CN104387772A - 用于纳米结构体分散的官能化基质 - Google Patents

用于纳米结构体分散的官能化基质 Download PDF

Info

Publication number
CN104387772A
CN104387772A CN201410513100.4A CN201410513100A CN104387772A CN 104387772 A CN104387772 A CN 104387772A CN 201410513100 A CN201410513100 A CN 201410513100A CN 104387772 A CN104387772 A CN 104387772A
Authority
CN
China
Prior art keywords
nanocrystal
nanostructure
matrix
specific embodiments
polymeric ligands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410513100.4A
Other languages
English (en)
Other versions
CN104387772B (zh
Inventor
刘明军
R·杜布朗
W·P·弗里曼
A·库克马
W·J·帕斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Nanosys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanosys Inc filed Critical Nanosys Inc
Publication of CN104387772A publication Critical patent/CN104387772A/zh
Application granted granted Critical
Publication of CN104387772B publication Critical patent/CN104387772B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • C01B25/082Other phosphides of boron, aluminium, gallium or indium
    • C01B25/087Other phosphides of boron, aluminium, gallium or indium of gallium or indium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • C07D303/06Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/14Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/90Manufacture, treatment, or detection of nanostructure having step or means utilizing mechanical or thermal property, e.g. pressure, heat

Abstract

本发明提供了用半导体纳米晶体掺杂的基质。在某些具体实施方案中,该半导体纳米晶体具有使得在特定波长下它们吸收或发射光的尺寸和组成。该纳米晶体可以包含允许用于与不同的基质材料混合的配体,包括聚合物,以至于最少部分的光被该基质散射。该基质任选由配体形成。本发明的基质还可以用于折射率的匹配应用。在其他的具体实施方案中,将半导体纳米晶体嵌入基质中以形成纳米晶体密度梯度,由此产生有效的折射率梯度。本发明的基质还可以用作光学器件上的滤波器和抗反射涂层并且用作下变频层。本申请还提供了用于制备包含半导体纳米晶体的基质的方法。本申请还描述了具有高量子效率、小尺寸、和/或窄的尺寸分布的纳米结构体、制备磷化铟纳米结构体和具有第II-VI族的壳的核-壳纳米结构体的方法。

