이 50배, 개구수(NA)가 0.55인 경우이다. 피크 파워 밀도가 1011(W/㎠) 정도로부터 가공 대상물의 내부에 크랙 스폿이 발생하며, 피크 파워 밀도가 커짐에 따라 크랙 스폿도 커지는 것을 알 수 있다.
다음에, 크랙 영역 형성에 의한 가공 대상물의 절단 메커니즘에 대하여, 도 8~도 11을 참조하여 설명한다. 도 8에 나타낸 바와 같이, 다광자 흡수가 생기는 조건으로 가공 대상물(1)의 내부에 집광점(P)을 맞추고 레이저 광(L)을 조사하여 절단 예정 라인을 따라서 내부에 크랙 영역(9)을 형성한다. 크랙 영역(9)은 1개 또는 복수의 크랙을 포함하는 영역이다. 이와 같이 형성된 크랙 영역(9)이 절단 기점 영역이 된다. 도 9에 나타낸 바와 같이, 크랙 영역(9)을 기점으로 하여(즉, 절단 기점 영역을 기점으로 하여) 크랙이 더욱 성장하며, 도 10에 나타낸 바와 같이, 크랙이 가공 대상물(1)의 표면(3)과 이면(21)에 도달하여, 도 11에 나타낸 바와 같이, 가공 대상물(1)이 갈라짐으로써 가공 대상물(1)이 절단된다. 가공 대상물(1)의 표면(3)과 이면(21)에 도달하는 크랙은 자연스럽게 성장하는 경우도 있으며, 가공 대상물(1)에 힘이 인가됨으로써 성장하는 경우도 있다.
(2) 개질 영역이 용융 처리 영역인 경우
가공 대상물(예를 들어, 실리콘과 같은 반도체 재료)의 내부에 집광점을 맞추고, 집광점에 있어서의 전계 강도가 1× 108(W/㎠) 이상이며 또한 펄스폭이 1㎲ 이하인 조건으로 레이저 광을 조사한다. 이에 의해 가공 대상물의 내부는 다광자 흡수에 의해서 국소적으로 가열된다. 이 가열에 의해 가공 대상물의 내부에 용융 처리 영역이 형성된다. 용융 처리 영역이란 일단 용융한 후 재고체화(再固體化)한 영역이나, 완전히 용융 상태인 영역이나, 용융 상태로부터 재고체화한 상태의 영역이며, 상변화한 영역이나 결정 구조가 변화한 영역이라고도 할 수 있다. 또, 용융 처리 영역이란 단결정 구조, 비정질 구조, 다결정 구조에 있어서, 어느 구조가 다른 구조로 변화한 영역이라고도 할 수 있다. 즉, 예를 들어, 단결정 구조로부터 비정질 구조로 변화한 영역, 단결정 구조로부터 다결정 구조로 변화한 영역, 단결정 구조로부터 비정질 구조 및 다결정 구조를 포함하는 구조로 변화한 영역을 의미한다. 가공 대상물이 실리콘 단결정 구조인 경우, 용융 처리 영역은 예를 들어 비정질 실리콘 구조이다. 전계 강도의 상한치로는, 예를 들어 1× 1012(W/㎠)이다. 펄스폭은 예를 들어 1㎱~200㎱가 바람직하다.
본 발명자는 실리콘 웨이퍼의 내부에서 용융 처리 영역이 형성되는 것을 실험에 의해 확인하였다. 실험 조건은 다음과 같다.
(A) 가공 대상물: 실리콘 웨이퍼(두께 350㎛, 외경 4 인치)
(B) 레이저
광원: 반도체 레이저 여기 Nd:YAG 레이저
파장: 1064㎚
레이저 광 스폿 단면적: 3.14× 10-8
발진 형태: Q 스위치 펄스
반복 주파수: 100kHz
펄스폭: 30㎱
출력: 20μJ/펄스
레이저 광 품질: TEM00
편광 특성: 직선 편광
(C) 집광용 렌즈
배율: 50배
N. A. : 0.55
레이저 광 파장에 대한 투과율: 60 퍼센트
(D) 가공 대상물이 재치되는 재치대의 이동 속도: 100㎜/초
도 12는, 상기 조건에서의 레이저 가공에 의해 절단된 실리콘 웨이퍼의 일부에 있어서의 단면의 사진을 나타내는 도면이다. 실리콘 웨이퍼(11)의 내부에 용융 처리 영역(13)이 형성되어 있다. 또한, 상기 조건에 의해 형성된 용융 처리 영역(13)의 두께 방향의 크기는 100㎛ 정도이다.
용융 처리 영역(13)이 다광자 흡수에 의해 형성된 것을 설명한다. 도 13은, 레이저 광의 파장과 실리콘 기판의 내부의 투과율과의 관계를 나타낸 그래프이다. 단, 실리콘 기판의 표면측과 이면측 각각의 반사 성분을 제거하고, 내부만의 투과율을 나타내고 있다. 실리콘 기판의 두께 t가 50㎛, 100㎛, 200㎛, 500㎛, 1000㎛인 각각에 대하여 상기 관계를 나타내었다.
예를 들어, Nd:YAG 레이저의 파장인 1064㎚에 있어서, 실리콘 기판의 두께가 500㎛ 이하인 경우, 실리콘 기판의 내부에서는 레이저 광이 80% 이상 투과하는 것을 알 수 있다. 도 12에 나타낸 실리콘 웨이퍼(11)의 두께는 350㎛이므로, 다광자 흡수에 의한 용융 처리 영역(13)은 실리콘 웨이퍼(11)의 중심 부근, 즉 표면으로부터 175㎛의 부분에 형성된다. 이 경우의 투과율은, 두께 200㎛의 실리콘 웨이퍼를 참고로 하면 90% 이상이므로, 레이저 광이 실리콘 웨이퍼(11)의 내부에서 흡수되는 것은 얼마 안 되고 대부분이 투과한다. 이것은, 실리콘 웨이퍼(11)의 내부에서 레이저 광이 흡수되어, 용융 처리 영역(13)이 실리콘 웨이퍼(11)의 내부에 형성(즉, 레이저 광에 의한 통상의 가열로 용융 처리 영역이 형성)된 것이 아니라, 용융 처리 영역(13)이 다광자 흡수에 의해 형성된 것을 의미한다. 다광자 흡수에 의한 용융 처리 영역의 형성은, 예를 들어 용접학회 전국대회강연 개요 제66집(2000년 4월)의 제72페이지~제73페이지의 「피코초 펄스 레이저에 의한 실리콘의 가공 특성 평가」에 기재되어 있다.
또한, 실리콘 웨이퍼는 용융 처리 영역에 의해서 형성되는 절단 기점 영역을 기점으로 하여 단면 방향을 향하여 갈라짐을 발생시키며, 그 갈라짐이 실리콘 웨이퍼의 표면과 이면에 도달함으로써, 결과적으로 절단된다. 실리콘 웨이퍼의 표면과 이면에 도달하는 이 갈라짐은 자연스럽게 성장하는 경우도 있으며, 실리콘 웨이퍼에 힘이 인가됨으로써 성장하는 경우도 있다. 그리고, 절단 기점 영역으로부터 실리콘 웨이퍼의 표면과 이면에 갈라짐이 자연스럽게 성장하는 경우에는, 절단 기점 영역을 형성하는 용융 처리 영역이 용융하고 있는 상태로부터 갈라짐이 성장하는 경우와, 절단 기점 영역을 형성하는 용융 처리 영역이 용융하고 있는 상태로부터 재고체화할 때에 갈라짐이 성장하는 경우 모두 있다. 단, 어느 경우라도 용융 처리 영역은 실리콘 웨이퍼의 내부에만 형성되며, 절단 후의 절단면에는, 도 12와 같이 내부에만 용융 처리 영역이 형성되어 있다. 이와 같이, 가공 대상물의 내부에 용융 처리 영역에 의해서 절단 기점 영역을 형성하면, 할단시, 절단 기점 영역 라인으로부터 이탈된 불필요한 갈라짐이 생기기 어렵기 때문에 할단 제어가 용이해진다. 덧붙여서, 용융 처리 영역의 형성은 다광자 흡수가 원인인 경우뿐만 아니라 다른 흡수 작용이 원인인 경우도 있다.
(3) 개질 영역이 굴절률 변화 영역인 경우
