CN1032142C - 在哺乳动物细胞内表达因子vii活性的方法 - Google Patents

在哺乳动物细胞内表达因子vii活性的方法 Download PDF

Info

Publication number
CN1032142C
CN1032142C CN86102644A CN86102644A CN1032142C CN 1032142 C CN1032142 C CN 1032142C CN 86102644 A CN86102644 A CN 86102644A CN 86102644 A CN86102644 A CN 86102644A CN 1032142 C CN1032142 C CN 1032142C
Authority
CN
China
Prior art keywords
factor
dna
order
factor vii
vii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN86102644A
Other languages
English (en)
Other versions
CN86102644A (zh
Inventor
弗里德里克·S·哈根
马克·J·马雷
沙罗恩·J·布斯比
卡思利恩.L.伯克纳
马加里特.Y.英斯利
里查德.G.伍德布里
查利斯.L.格雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zimogenidex
Zymogenetics Inc
Original Assignee
Zimogenidex
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zimogenidex filed Critical Zimogenidex
Publication of CN86102644A publication Critical patent/CN86102644A/zh
Application granted granted Critical
Publication of CN1032142C publication Critical patent/CN1032142C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6437Coagulation factor VIIa (3.4.21.21)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • C07K14/755Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/644Coagulation factor IXa (3.4.21.22)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/647Blood coagulation factors not provided for in a preceding group or according to more than one of the proceeding groups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21021Coagulation factor VIIa (3.4.21.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21022Coagulation factor IXa (3.4.21.22)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Retarders (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本文公开了产生活性蛋白质的方法。所产生的蛋白质对于由因子VII或因子IX介导的凝血过程具有生物活性。该蛋白质是由哺乳动物宿主细胞产生的,这些细胞已被DNA建造体稳定转染。DNA建造体中有一个核苷酸顺序,它至少部分地编码因子VII或因子IX。核苷酸顺序含有编码钙结合区的第一核苷酸顺序,钙结合区则连接到位于第一顺序之下游连到由第一顺序的第二核苷酸顺序上。特别是,第一核苷酸顺序可衍生于基因组克隆或因子VII的cDNA克隆。第二顺序编码因子VIIA或因子IX的丝氨酸蛋白酶活性的催化区。连接的序列编码在凝血过程中具有与因子VIIa或因子IX实质上相同的生物活性的蛋白质。

Description

在哺乳动物细胞内表达因子VII活性的方法
一般地说,本发明涉及血液凝固因子,更准确地说,本发明涉及在血液凝固中有生物活性的蛋白质的表达。
血液凝固是一个包括各种血液成份或因子复杂的相互作用最终产生一个纤维性血块的过程。一般地说,参与凝血,并被称为凝血“级联”的血液成分是前酶,或酶原,即一种在酶学上没有活性的蛋白质,其在活化剂的作用下转变成水解蛋白酶,其本身是已活化的凝血因子。经历这样转化的凝血因子一般称为“被活化因子”,在它们标号的后下方再加上一个“a”标示,例如VIIa。
有两种系统能促进血液凝固和参加止血。这两种系统已被称作内在的和外在的凝血途径。内在途径指的是通过利用只存在于血浆中的因子导致凝血酶形成的反应。内在途径中的中间环节是因子IX被活化成因子IXa,该反应由又被因子XIa和钙离子催化。在因子VIIIa,磷脂和钙离子存在的情况下,因子IXa又参与活化因子X。外在途径包括血浆因子以及存在于组织提取液中的成分。因子VII,一种前面提到的酶元,参与到凝血的外在途径中,其作用是(当被活化成VIIa后)在组织因子和钙离子存在下将因子X活化成Xa。因子Xa本身又在因子Va钙离子和磷脂存在下将凝血酶原转化成凝血酶。由于将因子X活化成因子Xa是由内在的和外在的途径共同承担的过程,因此,因子VIIa可被用来治疗因子VIII缺乏或被阻滞的病人(Thomas,U.S.patent 4,382,083)。还有一些证据提出,因子VIIa可以参加内在途径,在活化因子IX中起作用。
实验分析揭示,人因子VII是单链糖蛋白,分子量约50,000道尔顿。该因子以这种无活性的酶原形式循环在血液中。因子VII活化成因子VIIa可能被几种不同的血浆蛋白酶催化,如因子XIIa。因子VII的活化结果,形成两条多肽链,一个重链(分子量28,000)和一条轻链(分子量17,000)至少被一个二硫键把二链联在一起。因子VII也可以在体外被活化成因子VIIa,例如使用Thomas(U.S.Patent No.4,456,591)所公开的方法。
因子IX作为分子量57,000的单链前体存在于血液循环中。在因子VIII存在时,依靠VIIa的裂解,因子IX被转化成活化的丝氨酸蛋白酶(即因子IXa)。因子IXa是由一条轻链和一条重链组成的,分子量分别是16,000和29,000。
目前,对患凝血疾病(如缺乏因子VIII和IX)的病人,一般采用含有丰富的特异因子的人血浆冷沉淀物或其它碎片进行替代治疗。虽然冷沉淀物制剂需要使用相当大量的人血浆作为最初材料,但该制剂还可以从库存的人血浆中得到。
在因子VII,因子VIII和因子IX缺乏的人群中,利用因子VII来治疗显示出缺乏的病人。也利用因子VII来治疗有von Willebrand氏病的病人。更具体地说,在补充疗法中接受了因子VIII和因子IX的病人常常产生抗对这些蛋白质的抗体。由于这些抗体的存在,继续治疗是极其困难的。经历这一问题的病人,通常利用活化的凝血酶原复合物进行治疗。已经知道,该复合物是活化的,未活化的凝血酶的混合物,其中包括因子VIIa。而且,最近的研究指出,对那些自己缺乏因子VIII,并在血液中产生很高水平抗体的病人,注射少量(40—50μg)的因子VIIa对于控制他们严重的流血不止是有效的(Heder and Kisiel,J.clin.Invest.71:1836—1841,1983)。
由于用于制备血浆冷沉淀物的血浆有不同的来源,所以要试验这些制品以确保它们不被病毒污染是极困难的。例如,基本上所有冷沉淀物的接受者都呈肝炎呈阳性反应。最近的报告还指出,某些血友病人在接受冷沉淀物之后,已经产生了获得性免疫缺陷症(AIDS)。此外,这些因子的大量纯化是极其困难的,并且也极其昂贵。
因此,在本领域中,需要一种方法,使它能够产生相当大量的纯的因子VIIa和因子IX制剂。本发明通过DNA重组技术满足了这一要求,成功地消除了病毒污染问题,同时提供均质来源的活性VIIa因子以治疗因子VIII和因子IX缺乏的患者,以及Von Willebrand氏病的病人,而且还为补充疗法提供了纯化之因子IX的来源。
简要的说,本发明公开了含有至少密码部分因子VII的之核苷酸序列的DNA构建体。核苷酸顺序由第一顺序和第二顺序组成,编码钙结合区的第一核苷酸顺序编码又连接到第一核苷酸顺序下游位置的第二核苷酸顺序上。第二核苷酸顺序编码因子VIIa之丝氨酸蛋白酶活性的催化区。联接的顺序编码经活化后具有与因子VIIa相同的生物活性的蛋白质。第一核苷酸顺序实质上可能是编码因子VII、IX、X、蛋白质C,凝血酶原,或蛋白质S的基因。而且,第一核苷酸顺序也可能编码对应于各个基因的前导肽。
尤其是,第一核苷酸顺序可以得自基因组克隆或因子VII的cD-NA克隆,并且可能编码因子VII前导肽和氨基末端部分。第一核苷酸顺序可能包括一个双链寡核苷酸。特别优选的第一核苷酸顺序编码因子IX的前导肽和氨基末端。