Description

用于纳米结构体分散的官能化基质
本申请是申请号为201080019498.6的中国专利申请的分案申请。
相关申请的交叉引用
本申请是要求了以下在先临时专利申请的优先权并且受益于该在先临时专利申请的非临时有效专利申请:2009年5月1日提交的MingjunLiu等人的题目为“用于纳米结构体分散的官能化基质”的USSN61/215,054,其通过参考文献的形式整体并入本申请用于所有的目的。
发明领域
本发明涉及纳米结构体配体,特别是具有醇或伯胺和/或仲胺纳米结构体连接部分的聚合硅树脂配体。本发明还涉及纳米复合材料,特别是具有由这种配体形成的和/或包括带有这种配体的纳米结构体的硅树脂基质的复合材料。本申请的特征还在于用于制备纳米复合材料的方法。
发明背景
高性能下变频的(down-converting)磷光体技术在下一代可见光发射(包括高效能的固态白光照明(SSWL))中起到显著的作用。此外,这类技术还可应用于近红外(NIR)和红外(IR)光发射技术。由紫外光(UV)或蓝光发射半导体发光二极管(LED)下变频为蓝色、红色和绿色波长提供了用于传输商业上有吸引力的白光光源的快速、有效且成本有效的途径。不幸的是,目前是用于固态下变频的主要来源的现有稀土活化的磷光体或卤化磷酸盐最初发展用于荧光灯和阴极射线管(CRT),且因此当它变得是SSWL的唯一要求时具有许多的严重不足。同样的,虽然一些SSWL体系是可获得的,但差的功效(<20光流明/瓦(lm/W)),差的显色性(显色指数(CRI)<75)和极高的成本(>$200/公里(klm))限制了这种技术定位市场,例如闪光灯和步道照明。
此外,作为芯片/涂层界面处光子内反射的结果,LED通常遭受性能的下降。典型地,将LED封装或涂覆在聚合物材料(其可以包含磷光体)中以提供对发光芯片的稳定性。目前,这些涂层通过使用具有与基础材料(即芯片)完全不同折射率的无机或有机涂料制备,由于在两种材料之间界面处的折射率不匹配,这导致有害的光学效果。此外,LED的温度可以达到超过100℃。为了容许能伴随着温度升高的膨胀和收缩,通常将适应的聚合物层(例如硅树脂)放置与芯片接触。为了对LED提供额外的稳定性,这种适应层通常还进一步涂覆以硬壳聚合物。
得到的LED结构由于相比于LED聚合物涂层较低的折射率,会在芯片/适应的聚合物界面处遭受光损失。但是,如果适应层的折射率增加,则由于在适应的聚合物和硬壳聚合物之间的高折射率/低折射率界面处因为内反射,而甚至会产生更大的损失。
当使用常规的无机磷光体用于SSWL时,存在许多导致差的功效的关键因素。这些包括:在LED-芯片和磷光体层界面处的全内反射导致从LED到磷光体层的差的光提取;由于通过磷光体颗粒产生的光的散射以及通过LED芯片、金属接触部和壳的寄生吸收而从磷光体层到周围环境的差的光提取;在红色波长范围内宽的磷光体发射导致不能将发射光子用于近IR中;以及当在蓝光波长范围内激发时(这是吸收和发射效率的结合),磷光体本身差的下变频效率。虽然用UV激发改进了效率,但是由于在UV中相对蓝光波长范围较大的Stokes-频移发光和较低的LED效率导致的额外损失使得这成为整体上很少吸引人的解决方案。
结果,低效率推动了高的有效占用成本。该成本还显著受到来自耗费劳动的制造和装配方法以建造这些装置的影响,例如在包封期间在LED-芯片上磷光体层的异质集成(heterogeneous integration)(DOE andOptoelectronics Industry Development Association"Light emittingdiodes(LEDs)for general illumination,"Technology Roadmap(2002))。历史上,蓝色LED已经用于与各种谱带边缘滤波器(band edgefilters)和磷光体结合以生成白光。但是,许多现有的滤波器允许来自光谱蓝光端的光子发射,因此限制了白色LED的品质。由于有限数量的能同时在蓝色中激发的可获得的磷光体颜色和颜色组合,这种装置的性能也受到差显色性的损害。因此,对于可剪裁(tailor)以在可见光(特别是蓝光端)、紫外光和近红外光谱中滤掉特定的光子发射的有效的纳米复合材料滤波器存在着需求。
虽然已经开发了一些有机磷光体用于SSWL,但有机材料具有一些使得它们不可能成为用于高效SSWL的可行解决方案的不可克服的缺点。这些包括:快速的光降解导致短的寿命,特别是在蓝光和近-UV光的存在下;低的吸收效率;光学散射,在芯片界面处差的折射率匹配,对不同颜色磷光体的窄的和不重叠的吸收光谱使得难以或者不可能同时激发多重色彩;以及宽的发光光谱。因此对辅助生产高品质、高亮度、白光的聚合物层存在着需求。
除了其他优点,本发明通过提供用作下变频层、光子过滤层和/或折射率匹配层的聚合物纳米复合材料,通过利用剪裁纳米晶体以便最大化它们发射、吸收和折射率性质的能力而满足了这些需求。
发明概述
将纳米结构体分散在聚合物基质中对于用于许多应用而言是期望的,例如将量子点应用于发光器件,其中在合适的基质中分散可以稳定量子点,增强量子产率,并且使器件的制造简便。本发明描述了增强纳米结构体在聚合物基质中分散的新颖的配体,如由所述配体形成的硅树脂基质。
一方面,本发明提供了包括醇纳米结构体连结部分的多种聚合物分子,其用作纳米结构体配体。因此,一组通常的具体实施方案提供了包括纳米结构体和聚合物配体的组合物,其中该配体包含硅树脂主链和与硅树脂主链偶联的一个或多个醇部分。该硅树脂主链典型地为直链的,但是其任选为支化的。特别有用的配体包括与硅树脂主链偶联的一个或多个二甲醇部分。
通常,聚合物配体与纳米结构体的表面相连结。但是,不是所有的组合物中的配体都需要与纳米结构体相连结。在一些实施方案中,过量提供聚合物配体,以至于配体的一些分子与纳米结构体的表面相连结且配体的其他分子不与纳米结构体的表面相连结。过量的配体任选可聚合入在其中嵌入了纳米结构体的硅树脂基质,正如本文以下更详细所描述的。该组合物可以包括溶剂、交联剂和/或引发剂(例如自由基或阳离子引发剂),例如以方便这种组合。
在一类具体实施方案中,聚合物配体包含至少两种不同类型的单体单元,其中的至少一种包含醇(例如二甲醇)部分和其中的至少一种缺少醇部分。包括醇基团的单体的数量和/或百分数可以变化。例如,包含醇(例如二甲醇)部分的单体单元任选地以0.5%到20%之间的摩尔百分数存在于配体中,且更优选在0.5%到10%之间。在其中配体包含二甲醇纳米结构体连结基团的实施方案中,包含醇部分的单体单元任选包含每单体单元单只一个二甲醇部分。在其中配体包含二甲醇纳米结构体连结部分的实施方案中,配体任选包含每配体分子1-200个二甲醇部分。
缺少醇部分的子单元可以是,例如二苯基硅氧烷,苯基甲基硅氧烷或二甲基硅氧烷基团,不一而足。作为另一个实施例,缺少醇基团的单体单元可以包括烷基基团,可聚合的基团,环氧基团,胺基团或羧酸基团。本申请描述了多种示例性的配体。
该纳米结构体任选为纳米晶体或量子点,例如无机的、半导体,或金属纳米晶体。任选的,该纳米结构体是核-壳纳米结构体。
相关的一般类别的具体实施方案提供了制备复合材料的方法。在该方法中,提供具有连结到纳米结构体表面的聚合物配体的纳米结构体群体,其中聚合物配体包含硅树脂主链和与硅树脂主链偶联的一个或多个醇(例如二甲醇)部分。将该聚合物配体结合到其中嵌入了纳米结构体的硅树脂基质中。
该基质优选由配体形成。因此,在一类具体实施方案中,该方法包括提供过量的聚合物配体,该过量的聚合物配体并不连结到纳米结构体的表面,且将过量的聚合物配体和连结到纳米结构体的聚合物配体结合到硅树脂基质中。在其中没有提供其他硅树脂基质前体的具体实施方案中,该基质任选地实质上由聚合物配体和/或其交联的或进一步聚合的形式以及任何残留的溶剂、交联剂、引发剂以及类似的物质组成。
在一些具体实施方案中,为了将聚合物配体结合到硅树脂基质中,使纳米结构体的群体和过量的聚合物配体与至少一种溶剂混合。然后蒸发该溶剂,例如在将混合物施用于器件中或器件上复合材料的期望的位置之后。与纳米结构体相连结的聚合物配体和不与纳米结构体相连结的过量聚合物配体形成了硅树脂基质。在一些具体实施方案中,提供了交联剂并且其与配体上的羟基部分反应。类似的可以提供引发剂(例如自由基引发剂或阳离子引发剂)。
对于包含至少两种不同类型单体单元的聚合物配体,其中的至少一种包含纳米结构体连结部分和其中的至少一种缺少纳米结构体连结部分但是其包含可聚合基团或环氧基团,将聚合物配体结合到硅树脂基质中包括使聚合物配体的不同分子上的可聚合基团或环氧基团相互反应。
本发明还描述了示例性的纳米结构体和配体。本质上对于以上组合物所有指明的特征也应用于这些方法,因为它们是相关的。
另一方面,本发明提供了多种包括用作纳米结构体配体的胺纳米结构体连结部分的聚合物分子。因此,一组一般类别的具体实施方案提供了包括纳米结构体和聚合物配体的组合物,其中该配体包含硅树脂主链和与硅树脂主链偶联的一个或多个伯胺和/或仲胺部分。硅树脂主链典型的为直链的,但是其任选为支化的。
对于以上的具体实施方案,任选过量提供聚合物配体,以至于配体的一些分子与纳米结构体的表面相连结且配体的其他分子不与纳米结构体的表面相连结。过量的配体可以任选地聚合入在其中嵌入纳米结构体的硅树脂基质,正如下文中所更详细描述的那样。
包含胺部分的单体单元任选每个单体单元包含单只一个伯胺部分。在一类具体实施方案中,包含胺部分的单体单元包含每单体单元单只一个伯胺部分和单只一个仲胺部分。
在一类具体实施方案中,聚合物配体包含至少两种不同类型的单体单元,其中的至少一种包含胺(例如伯胺和/或仲胺)部分且其中的至少一种缺少胺部分。包括胺基的单体的数量和/或百分数可以变化。例如,包含胺部分的单体单元任选以0.5%到20%之间的摩尔百分数存在于配体中。在一个示例性的具体实施方案中,配体包括每配体分子1-20个伯胺部分,且任选还包括每配体分子等数量的仲胺部分。
所述组合物任选包括配体的混合物。例如,在一类具体实施方案中,组合物还包括第二聚合物配体,该第二聚合物配体包含硅树脂主链和与第二聚合物配体的末端子单元偶联的一个或多个伯胺和/或仲胺部分。
本发明描述了多种示例性的配体。还描述了示例性的纳米结构体。该纳米结构体任选为纳米晶体或量子点,例如无机的、半导体或金属纳米晶体。任选的,该纳米结构体是核-壳纳米结构体。
组合物还可以包括交联剂和/或引发剂,例如,用于将配体和纳米结构体结合到硅树脂基质中。在一类具体实施方案中,交联剂是环氧交联剂,例如环氧环己基或环氧丙基交联剂。交联剂任选为环氧硅树脂交联剂,其例如可以是直链的或支化的。在某些具体实施方案中,交联剂是直链的环氧环己基硅树脂或直链的环氧丙基硅树脂。
相关的一组一般性具体实施方案提供了制备复合材料的方法。在该方法中,提供具有与纳米结构体的表面相连结的聚合物配体的纳米结构体群体。该聚合物配体包含硅树脂主链和与该硅树脂主链偶联的一个或多个伯胺和/或仲胺部分。将该聚合物配体结合到其中嵌入了纳米结构体的硅树脂基质中。
在一组具体实施方案中,该方法包括提供过量聚合物配体,该过量的聚合物配体并不与纳米结构体的表面相连结,且将过量的聚合物配体和与纳米结构体相连结的聚合物配体结合到硅树脂基质中。在其中没有提供其他硅树脂基质的前体的具体实施方案中,基质任选地实质上由聚合物配体和/或其交联的或进一步聚合的形式,以及任何残留的溶剂、交联剂、引发剂以及类似的物质组成。
任选的,提供第二聚合物配体并且其与聚合物配体一起结合到硅树脂基质中。在一个示例性的具体实施方案中,第二聚合物配体包含硅树脂主链和与末端子单元偶联的一个或多个伯胺和/或仲胺部分。所述第一聚合物配体通常具有与内部子单元偶联的胺部分。
在一些具体实施方案中提供交联剂并且使其与配体上的胺部分(例如伯胺或仲胺部分)反应。类似的,可以提供引发剂(例如自由基引发剂或阳离子引发剂)。
本发明描述了示例性的纳米结构体和配体。本质上对于以上组合物所有指明的特征也应用于这些方法,因为它们是相关的。
通过本发明的任何方法制备的复合材料也是本发明的特征,例如包含该复合材料的器件(例如LED)和新颖的配体本身。本发明的复合材料任选地表现出高的量子产率与和改进的纳米晶体的荧光稳定性,特别是在高温和高光通量的条件下。
本发明其他的特征和优点将在以下的描述说明中列出,并且一部分内容由该描述说明来看是显而易见的,或者可以通过本发明的实践获知。本发明的优点可以通过结构被认识到和获得,并且在所书写的说明和权利要求以及附图中特别指出。
可以理解的是前述的一般性描述说明和以下详细的描述说明都是示例性的和解释性的,且其意在按照权利要求为本发明提供进一步的解释。
附图概述
合并到本发明中并且形成说明书的一部分的附图说明了本发明,并且与说明书一起进一步用于解释本发明的原理并且能够使所属领域的技术人员实现和使用本发明。
图1显示了显示发射和吸收波长的连续剪裁性的对于不同纳米晶体半径的吸收和发光光谱。
图2显示了根据本发明的一个具体实施方案,在包封期间集成的传统的厚磷光体和在切片之前集成的纳米复合材料下变频层的对比。
图3显示了与传统的磷光体边缘损失相比,通过使用磷光体纳米晶体在可见光谱边缘处浪费的光的消除。
图4显示了通过混合连续的纳米晶体尺寸、生成宽波带白光而产生的标准亮度。
图5显示了根据本发明的一个具体实施方案的三色发射LED。
图6为根据本发明的一个具体实施方案的聚合物层的横截面图。
图7为根据本发明的一个具体实施方案的具有纳米晶体密度梯度的聚合物层的横截面图。
图8为根据本发明的一个具体实施方案的具有涂覆该器件的聚合物层的光学器件的横截面图。
图9为显示了不同基质的有效折射率相对于ZnS纳米晶体的体积负载率的关系图。
图10为显示了包含ZnS纳米晶体的硅树脂纳米复合材料的有效折射率作为波长的函数的关系图。
图11是根据本发明的一个具体实施方案封装在聚合物层中的发光二极管的横截面图。
图12是根据本发明的一个具体实施方案封装在具有纳米晶体密度梯度的聚合物层中的发光二极管横截面图。
图13是传统的LED芯片-硅帽(silicon cap)组件。
图14是根据本发明的一个具体实施方案的纳米复合材料-LED芯片组件。
图15是根据本发明的一个具体实施方案的纳米复合材料-LED芯片组件。
图16是包含ZnS纳米晶体的硅树脂纳米复合材料的百分比透光度作为纳米晶体尺寸的函数的关系图。
图17是包含ZnS纳米晶体的硅树脂纳米复合材料的百分比透射率作为波长函数的关系图。
图18显示了具有尾基团、头基团和中部/体基团的3部分配体的代表图。
图19为可以与本发明的纳米晶体共轭的实施例配体。
图20a-20n显示了根据本发明的多个实施例配体的实施例、化学合成和NMR表征。
图21为制备根据本发明的聚合物层的流程图表示的方法。
图22为根据本发明的一个具体实施方案的包含每个都具有不同纳米晶体密度梯度的各个层的聚合物层的横截面图。
图23显示了ZnS纳米晶体的X-射线衍射分析。
图24显示了ZnS纳米晶体的透射电子缩微照片。
图25A-B示意性的说明了根据本发明的示例性配体的化学合成。
图26示意性的说明了根据本发明的示例性配体的化学合成。
图27示意性的说明了根据本发明的示例性配体的化学合成。
图28示意性的说明了根据本发明的示例性配体的化学合成。
图29示意性的说明了根据本发明的示例性配体的化学合成。
图30示意性的说明了根据本发明的示例性配体的化学合成。
图31A-C示意性的说明了根据本发明的示例性配体的化学合成。
图32显示了发绿光的典型的InP/ZnS纳米晶体样品的光致发光光谱。其显示了光谱的FWHM。
图33的小图A表示了荧光素染料的吸收光谱。小图B表示了染料的光致发光光谱。小图C表示了图32的InP/ZnS纳米晶体的吸收光谱。小图D表示了纳米晶体的光致发光光谱。小图E显示了由小图A-D推导出的量子产率。
图34示意性的说明了带有多个二甲醇基团的示例性硅树脂配体的合成。
图35示意性的说明了示例性的交联反应、小图A中通过胺的环氧加成,小图B中通过环氧化物的环氧加成(通过醇引发),小图C中胺-异氰酸酯,小图D中胺-酸酐缩合以及小图E中胺-甲基酯缩合。
现在参考附图描述本发明。在附图中,相同的参考标记数字表示相同的或功能相似的元素。
发明详述
应当理解的是,所示的和这里描述的特定的实施方式是本发明的实例并且不意在从别的方面以任何方式限制本发明的范围。当然,为了简洁,传统的电子设备、制造、半导体器件和纳米晶体、纳米线(NW)、纳米棒、纳米管和纳米带技术和其他体系的功能方面(以及体系各个操作元件的元件)在本发明中可能并不会做详细的描述。进一步应当理解的是,本发明描述的制造技术可以用于创造任何半导体器件类型以及其他电子元件类型。此外,该技术还能适合应用于电气系统、光学体系、消费电子设备、工业或军事电子设备、无线电系统、空间应用或任何其他应用。
本发明提供了包含具有嵌入的纳米晶体的聚合物材料的不同聚合物纳米复合材料。该纳米晶体的不同性质,包括吸收性质、发射性质和折射率性质被用于产生可以剪裁和调节用于不同应用的纳米复合材料。在一个具体实施方案中,本发明提供了在下变频应用中利用它们的发射性质的半导体纳米晶体的应用。另一种应用通过使用纳米晶体的高吸收系数和相对尖锐的谱带边缘以作为截止式滤波器滤光而结合了相同纳米晶体的两种非电活性(active)性质。在另一个具体实施方案中,当将其混合到低折射率的材料中以制造具有与它们所涂覆的基底相匹配的有效折射率的实质上透明的纳米复合材料时,还可以使用纳米晶体的高折射率。在其他的具体实施方案中,纳米复合材料的折射率可以与第二、其他封装材料匹配。本发明还提供了以不同的构造将这些不同性质中的两种或多种结合到同一纳米复合材料中的纳米复合材料。
本发明一方面提供了新颖的纳米结构体配体,包括例如当将纳米结构体结合到基质中时增强纳米结构体在溶剂或聚合物中的混溶性、增加纳米结构体的量子效率和/或使纳米结构体保持发光的配体。本发明还描述了制备磷化铟纳米结构体和核-壳纳米结构体以及具有高量子效率、小尺寸和/或窄尺寸分布的纳米结构体的方法。
正如这里使用的,术语“纳米晶体”指的是实质上是单晶的纳米结构体。纳米晶体具有至少一个具有小于大约500nm的维度、并且低至小于1nm数量级的范围(region)或特征维度。正如这里使用的,当涉及任何数值时,“大约”表示所述值的±10%的值(例如大约100nm包括90nm到110nm的尺寸范围)。术语“纳米结晶”、“纳米点”、“点”和“量子点”是本领域普通技术人员容易理解的,表示类似的结构并且在本发明中可互换使用。本发明还包括多晶或无定形纳米晶体的使用。
典型地,特征维度的范围将沿着结构的最小轴。在材料的性质方面纳米晶体可以是实质上均一的,或者在某些具体实施方案中可以是不均一的。纳米晶体的光学性质可以通过它们的颗粒尺寸、化学或表面组成测定。剪裁在大约1nm和大约15nm范围内的纳米晶体尺寸的能力使其能够发出覆盖整个光谱的光以便在显色性上提供重要的通用性。颗粒封装提供对于化学和UV侵蚀剂的耐受性。
附加的示例性纳米结构体包括但不限于纳米线、纳米棒、纳米管、支化的纳米结构体、纳米四脚体(nanotetrapods)、纳米三脚体、纳米二脚体、纳米颗粒和具有至少一个有着小于大约500nm,例如小于大约200nm、小于大约100nm、小于大约50nm或者甚至小于20nm或小于10nm尺寸的范围或特征维度(任选为三维中的每个)的类似的结构体。典型的,所述范围或特征维度将沿着结构的最小轴。例如,纳米结构体实质上可以是晶体、实质上可以是单晶、多晶、无定形体或它们的组合。
用于本发明中的纳米晶体(或其他纳米结构体)可以使用任何本领域技术人员已知的方法制备。2004年3月10日提交的U.S.专利申请No.10/796,832、2003年9月4日提交的U.S.专利申请No.10/656,910和2004年6月8日提交的U.S.临时专利申请No.60/578,236中公开了合适的方法,每一个专利申请公开的内容都通过参考全部并入本发明中。用于本发明中的纳米晶体(或其他纳米结构体)可以由任何合适的材料、合适地无机材料且更合适地无机导电或半导体材料制备。合适的半导体材料包括U.S.专利申请No.10/796,832中公开的那些并且包括任何类型的半导体,包括第II-VI族、第III-V族、第IV-VI族和第IV族的半导体。合适的半导体材料包括但不限于Si、Ge、Sn、Se、Te、B、C(包括钻石)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3N4、Ge3N4、Al2O3、(Al,Ga,In)2(S,Se,Te)3、Al2CO以及这些半导体中的两种或多种的合适的组合。
在某些方面,半导体纳米晶体或其他纳米结构体可以包含选自由p-型掺杂剂或n-型掺杂剂组成的组的掺杂剂。用于本发明的纳米晶体(或其他纳米结构体)还可以包含第II-VI或III-V族半导体。第II-VI或III-V族半导体纳米晶体和纳米结构体的实例包括来自元素周期表第II族元素,例如Zn、Cd和Hg与来自第VI族元素,例如S、Se、Te、Po的任何组合;以及元素周期表第III族元素,例如B、Al、Ga、In和Tl与来自第V族元素,例如N、P、As、Sb和Bi的任何组合。
其他合适的无机纳米结构体包括金属纳米结构体。合适的金属包括但不限于Ru、Pd、Pt、Ni、W、Ta、Co、Mo、Ir、Re、Rh、Hf、Nb、Au、Ag、Ti、Sn、Zn、Fe、FePt等。
用于本发明中的纳米晶体(或其他纳米结构体)还可以进一步包含如本申请全文所述的共轭、配位、缔合或附着于它们的表面上的配体。合适的配体为本发明描述的配体。U.S.专利申请公开2007/0034833、U.S.专利申请No.10/656,910和U.S.临时专利申请No.60/578,236中还公开了其他的配体。这些配体的使用可以增强纳米晶体结合到各种溶剂和基质,包括聚合物中的能力。增加纳米晶体在不同溶剂和基质中的混溶性(即混合而不分离的能力)允许它们遍布聚合物组合物分散已使得纳米晶体不会聚集在一起并且因此不会散射光。这种配体在本发明中描述为“混溶增强性”配体。
正如这里使用的,术语“纳米复合材料”指的是包含分散或嵌入其中的纳米晶体的基质材料。合适的基质材料可以是任何本领域普通技术人员已知的材料,包括聚合物材料、有机和无机氧化物。本发明的纳米复合材料可以是正如这里描述的层、封装体、涂层或薄膜。应当理解的是,在其中提及层、聚合物层、基质或纳米复合材料的本发明具体实施方案中,这些术语可以互换使用,并且如此描述的具体实施方案不限于纳米复合材料的任何一种类型,而是包括本发明描述的或现有技术已知的任何基质材料或层。
I.下变频的纳米复合材料
为了与来自荧光和白炽光的常规照明设备形成竞争,必须在固态白光照明(SSWL)性方面进行显著的改进。不仅在磷光体的量子效率,而且有关涉及效率、显色性和整体系统成本的下变频体系的所有方面的改进都是需要的。在一个具体实施方案中,本发明提供了基于工程纳米复合材料的与目前可获得的蓝光LED激发电源一起使用的完整下变频体系,该蓝光LED激发电源显著的改善SSWL的整体成本、性能和效率。本发明的下变频纳米复合材料利用了剪裁为吸收特定波长的光并且之后以第二个波长发射的纳米晶体的发射性质,由此提供有源(active)源(例如LED)的增强的性能和效率。同样的,用于本发明下变频应用的纳米晶体应被构造和剪裁以高度发光。在一个具体实施方案中,这种体系制得的SSWL超过了最好的传统的荧光和白炽灯泡的性能,其以小于1U.S.美元/klm的成本具有超过80的显色性和超过200lm/W的功率。
SSWL器件的性能特征
为了评估固态白光照明(SSWL)器件的性能特性,通常使用三种主要属性:(1)发光效率,(2)相关色温(CCT)以及(3)显色指数(CRI)。DOE andOptoelectronics Industry Development Association(DOE和光电子工业发展协会)"Light emitting diodes(LEDs)for generalillumination,"Technology Roadmap(2002)。
发光效率(测量为lm/W)是由电功率(W)转化为光功率(W)的效率,其与由光功率(W)转化为光通量的效率结合。发光效率受到多种因素的影响,并且总体来说可以写成几个单独效率的贡献:
E发光=ηwp×ηlum×ηss×ηIQE×η包封体(Eos,Epa,ETIR,Eexp)×…
其中ηwp是插座的效率,ηlum是人眼的适光效率/响应,ηss是由蓝光子到较长波长光子的Stokes频移效率,ηIQE是磷光体的内部量子效率,且η包封体是整体包封体的效率并且说明来自光学散射(Eos)、寄生散射(Eps)、全内反射(ETIR)、例如引线框和底座(submount)的外部包封体(Eexp)的光提取效率方面的损失。
CCT或相关色温指的是人眼对阳光光谱内容的最佳适应性质。对于期望的白色,被认为是色度坐标的蓝色(B)、红色(R)和绿色(G)的相对强度能在可见阳光中最佳地再生它们,其对应于6000Kelvin(K)的黑体光谱分布。为了最佳照明,对于在2000℃和8000℃之间的温度用于R、G和B的色度坐标必须下降到黑体辐射附近。比“最佳”温度更高或更低会提示眼睛其为太“冷”或太“热”的色调。
与来自参考光源的相比较,在给定的光源照明下显色性必须利用不同的目标颜色的外观。通常,14个不同饱和度的样本颜色的集合用于显色指数(CRI),其提供了在1到100范围内的定量测量。两种相似色温的光源可以产生大范围改变得CRI。对于照明,低的CRI使得颜色不可接受,而高的CRI(>80)对于普通的照明目的来说是可以接受的。
提供最佳白光发射器件的过程
在一个具体实施方案中,本发明提供的方法包括:
(1)模拟模型可以用于以CRI>80、CCT为大约4000K以及效率为200lm/W的目标测定最优化纳米晶体混合物的CRI、CCT和发光效率。
(2)纳米晶体和纳米晶体组分混合物在通过模拟测定的发射峰宽度、峰最大值和强度比例下合成。
(3)开发了受控的纳米晶体磷光体纳米复合材料,其包括:(a)制备在选择的复合材料中能够获得高(大约20%或更多)负载密度的表面配体;(b)进行将3-部分配体结合到纳米晶体上的配体交换过程;(c)制备均匀的、无相分离的纳米晶体负载密度最高为20体积%的TiO2纳米复合材料;(d)测定纳米复合材料中依据纳米晶体负载密度的量子产率(QY);(e)测定纳米复合材料中依据负载密度的折射的指数和纳米复合材料与蓝色LED基底(例如蓝宝石和/或SiC)的指数匹配性;以及(f)测定负载密度和薄膜厚度与最佳折射率匹配性和纳米复合材料光学密度的关系。
模拟测定对于高显色性、色温和高效率的最佳纳米晶体组分混合物
为了预测和最大化纳米晶体混合物的CRI、CTT和发光效率,使用动态的和稳固的模拟模型。将超收敛的、随机搜索、参数最优化算法用于找到最高性能点,服从所施加的限制。该模型允许基于纳米磷光体组分和混合物的实际实验性比色的特性和光学特性计算这些性能特性。依次地,将这一模型用于辅助最佳纳米复合材料SSWL器件的设计和制造。
模拟程序结合算法以测定纳米晶体组分混合物的最佳光谱发射特性用于显色性、色温和白光产生的整体功效的同时最大化。该方法在磷光体参数空间中提供了超收敛、随机搜索、最优化算法。该程序寻找同时最大化发光功效、显色性(CRI)和色温(CCT)的发射波长的组合,其服从使用标准CIE(Commission Internationale de l’Eclairage)计算的白光色度限制。测量的纳米晶体量子效率、峰值波长和发射光谱宽度为输入参数。性能边界,例如不小于90%的功效或CRI>90还可以应用于设计中的灵活性。所要求的波长数(及纳米晶体尺寸)为允许在性能和制造成本之间确定平衡的变量。
采用具有迭代循环的确认程序,由此制造纳米晶体组分的混合物,其尺寸、组成峰最大值、峰值宽度、混合物丰度以及内部量子效率通过模拟预测得。实验测定CRI和CCT的结果值并且与预测的值对比,适当时进行调整。基于包括Stokes频移效率、内部量子效率和适光响应的光学参数测定发光效率。
这一程序的输出是发射颜色的最佳数、每种颜色的精确中心波长、每种颜色的精确光谱宽度和每种的确切相对强度以及基于通过例如选择的蓝色LED(大约460nm)激发的相应集合。
全文描述的模拟模型可以测定纳米晶体的合适的发射特性。此外,有用的是(1)合成具有规定光谱特性的材料,并且(2)将该材料用于验证该模型。为了达到这一目的,将可获得的溶液相合成技术用于制造核/壳纳米晶体磷光体并且通过理论模型测定来表征混合物。
基于目前的方法,制造的纳米晶体批料具有通过理论模型生成的光谱特征。每一种独特的波长都分开合成并且组合产生最后的混合物。对每一个样品的中心波长和峰宽度给予特别的关注。特别的是,在红色中的窄发射避免了在IR中的效率损失。为了实现这一点,制备和表征了纳米晶体的溶液相混合物,其具有适当的组成以产生具有CRI和CTT的白光,当用蓝色激发照射时其与理论模型相匹配且总的下变频效率堪比通过该模型预测的下变频效率,在该方法中假定对于其他机理为零损失。这些测量可以在溶液相中使用标准的可视荧光计和具有与蓝色-LED相匹配的激发的荧光标准物进行。
纳米晶体磷光体
虽然对于本领域普通技术人员来说已知的任何方法都可以用于制造纳米晶体磷光体,但是合适的是使用用于无机纳米材料磷光体的受控生长的溶液相胶体方法。参见Alivisatos,A.P.,"Semiconductorclusters,nanocrystals,and quantum dots,"Science 271:933(1996);X.Peng,M.Schlamp,A.Kadavanich,A.P.Alivisatos,"Epitaxial growth of highly luminescent CdSe/CdS Core/Shellnanocrystals with photostability and electronic accessibility,"J.Am.Chem.Soc.30:7019-7029(1997);以及C.B.Murray,D.J.Norris,M.G.Bawendi,"Synthesis and characterization of nearlymonodisperse CdE(E=sulfur,selenium,tellurium)semiconductornanocrystallites,"J.Am.Chem.Soc.115:8706(1993)。这种制造方法技术杠杆调节了低成本的可加工性而不需要无尘室和昂贵的制造设备。在这些方法中,将在高温下进行高温分解的金属前体被快速地注射到有机表面活性剂分子的热溶液中。这些前体在升高的温度下分解并且反应生有核的纳米晶体。在这一初始的成核期之后,通过将单体添加到生长的晶体中开始生长相。结果就是在具有有机表面活性剂分子覆盖其表面的溶液中产生独立的(freestanding)结晶纳米颗粒。
利用这种方法,合成作为在几秒内进行的初始成核过程而发生,之后在升高的温度下晶体生长几分钟。可以改进参数例如温度、存在的表面活性剂的类型、前体材料和表面活性剂与单体的比例,以使得改变反应的性质和过程。温度控制成核过程的结构相,前体的分解速率和生长的速率。有机表面活性剂分子调节溶解度并且控制纳米晶体的形状。表面活性剂和单体之间、表面活性剂相互之间、单体相互之间的比例以及单体的各自浓度都强烈地影响着生长的动力学。
在合适的具体实施方案中,CdSe用作纳米晶体材料,在一个实例中用于可见光下变频,这是因为这种材料的合成的相对成熟性。由于利用了一般的表面化学,还有可能代替不含镉的纳米晶体。
核/壳纳米晶体
在半导体纳米晶体中,光诱导的发射来自于纳米晶体的谱带边缘状态。来自纳米晶体的谱带边缘发射与来源于表面电子状态的辐射和非辐射衰变通道相竞争。X.Peng,et al.,J.Am.Chem.Soc.30:7019-7029(1997)。作为结果,表面缺陷例如悬挂键的存在提供了非辐射重组中心并且有助于降低的发射效率。钝化和除去表面陷阱态的有效和永久的方法为在纳米晶体的表面上外延生长无机壳材料。X.Peng,et al.,J.Am.Chem.Soc.30:7019-7029(1997)。可以选择壳材料使得相对于核材料(例如具有较高的带隙以提供将电子和空穴定位于核的潜在步骤)来说其电子能级为I型。结果,可以降低非辐射性再结合的可能性。
通过向含有核纳米晶体的反应混合物中添加含有壳材料的有机金属前体而获得核-壳结构。在这种情况中,成核过程之后不是生长,而是核起到核的作用,且壳从它们的表面生长。反应的温度保持较低以有利于将壳材料单体添加到核表面上,从而阻止了壳材料的纳米晶体的独立成核。反应混合物中表面活性剂的存在指导着壳材料的受控生长并且保证可溶性。当在两种材料之间具有低点阵(lattice)不匹配时获得均一且外延生长的壳。此外,球形用于最小化来自大曲率半径的界面应力能,由此阻止了能够降低纳米晶体体系光学性能的位错的形成。
在合适的具体实施方案中,ZnS可以用作使用已知合成方法的壳材料,其导致高品质的发射。正如以上所述,如果必要的话,例如如果核材料被改变,则这种材料能容易地替换。另外的示例性的核和壳材料是本发明中描述的或现有技术中已知的。
核-壳纳米晶体的光学性质
由于核-壳纳米晶体有限的尺寸,所以与它们的块体(bulk)对应物相比,它们表现出独特的光学性质。通过来自谱带边缘照明的单只一个Gaussian峰限定发射光谱。发射峰的位置通过作为量子限制直接结果的核颗粒尺寸确定。例如,通过在2nm和15nm的范围内调节颗粒直径,可以在整个可见光谱(图1)的范围内精确地调谐发射。图1显示了增加尺寸(2nm到15nm)的纳米晶体的吸收和发射峰。该初始峰(较低波长)显示了nm表示的吸收波长而较后的峰(较高波长)显示了nm表示的发射波长。随着纳米晶体尺寸的增加,吸收和发射峰波长从大约450nm处迁移到大约700nm处,并且可以在这个范围内调谐。图1中竖条状阴影柱表示在蓝色100、绿色102和红色104范围内的可见光波长。
通过样品的尺寸分布测定发射峰的宽度。在最大值的一半(FWHM)处可以获得低至20nm的全宽度的峰宽。反过来,纳米晶体的吸收光谱非常宽和强,正如块体材料的典型那样,其特征在于与有机磷光体不同。在晶体尺寸的全部范围内吸收系数超过55,000/cm(在光谱的蓝色范围内)。此外,核-壳纳米晶体可以制备具有高达90%的量子效率(由于Stokes迁移这并没考虑能量损失,而简化为光子输出和光子输入之比)。
在一个具体实施方案中,本发明提供了可设计的(engineerable)下变频体系(参见图2)。根据本发明的体系可以包含在切片和包封前能够直接涂覆在LED晶片上的纳米复合材料下变频层,消除了对包封期间磷光体层异质集成的需要。纳米复合材料下变频层适合地由三个部分来设计,包括:(1)协调以在需要的波长处发射并且具有需要的光谱特性以便在最后的器件中最优化显色指数(CRI)和功率转换效率的,一种或几种、合适地为两种或更多种尺寸的半导体纳米晶体磷光体;(2)选择用于高折射率(通常为大约1.5或更高)、低UV降解和与LED芯片匹配的热膨胀性的主体基质(例如聚合物);以及,(3)在纳米晶体和主体基质之间充当界面、允许每种元素被独立地选择和剪裁而不会影响其他组分的独特的纳米晶体表面化学。正如图2所示,这种下变频纳米复合材料磷光体层208将会代替磷光体200和磷光体封装层206。
通过这三个部分的每一个的选择和协调,有可能同时:(1)设计可以剪裁使得CRI和下变频效率之间最优化的特定的复合材料发射光谱;(2)折射率与LED芯片的复合材料层相匹配以降低下变频前的光提取损失;(3)在下变频层中减少散射,由此最小化来自磷光体层的光提取损失;(4)在任何具有同时和有效的光吸收(大约300nm)(取决于纳米颗粒的尺寸和组成)的波长处产生具有超过大约20%(例如40%、60%、80%、100%)的量子效率的下变频;以及(5)由于通过使用在红光波长中极强的发射光谱(大约20nm FWHM),发射的光子进入近红外(近-IR)而最小化效率的损失。这种方法使有可能在低于1U.S.美元/klm的成本下获得超过200lm/W的整体功率转换效率、超过80的CRI,和超过100瓦/芯片的整体芯片亮度。
图3显示了本发明的下变频纳米复合材料的发射范围在2色磷光体混合的红色区域中,与来自传统的用于白色的无机磷光体的结果进行对比。发射峰302和304表示根据本发明的一个具体实施方案的2色磷光体混合的发射光谱。光谱306表示传统的无机磷光体的发射光谱。不仅窄的发射阻止了目视可见光谱边缘处的光子浪费,而且还允许显色指数和功率转换效率的高级最优化。浪费的光区域308表明自传统无机磷光体在可见光谱边缘处发射的光通过使用强发射峰304而切断。
图4显示了通过使用超过三种且每一种都具有特定的、窄的发射峰的发射颜色微调发射以生成对于任何色温都具有可以高达100的高级显色指数的全发射光谱的构思。但是在极宽发射和极窄发射的两个极端之间对效率和CRI进行平衡。色彩的确切数目、中心波长、相对浓度和光谱宽度可以在理论上测定以便同时最优化这两个参数。
通过使用标准的薄膜和平版印刷加工技术,如图5所示的,绿色500和红色502下变频层可以在划片之前横穿LED芯片204而图案化。这允许集成为单个电路小片(die)发出3色的LED的低成本制造,使得可以将单个电路小片用于对于任何色温动态调整从单色至白色的LED发射。同样的,本发明提供了用于所有照明应用的集成芯片水平的3色混合基的SSWL的形成,其在成本点上与传统的照明具有竞争性,但是其具有更高的效率、性能和色彩设计能力。
用于本发明的所有具体实施方案中的合适的基质包括聚合物和有机及无机氧化物。用于本发明的基质的合适的聚合物包括任何本领域普通技术人员已知的可以用于这种目的的聚合物。在合适的具体实施方案中,聚合物实质上是半透明的或实质上是透明的。这些聚合物包括但不限于聚(乙烯基丁缩醛):聚(乙酸乙烯酯),硅树脂和硅树脂的衍生物,包括但不限于聚苯基甲基硅氧烷,聚苯基烷基硅氧烷,聚二苯基硅氧烷,聚二烷基硅氧烷,氟代硅树脂以及乙烯基和氢化物取代的硅树脂。
本发明使用的纳米晶体可以使用任何合适的方法嵌入到聚合物(或其他合适的材料,例如蜡,油)基质中,例如将纳米晶体混合到聚合物中并且流延为薄膜,将纳米晶体与单体混合并且使它们一起聚合,将纳米晶体混合到溶胶-凝胶中以形成氧化物,或者本领域技术人员已知的任何方法。正如这里使用的,术语“嵌入”用于表示将纳米晶体包含在构成为基质大部分组分的聚合物中。
本发明的层厚度可以通过现有技术中任何已知的方法控制,例如旋转涂覆和丝网印刷。当涂覆光学器件时,例如具有聚合物层的透镜或镜子,这些方法是特别有用的。虽然本发明的不同聚合物层可以是任何要求的厚度,但是适宜地,该层在厚度上将小于大约100mm,并且在厚度上低至大约1mm的数量级。在其他具体实施方案中,本发明的聚合物层在厚度上可以在微米的10's到100's的数量级上。在一个具体实施方案中,本发明提供了厚度超过大约0.5mm的纳米晶体掺杂的层,并且其适宜地仅散射进入该层(参见后面对于散射的讨论)的最少部分的光。在其他的具体实施方案中,该层的厚度将在大约0.5mm和大约50mm之间。在本发明所有的具体实施方案中,纳米晶体可以以任何对于期望的功能合适的负载比例嵌入到不同的基质中。适宜的,该纳米晶体以大约0.001%到大约75体积%之间的比例负载,这取决于应用、使用的基质和纳米晶体的类型。本领域的普通技术人员可以容易地确定合适的负载比例并且该比例在这里进一步对应于特殊的应用进行描述。
II.过滤光子的纳米复合材料
在另一个具体实施方案中,本发明提供了包含聚合物和嵌入该聚合物中的纳米晶体的聚合物层,使得该层用作过滤光子的纳米复合材料。适宜的,该纳米晶体由半导体材料制备,但是全文中描述的任何合适的材料都可以用于制备该纳米晶体。在某些具体实施方案中,纳米晶体将具有使得该纳米晶体吸收特定波长的或整个波长范围内的光的尺寸和组成。同样的,剪裁在这些具体实施方案中使用的纳米晶体以至于它们的吸收特性得到了加强或最大化,而它们的发射特性最小化,即它们以高效的方式吸收光,但是适宜地仅有非常低水平的发射或者优选不发光。但是在其他的具体实施方案中,过滤光子的纳米复合材料还可以包含贯穿全文讨论的具有高发射性质并且在特定波长下发射的纳米晶体。同样的,本发明提供了包含不同类型纳米晶体的纳米复合材料以至于该纳米复合材料在层中表现出一些或者全部全文中讨论的性质。
图6显示了根据本发明的一个具体实施方案的过滤光子的纳米复合材料。图6为显示了嵌入到聚合物602中的纳米晶体604的聚合物层600的横截面图。应当注意的是纳米晶体604并没有遵照比例并且显然仅用于表示说明的目的。本发明的聚合物层和纳米复合材料还可以在相同的层中包含不同尺寸和组成的纳米晶体。
在合适的具体实施方案中,纳米晶体可以均匀地分散遍及在聚合物层和纳米复合材料中(参见图6)。在其他的具体实施方案中,纳米晶体可以随机分布。在其他的具体实施方案中,纳米晶体可以贯穿层分布以至于它们贯穿该层形成纳米晶体梯度(正如以下进一步在折射率部分中讨论的)。图7中描绘了这种具体实施方案,其显示了具有嵌入到聚合物602中的纳米晶体604的聚合物层700,它们以该种方式在聚合物602中形成从高密度(图7较下的部分)到低密度(图7较上的部分)的纳米晶体密度梯度。
本发明的过滤光子的聚合物层和纳米复合材料可以用于涂覆、封装、覆盖、沉积(或任何其他本领域技术人员已知的类似布置)在任何基底材料上。适宜的,本发明的聚合物层可以用于涂覆光学器件。在其他的具体实施方案中,聚合物层可以用于封装有源器件。
在其中过滤光子的聚合物层用于涂覆光学器件的本发明的具体实施方案中,这些光学器件可以是折射的(例如透镜)或反射的(例如镜子)。图8为用包含纳米晶体604的聚合物602涂覆的光学器件802的横截面图。根据该具体实施方案涂覆的光学器件800可以用于其中期望在折射或反射器件上有滤光或抗反射涂层的任何应用中。
在其中过滤光子的聚合物层用于封装有源器件的本发明的具体实施方案中,这种有源器件可以是任何本领域技术人员已知的器件。正如这里使用的,“有源器件”是需要能量源用于其运转并且具有一定的输出的器件,该输出是现在和过去输入信号的函数。有源器件的实例包括但不限于,受控的能量供给器、晶体管、二极管,包括发光二极管(LED),光检测器、放大器、发射器和其他半导体器件。
通过控制用于本发明实践的纳米晶体的尺寸和组成,该纳米晶体将吸收特定波长的光,或特定波长范围的光,但是却并不散射光。使纳米晶体由不同的半导体制得并且控制它们的尺寸的能力允许用吸收来自UV、可见光、近红外(NIR)、红外(IR)波长的光的纳米晶体制备聚合物层。用于本发明的纳米晶体在尺寸上适宜的小于大约100nm,并且在尺寸上低至小于大约2nm。在合适的具体实施方案中,本发明的纳米晶体吸收可见光。正如这里使用的,可见光是具有在大约380nm和大约780nm之间波长的人眼可见的电磁辐射。可见光可以分为不同的光谱颜色,例如红色、橙色、黄色、绿色、蓝色、青色和紫色。本发明的过滤光子的纳米复合材料可以被构造以便吸收形成这些颜色中的任意一种或几种的光。例如,本发明的纳米复合材料可以被构造以便吸收蓝光、红光或绿光,这些颜色的组合或任何中间的颜色。正如这里使用的,蓝光包括波长在大约435nm和大约500nm之间的光,绿光包括波长在大约520nm和565nm之间的光且红光包括波长大约在625nm和大约740nm之间的光。本领域的普通技术人员能够构建可以过滤这些波长或这些颜色之间的波长的任意组合的纳米复合材料,且这些纳米复合材料通过本发明具体阐述。
包含可以吸收特定波长或波长范围的光的纳米晶体的聚合物层将会用作边缘通滤波器、吸收小于某个波长的光。例如,过滤光子的纳米复合材料可以构建以便吸收小于大约565nm(例如蓝色和绿色)的光并且允许长于大约565nm(例如红色)的光波穿过聚合物层。
在其他的具体实施方案中,纳米晶体具有的尺寸和组成使得它们吸收在紫外、近红外和/或红外光谱中的光子。正如这里使用的,紫外光谱包括波长为大约100nm到大约400nm的光,近红外光谱包括波长为大约750nm到大约100μm之间的光,且红外光谱包括波长为大约750nm到大约300μm之间的光。
虽然任何合适材料的纳米晶体都可以用于本发明的实践中,但是在某些具体实施方案中,纳米晶体可以是ZnS、InAs或CdSe纳米晶体。在一个实例中,InAs纳米晶体(具有1340nm的吸收峰)与附着在它们的表面上的TOP(三正辛基膦)配体可以溶解于溶剂中,例如甲苯。聚(乙烯基丁缩醛):聚(乙酸乙烯酯)(PVB:PVA)聚合物还可以溶解于甲苯中且两种溶液可以混合在一起。然后用混合物涂覆基底或封装该基底并且将甲苯蒸发掉。得到的薄膜是非光散射的,这由于非聚集的纳米晶体的尺寸。以这种方式制备的聚合物层将具有在每种材料自身(即聚合物或纳米晶体材料)折射率之间的有效折射率,这可以通过改变纳米晶体的负载比例和聚合物层中不同点处的纳米晶体的密度(参见附加公开内容的折射率部分)进行调整。包含这种纳米晶体的聚合物层可以起到抗反射滤波器的作用,吸收小于大约1340nm波长的光。
在另一个实例中,具有硬脂酸配体的CdSe纳米晶体(在大约580nm处有吸收峰)可以溶解于溶剂中,例如甲苯。在其他的具体实施方案中,具有胺、羧酸、膦酸、膦酸酯/盐、膦、氧化膦或硫配体的ZnS纳米晶体可以溶解于溶剂中。在CdSe纳米晶体的情况中,配体交换可以随后在具有硅氧烷配体的溶液中进行且过量的配体可以被除去。然后,纳米晶体可以与聚合物基体如硅树脂混合,且之后涂覆或封装基底材料。固化后,薄膜会具有聚合物(例如硅树脂)和纳米晶体的折射率之间的有效折射率,该折射率可以通过改变硅树脂中纳米晶体的负载比例而调整。这种聚合物层会起到吸收小于大约580nm波长(即蓝色、绿色、黄色、橙色、紫色、UV光)的光的滤波器的作用。
III.折射率匹配的纳米复合材料
由于在界面处折射率不匹配,由全内光反射导致的差的提取对于发光器件(包括LED)来说是个问题。公知的是在相对于垂直方向的角度θ处,如果sinθ>sinθc=n'/n,则碰撞指数为n和n'<n的材料之间的界面的光将会全部被反射。对于直接由具有n=2.26的GaN提取到n'=1的空气中,这限制了提取角锥(extraction cone)在立体角ΔΩ=2π(1-cosθc)中,其中θc是临界提取角,θc=26°,恰好是总提取角2π的10%(仅高一半)。在图2显示的封装布置中,全光提取涉及:(a)由基底202提取到磷光体封装物层206;以及(b)由磷光体封装物层206提取到空气中。封装物层的半径比发射区的半径大的多(例如cm vs.mm),因此封装物层内径向伸出的光线几乎垂直地撞击到封装物层表面θ<<θc并且被提取。因此,由于比空气折射率高,利用更高的磷光体临界角,整体的提取主要受由基底到磷光体平面界面的限制。
在一个具体实施方案中,如图2所示,本发明提供了纳米复合材料层208,其可以与LED基底202连接,该层具有大于1.5的有效折射率。在合适的具体实施方案中,通过将基底的有效折射率提高到1.8,产生θc=68°的角度并且提取效率翻番到63%。在另一个具体实施方案中,本发明提供了纳米复合材料,其结合具有大约2.0到大约3的折射率的纳米晶体与主体基质材料,包括聚合物(例如具有1.5到2的折射率的TiO2,或具有大约1.49的折射率的硅树脂),以产生具有大约2的有效折射率且具有大约θc=77°的临界提取角的纳米复合材料,由此将提取效率提高到78%。在其他的具体实施方案中,指数匹配的钝化层(例如硬壳聚合物)可以被添加到磷光体层上面以利用径向入射,由此增强由磷光体到空气中的提取。
正如这里使用的,术语“有效折射率(ne)”用于表示本发明的聚合物层是复合材料,并且因此,它们的有效折射率是层的所有组分的折射率的结果。这里使用的术语折射率表示本发明的纳米复合材料使光弯曲的程度。纳米复合材料的折射率可以通过真空中的光速除以纳米复合材料中的光速的比确定。
本发明的聚合物层,不论其是否下变频、过滤光子或折射率匹配,其具有可以通过嵌入到基质中的纳米晶体的比例、密度、组成和尺寸控制的有效折射率。图9显示了ZnS纳米晶体(n=2.35)的负载比例对不同材料的有效折射率的影响。对于所有的基质,有效折射率随着负载比例(%)线性升高到纯的ZnS纳米晶体的折射率。图10显示了作为波长函数的以30体积%包含3nm的ZnS纳米晶体的硅树脂纳米复合材料的有效折射率。对于从300nm到700nm的所有波长都观察到了大于大约1.77的有效折射率。
有效折射率的控制和剪裁允许本发明的基质应用于其中可以期望具有均匀的或变化的有效折射率的层的应用中,例如作为封装LED的聚合物层。在这种应用中,聚合物层被用于封装LED的发光二极管芯片以提供对芯片的保护。正如以上讨论的,由于LED芯片的高n和聚合物封装物通常低的n之间的折射率(n)差异,大量的光因为在芯片/聚合物界面处的光反射而损失掉了。因此本发明提供了具有比纯的聚合物更高的折射率的聚合物层,其可以接近或与LED芯片的折射率相匹配,由此限制在芯片/聚合物界面处的光损失。图11中表示出了这种具体实施方案,其显示了封装的发光二极管1100的横截面图,其中包含嵌入的纳米晶体604的聚合物602封装着LED芯片1106。任何有源器件,包括通篇所讨论的那些,可以以相似的方式封装。此外,显示了特定LED结构的图11和12仅用于示例性目的,且本领域技术人员已知的任意LED结构可以进行类似的封装。
聚合物层的有效折射率可以是介于纯的基质材料本身(例如硅树脂以大约1.49,TiO2以大约1.5)和纳米晶体本身(例如最大至大约3)的折射率之间的任何值。适宜的,基质的有效折射率将大于大约1.5,优选在大约1.5到大约2.5之间,且在某些具体实施方案中基质的折射率将为大约1.8。
在其他的具体实施方案中,为了进一步地增加LED结构的稳定性,可以在第一层的顶部添加第二聚合物层。通常,这一第二层是“硬壳”聚合物且其将具有低于LED芯片的折射率的折射率。因此,如果第一聚合物层的折射率与LED芯片的折射率相匹配,在第一聚合物层/硬壳聚合物的界面处将会发生反射。为了克服这种问题,在另一个具体实施方案中,本发明提供了聚合物层或聚合物封装物,其具有纳米晶体的密度梯度以至于聚合物层的有效折射率与芯片和硬壳聚合物在它们各自的界面上都匹配。
在一个这样的具体实施方案中,本发明提供了封装具有有效折射率n1的有源器件的聚合物层。该层包含聚合物和封装在聚合物中的半导体纳米晶体,且其具有与有源器件相接触的内部边界和与具有有效折射率n2的介质相接触的外部边界。该层在内部边界处具有小于或等于n1的有效折射率且在外部边界处具有大于或等于n2的有效折射率。虽然任何有源器件,包括通篇描述的那些都可以封装,但是适宜地,该有源器件是LED。在合适的具体实施方案中,n1将大于n2
图12显示了封装在这种聚合物层中的LED的横截面图。封装的LED1200包括聚合物层602,该层包含嵌入的纳米晶体604封装有LED芯片1106。硬壳聚合物1202进一步覆盖聚合物层602以提供额外的结构完整性并且保护LED。图12图解说明了遍及聚合物层602厚度的纳米晶体密度梯度,这一梯度在与LED芯片1106的边界处是最高的且在与硬壳聚合物1202的边界处最低。在这种具体实施方案中,在与LED芯片1106的边界处有效折射率为n1且在与硬壳聚合物1202的边界处有效折射率为n2。在某些具体实施方案中,这种纳米晶体密度梯度基本上线性贯穿聚合物层,虽然它可以以任何形式贯穿层厚度,例如环形、抛物线形等。适宜地,聚合物层602的有效折射率将贯穿所述的层大于大约1.5,且在某些具体实施方案中,该有效折射率在与LED芯片1106的界面处将为大约1.8(n1)且在与硬壳聚合物1202的界面处将为大约1.5(n2)。
如图13所示,发光二极管通常利用通过直径通常为几个毫米的硅树脂1300的滴或层覆盖的LED芯片1106。正如贯穿本发明讨论的,通过用具有增强折射率的纳米晶体掺杂的基质代替图13中的硅树脂帽(silicone cap),可以从LED芯片1106中提取更多的光。但是,这样做会带来两个问题:(1)对于每种LED来说需要用于掺杂基质几个毫米厚度的纳米晶体的量转换为相当大量的用于批量生产的纳米晶体,由此促使成本升高;和(2)来自贯穿厚层的纳米晶体的散射会使得基质对于几个毫米的路径长度不透明。
为了解决这些问题,在另一个具体实施方案中(参见图14),本发明提供了在LED芯片1106的表面上形成的纳米复合材料的薄层1402,之后进一步用同样的纳米复合材料的小半球体1404帽状加盖(cap)这一薄层。所有进入纳米复合材料的光以90°碰撞该复合材料/空气界面并因此不遭受任何内反射。该膜的厚度和小盖帽的直径可以选择以满足热适应性和其他机械/热需求。膜的厚度t和小半球体的直径d可以在毫米到微米到纳米的10's-100's的范围内。适宜地,层的厚度在微米的10's的数量级上,例如为大约10-50微米。半球体的直径通常在微米的数量级上。
在本发明其他的具体实施方案中,纳米复合材料的小半球体1404可以进一步用大的硅树脂半球体1302帽状加盖,如图15所示。在这种情况中,硅树脂的大半球体的折射率对于光提取而言是无要求的。临界角仅通过LED芯片1106的折射率n1和纳米晶体掺杂的基质(1402和1404)的折射率n3确定,例如:
与用于与较厚的路径长度膜相关的那些方式相比,以这种方式制备纳米复合材料膜和半球体允许使用较大尺寸的纳米晶体。例如,在5-7nm数量级的纳米晶体可以与本发明具体实施方案的薄膜/半球体一起使用,而大约3-5nm数量级的纳米晶体对于较厚路径长度的纳米复合材料而言是需要的。
正如通篇所讨论的,用于本发明实践的纳米晶体可以具有一定的组成和尺寸使得它们在特定的波长下吸收光并且在特定的波长下发射。在某些具体实施方案中,本发明的聚合物层可以包含在本发明描述的不同方法中起作用的纳米晶体的组合。例如,本发明的纳米复合材料可以包含具有特定的、增强的发射性质的纳米晶体,具有特定的、增强的吸收性质但是低的发射性质的其他纳米晶体,且整体的纳米复合材料可以构建为使得该层具有与特定的目的相匹配或为其剪裁的特定的折射率。以这种方式组合,本发明的聚合物层可以用作用于发出某些波长、过滤掉其他波长的光的有源器件(例如LED)的封装物并且具有与有源器件和/或其他的基底或涂层大致匹配的折射率。
IV.示例性的具体实施方案
一方面,本发明提供了用纳米晶体掺杂的基质材料,其具有特定的发射和/或吸收特性并且还允许纳米复合材料折射率的特定剪裁。
在一个具体实施方案中,本发明提供了包含聚合物和嵌入到聚合物中的半导体纳米晶体的聚合物层,其中纳米晶体具有的尺寸和组成使得它们吸收可见光、紫外光、近红外光和/或红外光,和其中聚合物层散射最少部分的进入该层的光。在某些具体实施方案中,聚合物为硅树脂。本发明的聚合物层可以用于涂覆光学器件(例如折射透镜或反射元件)或用于封装有源器件,例如发光二极管(LED)。适宜的,本发明吸收可见光的聚合物层会吸收红光、蓝光和/或绿光。
贯穿本发明具体实施方案使用的纳米晶体在尺寸上将适宜地在大约1-10nm之间、大约1-4nm或大约1-3nm且可以进一步包含粘附在它们的表面上的混溶增强性的配体以便帮助与聚合物混合。本发明的聚合物层可以具有介于纯聚合物和纯纳米晶体之间的任何有效的折射率,并且将适宜地具有超过大约1.5的有效折射率且在某些具体实施方案中为大约1.8。在某些具体实施方案中,本发明的聚合物层在厚度上将超过大约0.5mm。合适的聚合物包括硅树脂。
在另一个具体实施方案中,本发明提供了包含聚合物和嵌入到该聚合物中的半导体纳米晶体的聚合物层,其中聚合物层具有大于单只聚合物的有效折射率,且其中聚合物层散射进入聚合物层的极少部分的光。适宜地,聚合物层将散射少于大约50%、少于大约20%或少于大约15%的进入聚合物层的光。在合适的具体实施方案中,纳米晶体将为ZnS纳米晶体且聚合物层在厚度上将大于大约0.5mm。
在另一个具体实施方案中,本发明提供了封装具有有效折射率n1的有源器件(例如LED)的聚合物层。该层包含聚合物和嵌入到该聚合物中的半导体纳米晶体。该层具有与有源器件相接触的内部边界和与具有折射率n2的介质相接触的外部边界,其中该层在内部边界处具有小于或等于n1的有效折射率并且在外部边界处具有大于或等于n2的有效折射率。在某些具体实施方案中,有效折射率n1将大于n2,适宜地为大于大约1.5,且在某些具体实施方案中大于大约1.8。在某些这样的具体实施方案中,该层将具有纳米晶体密度梯度,其在内部边界处最高且在外部边界处最低。适宜地,这种纳米晶体的密度梯度贯穿聚合物层基本上呈线性。该纳米晶体任选地具有使得它们吸收可见光(例如红色、蓝色和/或绿色)、紫外光、近红外光和/或红外光的尺寸和组成。
本发明还提供了用于制备聚合物层的方法,包括以第一密度将半导体纳米晶体与溶剂和聚合物混合以形成第一混合物,用该第一混合物涂覆基底材料并且蒸发掉溶剂以形成聚合物层,其中聚合物层具有有效折射率n1
本发明的方法还可以用于制备涂覆有源器件(例如LED)或光学器件(例如折射透镜或反射元件)的聚合物层。本发明的方法可以利用进一步包括混溶增强性的粘附于它们的表面的配体的纳米晶体。