가공 대상물(예를 들어, 유리)의 내부에 집광점을 맞추고, 집광점에 있어서의 전계 강도가 1× 108(W/㎠) 이상이며 또한 펄스폭이 1㎱ 이하인 조건으로 레이저 광을 조사한다. 펄스폭을 매우 짧게 하고 다광자 흡수를 가공 대상물의 내부에 일으키게 하면, 다광자 흡수에 의한 에너지가 열에너지로 바뀌지 않고, 가공 대상물의 내부에는 이온 가수(價數) 변화, 결정화 또는 분극 배향 등의 영속적인 구조 변화가 야기되어 굴절률 변화 영역이 형성된다. 전계 강도의 상한치로는, 예를 들어 1× 1012(W/㎠)이다. 펄스폭은 예를 들어 1㎱ 이하가 바람직하며, 1ps 이하가 더욱 바람직하다. 다광자 흡수에 의한 굴절률 변화 영역의 형성은, 예를 들어 제42회 레이저 열가공 연구회 논문집(1997년. 11월)의 제105페이지~제111페이지의 「펨토초 레이저 조사에 의한 유리 내부로의 광야기 구조 형성」에 기재되어 있다.
이상, 다광자 흡수에 의해 형성되는 개질 영역으로서 (1)~(3)의 경우를 설명하였으나, 웨이퍼 모양의 가공 대상물의 결정 구조나 그 벽개성(劈開性) 등을 고려하여 절단 기점 영역을 다음과 같이 형성하면, 그 절단 기점 영역을 기점으로 하여 한층 더 작은 힘으로, 게다가 정밀도 좋게 가공 대상물을 절단하는 것이 가능해진다.
즉, 실리콘 등의 다이아몬드 구조의 단결정 반도체로 이루어진 기판의 경우는, (111)면(제1 벽개면)이나 (110)면(제2 벽개면)을 따른 방향으로 절단 기점 영역을 형성하는 것이 바람직하다. 또, GaAs 등의 섬아연광형 구조의 III-V족 화합물 반도체로 이루어진 기판의 경우는, (110)면을 따른 방향으로 절단 기점 영역을 형성하는 것이 바람직하다. 또한, 사파이어(Al2O3) 등의 육방정계의 결정 구조를 가지는 기판의 경우는, (0001)면(C면)을 메인 면으로 하여 (1120)면(A면) 혹은 (1100)면(M면)을 따른 방향으로 절단 기점 영역을 형성하는 것이 바람직하다.
또한, 상술한 절단 기점 영역을 형성해야 할 방향(예를 들어, 단결정 실리콘 기판에 있어서의 (111)면을 따른 방향), 혹은 절단 기점 영역을 형성해야 할 방향에 직교하는 방향을 따라서 기판에 오리엔테이션 플랫을 형성하면, 그 오리엔테이 션 플랫을 기준으로 함으로써, 절단 기점 영역을 형성해야 할 방향을 따른 절단 기점 영역을 용이하고 정확하게 기판에 형성하는 것이 가능해진다.
다음에, 본 발명의 바람직한 실시형태에 대하여 설명한다.
도 14 및 도 15에 나타낸 바와 같이, 가공 대상물(1)은, 이른바 MEMS 웨이퍼이며, 두께 300㎛의 실리콘 웨이퍼(반도체 기판)(11)와, 복수의 기능 소자(15)를 포함하여 실리콘 웨이퍼(11)의 표면에 형성된 기능 소자층(16)과, 실리콘 웨이퍼(11)의 이면에 형성된 금속막(17)을 구비하고 있다. 기능 소자(15)는, 예를 들어 기계요소 부품, 센서, 액추에이터, 전자 회로 등이며, 실리콘 웨이퍼(11)의 오리엔테이션 플랫(6)에 평행한 방향 및 수직인 방향으로 매트릭스 모양으로 다수 형성되어 있다. 금속막(17)은 금으로 이루어지며, 그 두께는 3㎛이다.
이상과 같이 구성된 가공 대상물(1)을 이하와 같이 하여 기능 소자(15)마다 절단한다. 우선, 도 16에 나타낸 바와 같이, 가공 대상물(1)의 이면(21), 즉 금속막(17)의 이면에 익스팬드 테이프(expand tape)(23)를 붙인다. 그리고, 기능 소자층(16)을 위쪽으로 하여 가공 대상물(1)을 레이저 가공 장치의 재치대(도시하지 않음)상에 고정한다.
계속해서, 도 17에 나타낸 바와 같이, 가공 대상물(1)의 표면(3), 즉 기능 소자층(16)의 표면을 레이저 광 입사면으로 하고, 실리콘 웨이퍼(11)의 표면으로부터 320㎛의 위치(실리콘 웨이퍼(11)의 외부)가 집광점이 되는 집광용 렌즈의 위치(가공 대상물의 레이저 광 입사면(여기서는, 표면(3))에 대향하는 레이저 광 반사면(여기서는, 금속막(17)의 표면(17a))을 레이저 광이 투과한다고 가정했을 경우. 이하, 동일)에서 레이저 광(L)을 조사하고, 재치대의 이동에 의해서 서로 이웃하는 기능 소자(15, 15) 사이를 통과하도록 격자모양으로 설정된 절단 예정 라인(5)(도 14의 파선 참조)을 따라서 레이저 광(L)을 스캔한다.
이 때, 가공 대상물(1)의 표면(3)에 대향하는 금속막(17)의 표면(소정의 면)(17a), 즉 금속막(17)에 있어서의 레이저 광 입사면측의 면에서 레이저 광(L)이 반사되며, 그 반사광(RL)이 실리콘 웨이퍼(11)에 조사되어 실리콘 웨이퍼(11)의 내부에 있어서의 이면(21)의 극근방에 집광한다. 이에 의해, 실리콘 웨이퍼(11)의 내부에 있어서의 이면(21)의 극근방에, 용융 처리 영역(131) 및 미소 공동(14)이 절단 예정 라인(5)을 따라서 형성된다. 또한, 이 경우의 레이저 광의 조사 조건은 펄스폭 150㎱, 에너지 15μJ이다. 또, 상술한 「실리콘 웨이퍼(11)의 표면으로부터 320㎛의 위치」는, 구면 수차 등을 고려하지 않은 이론상의 「집광점(P)을 맞추는 위치」를 의미하고 있다.
여기서, 미소 공동(14)에 대하여 설명한다. 일반적으로, 실리콘 웨이퍼(11)의 내부에 집광점을 맞추고, 집광점에 있어서의 피크 파워 밀도가 1× 108(W/㎠) 이상이며 또한 펄스폭이 1㎲ 이하인 조건으로 레이저 광을 조사하면, 실리콘 웨이퍼(11)의 내부에 용융 처리 영역(13) 및 미소 공동(14)이 쌍이 되어 형성되는 경우가 있다. 미소 공동(14)은 용융 처리 영역(13)과 떨어져서 형성되는 경우도 있으며, 용융 처리 영역(13)과 연속해서 형성되는 경우도 있으나, 레이저 광의 진행 방향에 있어서 용융 처리 영역(13)의 하류측에 형성된다. 상술한 경우에는, 미소 공 동(14)이 용융 처리 영역(131)에 대해 가공 대상물(1)의 표면(3)측에 형성되어 있기 때문에, 용융 처리 영역(131) 및 미소 공동(14)의 형성에 반사광(RL)이 기여하고 있다고 할 수 있다. 또한, 용융 처리 영역(13) 및 미소 공동(14)이 쌍이 되어 형성되는 원리에 대해서는, 특개2005-57257호 공보에 상세하게 기재되어 있다.
또한, 도 18에 나타낸 바와 같이, 가공 대상물(1)의 표면(3)을 레이저 광 입사면으로 하여 실리콘 웨이퍼(11)의 내부에 집광점(P)을 맞추고 레이저 광(L)을 조사하며, 재치대의 이동에 의해서 서로 이웃하는 기능 소자(15, 15) 사이를 통과하도록 격자모양으로 설정된 절단 예정 라인(5)을 따라서 레이저 광(L)을 스캔한다.
이 절단 예정 라인(5)을 따른 레이저 광(L)의 스캔을 1개의 절단 예정 라인(5)에 대해 5회 실시하지만, 실리콘 웨이퍼(11)의 표면과 집광점(P)을 맞추는 위치와의 거리를 각 회마다 변경함으로써, 용융 처리 영역(131)과 실리콘 웨이퍼(11)의 표면과의 사이에 5열의 용융 처리 영역(132)을 절단 예정 라인(5)을 따라서 형성한다. 또한, 1개의 절단 예정 라인(5)에 대해 실리콘 웨이퍼(11)의 내부에 형성되는 용융 처리 영역(132)의 열 수는 실리콘 웨이퍼(11)의 두께 등에 따라 변화하는 것이며, 5열로 한정되지 않는다. 또, 각 용융 처리 영역(132)에 대해 가공 대상물(1)의 이면(21) 측에, 용융 처리 영역(132)과 쌍이 되는 미소 공동(14)이 형성되는 경우가 있다. 또, 용융 처리 영역(131, 132)에는 크랙이 혼재하는 경우도 있다.