此外,本发明公开了可以整合在哺乳动物宿主细胞DNA中的重组质粒。质粒之一包括一个启动子,下游接一套RNA剪接位点,RNA剪接位点下连有核苷酸顺序,该核苷酸顺序至少部分地编码因子VII。所说的核苷酸顺序包括钙结合区的第一核苷酸顺序,该第一核苷酸顺序连接到位于第一核苷酸顺序下游的第二核苷酸顺序上。第二核苷酸顺序编码因子VIIa之丝氨酸蛋白酶活性的催化区。连接的顺序编码经活化作用与因子VIIa有同样的凝血生物活性的蛋白质。然后,核苷酸顺序下游接有多聚腺核苷酸化信号。
与上面所讲的重组质粒相类似,本发明还公开了第二个质粒,其包括一个启动子,启动子下游连有一组RNA切接位点,RNA切接位点的下游又紧接一至少部分地编码因子IX的核苷酸顺序。所说的核苷酸顺序包括第一核苷酸顺序组成的,第一核苷酸顺序编码钙结合区,并连接到第二核苷酸顺序上,第二核苷酸顺序位于第一核苷酸顺序的下游。第二核苷酸顺序编码因子IX之丝氨酸蛋白酶活性的催化区。连接的顺序编码在凝血方面在本质上与因子IX有相同的生物活性的蛋白质,其下游又紧连着多聚腺苷酸化信号。
本发明的第三个方面揭示了被稳定的转染以产生蛋白质的哺乳动物细胞,经活化后该蛋白质与因子VIIa有同样的生物活性。细胞被包含一核苷酸顺序的DNA建造体转染,该核苷酸顺序至少部分地编码因子VII。所说的核苷酸顺序包括第一核苷酸顺序,第一核苷酸编码钙结合区,该顺序连接到第二核苷酸顺序上,第二核苷酸顺序位于第一核苷酸下游。第二核苷酸顺序编码因子VIIa之丝氨酸蛋白酶的催化区。连接的顺序编码经活化后在血液凝固方面与因子VIIa有相同的生物活性的蛋白质。
本发明的另一方面公开了被稳定转染的哺乳动物细胞,它能够产生一种蛋白质,该蛋白质与因子IX有相同的生物活性。细胞被包含一个核苷酸顺序的DNA建造体转染,核苷酸顺序至少部分地编码因子IX。所说的核苷酸顺序包括第一核苷酸顺序,第一核苷酸顺序编码钙结合区,并连接到第二核苷酸上去。第二核苷酸顺序位于第一核苷酸的下游。第二核苷酸顺序编码因子IX的丝氨酸蛋白酶活性的催化区。连接的顺序编码在血液凝固方面与因子IX本质上有相同生物活性的蛋白质。
本发明进一步提供了一种通过建立哺乳动物宿主细胞,使其含有包括至少部分地编码因子VII之核苷酸顺序的DNA构建体以使该动物宿主细胞产生一种对由因子VIIa分导的凝血具有生物学活性的蛋白质。所说的核苷酸顺序包括第一核苷酸顺序。第一核苷酸顺序编码的钙结合区又连接到第二核苷酸顺序上。第二核苷酸顺序位于第一核苷酸顺序下游。第二核苷酸顺序编码因子VIIa之丝氨酸蛋白酶活性的催化区。连接的顺序编码经活化后在凝血方面与因子VIIa有相同的生物学活性的蛋白质。然后使哺乳动物宿主细胞在适当培养基中生长,分离出由DNA建造体编码的和由哺乳动物宿主细胞所产生的蛋白质。然后蛋白质产物被活化以产生因子VIIa。
本发明还有一个方面公开了一种产生对由因子IX介导的凝血具有生物学活性的蛋白质的方法。该方法包括建立哺乳动物宿主细胞,宿主细胞含有DNA建造体,DNA建造体包含至少部分地编码因子IX的核苷酸顺序。所说的核苷酸顺序包括第一核苷酸顺序,第一核苷酸顺序编码的钙结合区并连接到第二核苷酸顺序上。第二核苷酸顺序位于第一核苷酸顺序的下游。第二核苷酸顺序编码因子IX丝氨酸蛋白酶活性的催化区。连接的顺序编码在血凝方面本质上与因子IX有相同的生物学活性蛋白质。然后使哺乳动物宿主细胞在适当的培养基中生长,并分离由哺乳动物宿主细胞所编码的蛋白质产物。还公开了按上述方法产生的蛋白质产物。
本发明的再一个方面,公开了由编码因子VII的DNA顺序组成的DNA建造体。在优先选用的实施方案中,DNA的顺序包含有图1b的cDNA顺序,从bp36到bp1433。在另一个优先选用的实施例中,DNA顺序包括图1b的cDNA顺序bp36到pb99,下游接着的顺序是从bp166到bp1433。还公开了含有刚刚在上面描述的DNA顺序并能整合到哺乳动物宿主细胞内的DNA中的重组质粒来。
还公开了用含有编码因子VII之DNA序列的重组质粒稳定地转染的哺乳动物细胞。在优先选用的实施方案中,DNA顺序含有图1b的cDNA顺序bp36到bp1433,或者是图1b的cDNA顺序从bp36到bp99,下游接着是从bp166到bp1433。
还公开了通过建立含上述DNA构建体的哺乳动物宿主细胞以生产对由因子VIIa介导的凝血过程有生物学活性之蛋白质的方法。然后使哺乳动物细胞宿主在适宜的培养基中生长,并分离由DNA建造体所编码的蛋白质产物。然后,蛋白质分子被活化以产生因子VIIa。
本发明的其它方面参考下面的详细描述和所附的示意图将变得很明显。
图1a说明λcDNA克隆λVII 2115和λVII 1923的部分产生的部分的因子VII cDNA。
图1b说明λVII2463的因子VII cDNA顺序。箭头指出λVII565顺序中缺失的范围。顺序上面的号码指的是氨基酸,下面的号码指的是核苷酸。
图2a表示若干种血凝因子的氨基末端区域的氨基酸顺序。
图2b表示对cDNA编码蛋白质进行测序所得到之因子VII的氨基酸顺序的比较。
图3表明把因子IX前导肽顺序连结到编码同感钙离子结合区的顺序上。
图4表明因子IX同感顺序与部分因子VIIcDNA杂交,以产生框架内编码顺序。
图5表示包含有对于因子IX和因子VII融合蛋白质之编码顺序的质粒的构建。
图6图解显示表达载体FIX/VII/PD2。所用的符号是Ad2 MLP,来自腺病毒2的主要晚期启动子,L1—3,腺病毒2三部分前导顺序;5’ss,5’切接位点;3’ss,3’切接位点;和PA,来自SV40的晚期多聚腺苷酸化信号。
图7显示因子IX/因子VII cDNA隔合体的核苷酸顺序。
图8显示表达载体pM7135。所用的符号是E,SV40增强因子;ori,0—1图单位Ad 5;PA,来自SV40的早期多聚核苷酸化信号;△,pBR322“中毒”顺序的缺失区,而其他符号如图6所示。
图9图解显示2463bp因子VII cDNA的亚克隆。
图10图解显示565bp因子VII cDNA的亚克隆。
图11图解显示pVII 565的5’末端和在pUC18中pVII 2463的3’位置相连以产生pVII 2397。
图12显示表达质粒F VII(2463)/pDX和F VII(565,2463)/pDX的构造。pA指的是在早期或晚期定向(如图9所述)中SV40的多聚腺核苷酸化信号。其它符号如图8所述。
在提出发明之前,理解一下本文所使用的若干术语的定义是有益的。
互补DNA或cDNA:已按照酶学方法从mRNA模板中的顺序合成的DNA分子或顺序。
DNA建造体:一个DNA分子,或一个DNA分子的克隆,单链的或双链的,其可以是从天然存在的基因中分离出来的部分形式,或者被修饰成含有DNA的某些片段,这些DNA片段是以自然界不存在的方式结合和并列的。
质粒或载体:含有遗传信息的DNA建造体,当插入宿主细胞时,就可以进行复制。一般地,一个质粒至少携带一个将要在宿主细胞中被表达的基因顺序,以及包括启动子和转录子的起始位置在内的使基因表达很容易进行的顺序。DNA分子可以是直链的,或者可能是闭合的环状分子。
连接:当DNA分子一个顺序的5’和3’末端借助磷酸二酯键分别连接到邻近顺序相应的3’和5’末端时,DNA顺序的就被连接起来。通过cDNA克隆合成被连接,或通过定向诱变过程除去插入的顺序,以平端或粘性末端连接法实现连接。
前导肽:出现在某些蛋白质氨基末端的氨基酸顺序,通常在其后发生的加工过程和分泌期间,该氨基酸顺序从蛋白质分子上被切掉。前导肽包括引导蛋白质进入到细胞分泌途径的顺序。本文使用的“前导肽”这一术语,可能还指天然存在的前导肽的一部分。
区域:蛋白质分子中特异氨基酸三维的自我组装排列,它含该种蛋白的某些生物活性所必需的全部的或部分的结构成分。
生物学活性:一个分子在生物学范围(即在生物体内或体外复制)所执行的一种功能或多种功能。蛋白质的生物学活性可以区分为催化活性和效应物活性。凝血因子的催化活性一般通过底物的特异性断裂涉及到其它因子的活化作用。效应物活性包括生学物活性分子特异地结合钙或其他小分子,或连到蛋白质大分子上,或连到细胞上。在生理条件下,效应物活性往往是或基本上是增强催化作用的活性。催化活性和效应物活性,在某些情况下可能位于蛋白质的同一区域内。
对于因子VIIa来说,生物学活性是以通过外在途径介导血凝过程为特征的。因子VIIa活化因子X变成因子Xa,因子Xa又将凝血酶原转变成凝血醇,从而开始形成纤维蛋白凝块。因为因子X的活化是血凝过程的外在的和内在途径所共有的,所以因子VIIa可被用来治疗因子IX、因子VIII或Von Willebrand因子活性严重缺乏的患者。
因子IX的生物学活性是以通过内在途径介导血凝过程为特征的。因子XIa把因子IX活化成因子IXa。然后在因子VIIIa、磷脂和钙离子存在下,因子IXa把因子X活化成因子Xa。因子Xa则将凝血酶原转变成凝血酶,开始形成纤维蛋白凝块。
正象上述的那样,从人血浆中分离因子VII是一个耗费时间,价格昂贵的过程,因为因子VII是一种罕见的蛋白质,每升血中仅有约300μg。而且,很难把凝血酶原、因子IX和因子X分离开,在纯化期间,诸因子易受蛋白水解影响(Kisiel and Mc Mullen,文献同上)。虽然单链的人因子VII已被纯化为均质化(Kisel and Mc Mulen,ibid),但已公开的纯化方法普遍地受到产量低和/或被其它血凝因子污染的限制。