在合适的具体实施方案中,本发明的方法可以进一步包括以第二密度将半导体纳米晶体与溶剂和聚合物混合以形成第二混合物,用该第二混合物涂覆基底材料并且蒸发掉溶剂以形成第二聚合物层,其中该第二聚合物层具有有效折射率n2。在其他的具体实施方案中,该方法进一步包括用第三直至第i半导体纳米晶体的密度重复这些步骤以制备第三到第i个聚合物层,其中第三到第i聚合物层分别具有有效折射率n3到ni。在某些具体实施方案中,有效折射率n1将大于n2且第i聚合物层的有效折射率将小于任何其他聚合物层的有效折射率。本发明的方法还进一步包括使半导体纳米晶体、溶剂和聚合物的第一混合物离心以便在涂覆基底材料之前在混合物中形成纳米晶体密度梯度。
在本发明方法的合适的具体实施方案中,涂覆可以通过旋转涂覆或丝网印刷进行。正如通篇所讨论的,用于本发明方法中的纳米晶体可以具有使它们吸收特定波长下的光的尺寸和组成。在其他的具体实施方案中,该纳米晶体可以调整为在特定的波长下发射。在其他的具体实施方案中,本发明的方法可以利用包含两种或更多种不同尺寸或组成的半导体纳米晶体并且因此可以具有不同的性质。通过本发明方法制备的聚合物层在厚度上将适宜地大于大约0.5mm。
在另一个具体实施方案中,本发明提供了包括大于25lm/W、适宜地大于50lm/W、大于100lm/W、大于150lm/W或大于200lm/W的功率效率的固态白光照明器件。
在其他的具体实施方案中,该固态白光照明器件包括下变频的纳米复合材料,其包括两种或更多种调节使得在一个或多个选择的波长下发光的半导体纳米晶体。本发明的固态白光照明器件将适宜地提供大于大约80的CRI。还在其他的具体实施方案中,该固态白光照明器件包括通过一个或多个化学部分与两种或更多种半导体纳米晶体偶联的基质。
本发明的另一个具体实施方案提供了下变频的纳米复合材料器件,其包括具有两种或更多种尺寸的两种或更多种半导体纳米晶体磷光体,该纳米晶体磷光体被调节为在一种或多种选择的波长下发光,且提供了大于大约80的CRI;具有高折射率、低UV降解和/或匹配的热膨胀性的基质;以及使基质与纳米晶体磷光体偶联的化学结构。适宜地,两种或更多种半导体纳米晶体磷光体将包含核-壳结构,其中壳(例如,ZnS)相对于核提供了类型I的带隙。本发明的核-壳纳米晶体将适宜地具有大约10%到大约90%的量子效率。
在本发明其他的具体实施方案中,两种或更多种半导体纳米晶体磷光体是色彩匹配的且基质可以包含TiO2。在另外其他的具体实施方案中,纳米复合材料可以在包含蓝宝石或SiC的LED基底上是分层的。适宜地,基质是可以经受当LED热起来时导致的受热膨胀的适应层,且适宜地其是硅树脂。合适的基质具有与LED基底相同的折射率。
在另一个具体实施方案中,本发明提供了聚合物层,其包含聚合物;以及嵌入到聚合物中的半导体纳米晶体,其中该纳米晶体具有与它们的表面相连结的混溶增强性配体,且其中该配体包含长度在6到18个碳之间的烷烃链。在合适的具体实施方案中,配体可以包括长度在12到18个碳之间的烷烃链。聚合物适宜地为硅树脂,且半导体纳米晶体适宜地具有大约1-10nm(例如1-4nm或1-3nm)之间的尺寸,且在某些具体实施方案中其为ZnS纳米晶体。在某些具体实施方案中,聚合物层会反射极少部分的进入所述聚合物层的光(例如少于大约50%,少于大约20%或少于大约15%的进入所述聚合物层的光)。适宜地,该层在厚度上大于大约0.5mm。
本发明还讨论其他示例性的聚合物层和纳米复合材料,例如包括具有连结配体的纳米结构体的复合材料和其中基质由作为纳米结构体配体的聚合物分子形成的复合材料。
V.纳米晶体的尺寸和混溶性
在本发明所有的具体实施方案中,可以期望纳米晶体并不聚集。也就是说,它们在聚合物层中保持相互分离且并不相互聚结形成大的聚集体。这是重要的,例如因为各个晶体并不散射穿过层的光,而较大的聚集结构可以产生会阻碍光通过的不透明的层。
适宜地,不论是否用作下变频层、光子过滤层、折射率匹配层或它们的组合,本发明的纳米复合材料都将散射极少部分的进入不同层的光。可以期望的是本发明的纳米复合材料散射尽可能少的光以至于这些层基本上是透明的或清亮的。
正如这里使用的,短语“散射极少部分的光”表示从入射一侧(光进入的一侧)进入本发明不同纳米复合材料的一定量的光被透射以使得少于大约50%的这种入射光被纳米复合材料散射。在合适的具体实施方案中,通过纳米复合材料散射的光的量将少于被透射的光的大约20%,少于大约15%和接近0%。极其显著地影响被纳米复合材料散射的光的量的因素是聚合物基质中纳米晶体的尺寸和它们的混溶性,以及由此它们保持分离的能力。应当理解的是,在其中纳米复合材料起到滤波器作用的本发明应用中,被透射的通过聚合物层的光的量将有必要降低,因为某些波长或波长范围将通过纳米晶体吸收并且被从入射光中滤出。
正如以上讨论的,纳米晶体的尺寸可以通过选择特定的半导体材料和之后生成和加工纳米晶体直到获得期望的尺寸而剪裁纳米晶体的尺寸。在本发明不同的具体实施方案中,纳米晶体的尺寸将适宜地在大约1nm到大约20nm之间,更合适的是在大约1nm到大约10nm之间,在大约1nm到大约4nm之间,且最适宜的在大约1nm和大约3nm之间。如图16所示,在硅树脂中使用恒定负载体积的ZnS纳米晶体(22体积%),光的百分比透过率可以剪裁为在大约5%到大约100%之间(即散射的百分比可以剪裁为在大约95%到大约0%之间)。本发明重要的优点在于通过生成在大约1nm到大约4nm之间的纳米晶体,少于大约50%的入射光被本发明的纳米复合材料散射了。如图16所示,通过生成在大约1nm和大约3nm之间的纳米晶体,可以获得少于20%、近似15%、10%和0%的散射。如图17所示,包含3nm的ZnS纳米晶体和具有3mm路径长度的层的硅树脂纳米复合材料将在350nm到700nm的波长范围内散射少于大约50%(即透过超过大约50%)的入射光,在400nm到700nm的波长范围内散射少于大约30%的入射光且在500nm到700nm的波长范围内散射少于大约15%的入射光。
高负载密度的纳米复合材料的受控表面化学
在本发明的纳米复合材料的形成过程中,存在两个关键性的问题:(1)在主体基质中实现纳米晶体的高度混溶性,以及(2)防止纳米晶体在高浓度下聚集。聚集导致发射淬灭,因此透射的光的量降低,并且光从聚集体散射。整体复合材料层的折射率的调节还能以不同的纳米晶体负载密度发生。由于纳米晶体具有大约2.5到大约3的折射率且主体基质为大约1.5到大约2,所以LED基底(典型地为蓝宝石或SiC)的折射率的匹配将会消除光学界面和来自光全内反射的损失。
作为这种方法的一部分,要关注多个方面,包括实现通过模拟测定纳米复合材料中是否有必要的负载密度;纳米晶体是否均一地嵌入到主体基质中而没有(或最小化)聚集或相分离以至于保留了高的量子产率并且防止了散射;复合材料层的折射率是否可以通过调节主体基质中纳米晶体的负载密度(例如梯度)而调整;是否实现了折射率接近LED基底以及对光提取效率的预计(projected)影响是什么;还有在用于折射率匹配的纳米晶体负载密度下,通过模拟测定的在激发波长下为达到光学密度以获得最佳发射性能所需的复合材料层的层厚度为多少。还可以测定这一厚度是否适合低成本、薄膜加工(例如厚度<1-2微米)。
为了实现这一目的,经裁剪的、混溶增强性的配体可以被设计为与纳米晶体键接、缔合、配位、粘附或共轭,并且允许在主体基质中的受控混合和混溶性。性能特征,包括量化对内部量子效率和光提取效率的影响,在不同的负载密度和厚度上进行测量。
表面化学改性
纳米晶体在主体基质中的分散可以通过最小化当将纳米晶体混合到基质中时会发生的相分离和凝聚而进行控制。基本的策略是设计新颖的3部分配体,其中头基团、尾基团和中间/体基团可以相互独立地构造得并且针对它们的特殊功能进行最优化,之后结合到理想地功能化的完整的表面配体中(参见图18;参见图19的实施例配体)。如图18所示,选择头基团1804使其特别地与纳米晶体的半导体或其他材料(例如可以剪裁且针对CdSe、ZnS、金属或任何其他的纳米晶体材料进行最优化)相连结。尾基团1800设计为与基质材料强烈地相互作用并且在使用的溶剂中可混溶(且任选地可以含有与主体基质连接的连接基团)以便允许在主体基质中的最大混溶性和负载密度而没有纳米晶体聚集。中间或体基团1802选择用于特定的电子功能(例如电荷绝缘)。
这种多部分的配体策略在无机-有机杂化纳米复合材料太阳能电池的开发中已经用于高负载密度、非荧光的聚合物-CdSe纳米棒复合材料的制备。在本发明的某些具体实施方案中,由于两种应用的差异而对配体进行显著的改进。特别的,配体设计为电绝缘的(而不是导电的)并且提供纳米晶体光致发光的保持以及与完全不同的基质类型(无机的而不是有机聚合物)和纳米晶体材料类型和形状相容。
随着3部分配体的发展,针对生成所述纳米颗粒密度梯度的目的,可以实现纳米晶体在纳米复合材料中负载密度的控制。这允许对量子产率的影响和在纳米复合材料中的光学散射的评价。此外,对纳米复合材料的折射率的调节是可能的,因为主体基质的折射率是已知的。
这种模块化的方法的好处在于快速评价新的尾、头和中间/体基团的能力。在头基团的区域内(与纳米晶体相连结),存在可获得的用于CdSe合成技术开发的发展的方法。这包括可以理解为纳米晶体与膦酸、胺、硫醇、膦和氧化膦的连接。
经剪裁的配体可以任选地设计为与纳米晶体强烈地连结并且允许混合到TiO2主体介质中。新的配体允许分散控制(溶解性和可加工性)以便利纳米晶体在为获得最佳白光照明器件性能特性和与蓝色-LED匹配的折射率所需要的宽负载密度范围内结合到溶剂或主体基质中。类似的,作为其他的实施例,配体可以设计为与纳米晶体强烈地连结并且允许混合到硅树脂或烃聚合物中。
配体合成
配体分子可以使用允许三个分离的基团各自合成并随后结合的通用技术来合成。可以使用膦酸、胺、羧酸或硫醇部分的头基团,这是因为它们对纳米晶体表面的亲合力。尾基团可以包含末端羟基以便将纳米晶体束缚在氧化钛溶胶-凝胶基质中,硅基团以与硅树脂聚合物基质相匹配,或者有机基团以与有机基质相匹配。选择中间/体单元例如用于电绝缘(例如用于电子和空穴的大的能隙),并且可能的目的在于任选使用计算机模型来鉴别。使用密度泛函理论(DFT)进行模型化以建造用于配体设计的不同目标分子结构的带隙模型。化学身份和纯度的确认将使用质谱、NMR和FTIR分析或类似的技术进行。
配体的绝缘基团(中间/体单元)可以选自不同长度的长链烷烃和芳香族烃,例如C6-C22的烷烃。体单元的长度的选择取决于最终基质和使用的聚合基体的期望特性。例如,在其中期望基质具有与聚合基体物质相似的流变性或其他性质(例如机械/电子)的应用中,可以选择较短链的体单元(例如C6-C18)。例如,ZnS纳米晶体上C12体单元基配体的使用允许以足以在浸渍油基础物(初始折射率为1.5180)中获得1.7070的折射率的比例增加ZnS纳米晶体的负载量,但是使油脂仍然保留了油的类似稠度。当与具有较长链的配体的纳米晶体相比时,较短链配体的使用允许使用较低体积分数的纳米晶体以获得相同的折射率。
在其他应用中,当期望最终的基质具有接近于配体本身、而不是基体材料的性质时,可以使用较长链的配体(例如C18-C22)。在某些应用中,配体本身可用于形成基质材料。较长链的配体还允许纳米晶体之间有额外的空隙以使得它们在基础基底中保持不发生聚集。
图19显示了具有膦酸头基团1900、脂肪族尾1902和芳香族烃体基团1904的配体的实施例。体和/或尾组分的合适的选择用于提供与基质类似的功能性以便在硅氧烷聚合物基质中提供高的纳米晶体浓度。折射率(RI)的调节/匹配还受到配体的影响。独立地调节配体的尾或体组分以获得与聚合物基质的特定的RI匹配,这可以通过适当变化配体的化学性而实现。
概括设计“头-体-尾”提供了不受任何特殊整体限制的自由。例如,用于纳米晶体连结的膦酸酯头基团、用于长度调节/纳米晶体间隔的烷烃体基团以及用于硅树脂基质相容性的二甲基硅树脂尾可以如图20b所示合成。调节RI(增加该值)的实施例可以通过将图20a中所示的苯基基团(与硅树脂聚合物类似(来自vendor Gelest Inc.,612William LeighDrive Tullytown,PA 19007-6308:)DMS-H21二甲基硅氧烷vs.HPM-502苯基-甲基硅氧烷,分别为1.403和1.500折射率值)结合到硅氧烷尾中而实现。图20a图示了多种非限定性的具有头-体-尾设计的配体实施例。还可以允许基质相容性的调整,例如支化硅氧烷单元(图20b,分子3)。图20b中合成前体1和2通过NMR进行的结构验证如图20c-f中所示。
图20g显示了配体和合成方案的其他实施例,包括(从头到底)在配体的生成中使用三硅氧烷、环状四硅氧烷和支化的硅氧烷尾基团。图20g图解说明了这些硅树脂表面活性剂的羧酸官能化。图20g中显示的羧酸化的三硅氧烷配体通过NMR进行的结构验证如图20h-i所示。
值得注意的是虽然配体可以借助于头、体和尾三部分进行描述,但是它们不必由这三种单元合成得到。正如以上指出的,三种分离的基团可以分开合成并且之后结合以制备配体。但是其他的合成路线也是可以预期的;例如头和体基团可以在单只一个分子上引入到合成过程中,正如图20g、20n、25a-b和27所示的合成那样。
图20j和20n显示了用于制备膦酸酯官能化的硅树脂配体的其他实施例和合成方案。图20j中显示的溴化物前体的通过NMR的结构确认如图20k所示。图20l和20m表示膦酸酯配体产物结构的NMR确认。
其他合适的配体的实施例如下所示,例如表1中,和其他的合成方案如图25-31以及34和以下的实施例3-6以及9所示。
在纳米晶体的合成中使用配体交换以代替表面活性剂可以通过溶液中的质量作用交换(mass action exchange)进行。纳米晶体和新的配体(例如本发明中描述的那些中的一种)共同溶解在溶剂中并且允许在升高的温度下反应特定的时间。产物任选用纯沉淀以除去任何过量的未连结的配体并且除去被替换的合成表面活性剂。该粘附作用可以通过将产物再溶解在氘化的NMR相容溶剂中通过NMR分析来确认。与游离未连结的分子相比,由于受阻旋转,配体与纳米晶体的络合导致光谱中的迁移和变宽。作为另一个实施例,纳米结构体任选地使用这里描述为合成表面活性剂的新配体中的一种(或多种)来合成。
纳米结构体/配体组合物
本发明一方面提供了具有与它们所连结的本发明配体的纳米结构体(例如粘附、共轭、配位、缔合或以其他的方式与它们的表面相连结)。正如通篇所描述的,纳米结构体任选为纳米晶体或量子点,例如无机、半导体或金属纳米晶体。在某些具体实施方案中,该纳米结构体为核-壳纳米结构体。
一组一般的具体实施方案提供了包含纳米结构体和与纳米结构体的表面相连结的配体的组合物,其中配体包含含有有机部分的体基团、与体基团偶联的头基团以及与体基团偶联的尾基团。该头基团包含纳米结构体连结部分且尾基团包含硅树脂部分。
体基团任选包含不饱和部分、芳基部分、烯烃部分、炔烃部分或类似物。体基团任选是非共轭的不饱和部分。
在其他的具体实施方案中,体基团包含烷基部分。例如体基团可以是包含一个或多个碳的烷烃链部分,例如1-20个碳。其实例包括但不限于表1中的化合物11-26。在一个具体实施方案中,体基团是长度为三个碳或四个碳的直链烷基部分。
纳米结构体连结部分实质上可以是任何与纳米结构体的表面连结或能够相连结的部分。例如该连结可以是共价的、非共价的、静电的、配位的(dative)和/或类似形式的。在一类具体实施方案中,该纳米结构体连结部分是羧酸部分、单羧酸部分、二羧酸部分、膦酸酯部分、二乙基膦酸酯部分、双三甲基甲硅烷基膦酸酯部分、硫醇部分或胺部分。在一些具体实施方案中,头基团是单齿状的;在其他的具体实施方案中,头基团是多齿状的,其可以导致配体与纳米结构体表面更高的亲合性连结。
在一类具体实施方案中,尾基团包含直链硅树脂部分。示例性的配体包括但不限于表1中的化合物11-13以及16-25。在某些具体实施方案中,该尾包括7-12个二甲基硅氧烷单元;这种化合物易于溶解于硅树脂介质中但是不会太大量以至于不可能制备高度浓缩的溶液。在其他的具体实施方案中,尾基团包含环状硅树脂部分(例如化合物15)、支化的硅树脂部分(例如化合物14)或倍半硅氧烷部分(例如多面体低聚倍半硅氧烷(POSS)部分)。任选的,所述硅树脂部分是不同于倍半硅氧烷部分或不同于POSS部分的部分。配体任选是热稳定的,例如直至300℃、400℃或者甚至到500℃或更高。
一类一般的具体实施方案提供了包含纳米结构体和与纳米结构体的表面相连结的聚合物配体的组合物。该聚合物配体包含硅树脂主链,例如直链硅树脂主链,以及与硅树脂主链偶联的一种或多种纳米结构体连结部分。
聚合物配体包括两种或更多种单体单元。作为一些实例,单体单元可以是二甲基硅氧烷基团、苯基甲基硅氧烷基团、带有可聚合的或其他官能团(正如以下更详细讨论的)的硅氧烷基团、或带有纳米结构体连结部分的硅氧烷基团。配体中的单体单元可以是相同的类型或不同的类型。在包括两种或更多种不同类型的单体单元的配体中,该配体例如可以包括单元(例如表1中的化合物26-27和32-33)的嵌段共聚物或单元(例如化合物36-39)的无规共聚物。
对于以上的具体实施方案,纳米结构体连结部分实质上可以是与纳米结构体的表面相连结或能够与其相连结的任何部分,例如羧酸部分、单羧酸部分、二羧酸部分、膦酸酯部分、二乙基膦酸酯部分、双三甲基甲硅烷基膦酸酯部分、硫醇部分、或胺部分。配体任选包含两个或更多个纳米结构体连结部分,例如3个或更多、5个或更多、10个或更多、或者甚至是20个或更多。
在一类具体实施方案中,一个或多个纳米结构体连结部分中的每一个都通过烷基部分与硅树脂主链偶联。例如,纳米结构体连结部分可以通过直链烷基基团与硅原子偶联(这种配体的实例包括表1中的化合物26-29和32-39)。作为另一个实施例,纳米结构体连结部分可以通过烷烃链和硅树脂部分与硅树脂主链偶联(这种配体的实例包括化合物30-31)。更一般的,该纳米结构体连结部分可以实质上通过任何合适的连接体与硅树脂主链偶联,包括例如有机的、脂肪族的(饱和的或不饱和的)、芳香族的、取代的、未取代的和/或不可水解的基团。在其中配体包括两个或更多个纳米结构体连结部分的具体实施方案中,每一个部分任选与硅树脂主链中的不同的硅原子偶联。
一类一般的具体实施方案提供了包含纳米结构体和与纳米结构体的表面相连结的配体的组合物,该配体包括含有烷基部分的体基团、与体基团偶联的头基团和与体基团偶联的尾基团。该头基团包含纳米结构体连结基团且尾基团包含不饱和的部分或硅烷部分。
对于以上具体实施方案,纳米结构体连结部分实质上可以是与纳米结构体的表面相连结或能够与其相连结的任何部分,例如羧酸部分、单羧酸部分、二羧酸部分、磷酸酯部分、二乙基磷酸酯部分、双三甲基甲硅烷基磷酸酯部分、硫醇部分或胺部分。
在一类具体实施方案中,体基团是直链烷基部分。其实例包括但不限于表1中的化合物40-45。直链烷基部分包括一个或多个碳,例如1-20个碳。在一个具体实施方案中,该体基团是长度为三个碳或四个碳的直链烷基部分。
在其中尾基团包含不饱和部分的具体实施方案中,该部分可以是烯烃部分(例如单烯烃、二烯烃或二烯),炔烃部分、芳香族部分、芳基部分或类似物。其中尾基团是烯烃部分的示例性配体包括表1的化合物43和44。该尾基团任选为非共轭的部分。值得注意的是某些配体可以描述为带有一个或多个纳米结构体连结基团的烯烃或炔烃,这代替了头、体和尾基团方面的说法或是头、体和尾基团方面的说法的补充。
在其中尾基团包含硅烷部分的具体实施方案中,硅烷部分包括具有三个独立选择的有机取代基的硅原子。例如该硅原子可以具有三个烯烃取代基或三个芳香族或芳基取代基。在一类具体实施方案中,尾基团包含三烷基硅烷部分。其中尾基团包含硅烷部分的示例性的配体包括表1的化合物40-42和45。
表1.示例性的配体。
显而易见的是,虽然某些示例性的配体显示其具有特定的纳米结构体连结部分,但是所述的部分也可以被任何其他的纳米结构体连结部分代替以获得本发明的另一种配体(例如化合物49-67)。
本发明还描述了二羧酸和多羧酸纳米结构体配体的广泛变化形式。因此,一类一般的具体实施方案提供了包括纳米结构体和与该纳米结构体的表面相连结的配体的组合物,其中所述配体为二羧酸或多羧酸,除了聚(降冰片烯)-聚(降冰片烯-二羧酸)二嵌段共聚物(例如本发明中描述的羧酸配体中的任一种)。在一类具体实施方案中,纳米结构体包含半导体,除了ZnO或ZnS;例如纳米结构体可以包含第III-V族半导体,第IV族半导体等。在另一类具体实施方案中,纳米结构体为金属纳米结构体,例如Ru、Pd、Pt、Ni、W、Ta、Co、Mo、Ir、Re、Rh、Hf、Nb、Au、Ag、Ti、Sn、Zn、Fe、FePt或类似的纳米结构体。一方面,该纳米结构体为核-壳纳米结构体。任选的,多个连结配体的纳米结构体嵌入到聚合物中,优选的,聚合物包含不同于羧酸配体的材料。
配体任选是合成的,例如正如本发明所描述的。某些配体是可商购获得的,例如化合物44(十二烯基琥珀酸)。
本发明的组合物任选包括多个或群体的连结配体的纳米结构体。纳米结构体任选分散在溶剂中或任选嵌入到聚合物中以形成聚合物层或纳米复合材料。因此,一方面,组合物包含多个纳米结构体,其中的每一种都具有与其表面相连结的配体,和纳米结构体嵌入其中的聚合物。例如聚合物可以是硅树脂聚合物(例如在其中配体具有硅树脂尾基团或取代基的具体实施方案中)或烃或其他有机聚合物(例如在其中配体具有烷基、烯烃或其他烃尾基团或取代基的具体实施方案中)。合适的聚合物是现有技术中公知的和实例是本发明中描述的。其他示例性的烃聚合物包括聚苯乙烯、聚乙烯、丙烯酸酯以及类似物。
在另一个具体实施方案中,本发明提供了聚合物层,其包含聚合物和嵌入到聚合物中的半导体纳米晶体,其中纳米晶体具有与其表面共轭的混溶增强性的配体,且其中配体包含长度在6到18个碳之间的烷烃链。在合适的具体实施方案中,配体可以包含长度在12到18个碳之间的烷烃链。该聚合物适宜地为硅树脂,且半导体纳米晶体适宜地具有大约1-10nm的尺寸,且在某些具体实施方案中其为ZnS纳米晶体。在某些具体实施方案中,聚合物层将散射极少部分的进入所述聚合物层中的光。适宜地,该层在厚度上将大于大约0.5mm。
一方面,本发明提供了多种包括用作纳米结构体配体的醇纳米结构体连结部分的聚合物分子。因此,一组一般的具体实施方案提供了包括纳米结构体和聚合物配体的组合物,其中配体包含硅树脂主链和一个或多个与硅树脂主链偶联的醇部分。该硅树脂主链典型的为直链的但是任选其为支化的。
醇部分包括与碳原子相连结的羟基基团(-OH)。醇部分任选是较大官能团的一部分。例如在本发明上下文中特别有用的配体包括一个或多个与硅树脂主链偶联的二甲醇部分。二甲醇部分包括两个甲醇基团(-CH2OH)所共价连结的饱和的碳原子,典型地,它们直接但是任选地通过一个或多个其他的原子相连结(例如一个或多个其他饱和的或不饱和的碳原子)。
通常,对于以上具体实施方案,聚合物配体与纳米结构体的表面相连结。但是组合物中不是所有的配体都需要与纳米结构体相连结。在一些具体实施方案中,过量提供聚合物配体(例如实质上过量,例如以按重量计至少等于提供用于连结纳米结构体的量的量或典型的远远高于该量的量),以至于配体的一些分子与纳米结构体的表面相连结而配体的其他分子不与纳米结构体的表面相连结。过量的配体可以任选在其中嵌入了纳米结构体的硅树脂基质中聚合,正如本发明以下详细讨论的那样。同样的,给出的分子中不是所有的羟基基团需要与纳米结构体相连结。
正如以上注意到的,聚合物配体包括两种或更多种单体单元,其可以是相同的类型或不同的类型。所有的单体单元都可以包括醇(例如二甲醇)部分,或者单体中的一些可以包括醇部分而其他的缺少醇部分。一个或多个末端和/或内部子单元可以带有醇基团(例如分别参见末端实例和内部实例的化合物64和52)。
在一类具体实施方案中,聚合物配体包含至少两种不同类型的单体单元,其中的至少一种包含醇(例如二甲醇)部分且其中的至少一种缺少醇部分。该配体任选地包括三种或更多种不同类型的单体。配体可以包括无规共聚物(例如表1中的化合物50-57和65-66)或嵌段共聚物。包括醇基团的单体的数量和/或百分数可以变化。例如,包含醇(例如二甲醇)部分的单体单元任选以0.5%到99.5%之间、0.5%到75%之间、0.5%到50%之间、0.5%到40%之间、0.5%到30%之间、0.5%到25%之间、优选0.5%到20%之间且更优选0.5%到10%之间(包含在内)的摩尔百分数存在于配体中。在其中配体包含二甲醇纳米结构体连结基团的具体实施方案中,包含醇部分的单体单元任选包含每个单体单元单只一个二甲醇部分。在其中配体包含二甲醇纳米结构体连结部分的具体实施方案中,配体也任选包含每个配体分子1-500个二甲醇部分,例如1-200个、2-200个或2-100个。在一个示例性的具体实施方案中,配体包括每个配体分子大约60个二甲醇部分。
缺少醇部分的子单元可以是例如二苯基硅氧烷、苯基甲基硅氧烷或二甲基硅氧烷基团,不一而足。作为另一个实施例,缺少醇基团的单体单元可以包括较长的烷基基团(例如改进由配体形成的聚合物的玻璃化转变温度或改进配体和纳米结构体之间的相互作用)。还作为另一个实施例,单体单元可以包括赋予配体额外功能的其他基团,例如可聚合基团、环氧基团、胺基团或羧酸基团。可聚合基团(可以进行聚合的官能基团)可以用于将配体(不论其是否与纳米结构体相连结或以过量提供)结合到聚合物基质中。例如当通过自由基引发时,(甲基)丙烯酸酯基团可以聚合,且当通过阳离子引发剂引发时,环氧基团可以聚合。
合适的聚合物配体包括但不限于表1中的化合物49-57和64-66。配体任选是合成的,例如如本发明所述(参见图34和实施例9)。某些配体是可商购获得的,例如n=10的化合物49可由Gelest,Inc.(www dotgelest dot com)获得。
至于本发明的其他具体实施方案,纳米结构体任选为纳米晶体或量子点,例如无机的、半导体的(例如第II-VI、III-V或IV)或金属纳米晶体。任选地,纳米结构体为核-壳纳米结构体,例如CdSe/ZnS量子点。
组合物任选包括多个纳米结构体或其群体,例如具有连结的配体的。组合物任选包括溶剂(例如甲苯),纳米结构体和配体可以分散于其中。应注意的,纳米结构体和配体可以结合到基质中以形成聚合物层或纳米复合材料(例如由配体形成的硅树脂基质)。因此,组合物还可以包括交联剂(例如1,6-二异氰酸根合己烷)和/或引发剂,例如自由基或阳离子引发剂。合适的交联剂包括具有两个或更多个可以与羟基(或配体上的其他基团)反应形成共价键的有机或聚合化合物。这些官能团包括但不限于例如在硅树脂或其他分子上的异氰酸酯、环氧化物、酸酐和羧酸基团。组合物任选包括配体的混合物。
另一方面,本发明提供了多种包括用作纳米结构体配体的胺纳米结构体连结部分的聚合物分子。因此一类一般的具体实施方案提供了包括纳米结构体和聚合物配体的组合物,其中配体包含硅树脂主链和与硅树脂主链偶联的一个或多个伯胺和/或仲胺部分。该硅树脂主链典型的为直链但是任选是支化的。
通常,对于以上具体实施方案,聚合物配体与纳米结构体的表面相连结。但是不是组合物中的所有配体都需要与纳米结构体相连结。在一些具体实施方案中,过量提供聚合物配体(例如实质上过量,例如以按重量计至少等于提供用于连结纳米结构体的量的量或典型的远远高于该量的量),以至于配体的一些分子与纳米结构体的表面相连结且配体的其他分子不与纳米结构体的表面相连结。过量的配体可以任选地在其中嵌入了纳米结构体的硅树脂基质中聚合,正如本发明以下详细讨论的那样。同样的,给出的分子中不是所有胺基基团需要与纳米结构体相连结。
正如以上提到的,聚合物配体包括两种或更多种单体单元,其可以是相同的类型或不同的类型。所有的单体单元都可以包括胺部分,或者单体中的一些可以包括胺部分而其他的缺少胺部分。一个或多个末端和/或内部子单元可以带有胺基团。任选的,配体在单体,例如内部(悬垂的)和/或末端单体上直链链取代基的末端处包括伯胺基团。任选的,直链链还可以包括仲胺基团。更一般的,包含胺部分的单体单元任选包含每个单体单元单只一个伯胺部分。在一类具体实施方案中,包含胺部分的单体单元包含每单体单元单只一个伯胺部分和单只一个仲胺部分。
在一类具体实施方案中,聚合物配体包含至少两种不同类型的单体单元,其中的至少一种包含胺(例如伯胺和/或仲胺)部分且其中的至少一种缺少胺部分。该配体任选包括三种或更多种不同类型的单体。配体可以包括无规共聚物(例如表1中的化合物58-61和67)或嵌段共聚物。包括胺基团的单体的数量和/或百分数可以变化。例如,包含胺部分的单体单元任选以0.5%到99.5%之间、0.5%到75%之间、0.5%到50%之间、0.5%到40%之间、0.5%到30%之间、0.5%到25%之间、且优选0.5%到20%之间(例如1%到20%之间)或0.5%到10%之间(例如1%到10%之间)(包含在内)的摩尔百分数存在于配体中。在发光和纳米结构体的稳定性方面,0.5%到20%之间的范围提供了最好的观察到的性能。作为另一个实施例,配体任选包含每个配体分子1-500个胺部分(例如伯胺和/或仲胺),例如1-200个、2-200个或2-100个。在一个示例性的具体实施方案中,配体包括每个配体分子1-20个伯胺部分(例如1-15个),且任选还包括每个配体分子等量的仲胺部分。
缺少胺部分的子单元可以例如是二苯基硅氧烷,苯基甲基硅氧烷或二甲基硅氧烷基团,不一而足。作为另一个实施例,缺少胺基团的单体单元可以包括较长的烷基基团或赋予配体额外功能的其他基团,例如可聚合基团、环氧基团或羧酸基团(例如化合物67)。
合适的聚合物配体包括但不限于表1中的化合物58-63和67。配体任选是合成的,且某些配体是可商购获得的。例如具有大约900的式量的化合物63(产品编号DMS-A11),具有大约25000式量的化合物63(产品编号DMS-A31),具有大约30000式量的化合物63(产品编号DMS-A32R),具有m对n的比为大约4到100且具有大约7000式量的化合物60(产品编号AMS-242),具有m对n的比为大约6.5到100且具有大约4500式量的化合物61(产品编号AMS-162),具有m对n的比为大约4.5到100且具有大约7500式量的化合物61(产品编号AMS-152),以及具有m对n的比为大约3到100且具有大约21000式量的化合物59(产品编号AMS-233,还参见产品编号ATM-1112和ATM-1322)都可由Gelest,Inc.(www dot Gelest dot com)获得的。具有m对n的比为大约1到100且具有大约20000式量的化合物59(产品编号GP-344),具有m对n的比为大约2到100且具有大约45000式量的化合物59(产品编号GP-316),以及具有m对n的比为大约0.5到100且具有大约70000式量的化合物59(产品编号GP-345)可由Genesee Polymers Corporation(www dotgpcsilicones dot com)获得。因此示例性的分子量包括但不限于大约900到70000之间的那些。
组合物任选包括配体的混合物,例如在内部子单元上具有胺基团的配体(悬垂的,例如化合物58-61)和在一个或多个末端子单元上具有胺基团的另外配体(例如化合物62-63)的混合物。因此,在一类具体实施方案中,组合物还包括第二聚合物配体,该第二聚合物配体包含硅树脂主链和与第二聚合物配体的末端子单元偶联的一个或多个伯胺和/或仲胺部分。悬垂与末端胺配体的比可以变化,例如90%的悬垂(第一)聚合物配体:10%末端(第二)聚合物配体到50%悬垂配体:50%末端配体。作为一个实例,组合物可以包括化合物58和62的混合物。在一类具体实施方案中,组合物包括在内部子单元上具有胺基团的两种(或更多种)配体的混合物(例如化合物59和60的混合物)。
至于本发明其他的具体实施方案,纳米结构体任选为纳米晶体或量子点,例如无机的、半导体的(第II-VI、III-V或IV族)或金属纳米晶体。任选的,纳米结构体是核-壳纳米结构体,例如CdSe/ZnSe/ZnS或CdSe/CdS/ZnS量子点。
组合物任选包括多个纳米结构体或其群体,例如具有连结的配体的。组合物任选包括溶剂,纳米结构体和配体可以分散于其中。应注意的,纳米结构体和配体可以结合到基质中以形成聚合物层或纳米复合材料(例如由配体形成的硅树脂基质)。因此,组合物还可以包括交联剂和/或引发剂。合适的交联剂包括具有两个或更多个(例如两个、三个或四个)可以与胺基团(或配体上的其他基团)反应以形成共价键的官能团的有机或聚合化合物。这种官能团包括但不限于例如在硅树脂、烃或其他分子上的异氰酸酯、环氧化物(还称为环氧树脂(epoxy))、琥珀酸酐或其他酸酐或酸的酸酐、以及甲基酯基团。在一类具体实施方案中,交联剂是环氧交联剂,例如环氧环己基或环氧丙基交联剂(例如分别为表2中的化合物A-C或D-G)。交联剂上的反应性基团可以是悬垂的和/或末端的(例如分别为表2中的化合物B和D或化合物A、C和E-G)。交联剂任选为环氧硅树脂交联剂,例如其可以是直链的或支化的。在某些具体实施方案中,交联剂是直链环氧环己基硅树脂或直链环氧丙基(缩水甘油基)硅树脂。表2中列出了一些示例性的交联剂。合适的交联剂可商购获得。例如,化合物H-K可由Aldrich(www dot sigmaaldrich dot com)获得且化合物A-G可由Gelest,Inc.(www dot gelest dot com)获得,例如对于产品编号为DMS-EC13的化合物A具有大约900-1100的式量,对于产品编号为ECMS-327的化合物B具有大约18000的式量以及m为3-4%摩尔百分数,对于产品编号为EMS-622的化合物D具有大约8000式量、m≈6且n≈100以及对于化合物E产品编号DMS-E09。
表2示例性的交联剂
VI.制备纳米复合材料的方法
在另一个具体实施方案中,如图21所示,本发明提供了用于制备聚合物层的方法,包括(a)以第一密度将半导体纳米晶体与溶剂和聚合物混合以形成第一混合物(2100),(b)用第一混合物(2102)涂覆基底材料,和(c)蒸发掉溶剂以形成聚合物层(2104),其中聚合物层具有n1的有效折射率。
在适当的具体实施方案中,本发明的方法可以用于涂覆有源器件或光学器件。正如通篇所讨论的,用于本发明的方法中的纳米晶体可以包含与它们的表面共轭、配位、粘附、连结或以其他方式缔合的混溶增强性配体。本发明中讨论的任何不同类型的纳米晶体可以用于本发明的方法中。例如可以使用高度发射的纳米晶体、低发射/高吸收的纳米晶体和低发射/低吸收的纳米晶体。在某些具体实施方案中,两种或更多种不同类型的纳米晶体可以与溶剂和聚合物结合,由此生成具有本发明描述的多种或全部的性质的复合材料。折射率匹配应用可以利用通篇讨论的任何纳米晶体,这取决于纳米复合材料是否还需要用作下变频层或过滤层。在其他的应用中,具有低发射/低吸收性质的纳米晶体在其中仅期望折射率的影响的折射率匹配应用中有用。
在其他的具体实施方案中,如图21所示,本发明的方法还可以进一步包括(d)以第二密度将半导体纳米晶体与溶剂和聚合物混合以形成第二混合物(2106),(e)用第二混合物(2108)涂覆基底材料,并且(f)蒸发掉溶剂以形成第二聚合物层(2110),其中第二聚合物层具有n2的有效折射率。
在其他的具体实施方案中,本发明的方法进一步包括用第三到第i密度的半导体纳米晶体重复步骤(d)到(f)以制备第三到第i聚合物层,其中第三到第i聚合物层分别具有从n3到ni的有效折射率(2112)。正如本发明使用的,“i”指的是整数。本发明包括用于制备包含任何数目的用于制备整体层、涂层或封装物的分开层的聚合物层的方法。每个单独的层,从1到i,可以包含不同密度的纳米晶体,不同组成的纳米晶体(即高发射或高吸收性质)以及不同尺寸的纳米晶体。同样的,每一个层可以具有不同的有效折射率并且可以具有多重和/或不同的性质和特性。
通过提供每个具有潜在不同的有效折射率的各个聚合物层,可以生成具有贯穿整个层的纳米晶体密度梯度以及贯穿整个层的有效折射率梯度的整体聚合物层(例如封装层)。图22图解说明了第1层的有效折射率n1(2200),该折射率大于任何其他层(2202,2204,2206),且第i层的有效折射率ni(2206)小于任何其他层的(2200,2202,2204)。还应当注意的是,本发明的方法可以以相反的顺序进行,即其中纳米晶体的密度和由此的第i层的有效折射率高于任何其他层的,和制备的第一层的有效折射率n1小于任何其他层的。在其他的具体实施方案中,各个层的密度和有效折射率可以相同,或者可以以聚合物层的整体有效折射率贯穿整个层变化的方式而不是以阶梯的方式制得,如图22所示。
正如通篇所讨论的,多种已知的方法可以用于涂覆具有本发明的聚合物层的基底材料,这对于本领域的普通技术人员来说是显而易见的且是基于本发明的描述的。合适的涂覆方法包括但不限于旋转涂覆和丝网印刷。
一般来说,旋转涂覆由四个步骤组成。第一步是将涂料流体沉积在基底上。这一步可以使用倾注出涂料溶液的喷嘴进行,或者可以喷雾到表面上等等。与最后的涂料稠度最终需要的量相比,这一分配步骤通常提供了实际上过量的涂料溶液。第二步是将基底加速到其最后所期望的旋转速度。第二步的特征通常在于通过旋转运动将侵蚀性的流体从基底的表面除去。最后,基底达到其期望的速度并且流体足够薄,使得粘稠剪切拖曳力(shear drag)精确地平衡了旋转加速。第三步是基底以恒定的速率旋转且流体粘稠力支配着流体变稀行为。这一步的特征在于流体逐渐变稀。流体行为的数学处理显示了如果液体表现出牛顿粘度(即线性的)且如果流体稠度开始时均匀地贯穿基底(虽然相当的厚),则在任何后续的时间内,流体的稠度特性也是均一的,导致最终均匀的涂层。第四步是基底以恒定的速率旋转且溶剂蒸发支配着涂层的变稀行为。随着前面步骤的进行,流体稠度达到其中粘性影响仅得到极小的净流体流动的点。在这一点上,任何挥发性溶剂物质的蒸发都变为涂覆中发生的主导过程。
在另一个具体实施方案中,本发明的方法可以进一步包括离心在步骤2100中制备的混合物以便在2102中涂覆之前在混合物中形成纳米晶体密度梯度。由于纳米晶体根据它们的惯性分离,离心的使用在聚合物层中产生了梯度。不同的离心速度或加速度可以用于在聚合物层中制备纳米晶体的密度梯度并且可以容易地被本领域技术人员确定。离心速度的选择取决于纳米晶体的尺寸和纳米晶体与聚合前聚合物溶液之间密度上的差异、以及离心的方法。离心可以在高速下进行较短的时间并且如果离心步骤基于计算的或测量的离心速率来时计则动力学地产生梯度。或者,可以使用等价方法,其中纳米晶体向离心管的底部流动与纳米晶体向管的顶部流动(由于扩散)相匹配。扩散流动与纳米晶体的浓度梯度成比例。适宜地,加速度可以在几百倍到100000倍的g的范围内,其中g为由于重力导致的加速度(9.8m/s2)。通过选择不同尺寸和由不同的材料制备的纳米晶体,纳米晶体将根据它们响应离心的惯性在聚合物层中分布开并且在层中产生梯度。任何本领域技术人员已知的在聚合物中产生梯度的其他方法也可以用于形成本发明的聚合物层。
在光学透镜中,光路长度随着其与中心的距离变化,其中光路长度定义为透镜材料的物理路径长度、厚度和折射率n的乘积。在大多数普通的透镜中,折射率n是固定的且厚度是变化的。但是透镜也可以通过保持厚度、常量和作为与透镜轴的距离的函数变化折射率而制成。这种透镜称为梯度变折射率透镜或有时简称为GRIN透镜。本发明的方法还可以用于制造GRIN透镜。聚合物/纳米晶体共混物可以用于制备GRIN透镜,这是由于纳米晶体(例如ZnS为大约2.35)和光学塑料例如聚(甲基丙烯酸甲酯)(PMMA)(折射率为大约1.45)之间巨大的折射率差异。对于普通的玻璃,在大约8mm内可以获得大约0.05个折射率单位的差异。利用本发明应用的方法和过程,在大约8mm内可以获得大约0.20个折射率单位的差异以制备更有功效得多的透镜。
在这种具体实施方案中,梯度泵可以用于将含有聚合物单体和纳米晶体的溶液注入模具的中心,并且之后纳米晶体的浓度可以在填充期间变化。然后固化并且除去透镜。
本发明的聚合物纳米复合材料可以用于其中期望下变频、滤光和/或复合材料的折射率特性的任何应用中。具有增加的折射率的聚合物纳米复合材料的非限定性应用实例包括:
超高光泽涂料:透明涂料的增加的折射率增加了光泽。向聚合物涂料例如蜡和其他涂料(例如汽车蜡、鞋蜡、地板涂料和相关的产品)中添加纳米晶体(例如ZnS纳米晶体)将增加由涂覆的表面反射的光的量并且由此增加其外观的光泽度。可以使用的合适的配体包括C18、PEG和其他通篇讨论的配体以便允许纳米晶体与不同的聚合物、蜡和涂料配制。
塑料眼用玻璃透镜和隐形眼镜:透镜的厚度与制造它的材料的折射率成比例。折射率越高,透镜越薄。普通玻璃具有大约1.523的折射率而一种实例的塑料,例如CR39具有1.49的折射率。塑料透镜,虽然在重量上更轻,但比等功效的玻璃透镜更厚。
通过适当地将纳米晶体,例如ZnS纳米晶体与合适的配体结合到塑料透镜中,可以使折射率增加超过玻璃的水平以制备超薄透镜。在例如接触透镜的应用中,由于氧气传送通过透镜进入眼睛的重要性,甚至更紧迫地需要制造薄透镜。接触透镜的折射率为大约1.40。甚至很小百分比的纳米晶体(例如大约10%的ZnS)的添加将使折射率增加到大约1.5,因此允许更薄的透镜。配体,例如通篇讨论的那些,可以用于将纳米晶体固定在聚合物层中。具有特定吸收性质的纳米晶体、例如紫外(UV)吸收纳米晶体的添加将允许制造UV(或其他波长)阻隔透镜。
用于纳米结构体分散的官能化硅树脂基质
纳米结构体在聚合物基质中的分散可以期望用于多种应用中,例如将量子点应用于发光器件中,其中分散在合适的基质中可以稳定量子点并且方便器件的制造。由于其透明度和对热和高光通量的稳定性,硅树脂聚合物通常是光学工业优选的。但是未改性的硅树脂聚合物通常与量子点不相容。本发明描述的配体可以通过在硅树脂基质中纳米结构体方便的分散而克服这一困难。一方面,基质由配体形成。
因此,一类一般的具体实施方案提供了制备复合材料的方法,其中提供了具有与纳米结构体的表面相连结的聚合物配体的纳米结构体群体,且聚合物配体被结合到其中嵌入了纳米结构体的硅树脂基质中。
任选的,基质包含与配体不同的材料(例如不同的聚合物硅树脂分子)。但是优选的,该基质由配体本身形成。因此,在一类具体实施方案中,该方法包括提供过量的聚合物配体(例如实质上过量),该过量的聚合物配体并不与纳米结构体的表面相连结,且将过量的聚合物配体和与纳米结构体相连结的聚合物配体结合到硅树脂基质中。在其中没有提供其他的硅树脂基质的前体的实施方案中,基质任选实质上由聚合物配体和/或其交联的或进一步聚合的形式,以及任何残留的溶剂、交联剂、引发剂和类似的物质组成。
在一些具体实施方案中,为了将聚合物配体结合到硅树脂基质中,使纳米结构体的群体和任何过量的聚合物配体与至少一种溶剂结合。然后蒸发该溶剂,例如在将混合物施用于器件中或器件上复合材料的期望位置之后。与纳米结构体相连结的聚合物配体和任何过量的不与纳米结构体相连结的聚合物配体形成硅树脂基质。该技术适合用于例如初始时作为凝胶或半固体的配体。在一些具体实施方案中,例如低于液体配体或其中期望额外的固态(solidity)的方案有利的是,提供交联剂且使其与配体上的部分(例如在与纳米结构体连结或不连结的配体分子上的、连结纳米结构的部分如羟基或不连结纳米结构体表面的胺部分)反应。示例性的交联反应如图35所示,小图A中通过胺的环氧加成(该环氧基团还可以与其他的环氧基团反应),小图B中通过环氧基的环氧加成(通过醇引发),小图C中的胺-异氰酸酯,小图D中的胺-酸酐缩合以及小图E中的胺-甲基酯缩合。同样的,可以提供引发剂(例如自由基或阳离子引发剂)。
还在另一个实施例中,对于包含至少两种不同类型单体单元的聚合物配体,其中的至少一种包含纳米结构体连结部分,且其中的至少一种缺少纳米结构体连结部分但是包含可聚合基团或环氧化物基团,将聚合物配体结合到硅树脂基质中包括使聚合物配体的不同分子上的可聚合基团或环氧基团相互反应。
示例性的纳米结构体和配体已经如上所述。在一类示例性的具体实施方案中,聚合物配体包含硅树脂主链和与硅树脂主链偶联的一个或多个醇部分(例如二甲醇)。在另一类示例性的具体实施方案中,聚合物配体包含硅树脂主链和与硅树脂主链偶联的一个或多个伯胺和/或仲胺部分。该主链例如可以是直链的或支化的。特别的示例性的含醇、二甲醇和胺的配体如上所述。以上还描述了可以在配体存在下合成的纳米结构体或聚合物配体可以交换为另一种在纳米结构体的合成期间使用的配体。
可以使用多于一种的配体。例如,在一类具体实施方案中,使用了悬垂的和末端的胺配体的混合物。在这些具体实施方案中,提供第二聚合物配体并且将其与聚合物配体一起结合到硅树脂基质中。第二聚合物配体包含硅树脂主链和与末端子单元偶联的一个或多个伯胺和/或仲胺部分。第一聚合物配体通常具有与内部子单元偶联的胺部分。悬垂的与末端的胺配体的比可以变化,例如从90%的悬垂(第一)聚合物配体:10%的末端(第二)聚合物配体到50%的悬垂配体:50%末端配体。在另一类示例性的具体实施方案中,使用两种(或更多种)悬垂胺配体的混合物。
通过本发明的任何方法制备的复合材料是本发明的特征,如包含该复合材料的器件(例如LED)。例如特征是包含嵌入到硅树脂基质中的纳米结构体(例如纳米晶体)的复合材料,其中基质与纳米结构体的表面通过基质的羟基(例如二甲醇)基团、胺基团或其他纳米结构体连结部分配位或缔合。
VII.用于制备纳米结构体的方法
特别是具有1-10nm范围的尺寸的半导体纳米晶体,由于它们新颖的性质作为最有希望的前沿技术的先进材料而脱颖而出。虽然这种新的材料的形成方法有技术优点,但是还是要关注纳米晶体与生态系统和环境潜在的不利相互作用,例如,潜在的毒性。仅有一些半导体化合物可以认为是无毒的,例如硫化锌(ZnS)、磷化铟(InP)、磷化镓(GaP)、氮化铟(InN)等。
对于量子点的许多应用,典型的认为有两个因素。第一个因素是吸收和发出可见光的能力。这种考虑使得InP是高度期望的基础材料。第二个因素是光致发光效率(量子产率)。通常,第II-VI族量子点(例如硒化镉)具有比第III-V族量子点(例如InP)更高的量子产率。先前制备的InP核的量子产率已经是非常低(<<1%),因此在尝试改进量子产率时已经进行了具有InP作为核以及另一种具有较高带隙的半导体化合物(例如ZnS)作为壳的核-壳结构的制备。但是这一方向上的先前的努力由于两个原因仅获得了10-20%的量子产率。第一,使用的核是低品质的;因此生长过程伴随着沉淀出现。第二,合成中使用的表面活性剂,三辛基膦(TOP)和三辛基氧化膦(TOPO)与纳米晶体连结较弱且因此提供了对纳米晶体表面弱的保护。虽然在一个例子中通过光蚀刻的方法制得的InP点的量子产率据报道高达20-40%,但那些蚀刻点从光致发光效率的角度来看具有差的稳定性。
例如参见Micic等人,(1995)“Synthesis and characterizationof InP,GaP,GaInP2quantum dots”J.Phys.Chem.99:7754-7759;Guzelian等人,(1996)“Synthesis of size-selected,surface-passivated InP nanocrystals”J.Phys.Chem.100:7212-7219;Battaglia和Peng(2002)“Formation of highquality InP and InAs nanocrystals in a noncoordinating solvent”Nano Lett.2:1027-1030;Lucey等人(2005)“Monodispersed InPQuantum Dots Prepared by Colloidal Chemistry in a NoncoordinatingSolvent”Chem.Mater.17:3754-3762;Xu等人(2006)“Rapidsynthesis of high-quality InP nanocrystals”J.Am.Chem.Soc.128:1054-1055;Haubold等人(2001)“Strongly luminescent InP/ZnScore-shell nanoparticles”ChemPhysChem.2:331;Micic等人(2000)“core-shell quantum dots of lattice matched ZnCdSe2shells on InPcores:experiment and theory”J.Phys.Chem.B 104:12149-12156;Bharali等人(2005)“Folate-Receptor-Mediated Delivery of InPQuantum Dots for Bioimaging Using Confocal and Two-PhotonMicroscopy”J.Am.Chem.Soc.127:11364;Talapin等人(2002)“Etching of colloidal Inp nanocrystals with fluorides:photochemical nature of the process resulting in highphotoluminescence efficiency”J.Phys.Chem.B 106:12659-12663;Hines和Guyot-Sionnest(1998)“Bright UV-Blue LuminescentColloidal ZnSe Nanocrystals”J.Phys.Chem.B 102:3655;Li等人(2004)“High quality ZnSe and ZnS nanocrystals formed byactivating zinc carboxylate precursors”Nano Lett.4:2261-2264;Chen等人(2004)“Colloidal ZnSe,ZnSe/ZnS,and ZnSe/ZnSeSquantum dots synthesized from ZnO”J.Phys.Chem.B108:17119-17123;Murray等人(1993)“Synthesis andcharacterization of nearly monodisperse CdE(E=S,Se,Te)semiconductor nanocrystallites”,J.Am.Chem.Soc.115:8706-8715;Dabbousi等人(1997)J.Phys.Chem.B 101:9463;以及Cao和Banin(2000)“Growth and properties of semiconductorcore/shell nanocrystals with InAs cores”J.Am.Chem.Soc.122:9692-9702。
用于合成高品质的InP纳米结构体、包括可以用于高品质核-壳纳米晶体的制备的高品质InP核的方法如下所述。在之前报道的工作中,InP核用氯化铟作为铟的前体且用TOPO(三辛基氧化膦)作为溶剂制备。以下方法使用新颖的前体、表面活性剂和/或溶剂以合成InP核,例如乙酸铟作为铟的前体,三(三甲基甲硅烷基)膦作为磷的前体,以及月桂酸和三辛基氧化膦的混合物作为生长溶剂,其能够精确地控制得到的InP颗粒的尺寸和尺寸分布以及表面性质。此外,得到的核是极其稳定的且具有比先前获得的核更高的量子产率。
本发明还提供了壳生长的方法,以及促进高品质核-壳纳米结构体的合成的方法。例如,提供了用于ZnS壳生长的新颖策略,其中二乙基锌和六甲基二硅硫烷(-disilthiane)用作前体且脂肪酸用作生长溶剂的一部分。这能够进一步使尺寸分布变窄并且显著地增加量子产率。在其他的具体实施方案中,二羧酸和多羧酸,包括本发明描述的新颖的配体,被用作表面活性剂。例如,使用单羧酸封端的聚二甲基硅氧烷(DCASi-Me)作为表面活性剂使壳生长。使用这种新的表面活性剂,纳米晶体的表面更好地被钝化,且量子产率急剧增加到超过50%。
一类一般的具体实施方案提供了用于制备InP纳米结构体的方法。在该方法中,提供了第一前体,例如乙酸铟和第二前体,例如三(三甲基甲硅烷基)膦。该第一和第二前体在酸和溶剂的存在下反应以制备纳米结构体。该溶剂优选为不是十八烯的溶剂。例如溶剂可以是TOPO、TOP、二苯甲酮、十六烷、十八烷或另一种具有类似的高沸点的溶剂。
在一类具体实施方案中,酸为脂肪酸,例如月桂酸、癸酸、肉豆蔻酸、棕榈酸或硬脂酸。在其他的具体实施方案中,该酸为膦酸、二羧酸或多羧酸,例如本发明中描述的或现有技术中已知的那些酸中的一种。其实例包括但不限于膦酸,例如己基膦酸和十四烷基膦酸以及羧酸,例如庚二酸和十二烯基琥珀酸。二羧酸是具有两个羧酸部分(例如两个单羧酸部分或一个二羧酸部分)的化合物。多羧酸是具有三个或更多个羧酸部分的化合物。
得到的纳米结构体典型地为纳米晶体,任选为具有窄的尺寸分布的小纳米晶体。例如,得到的纳米晶体的平均直径可以在1到6nm之间,例如在1.5到5.5nm之间,例如小于2.5nm或小于2.0nm。在一个具体实施方案中,纳米晶体的发射光谱具有在500nm到750nm之间的最大发射值。在一个具体实施方案中,纳米晶体的发光光谱具有小于70nm的一半最大值处的全宽度(例如小于60nm,小于50nm或者甚至小于40nm或更低),表明了纳米晶体具有窄尺寸分布。
该方法任选包括使用InP纳米结构体作为核且围绕着它们生长一种或几种壳,例如ZnS、ZnSe、ZnSexS1-x、ZnTe或ZnO壳。任选的,得到的纳米结构体具有高的量子效率,例如大于40%,大于50%,大于55%或者甚至是60%或更高。
另一类一般的具体实施方案提供了用于制备具有第II-VI族半导体壳的核-壳纳米结构体的方法。在该方法中,提供了纳米结构体核,并且围绕着核的壳通过提供包含第II族原子的第一前体、提供包含第VI族原子的第二前体并且使第一和第二前体在配体的存在下反应来制备壳而制得。所述前体典型地在溶剂或溶剂的混合物中反应,例如TOP、TOPO等。条件,例如反应温度和退火时间可以按照现有技术已知的进行变化(对于核或壳的合成)。
配体为二羧酸或多羧酸。示例性的配体是本发明描述的且可以在现有技术中找到其他的实例。示例性的配体包括但不限于化合物16、18(DCASi-Me)、43、44、46、47和48。
该核实质上可以包括任何材料,围绕着核可以期望的是第II-VI族的壳。在一类具体实施方案中,核包含第II-VI族半导体,例如CdS、ZnS、ZnSe或ZnTe。在另一类具体实施方案中,核包含第III-V族半导体,例如InP、InAs或In1-xGaxP。
同样的,壳实质上可以包含任何期望的II-VI族半导体。例如,壳可以包含ZnS、ZnSe或ZnSexS1-x。示例性的核-壳组合包括但不限于InP/ZnS、InP/ZnSe/ZnS核/壳/壳、InP/ZnSexS1-x核/合金壳、In1-xGaxP/ZnS合金核/壳(任选用于核和壳之间更好的点阵匹配以便提高量子产率并且使壳更厚用于增加环境稳定性),以及其他无毒纳米晶体例如ZnSe/ZnS和ZnTe/ZnS核-壳纳米晶体,该纳米晶体的发射可以覆盖蓝色到紫外光谱范围。
正如以上提到的,第一前体可以是二乙基锌。其他示例性的第一前体包括二甲基锌、氧化锌、硬脂酸锌和乙酸锌。第二前体可以是例如六甲基二硅硫烷或单质硫。
通过或使用实践所述方法制备的组合物也是本发明的特征。例如,组合物可以包括第一前体,例如乙酸铟,第二前体,例如三(三甲基甲硅烷基)膦,酸和溶剂。该溶剂优选为不是十八烯的溶剂。例如该溶剂可以是TOPO、TOP、二苯甲酮、十六烷、十八烷或另一种具有类似的高沸点的溶剂。在一类具体实施方案中,酸为脂肪酸,例如月桂酸、癸酸、肉豆蔻酸、棕榈酸或硬脂酸。在其他的具体实施方案中,该酸为膦酸、二羧酸或多羧酸,例如本发明中描述的或现有技术中已知的那些酸中的一种。组合物任选包括InP纳米结构体,例如纳米晶体,任选为具有窄尺寸分布的小纳米晶体。另一种示例性的组合物包括纳米结构体核,包含第II族原子的第一前体,包含第VI族原子的第二前体以及二羧酸或多羧酸配体。该组合物任选包括具有第II-VI族半导体壳的核-壳纳米结构体。实际上以上描述的方法的所有特征也应用于这些组合物,作为相关内容。
正如以上提及的,使用本发明的方法和/或配体能够合成具有高量子效率的纳米结构体。量子效率(在文献中还已知为量子产率)是相对于每个吸收光子所发生的特定事件(events)的数目(例如相对于每个纳米结构体吸收的光子通过纳米结构体发射的光子的数目)。
因此,一类一般的具体实施方案提供了包含纳米结构体群体的组合物,该群体表现出50%或更高的量子效率。群体的纳米结构体成员(典型地为群体的每一成员)包含核和壳,该核是除了含Cd的核或含Pb的核。任选的,该群体显示出55%或更高的量子效率,例如大约60%或更高。
在一类具体实施方案中,配体与纳米结构体成员的表面(例如每一个成员)相连结。示例性的配体包括但不限于本发明中描述的那些,例如二羧酸配体,如化合物16或18。
正如提到的,核不含Cd或Pb。在某些具体实施方案中,该核为不含重金属的核,其中重金属是元素周期表上铜和铅之间的元素族,其具有63.546到200.590之间的原子量和大于4.0的比重。在一类具体实施方案中,核包含第III-V族半导体,例如InP。壳实质上可以包含任何期望的材料,例如第II-VI族半导体如ZnS、ZnSe、ZnSexS1-x、ZnTe或ZnO。
在一类具体实施方案中,纳米结构体成员包含InP核。任选的,纳米结构体包含ZnS、ZnSe、ZnSexS1-x、ZnTe或ZnO壳。配体可以与纳米结构体成员的表面相连结,例如化合物18。