계속해서, 도 19에 나타낸 바와 같이, 익스팬드 테이프(23)를 확장시키고, 용융 처리 영역(131, 132)을 절단의 기점으로 하여, 절단 예정 라인(5)을 따라서 가공 대상물(1)을 절단한다. 이 때, 익스팬드 테이프(23)가 확장되어 있기 때문에, 절단됨으로써 얻어진 복수의 반도체 칩(25)이 서로 떨어지게 된다.
또한, 상술한 레이저 가공 방법은, 도 26에 나타낸 레이저 가공 장치에 의해서 실시된다. 도 26에 나타낸 바와 같이, 레이저 가공 장치(100)는 레이저 광(L)을 출사하는 레이저 광원(101)과, 레이저 광(L)의 광축의 방향을 90° 변경하도록 배치된 다이크로익 미러(103)와, 레이저 광(L)을 집광하기 위한 집광용 렌즈(105)를 구비하고 있다. 또, 레이저 가공 장치(100)는, 집광용 렌즈(105)에서 집광된 레이저 광(L)이 조사되는 가공 대상물(1)을 지지하기 위한 재치대(107)와, 재치대(107)를 X, Y, Z축 방향으로 이동시키기 위한 스테이지(111)와, 레이저 광(L)의 출력이나 펄스폭 등의 조절이나 스테이지(111)의 이동 등, 레이저 가공 장치(100)의 전체를 제어하는 제어부(115)를 구비하고 있다.
이 레이저 가공 장치(100)에 있어서는, 레이저 광원(101)으로부터 출사된 레이저 광(L)은, 다이크로익 미러(103)에 의해서 그 광축의 방향이 90° 변경되며, 재치대(107)상에 재치된 가공 대상물(1)을 향하여 집광용 렌즈(105)에 의해서 집광된다. 이와 함께, 스테이지(111)가 이동되며, 가공 대상물(1)이 레이저 광(L)에 대해 절단 예정 라인(5)을 따라서 상대 이동된다. 이에 의해, 절단 예정 라인(5)을 따라서 절단의 기점이 되는 개질 영역이 가공 대상물(1)에 형성되게 된다.
이상 설명한 바와 같이, 상술한 레이저 가공 방법에서는, 가공 대상물(1)의 레이저 광 입사면인 표면(3)에 대향하는 금속막(17)의 표면(17a)에서 반사된 레이저 광(L)의 반사광(RL)을 실리콘 웨이퍼(11)에 조사함으로써, 6열의 용융 처리 영역(131, 132) 중, 금속막(17)의 표면(17a)에 가장 가까운 용융 처리 영역(131)을 형성하고 있다. 이에 의해, 도 20에 나타낸 바와 같이, 용융 처리 영역(131)을 금속막(17)의 표면(17a)의 극근방에 형성할 수 있다. 실리콘 웨이퍼(11)의 두께가 절단 예정 라인(5)을 따라서 변화하고 있는 경우나, 실리콘 웨이퍼(11)가 고농도 도프 웨이퍼 등으로, 레이저 광(L)의 투과율이 낮은 경우 등에 표면(17a)의 근방에서 그리고 같은 높이 위치를 유지하여 용융 처리 영역(131)을 절단 예정 라인(5)을 따라서 형성하는 것이 곤란하더라도, 이와 같이, 금속막(17)의 표면(17a)에 가장 가까운 용융 처리 영역(131)의 형성에 반사광(RL)을 이용함으로써, 절단 예정 라인(5)을 따라서 용융 처리 영역(131)을 금속막(17)의 표면(17a)의 극근방에 높은 밀도로 안정적으로 형성할 수 있다. 그 때문에, 가공 대상물(1)을 절단했을 때에 절단면의 이면(21)측의 단부가 절단 예정 라인(5)으로부터 이탈되는 것을 방지하여, 가공 대상물(1)을 절단 예정 라인(5)을 따라서 정밀도 좋게 절단하는 것이 가능해진다.
여기서, 금속막(17)의 표면(17a)에서 반사된 레이저 광(L)의 반사광(RL)을 이용했을 경우에, 용융 처리 영역(131)이 금속막(17)의 표면(17a)의 극근방에 형성되는 원리에 대하여 설명한다.
본 발명자가 추측하는 제1 원리는, 다음과 같다. 도 21에 나타낸 바와 같이, 실리콘 웨이퍼(11)의 이면, 즉 금속막(17)의 표면(17a) 근방에 집광점을 맞추고 레이저 광(L)을 조사하면, 구면 수차의 영향으로 중심 광선과 주위 광선의 집광도가 열화하여, 각 광선이 한 점에 집광하지 않고, 각 광선, 특히 주위 광선의 집광 개소가 레이저 광(L)의 광축 방향으로 이탈된다. 이에 의해, 금속막(17)의 표면(17a) 아래에서 집광하도록 진행하는 광선의 집광 개소가, 금속막(17)의 표면(17a)에서의 반사에 의해서 금속막(17)의 표면(17a)상에서 집광하는 광선의 집광 개소에 보완된다. 따라서, 절단 예정 라인(5)을 따라서 용융 처리 영역(131)이 금속막(17)의 표면(17a)의 극근방에 높은 밀도로 형성되게 된다. 구면 수차를 고려하지 않으면 이론적으로는, 용융 처리 영역(131)은 집광점의 위치인 실리콘 웨이퍼(11)의 이면상에 형성될 것이나, 반사에 의한 영향으로 용융 처리 영역(131)의 형성 위치가 위쪽으로 이탈된다고도 할 수 있다.
본 발명자가 추측하는 제2 원리는, 다음과 같다. 도 22의 (a)에 나타낸 바와 같이, 실리콘 웨이퍼(11)의 외부가 집광점이 되는 집광용 렌즈 위치, 즉 금속막(17)의 표면(17a) 아래에 집광점을 맞추고 레이저 광(L)을 조사하면, 금속막(17)의 표면(17a)에서 레이저 광(L)이 반사되고, 그 반사광(RL)이 실리콘 웨이퍼(11)의 내부에 집광한다. 금속막(17)의 표면(17a)에서 반사되기 전에는 집광도가 낮기 때문에 레이저 광(L)이 실리콘 웨이퍼(11)에 거의 흡수되지 않고, 반사광(RL)의 집광점(P)의 위치에서 국소적으로 고온이 된다. 그렇기 때문에, 흡수 계수의 온도 의존성에 의해 집광점(P)의 위치에서 흡수 계수가 높아져서 반사광(RL)의 집광점(P) 의 위치로부터, 반사광(RL)의 진행 방향에 있어서 집광점(P)의 상류측(반사 표면(17a)측)에서 반사광(RL)이 흡수되어 쉬워진다. 그 결과, 절단 예정 라인(5)을 따라서 용융 처리 영역(131)이 금속막(17)의 표면(17a)의 극근방에 높은 밀도로(즉, 분할성이 높은 개질 영역으로서) 형성되게 된다.
또한, 도 22의 (b)에 나타낸 바와 같이, 실리콘 웨이퍼(11)의 내부, 즉 금속막(17)의 표면(17a)상에 집광점(P)을 맞추고 레이저 광(L)을 조사하면, 집광점(P)의 위쪽의 위치에서도 온도가 높아진다. 그렇기 때문에, 흡수 계수의 온도 의존성에 의해 집광점(P)의 위쪽의 위치에서 흡수 계수가 높아져서 레이저 광(L)의 흡수가 시작된다. 이에 의해, 레이저 광(L)의 진행 방향에 있어서 집광점(P)의 근방으로 진행하는 레이저 광(L)이 감소하며, 집광점(P)의 위쪽의 부분이 레이저 광(L)의 광축을 따라서 국소적으로 고온이 된다. 그 때문에, 흡수 계수의 온도 의존성에 의해 집광점(P)의 위쪽의 부분에서 흡수 계수가 높아져서 레이저 광(L)이 흡수된다. 그 결과, 용융 처리 영역(13)의 형성에 이용할 수 있는 레이저 광(L)의 에너지가 감소하기 때문에, 절단 예정 라인(5)을 따라서 용융 처리 영역(13)이 금속막(17)의 표면(17a)(의 근방)으로부터 약간 떨어진 위쪽의 위치에 낮은 밀도로 형성되게 된다. 이것은, 두꺼운 웨이퍼에 있어서는 레이저 광 입사면으로부터 깊은 위치가 될수록 흡수의 영향이 커져서 레이저 광의 에너지가 감소하여, 가공 역치를 넘기 위해서는 흡수에 의한 온도 의존의 영향을 무시할 수 없기 때문이라 추측된다.