因子VII和IX是在肝中产生并且在其生物合成中需要维生素K。在因子合成中,形成特异的γ羧基谷氨酸残基时必须有维生素K。这些异常的氨基酸残基是由于转译后修饰产生的,它们结合钙离子,并负责蛋白质与磷脂囊的相互作用。还有,因子VII和IX每个都有一个β—羟基天门冬氨酸残基,该残基也是在蛋白质被转译后形成的。然而,对这一氨基酸的作用还不清楚。
给定的事实是,因子VII和因子IX的活性取决于被转译后修饰,包括特异的谷氨酸残基的γ羧基化,并可能也取决于特异的天门冬氨酸残基的羟基化。通过克隆化和在微生物中表达因子VII和因子IX来生产活性产物是不可能的。
因此,本发明提供了一种生产活性蛋白质的方法,该蛋白质是由稳定地转染的哺乳动物细胞产生的。再者,本发明还提供了制备在由因子IX介导的凝血过程中具有生物活性的蛋白质的方法。
正如上面所述的那样,因子VII和因子IX的生物合成需要维生素K,而且,在血浆蛋白凝血酶原因子X、蛋白质C、蛋白质S的生物合成中,也需要维生素K。这些蛋白质的氨基末端部分,都带有γ羧基谷氨酸残基,在氨基酸顺序和生物功能方面,它们都是相同的(图2a)。而且,因子VII、凝血酶原、因子IX、因子X和蛋白C的羧基末端部分决定了它们的特异性丝氨酸蛋白酶功能。
因子VII是一种微量血浆蛋白质,而且据信编码因子VII的mR-NA是罕见的。因此,从足够量的血浆中分离纯化因子VII来满足广泛的顺序分析和鉴定仍然是困难的。Kisiel和Mc Mullen(文献出处同上)已经描述了因子VII在纯化过程中的降解,即使有蛋白酶抑制剂存在。由于这些困难,与血液系统中存在的十分丰富的其它成分相比,对因子VII的特性所知甚少。的确Kisiel和MC Mullen的工作得到因子VII的每一个链的仅10个残基的顺序信息,并且在每一个顺序中,两个残基的鉴定是试验性的。对于牛因子VII的部分氨基酸顺序资料也已公开(Discipio et al.,文献同上)。
推测的罕见因子VII mRNA对缺乏因子VII基因的知识起到一定作用。常规的cDNA克隆技术的成功取决于足够量的用作模板的mRNA。成熟前终止反转录产生了缺少5’端的cDNA克隆,并且这一条件被低水平的mRNA更加不利。对于少量信息的cDNA克隆已经产生了几种对策(Maniatis et al.分子克隆:实验手册,Cold springHarbor Laboratory,1982),但是,由于缺乏氨基酸顺序的知识,就不可能预言DNA的顺序,不可能设计那种适当的寡核苷酸探针,如果说利用这种先进的策略获得编码罕见的蛋白质的基因的一个部分的cDNA克隆是比较容易的话,那么,要得到编码象因子VII这样的蛋白质基因的一个全长的cDNA克隆,仍然是极其困难的。
与因子VII相比,因子IX是比较丰盛的蛋白质,并且已知道了人因子IX基因的cDNA顺序(Kurachi and Davie,Proc.Natl.Acad.sci.USA 79:6461—6464,1982;and Anson et al.,EM BO J.3:1053—1060,1984)。因子IX基因的结构已被鉴定出来,该蛋白质的氨基酸顺序已在已知的核苷酸顺序的基础上被确定。在人和牛的因子IX和顺序分析方面,已经出版了若干蛋白质的顺序资料(Discipio etal.,ibid)。蛋白质的氨基末端部分携带有12个谷氨酸残基,在成熟的蛋白质中,谷氨酸残基被转化成γ—羧基谷氨酸残基(Gla)。参予因子IX活化作用的断裂位点已经被鉴定(Kurachi and Davie,文献同上)。因子IX cDNA克隆的5’末端的顺序编码信号,该肽是见于大量被分泌蛋白质中一个典型肽(Kurachi and Davie,文献同上)。到目前还没有通过重组DNA的方法表达因子IX基因的报导。
由于难以获得因子VII基因的全长cDNA克隆,故采用三个新颖的方法提供包括编码前导肽之区域的编码序列的5’末端。按照第一种方法,将因子VII的部分cDNA克隆连接到编码前导肽和因子IX的5’部分的片段上。这一方法的基础是发现两个分子的氨基末端对相应的蛋白质的钙结合活怀负责,并且发现因子IX的钙结合活性可以代替因子VII的钙结合活性。由于血凝因子的特异性丝氨酸蛋白酶活性存在于分子的羧基末端部位,作为结果而产生的多肽仍然保留真正因子VII的生物活性。第二种方法把部分的cDNA克隆与编码因子VII前导肽和氨基末端区域的DNA顺序联合起来。这里所揭示的因子VII的部分cDNA和氨基酸顺序,能移筛选包含因子VII之5’部分的克隆的基因组DNA库和cDNA库。第三种方法包括将部分cDNA克隆连接到杂交体上,所说杂交体的编码顺序包括cD-NA片段。该片段编码因子IX的前导肽顺序和合成基因片段,该片段编码同感钙结合区或者为因子VII的预测的氨基末端顺序。根据本文揭示的前述尚未公开的氨基酸顺序资料,已经确定了因子VII氨基末端的编码顺序。从因子VII的资料和已公开的其他维生素K依赖性血浆蛋白质的序列资料中得出同感顺序。
与上述筛选包含因子VII基因的5’部分的克隆的方法相一致,本发明人已经成功地获得了适合于表达的全长的正确cDNA。
在产生的cDNA克隆中,称为“λVII 2463”的克隆含有最大的因子VIIcDNA插入段。发现其含有因子VII全部编码顺序。这一克隆包括5’未转译区的35个核苷酸,为60个氨基酸前导肽编码的180个核苷酸,为406个氨基酸成熟蛋白编码的1218个核苷酸,一个终止密码子,3’未转译顺序的1026个核苷酸和20个碱基的poly(A)尾(在2463位置处开始)。这一cDNA的两条链的顺序已全部测出。把它与早期从λVII 2115和λVIII923克隆中分离的两个cDNA插入段相比较揭示,λVII 2463在单一EcoRI片段上含有编码因子VII前导肽和成熟蛋白质顺序的因子VIIcDNA。
被分离出的第二克隆λVII1565,含有一个cDNA插入段,其被鉴定为与λVII 2463克隆的cDNA从第9个核苷酸到638号核苷酸是相同的,但其缺失100—165号核苷酸(图1B)。比较cDNAs与因子VII基因组DNA,缺失的顺序精确地相应于一个类外显子区域。因此,已得到两个因子VIIcDNAs似乎反映了两个可代用的mRNA切接过程。
由λVII 2463编码的前导肽格外长(60个氨基酸),并且有一与因子IX、蛋白质C和凝血酶原相比较十分不同的疏水外形。这一前导肽在位点—60和—26处有两个接点。起点很可能开始于第一接点。因为典型信号肽的疏水区,跟在位置—60的接点,而不是在位置—26的接点之后。有意义的是在λVII 1565中没有严格地相应于基因组克隆之类外显子的顺序,而产生一个疏水模式十分类似于因子IX、蛋白质C、和凝血酶原的38个氨基酸前导肽。
由于当时还不知道上述的前导肽是否可靠,在努力分析5’端顺序时启用另一方法。简要的说,这一方法包括建造和筛选人基因组DNA库,并包括鉴定含有因子VII基因顺序的基因组克隆。将基因组顺序的5’部分按顺序连到cDNA建造全长克隆。
在另外一个建造体中,λVII565的5’因子VII cDNA片段含有所有的前导肽和成熟编码序列的29个氨基酸,将其被连结到λVII2463的cDNA片段上,(含有成熟蛋白质和3’—未被转译顺序的其余部分)。“565—2463”顺序编码作为单一的EcoRI片段的全长因子VII cDNA顺序。
将上述DNA顺序被插入到适当的载体中,接着,载体被用于转染哺乳动物细胞系。在完成本发明中所使用的表达载体要含有一个能够指导外来基因在被转染的哺乳动物细胞中转录的启动子。由于在指导转录中的效率,病毒启动子是优选的。一个特别优选的这种启动子是来自腺病毒2的大晚期启动子。这一表达载体也有一套RNA切接位点,位于启动子的下游和具有血凝生物活性的蛋白质编码基因插入部位的上游。优选的RNA切接位点顺序可以从腺病毒和/或免疫球蛋白基因中得到。表达载体还含有位于插入区下游的多聚腺核苷酸化信号。病毒多聚腺核苷酸化信号是优选的,如来自SV40的早期的或后期的多聚核苷酸化信号,或来自腺病毒5:E1b区的多聚核苷酸化信号。在特别优选的实施方案中,表达载体还包括一个病毒前导肽顺序如腺病毒2三分体前导顺序,其位于启动子和RNA切接位点之间。优选的载体还可能包括增强子顺序,例如SV40增因子。
克隆的DNA顺序可借助于磷酸钙介导的转染被引入培养的哺乳动物细胞中(Wigler等cell 14:725,1978;Corsaro and Pearson,So-matic Cell Genetics 7:605,1981;Graham and Van der Eb,Virology 52:456,1973)。DNA和磷酸钙形成沉淀物并将此沉淀物施用于细胞。部分细胞摄入DNA,并使DNA在细胞中维持数目。少量的细胞(典型的10)稳定地把DNA整合到基因组中。为了鉴定这些稳定的整合体,一般是将可选择表现型的(可选择的标记)基因与有用基因一起引入。优选的可选择的标记包括药物抗性基因,如G—418和氨甲蝶呤抗性基因。可选择标记可以在有用基因被引入到细胞中于不同的或相同的质粒上被引入。一种优选选择标记是对药物G—418有抗性的基因。该基因被携带在质粒pK—neo(Southern and Berg,J.mol.Appl.Genet.1:327—341,1982)上。加入附加DNA,所谓“载体DNA”到混合物中并将该混合物被引入到细胞中也可能是有利的。在细胞摄入了DNA之后,让它们生长一个时期,典型的是1—2天,就开始表达有用基因。在选择以稳定形式表达选择标记的生长细胞时,常采用药物筛选。可以根据有用蛋白质的表达来筛选这些细胞的克隆。