实际上以上对于具体实施方案描述的所有特征也可以应用于这些具体实施方案作为相关内容。例如,纳米结构体可以是量子点。纳米晶体可以具有窄的尺寸分布,核可以是小的(例如直径在1.5到5.5nm之间)和/或纳米晶体可以覆盖可见光光谱范围,例如具有500nm和750nm之间的发射波长。纳米结构体任选分散在溶剂、聚合物或类似的物质中。这种高度发射的纳米结构体可以有多种应用,例如在发光纳米复合材料等中。
正如以上提到的,使用本发明的方法和/或配体能够合成小的InP纳米结构体。因此,一类具体实施方案提供了包含InP纳米晶体群体的组合物,其中群体中纳米晶体的平均直径小于5.5nm。优选的,纳米晶体的平均直径小于2.5nm,例如小于2.0nm。在一个具体实施方案中,该平均直径小到1.5nm或1nm。纳米晶体任选具有窄的尺寸分布。
还正如以上提到的,使用本发明的方法和/或配体能够合成具有窄尺寸分布的InP纳米结构体。因此,一类具体实施方案提供了包含InP纳米晶体群体的组合物,其中该群体的发光光谱具有小于70nm的一半最大值处的全宽度。例如,一半最大值处的全宽度可以小于60nm、小于50nm或者甚至为40nm或更少。纳米晶体任选是小的,例如尺寸上为1-6nm或1.5-5.5nm;任选的,该群体的发射光谱具有500nm到750nm之间的发射最大值。
VIII.发光纳米复合材料
期望将发光纳米晶体结合到可固化的基质中用于制造期望形状的发光、光学透明的固态样品。但是,这种结合曾难以实现。在之前的将发光纳米晶体结合到可固化的基质中的尝试中,纳米晶体与基质不相容并导致相分离,或者固化后发光性损失,特别是对于不含镉的纳米结构体而言。
一方面,本发明提供发光纳米复合材料和用于将发光纳米结构体结合到可固化的基质中的方法,而将发射性质保留在了固体状态中。该纳米结构体任选具有与它们的表面相连结的配体,包括本发明的新颖的配体和/或其他牢固连结的配体。
一类一般的具体实施方案因此提供了包含发光纳米晶体的群体的发光纳米复合材料,该纳米晶体嵌入到基质中,并且当嵌入到基质中时,该纳米晶体实质上保留了它们的发光性。基质优选为环氧树脂、聚脲或聚氨酯基质。“环氧树脂”是当与催化剂混合时聚合和交联的环氧化物聚合物。“聚脲”是通过异氰酸酯和胺之间的化学反应制备的聚合物。“聚氨酯”是通过异氰酸酯和多元醇之间的化学反应制备的聚合物。多种合适的基质都是现有技术中公知的。
正如提到的,当嵌入到基质中时,纳米晶体保留了发光性。因此复合材料的光输出任选为可对比的没有嵌入到基质中的纳米晶体群体的光输出的至少5%,至少10%,至少20%或至少30%或更多。例如发光纳米复合材料的量子产率可以为18%,与相应的溶液中的纳米晶体53%的量子产率相比;该复合材料的光输出因此将是游离的纳米晶体的34%。
在一类具体实施方案中,配体与纳米晶体成员(例如每个纳米结构体成员的)的表面相连结。配体可以包括纳米结构体连结部分,例如胺基部分或二羧酸部分。示例性的胺配体包括脂肪族胺,例如癸胺或辛胺,还包括聚合胺。示例性的二羧酸配体包括但不限于本发明描述的那些,例如化合物43、44和46。
一方面,所述纳米晶体是不含Cd的纳米晶体。在其中纳米晶体是核-壳纳米晶体的具体实施方案中,核和壳两者实质上都是不含镉的(即由包含除了镉的元素的前体合成)。不含Cd的纳米晶体典型地根据元素分析测定其无镉。在一个具体实施方案中,纳米晶体是核-壳纳米晶体,且所述核包含第III-V族半导体。作为一些这样的实例,纳米晶体可以是InP/ZnS、InP/ZnSe或InP/ZnSexS1-x核-壳纳米晶体或InP/ZnSe/ZnS核/壳/壳纳米晶体,例如以上描述的那些。
相关的一组一般类别的具体实施方案提供了包含嵌入到基质中的发光纳米晶体群体的发光纳米复合材料,其中配体与纳米晶体成员的表面相连结。该配体优选包含与纳米晶体成员的表面相连结的胺部分或二羧酸部分。优选的,对于以上具体实施方案,当嵌入到基质中时,纳米晶体实质上保留了它们的发光性。
基质实质上可以是任何期望的基质,例如光学透明的和/或可固化的基质。多种基质是现有技术中公知的且可以适用于本发明的实践中。在一个具体实施方案中,基质包含环氧树脂、聚脲或聚氨酯。
实质上对于以上具体实施方案所提及的所有特征都可以应用于这些组合物作为相关内容;例如关于纳米晶体的类型,配体的类型和/或类似内容。例如,纳米晶体任选是不含Cd的纳米晶体。
本发明的发光复合材料任选成型为期望的三维形状,用作涂料等。潜在的应用包括任何期望形状的基于发光固态纳米晶体的样品,其可以用于玩具、设计应用、封装应用等。值得注意的是,在纳米晶体尺寸上的控制允许色彩调节,当仅需要一种激发源时其允许色彩调节。同时,纳米晶体在复合材料中的浓度和负载比例可以变化。
本发明还提供了制备这种发光复合材料的方法。因此,一类一般的具体实施方案提供了制备发光纳米复合材料的方法,其中提供了发光纳米晶体并且将其与一种或多种基质前体混合以形成第一混合物。将该基质前体固化以制备基质,例如环氧树脂、聚脲或聚氨酯基质,由此提供纳米复合材料。该得到的纳米复合材料包含嵌入到基质中的发光纳米晶体,其中当嵌入到基质中时,纳米晶体实质上保留了它们的发光性。该方法任选包括在固化基质前体之前,使第一混合物流延或成型为任何期望的形状。
实质上以上对于具体实施方案所提出的所有特征都可以应用于这些方法作为相关的内容;例如关于光输出,纳米晶体的组成,相关的配体和/或类似内容。例如,提供发光纳米晶体任选包括提供具有与纳米晶体的表面相连结的配体的发光纳米晶体。该配体可以包括与纳米晶体的表面相连结的胺部分或二羧酸部分。示例性的配体包括以上指出的那些,例如癸胺、辛胺和化合物43、44和46。
相关的一组一般的具体实施方案还提供了制备发光纳米复合材料的方法。在该方法中,提供了具有与纳米晶体的表面相连结的配体的发光纳米晶体。该配体优选包含与纳米晶体的表面相连结的胺部分或二羧酸部分。该纳米晶体与一种或多种基质前体混合以形成第一混合物,并将基质前体固化以制备基质,由此提供包含嵌入到基质中的发光纳米晶体的纳米复合材料。优选的,当潜入到基质中时,纳米晶体实质上保留了它们的发光性。该方法任选地在固化基质前体前将第一混合物流延或成型为期望的形状。
实质上以上对于具体实施方案所提出的所有特征都可以应用于这些方法作为相关的内容;例如关于纳米晶体的组成,光输出,示例性的配体,基质的类型和/或类似的内容。
实施例
以下实施例是说明性的,但是其并不限制本发明的方法和组合物。通常在纳米晶体的合成中会遇到其他适当的变形和条件以及参数的适应性变化,这些对本领域的那些技术人员来说是显而易见的,而且在本发明的精神和范围内。
实施例1
核/壳纳米晶体的合成
合适的纳米晶体的合成过程包括制备具有与通过本发明的理论模型规定的那些相匹配的特定的光谱特征的纳米晶体样品。这可以包括制备具有可调节尺寸和尺寸分布(例如直径为1-20nm范围的尺寸,产生可调节在460和640nm之间的发射峰波长并具有可调节的从大约15到大约100nm的FWHM)的纳米晶体。这反过来能用于合成通过模拟鉴别的具有最佳发射特征的纳米晶体混合物。模拟和核/壳纳米晶体过程典型地以迭代的方法进行。
类型I的CdSe/ZnS(核/壳)的核-壳纳米晶体可以通过两步法使用溶液相方法合成,第一步为核材料的制备,之后是壳的生长。
核的合成
将Se的粉末溶解于三正丁基膦(TBP)中并且将Cd(CH3)2溶解于TBP制备原料溶液。在无空气的环境中,将Cd原料溶液逐滴添加到三辛基氧化膦(TOPO)和三辛基膦(TOP)的混合物中,该混合物预先在120℃下脱气。将温度升高到300℃,之后快速地注入Se前体。注射之后,将温度降至260℃左右,保持该温度恒定一段时间以控制颗粒的尺寸。通过控制温度曲线和起始试剂以及条件,可以独立的调节中心波长和尺寸分布。产品的确认使用XRD和TEM分析确定。
壳的合成
将核CdSe纳米晶体分散在TOPO和TOP中,在140℃到220℃之间的温度下向其中添加ZnEt2和(TMS)2S的混合物。ZnS壳涂层的厚度通过改变前体的比例和生长温度而变化以获得均一的表面覆盖度并且提高量子效率。壳生长的确认使用XRD、EDX和TEM分析进行。
各个纳米晶体的光学性质通过使用商购的UV-Vis分光光度计和荧光计进行UV-Vis的吸收和光致发光光谱的测量进行表征。激发波长与蓝色LED相匹配(大约460nm)。溶液中纳米晶体的内部量子效率使用内反射标准来计算。纳米晶体组分混合物(溶液相)通过混合适当的浓度比例而形成以与来自理论模型的预测匹配。然后这些实际的混合物的发射和吸收信息作为输入值反馈输入到模拟过程中以确认(如果必要的话还要修正(refine))该模型。
这一过程的输出是纳米晶体的溶液相混合物,其具有适当的组成以当用蓝色激发而照射时产生具有与理论模型匹配的CRI和CTT且总的下变频效率比得上通过模型预测得的值的白光,假定在过程中其他机理为零损失。
实施例2
ZnS纳米晶体的合成
按照列出的顺序,向50mL的3颈圆底烧瓶中加入以下物质:
1.Zn(乙酸)2:76.5mg Lot#12727BC
2.硬脂酸:484mg Lot#06615MA
3.三正辛基氧化膦(TOPO):4.07g Lot#21604LA
在手套箱中制备以下物质:
5mL注射器中的3.9g蒸馏的三正辛基膦(TOP)(#35-111);
1mL注射器中的116.4mg的原料溶液02-190(双(三甲基甲硅烷基)硫化物(TMS2S):TOP);以及
一个装有5.0mL MeOH的40mL的分隔帽小瓶
将反应器放置在真空中
加热到120℃
一旦达到120℃,允许放置20分钟
将反应器放置在氩气中
从5mL的注射器中缓慢的注射TOP
将设定点温度变化到250℃
一旦达到250℃,立刻从1mL的注射器中注入原料溶液02-190(双(三甲基甲硅烷基)硫化物(TMS2S):TOP)
在250℃的温度下生长2分钟
除去加热罩并且允许反应冷却到50℃
在50℃下,使用注射器除去生长溶液并且将其注入具有MeOH的40mL的小瓶中。
图23显示了根据本发明制备的ZnS纳米晶体的X-射线衍射扫描图。该扫描图显示了硫化锌与纤维锌矿和锌共混(闪锌矿)晶体的混合物的存在。
图24显示了根据本发明制备的ZnS纳米晶体(直径大约4nm)的透射电子显微镜(TEM)照片。
ZnS纳米晶体可以使用任何链长的烃制备,例如C6-C22的烷烃,这取决于应用和期望的性质。
实施例3
羧酸-硅树脂配体的合成
通用的方法
除非另有说明,否则所有的操作都通过使用Schlenk技术在干燥的氮气气氛下严格排除空气和湿气下进行。THF、甲苯、氯仿-d1和甲苯-d8在活化的4A分子筛上干燥并且通过三个冷冻-泵送-解冻循环脱气。4-戊酸和1,1,1,3,5,5,5-七甲基三硅氧烷由Aldrich(St.Louis,MO)购得,在使用前使用Schlenk技术蒸馏并且储存在存储烧瓶中。七甲基环四硅氧烷和1,1,1,3,3,5,5-七甲基三硅氧烷由Gelest(Morrisville,PA)购得,使用前使用Schlenk技术蒸馏并且储存在存储烧瓶中。二甲苯中2.1到2.4%的Karstedt催化剂或二乙烯基四甲基二硅氧烷铂络合物由Gelest购得,其储存在手套箱中且无需进一步的纯化而使用。所有的产品都储存在手套箱中。NMR化学位移数据用Bruker FT NMR对于1H在400MHz下、对于13C{1H}在100MHz下、对于31P{1H}在162MHz下且对于29Si{1H}在79.5MHz下进行记录,并且以ppm列出。
通用的合成过程(参见图20g)
HO2C(CH2)4(SiMe2O)2SiMe3的合成
在手套箱中,在100mL Schlenk的烧瓶中通过添加Karstedt催化剂(2.66g溶液,0.300mmol)、之后在Schlenk生产线上在60mL的THF中稀释以建立以下反应。然后向透明的无色溶液中通过注射器在大约90秒内加入1,1,1,3,3,5,5-七甲基三硅氧烷(8.13mL,6.67g,30.0mmol)并且在大约30秒内调节溶液为澄清绿色。将该溶液在室温下搅拌大约15分钟。然后,通过室温水浴包围反应烧瓶,同时通过注射器在约90秒内加入4-戊酸(3.07mL,3.00g,30.0mmol),这会缓慢地将溶液调节为浅棕色并且产生少量的热。大约2小时后,使用通过自动调温计控制的加热器将水浴加热到35℃并且搅拌过夜。
通过旋转蒸发器从澄清棕色溶液中除去挥发物,剩余不透明的棕色油。通过短路径设备收集馏分以80到95℃之间的蒸发温度和小于<20mtorr的压力从混合物中蒸馏出产物。该产物是澄清无色的油(5.55g或大约17mmol和57%的产率),其典型地包含大约50%的酸和50%的酸酐。通过使产品混合物(2.00g或大约6.2mmol)溶解于40mL的乙腈,之后加入吡啶(5.00mL,5.11g,64.6mmol)和水(6.20mL,6.20g,33.4mmol)实现完全转化为酸。将溶液在空气中搅拌过夜。通过旋转蒸发器从溶液中除去挥发物直到残余物减少到油。接下来,加入100mL甲苯并且通过旋转蒸发器除去挥发物直到残余物减少到油。进行两次利用甲苯共沸除去水。将得到的澄清无色的油转移到烧杯中制备大约3mm厚的层并且产物在干燥器中在<10mtorr的静态真空中通过五氧化磷干燥过夜。产物为澄清无色的油(1.35g,4.18mmol,67%产率)并且将其储存在手套箱中。
额外的羧酸-硅树脂配体,例如图20g显示的和本说明书公开的那些,可以使用与上述类似的过程制备。
HO2C(CH2)4(SiMe2O)2SiMe3的分析
1H NMR(氯仿-d1,δ):0.10,0.13,0.14(s,SiMe),0.52,1.39,1.67(m,CH2),2.35(t,2H,CH2)。
13C{1H}NMR(氯仿-d1,δ):1.5,2.0,2.0(s,SiMe),18.1,23.1,28.5,34.1(s,CH2),180.5(s,C=O)。
29Si{1H}(1:1CDCl3/Et3N,0.02M Cr(acac)3,δ):-20.9,7.1(s,1:2)。
IR(cm-1,菱形):1050s(Si-O-Si),1700m(C=O),3030w(CH芳香族),2956sh,2928s,2854m(CH脂肪族),3400至2700v br(酸)。
质谱ESI(m/z):345(MNa+)。
HO2C(CH2)4SiMeO(SiMe2)3(环四硅氧烷)的合成和分析数据
在<10mbar的压力下酸酐/酸混合物的沸点为95到110℃。酸/酸酐混合物的合成产率为大约64%且转化为酸的转化率为63%。
1H NMR(氯仿-d1,δ):0.10,0.12,0.13(s,SiMe),0.48,1.39,1.65(m,2H,CH2),2.35(t,2H,CH2)。
13C{1H}NMR(氯仿-d1,δ);-0.1,1.9,2.0(s,SiMe),17.5,22.9,28.3,34.1(s,CH2),180.4(s,C=O)。
29Si{1H}(1:1CDCl3/Et3N,0.02M Cr(acac)3,δ):-20.3,-19.1,-19.0(s,1:2:1)。
IR(cm-1,菱形):1050s(Si-O-Si),1700m(C=O),3030w(CH芳香族),2956sh,2928s,2854m(CH脂肪族),3400到2700v br(酸)。
HO2C(CH2)4SiMe(OSiMe3)2的合成与分析数据
在<10mbar的压力下酸酐/酸混合物的沸点为78到95℃。酸/酸酐混合物的合成产率为63%且转化为酸的转化率为62%。
1H NMR(氯仿-d1,δ):0.10,0.12,0.13(s,SiMe),0.53,1.43,1.68(m,2H,CH2),2.35(t,2H,CH2)。
13C{1H}NMR(氯仿-d1,δ):0.9,1.0(s,SiMe),16.9,22.7,28.1,34.0(s,CH2),180.0(s,C=O)。
29Si{1H}(1:1CDCl3/Et3N,0.02M Cr(acac)3,δ):-22.0,-7.1,(s,1:2)。
IR(cm-1,菱形):1050s(Si-O-Si),1700m(C=O),3030w(CH芳香族),2956sh,2928s,2854m(CH脂肪族),3400至2700v br(酸)。
质谱ESI TOF 381(MH+)和ESI TOF 379(M-H)。
实施例4
膦酸-硅树脂配体的合成
通用的合成过程
(EtO)2P(O)(CH2)4(SiMe2O)2SiMe3的合成
在手套箱中,向250mL Schlenk的烧瓶中加入Karstedt催化剂(0.450g溶液,0.052mmol)。在Schlenk生产线上加入100mL的THF并且之后通过注射器在约90秒内加入1,1,1,3,5,5,5-七甲基三硅氧烷(14.0mL,11.5g,51.8mmol)。在大约30秒内澄清无色的溶液变为澄清的绿色。将该反应溶液搅拌约15分钟,然后在大约90秒内通过注射器加入二乙基3-丁烯基磷酸酯(10.0mL,9.95g,51.8mmol)。然后反应溶液缓慢地变为浅棕色并且产生少量的热。大约2小时后,通过调温计控制的加热到35℃的水浴包围反应烧瓶。将反应溶液加热过夜。
通过旋转蒸发器从澄清棕色溶液中除去挥发物,剩余不透明的棕色油。用己烷中的氧化硅(230-400目)填装直径为30mm且长为150mm的柱子。将粗产物放置在柱子上之后,用250mL的己烷洗提柱子,之后用1500mL的乙酸乙酯对己烷的比例为1:1的混合溶剂。洗提液收集在一个级份中。之后,通过旋转蒸发器除去挥发物,剩余浅棕色油。然后使用简单的蒸馏在<20mtorr的压力下蒸馏产物且罐的温度为120℃。产物为澄清无色油(17.6g,42.5mmol,82.1%产率)。
额外的膦酸-硅树脂配体,例如图20a、20j和20n显示的和本说明书通篇公开的那些,可以使用与上述类似的过程制备。
(EtO)2P(O)(CH2)4(SiMe2O)2SiMe3的分析
1H NMR(氯仿-d1,δ):0.00(s,6H,SiMe),0.05(s,6H,SiMe),0.07(s,9H,SiMe),0.53,1.39,1.60,1.70(m,2H,CH2),1.30(t,6H,CH2CH3),4.06(m,4H,CH2CH3)。
13C{1H}NMR(氯仿-d1,δ):-0.34,1.46,2.01(s,SiMe),16.68,61.52(d,JP-C=6Hz,CH2CH3O),18.05(s,CH2),24.62(d,JP-C=18Hz,CH2),26.19(d,JP-C=5Hz,CH2),25.69(d,JP-C=140Hz,CH2P)。
31P{1H}NMR(氯仿-d1,δ):32。
29Si{1H}(1:1CDCl3,0.02M Cr(acac)3,δ):-22.00,7.12(s,1:2)。IR(cm-1,菱形):1030(s,Si-O-Si),1260(m,Si-Me),1380,14001430(w,Et-O-P)。
(EtO)2P(O)(CH2)4SiMe(OSiMe3)2的合成和分析数据
在<20mtorr的压力下将罐子加热到120℃以便将产物蒸馏作为澄清无色的油,其产率为81%。
1H NMR(氯仿-d1,δ):-0.32(s,3H,SiMe),0.06(s,18H,SiMe),0.44,1.37,1.60,1.70(m,2H,CH2),1.30(t,6H,CH2CH3),4.08(m,4H,CH2CH3)。
13C{1H}NMR(氯仿-d1,δ):-0.15,2.01(s,SiMe),16.65,61.49(d,JP-C=6Hz,CH2CH3O),17.38(s,CH2),24.48(d,JP-C=18Hz,CH2),25.97(d,JP-C=5Hz,CH2),25.71(d,JP-C=140Hz,CH2P)。
31P{1H}NMR(氯仿-d1,δ):33。
29Si{1H}(1:1CDCl3,0.02M Cr(acac)3,δ):-17.96,9.94,10.00(s,1:1:1)。
IR(cm-1,菱形):1030(s,Si-O-Si),1250(m,Si-Me),1380,1400,1430(w,Et-O-P)。
(EtO)2P(O)(CH2)4SiMeO(SiMe2)3(环状四硅氧烷)的合成和分析数据
对于蒸馏,在<10mtorr的压力下蒸汽温度为84到96℃。产物作为澄清无色的油而分离,其产率为44%。
1H NMR(氯仿-d1,δ):0.50,0.70(s,总共21H,SiMe),0.511.41,1.61,1.69(m,各自为2H,CH2),1.30(t,6H,CH2CH3),4.08(m,4H,CH2CH3)。
13C{1H}NMR(氯仿-d1,δ):-0.57,0.91,0.94(s,SiMe),16.66,61.50(d,JP-C=6Hz,CH2CH3O),16.86(s,CH2),24.29(d,JP-C=18Hz,CH2),25.88(d,JP-C=5Hz,CH2),25.70(d,JP-C=140Hz,CH2P)。
31P{1H}NMR(氯仿-d1,δ):33。
29Si{1H}(1:1CDCl3,0.02M Cr(乙酸)3,δ):-20.39,-19.17,-19.08(s,1:2:1)。
IR(cm-1,菱形):1015,1050(s,Si-O-Si),1250(m,Si-Me),1380,1400,1430(w,Et-O-P)。
膦酸、(HO)2P(O)(CH2)4(SiMe2O)2SiMe3的通用合成过程
在50mL的Schlenk烧瓶中,加入15mL的CH2Cl2,然后加入(EtO)2P(O)(CH2)4(SiMe2O)2SiMe3(1.00g,2.42mmol)且搅拌溶液直到均匀。然后加入三甲基甲硅烷基溴化物(0.671mL,0.778g,5.08mmol)且将溶液搅拌15分钟。
通过真空转移除去挥发物并且加入10.0mL的甲醇,之后加入0.25mL的水。搅拌30分钟后,通过真空转移除去挥发物并且加入10.0mL的甲苯且溶液搅拌1分钟。象之前一样,通过真空转移除去挥发物并且加入10mL的甲苯,搅拌溶液并且再次除去挥发物。产物为略微雾浊的粘稠的油。
(HO)2P(O)(CH2)4(SiMe2O)2SiMe3的分析
ESI(m/z):359(MH+)和381(MNa+)。
实施例5
脂肪族羧酸配体的合成
二脂肪族(C18)单琥珀酸配体的合成
图25的小图A示意性地说明了配体的合成。
通用的方法
除非另有说明,否则所有的操作都在通过使用Schlenk技术在干燥的氮气气氛下严格排除空气和湿气下进行。用结合了分子筛和氧化铝作为干燥剂的M Braun溶剂体系来干燥甲苯。通过用无水硫酸钙(II)(Drierite)搅拌7天,然后“弯管到弯管(trap to trap)”蒸馏来纯化丙酮-d6。氯仿和二氯甲烷购于Fisher Chemical并且作为接收状态使用。十八烷基锂购于FMC Lithium,在使用前储存在冰箱中并且通过以二苯基甲醇进行滴定来化验。烯丙基琥珀酸酐购于TCI America,将其蒸馏并且使用Schlenk技术储存直到使用。二氯甲基硅烷和二甲基氯硅烷购于Acros Organics并且在使用前通过套管转移到储存烧瓶中。二甲苯中2.1到2.4%的Karstedt催化剂前体或二乙烯基四甲基二硅氧烷的铂络合物(浅色),购于Gelest,其储存在手套箱中并且无需进一步纯化而使用。硅胶60(230-400目)购于EM Science且作为接收状态使用。五氧化磷购于Fisher Chemical且作为接收状态使用。活性碳(椰子壳)和4A分子筛购于Aldrich且作为接收状态使用。NMR化学位移数据用Bruker FT NMR对于1H在400MHz下且对于13C{1H}在100MHz下进行记录,并且以ppm列出。NMR化学位移使用在氘溶剂中的质子杂质进行参考。硅树脂的式量通过使用1H NMR采用对于精确度至少60秒的后采集延迟(post acquisition delay)(d1)通过端基与重复单元积分的对比来测定。IR分析记录在用聚丙烯标准化的Nicolet 6700FTIR上。
251的合成
向500mL的Schlenk烧瓶中加入甲苯(200mL)和甲基二氯硅烷(3.93mL,3.25g,28.2mmol)。该溶液在室温下搅拌并且通过注射器在10分钟内加入十八烷基锂(160mL,56.5mmol,甲苯中0.353M)。添加期间,反应溶液从澄清无色转变为不透明的白色。添加后大约30分钟,加入甲苯(100mL)并且反应溶液用调温计控制的水浴加热到50℃。在这个温度下保持4h,然后关掉加热且将反应溶液冷却到室温过夜。之后用过滤器尖端套管(具有5到10μm微粒驻留的Fisherbrand P5)过滤反应溶液且通过旋转蒸发器除去挥发物,其剩余不透明的无色的油。将残余物溶解于己烷(250mL)中并且再次用过滤器尖端套管过滤。然后通过真空转移除去挥发物,剩余澄清无色的油,14.5g,26.4mmol,93.5%的产率。
值得注意的是这一反应还可以用不太昂贵的Grignard试剂进行。但是使用Grignard试剂,反应溶液加热两天才完成且要彻底洗涤产物以除去卤化镁盐。
251的分析
1H NMR(氯仿-d1,δ):0.20,0.3(m,SiCH3,3H),0.57(m,CH2(CH2)16CH3,4H),0.88(t,CH2(CH2)16CH3,6H),1.30(m,CH2(CH2)16CH3,64H),3.75(m,Si-H,1H)。
IR(cm-1,菱形):2108m(Si-H),2852s,2917s,2958m(sp3C-H)。
252和253的合成(化合物42)
向250mL的Schlenk烧瓶中加入甲苯(80mL)和硅烷251(7.00g,12.7mmol),采用搅拌制备澄清无色反应溶液。将反应溶液使用调温计控制的油浴加热到80℃。然后加入烯丙基琥珀酸酐(1.78g,12.7mmol),之后加入Karstedt催化剂前体(2.2wt%的11.3mg的溶液,0.0013mmol或0.0001当量的Pt金属)。大约1h后,通过除去挥发物制备用于分析的反应溶液样品。IR分析显示了很大的Si-H吸收而没有酸酐或乙烯基的吸收,这说明烯丙基琥珀酸酐或许在样品制备期间通过与甲苯的共沸蒸馏已经除去。此外,没有引发的反应通过1H NMR确定。添加另一0.0001当量的Karstedt催化剂前体(浅色)并且通过使用Si-H吸收以说明硅烷起始材料消耗由IR来监控反应的进程。约每90分钟重复一次这一循环,即加入催化剂之后90分钟内分析,直到反应引发。当反应溶液的颜色突然由澄清的黄色变为澄清的棕色时,在大约一天半内发生了引发。取样之后的IR分析显示Si-H吸收被两个琥珀酸酐的C=O吸收(对称的和不对称的伸展)代替了。引发后,反应溶液被加热大约90分钟以确保起始材料的完全转化。通过1H NMR分析使用乙烯基共振和Si-H峰的消失以及与硅树脂相连结的丙基链上亚甲基的多重态(multiplet)的出现来监控反应的进程。
为了进行反应,通过旋转蒸发器除去挥发物并且将得到的澄清棕色油溶解于氯仿(300mL)中。然后加入2g的活性碳并且将溶液在空气中搅拌过夜。通过粗过滤器过滤溶液,之后通过装备有Fisherbrand P5滤纸(微粒驻留为5-10μm)的过滤器尖端套管过滤并且通过旋转蒸发器除去挥发物留下混浊的浅黄色-灰色的油。然后将产品溶解于氯仿(200mL)中并且送其通过0.45μm的尼龙注射过滤器。完全的脱色过程(用活性碳和注射过滤器等)进行两次。除去挥发物以留下澄清的浅棕色油状酸酐252(~8g),将其溶解于氯仿(200mL)中并且使其与硅胶60(11g)合并。在旋转蒸发器上除去挥发物并且将干燥的分离的粉末转移到色谱柱上(直径55mm且长200mm)。用500mL的甲苯洗提柱子并且之后用500mL的乙酸乙酯(20%)/甲苯(80%)洗提产品253。除去挥发物得到1.30g、1.80mmol、14.4%的产率的白色蜡状二羧酸253。
252的分析
1H NMR(CDCL3,δ):-0.06(s,SiCH3),0.50,0.57(br m,SiCH2(CH2)16CH3)和SiCH2CH2CH2C(H)(C=O)(CH2)C=O),0.88(t,CH2(CH2)16CH3),1.26(br m,CH2(CH2)16CH3和SiCH2CH2CH2C(H)(C=O)(CH2)C=O),1.67和1.96(d-m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O),2.70,3.1(d-m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O),3.3(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O)。
IR(cm-1,菱形):1781和1863s(C=O)。
253的分析
1H NMR(丙酮-d6,δ):-0.08(s,SiCH3,3H),0.49(m,CH2(CH2)16CH3),SiCH2CH2CH2CH(CO2H)CH2CO2H,6H),0.89(t,CH2(CH2)16CH3,6H),1.26(m,CH2(CH2)16CH3,64H),1.63(d-m,JHH=68Hz,SiCH2CH2CH2CH(CO2H)CH2CO2H,4H),2.43(d-m,JHH=99Hz,SiCH2CH2CH2CH(CO2H)CH2CO2H,4H),2.81(d-m,JHH=64Hz,SiCH2CH2CH2CH(CO2H)CH2CO2H,4H),2.96(m,SiCH2CH2CH2CH(CO2H)CH2CO2H,1H),12.21(m,CO2H,2H)。
IR(cm-1,菱形):1703s(酸C=O),2852m,2917m,2954w,(sp3C-H),2500到3500宽m(酸OH)。
单脂肪族(C18)琥珀酸配体的合成
图25的小图B示意性地说明了配体的合成。二甲基氯硅烷代替甲基二氯硅烷用于以上合成中制备单脂肪族(C18)单琥珀酸配体(化合物41),如图25小图B示意性说明的那样。中间体和产物的分析如下。254的合成得到14.7g、20.3mmol、91.9%的产率;255的合成得到12.8g、28.0mmol、87.7%的产率;256的合成得到4.00g、8.50mmol、30.3%的产率。
254的分析
1H NMR(丙酮-d6,δ):0.08(s,SiCH3,3H),0.62(m,SiCH2(CH2)16CH3,2H),0.89(t,SiCH2(CH2)16CH3,3H),1.30(s,SiCH2(CH2)16CH3,32H),3.89(m,Si-H,1H)。
IR(cm-1,菱形):2112m(Si-H),2852s,2921s,2958sh(sp3C-H)。
255的分析
1H NMR(丙酮-d6,δ):-0.01(m,SiCH3,6H),0.55,0.57(m,SiCH2(CH2)16CH3和SiCH2CH2CH2CH(C=O)(CH2)C=O),4H),0.88(t,CH2(CH2)16CH3),1.29(m,SiCH2(CH2)16CH3,32H),1.50(m,SiCH2CH2CH2CH(C=O)(CH2)C=O),2H),1.84(d-m,JHH=64Hz,SiCH2CH2CH2CH(C=O)(CH2)C=O),2H),3.03(d-m,JHH=127Hz,SiCH2CH2CH2C(H)(C=O)(CH2)C=O),2H),3.34(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O),1H)。
IR(cm-1,菱形):1781s,1963m(酸酐C=O对称的和不对称的),2852s,2917s,2958sh(sp3C-H)。
256的分析
1H NMR(丙酮-d6,δ):-0.2(s,SiCH3,6H),0.54,0.55(m,SiCH2(CH2)16CH3,SiCH2CH2CH2CH(CO2H)CH2CO2H,4H),0.88(t,SiCH2(CH2)16CH3,3H),1.29(m,SiCH2(CH2)16CH3,32H),1.40(m,SiCH2CH2CH2CH(CO2H)CH2CO2H,2H),1.64(d-m,JHH=40Hz,SiCH2CH2CH2CH(CO2H)CH2CO2H,2H),2.55(d-m,JHH=80Hz,SiCH2CH2CH2CH(CO2H)CH2CO2H,2H),2.82(m,SiCH2CH2CH2CH(CO2H)CH2CO2H,1H),10.69(m,CO2H,2H)。
IR(cm-1,菱形):1691s(酸C=O),2852s,2917s,2954sh(sp3C-H),2500到3500(CO2H)。
脂肪族(C18)双尾多羧酸配体的合成
图26示意性的说明了配体的合成。
通用的方法
除非另有说明,否则所有的操作都通过使用Schlenk技术在干燥的氮气气氛下严格排除空气和湿气下进行。在结合了分子筛和氧化铝作为干燥剂的M Braun溶剂体系中干燥甲苯。通过用无水硫酸钙(II)(Drierite)搅拌7天然后“弯管到弯管”蒸馏纯化丙酮-d6。氯仿和二氯甲烷购于Fisher Chemical并且作为接收状态使用。三乙基胺购于Aldrich,干燥地置于确保密封的瓶子中并且通过套管转移(或双头针)到储存烧瓶中直到使用。烯丙基琥珀酸酐购于TCI America,其经蒸馏并且使用Schlenk技术储存直到使用。二氯甲基硅烷购自Acros Organics并且对于每次合成使用新的之前未打开的瓶子。单硅烷醇封端的硅树脂特别订购于Gelest。在二甲苯中2.1到2.4%的Karstedt催化剂前体或二乙烯基四甲基二硅氧烷铂络合物-浅色,购于Gelest,其储存在手套箱中并且无需进一步纯化而使用。五氧化磷购于Fisher Chemical且作为接收状态使用。十八烷基氯化镁(THF中)、无水二乙基醚、活性碳(椰子壳)和4A分子筛购于Aldrich且作为接收状态使用。NMR化学位移数据用Bruker FT NMR对于1H在400MHz下且对于13C{1H}在100MHz下进行记录,并且以ppm列出。NMR化学位移使用氘溶剂中的质子杂质来参考。硅树脂的式量通过使用1H NMR采用对于精确度至少60秒的后采集延迟(d1)通过端基与重复单元积分的对比来进行测定。IR分析在用聚丙烯标准化的Nicolet 6700FTIR上记录。
261的合成
根据Patnode,W.I.,1942的U.S.专利2,381,366和Manami,H.等人(1958)Nippon Kagaku Zasski 79:60-65适应修改261的合成。
2000mL的3颈圆底烧瓶装备有加料漏斗、机械搅拌器、回流冷凝器和氮气气氛。氮气鼓泡瓶(bubbler)由一段放置在1L Erlenmeyer烧瓶中的玻璃管组成,该烧瓶包含大约800mL的水以吸收反应中生成的HCl气体。向反应烧瓶中加入二乙基醚(1L)和甲基二氯硅烷(500mL,533g,4.80摩尔)。将水(51.9mL,2.88摩尔,0.6当量)转移到加料漏斗中。在大约45分钟内当添加水时快速地搅拌反应并且在加料期间温和地回流反应溶液。加料之后,反应溶液在室温下搅拌大约1h并且在正向氮气流动下反应烧瓶再改装用于真空蒸馏。将机械搅拌器替换为磁力搅拌器并且将回流冷凝器替换为与2L的接收器相连的倒“U”形管。反应烧瓶还配备具有温度控制器的加热套,该控制器在反应烧瓶和加热套之间使用热电偶。然后将罐加热到25℃并且使用具有真空控制器(BuchiV-800)的Teflon管线的真空泵逐渐将真空施加于该体系。抽真空期间在干冰/乙醇浴中冷却接收器而真空度逐渐增加到200mtorr。在这一步中除去挥发物需要大约4h且除去~75%的溶液体积。然后,将接收器换为1L的Schlenk烧瓶并且通过用相同的设备(与接收器相连的倒“U”形管)蒸馏从非挥发性材料中分离产物。在这种情况中用液氮冷却接收器而压力逐渐降低到~20mtorr且罐的温度逐渐增加到200℃。通过套管将蒸馏物转移到与馏分分离器(fraction cutter)相连的罐中且小心地蒸馏产物以分离低聚产品。在这个反应规模上,具有24/40的标准圆锥接的馏分分离器最方便。所有的馏分都是澄清无色的油且储存在手套箱中。总的反应产率为57.8%且馏分如下详细描述。
馏分A,26.5g,n=1.38,fwt 258.1,7.2%的产率,在125torr下的23℃到300mtorr下的24℃之间收集。
馏分B,22.1g,n=1.89,fwt 288.8,6.2%的产率,在300mtorr下的24℃和180mtorr下的24℃之间收集。
馏分C,27.5g,n=2.73,fwt 339.9,8.0%的产率,在180mtorr下的24℃和65mtorr下的25℃之间收集。
馏分D,23.5g,n=2.62,fwt 332.7,6.8%额产率,在65mtorr下的25℃和50mtorr下的22℃之间收集。
馏分E,37.0g,n=3.63,fwt 393.4,11.0%的产率,在50mtorr下的22℃和25mtorr下的29℃之间收集。
馏分F,16.9g,n=4.82,fwt 465.0,5.1%的产率,在25mtorr下的29℃和25mtorr下的37℃之间收集。
馏分G,22.8g,n=5.39,fwt 499.3,7.8%的产率,在25mtorr下的33℃和23mtorr下的30℃之间收集。
馏分H,17.7g,n=7.34,fwt 623.8,5.5%的产率,在23mtorr下的30℃和20mtorr下的63℃之间收集。
值得注意的是,该过程可以最优化并且产率可以通过使用注射器泵或类似的流体计量器件精确地计量水的添加速率而略有增加。此外,产率可以进一步通过增加水的当量数而最优化。还值得注意的是,从处理过程的第一步中的反应除去的二乙基醚将包含未反应的氯化硅且其应当小心地处理,因为氯化硅与水有放热反应。
261(馏分A)的分析
1H NMR(丙酮-d6,δ):0.26,0.29,0.32(m,ClSi(CH3)(H)O[Si(CH3)(H)O]nSi(CH3)(H)Cl,4.4H),0.60,0.65(m,ClSi(CH3)(H)O[Si(CH3)(H)O]nSi(CH3)(H)Cl,6H),4.71,4.74(m,ClSi(CH3)(H)O[Si(CH3)(H)O]nSi(CH3)(H)Cl,1.4H),5.23(m,ClSi(CH3)(H)O[Si(CH3)(H)O]nSi(CH3)(H)Cl,2H)。
IR(cm-1,菱形):497m(Si-Cl),1066m(Si-O-Si),1266m(Si-Me),2190m(Si-H)。
262的合成
向500mL的Schlenk烧瓶中加入甲苯(200mL)和二氯聚硅烷261(15.7g,54.5mmol),用搅拌制备澄清无色的反应溶液。将反应溶液浸没在~20℃的自来水浴中并且通过注射器加入十八烷基氯化镁(218mL,109mmol,于THF中0.50M),这将反应溶液调节为不澄清的白色。加料大约30分钟后将调温计控制的水浴设定为50℃以加热反应溶液约6小时。关掉加热以使得反应溶液冷却到室温过夜。次日,水浴为50℃以加热反应溶液另外9小时。然后冷却到室温过夜后,用过滤器尖端套管和Fisherbrand Q8(微粒驻留为20到25μm)过滤反应溶液。然后用己烷(2x 150mL和1x 100mL)萃取白色剩余物并且合并有机相。有机相用水(8x 100mL)洗涤以除去残留的Grignard反应盐。在第一次水洗中,在混合后将水相调节为不透明的白色但是通过最后的洗涤水为澄清的且混合后没有任何混浊。通过真空转移除去挥发物以留下澄清无色的油(37.3g,49.5mmol,90.9%的产率)。质子NMR分析得到n=1.74、743.9g/摩尔的式量。
262的分析
1H NMR(氯仿-d1,δ):0.14,0.15,0.16,0.19(m,[OSi(CH3)(H)]xCH2(CH2)16CH3,12H),0.64(m,[OSi(CH3)(H)]xCH2(CH2)16CH3,4H),0.88(t,[OSi(CH3)(H)]xCH2(CH2)16CH3,6H),1.26(m,[OSi(CH3)(H)]xCH2(CH2)16CH3,64H),4.64(m,[OSi(CH3)(H)]xCH2(CH2)16CH3,4H)。13C{1H}(氯仿-d1,δ):-0.9(m,SiCH3),1.2,14.4,17.1,22.9,23.1,29.6,29.8,29.9,30.0,32.2,33.3(m,[OSi(CH3)(H)]xCH2(CH2)16CH3)。
IR(cm-1,菱形):1054s(Si-O-Si),1258m(Si-CH3),2128m(Si-H),2852s,2917s,2958m(sp3C-H)。
263的合成
向500mL的装备有回流冷凝器的Schlenk烧瓶中加入聚硅烷262(15.7g,18.8mmol)和甲苯(150mL)。使用调温计控制的油浴将反应溶液加热到80℃。然后加入烯丙基琥珀酸酐(10.6g,75.7mmol,0.80当量/当量Si-H),之后加入Karstedt催化剂前体(6.71mg的2.2wt%的溶液,0.0076mmol或0.0001当量Pt金属)。大约1h后,通过挥发物的除去制备反应溶液的样品用于分析。IR分析显示了大的Si-H吸收而没有酸酐或乙烯基的吸收,这说明烯丙基琥珀酸酐可能在样品制备期间通过与甲苯的共沸蒸馏已经除去了。此外,反应没有引发通过1H NMR确定。加入另外0.0001当量的Karstedt催化剂前体(浅色)并且通过使用Si-H吸收以指示硅烷起始材料消耗的IR来监控反应的进程。每约90分钟重复一次这一循环,即加入催化剂之后90分钟内分析,直到反应引发。当反应溶液的颜色突然由澄清的黄色变为澄清的棕色时,在大约一天半内发生引发。取样之后IR分析显示Si-H吸收被两个琥珀酸酐的C=O吸收(对称的和不对称的伸展)代替了。引发后,反应溶液加热大约90分钟以确保起始材料的完全转化。通过1H NMR分析使用乙烯基共振和Si-H峰的消失以及与硅树脂相连结的丙基链上亚甲基的多重态的出现来监控反应的进程。
为了继续进行反应,通过旋转蒸发器除去挥发物并且将得到的澄清棕色的油溶解于氯仿(800mL)中。然后加入4.0g的活性碳并且溶液在空气中搅拌过夜。通过粗过滤器过滤溶液,之后通过装备有FisherbrandP5滤纸(微粒驻留为5-10μm)的过滤器尖端套管过滤并且通过旋转蒸发器除去挥发物,留下混浊的浅黄色-灰色的油。然后将产品溶解于二氯甲烷(200mL)中并且送其通过0.45μm的尼龙注射过滤器。完全的脱色过程(用活性碳和注射过滤器等)进行两次。除去挥发物以留下澄清的浅黄色油(25.1g,18.0mmol,95.7%的产率)。
263的分析
1H NMR(氯仿-d1,δ):0.06,1.0,0.12,0.18(m,SiCH3,9H),0.56,0.57(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O和/或SiCH2(CH2)16CH3,10H),0.89(t,SiCH2(CH2)16CH3,6H),1.27(m,SiCH2(CH2)16CH3,64H),1.45(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,6H),1.83(d-m,JHH=92Hz,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,6H),2.87(d-m,JHH=176Hz,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,6H),3.16(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,3H)。13C{1H}(氯仿-d1,δ):部分列出170.4,174.0(m,C=O酸酐)。
IR(cm-1,菱形):1013s(Si-O-Si),1262m(Si-CH3),1789m,1867w,(C=O,对称的和不对称的),2962m和2905w(CH脂肪族)。
264(参见化合物35)的合成
在空气中向1000mL的RBF中加入聚酸酐263(25.1g,18.0mmol)和水(340mL,18.9摩尔)。使用具有通过在烧瓶和加热套之间定位的热电偶监控的温度控制的加热套将该溶液加热到120℃。快速地搅拌该溶液并且在反应溶液逐渐变稠到不澄清的白色奶油慕斯(mousse)的时间内保持120℃的温度90分钟。冷却到室温后,使用具有与反应烧瓶和接收器相连的倒“U”形管的弯管到弯管的蒸馏除去挥发物。蒸馏期间,当接收器在干冰/乙醇浴中冷却时,反应烧瓶用调温计控制的加热套(如上所述)温和加热到30℃。将真空度保持为<30mtorr。为了除去最后痕量的水,将产物放置在具有新鲜的五氧化磷且静态真空度<30mtorr的干燥器中至少16h。每次用新鲜的五氧化磷进行干燥步骤两次。最后在干燥器中过夜之前将产物研磨为粗的白色粉末。将其放入手套箱中、称重并且转移到小瓶中用于储存(23.9g,16.2mmol,90.1%的产率)。
264的分析
1H NMR(丙酮-d6,δ):-0.04(br m,SiCH3),0.48(br m,SiCH2(CH2)16CH3和SiCH2CH2CH2CH(CO2H)CH2CO2H),0.88(t,CH2(CH2)16CH3),1.29(m,SiCH2(CH2)16CH3,32H),1.70(m,SiCH2CH2CH2CH(CO2H)CH2CO2H),2.45(br SiCH2CH2CH2CH(CO2H)CH2CO2H),2.9(br m,SiCH2CH2CH2CH(CO2H)CH2CO2H和SiCH2CH2CH2CH(CO2H)CH2CO2H),11.8(br s,CO2H)。
IR(cm-1,菱形):1033s(Si-O-Si),1262m(Si-CH3),1732s(C=O),2848,2917s(sp3C-H),2500到3500宽的m(羧酸OH)。
显而易见的是其他的配体也可以使用与以上相似的过程制备。
实施例6
多羧酸配体的合成
硅树脂二羧酸(DCASi-Me)的合成
图27示意性地说明了配体的合成
通用的方法
除非另有说明,否则所有的操作通过使用Schlenk技术在干燥的氮气气氛下严格排除空气和湿气下进行。甲苯、氯仿-d1和甲苯-d8在活化的4A分子筛上干燥并且通过三个冷冻-泵送-解冻循环脱气。通过用无水硫酸钙CaSO4(Drierite)搅拌7天然后“弯管到弯管”蒸馏纯化丙酮-d6。氯仿购于Fisher Chemical并且作为接收状态使用。烯丙基琥珀酸酐购于TCI America,将其蒸馏并且使用Schlenk技术储存。甲硅烷封端的硅树脂特别订购于Gelest。甲硅烷硅树脂的式量通过1H NMR采用对于精确积分至少60秒的后采集延迟(d1)进行测定。二甲苯中2.1到2.4%的Karstedt催化剂或二乙烯基四甲基二硅氧烷铂络合物-浅色,购于Gelest,其储存在手套箱中并且无需进一步纯化而使用。活性碳购于Aldrich且无需进一步纯化而使用。NMR化学位移数据用Bruker FT NMR对于1H在400MHz下且对于13C{1H}在100MHz下进行记录,并且以ppm列出。NMR化学位移使用氘溶剂中的质子杂质来参考。IR分析在用聚丙烯标准化的Nicolet 6700FTIR上记录。
271(n=8.8)的合成过程
向具有氮气气氛、回流冷凝器和调温计控制的油浴的1000mLSchlenk烧瓶中加入烯丙基琥珀酸酐(55.0g,0.392摩尔)、甲苯200mL和甲硅烷封端的硅树脂(286g,0.392摩尔,fwt 728.2)。搅拌反应溶液,并且当油浴的温度达到80℃时加入Karstedt催化剂前体(355mg 2.2wt%的溶液,0.040mmol或0.0001当量的Pt金属)。大约1h后,通过除去挥发物制备用于分析的反应溶液样品。IR分析显示了大的Si-H吸收而没有酸酐或乙烯基的吸收,这说明烯丙基琥珀酸酐或许在样品制备期间通过与甲苯的共沸蒸馏已经除去。此外,通过1H NMR确定该分析显示反应尚未引发。添加另一种0.001当量的Karstedt催化剂前体并且通过使用Si-H吸收以指示硅烷起始原料消耗的IR来监控反应的进程。每约90分钟重复这一循环,即加入催化剂之后90分钟内分析,直到反应引发。大约一天半之后,反应溶液的颜色突然由澄清的黄色变为澄清的棕色。然后IR分析显示Si-H吸收被两个琥珀酸酐的C=O吸收(对称的和不对称的伸展)代替。颜色变化之后大约90分钟,通过1H NMR分析使用乙烯基共振和Si-H峰的消失以及与硅树脂相连的丙基链上亚甲基的多重态的出现确定起始原料的完全转化。
为了继续进行反应,通过旋转蒸发器除去挥发物并且将得到的澄清棕色油分为两部分脱色,每一半都溶解于800mL的氯仿中。然后向每一个溶液中都加入20g的活性碳并且溶液在空气中搅拌90分钟。通过粗过滤器过滤溶液,之后通过装备有Fisherbrand P5滤纸(微粒驻留为5-10μm)的过滤器尖端套管过滤并且通过旋转蒸发器除去挥发物,留下混浊的浅黄色-灰色的油。然后将产品溶解于300mL的氯仿中并且送其通过0.45μm的尼龙注射过滤器,之后通过除去挥发物以留下澄清的、非常浅的黄色油(280g,0.323摩尔,82.4%的产率)。
271(n=8.8)的分析
1H NMR(丙酮-d6,δ):0.13(m,SiMe,61.9H),0.65(m,O2CCH2CH(CO)CH2CH2CH2Si,2H),1.56(m,O2CCH2CH(CO)CH2CH2CH2Si,2H),1.86(d-m,J=76Hz,O2CCH2CH(CO)CH2CH2CH2Si,2H),2.91(d-q,JH-H=148Hz,JH-H=10Hz,O2CCH2CH(CO)CH2CH2CH2CH2Si,2H),3.32(m,O2CCH2CH(CO)CH2CH2CH2CH2Si,1H)。13C{1H}(氯仿-d1,δ):1.5(m,SiMe),18.5,21.7,34.8,34.9,41.4(s,O2CCH2CH(CO)CH2CH2CH2Si),175.6,172.0(s,O2CCH2CH(CO)CH2CH2CH2Si)。
IR(cm-1,菱形):1017s(Si-O-Si),1262m(Si-CH3),1789m和1867w(C=O,对称的和不对称的),2962m和2905w(CH脂肪族)。
272的合成,HO2CCH2CH(CO2H)(CH2)3(SiMe2O)nSiMe3(n=8.8)(参见化合物18)
将反应溶液分为两半且将每一部分都转移到2000mL的装备有在空气中的回流冷凝器的RBF中。然后向反应烧瓶中加入水(730mL,40.5摩尔或250当量)并且使用具有通过在烧瓶和加热套之间定位的热电偶监控的温度控制的加热套将该溶液加热到120℃。使用机械搅拌器快速搅拌该溶液,同时120℃的温度保持90分钟。随着反应的进行,溶液逐渐达到奶油慕斯的浓度并且是不透明的白色。冷却到室温后,使用具有与反应烧瓶和接收器相连的倒“U”形管的弯管到弯管的蒸馏除去挥发物。蒸馏期间,当接收器在干冰/乙醇浴中冷却且真空度保持为<30mtorr时,反应烧瓶用调温计控制的加热套(如上所述)温和地加热到30℃。然后将产物溶解于100mL的氯仿中,在最后除去挥发物到<30mtorr之前在动态真空下再使用0.45μm的注射过滤器过滤4h的一段时间。为了除去最后痕量的水,将产物放置在具有新鲜的P4O10且静态真空度<30mtorr的干燥器中至少16h。每一次用新鲜P4O10进行该干燥步骤两次。将澄清的、非常浅的黄色的油放入手套箱中、将其称重并且转移到小瓶中用于储存(272g,0.307摩尔,95.2%的产率)。
HO2CCH2CH(CO2H)(CH2)3(SiMe2O)nSiMe3(n=8.8)的分析
1H NMR(丙酮-d6,δ):0.11(m,SiMe,61.9H),0.62(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,2H),1.48(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,2H),1.61(d-m,JH-H=16Hz,HO2CCH2CH(CO2H)CH2CH2CH2Si,2H),2.55(d-q,JH-H=92Hz,JH-H=10Hz,HO2CCH2CH(CO2H)CH2CH2CH2Si,2H),2.83(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,1H),10.71(s,HO2C,2H)。13C{1H}(氯仿-d1,δ):1.8(m,SiMe),18.8,21.6,36.1,36.3,41.5(s,HO2CCH2CH(CO2H)CH2CH2CH2Si),173.5,176.4(s,HO2CCH2CH(CO2H)CH2CH2CH2Si)。
IR(cm-1,菱形):1017s(Si-O-Si),1258m(Si-CH3),1716m(酸C=O),2905m和2962w(CH脂肪族),2500到3300w宽(羧酸)。
烯烃二羧酸配体的合成(DDSA,化合物44)
图28示意性地说明了配体的合成。
通用的方法
起始的酸酐(2-十二烯-1-基琥珀酸酐)购于Aldrich。通过用无水CaSO4(Drierite)搅拌7天然后“弯管到弯管”蒸馏纯化丙酮-d6。NMR化学位移数据用Bruker FT NMR对于1H在400MHz下且对于13C{1H}在100MHz下进行记录并且以ppm列出。NMR化学位移使用氘溶剂中的质子杂质来参考。IR分析记录在用聚丙烯标准化的Nicolet 6700FTIR上。
合成过程
在空气中向2000mL的装备有机械搅拌器和加热套(烧瓶和加热套之间的热电偶)的圆底烧瓶中加入酸酐(100g,0.375摩尔,蜡状白色固体)和水(337mL,18.7摩尔)。该烧瓶安装有回流冷凝器并且使用具有温度控制器以便控制温度的调温计加热到120℃。快速搅拌反应溶液使其最初具有乳白色的外观,但是随着加热的继续,它变为不澄清的白色且略微变稠。在120℃下大约90分钟后关掉加热并且将溶液冷却到室温过夜。通过真空转移除去水而分离产物。倒“U”形管用于连结反应烧瓶到作为蒸馏接收器的1000mL的圆底烧瓶。用干冰/乙醇浴冷却该接收烧瓶并且逐步将真空施加于该体系以避免反应溶液过量起泡。蒸馏期间,使用调温计控制的加热套将反应烧瓶加热到30℃。真空度逐渐增加直到达到<30mtorr以除去可获得的水。随着水的除去,产物变为包含一些粉末的白色固体。然后将产物转移到结晶盘中并且将大的团块弄碎以方便干燥。之后在<30mtorr下于真空干燥器中在P2O5上且在静态真空下过夜除去痕量的水。替换P2O5且在干燥器中再次重复该过程制得絮状白色粉末(97.5g,0.343摩尔,91.4%的产率)。
分析
1H NMR(丙酮-d6,δ):0.88(m,CH3,3H),1.28(m,HO2CCH2CH(CO2H)CH2CH=CHCH2(CH2)7CH3,14H),2.00(q,HO2CCH2CH(CO2H)CH2CH=CHCH2(CH2)7CH3,2H),2.28,2.37(d-q,HO2CCH2CH(CO2H)CH2CH=CHCH2(CH2)7CH32H),2.43,2.63(d-m,HO2CCH2CH(CO2H)CH2CH=CHCH2(CH2)7CH3,2H),2.84(m,HO2CCH2CH(CO2H)CH2CH=CHCH2(CH2)7CH3,1H),5.40,5.51(d-m,HO2CCH2CH(CO2H)CH2CH=CHCH2(CH2)7CH3,2H),10.75(s,CO2H,2H)。13C{1H}(丙酮-d6,δ):127,134(s,CH=CH),173,176(s,CO2H),(未完全列出)。
IR(cm-1,菱形):1691s(C=O),2848m,2921m,2958w(C-H脂肪族),3019w(C=C),2400-3400br w(酸OH)。值得注意的是IR分析对于区分来自酸酐的酸是可靠的工具。
硅树脂单尾多羧酸配体的合成
图29示意性的显示了该配体的合成。
通用的方法
除非另有说明,否则所有的操作通过使用Schlenk技术在干燥的氮气气氛下严格排除空气和湿气下进行。甲苯在活化的4A分子筛上干燥并且通过三个冷冻-泵送-解冻循环脱气。通过用无水硫酸钙(II)(Drierite)搅拌7天然后“弯管到弯管”蒸馏纯化丙酮-d6。氯仿和二氯甲烷购于Fisher Chemical并且作为接收状态使用。二甲基甲酰胺(DMF)、三乙基胺和乙腈购于Aldrich并干燥地置于确保密封的瓶子中并且通过套管转移(或双头针)到储存烧瓶中直到使用。烯丙基琥珀酸酐购于TCIAmerica,将其蒸馏并且使用Schlenk技术储存直到使用。甲基氢环硅氧烷(Methylhydrocyclosiloxanes)(D'4)购于Gelest。该材料以接收状态使用并且是含有3到5个之间的SiH(CH3)-O单元的且平均环尺寸为4的环的混合物。二甲基氯硅烷购于Aldrich,将其蒸馏并且储存在烧瓶中直到使用。甲硅烷醇封端的硅树脂特别订购于Gelest。二甲苯中2.1到2.4%的Karstedt催化剂前体或二乙烯基四甲基二硅氧烷铂络合物-浅色,购于Gelest,其储存在手套箱中并且无需进一步纯化而使用。五氧化磷购于Fisher Chemical且作为接收状态使用。活性碳(椰子壳)和4A分子筛购于Aldrich且作为接收状态使用。NMR化学位移数据用BrukerFT NMR对于1H在400MHz下且对于13C{1H}在100MHz下进行记录,并且以ppm列出。NMR化学位移使用氘溶剂中的质子杂质来参考。硅树脂的式量通过使用1H NMR采用对于精确度至少60秒的后采集延迟(d1)通过端基与重复单元积分的对比来测定。IR分析在用聚丙烯标准化的Nicolet 6700FTIR上记录。