본 발명은 상기 실시형태로 한정되지 아니다.
예를 들어, 상기 실시형태에서는, 금속막(17)의 표면(17a)에서 반사된 레이저 광(L)의 반사광(RL)을 실리콘 웨이퍼(11)에 조사함으로써, 금속막(17)의 표면(17a)의 극근방에 용융 처리 영역(131)을 형성하였으나, 도 23 및 도 24에 나타낸 바와 같이, 가공 대상물(1)의 표면(3)의 극근방에 용융 처리 영역(13)을 형성해도 된다. 이 경우에는, 가공 대상물(1)의 표면(3)을 레이저 광 입사면으로 하고, 실리콘 웨이퍼(11)의 표면으로부터 600㎛의 위치(실리콘 웨이퍼(11)의 외부)에 집광점을 맞추고, 펄스폭 150㎱, 에너지 15μJ의 조건으로 레이저 광(L)을 조사한다. 이에 의해, 상술한 흡수 계수의 온도 의존성에 기인하여 가공 대상물(1)의 표면(3)이 용융 등의 손상을 받는 것을 방지하여, 가공 대상물(1)의 표면(3)의 극근방에 용융 처리 영역(13)을 형성할 수 있다. 게다가, 가공 대상물(1)을 절단했을 때에 절단면의 표면(3)측의 단부가 절단 예정 라인(5)으로부터 이탈되는 것을 방지하여, 가공 대상물(1)을 절단 예정 라인(5)을 따라서 정밀도 좋게 절단하는 것이 가능해진다.
또한, 금속막(17)의 표면(17a)에 가장 가까운 용융 처리 영역(13)이나, 가공 대상물(1)의 표면(3)에 가장 가까운 용융 처리 영역(13)뿐만이 아니라, 복수 열의 용융 처리 영역(13) 중, 금속막(17)의 표면(17a)에 가장 가까운 용융 처리 영역(13) 및 가공 대상물(1)의 표면(3)에 가장 가까운 용융 처리 영역(13)의 적어도 1열을 포함하는 복수 열의 용융 처리 영역(13)을, 금속막(17)의 표면(17a)에서 반 사된 레이저 광(L)의 반사광(RL)을 이용하여 형성해도 된다.
또, 도 25에 나타낸 바와 같이, 금속막(17)의 표면(17a)에 가장 가까운 용융 처리 영역(13)을 형성하는 동시에, 가공 대상물(1)의 이면(21)에, 소정의 깊이를 가지는 약화 영역(18)을 절단 예정 라인(5)을 따라서 형성해도 된다. 이 경우에는, 가공 대상물(1)의 표면(3)을 레이저 광 입사면으로 하고, 실리콘 웨이퍼(11)의 표면으로부터 305㎛의 위치(실리콘 웨이퍼(11)의 외부)에 집광점을 맞추고, 펄스폭 150㎱, 에너지 15μJ의 조건으로 레이저 광(L)을 조사한다. 이 때, 가공 대상물(1)의 이면(21)은 금속막(17)의 이면이지만, 이 경우에도 소정의 깊이를 가지는 약화 영역(18)이 절단 예정 라인(5)을 따라서 금속막(17)에 형성되어 있기 때문에, 비교적 작은 외력으로 절단 예정 라인(5)을 따라서 가공 대상물(1)을 정밀도 좋게 절단하는 것이 가능해진다. 게다가, 용융 처리 영역(131)이 실리콘 웨이퍼(11)의 내부에 형성되어 있기 때문에, 용융 처리 영역(131)으로부터 파티클이 발생하는 것을 방지할 수 있다.
또, 상기 실시형태에서는, 레이저 광(L)을 반사하는 면이 금속막(17)의 표면(17a)이었으나, 가공 대상물(1)이 금속막(17)을 구비하지 않고, 예를 들어, 레이저 광(L)을 반사하는 면이 실리콘 웨이퍼(11)의 이면이어도 된다. 이 경우에는, 레이저 광(L)이 실리콘 웨이퍼(11)의 이면에서 일부 반사되며, 그 반사광(RL)이 실리콘 웨이퍼(11)에 조사되게 된다. 그리고, 기능 소자(15)는, 예를 들어 결정 성장에 의해 형성된 반도체 동작층, 포토다이오드 등의 수광 소자, 레이저 다이오드 등의 발광 소자, 혹은 회로로서 형성된 회로 소자 등이어도 된다.
또, 상기 실시형태에서는, 가공 대상물(1)의 표면(3)을 레이저 광 입사면으로 하였으나, 가공 대상물(1)이 금속막(17)을 구비하지 않은 경우에는, 가공 대상물(1)의 이면(21)을 레이저 광 입사면으로 해도 된다. 가공 대상물(1)의 이면(21)을 레이저 광 입사면으로 하는 경우에는, 일례로서, 다음과 같이 가공 대상물(1)을 복수의 반도체 칩(25)으로 절단한다. 즉, 기능 소자층(16)의 표면에 보호 테이프를 붙이고, 보호 테이프에 의해 기능 소자층(16)을 보호한 상태에서, 레이저 가공 장치의 재치대에 가공 대상물(1)을 유지한 보호 테이프를 고정한다. 그리고, 가공 대상물(1)의 이면(21)을 레이저 광 입사면으로 하여 실리콘 웨이퍼(11)에 레이저 광(L)을 조사함으로써, 절단 예정 라인(5)을 따라서 용융 처리 영역(131, 132)을 형성한다. 계속해서, 재치대에 고정된 보호 테이프를 가공 대상물(1)과 함께 이격시킨다. 그리고, 가공 대상물(1)의 이면(21)에 익스팬드 테이프(23)를 붙이고, 기능 소자층(16)의 표면으로부터 보호 테이프를 벗긴 후, 익스팬드 테이프(23)를 확장시키고, 용융 처리 영역(131, 132)을 절단의 기점으로 하여 가공 대상물(1)을 절단 예정 라인(5)을 따라서 절단하는 동시에, 절단됨으로써 얻어진 복수의 반도체 칩(25)을 서로 떨어지게 한다.
또, 상기 실시형태에서는, 실리콘 웨이퍼(11)의 내부에 용융 처리 영역(131, 132)을 형성하였으나, 유리나 압전 재료 등 다른 재료로 이루어진 웨이퍼의 내부에 크랙 영역이나 굴절률 변화 영역 등 다른 개질 영역을 형성해도 된다.
또, 다음과 같이 하여 개질 영역(7)을 가공 대상물(1)에 형성해도 된다. 우선, 도 27의 (a)에 나타낸 바와 같이, 가공 대상물(1)의 레이저 광 입사면(여기서는, 표면(3))에 대향하는 레이저 광 반사면(여기서는, 이면(21))의 근방의 위치가 집광점(P)이 되도록 레이저 광(L)을 조사함으로써 개질 영역(7a)을 형성한다. 그 후, 도 27의 (b)에 나타낸 바와 같이, 레이저 광 반사면을 레이저 광이 투과한다고 가정했을 경우에 레이저 광(L)의 진행 방향에 있어서 레이저 광 반사면의 하류측(레이저 광 반사면에 대해 레이저 광원(레이저 광 출사측)과 반대측)의 위치가 집광점(P)이 되도록 레이저 광(L)을 조사함으로써 그 반사광(RL)에 의해 개질 영역(7b)을 형성한다. 이와 같이, 개질 영역(7a)과 개질 영역(7b)을 겹쳐 형성함으로써, 밀도가 높은(즉, 분할성이 높은) 개질 영역(7)을 가공 대상물(1)에 형성할 수 있다.
가공 대상물(1)에 레이저 광(L)을 조사함으로써, 1개의 절단 예정 라인(5)을 따라서 가공 대상물(1)의 두께 방향으로 나란하도록 복수 열의 개질 영역(7)을 가공 대상물(1)의 적어도 내부에 형성하는 경우에 한정되지 않고, 1개의 절단 예정 라인(5)을 따라서 1열의 개질 영역(7)을 가공 대상물(1)의 적어도 내부에 형성해도 된다.
본 발명에 의하면, 제어성 좋게 소정의 면에 가장 가까운 개질 영역을 소정의 면의 극근방에 형성하거나, 레이저 광 입사면에 가장 가까운 개질 영역을 레이저 광 입사면의 극근방에 형성하거나 할 수 있다.