由被转染的细胞产生的因子VII和因子IX可以经吸附到柠檬酸钡上而从细胞培养基除去。用过的培养基与柠檬酸钠和氯化钡混合并收集沉淀物。然后,被沉淀下来的物质可被用来测定适当凝血因子的存在。可通过免疫吸附法进一步纯化之。优选的免疫吸附柱包括高度特异的单克隆抗体。另外可柠檬酸钡沉淀物的纯化或者采用常规的生物化学方法或高效液相层析法来完成。
按Hedner和Kisiel(J.Clin.Invest.71:1836—1841,1983)所描述的方法,或者使用具有象胰蛋白酶那样特异性的其它蛋白酶(Kisiel和Fujikawa,Bebring Inst.Mitt.73:29—42,1983)使用因子XIIa可以成功地把单链的因子VII转变成有活性的双链因子VI-Ia。
总之,本发明提供了生产活性蛋白质的方法,利用被转染的哺乳动物细胞产生的蛋白质具有维生素K依赖性血凝因子的活性。将编码凝血因子之特异性丝氨酸蛋白酶区的基因顺序从cDNA库中分离出来。将编码前导肽和钙结合区的顺序从cDNA或基因组库中分离出来或者从合成的寡核苷酸来建造。然后将顺序联接在表达载体上,以便编码在血凝过程中具有所期望的生物学活性的蛋白质。将所得的载体和含有药物抗性标志的质粒共转染到适当的哺乳动物组织培养细胞中。这样,通过加入适当药物,如G—48,可选择被转染的细胞。然后从细胞生长的培养基中提纯蛋白质产物,并测定其在凝血试验中的生物学活性,其中用抗真正人凝血因子的抗体进行免疫学的交叉反应。
扼要介绍下述实施例,例1揭示因子VII全部cDNA顺序的克隆。例2揭示人因子VII的部分氨基酸顺序,包括在氨基末端的约30个氨基酸的顺序。例3揭示一种人基因组DNA基因库的构建和筛选,并且揭示了含有因子VII基因顺序的基因组克隆的鉴定。例4揭示两种杂交基因片段的构建,每一杂交片段均包括一个cDNA片段和一个合成的双股片段,cDNA片段编码因子IX的前导肽,合成的双股片段编码同感钙结合区。然后将杂交顺序连接到因子VII的部分cDNA克隆上。利用体外诱变,同感序列被改变为与因子VII的蛋白质顺序资料相一致的序列。例5说明编码融合蛋白质的基因顺序的建造,该蛋白质包括因子IX的钙结合区和因子VII的特异性丝氨酸蛋白酶区域。例6说明了所使用的载体pD2的构建,该载体用于在被转染的哺乳动物细胞中表达具有凝血的生物学活性的蛋白质。例5中所述的基因融合就是使用该载体表达的。例7说明利用载体pD2在被转染的哺乳动物细胞系中表达因子IX基因。例8说明了载体pM7135的构建,该载体携有编码初级转译产物的DNA顺序,初级产物包括因子IX和因子VII融合后的前导肽顺序。这一载体可被用来在被转染之哺乳动物细胞系中生产具有因子VII活性的蛋白质。例9说明了使用cDNA顺序表达因子VII,和从基因组cDNA杂交体顺序表达因子VII。
以下的实施例用于说明但不是限制本发明。
实施例
限制性内切酶从Bethesda研究室(BRL)和新英格兰生物实验室得到,并且除非另外说明,限制性内切酶均按制造者的说明使用。在380A型Applied Biosystems DNA合成仪上合成寡核苷酸,利用聚丙烯酰胺凝胶电泳法在变性凝胶上纯化寡核苷酸。按Maniatis描述的方法转化大肠杆菌细胞(Molecular cloning:A Laboratory manual,coldspring Harbor Laboratory,1982)。从BRL研究室得到M13和pUC克隆载体和宿主菌株。按Kisiel和Mc Mullen(文献同上)所述方法从人血浆中制备因子VII。
实施例1部分因子VII cDNA的克隆
A人肝cDNA基因库结构
采用Chandra等人的方法,从人肝mRNA制得一个cDNA基因库(Proc.Natl.Acad.Sci.U.S.A.80:1845—1848,1983)。通过碱性蔗糖梯度法(Monahan etal.,Biochemistry.15:223—233,1976)沉降cDNA制剂,然后合并含有1000以上核苷酸的物种的分馏物。使用反转录酶(Chandra etal.,1983),用SI核酸酶处理,在四种脱氧核苷三磷酸存在的情况下,利用DNA多聚酶I(Klenow片段)充填残留的错开的末端(Maniatis等,Mdecular Cloning,A Labora-tory Manual,Cold spring Harbor Laboratory 1982)将第一股制剂制成双股。用EcoRI甲基化酶处理平端的cDNA,并使用T4 DNA连接酶把cDNA平整末端连接到EcoRI连接子上。连接的DNA制剂用EcoRI彻底酶解,除去多余的连接子顺序。并且,在长度上大于1000个碱基对的双链DNA用中性蔗糖梯度离心法提纯(Manintis等)。将固有的λgtll DNA连结到核苷酸连环体上,用EcoRI完全酶解并用细菌碱性磷酸酶处理除去5’末端磷酸。合并的人肝cDNA与噬菌体DNA连接,体外包装(Maniatis et al.,文献同上)并用于感染大肠杆菌Y1088(Young和Davis,Science,222:778—782,1983).在这个基因库中产生大约14×106初级噬菌体斑,每个斑块由7个2×106个噬斑的基因库组成。其中90%以上的是重组的,含有人DNA的插入体,其根据是在用EcoRI酶解,经琼脂凝胶电泳后的特征以及发现有20个随机克隆缺失β—半乳糖苷酶活性。对噬菌体颗粒形式存在的cDNA基因库,经氯化铯梯度离心法提纯并保存在SM缓冲液中(maniatis等)。
B.筛选因子VII克隆的人肝cDNA库
利用提纯的因子VII按Brown等人的方法制备125I标记的单克隆因子VII抗体,利用该抗体对前面所得到的人肝表达cDNA基因库筛选特异抗原(Young和Davis,文献同上)。筛选6×106个噬菌体斑,鉴定出一个分离体,定名为λVII 2155,其对抗体呈阳性反应。
将噬菌体克隆λVII 2115对其他两种抗因子VII的单克隆抗体和兔抗因子VII多克隆抗体进行试验。分离物λVII 2115对所有这些抗因子VII抗体都呈阳性反应。
从λVII 2115的平皿溶解物中制备出DNA(Maniatis等,pp,65—66,1982)用EcoRI酶解该DNA释放出2139碱基对的插入物,将插入物亚克隆到M13噬菌体载体(Messing,meth.in Enzymology 101:20—77,1983和Norrander等,Gene 26:101—106,1983)中,以进行链终止双脱氧法DNA顺序分析(Sanger等,Proc.Natl.Acad.Sci.U.S.A.74:5463—5476,1977)。这一cDNA插入物在位置214、839和1205处含有Pst I位点(分别称为Pst Ia、Pst Ib,Pst Ic,见图Ia)并在位置611处有Smal位点。M13模板顺序排列如下:
(1)在M13mp18中的全长(2139个碱基)EcoEIa→EcoRIb片段(定名为克隆F7—1);
(2)在M13mp19中的Pst Ia→Eco RIa 214个碱基片段(F7—2);
(3)在M13mp19中的Pst Ia→Pst Ib 625个碱基片段(F7—3)
(4)在M13mp18中的Pst Ib→Pst Ia 625个碱基片段(F7—7)
(5)在M13mp10中的Sma I→Pst Ib 228个碱基片段(F7—8)
(6)在M13mp18中的Pst Ib→Pst Ic 366个碱基片段(F7—9)
(7)在M13mp18中的Pst Ic→Pst Ib 366个碱基片段(F7—10)
(8)在M13mp19中的Pst Ic→Eco RIb 930个碱基片段(F7—11)
(9)在M13mp18中的Eco RIb→Eco RIa全部片段(F7—12)。
(限制性内切酶位置标号参考图Ia)。
数据资料证明两条链上的序列有91%编码区和15%的3’非编码区,资料又给出其余9%编码区和85%编码区的单链顺序信息。
从cDNA顺序预测的氨基酸顺序与Kisiel和Mc Mullen的已知的氨基酸顺序资料(Thrombosis Research 22:375,1981)及下面的氨基酸顺序(例2)的比较揭示出一种异常结构,这种异常结构可以被解释为在靠近位置400的DNA顺序中,缺失三个核苷酸。为了获得另外的顺序资料,用EcoRI酶解λVII 2115,并将因子VII编码片段插入到已被用EcoRI酶解的pUC 13中(Vieira和Messing,Gene 19:259—268,1982;和Messing ibid)。所得到的重组质粒,定名为pUCVII 2115,并在位置328处切口的用Xba I酶解。被酶解的样品对半分开,一半用α32p dCTP和DNA聚合酶I(Klenow断片段)(England,P.T.,J.Mol.Bio.66:209,1972)标记;另一半用γ32P ATP和多核苷酸激酶标记(Chaconas等,Biochem.Biophys.Res.Comm.66:962,1975)。然后,标记的质粒用Pst I重切,并产生113和509碱基对片段。这些片段的每条链都按Maxam与Gilbert的方法编出顺序(Meth.in Enzymology 74:560,1980)。对113碱基对片段全部测出顺序,并测出509碱基对片段中的210个碱基对的顺序。这些顺序揭示三个另外的碱基(一个C,两个G’),使得DNA顺序资料与蛋白质顺序资料相一致,并表明由于涉及到G和C的二级结构,前面的异常结构起因于测序凝胶上的压力对。两链上编码区的至少9%的编码顺序也已被证实。