291的合成
根据Suzuki,Toshio等人(1989)Polymer 30:333-337和Cella,James A.等人(1994)J.Organomet.Chem.480:23-26调整291的合成。
向真空管线上250mL的Schlenk烧瓶中加入DMF(0.651mL,0.017摩尔),乙腈(15.9mL,0.304摩尔)和D'4(40g,0.166mol),它们形成最初无色混浊的溶液,搅拌大约3分钟后该溶液变为澄清无色。然后加入二甲基氯硅烷(18.0ml,15.7g,0.166摩尔)并且反应溶液并没有明显地产生任何热量。使用调温计控制的油浴将反应溶液加热大约16h(过夜)到70℃。然后通过蒸馏从反应溶液中分离产物。首先用70℃的罐温蒸馏溶剂,这通过直接用装配短路径蒸馏设备的烧瓶实现。加热过夜后该设备并不冷却到室温,但是将压力采用真空调节器(Buchi V-400)和Teflon隔膜真空泵逐渐降低。在大约120torr下用冰浴冷却接收器并且当压力达到大约40torr时重新配置蒸馏设备。丢弃蒸馏物并且建立14/20(标准圆锥接)的馏分分离蒸馏设备且与用于更充分真空度的真空管线相连。通过套管将反应烧瓶的内容物转移到馏分分离蒸馏罐中且油浴(加热罐的)的温度降低到35℃,并且保持为35℃。将真空施加于蒸馏设备并且随着压力达到大约40torr,将一些蒸馏物收集到接收器中。随着压力降低到500mtorr蒸馏物蒸发。然后在低于大约300mtorr下收集三个馏分的产物:310mtorr下24℃到80mtorr下27℃之间的馏分A(0.68g);80mtorr下27℃到45mtorr下23℃之间的馏分B(3.17g);以及之后是馏分C(1.70g)。重新设定该设备以收集馏分C。在<30mtorr的真空度下通过将罐加热到100℃收集蒸馏物并且罐子使用倒“U”形管直接与接收器相连。通过1H NMR测定B馏分具有4.9个重复单元(MW=389.5)。基于这一分子量,馏分B的产率为5.7%(8.14mmol)。所有的馏分都是澄清无色的油并且储存在氮气气氛中。
291的分析
1H NMR(丙酮-d6,δ):0.24(m,ClSiHCH3(OSiCH3H)nCH3,17.7H),0.61(s,ClSiHCH3(OSiCH3H)nCH3,3H),4.70,4.75(m,ClSiHCH3(OSiCH3H)nCH3,4.7H),5.24(m,ClSiHCH3(OSiCH3H)nCH3,1H)。13C{1H}(丙酮-d6,δ):0.4,0.7,1.0,1.2,1.3,3.6(m,SiMe)。
IR(cm-1,菱形):502m(Si-Cl),1046m(Si-O-Si),1262m(Si-Me),2165m(Si-H)。
292的合成
向50mL的Schlenk烧瓶中加入甲苯(20mL)和氯化聚硅烷291(1.00g,2.57mmol),用搅拌制备澄清无色的反应溶液。然后加入硅烷醇(2.06g,2.57mmol)并且在少于15秒的时间内加入三乙基胺(0.430mL,0.312g,3.08mmol)。反应溶液几乎在瞬间变为不澄清的白色并且产生了一点白色蒸汽,但是并没有明显产生任何热量。随着反应溶液搅拌1h,它变得略为粘稠,但是在室温下持续地自由搅拌。1h后通过真空转移除去挥发物。用甲苯(3x 5mL)萃取白色残留物并且通过过滤器尖端套管(使用具有1-5μm颗粒驻留的Fisherbrand P2滤纸)将滤液转移到分开的Schlenk烧瓶中。通过真空转移从滤液除去挥发物,得到澄清无色的油(2.07g,1.79mmol,60.3%的产率)。将其放入手套箱中并且过几天之后在室温下储存,其会变为略有混浊。在下一个反应之前再次通过0.45μm的注射过滤器过滤该油。
292的分析
1H NMR(丙酮-d6,δ):0.15(m,CH3,67H),4.70(m,SiH,5.9H)。13C{1H}(丙酮-d6,δ):0.7,1.27,1.46,2.03(m,SiMe)。
IR(cm-1,菱形):1021s(Si-O-Si),1262m(Si-CH3),2165m(Si-H)。
293的合成
向装备有回流冷凝器的50mL的Schlenk烧瓶中加入聚硅烷292(2.07g,1.79mmol)、甲苯(15mL)和烯丙基琥珀酸酐(1.19g,8.46mmol)。搅拌反应溶液并且当油浴温度达到80℃时加入Karstedt催化剂前体(7.49mg的2.2wt%的溶液,0.0008mmol或0.0001当量Pt金属)。大约1h后,通过除去挥发物制备用于分析的反应溶液样品。IR分析显示了大的Si-H吸收而没有酸酐或乙烯基的吸收,这说明烯丙基琥珀酸酐或许在样品制备期间通过与甲苯的共沸蒸馏已经除去。此外,通过1H NMR确定该反应没有引发。添加另一种0.0001当量的Karstedt催化剂前体(浅色)并且通过使用Si-H吸收以说明硅烷起始材料消耗通过IR来监控反应的进程。约每90分钟重复一次这一循环,即加入催化剂之后在90分钟内分析,直到反应引发。当反应溶液的颜色突然由浅黄色变为浅棕色时,在大约一天半内发生引发。取样后的IR分析显示Si-H吸收被两个琥珀酸酐的C=O吸收(对称的和不对称的伸展)代替。引发后,加热反应溶液大约90分钟以确保起始材料的完全转化。通过1H NMR分析使用乙烯基共振和Si-H峰的消失以及与硅树脂相连结的丙基链上亚甲基的多重态的出现来监控反应的进程。
为了继续进行反应,通过旋转蒸发器除去挥发物并且将得到的澄清棕色油溶解于二氯甲烷(100mL)中。然后加入5g的活性碳并且溶液在空气中搅拌过夜。通过粗过滤器过滤溶液,之后通过装备有FisherbrandP5滤纸(微粒驻留为5-10μm)的过滤器尖端套管过滤并且通过旋转蒸发器除去挥发物,留下混浊的浅黄色-灰色的油。然后将产品溶解于氯仿(300mL)中并且送其通过0.45μm的尼龙注射过滤器。完全的脱色过程(用活性碳和注射过滤器等)进行两次。除去挥发物以留下澄清的极浅的黄色的油(2.19g,1.21mmol,67.4%的产率)。
293的分析
1H NMR(丙酮-d6,δ):0.90,0.12,0.16(m,SiCH3,149H),0.69(m,O2CCH2CH(CO)CH2CH2CH2Si,12H),1.58(m,O2CCH2CH(CO)CH2CH2CH2Si,12H),1.88(d-m,JHH=88Hz,O2CCH2CH(CO)CH2CH2CH2Si,12H),3.01(d-q,JH-H=148Hz,JH-H=10Hz,O2CCH2CH(CO)CH2CH2CH2Si,12H),3.34(m,O2CCH2CH(CO)CH2CH2CH2Si,6H),4.78(m,Si-H,1H,80%的取代度)。13C{1H}(丙酮-d6,δ):0.2,0.6,1.5,2.0(m,SiCH3),17.8,18.6,21.6,34.9,41.4(m,O2CCH2CH(CO)CH2CH2CH2Si),172.0,175.6(m,酸酐)。
IR(cm-1,菱形):1017s(Si-O-Si),1262m(Si-CH3),1785m,1867w,(C=O,对称的和不对称的),2962m和2905w(CH脂肪族)。
294的合成(参见化合物27)
在空气中向100mL的RBF中加入硅树脂聚酸酐293(2.19g,1.21mmol)和水(25.7mL,1.43摩尔)。使用具有通过在烧瓶和加热套之间定位的热电偶监控的温度控制的加热套将该溶液加热到120℃。快速的搅拌该溶液并且在反应溶液逐渐变稠到不澄清的白色奶油慕斯的时间内保持120℃的温度90分钟。冷却到室温后,使用具有与反应烧瓶和接收器相连的倒“U”形管的弯管到弯管地蒸馏除去挥发物。蒸馏期间,当接收器在干冰/乙醇浴中冷却时,反应烧瓶用调温计控制的加热套(如上所述)温和地加热到30℃。将真空度保持为<30mtorr。为了除去最后痕量的水,将产物放置在具有新鲜的五氧化磷且静态真空度<30mtorr的干燥器中至少16h。每一次用新鲜的五氧化磷进行这一干燥步骤两次。将澄清的、极浅的黄色的油放入手套箱中、称重并且转移到小瓶中用于储存(1.68g,0.874mmol,72.2%的产率)。
294的分析
1H NMR(丙酮-d6,δ):0.70,0.12(m,SiCH3,149H),0.62(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,12H),1.50(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,12H),1.67(d-m,JHH=32Hz,HO2CCH2CH(CO2H)CH2CH2CH2Si,12H),2.4(d-m,JHH=88Hz,HO2CCH2CH(CO2H)CH2CH2CH2Si,12H),2.84(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,6H),10.75(m,HO2C,12H)。13C{1H}(丙酮-d6,δ):2.0(m,SiCH3),18.3,18.8,21.6,36.2,36.4,41.6(m,HO2CCH2CH(CO2H)CH2CH2CH2Si),173.7,176.9(m,HO2C)。
IR(cm-1,菱形):1017s(Si-O-Si),1262m(Si-CH3),1712(C=O),2500到3500br(HO2C)。
硅树脂双尾多羧酸配体的合成
图30中示意性地说明了配体的合成
通用的方法
除非另有说明,否则所有的操作通过使用Schlenk技术在干燥的氮气气氛下严格排除空气和湿气下进行。在结合了分子筛和氧化铝作为干燥剂的M Braun溶剂体系中干燥甲苯。通过用无水硫酸钙(II)(Drierite)搅拌7天然后“弯管到弯管”蒸馏纯化丙酮-d6。氯仿和二氯甲烷购于Fisher Chemical并且作为接收状态使用。三乙基胺购于Aldrich,其干燥地置于确保密封的瓶子中并且通过套管转移(或双头针)到储存烧瓶中直到使用。烯丙基琥珀酸酐购于TCI America,将其蒸馏并且使用Schlenk技术储存直到使用。二氯甲基硅烷购于Acros Organics并且将新的、之前未开封的瓶子用于每次合成中。甲硅烷醇封端的硅树脂特别订购于Gelest。二甲苯中2.1到2.4%的Karstedt催化剂前体或二乙烯基四甲基二硅氧烷铂络合物-浅色,购于Gelest,其储存在手套箱中并且无需进一步纯化而使用。五氧化磷购于Fisher Chemical且作为接收状态使用。活性碳(椰子壳)和4A分子筛购于Aldrich且作为接收状态使用。NMR化学位移数据用Bruker FT NMR对于1H在400MHz下且对于13C{1H}在100MHz下进行记录,并且以ppm列出。NMR化学位移使用氘溶剂中的质子杂质来参考。硅树脂的式量使用1H NMR采用对于精确度至少60秒的后采集延迟(d1)通过端基与重复单元积分的对比进行测定。IR分析在用聚丙烯标准化的Nicolet 6700FTIR上记录。
301的合成
根据Patnode,W.I.,1942的U.S.专利2,381,366和Manami,等人(1958)Nippon Kagaku Zasski 79:60-65来调整301的合成。
2000mL的3颈圆底烧瓶装备有加料漏斗、机械搅拌器、回流冷凝器和氮气气氛。氮气鼓泡瓶由一段放置在1L Erlenmeyer烧瓶中的玻璃管组成,该烧瓶包含大约800mL的水以吸收反应中生成的HCl气体。向反应烧瓶中加入二乙基醚(1L)和甲基二氯硅烷(500mL,533g,4.80摩尔)。将水(51.9mL,2.88摩尔,0.6当量)转移到加料漏斗中。在大约45分钟内当添加水时快速地搅拌反应并且在加料期间温和地回流反应溶液。加料之后,反应溶液在室温下搅拌大约1h并且在正向氮气流动下反应烧瓶再改装用于真空蒸馏。将机械搅拌器替换为磁力搅拌器并且将回流冷凝器替换为与2L的接收器相连的倒“U”形管。反应烧瓶还配备具有温度控制器的加热套,该控制器在反应烧瓶和加热套之间使用热电偶。然后将罐加热到25℃并且使用具有真空控制器(Buchi V-800)的Teflon管线的真空泵逐渐将真空施加于该体系。抽真空期间在干冰/乙醇浴中冷却接收器而真空度逐渐增加到200mtorr。在这一步中除去挥发物需要大约4h且除去~75%的溶液体积。然后,将接收器换为1L的Schlenk烧瓶并且通过用相同的设备(与接收器相连的倒“U”形管)蒸馏从非挥发性材料中分离产物。在这种情况中用液氮冷却接收器而压力逐渐降低到~20mtorr且罐的温度逐渐增加到200℃。通过套管将蒸馏物转移到与馏分分离器相连的罐中且小心地蒸馏产物以分离低聚产品。在这个反应规模上,具有24/40的标准圆锥接的馏分分离器最方便。所有的馏分都是澄清无色的油且储存在手套箱中。总的反应产率为57.8%且馏分如下详细描述。
馏分A,26.5g,n=1.38,fwt 258.1,7.2%的产率,在125torr下的23℃到300mtorr下的24℃之间收集。
馏分B,22.1g,n=1.89,fwt 288.8,6.2%的产率,在300mtorr下的24℃和180mtorr下的24℃之间收集。
馏分C,27.5g,n=2.73,fwt 339.9,8.0%的产率,在180mtorr下的24℃和65mtorr下的25℃之间收集。
馏分D,23.5g,n=2.62,fwt 332.7,6.8%额产率,在65mtorr下的25℃和50mtorr下的22℃之间收集。
馏分E,37.0g,n=3.63,fwt 393.4,11.0%的产率,在50mtorr下的22℃和25mtorr下的29℃之间收集。
馏分F,16.9g,n=4.82,fwt 465.0,5.1%的产率,在25mtorr下的29℃和25mtorr下的37℃之间收集。
馏分G,22.8g,n=5.39,fwt 499.3,7.8%的产率,在25mtorr下的33℃和23mtorr下的30℃之间收集。
馏分H,17.7g,n=7.34,fwt 623.8,5.5%的产率,在23mtorr下的30℃和20mtorr下的63℃之间收集。
值得注意的是,该过程可以最优化并且产率可以通过使用注射器泵或类似的流体计量器件精确地计量水的添加速率而略有增加。此外,产率可以进一步通过增加水的当量数而最优化。还值得注意的是,从处理过程的第一步中的反应除去的二乙基醚将包含未反应的氯化硅且其应当小心地处理,因为氯化硅与水有放热反应。
301的分析
1H NMR(丙酮-d6,δ):0.26,0.29,0.32(m,ClSi(CH3)(H)O[Si(CH3)(H)O]nSi(CH3)(H)Cl,4.4H),0.60,0.65(m,ClSi(CH3)(H)O[Si(CH3)(H)O]nSi(CH3)(H)Cl,6H),4.71,4.74(m,ClSi(CH3)(H)O[Si(CH3)(H)O]nSi(CH3)(H)Cl,1.4H),5.23(m,ClSi(CH3)(H)O[Si(CH3)(H)O]nSi(CH3)(H)Cl,2H)。
IR(cm-1,菱形):497m(Si-Cl),1066m(Si-O-Si),1266m(Si-Me),2190m(Si-H)。
303的合成
向250mL的Schlenk烧瓶中加入甲苯(100mL)和二氯聚硅烷301(5.00g,10.7mmol),用搅拌制备澄清无色的反应溶液。然后加入硅烷醇(13.9g,21.5mmol)并且在少于15秒内加入三乙基胺(3.58mL,2.60g,25.7mmol)。反应溶液几乎在瞬间变为不澄清的白色并且产生了一点白色蒸汽,但是并没有明显产生任何热量。随着反应溶液搅拌5h,它变得略为粘稠,但是在室温下继续自由地搅拌。18h后,通过过滤器尖端套管(使用具有5-10μm微粒驻留的Fisherbrand P5滤纸)将反应溶液过滤到分开的Schlenk烧瓶中。然后加入己烷(120mL)并且使用具有Fisherbrand P5滤纸的过滤器尖端套管将溶液过滤到分开的Schlenk烧瓶中。通过真空度转移到<30mtorr除去挥发物并且得到的油状物用0.45μm注射过滤器过滤,以留下澄清无色的油(15.9g,9.79mmol,91.5%的产率),将其储存在手套箱中。
303的分析
1H NMR(丙酮-d6,δ):0.08,0,12,0.17,0.22m,(CH3)3SiO[Si(CH3)2O]m[Si(H)(CH3)O]n+2[Si(CH3)2O]Si(CH3)3,122H),4.77(m,(CH3)3SiO[Si(CH3)2O]m[Si(H)(CH3)O]n+2[Si(CH3)2O]Si(CH3)3,6.8H)。13C{1H}(丙酮-d6,δ):1.2,1.4,1.5,2.1(m,SiCH3)。
IR(cm-1,菱形):1017s(Si-O-Si),1258m(Si-CH3),2165m(Si-H),2966,2909m(sp3C-H)。
305的合成
向装备有回流冷凝器的50mL的Schlenk烧瓶中加入聚硅烷303(3.73g,2.03mmol)和甲苯(15mL)。使用调温计控制的油浴将反应溶液加热到80℃。然后加入烯丙基琥珀酸酐(0.933g,6.66mmol),之后加入Karstedt催化剂前体(5.09mg 2.2wt%的溶液,0.00033mmol或0.0001当量Pt金属)。大约1h后,通过除去挥发物制备用于分析的反应溶液样品。IR分析显示了大的Si-H吸收而没有酸酐或乙烯基的吸收,这说明烯丙基琥珀酸酐或许在样品制备期间通过与甲苯的共沸蒸馏已经除去。此外,通过1H NMR确定该反应没有引发。添加另一种0.0001当量的Karstedt催化剂前体(浅色)并且使用Si-H吸收以指示硅烷起始材料消耗通过IR来监控反应的进程。约每90分钟重复这一循环,即加入催化剂之后在90分钟内进行分析,直到反应引发。当反应溶液的颜色突然由浅黄色变为浅棕色时,在大约一天半内发生引发。取样后IR分析显示Si-H吸收被两个琥珀酸酐的C=O吸收(对称的和不对称的伸展)代替。引发后,加热反应溶液大约90分钟以确保起始材料的完全转化。通过1H NMR分析使用乙烯基共振和Si-H峰的消失以及与硅树脂相连的丙基链上亚甲基的多重态的出现来监控反应的进程。
为了继续进行反应,通过旋转蒸发器除去挥发物并且将得到的澄清棕色油溶解于二氯甲烷(200mL)中。然后加入5g的活性碳并且溶液在空气中搅拌过夜。通过粗过滤器过滤溶液,之后通过装备有FisherbrandP5滤纸(微粒驻留为5-10μm)的过滤器尖端套管过滤并且通过旋转蒸发器除去挥发物,留下混浊的浅黄色-灰色油。然后将产品溶解于二氯甲烷(200mL)中并且送其通过0.45μm的尼龙注射过滤器。完全的脱色过程(用活性碳和注射过滤器等)进行两次。除去挥发物以留下澄清的极浅的黄色的油(3.41g,1.49mmol,73.3%的产率)。
305的分析
1H NMR(丙酮-d6,δ):0.90,0.13,0.15(m,SiCH3,122H),0.68(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,8H),1.60(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,8H),1.87(d-m,JHH=76Hz,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,8H),3.00(d-m,JHH=159Hz,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,8H),3.33(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,4H),4.97(m,Si-H,80%取代)。13C{1H}(丙酮-d6,δ):0.14,0.8,1.5,2.0(m,SiCH3),17.9,21.5,34.8,34.9,41.4(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O),171.9,175.6(m,C=O酸酐)。
IR(cm-1,菱形):1013s(Si-O-Si),1262m(Si-CH3),1789m,1867w,(C=O,对称的和不对称的),2962m和2905w(CH脂肪族)。
307的合成(参见化合物33)
在空气中向100mL的RBF中加入硅树脂聚酸酐305(3.41g,1.49mmol)和水(25.7mL,1.53摩尔)。使用具有通过在烧瓶和加热套之间定位的热电偶监控的温度控制的加热套将该溶液加热到120℃。快速地搅拌该溶液并且在反应溶液逐渐变稠到不澄清的白色奶油慕斯的时间内保持120℃的温度90分钟。冷却到室温后,使用具有与反应烧瓶和接收器相连的倒“U”形管的弯管到弯管的蒸馏除去挥发物。蒸馏期间,当接收器在干冰/乙醇浴中冷却时,反应烧瓶用调温计控制的加热套(如上所述)温和地加热到30℃。将真空度保持为<30mtorr。为了除去最后痕量的水,将产物放置在具有新鲜的五氧化磷且静态真空度<30mtorr的干燥器中至少16h。每一次用新鲜的五氧化磷进行该干燥步骤两次。将澄清的、极浅的黄色的油放入手套箱中、称重并且转移到小瓶中用于储存(3.18g,1.34mmol,90.2%的产率)。
307的分析
1H NMR(丙酮-d6,δ):0.80,0.12(m,SiCH3,122H),0.63(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,8H),1.50(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,8H),1.67(d-m,JHH=32Hz,HO2CCH2CH(CO2H)CH2CH2CH2Si,8H),2.53(d-m,JHH=88Hz,HO2CCH2CH(CO2H)CH2CH2CH2Si,8H),2.84(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,6H),10.73(m,HO2C,12H)。13C{1H}(丙酮-d6,δ):1.5,2.0(m,SiCH3),18.2,21.4,36.2,36.3,41.6(m,HO2CCH2CH(CO2H)CH2CH2CH2Si),173.6,176.7(m,HO2C)。
IR(cm-1,菱形):1017s(Si-O-Si),1262m(Si-CH3),1716(C=O),2500到3500br(HO2C)。
具有无规硅树脂主链的硅树脂双尾多羧酸配体的合成
图31的小图A示意性说明了配体的合成。
通用的方法
除非另有说明,否则所有的操作都通过使用Schlenk技术在干燥的氮气气氛下严格排除空气和湿气下进行。在结合了分子筛和氧化铝作为干燥剂的M Braun溶剂体系中干燥甲苯。通过用无水硫酸钙(II)(Drierite)搅拌7天然后“弯管到弯管”蒸馏纯化丙酮-d6。氯仿和二氯甲烷购于Fisher Chemical并且作为接收状态使用。烯丙基琥珀酸酐购于TCI America,将其蒸馏并且使用Schlenk技术储存直到使用。聚氢化硅氧烷(polyhydride silicone)311、314和317购于Gelest。二甲苯中2.1到2.4%的Karstedt催化剂前体或二乙烯基四甲基二硅氧烷铂络合物-浅色,购于Gelest,其储存在手套箱中并且无需进一步纯化而使用。五氧化磷购于Fisher Chemical且作为接收状态使用。活性碳(椰子壳)和4A分子筛购于Aldrich且作为接收状态使用。NMR化学位移数据用Bruker FT NMR对于1H在400MHz下且对于13C{1H}在100MHz下进行记录,并且以ppm列出。NMR化学位移使用氘溶剂中的质子杂质来参考。硅树脂的式量使用1H NMR采用对于精确度至少60秒的后采集延迟(d1)通过端基与重复单元积分的对比进行测定。IR分析在用聚丙烯标准化的Nicolet 6700FTIR上记录。
312的合成
向装备有回流冷凝器的50mL的Schlenk烧瓶中加入聚硅烷311(6.69g,6.69mmol)和甲苯(10mL)。使用调温计控制的油浴将反应溶液加热到80℃。然后加入烯丙基琥珀酸酐(3.00g,21.4mmol),之后加入Karstedt催化剂前体(19mg 2.2wt%的溶液,0.00214mmol或0.0001当量Pt金属)。大约1h后,通过除去挥发物制备用于分析的反应溶液样品。IR分析显示了大的Si-H吸收而没有酸酐或乙烯基的吸收,这说明烯丙基琥珀酸酐或许在样品制备期间通过与甲苯的共沸蒸馏已经除去。此外,通过1H NMR确定该反应尚未引发。添加另一种0.0001当量的Karstedt催化剂前体(浅色)并且使用Si-H吸收以指示硅烷起始材料消耗通过IR来监控反应的进程。约每90分钟重复这一循环,即加入催化剂之后于90分钟内进行分析,直到反应引发。当反应溶液的颜色突然由浅黄色变为浅棕色时,在大约一天半内发生引发。取样后的IR分析显示Si-H吸收被两个琥珀酸酐的C=O吸收(对称的和不对称的伸展)代替。引发后,加热反应溶液大约90分钟以确保起始材料的完全转化。通过1HNMR分析使用乙烯基共振和Si-H峰的消失以及与硅树脂相连的丙基链上亚甲基的多重态的出现来监控反应的进程。
为了继续进行反应,通过旋转蒸发器除去挥发物并且将得到的澄清棕色油溶解于二氯甲烷(300mL)中。然后加入5g的活性碳并且溶液在空气中搅拌过夜。通过粗过滤器过滤溶液,之后通过装备有FisherbrandP5滤纸(微粒驻留为5-10μm)的过滤器尖端套管过滤并且通过旋转蒸发器除去挥发物,留下混浊的浅黄色-灰色的油。然后将产品溶解于二氯甲烷(200mL)中并且送其通过0.45μm的尼龙注射过滤器。完全的脱色过程(用活性碳和注射过滤器等)进行两次。除去挥发物以留下澄清的极浅的黄色的油(8.22g,5.67mmol,84.7%的产率)。
312的分析
1H NMR(丙酮-d6,δ):0.15(m,SiCH3,78H),0.66(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,6H),1.79(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,6H),1.89(d-m,JHH=83Hz,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,6H),3.02(d-m,JHH=155Hz,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,6H),3.34(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,3H),4.75(m,Si-H,80%取代度)。13C{1H}(丙酮-d6,δ):1.5,2.0,(m,SiCH3),17.8,21.6,34.8,34.9,41.4(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O),171.9,175.6(m,C=O酸酐)。
IR(cm-1,菱形):1013s(Si-O-Si),1258m(Si-CH3),1785m,1867w,(C=O,对称的和不对称的),2153w(Si-H),2962m(sp3C-H)。
313(参见化合物37)的合成
在空气中向100mL的RBF中加入硅树脂聚酸酐312(8.22g,5.67mmol)和水(81.6mL,5.34摩尔)。使用具有通过在烧瓶和加热套之间定位的热电偶监控的温度控制的加热套将该溶液加热到120℃。快速的搅拌该溶液并且在反应溶液逐渐变稠到不澄清的白色奶油慕斯的时间内保持120℃的温度90分钟。冷却到室温后,使用具有与反应烧瓶和接收器相连的倒“U”形管的弯管到弯管的蒸馏除去挥发物。蒸馏期间,当接收器在干冰/乙醇浴中冷却时,反应烧瓶用调温计控制的加热套(如上所述)温和地加热到30℃。将真空度保持为<30mtorr。为了除去最后痕量的水,将产物放置在具有新鲜的五氧化磷且静态真空度<30mtorr的干燥器中至少16h。每一次用新鲜的五氧化磷进行该干燥步骤两次。将澄清的、极浅的黄色的油放入手套箱中、称重并且转移到小瓶中用于储存(7.95g,5.39mmol,95.1%的产率)。
313的分析
1H NMR(丙酮-d6,δ):0.10,0.13(m,SiCH3,78H),0.62(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,6H),1.50(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,6H),1.68(d-m,JHH=46Hz,HO2CCH2CH(CO2H)CH2CH2CH2Si,6H),2.58(d-m,JHH=82Hz,HO2CCH2CH(CO2H)CH2CH2CH2Si,6H),2.83(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,3H),10.77(m,HO2C,12H)。13C{1H}(丙酮-d6,δ):1.5,2.0(m,SiCH3),18.2,21.4,36.2,36.3,41.6(m,HO2CCH2CH(CO2H)CH2CH2CH2Si),173.6,176.8(m,HO2C)。
IR(cm-1,菱形):1009s(Si-O-Si),1258m(Si-CH3),1712(C=O),2157w,(Si-H),2500至3500br(HO2C)。
具有m=4且n=75的另一种无规主链硅树脂多羧酸使用类似的技术合成。
类似地合成其他硅树脂多羧酸配体,例如,如图31小图B和C示意性说明的那样。以下提供了对它们的分析。318的合成得到5.37g,2.82mmol,74.0%的产率;319的合成得到5.33g,2.66mmol,94.4%的产率。
315的分析
1H NMR(丙酮-d6,δ):0.21(m,SiCH3,93H),0.70(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,40H),1.60(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,40H),1.88(d-m,JHH=70Hz,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,40H),3.04(d-m,JHH=163Hz,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,40H),3.34(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,20H)。13C{1H}(丙酮-d6,δ):0.3(m,SiCH3),18.1,21.6,34.9,41.4(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O),172.0,175.8(m,C=O酸酐)。
IR(cm-1,菱形):1009s,1054sh(Si-O-Si),1258m(Si-CH3),1777m,1859w,(C=O,对称的和不对称的),2154w(Si-H),2868w,2929m(sp3C-H)。
316(参见化合物29)的分析
1H NMR(丙酮-d6,δ):0.10,0.16(m,SiCH3,93H),0.62(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,40H),1.50(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,40H),1.68(d-m,JHH=25Hz,HO2CCH2CH(CO2H)CH2CH2CH2Si,40H),2.60(d-m,JHH=90Hz,HO2CCH2CH(CO2H)CH2CH2CH2Si,40H),2.85(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,20H),10.87(m,HO2C,40H)。13C{1H}(丙酮-d6,δ):-0.6,0.3(m,SiCH3),17.7,18.3,21.4,36.3,41.7(m,HO2CCH2CH(CO2H)CH2CH2CH2Si),174.6,178.3(m,HO2C)。
IR(cm-1,菱形):1008s,1082sh(Si-O-Si),1254m(Si-CH3),1695(C=O),2872w,2933w(sp3C-H),2500到3500br(HO2C)。
318的分析
1H NMR(丙酮-d6,δ):0.13,0.14,0.15,0.23(m,SiCH3,42H),0.64(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,8H),1.45(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,8H),1.76(d-m,JHH=73Hz,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,8H),2.91(d-m,JHH=144Hz,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,8H),3.23(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O,4H),7.43,7.61,7.67(m,Ph,25H)。13C{1H}(丙酮-d6,δ):0.4,0.5,0.9,2.2(m,SiCH3),18.4,21.7,34.8,34.9,41.4(m,SiCH2CH2CH2C(H)(C=O)(CH2)C=O),171.9,175.6(m,C=O酸酐)。
IR(cm-1,菱形):1037s,1131sh(Si-O-Si),1254m(Si-CH3),1781m,1867w,(C=O,对称的和不对称的),2133w(Si-H),2864w,2958m(sp3C-H),3011w,3052w,3077w(苯基)。
319(参见化合物31)的分析
1H NMR(丙酮-d6,δ):0.10,0.16(m,SiCH3,93H),0.62(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,40H),1.50(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,40H),1.68(d-m,JHH=25Hz,HO2CCH2CH(CO2H)CH2CH2CH2Si,40H),2.60(d-m,JHH=90Hz,HO2CCH2CH(CO2H)CH2CH2CH2Si,40H),2.85(m,HO2CCH2CH(CO2H)CH2CH2CH2Si,20H),10.87(m,HO2C,40H)。13C{1H}(丙酮-d6,δ):-0.6,0.3(m,SiCH3),17.7,18.3,21.4,36.3,41.7(m,HO2CCH2CH(CO2H)CH2CH2CH2Si),174.6,178.3(m,HO2C)。
IR(cm-1,菱形):1008s,1082sh(Si-O-Si),1254m(Si-CH3),1695(C=O),2872w,2933w(sp3C-H),2500至3500br(HO2C)。
显而易见的是额外的配体可以使用与以上那些方法类似的方法制备。
实施例7
高度发光的InP纳米晶体的合成
A.具有绿色发射λ~530nm的InP纳米晶体
化学品:乙酸铟(III),Aldrich 99.99%;三(三甲基甲硅烷基膦(TMS3P),Strem 98+%;月桂酸(LA),Aldrich 99.5+%;三辛基氧化膦(TOPO),Aldrich 99%;三辛基膦(TOP),Aldrich,纯化的。
为制备580mg(假定100%的制备产率):
A1.在空气中制备包含以下化学品的生长溶液(生长A1)并且将其放置在100ml的3口烧瓶中。
生长A1
2.33g乙酸铟
4g TOPO
4.8g LA
A2.使烧瓶与Schlenk管线上的直线冷凝器接触。使用隔膜堵住烧瓶两侧的颈口。
A3.抽真空烧瓶并且之后用N2吹扫。重复这一步骤3次。
A4.将溶液加热到160℃并且在抽真空下保持这一温度40分钟。
A5.将温度升高到250℃并且保持这一温度20分钟,保持对体系抽真空。
A6.再次用N2充满体系且将温度设定为300℃。
A7.在手套箱中制备包含以下化学品的原料溶液(原料A1)。将混合物放置在20ml的小瓶中并且用隔膜堵住它。
原料A1
1g三(三甲基甲硅烷基)膦
3g TOP
A8.成核:当烧瓶中生长溶液的温度达到300℃时,将室温原料溶液装载于10ml的玻璃注射器中(具有12.2英寸针头的规格),并且将其很快地注射到烧瓶中。一旦注射,温度会降到~250℃并且在整个的生长过程中保持这一温度。
A9.生长:为了制备小点(~1-2nm,具有绿光发射),注射后通过移除加热器1分钟终止反应。实质上对于尺寸分布的控制,保持良好的搅拌。
A10.使用UV-Vis.吸收光谱监控反应
A11.冷却下来之后,在N2的保护下将烧瓶转移到手套箱中。将产品移到20ml的小瓶中(具有必要量的甲苯以便洗掉烧瓶中的晶体)。
A12.纳米晶体的分离:用甲苯稀释来自合成的初始溶液到两倍,并且通过加入乙醇(乙醇的体积是稀释的点溶液的两倍)沉淀所述的点。通过离心分离点。为进一步处理,将这些分离的点再溶于甲苯中(例如额外的洗涤)。
注意事项A1:尺寸分布的聚焦和散焦。尺寸分布(SD)典型地是所关心的最重要参数之一。尺寸聚焦技术用于获得具有窄SD的圆点。一旦注射,SD就是宽的,但是由于有足够游离的前体以保持高的饱和浓度,SD可以通过在较低的温度下(其足够低以便阻止二次成核)连续的加热得以改进。这是因为较小的点比较大的点生长更快速。随着尺寸更为聚焦且消耗更多的前体,饱和浓度下降且因此SD再次变宽。这涉及到散焦。为了禁止散焦,可以引入额外的前体以保持高度饱和的浓度。
B.具有红色发射λ~630nm的InP纳米晶体
化学品:与过程A中使用的化学品相同.
为了在InP方面制备1.8g的点制备1.8g的圆点(假定基于使用的三(三甲基甲硅烷基)膦为100%的制备产率;过量供应乙酸铟):
B1.在空气中制备包含以下化学品的生长溶液(生长B1)并且将其放置在100ml的3颈烧瓶中。
生长B1
3.496g乙酸铟
5g TOPO
7.196g LA
B2.重复步骤A2-A6。
B3.在手套箱中制备包含以下化学品的原料溶液(原料B1)。将良好混合的组分放置在20ml的小瓶中并且用隔膜堵住。
原料B1
0.8g三(三甲基甲硅烷基)膦
3g TOP
B4.成核:当烧瓶中生长B1的温度达到300℃时,将原料B1很快地注射到烧瓶中。一旦注射,温度会降到~250℃并且保持该温度10分钟以使晶体生长。取等分试样以便检查吸收光谱的峰位置。
B5.制备用于进一步生长的生长溶液和原料溶液。
原料B2
1.5g三(三甲基甲硅烷基)膦
6g TOP。
B6.注射12分钟后向生长溶液中逐滴加入1ml原料B2,然后每次间隔~15分钟加入1ml额外的原料B2直到其用尽。通过UV-Vis吸收光谱监控生长。
B7.在完成原料B2后,晶体的吸收峰在566nm处,因此需要更多的铟和磷前体。
生长B2
1.119g乙酸铟
2g TOPO
2.303g LA
原料B3
0.8g三(三甲基甲硅烷基)膦
3g TOP
B8.将生长B2放置在25ml的3颈烧瓶中。重复步骤A2-A6。
B9.将溶液(生长B2)冷却到70℃并且用20ml的注射器将其转移到反应烧瓶中。
B10.以步骤B6中描述的相同的方式加入原料B3。
B11.完成加入原料B3。吸收峰在590nm处。等待1h并且将烧瓶冷却到室温。
B12.重复步骤A11-A12。
C.InP/ZnS核-壳纳米晶体
材料和化学品:
合成的InP点(吸收峰480-500nm),其从原始反应溶液中分离得。
二乙基锌(ZnEt2),Aldrich,己烷中的1M溶液
六甲基二硅硫烷(TMS2S,Aldrich purum级)
TOPO,Aldrich 99%
LA,Aldrich 99.5%
二羧酸(DCASi-Me)官能化的硅树脂(MW~800),例如按照以上实施例6的描述制备
TOP,Aldrich,纯化的
C1.制备生长(生长C1)和原料(原料C1)溶液。将生长C1放置在100ml的3颈烧瓶中并且与Schlenk管线相连。将原料(stock)放置在25ml的小瓶中并且用隔膜堵住。
生长C1
5ml甲苯中的120mg InP(用乙醇/甲苯洗涤过一次的点)
3g TOP
3g TOPO
1g LA
原料C1
1.037g(1.43ml)ZnEt2/己烷
TOP中3.083g TMS2S(9.09wt.%)
5.4g TOP
C2.泵出烧瓶中的甲苯并且再填充N2,重复泵出-再填充过程3次。
C3.将温度设定为180℃。当温度达到80℃时开始加入原料溶液。在1分钟内加入0.5ml的原料溶液(加料后T增加到140℃)。
C4.当T达到180℃时,加入另外0.5ml的原料C1。
C5.每10分钟加入0.5ml的原料C1直到完成。
C6.等待10分钟并且将溶液冷却到室温。将其转移到手套箱中。将产品转移到20ml的小瓶中。
注意事项C1:InP的重量通过其在甲苯中稀释溶液的光学密度测定。计算的ZnEt2和TMS2S的量用于在INP核(直径2nm)上生长两个单层厚度的(一个ZnS的单层等于大约0.31nm)ZnS壳。
注意事项C2:DCASi-Me代替LA用于制备高度发光的纳米晶体。
注意事项C3:S/Zn的比在1.1到0.5之间变化。原料可以分为两部分,其中Zn和S在分开的原料溶液中。
注意事项C4:为了制备氧化物壳,步骤C5之后,冷却溶液并且保持在100℃,并将空气泵入溶液中。氧化过程持续1-3h。
注意事项C5:通过吸收和光致发光光谱监控成壳。在最后,晶体保持在其生长溶液中而不稀释,且将该溶液保持在空气中储存。
值得注意的是,配体的选择能影响得到的纳米结构体的量子产率。例如,二羧酸配体(DCASi-Me)得到具有大于50%的量子产率的纳米晶体,膦酸得到大约40%,且脂肪酸得到大约30%。
图32呈现了具有绿光发射的典型的InP/ZnS纳米晶体样品的光致发光光谱。正如以上提到的,光谱的线宽(一半最大值处的全宽度,FWHM)是颗粒尺寸分布的特征;FWHM越小,尺寸分布越窄。图32中显示的光谱的FWHM为40nm。
图33显示了如图32所示的InP/ZnS纳米晶体样品的量子产率(Φ)的测定。小图A显示了荧光素染料的吸收光谱,其具有已知的量子产率值供参考。小图B显示了该染料的光致发光光谱。小图C显示了纳米晶体的吸收光谱且小图D显示了纳米晶体的光致发光光谱。小图E显示了由小图A-D的数据得到的量子产率。在这一实施例中InP/ZnS纳米晶体的量子产率为55%。
实施例8
发光纳米复合材料
将发光InP/ZnSe/癸胺纳米晶体结合到可固化的环氧树脂中,同时将其发光性质保留在固体状态,如下所述那样。用癸胺作为表面配体合成InP/ZnSe核/壳纳米晶体。癸胺的添加强烈地增加了InP/ZnSe纳米晶体的发光性。使用甲苯和甲醇洗涤该纳米晶体一次并且将其再悬浮在0.5ml的辛胺中获得大约9mg/ml的浓度。选择辛胺与环氧树脂基质相容并且可以阻止纳米晶体的表面配体离开表面,当具有其他配体的纳米晶体被预先与环氧树脂共混时会发生这种情况。将以上描述的纳米晶体溶液添加到大约300-500mg脱气的Loctite epoxy E-30CL的部分2中。之后,以相对部分2大约3:1的比例加入相同环氧树脂的脱气的部分1。将样品放置在60℃的热盘中15分钟以便固化环氧树脂基质前体。全部样品的制备都在手套箱中的惰性气氛中进行。
作为另一个实施例,用二羧酸DDSA(化合物44)作为表面配体来合成InP/ZnS纳米晶体。以相同的方式按上述相同的浓度将晶体添加到来自Epoxy Technology的非黄色环氧树脂Epo-Tek 301-2的部分B中。之后,加入同样环氧树脂的部分A以使得A:B为3:1,并且在手套箱中在60℃下加热样品2小时。所有的工作都在手套箱中进行。得到的样品为固体、澄清的且是发绿色光的(当晶体洗涤1x时)或发黄绿色光的(未洗涤的纳米晶体)。具有癸胺配体的绿色InP/ZnS纳米晶体同样连续地结合到Epo-Tek环氧树脂基质中。
作为另一个实施例,用DDSA作为表面配体来合成InP/ZnS纳米晶体,并将其添加到氨基甲酸酯基质中。该纳米晶体直接由生长溶液加入到WC783(BJB Enterprises)的设定的(set)氨基甲酸酯的部分A中,以至于在发射波长的峰处得到的光学密度为大约0.1。(纳米晶体的浓度还可以变化以获得更强的发光性。)涡流之后,加入苯胺,代替设定的氨基甲酸酯的部分B,且A:苯胺的比为3.3:1。涡流之后,混合物被离心几秒以便从混合物中除去气泡。在最后的步骤中,混合物在室温下固化少于5分钟。所有的工作都在空气中进行。得到的样品为固体、澄清的和发绿色光的。作为另一个实施例,将红色的纳米晶体连续地混合到氨基甲酸酯基质中。所有得到的样品都是澄清的且是发光的。在空气中在60℃下于烘箱中保持3个月后,该样品仍然表现出发光性。
纳米晶体的光学性质可以通过使用商购的UV-Vis分光光度计和荧光计测量UV-Vis吸收和光致发光光谱来表征。溶液中纳米晶体的内部光致发光量子效率使用已知量子产率的参考标准来计算。固体基质中的纳米晶体的光致方法量子效率使用积分球测定。与相应的溶液中纳米晶体53%的量子产率相比,示例性的发光纳米复合材料的量子产率为18%。
实施例9
作为量子点分散基质的带有多个二甲醇基团的聚二甲基硅氧烷
初始的实验表明,新的一类硅树脂聚合物,单二甲醇封端的聚二甲基硅氧烷(MDC)可以用于溶解CdSe/ZnS量子点以获得透明的溶液并且量子点/MDC溶液通过蓝色LED照明时具有良好的稳定性。用低分子量MDC,具有n=10且分子量为大约1000、粘度50-60的化合物49(可由Gelest,Inc.商购获得,产品编号MCR-C61)获得这些结果。初始的实验还表明更高分子量的MDC,具有n=64、分子量为大约5000、粘度100-125的化合物49(可由Gelest,Inc.商购获得,产品编号MCR-C62)不能与CdSe/ZnS量子点相容。之前的结果已经表明,没有任何官能团的样品硅树脂液不与CdSe/ZnS量子点相容。这表明二甲醇基团的存在及其在聚合物中的含量在分散量子点中起到了重要的作用。
由于固体聚合物/量子点配制剂通常在器件的制造中在液体配制剂上是优选的,且由于较低分子量的MDC在环境温度下是液体并且不能应用于固体/凝胶配制剂中,因此探索了其他的具有多个二甲醇基团的固体硅树脂聚合物(带有多个二甲醇基团的聚二甲基硅氧烷,PDC)。该PDC硅树脂聚合物表现出优良的稳定性和光学透明性,且多个二甲醇基团使得它们可与量子点相容。
如图34所示,新的聚合物(表1中的化合物53)通过其主链上具有Si-H基团的硅树脂聚合物(甲基氢硅氧烷-二甲基硅氧烷共聚物)和具有二醇和乙烯基的小分子(三羟甲基丙烷烯丙基醚)之间的氢化硅烷化反应合成。测试了两种起始硅树脂聚合物,具有7-8摩尔%MeHSiO且分子量为5500-6500的(可由Gelest,Inc.商购获得,产品编号HMS-082)和具有5-7摩尔%MeHSiO且分子量为55000-65000的(可由Gelest,Inc.商购获得,产品编号HMS-064)。较低分子量的起始材料提供了液态产物(低MW的PDC),且较高分子量的起始材料提供了凝胶状的产物(高MW的PDC)。凝胶状的产物直接用作用于量子点分散的固体基质,但是液态产品能需要交联步骤以便将聚合物由液态转变为固体形式。
PDC聚合物显示出与用不同的配体制备的CdSe/ZnS量子点有非常好的相容性。由于甲苯对于PDC聚合物和量子点都是良溶剂,因此选择它作为混合聚合物和量子点的溶剂。对于高MW的PDC,在甲苯中溶解聚合物和量子点得到透明的溶液。一旦蒸发溶剂,就会获得透明的固体凝胶复合材料,且该复合材料表现出材料中所用量子点的清晰颜色。在复合材料中没有观察到相分离。对于低MW的PDC,聚合物、量子点和交联剂(六亚甲基二异氰酸酯)首先在磁力搅拌下混合到甲苯中,并通过真空除去甲苯,从而提供透明的液体混合物。然后向该液体混合物中加入催化剂(二月桂酸二丁基锡),并且在大约20分钟内液体转化为固体凝胶。
除了以上提及的直接交联以将低MW的PDC由液态转化为固体形式,还将可聚合基团(乙烯基、环氧基等)引入聚合物结构(例如化合物55和56)中,并且保证聚合反应将液体转化为固体。化合物55通过在甲苯中在50℃下在铂催化剂的存在下将硅树脂聚合物HMS-082、三羟甲基丙烷烯丙基醚和烯丙基缩水甘油醚制备。化合物56通过使低MW的PDC与甲基丙烯酰氯在三乙基胺的存在下使用二氯甲烷作为溶剂反应而制备。化合物56使用热自由基引发剂(例如2,2'-偶氮(2-甲基丙腈))或光引发剂(例如2,2-二甲氧基-2-苯基-苯乙酮)聚合为固体凝胶。该聚合过程是简单的。例如,化合物56、量子点和光引发剂首先在甲苯中混合,并且通过真空蒸发掉甲苯以提供带有所用量子点的清晰颜色的粘稠液体。通过UV光照射时,该液体就转变为固体凝胶材料。
聚合物/量子点复合材料易于制作成器件,例如两个载玻片之间的碟片。例如,将甲苯中高MW的PDC和量子点的溶液首先分配在载玻片上,并且之后在80℃下蒸发掉甲苯,在载玻片上留下固体凝胶。将第二个载玻片放置在凝胶材料的顶部,并且将环氧粘合剂施用于两个载玻片之间以便将载玻片粘合在一起。结果,将复合材料密封在两个载玻片之间。
测试表明,通过蓝色LED激发时,该复合材料表现出良好的发光性质。例如,以上制备的碟片通过蓝色LED照明,并且所述碟片基于用于复合材料中的量子点发射光,并且在室温下1000小时后还保留了超过90%的初始光输出。
实施例10
用于纳米晶体分散和稳定的氨基官能化的硅树脂基质
用于照明应用(例如LED)的纳米晶体典型地吸收较高能量的光,例如来自LED或其他UV和蓝色区域中的光源的光,并且在可见光区域再发射。吸收和发射的效率可以表示为量子产率。正如以上提到的,期望将纳米晶体分散在用于LED制造的基质中。这一实施例呈现的一系列的实验说明氨基官能化的硅树脂基质可以用于分散纳米晶体,例如CdSe/ZnSe/ZnS纳米晶体以提供稳定性和量子产率的增强。
用于这些实验中的CdSe/ZnSe/ZnS纳米晶体在CdSe核合成和洗涤,之后ZnSe/ZnS壳合成和洗涤的两步工艺中合成。该ZnSe/ZnS壳反应在合成混合物中使用癸胺、伯胺。认为胺能通过与纳米晶体表面相连结而增强以ZnS为壳的纳米晶体的稳定性和量子产率。初始实验表明与成壳反应中的仲胺或叔胺相比,伯胺产生最高的量子产率。此外,结果表明少量的伯胺改进了纳米晶体在己烷和甲苯中的溶解性。但是,在配制期间加入的额外的伯胺会导致在测试时纳米晶体的蓝移。不限于任何特定的机理,认为蓝移是由配体隔离了表面的纳米晶体原子并且溶解了纳米晶体导致的,且为了显著地溶解纳米晶体,溶液需要足够的流动性用于胺/金属原子络合物以从纳米晶体表面扩散,因此游离的胺会通达纳米晶体的表面以隔离和除去其他的表面原子。
因此,认为由并不隔离表面原子的胺构成的基质是所期望的,因为它能够提供稳定性和量子产率的增强而不会溶解纳米晶体。胺官能的硅树脂可以提供这些性质。胺官能的硅树脂是可商购获得的或者是可以合成的,例如用从聚二甲基硅氧基(PDMS)主链用连接基团外伸出的伯胺制备。不与纳米晶体连结的过量的胺可以与多种官能团交联形成网络聚合物;将硅树脂主链固化为橡胶可以防止纳米晶体溶解和蓝移。
将CdSe/ZnSe/ZnS纳米晶体结合到胺官能的硅树脂基质中分两步进行:1)纳米晶体配体与氨基官能的硅树脂交换,然后2)用交联分子将氨基官能的硅树脂/纳米晶体组合固化为网络聚合物。
通过将纳米晶体溶解在己烷或甲苯中、加入氨基官能的硅树脂、在50℃到60℃下加热16到36h并且通过真空转移除去挥发物从而实现配体的交换。(通常,配体的交换典型地在50到130℃下进行2到72h实现)。保持量子产率和其他参数,且纳米晶体作为澄清的油留在硅树脂中。以下五个实施例使用了可由Gelest,Inc.商购获得的脱气的胺官能的硅树脂(商品编号AMS-242,具有大约7000的分子量且m与n的比为大约4到100的化合物60)。
基质的第一个实施例使用二异氰酸酯作为交联剂固化。胺官能的硅树脂中配体交换的纳米晶体与少量的1,6-二异氰酸根合己烷在单二碳醇(都蒸馏过)组合,这立即制备出澄清的硅树脂橡胶。交联反应证明胺官能的硅树脂基质体系会与异氰酸酯交联。
另一个实施例使用了在胺官能硅树脂中的配体交换的纳米晶体、来自Gelest的环氧官能化的硅树脂(产品编号DMS-E09,经脱气的,交联剂E来自表2),以及四氟硼酸铟UV引发催化剂(同样来自Gelest,OMBO037)。混合该溶液并且将其放置在外面的阳光下,它在那里固化,证明该体系会与环氧化物交联。
另一个实施例使用了在胺官能硅树脂中配体交换的纳米晶体以及来自Gelest的环氧官能的硅树脂(产品编号DMS-E09,交联剂E来自表2)。混合后,该体系在室温下固化5天,其证明了体系会与环氧化物热固化。
再一个实施例使用了在胺官能的硅树脂中配体交换的纳米晶体、来自Gelest的环氧官能的硅树脂(产品编号SIB1110.0,交联剂G来自表2),以及二甲基氨基甲基苯酚催化剂。它在150℃下在30分钟内交联,其证明热催化剂会固化体系。
第五个实施例使用了在胺官能的硅树脂中配体交换的纳米晶体、来自Gelest的环氧化物官能的硅树脂(产品编号SIB1110.0,交联剂G来自表2),以及二甲基氨基甲基苯酚催化剂。它转化为具有气相二氧化硅的油脂,将其施用于玻璃碟片上并且在150℃下固化3h,证明该体系会与催化剂和气相二氧化硅热固化。
制备了另一种示例性的复合材料,这一种在由悬垂的胺官能的硅树脂形成的基质中具有CdSe/CdS/ZnS纳米晶体。将溶解于甲苯中的红色和绿色CdSe/CdS/ZnS纳米晶体分开的批料(对于每一种颜色具有不同尺寸和发射峰的两个批料)在50℃下用氨基硅树脂交换(脱气的AMS-242和AMS-233的50:50的混合物,Gelest,Inc.)大约66h。甲苯中纳米晶体的浓度在大约3和50OD之间,且氨基硅树脂为每ml甲苯0.01-0.1ml。然后将该溶液冷却到30℃并且以大约90分钟除去挥发物直到p<60mtorr。以25mg(纳米晶体加氨基硅树脂)/mL将样品溶解于甲苯中。在460nm下使用UV-Vis仪器测定红色和绿色纳米晶体的每一个批料的OD/g(以1cm路径长度)。通过假设氨基硅树脂中的纯纳米晶体的密度为1来计算的纯溶液(即乘以40),以保证测量的OD与设计的值接近。然后来自氨基硅树脂中两个批料的红色和两个批料的绿色纳米晶体的纳米晶体与额外的氨基硅树脂一起组合。调整由两个红色批料添加的红色纳米晶体的量以获得最终大约10的OD,且调整由两个绿色批料添加的绿色纳米晶体的量以获得最终大约30的OD。在这个实施例中,6.8mL的每个批料的绿色纳米晶体和2.5mL的每个批料的红色纳米晶体与额外的11.49g氨基硅树脂(还是脱气的AMS-242和AMS-233的50:50的混合物)一起组合。再加入等体积的甲苯(30mL)。在60℃下配体交换在混合物上进行16h。加热之后将混合物冷却到30℃并且除去挥发物2h直到p<35mtorr。除去挥发物后产物为橙色糊状物。其与4.0wt%的气相二氧化硅和20wt%的交联剂(脱气的EMS-622,Gelest,Inc.)组合且用行星式混合器(THINKY ARV-310)将其混合直到均匀。通过在100℃下加热4h使产物固化。
虽然以上描述了本发明不同的具体实施方案,应当理解的是它们仅通过实施例的方式来表示,而没有限制作用。对于相关技术领域的技术人员来说显而易见的是在此可以做出各种形式和细节的变化而并不背离本发明的精神和范围。因此,本发明的宽度和范围并不受任何上述示例性的具体实施方案的限制,但是其仅应根据以下的权利要求和它们的等同形式来限定。
本说明书中提及的所有的公开文献、专利和专利申请都是属于本发明的本领域技术人员的技术水平可预料的,并且在相同的程度上通过参考并入本发明,即使各个公开文献、专利和专利申请都特定地且各自指出将通过参考并入。