Claims (19)

  1. 판 모양의 가공 대상물에 레이저 광을 조사함으로써, 상기 가공 대상물의 절단 예정 라인을 따라서, 상기 가공 대상물의 두께 방향으로 나란하도록, 절단의 기점이 되는 복수 열의 개질 영역을 상기 가공 대상물의 내부에 형성하는 레이저 가공 방법으로서,
    상기 가공 대상물에 있어서 레이저 광이 입사하는 레이저 광 입사면에 대향하는 소정의 면에서 반사된 레이저 광의 반사광을 상기 가공 대상물에 조사함으로써, 복수 열의 상기 개질 영역 중, 상기 소정의 면에 가장 가까운 개질 영역 및 상기 레이저 광 입사면에 가장 가까운 개질 영역의 적어도 1열을 포함하는 1열 또는 복수 열의 개질 영역을 형성하는 것을 특징으로 하는 레이저 가공 방법.
  2. 청구항 1에 있어서,
    상기 소정의 면은, 상기 가공 대상물이 구비하는 금속막에 있어서의 상기 레이저 광 입사면측의 면인 것을 특징으로 하는 레이저 가공 방법.
  3. 청구항 1에 있어서,
    복수 열의 상기 개질 영역을 절단의 기점으로 하고, 상기 절단 예정 라인을 따라서 상기 가공 대상물을 절단하는 것을 특징으로 하는 레이저 가공 방법.
  4. 청구항 1에 있어서,
    상기 가공 대상물은 반도체 기판을 구비하며, 상기 개질 영역은 용융 처리 영역을 포함하는 것을 특징으로 하는 레이저 가공 방법.
  5. 판 모양의 가공 대상물에 레이저 광을 조사함으로써, 상기 가공 대상물의 절단 예정 라인을 따라서 절단의 기점이 되는 개질 영역을 상기 가공 대상물의 내부에 형성하는 레이저 가공 방법으로서,
    상기 가공 대상물의 레이저 광 입사면에 대향하는 레이저 광 반사면을 레이저 광이 투과한다고 가정했을 경우에, 레이저 광의 진행 방향에 있어서 상기 레이저 광 반사면의 하류측의 위치가, 레이저 광을 상기 가공 대상물에 집광하기 위한 집광용 렌즈에 의해서 집광되는 레이저 광의 집광점이 되도록, 상기 집광용 렌즈를 배치하고, 상기 가공 대상물에 레이저 광을 조사함으로써, 상기 가공 대상물의 적어도 내부에 상기 개질 영역을 형성하는 것을 특징으로 하는 레이저 가공 방법.
  6. 판 모양의 가공 대상물에 레이저 광을 조사함으로써, 상기 가공 대상물의 절단 예정 라인을 따라서 절단의 기점이 되는 개질 영역을 상기 가공 대상물의 내부에 형성하는 레이저 가공 장치로서,
    상기 가공 대상물의 레이저 광 입사면에 대향하는 레이저 광 반사면을 레이저 광이 투과한다고 가정했을 경우에, 레이저 광의 진행 방향에 있어서 상기 레이저 광 반사면의 하류측의 위치가, 레이저 광을 상기 가공 대상물에 집광하기 위한 집광용 렌즈에 의해서 집광되는 레이저 광의 집광점이 되도록, 상기 집광용 렌즈를 배치하고, 상기 가공 대상물에 레이저 광을 조사함으로써, 상기 가공 대상물의 적어도 내부에 상기 개질 영역을 형성하는 제어부를 구비하는 것을 특징으로 하는 레이저 가공 장치.
  7. 청구항 1에 있어서,
    상기 소정의 면에서 반사된 레이저 광의 반사광을 상기 가공 대상물에 조사함으로써, 상기 개질 영역으로서 용융 처리 영역 및 미소 공동은 쌍이 되어 형성되고, 상기 미소 공동은 상기 용융 처리 영역에 대하여 상기 레이저 광 입사면 측에 형성되는 것을 특징으로 하는 레이저 가공 방법.
  8. 청구항 7에 있어서,
    상기 소정의 면에서 반사된 레이저 광의 반사광을 상기 가공 대상물에 조사할 때에, 구면 수차를 고려하지 않으면 이론적으로는, 상기 레이저 광의 집광점이 상기 가공 대상물에 맞추어지는 것을 특징으로 하는 레이저 가공 방법.
  9. 청구항 5에 있어서,
    상기 레이저 광 반사면에서 반사된 레이저 광의 반사광을 상기 가공 대상물에 조사함으로써, 상기 개질 영역으로서 용융 처리 영역 및 미소 공동은 쌍이 되어 형성되고, 상기 미소 공동은 상기 용융 처리 영역에 대하여 상기 레이저 광 입사면 측에 형성되는 것을 특징으로 하는 레이저 가공 방법.
  10. 청구항 9에 있어서,
    상기 레이저 광 반사면에서 반사된 레이저 광의 반사광을 상기 가공 대상물에 조사할 때에, 구면 수차를 고려하지 않으면 이론적으로는, 상기 레이저 광의 집광점은 상기 가공 대상물에 맞추어지는 것을 특징으로 하는 레이저 가공 방법.
  11. 판 모양의 가공 대상물에 레이저 광을 조사함으로써, 상기 가공 대상물의 절단 예정 라인을 따라서, 상기 가공 대상물의 두께 방향으로 나란하도록, 절단의 기점이 되는 복수 열의 개질 영역을 상기 가공 대상물의 내부에 형성하는 레이저 가공 방법으로서,
    상기 가공 대상물에 있어서 레이저 광이 입사하는 레이저 광 입사면에 대향하고 또한 상기 가공 대상물이 구비하는 금속막에 있어서의 상기 레이저 광 입사면측의 면인 소정의 면에서 반사된 레이저 광의 반사광을 상기 가공 대상물에 조사함으로써, 복수 열의 상기 개질 영역 중, 상기 소정의 면에 가장 가까운 개질 영역 및 상기 레이저 광 입사면에 가장 가까운 개질 영역의 적어도 1열을 포함하는 1열 또는 복수 열의 개질 영역을 형성하고,