pUC VII 2115插入物顺序的进一步分析证实,这一克隆片段的一部分编码,已知在因子VII的断裂处的11个氨基酸的顺序(Kisiel和Mc Mullen,Thrombosis Researeh 22:375,1981)。把这一顺序与因子IX(Davie等人,文献同上)和因子X(Leytus et al.,Proc Natl.Acad.Sci.U.S.A,81:3699—3702,1984)相比较,氨基酸的顺序提示,该克隆具有因子VII的顺序,其大约开始于为成熟的因子VII蛋白质的第36个氨基酸编码的核苷酸处,并且继续通过约1000个编码和1100个非编码核苷酸及poly A顺序。此外,还发现该克隆在3’编码部分有移码突变。
为了获得正确的3’编码区,7个igetII cDNA库的14×106个克隆全都与λVII 2115(Maniatis et al.,pp.109—112,1092)切口转译的cDNA进行斑块杂交进行筛选(Benton and David Science 196:180—181,1977)。
然后经用双脱氧法测定其中已亚克隆3cDNA插入片段的pUC质粒的顺序来筛选出七个阳性分离物(Wallace et al,Gene 16:21,1981),用EcoRI酶解igtll克隆,将因子VII的片段插入到已被EcoRI断裂的pUC13。除了一个例外,其余全部在相应于λVII 2115中插入片段之碱基212的位置上开始;唯一的例外是仅含3’非编码顺序。一个在碱基212处开始的克隆被挑选来进行分析并定名为pUC VII1923。
由于对pUC VII 2115的分析表明在位置657和815之间存在有移码突变,所以pUC VII 1923是第一个利用Maxam—Gilbert顺序仪在这一区域被分析的。用NarI(位置779,见图1a)酶解质粒pUC VII1923。使用DNA多聚酶I(Klenaw片段)使切断的DNA被α32P dCTP标记,然后用AVaI(在SmaI断裂处相同的位置切断,图1)和FagI(在1059的位点)酶解,产生一个NarI—AVaI 166 bp的片段和一个200bp NarI—FagI断片段。其中的每一个都被测出顺序。还发现,在pUCVII 2115中697位置上缺失的A.C.在,并在798位上缺失的另一个C。
用双脱氧法测定pUC VII 1923之整个插入片段的M13亚克隆的顺序,已经表明pUC VII 1923编码区域其余顺序是正确的。用Lac引物ZC87(表1)测定位置212(图Ia)到512的顺序;用引物Zc18(CTCTGCCTGCCGAAC)测定715—1140的顺序并用引物ZC17(AT-GAGAAGCGCACGAAG)测定720—350的顺序。因为pUC VII 2115插入片段从位置13到695是正确的(位置1—12包括一个人工连接子),并且pUC VII 1923从位置212到末端也是正确的,所以二者连结在一起产生一个从位置13到末端都是正确的分子。这一连接所利用的方便点是在位置328处的Xbal。图Ia显示的是切接正确的分子的顺序。
由于全长的因子VII克隆是很难经cDNA克隆得到,因此采用的三种策略提供缺失编码顺序和必要的上游加工及信号顺序。第一种策略应是从人基因组DNA库中或通过另外筛选cDNA库得到所必要的顺序。第二种途径是合成必需的5’编码顺序,它是根据因子VII的氨基酸顺序资料(例2)和已公开的编码维生素K依赖性凝血因子的基因顺序(Kurachi and Davie,文献同上;and Davie etal文献同上.),并将合成的顺序连结到因子IX的部分前原顺序上。第三个策略依赖于因子VII和因子IX氨基末端区域的功能同源性。建造包括因子IX之前导肽和氨基末端部分的编码区域的顺序。然后将该顺序以适当取向与部分的因子VII cDNA融合。
为了得到包括因子VII的全部DNA顺序的DNA顺序,试图分离其余的5’DNA顺序。实现这一任务是利用5’末端0.3 Kb EcoRI—XbaI片段该片段来自λVII 2115的cDNA插入段,以筛选含2×106个噬菌体的cDNA库。采用Gubler与Hoffman的方法,利用来自Hep-G2细胞的poly(A)mRNA(Gene 25:263—269,1983)构建该库。RNA被反转录,产生第一股cDNA,接着利用DNA多聚酶I和RNA酶H合成第二股DNA。在EcoRI甲基化,并通过琼脂糖(6B)柱后,用T4DNA多聚酶将DNA末端修成平头。加入EcoRI连接子,用EcoRI酶解法和在琼脂糖CL2B上层析除去多余的连接子。收集外水体积中的DNA并连接到已用EcoRI酶解并用小牛肠磷酸酶处理的λgtll上。包装DNA并感染到大肠杆菌E.Coli Y1088中。确定几个呈阳性的克隆,其后或者利用通用引物M13,或者利用因子VII特异性寡核苷酸,把EcoR I片段亚克隆到M13噬菌体载体中以进行双脱氧测序。
从此出发,得到了因子VII三种新的cDNA克隆,它们的顺序已全部测出。其中最大的cDNA来自克隆λVII 2463,具有全套的编码因子VII的顺序。该克隆包括5’末翻译区的35个核苷酸、为60个氨基酸前导顺序编码的180个核苷酸、为406个氨基酸成熟蛋白质编码的1218个核苷酸、停止密码子、3’末翻译顺序的1026个核苷酸和20个碱基的poly(A)尾部(在2463位开始)。现已测定了该cDNA两条链上全部DNA的顺序。与早期从λVII 2115和λVII1923上分离的两种cDNA相比较,揭示出克隆λVII 2463含有额外321个核苷酸,其位于λVII 2115插入片段的上游,还有519个额外核苷酸位于λVII 1923插入片段的上游。VII2463的因子VII顺序和前述两个cDNA重叠的部分是相一致的,例外的是λVII2463的cDNA在位置1005和1106上没有单个碱基缺失,而在λVII2115的cDNA上则测到有碱基缺失。因此,在单个EcoRI片段上,λVII 246含有编码因子VII前导顺序和成熟蛋白顺序的因子VII cDNA。
分离另一个cDNA,即λVII 1565,并发现它含有5’末端因子VII顺序,但是在编码顺序内被截短了。它的5’末端标在第9个核苷酸上(图1b)。
与全长的λVII 2463相比,发现λVII 565缺少一个相对于前导顺序内类外显子区的顺序。λVII 565缺少碱基100—165(图1b)。通过与基因组顺序资料比较(如例3所述),缺失的顺序准确地对应于一个类外显子区。这样,λVII565的结构可能是前导顺序中选择性连接的结果。
由λVII2463编码的前导顺序格外长(60个氨基酸),并有一个与因子IX、蛋白质C和凝血酶元十分不同的疏水图形。该前导顺序含有两个接点,分别位于—60和—26处。起始端很可能在第一个接点处开始,因为疏水区,典型的信号肽,跟在位置—60后的接点,而不是跟在—26后的接点处。有意义的是,在λVII565中缺失的顺序,它严格地对应于基因组克隆中的类外显子区,产生了38个氨基酸的前导顺序,具有十分类似于上述蛋白质的疏水模式。
实施例2:人因子VII的氨基酸顺序
为了确定假定的cDNA克隆,即因子VII cDNA的基本顺序,提供合成特异寡核苷酸探针的信息,以筛选含有5’顺序之克隆的cD-NA和基因组文库,并构建编码因子VII的氨基末端部分的合成片段,人们期望阐明人因子VII的氨基酸顺序。尽管Kisiel和Mc Mullcn提供了有限的氨基酸顺序,但更多的信息是需要的。
用Crestifield等人的方法(J.Biol.Chem.238:622—1963)还原和羧甲基化提纯的人因子VIIa(Kisiel and Mc Mullen,文献同上)。羧甲基化因子VIIa的轻重多肽链通过高效液相层析(HPLC)被分离。层析在Pak C18反相柱上(Varian Corp.)进行,在蒸馏水(A)和含0.1%TFA的乙腈(B)溶液中产生0.1%TFA的梯度,在5分钟内0—40%B液,25分钟内40—80%B液和5分钟内80%~100%的B液。通过自动的埃德曼降解法利用气相蛋白质顺序仪(Ap-plied Biosystems,Inc)分析每条肽链的大约300 pmol样品。在轻、重肽链的氨基末端上分别鉴定了29和18个氨基残基。因子VIIa重链的末端顺序和cDNA克隆pUC VII 2115(图2b)所编码的顺序是一致的。图2a和图2b中的氨基酸残基用单字母码标记如下:A.丙氨酸;      C.半胱氨酸;D.天冬氨酸;    E.谷氨酸;F.苯丙氨酸;    G.甘氨酸;H.组氨酸;      I.异亮氨酸;K.赖氨酸;      L.亮氨酸;M.甲硫氨酸;    N.天冬酰胺P.脯氨酸;      Q.谷氨酰胺;R.精氨酸        S.丝氨酸T.苏氨酸;      V.缬氨酸;W.色氨酸;      Y.酪氨酸;
X代表未知残基,并且*代表Gla残基(γ),该残基是根据与其他已知的凝血因子结构的同源性并且在那些位置上缺少任何其他苯异硫脲氨基酸而被指定的。放入空缺(—)是为了在顺序间提供一个最好的校准排列。此处,信息表明在位置5和9处的氨基酸相应的是赖氨酸而不是苏氨酸和精氨酸,这如以前报告一样(Kisiel andMc Mullen,文献同上)。对因子VIIa轻链(来源于因子VII氨基末端区)的顺序进行分析,表明截短了与由pUCVII 2115的5’端编码的结构交迭所需的约6个残基。