Claims (12)

1.制备复合材料的方法,该方法包括:
提供纳米结构体的群体,其中该纳米结构体具有与纳米结构体表面相连结的聚合物配体,该配体包含硅树脂主链和与硅树脂主链偶联的一个或多个醇部分;
提供过量的聚合物配体,该过量的聚合物配体不与纳米结构体的表面相连结;和
将过量的聚合物配体和与纳米结构体相连结的聚合物配体结合到硅树脂基质中;
其中所述硅树脂基质基本上由所述聚合物配体构成。
2.制备复合材料的方法,该方法包括:
提供纳米结构体的群体,其中该纳米结构体具有与纳米结构体表面相连结的聚合物配体,该配体包含硅树脂主链和与硅树脂主链偶联的一个或多个醇部分;
提供过量的聚合物配体,该过量的聚合物配体不与纳米结构体的表面相连结;和
将过量的聚合物配体和与纳米结构体相连结的聚合物配体结合到硅树脂基质中;
其中将聚合物配体结合到硅树脂基质中包括提供交联剂和使交联剂与配体上的羟基部分反应。
3.制备复合材料的方法,该方法包括:
提供纳米结构体的群体,其中该纳米结构体具有与纳米结构体表面相连结的聚合物配体,该配体包含硅树脂主链和与硅树脂主链偶联的一个或多个醇部分;
提供过量的聚合物配体,该过量的聚合物配体不与纳米结构体的表面相连结;和
将过量的聚合物配体和与纳米结构体相连结的聚合物配体结合到硅树脂基质中;
其中聚合物配体包含至少两种不同类型的单体单元,其中至少一种包含醇部分和其中至少一种缺少醇部分但是包含可聚合基团或环氧基团;其中将聚合物配体结合到硅树脂基质中包括使在聚合物配体不同分子上的可聚合基团或环氧基团彼此反应。
4.权利要求1的方法,其中所述聚合物配体包含一个或多个与硅树脂主链相连结的二甲醇部分。
5.由权利要求1的方法制得的复合材料。
6.包含权利要求5的复合材料的器件。
7.权利要求2的方法,其中所述聚合物配体包含一个或多个与硅树脂主链相连结的二甲醇部分。
8.由权利要求2的方法制得的复合材料。
9.包含权利要求8的复合材料的器件。
10.权利要求3的方法,其中所述聚合物配体包含一个或多个与硅树脂主链相连结的二甲醇部分。
11.由权利要求3的方法制得的复合材料。
12.包含权利要求11的复合材料的器件。
CN201410513100.4A 2009-05-01 2010-04-29 用于纳米结构体分散的官能化基质 Active CN104387772B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US21505409P 2009-05-01 2009-05-01
US61/215,054 2009-05-01
CN201080019498.6A CN102656233B (zh) 2009-05-01 2010-04-29 用于纳米结构体分散的官能化基质