    상기 소정의 면에 가장 가까운 상기 개질 영역을 형성하는 경우에는, 당해 개질 영역을 형성함과 동시에, 상기 절단 예정 라인을 따라서 약화 영역을 상기 금속막에 형성하는 것을 특징으로 하는 레이저 가공 방법.
  12. 청구항 11에 있어서,
    복수 열의 상기 개질 영역을 절단의 기점으로 하여, 상기 절단 예정 라인을 따라서 상기 가공 대상물을 절단하는 것을 특징으로 하는 레이저 가공 방법.
  13. 청구항 11 또는 12에 있어서,
    상기 가공 대상물은 반도체 기판을 구비하며, 상기 개질 영역은 용융 처리 영역을 포함하는 것을 특징으로 하는 레이저 가공 방법.
  14. 판 모양의 가공 대상물에 레이저 광을 조사함으로써, 상기 가공 대상물의 절단 예정 라인을 따라서, 상기 가공 대상물의 두께 방향으로 나란하도록, 절단의 기점이 되는 복수 열의 개질 영역을 상기 가공 대상물의 내부에 형성하는 레이저 가공 방법으로서,
    상기 가공 대상물의 레이저 광 입사면에 대향하고 또한 상기 가공 대상물이 구비하는 금속막에 있어서의 상기 레이저 광 입사면 측의 면인 레이저 광 반사면을 레이저 광이 투과한다고 가정했을 경우에, 레이저 광의 진행 방향에 있어서 상기 레이저 광 반사면의 하류측의 위치가, 레이저 광을 상기 가공 대상물에 집광하기 위한 집광용 렌즈에 의해서 집광되는 레이저 광의 집광점이 되도록, 상기 집광용 렌즈를 배치하고, 상기 가공 대상물에 레이저 광을 조사함으로써, 복수 열의 상기 개질 영역 중, 상기 레이저 광 반사면에 가장 가까운 개질 영역 및 상기 레이저 광 입사면에 가장 가까운 개질 영역의 적어도 1열을 포함하는 1열 또는 복수 열의 개질 영역을 형성하며,
    상기 레이저 광 반사면에 가장 가까운 상기 개질 영역을 형성하는 경우에는, 당해 개질 영역을 형성함과 동시에, 상기 절단 예정 라인을 따라서 약화 영역을 상기 금속막에 형성하는 것을 특징으로 하는 레이저 가공 방법.
  15. 판 모양의 가공 대상물에 레이저 광을 조사함으로써, 상기 가공 대상물의 절단 예정 라인을 따라서, 상기 가공 대상물의 두께 방향으로 나란하도록, 절단의 기점이 되는 복수 열의 개질 영역을 상기 가공 대상물의 내부에 형성하는 레이저 가공 장치로서,
    상기 가공 대상물의 레이저 광 입사면에 대향하고 또한 상기 가공 대상물이 구비하는 금속막에 있어서의 상기 레이저 광 입사면 측의 면인 레이저 광 반사면을 레이저 광이 투과한다고 가정했을 경우에, 레이저 광의 진행 방향에 있어서 상기 레이저 광 반사면의 하류측의 위치가, 레이저 광을 상기 가공 대상물에 집광하기 위한 집광용 렌즈에 의해서 집광되는 레이저 광의 집광점이 되도록, 상기 집광용 렌즈를 배치하고, 상기 가공 대상물에 레이저 광을 조사함으로써, 복수 열의 상기 개질 영역 중, 상기 레이저 광 반사면에 가장 가까운 개질 영역 및 상기 레이저 광 입사면에 가장 가까운 개질 영역의 적어도 1열을 포함하는 1열 또는 복수 열의 개질 영역을 형성하며,
    상기 레이저 광 반사면에 가장 가까운 상기 개질 영역을 형성하는 경우에는, 당해 개질 영역을 형성함과 동시에, 상기 절단 예정 라인을 따라서 약화 영역을 상기 금속막에 형성하는 것을 특징으로 하는 레이저 가공 장치.
  16. 청구항 11에 있어서,
    상기 소정의 면에서 반사된 레이저 광의 반사광을 상기 가공 대상물에 조사함으로써, 상기 개질 영역으로서 용융 처리 영역 및 미소 공동은 쌍이 되어 형성되고, 상기 미소 공동은 상기 용융 처리 영역에 대하여 상기 레이저 광 입사면 측에 형성되는 것을 특징으로 하는 레이저 가공 방법.
  17. 청구항 16에 있어서,
    상기 소정의 면에서 반사된 레이저 광의 반사광을 상기 가공 대상물에 조사할 때에, 구면 수차를 고려하지 않으면 이론적으로는, 상기 레이저 광의 집광점이 상기 가공 대상물에 맞추어지는 것을 특징으로 하는 레이저 가공 방법.
  18. 청구항 14에 있어서,
    상기 레이저 광 반사면에서 반사된 레이저 광의 반사광을 상기 가공 대상물에 조사함으로써, 상기 개질 영역으로서 용융 처리 영역 및 미소 공동은 쌍이 되어 형성되고, 상기 미소 공동은 상기 용융 처리 영역에 대하여 상기 레이저 광 입사면 측에 형성되는 것을 특징으로 하는 레이저 가공 방법.
  19. 청구항 18에 있어서,
    상기 레이저 광 반사면에서 반사된 레이저 광의 반사광을 상기 가공 대상물에 조사할 때에, 구면 수차를 고려하지 않으면 이론적으로는, 상기 레이저 광의 집광점은 상기 가공 대상물에 맞추어지는 것을 특징으로 하는 레이저 가공 방법.
KR1020097003105A 2006-09-19 2007-09-18 레이저 가공 방법 및 레이저 가공 장치 KR101428823B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006253259 2006-09-19
JPJP-P-2006-253259 2006-09-19
PCT/JP2007/068099 WO2008035679A1 (fr) 2006-09-19 2007-09-18 Procédé de traitement au laser et appareil de traitement au laser