为了得到附加顺序资料,将2nMol羧甲基化的轻链用牛胰凝乳蛋白酶(1∶100重量比,酶∶底物)在0.1M NH4HCO3 PH7.8)中37℃酶解12小时。产生的片段用高效液相层析法在Micro Pak C18反相柱上使用上述溶液纯化在5分钟内0~30%.B液,25分钟内30~60%B液和10分钟内60~80%的B液的梯度。用紫外光吸收法在220和280nm处鉴定肽。冷冻干燥的肽(每种约10-9克分子)用Edman降解法进行分析。结果(图2b)证实了pUCVII2115克隆的相应区域中cDNA的大部分顺序。总起来说,因子VIIa轻肽链的152个残基中的113个(占75%)被鉴定。该顺序与已知的cDNA结构所编码的顺序是相同的。间接的证据指出ASn145是碳水化合物的附着位点。
实施例3基因组因子VII顺序的克隆
作为一种提供在cDNA中缺少的5’末端顺序的方法,含有人胎儿肝DNA的λ噬菌体库(Lawn et al.,Gell 15:1157—1174)可以用切口转译的因子VII cDNA进行筛选。将一部分基因组因库铺敷在培养大肠杆菌L E392(ATCC 33572)上以产生总共7.2×106个噬斑(Maniatis et al.,文献同上,pp 320—321)。将噬菌斑从平皿中吸收到硝化纤维素上并且按照Benton和Davis的方法(Science 196:180,1977)与32P标记的cDNA杂交。得到八个克隆并纯化噬斑。
利用DNA片段(EcoRIa—XbaI,图1)(来自因子VII的cDNA(λVII2115)的5’末端)和标准技术(Maniatis et al,文献同上)鉴定那些含有5’末端顺序的基因组克隆。这些噬菌体被定名为7ml,7m2和7m3。从这些重组的噬菌制备DNA,并且得到初级限制性核酸内切酶图谱。噬菌体7ml有最强的杂交信号,用来产生更广泛的限制性内切酶图,并且也用来以Southern吸印法将EcoRI—XbaI的cDNA顺序在图上定位。
为了判定噬菌7ml是否含有编码因子VII蛋白质之氨基末端氨基酸的DNA顺序,将噬菌体DNA限制性酶解消化产物的Southern印迹与低聚核苷酸混合物杂交,低聚核苷酸的顺序是从因子VII氨基末端氨基酸顺序推演出的。寡核苷酸ZC188,ZC360和ZC401(表1)是用T多聚核苷酸激酶进行放射性标记的,并与噬菌体DNA印迹在低于它们的Tm摄氏几度的温度下杂交(Wallace,R.B.,et al,Nuc.Acids Res.6:3543—3557,1979)。该分析结果表明7ml的3.7KbSstI片段含有与这些寡核苷酸杂交的顺序。将该SstI片段亚克隆到M13中以进行DNA顺序分析。以ZC360作为测序引物所得到的结果鉴定了大约60个核苷酸长度的区域,该核苷酸顺序与氨基末端蛋白质顺序资料相符。
                    表1
寡核苷酸     顺序
 ZC87ZC188ZC212ZC213ZC217ZC218ZC235ZC249ZC275ZC286ZC287ZC288ZC289ZC333ZC336ZC360ZC401     TCC CAG TCA CGA CGTT    G          AGCC GGG CTCA  CTC CTC CA   GAA GGC GTTGGC    A          GGAC CTG CAG GAT CCA TGC AGC GCG TGA ACA TGATCA TGGGAG GCC TGG TGA TTC TGC CAT GAT CAT GTT CACGCG CTGATG AGA AGC GCA CGA AGCrC TGC CTG CCG AACGAT CCA TGC AGC GAGA ACA GCT TTG TTC TTT CAGCC CCC ATT CTG GCACCA AAG AGG GCC AAC GCC TTC CTG GAG GAG AGACCT GGG AGC CTG GAG AGA GAG TGT ATT GAG GAAT ACA CTC TCT CTC CAG GCT CCC AGG TCT CTCCTC CAG GAA GGC GTT GGC CCT CTT TGGAGC AGT GTA GCT TCG AGG AGA ACA GAG AGG TTTTCG AGG CCA GCG ACGAAT TCG TCG CTG GCC TCG AAA ACC TCT CTG TTCTCC TCG AAG CTA CAC TGC TCCCAG CTT CGT CCT GTC GCT GGC CTCCCT CTT TGG GCC TGG TGAC   C   C   C   GCA  TC  TC  TC  TT  CAT   T   T   T   ACGT AGC GTT CAG GCC CTC GAA GAT CTC GCG GGCCTC CTC GAA GCT ACA C
因为已知基因组克隆7ml在外显子2上游含有7kb序列,那么可以预期该克隆编码因子VII 5’未转译顺序和直到氨基酸位置—17的前导顺序。为了证实外显子1被编码在基因组克隆7ml内,使用来自克隆λVII2463和λVII565的前导顺序信息设计寡核苷酸ZC528和ZC529(如下所示)。ZC528
5’TCA ACA GGC AGG GGC AGC ACT GCA GAG ATT 3’ZC529
5’TTC CAC GGC ATG TCC CGT GTT TCT CCT CCI3’
这些被用来探测7ml DNA,并且发现亚克隆7 SD与上面的两个寡核苷酸杂交。外显子1被确认由两个外显子顺序组成:外显子Ia和Ib。外显子Ia与ZC528(相对应于λVII2463的1—30核苷酸)杂交,外显子Ib与ZC28(相对于λVII2463的119—148核苷酸)杂交。在外显子Ia和Ib两者侧冀测出有内含子:Ia外显子3’末端有一个同感切接供体顺序,而Ib有同感切接受体(Ib的上游)或供体(Ib的下游)顺序位于每个末端的两侧。外显子Ia在基因组克隆7ml中的位置已被精确地用图表示出来。而1b的位置也已经用图表示在一定的区域内。1b顺序存在于λVII2463中,而λVII565似乎是从位于1a和2之间剪接的RNA衍生来的。
制备载体pUC和M13中的各种7ml的亚克隆以有利于测定其余外显子的顺序。根据cDNA顺序设计的适宜的寡核苷酸相对应于外显子1至7,并且被用来测定除最后一个外显子以外的其它外显子的顺序。基因组顺序严格与通过这些区域的cDNA顺序相对应。
另外,对于外显子1—7来说,内含子/外显子的范围已经确定,目前大多数已用图精确地表示的克隆7ml中。在因子VII基因内,内含子的大小和位置列入表2中。
表2
因子VII基因中内含子/外显子连结点内含子    氨基酸位置    内含子大小(kb)A          -39           >0.2B          -17           >1.0C          37/38         1.92D          46            0.068E          84            ~2F          131           ~1G          167/168       0.56H          209           1.31
已经知道噬菌体7ml缺少因子VII的3’末端,其包括外显子8。为了获得这些顺序,在λL47.1(由人皮肤原始成纤维细胞诱导的)中,富集12—13kb的BamH1文库(Lenen and Brammer,Gene 10:249,1980;Maniatis,etal,ibid),是从人皮肤初级成纤维细胞中衍生物的,对其用两个切口转译的因子VIIcDNA PstI片段进行探查(相当于外显子7中的顺序和3’末转译的顺序)。用这两种探针来测定一个称为7DC1的克隆。以后的限制性核酸内切酶和Sonthern吸印分析确定克隆7DC1与克隆7ml相重叠,其并延长到7ml末端外约3kb,并包含有外显子8。来自含有外显子8的7DC1 DNA 的3.9kb(XbaI—BamHI)片段被亚克隆到M13中,并利用与其5’和3’末端互补的寡核苷酸进行顺序分析。全部外显子顺序都存在于该克隆中。实施例4合成的编码顺序的因子IX和因子VII杂交基因
A.因子IX前导顺序—合成因子VII 5’编码序列的杂交体的建造
根据因子VII的氨基末端氨基酸顺序,其它的维生素K依赖性凝血因子的氨基酸顺序,以及已知的其它的维生素K依赖性凝血因子基因的核苷酸顺序(Kurachi and Davie,ibid;Anson etal.,EMBO J.3:1053—1060,1984,and Davie etal,ibid),利用在上述基础上预测的核苷酸顺序,得到因子VII之5’编码顺序的第二种方法就是合成适当的双股片段。为了给分泌成熟的因子VII的类似物提供必要的分泌和加工信号,将该合成的片段(同感顺序)连接到由因子IXcDNA克隆衍生的两条前导顺序中的一条上。图3给出该策略的大致轮廓。
编码人因子IX的cDNA得自人肝m RNA所产生的基因库(Ku-rachi and Davie,文献同上)。因子IX顺序是利用Pst1酶解,从pBR322载体中分离的,并且因子IX顺序又被插入到pUC13的Pst1位点中。该质粒定名为FIX—pUC13。为了除去富G区(富G区是作为cDNA克隆化的结果,存在于因子IX插入片段的5’端),合成的寡核苷酸连接物用以代替被克隆片段的5’端。寡核苷酸ZC212和ZC213(表1)被合成并退火以产生20碱基对的交迭,填充片段末端并用适当的限制性内切酶切制,并将所得的片段连接到因子IX顺序上。