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201080019498.6A Division CN102656233B (zh) 2009-05-01 2010-04-29 用于纳米结构体分散的官能化基质

Publications (2)

Publication Number Publication Date
CN104387772A true CN104387772A (zh) 2015-03-04
CN104387772B CN104387772B (zh) 2017-07-11

Family

ID=43029711

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410513100.4A Active CN104387772B (zh) 2009-05-01 2010-04-29 用于纳米结构体分散的官能化基质
CN201080019498.6A Active CN102656233B (zh) 2009-05-01 2010-04-29 用于纳米结构体分散的官能化基质

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201080019498.6A Active CN102656233B (zh) 2009-05-01 2010-04-29 用于纳米结构体分散的官能化基质

Country Status (6)

Country Link
US (4) US8283412B2 (zh)
EP (1) EP2424941B1 (zh)
JP (2) JP6236202B2 (zh)
KR (1) KR101783487B1 (zh)
CN (2) CN104387772B (zh)
WO (1) WO2010126606A2 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435739A (zh) * 2016-02-03 2017-02-22 苏州星烁纳米科技有限公司 一种纳米晶体的制备方法
CN106715643A (zh) * 2014-07-22 2017-05-24 皇家飞利浦有限公司 用于在有机硅主体中分散量子点以获得用于led照明的颜色转换器的硅氧烷配体
CN109071213A (zh) * 2016-02-26 2018-12-21 纳米系统公司 低镉含量纳米结构组合物及其用途
CN109791969A (zh) * 2016-09-22 2019-05-21 欧司朗光电半导体有限公司 用于制造光电子器件的耦合输出元件的方法和耦合输出元件
CN110028948A (zh) * 2018-01-11 2019-07-19 三星电子株式会社 无镉量子点、其制造方法、包括其的组合物、量子点-聚合物复合物和显示器件
CN110799621A (zh) * 2017-05-10 2020-02-14 纳米系统公司 作为量子点树脂预混料的乳化添加剂的有机硅共聚物
WO2020078143A1 (zh) * 2018-10-18 2020-04-23 浙江大学 量子点、制作方法、单光子源和qled
CN111433320A (zh) * 2017-12-04 2020-07-17 信越化学工业株式会社 量子点及其制造方法、以及树脂组合物、波长转换材料、发光元件
US20210020858A1 (en) * 2018-09-07 2021-01-21 Tcl Technology Group Corporation Composite material and quantum dot light emitting diode