Publications (2)

Publication Number Publication Date
KR20090064529A KR20090064529A (ko) 2009-06-19
KR101428823B1 true KR101428823B1 (ko) 2014-08-11

Family

ID=39200504

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097003105A KR101428823B1 (ko) 2006-09-19 2007-09-18 레이저 가공 방법 및 레이저 가공 장치

Country Status (6)

Country Link
US (1) US8188404B2 (ko)
EP (1) EP2065120B1 (ko)
KR (1) KR101428823B1 (ko)
CN (2) CN101516566B (ko)
TW (1) TWI415706B (ko)
WO (1) WO2008035679A1 (ko)

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659300B2 (ja) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
ATE534142T1 (de) 2002-03-12 2011-12-15 Hamamatsu Photonics Kk Verfahren zum auftrennen eines substrats
TWI326626B (en) 2002-03-12 2010-07-01 Hamamatsu Photonics Kk Laser processing method
EP2216128B1 (en) 2002-03-12 2016-01-27 Hamamatsu Photonics K.K. Method of cutting object to be processed
TWI520269B (zh) 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
FR2852250B1 (fr) 2003-03-11 2009-07-24 Jean Luc Jouvin Fourreau de protection pour canule, un ensemble d'injection comportant un tel fourreau et aiguille equipee d'un tel fourreau
US8685838B2 (en) 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
EP2324950B1 (en) * 2003-07-18 2013-11-06 Hamamatsu Photonics K.K. Semiconductor substrate to be cut with treated and minute cavity region, and method of cutting such substrate
JP4563097B2 (ja) 2003-09-10 2010-10-13 浜松ホトニクス株式会社 半導体基板の切断方法
JP4601965B2 (ja) * 2004-01-09 2010-12-22 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4509578B2 (ja) 2004-01-09 2010-07-21 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4598407B2 (ja) * 2004-01-09 2010-12-15 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
KR101336523B1 (ko) 2004-03-30 2013-12-03 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법 및 반도체 칩
US8604383B2 (en) * 2004-08-06 2013-12-10 Hamamatsu Photonics K.K. Laser processing method
JP4762653B2 (ja) * 2005-09-16 2011-08-31 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4907965B2 (ja) * 2005-11-25 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法
JP4804911B2 (ja) * 2005-12-22 2011-11-02 浜松ホトニクス株式会社 レーザ加工装置
JP4907984B2 (ja) 2005-12-27 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップ
JP5183892B2 (ja) 2006-07-03 2013-04-17 浜松ホトニクス株式会社 レーザ加工方法
EP1875983B1 (en) 2006-07-03 2013-09-11 Hamamatsu Photonics K.K. Laser processing method and chip
JP4954653B2 (ja) * 2006-09-19 2012-06-20 浜松ホトニクス株式会社 レーザ加工方法
JP5101073B2 (ja) * 2006-10-02 2012-12-19 浜松ホトニクス株式会社 レーザ加工装置
JP5132911B2 (ja) * 2006-10-03 2013-01-30 浜松ホトニクス株式会社 レーザ加工方法
JP4964554B2 (ja) * 2006-10-03 2012-07-04 浜松ホトニクス株式会社 レーザ加工方法
US8735770B2 (en) * 2006-10-04 2014-05-27 Hamamatsu Photonics K.K. Laser processing method for forming a modified region in an object
JP5336054B2 (ja) * 2007-07-18 2013-11-06 浜松ホトニクス株式会社 加工情報供給装置を備える加工情報供給システム
JP5449665B2 (ja) 2007-10-30 2014-03-19 浜松ホトニクス株式会社 レーザ加工方法
JP5134928B2 (ja) * 2007-11-30 2013-01-30 浜松ホトニクス株式会社 加工対象物研削方法
JP5054496B2 (ja) * 2007-11-30 2012-10-24 浜松ホトニクス株式会社 加工対象物切断方法
JP5692969B2 (ja) 2008-09-01 2015-04-01 浜松ホトニクス株式会社 収差補正方法、この収差補正方法を用いたレーザ加工方法、この収差補正方法を用いたレーザ照射方法、収差補正装置、及び、収差補正プログラム
JP5254761B2 (ja) 2008-11-28 2013-08-07 浜松ホトニクス株式会社 レーザ加工装置
JP5241525B2 (ja) 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置
JP5241527B2 (ja) 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置
EP2394775B1 (en) 2009-02-09 2019-04-03 Hamamatsu Photonics K.K. Workpiece cutting method
US8347651B2 (en) * 2009-02-19 2013-01-08 Corning Incorporated Method of separating strengthened glass
WO2010116917A1 (ja) 2009-04-07 2010-10-14 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
JP5491761B2 (ja) 2009-04-20 2014-05-14 浜松ホトニクス株式会社 レーザ加工装置
CN102596830A (zh) * 2009-08-28 2012-07-18 康宁股份有限公司 利用激光从化学强化玻璃基板切割出制品的方法
JP5479924B2 (ja) * 2010-01-27 2014-04-23 浜松ホトニクス株式会社 レーザ加工方法
DE102010009015A1 (de) * 2010-02-24 2011-08-25 OSRAM Opto Semiconductors GmbH, 93055 Verfahren zum Herstellen einer Mehrzahl von optoelektronischen Halbleiterchips
MY184075A (en) 2010-07-12 2021-03-17 Rofin Sinar Tech Inc Method of material processing by laser filamentation
US8722516B2 (en) 2010-09-28 2014-05-13 Hamamatsu Photonics K.K. Laser processing method and method for manufacturing light-emitting device
TWI551560B (zh) * 2010-11-30 2016-10-01 康寧公司 玻璃帶、接合玻璃帶之方法、以及製備用於接合之已塗佈玻璃帶之方法
DE102010054858C5 (de) * 2010-12-17 2024-04-11 Interpane Entwicklungs- Und Beratungsgesellschaft Mbh Verfahren und Vorrichtung zur Herstellung einer reflexionsmindernden Beschichtung
CN102152003B (zh) * 2011-02-24 2014-03-12 华中科技大学 双激光束分离光学晶体方法及装置
JP2012238746A (ja) * 2011-05-12 2012-12-06 Disco Abrasive Syst Ltd 光デバイスウエーハの分割方法
AT13206U1 (de) * 2012-07-17 2013-08-15 Lisec Maschb Gmbh Verfahren und Anordnung zum Teilen von Flachglas
TWI591040B (zh) 2012-10-22 2017-07-11 康寧公司 玻璃纖維網和拼接的方法
WO2014079478A1 (en) 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials
EP2754524B1 (de) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie
EP2781296B1 (de) 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser
JP6272301B2 (ja) 2013-03-27 2018-01-31 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
KR102226815B1 (ko) * 2013-03-27 2021-03-11 하마마츠 포토닉스 가부시키가이샤 레이저 가공 장치 및 레이저 가공 방법
DE112014001688T5 (de) 2013-03-27 2015-12-17 Hamamatsu Photonics K.K. Laserbearbeitungsvorrichtung und Laserbearbeitungsverfahren
DE112014001653T5 (de) 2013-03-27 2015-12-17 Hamamatsu Photonics K.K. Laserbearbeitungsvorrichtung und Laserbearbeitungsverfahren
FR3006068B1 (fr) * 2013-05-24 2015-04-24 Saint Gobain Procede d'obtention d'un substrat
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US20150165563A1 (en) * 2013-12-17 2015-06-18 Corning Incorporated Stacked transparent material cutting with ultrafast laser beam optics, disruptive layers and other layers
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US20150165560A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Laser processing of slots and holes
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
JP6262039B2 (ja) 2014-03-17 2018-01-17 株式会社ディスコ 板状物の加工方法
JP6301203B2 (ja) * 2014-06-02 2018-03-28 株式会社ディスコ チップの製造方法
CN106687419A (zh) 2014-07-08 2017-05-17 康宁股份有限公司 用于激光处理材料的方法和设备
WO2016010991A1 (en) 2014-07-14 2016-01-21 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
CN208586209U (zh) 2014-07-14 2019-03-08 康宁股份有限公司 一种用于在工件中形成限定轮廓的多个缺陷的系统
EP3169477B1 (en) * 2014-07-14 2020-01-29 Corning Incorporated System for and method of processing transparent materials using laser beam focal lines adjustable in length and diameter
EP3536440A1 (en) 2014-07-14 2019-09-11 Corning Incorporated Glass article with a defect pattern
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
CN107406293A (zh) 2015-01-12 2017-11-28 康宁股份有限公司 使用多光子吸收方法来对经热回火的基板进行激光切割
JP2016167552A (ja) * 2015-03-10 2016-09-15 株式会社ディスコ 単結晶基板の加工方法
KR102546692B1 (ko) 2015-03-24 2023-06-22 코닝 인코포레이티드 디스플레이 유리 조성물의 레이저 절단 및 가공
JP2018516215A (ja) 2015-03-27 2018-06-21 コーニング インコーポレイテッド 気体透過性窓、および、その製造方法
WO2017011296A1 (en) 2015-07-10 2017-01-19 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
CN106825938A (zh) * 2015-12-04 2017-06-13 彭翔 用于借助于冷激光辐射和热激光辐射去蚀脆硬材料的方法和系统
CN105598594A (zh) * 2015-12-18 2016-05-25 中国电子科技集团公司第五十五研究所 一种复合结构SiC芯片的激光分离方法
CN109311725B (zh) 2016-05-06 2022-04-26 康宁股份有限公司 从透明基材激光切割及移除轮廓形状
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
WO2018022476A1 (en) 2016-07-29 2018-02-01 Corning Incorporated Apparatuses and methods for laser processing
TWI599802B (zh) * 2016-08-25 2017-09-21 Platinum Optics Tech Inc Optical filter processing methods
KR102423775B1 (ko) 2016-08-30 2022-07-22 코닝 인코포레이티드 투명 재료의 레이저 가공
KR102078294B1 (ko) 2016-09-30 2020-02-17 코닝 인코포레이티드 비-축대칭 빔 스폿을 이용하여 투명 워크피스를 레이저 가공하기 위한 기기 및 방법
EP3848333A1 (en) 2016-10-24 2021-07-14 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
CN107030400B (zh) * 2017-06-20 2019-11-26 东莞市盛雄激光先进装备股份有限公司 一种激光切割滤光片的方法和系统
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
CN109461701A (zh) * 2018-09-27 2019-03-12 全球能源互联网研究院有限公司 一种功率芯片的复合划片方法及半导体器件
US10589445B1 (en) * 2018-10-29 2020-03-17 Semivation, LLC Method of cleaving a single crystal substrate parallel to its active planar surface and method of using the cleaved daughter substrate
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
CN112536535A (zh) * 2020-12-09 2021-03-23 苏州工业园区纳米产业技术研究院有限公司 绝缘体硅片的切割方法及芯片

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343008A (ja) 2003-05-19 2004-12-02 Disco Abrasive Syst Ltd レーザ光線を利用した被加工物分割方法
JP2006140355A (ja) 2004-11-12 2006-06-01 Hamamatsu Photonics Kk レーザ加工方法及び半導体チップ