为了建造连接物,把100pM的ZC212和ZC213冷冻干燥,再悬浮于10μl10X蛋白激酶/连接酶缓冲液(600mM Tris,PH8.0,100mMMgCl2,100mM DTT)中,加86μl水。退火反应在65℃下,进行10分钟,将混合物慢慢凉到室温,再放到冰上。向该混合物中再加入4μl2.5mM dNTP液和1μl(8单位)T4 DNA多聚酶。让反应在45℃下进行45分钟。然后加入10μl 5M NH4OAC,用苯酚/CHCl3提取DNA一次,用CHCl3提取两次,再用乙醇沉淀DNA。DNA被离心,再悬浮于100μl温和的盐缓冲液中(Maniatis etal,文献同上.p.100),用9单位PstI和8单位CfoI酶解,并且照上述方法提取之。
然后建造经修饰的因子IX顺序合用下列试剂:0.16pM合成的Pst 1—CfoI连接物片段,0.14pM的1.4kb Cfoi—Bam HI因子IX片段(来自FIX—pUC13),0.14pM的2.7kb Bam HI—PstI pUC13载体片段加于20μl反应混合物(60mM Tris—HCl PH 7.5,10mM MgCl2,10mM DTT,和0.9单位T4连接酶)中。室温下温育3小时,并用于转化感受态大肠杆菌JM83(Messing,Recombinant DNA TechnicalBulletin,NI H,Publication No.79—99,2,No.2,43—48,1979)。细胞与50μl2%X—gal(5—溴—4—氯—3—吲哚基—β—半乳糖苷)铺敷在液体培养基(含有40g/ml氨苄青霉素)上37℃温育过夜。白色菌落被挑到另一含有氨苄青霉素的培养皿中,并在37℃下生长过夜。除了不在氯霉素平皿上过夜温育以外,该菌落被吸印在What-man 540滤纸上并制备按照Wallace等人的方法(Gene 16:21,1981)进行杂交的滤纸。然后将滤纸放在溶液(0.9M NaCl,0.09M Tris—HCl pH7.5,6mM EDTA,0.5%Nonidet p—40,150μg/mlE.Coli tRNA)中44℃培育两小时。探测该纸用的是32P标记的ZC235(表1),即对改变5’末端顺序特异的14—me。每张滤纸有1—2×106cpm的杂交在预杂交缓冲液中44℃保温过夜。滤纸用6xssc,0.1%SDS,在4℃下洗三次,用2xssc,0.1%SDS,在44℃下洗三次,并对X—光胶片曝光。得到两株阳性克隆,其中之一定名为FIX(—G)→pUC13。
为了证实F IX(—G)→pUC13构造体之因子IX部分的被改变区域的顺序,应用按Chaconas等人的方法多核苷酸激酶和γ32p—ATP标记的引物末端,按Wallace等人的方法,使用BRL反向引物,直接对pUC质粒进行双脱氧测序。其顺序与预测的一致。
所得到的重组质粒含有三个HaeIII断裂位点,第一个位于因子IX顺序的39位(根据A nson等人公开的顺序编号,以第一个ATG处开始),第二个在位置130处。第三个位于pUC13的多聚连接子内。位点130是早期前因子IX分子的Lys—Arg加工位点之密码子上游的单碱基对。在最后的因子IX—因子VII杂交建造体中,因子IX的前导顺序终止在位置39或130处,将其连接到合成的双链片段上,该双链片段包括预测的同感顺序和因子IX前导顺序的最后三个密码子。
通过连结寡核苷酸ZC286—ZC289(表1)产生合成的同感片段,以形成一个双股片段。各取100pM寡核苷酸冷冻干燥,重悬浮在20μl 1X激酶缓冲液中,4℃下培育过夜,然后在65℃加热10分钟。利用激酶处理的寡核苷酸制得两种合并的样品,样品1含有ZC286+ZC287;样品2含有ZC288+ZC289。这一对合并的样品在65℃下退火10分钟,然后冷却到室温,两个小时后再置于冰上30分钟。
经修饰的因子IX段片作为Hind III—EcoRI片段从FIX(—G)→pUC13中除去。取约20μg质粒在含有4μg RNA酶A的100μlHind III缓冲液中各用30单位Hind III和EcoRI经37℃过夜消化。在65℃加热10分钟终止反应,载体和因子IX片段在1%琼脂糖凝胶上电泳和电洗脱提纯。用乙醇沉淀因子IX片段,重悬浮在含有400ng/μlRNA酶A的缓冲液中,用8单位的Hae III酶解(37℃过夜)。通过1.5%琼脂糖凝胶电泳和后面的电洗脱,将HindIII—Hae III 39碱基对因子IX片段从酶解液中分离出来。欲得到Hind III—Hae III 130碱基对因子IX片段,用EcoRI和HindIII酶解FIX—pUCI3,按照上述方法分离因子IX片段。约3μg的这种Hind III—EcoRI片段,用6单位的Hae III酶解(37℃)。并将等分样品以5分钟时间间隔,在30分钟内被转移到含有50mM EDTA的溶液中。合并等分样品并借助于5%丙烯酰胺凝胶电泳和随后的电洗脱,Hin纯化Hind III—HaeIII 130碱基对片段。
通过四部分连接,即寡核苷酸样品1与样品2,因子IX Hind III—Hae III(39个或130个碱基对)和pUC13Hind III—EcoRI,制备最终的因子IX—同感顺序杂交体。用所得到的质粒转化大肠杆菌HB101(ATCC 33694)。使用EcoRI和Hind III酶解DNA以筛选菌落。由联结到合成的同感顺序上的39碱基对因子IX顺序组成的顺序在下文中被称作mini—FIX—FVII。含有该建造体的质粒被定名为pM7200(—C)。由联结到合成的同感顺序上的130碱基对因子IX的顺序组成的顺序被称做Maxi—FIX—FVII。含有该建造体的质粒被定名为pM7100(—C)。同感顺序编码的多肽包括的氨基酸顺序是:Ala—Asn—Ala—Phe—Leu—Gla—Arg—Pro—Gly—Ser—Leu—Gla—Arg—Gla—Cys—Lys—Gla—Gln—Cys—Ser—Phe—Gla—Gla—Ala—Arg—Gla—Ile—Phe—Gla—Gly—Leu—Asn—Arg—Thr—Lys—Leu。
B.因子IX—同感顺序的杂交片段与因子VII cDNA克隆的连接
因子VII—同感顺序的杂交片段(或mini,或maxi)以三部分连接被连接到因子VII cDNA的5’部分和载体pUC13上(图4和5)。利用10单位XbaI和10单位Hind III,在含有RNA酶A(400ng/μl)的Hind III缓冲液中,酶解6μg的pUC12产生载体片段。
mini—FIX—FVII片段的产生方法如上所述,即用10单位HindIII和10单位EcoR I酶解2μg pM7200(—C)。同样,Maxi—FIX—FVII片段可以从pM7100(—C)制得。因子VII cDNA的5’部分从质粒pUCG 750制得,该质粒包含pUC VII 2115的EcoRI—XbaI 5’片段,此片段借助于XbaI和EcoRI的酶解作用被亚克隆到pUC13中。在37℃下酶解两小时,产物经1.5%琼脂糖凝胶电泳而被分离出来。电泳洗脱所需片段,苯酚/CHCl3和CHCl3提取,乙醇沉淀。然后将三个片段即pUC13/XbaI—Hind III,因子IX—因子VII(mini或maXi)/Hind III—EcoR I以及5’因子VII/EcoRI—XabI,在20μl含有2μl20mM ATP和0.9单位T4 DNA连接酶的缓冲液中4℃培育过夜而连接之。使用Hind III和XbaI,通过限制性内切酶分析筛选菌落。含有mini—和maxi—FIX—FVII顺序的重组质粒11被分别定名为pM7200和pM7100(图4)。
由于在制备因子VIIcDNA过程中加入了连接子,所以为了产生正确的编码顺序框架,不得不在融合顺序中做些修饰。mini和maxi融合体在与因子IX同感顺序的杂交体和因子VII的cDNA之间的连结区都有—个EcoR I位点,这是一个cDNA克隆过程中的人为产物。而且,mini融合体需要外加一个C来改变Hae III位点的顺序即从5’AGGCCA3’变为5’AGGCCCA3’,并且确定了该顺序下游的正确阅读框架。这些校正是由寡核苷酸引导的位点特异性诱变完成的,基本与Zoller和Smith描述双引物方法一样(Manual for AdvancedTechniques in Molecular Cloning Course,Cold Spring Harbor Laboratory,1983).mini—FIX—FVII片段通过用Hind III和XbaI酶解而从pM7200中除去,然后插入到M13mp 19中。采用同样的方法,将maix—FIX—FVII从pM7100中纯化出来并亚克隆化。诱变引物ZC333和ZC336(表1)分别被用于除去EcoR I位点和碱基插入。在每一种场合下,通用的引物ZC87被用作第二引物。将40pM的引物,60pMATP与1单位T4 DNA激酶混合,60℃过夜,使诱变引磷酸化。为了从maxi—FIX—FVII杂交体中除去EcoRI 1μg的M13单链模板与各20pM的ZC333和ZC87以总10μl的体积合用。引物在65℃下保温10分钟,冷却到室温5分钟,然后放置在冰上5分钟而被退火到模板上。使用DNA多聚酶I延伸引物。为了除去EcoRI位点和校正mini—FIX—FVII杂交体中的阅读框架,将1μg适当的M13单链模板与各20pM的ZC333、ZC336和ZC87相结合使用。退火和引物延伸反应均如上述方法进行。
在60C下用32P标记的引物(ZC333或ZC336)筛选突起的噬斑,并借助双脱氧测序法确定其顺序。所产生的含有maxi和mini—FIX—FVII顺序的建造体分别被定名为pM7111和pM7211。