Families Citing this family (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8212469B2 (en) * 2010-02-01 2012-07-03 Abl Ip Holding Llc Lamp using solid state source and doped semiconductor nanophosphor
CN102106009B (zh) * 2008-07-03 2013-07-24 三星电子株式会社 波长转换发光二极管芯片和具有该芯片的发光二极管装置
US8679470B2 (en) 2008-11-28 2014-03-25 Luromed Llc Composition using cross-linked hyaluronic acid for topical cosmetic and therapeutic applications
US8343575B2 (en) 2008-12-30 2013-01-01 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US10214686B2 (en) 2008-12-30 2019-02-26 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US11198270B2 (en) 2008-12-30 2021-12-14 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US8247390B2 (en) * 2009-09-28 2012-08-21 Luromed Llc Modified hydrophilic polymers containing hydrophobic groups
US8217406B2 (en) 2009-12-02 2012-07-10 Abl Ip Holding Llc Solid state light emitter with pumped nanophosphors for producing high CRI white light
US20110127555A1 (en) * 2009-12-02 2011-06-02 Renaissance Lighting, Inc. Solid state light emitter with phosphors dispersed in a liquid or gas for producing high cri white light
US9719012B2 (en) * 2010-02-01 2017-08-01 Abl Ip Holding Llc Tubular lighting products using solid state source and semiconductor nanophosphor, E.G. for florescent tube replacement
US8517550B2 (en) 2010-02-15 2013-08-27 Abl Ip Holding Llc Phosphor-centric control of color of light
DE102010034913B4 (de) * 2010-08-20 2023-03-30 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Strahlung emittierendes Bauelement und Verfahren zur Herstellung des Strahlung emittierenden Bauelements
EP2638321B1 (en) 2010-11-10 2019-05-08 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US8932898B2 (en) 2011-01-14 2015-01-13 The Board Of Trustees Of The Leland Stanford Junior Univerity Deposition and post-processing techniques for transparent conductive films
KR20120097697A (ko) * 2011-02-25 2012-09-05 삼성전자주식회사 발광 다이오드
US8697129B2 (en) * 2011-03-02 2014-04-15 Imra America, Inc. Stable colloidal gold nanoparticles with controllable surface modification and functionalization
EP2721652B1 (en) 2011-06-20 2019-05-08 Crystalplex Corporation Quantum dot containing light module
WO2013019330A1 (en) 2011-07-29 2013-02-07 Corning Incorporated Solar-redshift systems
CN102916095A (zh) * 2011-07-31 2013-02-06 华新丽华股份有限公司 发光二极管
US9159872B2 (en) 2011-11-09 2015-10-13 Pacific Light Technologies Corp. Semiconductor structure having nanocrystalline core and nanocrystalline shell
US20130112942A1 (en) 2011-11-09 2013-05-09 Juanita Kurtin Composite having semiconductor structures embedded in a matrix
US10008631B2 (en) 2011-11-22 2018-06-26 Samsung Electronics Co., Ltd. Coated semiconductor nanocrystals and products including same
WO2013078247A1 (en) * 2011-11-22 2013-05-30 Qd Vision, Inc. Methods of coating semiconductor nanocrystals, semiconductor nanocrystals, and products including same
RU2627378C2 (ru) * 2012-02-03 2017-08-08 Конинклейке Филипс Н.В. Новые материалы и способы для диспергирования наночастиц в матрицы с высокими квантовыми выходами и стабильностью
DE102012203036A1 (de) * 2012-02-28 2013-08-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lumineszierende, cadmiumfreie Kern-Multischalen-Quantenpunkte auf Basis von Indiumphosphid
CN102683369A (zh) * 2012-04-20 2012-09-19 广东普加福光电科技有限公司 用于增强硅基成像器件对紫外响应的量子点光转换膜的制备方法和用途
US9139770B2 (en) * 2012-06-22 2015-09-22 Nanosys, Inc. Silicone ligands for stabilizing quantum dot films
TWI596188B (zh) 2012-07-02 2017-08-21 奈米系統股份有限公司 高度發光奈米結構及其製造方法
CN111500281A (zh) * 2012-10-25 2020-08-07 亮锐控股有限公司 用于硅酮中的量子点的基于pdms的配体
KR102171776B1 (ko) * 2012-10-25 2020-10-30 루미리즈 홀딩 비.브이. 실리콘 내의 양자 점을 위한 pdms-기재 리간드
US10439090B2 (en) * 2012-11-09 2019-10-08 Board Of Trustees Of Michigan State University Transparent luminescent solar concentrators for integrated solar windows
US8889457B2 (en) * 2012-12-13 2014-11-18 Pacific Light Technologies Corp. Composition having dispersion of nano-particles therein and methods of fabricating same
US20140170786A1 (en) * 2012-12-13 2014-06-19 Juanita N. Kurtin Ceramic composition having dispersion of nano-particles therein and methods of fabricating same
US10202543B2 (en) 2013-03-05 2019-02-12 Osram Opto Semiconductors Gmbh Quantum dot (QD) delivery method
US9680072B2 (en) 2013-03-05 2017-06-13 Pacific Light Technologies Corp. Quantum dot (QD) delivery method
KR102203599B1 (ko) * 2013-03-14 2021-01-14 나노시스, 인크. 무용매 양자점 교환 방법
JP6283092B2 (ja) * 2013-03-14 2018-02-21 ナノシス・インク. 多面体オリゴマー状シルセスキオキサンナノ結晶安定化リガンド
US9447299B2 (en) * 2013-05-02 2016-09-20 Voxtel, Inc Inks for 3D printing gradient refractive index (GRIN) optical components
US9923132B2 (en) * 2013-05-24 2018-03-20 Cree, Inc. Solid state lighting component package with conformal reflective coating
US10201809B2 (en) 2013-07-05 2019-02-12 Nitto Denko Corporation Photocatalyst sheet
CA2927191C (en) 2013-10-17 2022-02-15 Nanosys, Inc. Light emitting diode (led) devices
TWI535792B (zh) * 2013-10-24 2016-06-01 瓦克化學公司 Led封裝材料
WO2015069640A1 (en) 2013-11-05 2015-05-14 Nanosys, Inc. Backlight unit for display devices adapted to reduce light leakage
US10066159B2 (en) 2013-12-17 2018-09-04 3M Innovative Properties Company Composite nanoparticles including a phthalic acid derivative
US9914874B2 (en) 2013-12-17 2018-03-13 3M Innovative Properties Company Composite nanoparticles including a malonic acid derivative
JP6171927B2 (ja) * 2013-12-25 2017-08-02 Jsr株式会社 感放射線性樹脂組成物、硬化膜、発光素子および発光層の形成方法
US9825205B2 (en) 2014-01-17 2017-11-21 Pacific Light Technologies Corp. Quantum dot (QD) polymer composites for on-chip light emitting diode (LED) applications
WO2015109161A1 (en) * 2014-01-17 2015-07-23 Pacific Light Technologies, Corp. Irregular large volume semiconductor coatings for quantum dots (qds)
KR20160132903A (ko) 2014-03-10 2016-11-21 쓰리엠 이노베이티브 프로퍼티즈 캄파니 티올-치환된 실리콘을 포함하는 복합 나노입자
EP3119851B1 (en) * 2014-03-18 2018-08-29 Nanoco Technologies Ltd Quantum dot compositions
KR101821086B1 (ko) 2014-04-02 2018-01-22 쓰리엠 이노베이티브 프로퍼티즈 캄파니 티오에테르 리간드를 포함하는 복합 나노입자
US9790425B2 (en) 2014-04-18 2017-10-17 Los Alamos National Security, Llc Synthesis of quantum dots
US9442344B2 (en) * 2014-06-02 2016-09-13 Vadient Optics, Llc Nanocomposite high order nonlinear optical-element
US10828400B2 (en) 2014-06-10 2020-11-10 The Research Foundation For The State University Of New York Low temperature, nanostructured ceramic coatings
KR20170029533A (ko) 2014-07-03 2017-03-15 쓰리엠 이노베이티브 프로퍼티즈 컴파니 저감된 에지 침입 및 개선된 색상 안정성을 갖는 양자점 물품
CN106661229B (zh) * 2014-07-16 2021-02-09 纳米系统公司 用于量子点的有机硅配体
WO2016060643A1 (en) * 2014-10-13 2016-04-21 Los Alamos National Security, Llc Luminescent solar concentrators comprising semiconductor nanocrystals
CA2961291A1 (en) * 2014-10-29 2016-05-06 Arisdyne Systems, Inc. Process for dispersing particles in filled resin compositions
JP6309472B2 (ja) 2015-02-06 2018-04-11 富士フイルム株式会社 重合性組成物、波長変換部材、バックライトユニット、および液晶表示装置
JP6589318B2 (ja) * 2015-03-23 2019-10-16 コニカミノルタ株式会社 色域拡大フィルム
JP6422598B2 (ja) 2015-04-16 2018-11-14 スリーエム イノベイティブ プロパティズ カンパニー チオール−エポキシマトリックスを有する量子ドット物品
US10233387B2 (en) 2015-04-16 2019-03-19 3M Innovative Properties Company Quantum dot article with thiol-alkene-epoxy matrix
US10984735B2 (en) 2015-04-17 2021-04-20 Nanosys, Inc. White point uniformity in display devices
WO2016189869A1 (ja) * 2015-05-28 2016-12-01 富士フイルム株式会社 量子ドット含有組成物、波長変換部材、バックライトユニット、および液晶表示装置
US20160380140A1 (en) 2015-06-26 2016-12-29 Los Alamos National Security, Llc Colorless luminescent solar concentrators using colloidal semiconductor nanocrystals
KR20180041141A (ko) 2015-07-20 2018-04-23 모멘티브 퍼포먼스 머티리얼즈 게엠베하 비대칭 치환 폴리오가노실록산 유도체
KR20180042285A (ko) 2015-08-19 2018-04-25 쓰리엠 이노베이티브 프로퍼티즈 캄파니 퍼플루오로에테르-안정화된 양자점
WO2017044597A1 (en) 2015-09-09 2017-03-16 Truskier Jonathan Highly luminescent cadmium-free nanocrystals with blue emission
EP3350284B1 (en) 2015-09-15 2019-02-27 3M Innovative Properties Company Additive stabilized composite nanoparticles
US10836960B2 (en) 2015-09-15 2020-11-17 3M Innovative Properties Company Additive stabilized composite nanoparticles
JP6602170B2 (ja) * 2015-11-16 2019-11-06 日本化薬株式会社 多価カルボン酸樹脂およびそれを含有する多価カルボン酸樹脂組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに半導体装置
KR20180084089A (ko) 2015-11-18 2018-07-24 쓰리엠 이노베이티브 프로퍼티즈 캄파니 나노입자를 위한 공중합체성 안정화 담체 유체
DE102015121720A1 (de) * 2015-12-14 2017-06-14 Osram Opto Semiconductors Gmbh Konversionselement, optoelektronisches Bauelement und Verfahren zur Herstellung eines Konversionselements
KR102427698B1 (ko) 2015-12-17 2022-07-29 삼성전자주식회사 양자점-폴리머 미분 복합체, 그의 제조 방법 및 이를 포함하는 성형품과 전자 소자
US11015114B2 (en) 2015-12-31 2021-05-25 3M Innovative Properties Company Article comprising particles with quantum dots
US9658489B1 (en) 2015-12-31 2017-05-23 Nanosys, Inc. Backlight units for display devices
JP2019504811A (ja) 2016-01-19 2019-02-21 ナノシス・インク. GaPおよびAlPシェルを有するInP量子ドット、ならびにその製造方法
WO2017142781A1 (en) 2016-02-17 2017-08-24 3M Innovative Properties Company Matrix for quantum dot film article
KR102034615B1 (ko) 2016-02-17 2019-10-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 안정화 불소화합물계 공중합체를 갖는 양자점
US10829686B2 (en) 2016-04-01 2020-11-10 3M Innovative Properties Company Quantum dots with stabilizing fluorochemical agents
KR102367208B1 (ko) 2016-04-26 2022-02-23 나노시스, 인크. 두꺼운 쉘 코팅을 갖는 안정된 inp 양자점 및 그 제조 방법
EP3242333B1 (en) * 2016-05-03 2020-09-09 Nokia Technologies Oy An apparatus and method of forming an apparatus comprising a graphene field effect transistor
EP3244442B1 (en) * 2016-05-09 2022-08-03 Emberion Oy A method of forming a device comprising quantum dots
KR102481314B1 (ko) 2016-05-19 2022-12-23 나노시스, 인크. 고 발광성 나노구조체를 위한 코어/쉘 양자점의 형태를 개선하기 위한 방법
US10526535B2 (en) 2016-05-20 2020-01-07 3M Innovative Properties Company Quantum dots with mixed amine and thiol ligands
CA3026102A1 (en) 2016-06-06 2017-12-14 Nanosys, Inc. Method for synthesizing core shell nanocrystals at high temperatures
WO2018005195A1 (en) 2016-06-27 2018-01-04 Nanosys, Inc. Methods for buffered coating of nanostructures
KR20190033071A (ko) 2016-07-20 2019-03-28 쓰리엠 이노베이티브 프로퍼티즈 컴파니 양자점을 위한 안정화 스티렌계 중합체
KR102151510B1 (ko) 2016-07-20 2020-09-03 후지필름 가부시키가이샤 양자 도트 함유 조성물, 파장 변환 부재, 백라이트 유닛, 및 액정 표시 장치
KR20190031505A (ko) 2016-07-20 2019-03-26 쓰리엠 이노베이티브 프로퍼티즈 컴파니 양자점을 위한 안정화 스티렌계 중합체
US20190218453A1 (en) * 2016-09-19 2019-07-18 3M Innovative Properties Company Fluorescent nanoparticles stabilized with a functional aminosilicone
US11320577B2 (en) 2016-10-31 2022-05-03 Nanosys, Inc. Radiation absorbing element for increasing color gamut of quantum dot based display devices
US20180223182A1 (en) * 2017-01-31 2018-08-09 Nanosys, Inc. Rapid thickening of aminosilicones to promote emulsion stability and adhesion of uv-curable quantum dot enhancement film emulsions
US10472563B2 (en) 2017-02-16 2019-11-12 Rohm And Haas Electronic Materials Llc Methods for making improved quantum dot resin formulations
US10508232B2 (en) 2017-02-16 2019-12-17 Dow Global Technologies Llc Polymer composites and films comprising reactive additives having thiol groups for improved quantum dot dispersion and barrier properties
TW201842164A (zh) 2017-03-14 2018-12-01 美商3M新設資產公司 經添加劑穩定之複合奈米粒子
EP3604215A4 (en) 2017-03-28 2020-02-26 Fujifilm Corporation GROUP (III) - (V) SEMICONDUCTOR NANOPARTICLE PRODUCTION METHOD, GROUP (III) - (V) SEMICONDUCTOR QUANTIC POINT PRODUCTION METHOD, AND FLOW REACTION SYSTEM
EP3635793A4 (en) * 2017-05-09 2021-01-20 Ubiqd Inc. LUMINESCENT OPTICAL ELEMENTS FOR AGRICULTURAL APPLICATIONS
US11407937B2 (en) * 2017-05-10 2022-08-09 Nanosys, Inc. In-situ cross-linking of emulsified quantum dot-containing domains within a carrier resin
KR102452484B1 (ko) * 2017-08-11 2022-10-11 삼성전자주식회사 발광소자 패키지 및 발광소자 패키지 모듈
US11092850B2 (en) 2017-08-25 2021-08-17 Nanosys, Inc. Using multiple excitation wavelengths in nanostructure based display devices
US10935842B2 (en) 2017-08-25 2021-03-02 Nanosys, Inc. Nanostructure based display devices
US11029559B2 (en) 2017-08-25 2021-06-08 Nanosys, Inc. Nanostructure based display devices
WO2019081404A1 (en) * 2017-10-24 2019-05-02 Merck Patent Gmbh QUANTIC POINTS BASED ON INDIUM PHOSPHIDE
KR20200074197A (ko) 2017-10-25 2020-06-24 나노시스, 인크. 두꺼운 쉘 코팅을 갖는 안정적인 InP 양자 도트들 및 그것을 제조하는 방법
KR102515817B1 (ko) * 2017-11-28 2023-03-29 엘지디스플레이 주식회사 발광체, 이를 포함하는 발광 필름, 발광다이오드 및 발광장치
CN110028969B (zh) 2018-01-11 2024-01-09 三星电子株式会社 量子点的群、其制造方法、量子点-聚合物复合物和显示装置
US20190273178A1 (en) 2018-03-05 2019-09-05 Nanosys, Inc. Decreased Photon Reabsorption in Emissive Quantum Dots
JP7357185B2 (ja) 2018-05-30 2023-10-06 ナノシス・インク. 青色発光ZnSe1-xTex合金ナノ結晶の合成方法
KR20200002692A (ko) 2018-06-29 2020-01-08 나노시스, 인크. 도펀트들로서 In3+ 염들을 이용한 ZnSe 양자 도트들의 파장 튜닝
EP3824218A1 (en) 2018-07-24 2021-05-26 Nanosys, Inc. Methods of improving efficiency of displays using quantum dots with integrated optical elements
US11428988B2 (en) 2018-08-31 2022-08-30 Nanosys, Inc. Increasing color gamut performance and efficiency in quantum dot color conversion layers
EP3643765A1 (en) * 2018-10-22 2020-04-29 SABIC Global Technologies B.V. Stable quantum dot compositions
CN109735203B (zh) * 2018-12-25 2021-01-29 陕西科技大学 一种半封闭笼状三官能环氧醚基poss组合料、涂料及制备方法
CN109825279A (zh) * 2019-01-10 2019-05-31 苏州星烁纳米科技有限公司 荧光体、光转换元件及发光器件
KR102046907B1 (ko) 2019-01-16 2019-11-20 주식회사 신아티앤씨 이온성 액체가 이온결합된 양자점 및 이의 제조방법
KR20210116634A (ko) 2019-01-24 2021-09-27 나노시스, 인크. 향상된 청색 광 흡수를 위한 얇은 쉘 양자 도트들
EP3898885B1 (en) 2019-01-24 2023-12-27 Shoei Chemical Inc. Small molecule passivation of quantum dots for increased quantum yield
WO2020163075A1 (en) 2019-02-05 2020-08-13 Nanosys, Inc. Methods for synthesis of inorganic nanostructures using molten salt chemistry
JP7297460B2 (ja) * 2019-02-20 2023-06-26 旭化成株式会社 紫外線照射装置
JP7185071B2 (ja) * 2019-04-03 2022-12-06 カンブリオス フィルム ソリューションズ コーポレーション 薄型導電性フィルム
CA3136609C (en) 2019-04-11 2023-12-05 Team Conveyer Intellectual Properties, LLC Coordinated conveyers in an automated system
WO2020214601A1 (en) 2019-04-15 2020-10-22 Nanosys, Inc. Methods to improve the quantum yield of indium phosphide quantum dots
WO2020214930A1 (en) 2019-04-19 2020-10-22 Nanosys, Inc. Flexible electroluminescent devices
CN113994252A (zh) 2019-05-08 2022-01-28 纳米系统公司 具有改善的光提取效率的基于纳米结构的显示器件
KR20200026679A (ko) * 2019-06-20 2020-03-11 엘지전자 주식회사 디스플레이 장치 및 반도체 발광소자의 자가조립 방법
CN115678542A (zh) 2019-06-20 2023-02-03 纳米系统公司 基于亮银的四元纳米结构
WO2021030432A1 (en) 2019-08-12 2021-02-18 Nanosys, Inc. SYNTHESIS OF BLUE-EMITTING ZnSe1-xTex ALLOY NANOCRYSTALS WITH LOW FULL WIDTH AT HALF-MAXIMUM
US11555149B2 (en) 2019-09-11 2023-01-17 Nanosys, Inc. Nanostructure ink compositions for inkjet printing
US11670740B2 (en) 2019-09-26 2023-06-06 Osram Opto Semiconductors Gmbh Conversion layer, light emitting device and method of producing a conversion layer
JP7227890B2 (ja) * 2019-12-03 2023-02-22 信越化学工業株式会社 感光性樹脂組成物、感光性樹脂皮膜、感光性ドライフィルム、パターン形成方法及び発光素子
WO2021141945A1 (en) 2020-01-06 2021-07-15 Nanosys, Inc. Rohs compliant mixed quantum dot films
KR20210090780A (ko) * 2020-01-10 2021-07-21 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 디스플레이 장치
WO2021165487A1 (en) * 2020-02-21 2021-08-26 Nexdot Colourless blue filter for glass container
KR20230036133A (ko) 2020-07-08 2023-03-14 나노시스, 인크. 박형 금속 산화물 코팅들을 포함하는 qd들을 갖는 디바이스들의 성능을 개선하는 방법
CN116547362A (zh) 2020-09-28 2023-08-04 纳米系统公司 具有悬垂的增溶部分的热稳定聚硫醇配体
US20220131099A1 (en) 2020-10-22 2022-04-28 Nanosys, Inc. Electroluminescent devices with organic transport layers
CN116508412A (zh) 2020-10-22 2023-07-28 纳米系统公司 具有混合传输层的电致发光装置
EP4267691A1 (en) 2020-12-22 2023-11-01 Nanosys, Inc. Films comprising bright silver based quaternary nanostructures
TW202307177A (zh) 2021-04-01 2023-02-16 美商納諾西斯有限公司 穩定的aigs膜
WO2023287886A1 (en) 2021-07-13 2023-01-19 Nanosys, Inc. Tunable illumination device
EP4124901A1 (en) * 2021-07-29 2023-02-01 Nexdot Contact lens comprising semi-conductive nanoparticles
WO2023119960A1 (ja) * 2021-12-23 2023-06-29 パナソニックIpマネジメント株式会社 半導体ナノ粒子の製造方法及び半導体ナノ粒子
WO2023141438A1 (en) 2022-01-19 2023-07-27 Nanosys, Inc. Uv-curable quantum dot formulations
WO2023183619A1 (en) 2022-03-25 2023-09-28 Nanosys, Inc. Silica composite microparticles comprising nanostructures
WO2023220050A1 (en) 2022-05-09 2023-11-16 Nanosys, Inc. Microled-based display device and method of manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1376187A (zh) * 1999-07-30 2002-10-23 匹兹堡玻璃板工业俄亥俄股份有限公司 具有改进抗刮性的涂料组合物、涂覆基材及其有关方法
CN1376186A (zh) * 1999-07-30 2002-10-23 匹兹堡玻璃板工业俄亥俄股份有限公司 具有改进抗刮性的涂料组合物、涂覆基材及其有关方法
CN1377392A (zh) * 1999-07-30 2002-10-30 匹兹堡玻璃板工业俄亥俄股份有限公司 具有改进抗刮性的挠性涂料组合物、涂覆基材和涂覆方法

Family Cites Families (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2381366A (en) * 1942-10-29 1945-08-07 Gen Electric Organo-dihalogenosiloxanes
US3627724A (en) * 1969-12-03 1971-12-14 Cabot Corp Rubber compositions
DE2448338C3 (de) * 1974-10-10 1978-10-26 Bayer Ag, 5090 Leverkusen Stabilisierte Chalkogenide auf der Basis von Cadmium
US4181753A (en) * 1976-08-19 1980-01-01 Brown, Boveri & Cie Aktiengesellschaft Process for the production of electroluminescent powders for display panels and coating the powders with zinc phosphate
JPS5467698A (en) * 1977-11-08 1979-05-31 Matsushita Electric Ind Co Ltd Method of reducing resistance of conductive material
US4130708A (en) * 1977-12-09 1978-12-19 Ppg Industries, Inc. Siloxane urethane acrylate radiation curable compounds for use in coating compositions
US4263339A (en) * 1978-05-17 1981-04-21 Brown, Boveri & Cie Aktiengesellschaft Process for the production of electroluminescent powders for display panels
US4426431A (en) * 1982-09-22 1984-01-17 Eastman Kodak Company Radiation-curable compositions for restorative and/or protective treatment of photographic elements
US5189337A (en) * 1988-09-09 1993-02-23 Hitachi, Ltd. Ultrafine particles for use in a cathode ray tube or an image display face plate
JP2525656B2 (ja) * 1988-12-08 1996-08-21 化成オプトニクス株式会社 蛍光体および蛍光体の表面処理方法
US5023139A (en) * 1989-04-04 1991-06-11 Research Corporation Technologies, Inc. Nonlinear optical materials
US5196229A (en) * 1989-08-21 1993-03-23 Gte Products Corporation Coated phosphor articles
JPH075883B2 (ja) * 1990-04-21 1995-01-25 日亜化学工業株式会社 蛍光体の再生方法
US5376307A (en) * 1990-08-09 1994-12-27 E. I. Du Pont De Nemours And Company Fluorocarbon paint composition
US5124278A (en) * 1990-09-21 1992-06-23 Air Products And Chemicals, Inc. Amino replacements for arsine, antimony and phosphine
US5230957A (en) * 1991-07-24 1993-07-27 E. I. Du Pont De Nemours And Company Hollow filament cross-sections containing four continuous voids
EP0613585A4 (en) * 1991-11-22 1995-06-21 Univ California SEMICONDUCTOR NANOCRYSTALS COVALENTLY LINKED TO SOLID INORGANIC SURFACES USING SELF-ASSEMBLED MONO-LAYERS.
US5262357A (en) * 1991-11-22 1993-11-16 The Regents Of The University Of California Low temperature thin films formed from nanocrystal precursors
US5505928A (en) * 1991-11-22 1996-04-09 The Regents Of University Of California Preparation of III-V semiconductor nanocrystals
US5260957A (en) * 1992-10-29 1993-11-09 The Charles Stark Draper Laboratory, Inc. Quantum dot Laser
EP0667029B1 (en) * 1992-10-30 1998-09-23 Lord Corporation Thixotropic magnetorheological materials
US5518808A (en) * 1992-12-18 1996-05-21 E. I. Du Pont De Nemours And Company Luminescent materials prepared by coating luminescent compositions onto substrate particles
JP2959928B2 (ja) * 1993-06-23 1999-10-06 チタン工業株式会社 白色導電性樹脂組成物
US5537000A (en) * 1994-04-29 1996-07-16 The Regents, University Of California Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices
DE4432035A1 (de) * 1994-09-09 1996-03-14 Philips Patentverwaltung Beschichtungsverfahren für Lumineszenzpulver, Luminenzenzpulver und beschichteter Gegenstand
WO1996014206A1 (en) * 1994-11-08 1996-05-17 Spectra Science Corporation Semiconductor nanocrystal display materials and display apparatus employing same
US5532023A (en) * 1994-11-10 1996-07-02 The Procter & Gamble Company Wrinkle reducing composition
US5595593A (en) * 1995-10-12 1997-01-21 Dow Corning Corporation Treatment of fillers with oxa-silacycloalkanes
US5707139A (en) * 1995-11-01 1998-01-13 Hewlett-Packard Company Vertical cavity surface emitting laser arrays for illumination
US5777433A (en) * 1996-07-11 1998-07-07 Hewlett-Packard Company High refractive index package material and a light emitting device encapsulated with such material
US6153123A (en) * 1997-02-24 2000-11-28 Superior Micropowders, Llc Sulfur-containing phosphor powders, methods for making phosphor powders and devices incorporating same
WO1998039805A1 (de) * 1997-03-03 1998-09-11 Koninklijke Philips Electronics N.V. Weisse lumineszenzdiode
US5958591A (en) * 1997-06-30 1999-09-28 Minnesota Mining And Manufacturing Company Electroluminescent phosphor particles encapsulated with an aluminum oxide based multiple oxide coating
US6482672B1 (en) * 1997-11-06 2002-11-19 Essential Research, Inc. Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates
US6607829B1 (en) 1997-11-13 2003-08-19 Massachusetts Institute Of Technology Tellurium-containing nanocrystalline materials
US6322901B1 (en) * 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US5985173A (en) * 1997-11-18 1999-11-16 Gray; Henry F. Phosphors having a semiconductor host surrounded by a shell
GB9724642D0 (en) 1997-11-21 1998-01-21 British Tech Group Single electron devices
US5990479A (en) * 1997-11-25 1999-11-23 Regents Of The University Of California Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
US6147363A (en) * 1997-12-25 2000-11-14 Showa Denko K.K. Nitride semiconductor light-emitting device and manufacturing method of the same
US5892084A (en) * 1998-02-03 1999-04-06 Pcr, Inc. Aminoorganofunctionalsiloxanes
US6278135B1 (en) * 1998-02-06 2001-08-21 General Electric Company Green-light emitting phosphors and light sources using the same
US6294800B1 (en) * 1998-02-06 2001-09-25 General Electric Company Phosphors for white light generation from UV emitting diodes
US6501091B1 (en) * 1998-04-01 2002-12-31 Massachusetts Institute Of Technology Quantum dot white and colored light emitting diodes
US6864626B1 (en) * 1998-06-03 2005-03-08 The Regents Of The University Of California Electronic displays using optically pumped luminescent semiconductor nanocrystals
US6251303B1 (en) * 1998-09-18 2001-06-26 Massachusetts Institute Of Technology Water-soluble fluorescent nanocrystals
US6306610B1 (en) * 1998-09-18 2001-10-23 Massachusetts Institute Of Technology Biological applications of quantum dots
US6617583B1 (en) * 1998-09-18 2003-09-09 Massachusetts Institute Of Technology Inventory control
US6426513B1 (en) * 1998-09-18 2002-07-30 Massachusetts Institute Of Technology Water-soluble thiol-capped nanocrystals
US6326144B1 (en) * 1998-09-18 2001-12-04 Massachusetts Institute Of Technology Biological applications of quantum dots
JP4630459B2 (ja) * 1998-09-24 2011-02-09 インディアナ・ユニバーシティ・リサーチ・アンド・テクノロジー・コーポレーション 水溶性発光量子ドットおよびその生体分子コンジュゲート
US6114038A (en) * 1998-11-10 2000-09-05 Biocrystal Ltd. Functionalized nanocrystals and their use in detection systems
US6855202B2 (en) * 2001-11-30 2005-02-15 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
US6429583B1 (en) * 1998-11-30 2002-08-06 General Electric Company Light emitting device with ba2mgsi2o7:eu2+, ba2sio4:eu2+, or (srxcay ba1-x-y)(a1zga1-z)2sr:eu2+phosphors
US6783855B1 (en) * 1998-12-17 2004-08-31 Isis Innovation Limited Rare-earth-activated phosphors
US6350552B1 (en) * 1998-12-23 2002-02-26 Lexmark International, Inc. Reactive compatibilization of polymeric components such as siloxane polymers with toner resins
US6696299B1 (en) * 1999-05-11 2004-02-24 Massachusetts Institute Of Technology Polarization label for measuring 3-dimensional orientation
US6344520B1 (en) * 1999-06-24 2002-02-05 Wacker Silicones Corporation Addition-crosslinkable epoxy-functional organopolysiloxane polymer and coating compositions
JP3912961B2 (ja) * 1999-06-30 2007-05-09 信越化学工業株式会社 新規なシリコーン粉体処理剤及びそれを用いて表面処理された粉体、並びにこの粉体を含有する化粧料
AU782000B2 (en) * 1999-07-02 2005-06-23 President And Fellows Of Harvard College Nanoscopic wire-based devices, arrays, and methods of their manufacture
US6440213B1 (en) * 1999-10-28 2002-08-27 The Regents Of The University Of California Process for making surfactant capped nanocrystals
US6179912B1 (en) * 1999-12-20 2001-01-30 Biocrystal Ltd. Continuous flow process for production of semiconductor nanocrystals
US6225198B1 (en) * 2000-02-04 2001-05-01 The Regents Of The University Of California Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process
EP1264375A2 (en) * 2000-03-14 2002-12-11 Massachusetts Institute Of Technology Optical amplifiers and lasers
DE60128458T2 (de) * 2000-03-20 2008-01-10 Massachusetts Institute Of Technology, Cambridge Anorganische teilchenkonjugate
US6353073B1 (en) * 2000-03-22 2002-03-05 Archimica (Florida), Inc. Poly (aminoorganofunctionaldisiloxanes)
JP2002038013A (ja) * 2000-07-21 2002-02-06 Shin Etsu Chem Co Ltd 粉体組成物、その油中粉体分散物及びそれらを含有する化粧料
KR100984585B1 (ko) * 2000-08-22 2010-09-30 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 반도체 성장 방법 및 디바이스 제조 방법
ATE491230T1 (de) * 2000-10-04 2010-12-15 Univ Arkansas Synthese von kolloidalen metall chalcogenide nanokristallen
JP3872327B2 (ja) * 2000-12-04 2007-01-24 日本碍子株式会社 半導体発光素子
US6576291B2 (en) * 2000-12-08 2003-06-10 Massachusetts Institute Of Technology Preparation of nanocrystallites
DE10063092A1 (de) * 2000-12-18 2002-06-20 Henkel Kgaa Nanoskalige Materialien in Hygiene-Produkten
DE10063090A1 (de) * 2000-12-18 2002-06-20 Henkel Kgaa Nanoskaliges ZnO in Hygiene-Produkten
US20020083888A1 (en) * 2000-12-28 2002-07-04 Zehnder Donald A. Flow synthesis of quantum dot nanocrystals
US7091656B2 (en) 2001-04-20 2006-08-15 Nichia Corporation Light emitting device
US7420005B2 (en) * 2001-06-28 2008-09-02 Dai Nippon Printing Co., Ltd. Photocurable resin composition, finely embossed pattern-forming sheet, finely embossed transfer sheet, optical article, stamper and method of forming finely embossed pattern
WO2003092043A2 (en) * 2001-07-20 2003-11-06 Quantum Dot Corporation Luminescent nanoparticles and methods for their preparation
US20030066998A1 (en) * 2001-08-02 2003-04-10 Lee Howard Wing Hoon Quantum dots of Group IV semiconductor materials
EP1446695B1 (en) * 2001-10-24 2007-02-21 The Regents Of The University Of California Semiconductor liquid crystal composition and methods for making the same
US7777303B2 (en) * 2002-03-19 2010-08-17 The Regents Of The University Of California Semiconductor-nanocrystal/conjugated polymer thin films
US6734465B1 (en) * 2001-11-19 2004-05-11 Nanocrystals Technology Lp Nanocrystalline based phosphors and photonic structures for solid state lighting
US20040007169A1 (en) * 2002-01-28 2004-01-15 Mitsubishi Chemical Corporation Semiconductor nanoparticles and thin film containing the same
EP1478689A1 (en) * 2002-02-19 2004-11-24 Photon-X, Inc. Polymer nanocomposites for optical applications
US6919109B2 (en) * 2002-04-01 2005-07-19 Fuji Photo Film Co., Ltd. Fine particle dispersion, coating solution for accepting layer for coloring agent for ink-jet recording sheet, ink-jet recording sheet using the dispersion, and method for producing fine particle dispersion
US6711426B2 (en) * 2002-04-09 2004-03-23 Spectros Corporation Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US7432642B2 (en) * 2002-04-25 2008-10-07 Nichia Corporation Semiconductor light emitting device provided with a light conversion element using a haloborate phosphor composition
US7175778B1 (en) * 2002-05-10 2007-02-13 Nanocrystals Technology Lp Self-aligning QCA based nanomaterials
US6788453B2 (en) * 2002-05-15 2004-09-07 Yissum Research Development Company Of The Hebrew Univeristy Of Jerusalem Method for producing inorganic semiconductor nanocrystalline rods and their use
WO2003098920A1 (en) 2002-05-16 2003-11-27 Koninklijke Philips Electronics N.V. Image sensor device
US6870311B2 (en) * 2002-06-07 2005-03-22 Lumileds Lighting U.S., Llc Light-emitting devices utilizing nanoparticles
AU2003272275A1 (en) * 2002-09-05 2004-03-29 Nanosys, Inc. Organic species that facilitate charge transfer to or from nanostructures
JP2004169015A (ja) * 2002-11-01 2004-06-17 Shin Etsu Chem Co Ltd 粉体組成物及び油中粉体分散物.並びにそれらを有する化粧料
JP3922370B2 (ja) * 2003-01-30 2007-05-30 信越化学工業株式会社 ダイラタンシー性流体組成物
AU2004269297A1 (en) 2003-03-11 2005-03-10 Nanosys, Inc. Process for producing nanocrystals and nanocrystals produced thereby
US7279832B2 (en) * 2003-04-01 2007-10-09 Innovalight, Inc. Phosphor materials and illumination devices made therefrom
US8071079B2 (en) * 2003-05-16 2011-12-06 Dow Corning Corporation Personal care applications of emulsions containing elastomeric silanes and siloxanes with nitrogen atoms
EP1502572B1 (en) * 2003-08-01 2012-03-07 3M Deutschland GmbH Automixable putty impression material
JP2005071039A (ja) * 2003-08-22 2005-03-17 Mitsubishi Electric Corp 情報管理装置
KR100697511B1 (ko) * 2003-10-21 2007-03-20 삼성전자주식회사 광경화성 반도체 나노결정, 반도체 나노결정 패턴형성용 조성물 및 이들을 이용한 반도체 나노결정의 패턴 형성 방법
US6933535B2 (en) * 2003-10-31 2005-08-23 Lumileds Lighting U.S., Llc Light emitting devices with enhanced luminous efficiency
US7122808B2 (en) * 2003-11-14 2006-10-17 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel
US7875347B2 (en) * 2003-12-29 2011-01-25 General Electric Company Composite coatings for groundwall insulation, method of manufacture thereof and articles derived therefrom
US7645397B2 (en) 2004-01-15 2010-01-12 Nanosys, Inc. Nanocrystal doped matrixes
JP4789809B2 (ja) 2004-01-15 2011-10-12 サムスン エレクトロニクス カンパニー リミテッド ナノ結晶をドーピングしたマトリックス
US20080231170A1 (en) 2004-01-26 2008-09-25 Fukudome Masato Wavelength Converter, Light-Emitting Device, Method of Producing Wavelength Converter and Method of Producing Light-Emitting Device
WO2005101530A1 (en) * 2004-04-19 2005-10-27 Edward Sargent Optically-regulated optical emission using colloidal quantum dot nanocrystals
US7399429B2 (en) * 2004-05-10 2008-07-15 Evident Technologies, Inc. III-V semiconductor nanocrystal complexes and methods of making same
US8563133B2 (en) * 2004-06-08 2013-10-22 Sandisk Corporation Compositions and methods for modulation of nanostructure energy levels
TW201341440A (zh) * 2004-06-08 2013-10-16 Sandisk Corp 奈米結構之沉積後包封:併入該包封體之組成物、裝置及系統
US7834121B2 (en) * 2004-09-15 2010-11-16 Ppg Industries Ohio, Inc. Silicone resin containing coating compositions, related coated substrates and methods
KR100678285B1 (ko) * 2005-01-20 2007-02-02 삼성전자주식회사 발광 다이오드용 양자점 형광체 및 그의 제조방법
DE102005039436B4 (de) * 2005-08-18 2009-05-07 Clariant International Limited Beschichtungsmassen enthaltend mit Silanen modifizierte Nanopartikel
JP5543111B2 (ja) * 2006-01-19 2014-07-09 ダウ・コーニング・コーポレイション 自立性シリコーン樹脂フィルム、その調製方法、及び自立性シリコーン樹脂フィルム用ナノ材料充填シリコーン組成物
KR101249078B1 (ko) * 2006-01-20 2013-03-29 삼성전기주식회사 실록산계 분산제 및 이를 포함하는 나노입자 페이스트조성물
JP2008063565A (ja) * 2006-08-08 2008-03-21 Sekisui Chem Co Ltd 光半導体用熱硬化性組成物、光半導体素子用封止剤、光半導体素子用ダイボンド材、光半導体素子用アンダーフィル材及び光半導体素子
US7834083B2 (en) * 2006-10-11 2010-11-16 Samsung Electro-Mechanics Co., Ltd. Nanocomposite composition comprising transparent nanoparticles
US7858198B2 (en) * 2007-04-10 2010-12-28 Shin-Etsu Chemical Co., Ltd. Phosphor-containing adhesive silicone composition, composition sheet formed of the composition, and method of producing light emitting device using the sheet
CN101980693A (zh) * 2007-12-05 2011-02-23 莱雅公司 使用硅氧烷树脂和非挥发性油的美容性化妆和/或护理方法
WO2009100203A1 (en) * 2008-02-08 2009-08-13 Emory University Coated quantum dots and methods of making and using thereof
CN102686646B (zh) * 2009-12-24 2015-08-19 道康宁东丽株式会社 用在化妆品中的粉末用的表面处理剂及含有用该表面处理剂处理的粉末的化妆品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1376187A (zh) * 1999-07-30 2002-10-23 匹兹堡玻璃板工业俄亥俄股份有限公司 具有改进抗刮性的涂料组合物、涂覆基材及其有关方法
CN1376186A (zh) * 1999-07-30 2002-10-23 匹兹堡玻璃板工业俄亥俄股份有限公司 具有改进抗刮性的涂料组合物、涂覆基材及其有关方法
CN1377392A (zh) * 1999-07-30 2002-10-30 匹兹堡玻璃板工业俄亥俄股份有限公司 具有改进抗刮性的挠性涂料组合物、涂覆基材和涂覆方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106715643B (zh) * 2014-07-22 2019-08-30 亮锐控股有限公司 用于在有机硅主体中分散量子点以获得用于led照明的颜色转换器的硅氧烷配体
CN106715643A (zh) * 2014-07-22 2017-05-24 皇家飞利浦有限公司 用于在有机硅主体中分散量子点以获得用于led照明的颜色转换器的硅氧烷配体
CN106435739A (zh) * 2016-02-03 2017-02-22 苏州星烁纳米科技有限公司 一种纳米晶体的制备方法
CN106435739B (zh) * 2016-02-03 2019-06-28 苏州星烁纳米科技有限公司 一种纳米晶体的制备方法
CN109071213A (zh) * 2016-02-26 2018-12-21 纳米系统公司 低镉含量纳米结构组合物及其用途
US11075324B2 (en) 2016-09-22 2021-07-27 Osram Oled Gmbh Method of producing an outcoupling element for an optoelectronic component and outcoupling element
CN109791969A (zh) * 2016-09-22 2019-05-21 欧司朗光电半导体有限公司 用于制造光电子器件的耦合输出元件的方法和耦合输出元件
CN109791969B (zh) * 2016-09-22 2022-08-19 欧司朗光电半导体有限公司 用于制造光电子器件的耦合输出元件的方法和耦合输出元件
CN110799621A (zh) * 2017-05-10 2020-02-14 纳米系统公司 作为量子点树脂预混料的乳化添加剂的有机硅共聚物
CN111433320A (zh) * 2017-12-04 2020-07-17 信越化学工业株式会社 量子点及其制造方法、以及树脂组合物、波长转换材料、发光元件
CN111433320B (zh) * 2017-12-04 2024-03-22 信越化学工业株式会社 量子点及其制造方法、以及树脂组合物、波长转换材料、发光元件
CN110028948A (zh) * 2018-01-11 2019-07-19 三星电子株式会社 无镉量子点、其制造方法、包括其的组合物、量子点-聚合物复合物和显示器件
US11845888B2 (en) 2018-01-11 2023-12-19 Samsung Electronics Co., Ltd. Cadmium free quantum dots
US20210020858A1 (en) * 2018-09-07 2021-01-21 Tcl Technology Group Corporation Composite material and quantum dot light emitting diode
WO2020078143A1 (zh) * 2018-10-18 2020-04-23 浙江大学 量子点、制作方法、单光子源和qled
CN112111277A (zh) * 2018-10-18 2020-12-22 浙江大学 单光子源和qled
US11618853B2 (en) 2018-10-18 2023-04-04 Zhejiang University QLED and method for manufacturing quantum dot

Also Published As

Publication number Publication date
WO2010126606A3 (en) 2011-05-26
JP6072872B2 (ja) 2017-02-01
EP2424941B1 (en) 2017-05-31
EP2424941A4 (en) 2012-09-19
JP2012525467A (ja) 2012-10-22
US8916064B2 (en) 2014-12-23
US8283412B2 (en) 2012-10-09
US20130043433A1 (en) 2013-02-21
US20150166342A1 (en) 2015-06-18
CN104387772B (zh) 2017-07-11
US20100276638A1 (en) 2010-11-04
KR101783487B1 (ko) 2017-10-23
KR20120035152A (ko) 2012-04-13
EP2424941A2 (en) 2012-03-07
US8618212B2 (en) 2013-12-31
US20140151600A1 (en) 2014-06-05
CN102656233A (zh) 2012-09-05
CN102656233B (zh) 2015-04-29
WO2010126606A2 (en) 2010-11-04
JP2016028152A (ja) 2016-02-25
JP6236202B2 (ja) 2017-11-22

Similar Documents

Publication Publication Date Title
CN102656233B (zh) 用于纳米结构体分散的官能化基质
JP5551435B2 (ja) ナノ結晶でドープしたマトリックス
US8749130B2 (en) Nanocrystal doped matrixes
CN104508049B (zh) 用于稳定量子点膜的硅酮配体
JP2007524119A5 (zh)
CN105143235A (zh) 多面体低聚倍半硅氧烷纳米晶体稳定化配体
CN105189584A (zh) 用于纳米晶体的烷基-酸配体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231017

Address after: Tokyo, Japan

Patentee after: SHOEI CHEMICAL Inc.

Address before: California, USA

Patentee before: NANOSYS, Inc.