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259151B1 (en) * 1999-07-21 2001-07-10 Intersil Corporation Use of barrier refractive or anti-reflective layer to improve laser trim characteristics of thin film resistors
JP4659300B2 (ja) * 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
EP2216128B1 (en) * 2002-03-12 2016-01-27 Hamamatsu Photonics K.K. Method of cutting object to be processed
ATE534142T1 (de) * 2002-03-12 2011-12-15 Hamamatsu Photonics Kk Verfahren zum auftrennen eines substrats
TWI326626B (en) * 2002-03-12 2010-07-01 Hamamatsu Photonics Kk Laser processing method
US6787734B2 (en) * 2002-07-25 2004-09-07 Matsushita Electric Industrial Co., Ltd. System and method of laser drilling using a continuously optimized depth of focus
TWI520269B (zh) * 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
EP1588793B1 (en) * 2002-12-05 2012-03-21 Hamamatsu Photonics K.K. Laser processing devices
JP2004188422A (ja) * 2002-12-06 2004-07-08 Hamamatsu Photonics Kk レーザ加工装置及びレーザ加工方法
FR2852250B1 (fr) * 2003-03-11 2009-07-24 Jean Luc Jouvin Fourreau de protection pour canule, un ensemble d'injection comportant un tel fourreau et aiguille equipee d'un tel fourreau
US8685838B2 (en) * 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
EP2324950B1 (en) * 2003-07-18 2013-11-06 Hamamatsu Photonics K.K. Semiconductor substrate to be cut with treated and minute cavity region, and method of cutting such substrate
JP4703983B2 (ja) 2003-07-18 2011-06-15 浜松ホトニクス株式会社 切断方法
JP4563097B2 (ja) * 2003-09-10 2010-10-13 浜松ホトニクス株式会社 半導体基板の切断方法
JP2005086175A (ja) * 2003-09-11 2005-03-31 Hamamatsu Photonics Kk 半導体薄膜の製造方法、半導体薄膜、半導体薄膜チップ、電子管、及び光検出素子
US7719017B2 (en) * 2004-01-07 2010-05-18 Hamamatsu Photonics K.K. Semiconductor light-emitting device and its manufacturing method
JP4601965B2 (ja) * 2004-01-09 2010-12-22 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4509578B2 (ja) * 2004-01-09 2010-07-21 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4598407B2 (ja) * 2004-01-09 2010-12-15 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4348199B2 (ja) * 2004-01-16 2009-10-21 日立ビアメカニクス株式会社 レーザ加工方法およびレーザ加工装置
US7179722B2 (en) * 2004-02-03 2007-02-20 Disco Corporation Wafer dividing method
JP4829781B2 (ja) * 2004-03-30 2011-12-07 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップ
KR101336523B1 (ko) * 2004-03-30 2013-12-03 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법 및 반도체 칩
JP4536407B2 (ja) * 2004-03-30 2010-09-01 浜松ホトニクス株式会社 レーザ加工方法及び加工対象物
JP4634089B2 (ja) * 2004-07-30 2011-02-16 浜松ホトニクス株式会社 レーザ加工方法
US8604383B2 (en) * 2004-08-06 2013-12-10 Hamamatsu Photonics K.K. Laser processing method
JP4754801B2 (ja) * 2004-10-13 2011-08-24 浜松ホトニクス株式会社 レーザ加工方法
JP4781661B2 (ja) * 2004-11-12 2011-09-28 浜松ホトニクス株式会社 レーザ加工方法
JP4198123B2 (ja) * 2005-03-22 2008-12-17 浜松ホトニクス株式会社 レーザ加工方法
JP4776994B2 (ja) * 2005-07-04 2011-09-21 浜松ホトニクス株式会社 加工対象物切断方法
JP4749799B2 (ja) * 2005-08-12 2011-08-17 浜松ホトニクス株式会社 レーザ加工方法
JP4762653B2 (ja) * 2005-09-16 2011-08-31 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
US20070111480A1 (en) * 2005-11-16 2007-05-17 Denso Corporation Wafer product and processing method therefor
JP4424302B2 (ja) * 2005-11-16 2010-03-03 株式会社デンソー 半導体チップの製造方法
JP4237745B2 (ja) * 2005-11-18 2009-03-11 浜松ホトニクス株式会社 レーザ加工方法
JP4907965B2 (ja) * 2005-11-25 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法
JP4804911B2 (ja) * 2005-12-22 2011-11-02 浜松ホトニクス株式会社 レーザ加工装置
JP4907984B2 (ja) * 2005-12-27 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップ
JP5183892B2 (ja) * 2006-07-03 2013-04-17 浜松ホトニクス株式会社 レーザ加工方法
EP1875983B1 (en) * 2006-07-03 2013-09-11 Hamamatsu Photonics K.K. Laser processing method and chip
JP4954653B2 (ja) * 2006-09-19 2012-06-20 浜松ホトニクス株式会社 レーザ加工方法
JP5101073B2 (ja) * 2006-10-02 2012-12-19 浜松ホトニクス株式会社 レーザ加工装置
JP5132911B2 (ja) 2006-10-03 2013-01-30 浜松ホトニクス株式会社 レーザ加工方法
JP4964554B2 (ja) 2006-10-03 2012-07-04 浜松ホトニクス株式会社 レーザ加工方法
US8735770B2 (en) * 2006-10-04 2014-05-27 Hamamatsu Photonics K.K. Laser processing method for forming a modified region in an object
JP5336054B2 (ja) * 2007-07-18 2013-11-06 浜松ホトニクス株式会社 加工情報供給装置を備える加工情報供給システム
JP4402708B2 (ja) * 2007-08-03 2010-01-20 浜松ホトニクス株式会社 レーザ加工方法、レーザ加工装置及びその製造方法
JP5225639B2 (ja) * 2007-09-06 2013-07-03 浜松ホトニクス株式会社 半導体レーザ素子の製造方法
JP5342772B2 (ja) * 2007-10-12 2013-11-13 浜松ホトニクス株式会社 加工対象物切断方法
JP5449665B2 (ja) * 2007-10-30 2014-03-19 浜松ホトニクス株式会社 レーザ加工方法
JP5054496B2 (ja) * 2007-11-30 2012-10-24 浜松ホトニクス株式会社 加工対象物切断方法
JP5134928B2 (ja) * 2007-11-30 2013-01-30 浜松ホトニクス株式会社 加工対象物研削方法
JP5241525B2 (ja) * 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置
JP5649317B2 (ja) * 2010-03-16 2015-01-07 富士フイルム株式会社 液体供給装置、液体供給方法及び画像記録装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343008A (ja) 2003-05-19 2004-12-02 Disco Abrasive Syst Ltd レーザ光線を利用した被加工物分割方法
JP2006140355A (ja) 2004-11-12 2006-06-01 Hamamatsu Photonics Kk レーザ加工方法及び半導体チップ

Also Published As

Publication number Publication date
EP2065120A1 (en) 2009-06-03
TWI415706B (zh) 2013-11-21
US8188404B2 (en) 2012-05-29
CN102489883A (zh) 2012-06-13
WO2008035679A1 (fr) 2008-03-27
EP2065120A4 (en) 2014-04-30
EP2065120B1 (en) 2015-07-01
TW200821076A (en) 2008-05-16
CN101516566A (zh) 2009-08-26
CN102489883B (zh) 2015-12-02
US20090250446A1 (en) 2009-10-08
KR20090064529A (ko) 2009-06-19
CN101516566B (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
KR101428823B1 (ko) 레이저 가공 방법 및 레이저 가공 장치
KR101455408B1 (ko) 레이저 가공방법
KR101109860B1 (ko) 레이저 가공 방법, 가공 대상물 절단 방법 및 반도체 장치
KR101252884B1 (ko) 레이저 가공방법
KR101348496B1 (ko) 레이저 가공방법
TWI380867B (zh) Laser processing methods and semiconductor wafers
KR101349556B1 (ko) 레이저 가공 방법 및 레이저 가공 장치
JP4754801B2 (ja) レーザ加工方法
KR101549271B1 (ko) 레이저 가공 방법
JP4198123B2 (ja) レーザ加工方法
JP4634089B2 (ja) レーザ加工方法
JP4732063B2 (ja) レーザ加工方法
JP5322418B2 (ja) レーザ加工方法及びレーザ加工装置
KR20090030301A (ko) 레이저 가공 방법
JP4851060B2 (ja) 半導体レーザ素子の製造方法
JP5117806B2 (ja) レーザ加工方法及びレーザ加工装置
JP5122161B2 (ja) 加工対象物切断方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170720

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180719

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190722

Year of fee payment: 6