同感顺序包含有几个区域,其顺序与从因子VII(图2)得到的蛋白质顺序资料不一致。为了产生编码与因子VII氨基末端蛋白有更大的同源性之多肽的顺序,通过寡核苷酸指导的位点特异性诱变来更改同感顺序。其改变是在位置8处插入Leu,位置18处以Ile取代Lys(数字是指在位置8处插入后的氨基酸位置),在26位以Asn取代Ala,在位置32—34处以顺序Ala—Ser—Asp取代顺序Gly—Leu—Ash(根据可能的氨基酸顺序资料)。
位置8和18的顺序改变是以pM7111(有意义链)作模板。将引物ZC352(5’CCC AGG TCT CAG CTC CTC CAG3’)和ZC353(5’CTG CTC CTC CTT ACA CTC TCT 3’)退火到模板上并延伸之(方法同前)。所获的噬菌体克隆被定名为pM7114。pM7114中插入物的顺序通过双脱氧测序来证实。
同样,在位置26—34处的改变,是利用诱变引物ZC366(5’CAGCTT CGT CCT GTT CAG GCC CTC GAA GAT CTC GCG GGC CTCCTC GAA3’)和作为第二引物的ZC87(表1)在pM7114模板(感觉链)上造成的。所产生的建造体定名为pM7115。M13载体上全部550bp的插入物顺序通过双脱氧测序确定并且发现是正确的。
实施例5:因子IX和因子VII cDNA隔合体的构建
按照Kuraehi和Davie(ibid)所述方法利用从人肝cDNA库得来的因子1C cDNA和例1描述的因子VIIcDNA顺序,已经制备了因子IX—因子VIIcDNA的融合体。
选择的杂交蛋白融合点位于因子IX的+38位氨基酸(苏氨酸)和被因子VIIcDNA顺序编码的第一个赖氨酸之间。这种蛋白质将由因子IX的cDNA顺序前252bp和除了前2个密码子以外所有的pUCVII2115因子VIIcDNA顺序组成的顺序编码。为了构建这一杂交顺序,首先利用常规的限制性内切酶位点使因子IX顺序融合到pUCVII2115上。这一融合的结果是得到质粒FIX/VII/12(如下所述),该质粒含有因子IXcDNA的前310bp,和与之相连结的因子VII的全部cDNA顺序。为了得到满意的杂交蛋白的准确连结,用寡核苷酸定向诱变法除去插入的碱基对。
因子IXcDNA顺序连接到因子VIIcDNA顺序上是通过将FIX(—G)→pUC13(例4)的0.3Kb Hind III—AhaIII片段连接到来自pUCVII2115的4.7kb SmaI—HindIII片段上实现的(图5)。利用40单位的Hind III,在40μl温和盐缓冲液中37℃保温4小时,酶解3μg的FIX(G)→pUC13来制备Hind III—Aha III片段。然后将缓冲液体积增加到100μl并加入5单位AhaIII,37℃继续温育18小时。利用1%琼脂糖电泳分离DNA片段,并按上述方法分离0.3kb带(方法同前)。pUC VII2115的部分Smal消化是通过将3μg pUCVII2115,于25℃与48单位Smal在反应体积30μl中保温1小时而完成的。在65C下保温15分钟,停止反应。然后用等体积的苯酚提取,用乙醇沉淀。
离心10分钟收集沉淀物,用70%乙醇冲洗,并在空气中凉干。将DNA再溶于30μl温和盐缓冲液中,用30单位Hind III37℃消化3小时。DNA经0.7%琼脂糖电泳,并按上述方法分离0.47kb的HindIII—Smal片段。使等摩尔量的两种片段(0.048pM)在10μl反应液中14C连接3.5小时,该反应液含有50mM Tris—HCl pH7.5,10mMMgCl2,1mM DTT,1mMATP和3单位T4 DNA连接酶,然后用于转化感受态大肠杆菌RRI(ATCC31343)。使细胞生长在有氨苄青霉素的培养皿中,经用限制性内切酶消化,筛选出存在有所期望的质粒建造12个集落。来自菌落12(FIX/VII/12)的DNA给出预期的限制性内切酶消化模式并被用于下一步杂交基因的构建。
基于单链DNA模板进行寡核苷酸定向诱变。因此,这对于把融合的因子IX/因子VII顺序克隆到M13mp19中是必要的。为了得到方便的小的DNA片段,从FIX/VII/12中分离出640bp Hind III—XbaI片段。该片段含有310bp因子IXcDNA5’末端和330bp因子VII顺序。载体的制备方法是用20单位Hind III和20单位Xbal在40μl温和缓冲液中,消化1μg M13mp19 RF DNA(37℃,18小时)。DNA经1.2%琼脂糖凝胶电泳,并从凝胶中可以分离出6.4kb线形片段(方法同上)。5μgFIX/VII/12 DNA在40μl温和缓冲液中,用10单位XbaI消化(37℃,18小时)。加入20单位Hind III并在37℃下继续培养7小时。在1.2%琼脂糖凝胶中电泳分离出所得到的片段,并按上述方法洗脱640bp片段。将10ng线形化的M13mp19和1ng 640bp片段于14℃连接1小时。然后用于转化感受态大肠杆菌JM101(Messing,Meth,in Enzymology,ibid)。细胞平皿培养在X—gal和IPTG上(Messing,Meth,in Enzymology,ibid),挑出8个鲜兰色噬斑,并用来2.5ml大肠杆菌JM103A600=0.3的培养物。37℃培养18小时之后,在室温下离心收获细胞并将含有M13噬菌体的上清液20μl与20μg/L溴乙锭混合。通过与已知标准相比,8个克隆中的每一个都有一约正常大小的插入片段。利用Messing描述的方法,从1.5ml上清液中制备单链DNA。然后,利用双脱氧法,测出这一建造体的顺序,其中利用寡核苷酸ZC87作为引物,证实了插入片段的连接是正确的。一个正确的克隆(#4)在寡核苷酸定向诱变中作为模板去产生功能性因子IX—因子VII融合体。
寡核苷酸ZC249(20met)由期望的10bp因子IX顺序和10bp因子VII(表1)顺序的组成,被用作诱变引物。寡核苷酸ZC87,其与M13mp19顺序杂交,被用作第二引物。
所使用的诱变步骤是按Zoller和Smith的方法加以改动的。为了退火反应,20pM ZC249在20μl Tris—HCl 60mM,Ph8.0,10mMMgCl2,1mM DTT,1mMATP,1单位T4激活酶中4C保温过夜而被磷酸化。在65℃下保温15分钟使反应停止,并冰冻干燥样品。将1pM单股克隆#4模板和20pM的ZC87加入10μl退火缓冲液(200mMTris—HCl,pH7.5,100mM MgCl2,500mM NaCl,10mMDTT)中。样品被加热到65℃温育10分钟,室温下温育5分钟,然后放在冰上。将新制备的下列溶液10微升加入样品中:20mM Tris—HCl pH7.5,10mM MgCl2,10mMDTT,1mM dNTPs,1mMATP,0.15单位/微升T4DNA连接酶,0.25单位/μl大肠杆菌多聚酶I(Klenow片段)。然后于15℃下温育3小时,并将样品用于转化感受态大肠杆菌JM101(Messing,Meth,in Enzymology)。
将产生的噬斑被挑选到硝化纤维素上并与32P标记的ZC249进行杂交以筛选之。将干的BA85滤纸(Schliecher & Schuell,0.45μm)放在琼脂平板上,使噬菌体吸收5分钟。移开滤纸并凉干5分钟,放在Whatman 3mm纸上,在0.5M NaOH,1.5M NaCl中饱和5分钟,空气干燥5分钟,放在Whatman纸上,在1M Tris—HCl pH8.0 1.5M NaCl中饱和5分钟,并空气干燥3分钟。重复Tris—HCl饱和这—步,并将滤纸放在100ml 6×SSC中室温洗2分钟。空气干燥之后,滤纸放在80℃下烘烤2小时,并在下述预杂交缓冲液中47℃保温过夜(ZC249的Tm为—4℃):6.7×SSC pH6.5,2mg/ml大肠杆菌tRNA,0.2%(W/V)BSA,0.2%Ficoll,0.2%聚乙烯吡咯烷酮。
在预杂交步骤之后,将滤纸与2.5×106cpm/滤纸的被标记ZC249滤纸在同样的SSC杂交缓冲液中47℃保温过夜。杂交之后,滤纸用6×SSC室温下液洗三次,每次5分钟到10分钟。然后对X—光胶片曝光。重新铺敷预想的阳性噬斑然后按上述方法筛选。挑出单个噬斑,制备单股DNA,并使用ZC275作引物测序。寡核苷酸ZC275相当于同一链上ZC249之5’方向的顺序40bp(表1)。
四个阳性噬斑被鉴定。利用寡核苷酸ZC87和ZC275以双脱氧法测定一个克隆(FIX/VII—9)在M13mp19上的全部插入片段的顺序并判定是正确的。被证实的顺序列在图7中为碱基1—567。用来自该克隆的RF DNA被用在杂交体基因构建的最后一步。
用三个片段完成最后构建:0.6kb Hind III—XbaI片段(来自FIX/VII—9),含有融合的IX/VII 顺序);1.7kb XbaI—BamHI因子cDNA片段(来自pUCVII1923);和2.7kb Bam H1—Hind III片段(来自pUC13)。用45单位XbaI以50μl体积消化3μgFIX/VII—9(RFDNA)(37℃,6小时)。用乙醇沉淀DNA,重悬浮并用50单位HindIII37℃消化4小时。样品经1%琼脂糖凝胶电泳,将0.6kb电洗脱到DN45滤纸(Schiecher & Schuell)上。用洗脱液把DNA从纸上洗脱下来(洗脱液含有1.5M NaCl,50mM Tris—HCl pH8,1mM EDTA),苯酚提取并用乙醇沉淀。
为了得到其余的因子VII cDNA顺序,用36单位的XbaI,在40μl的温和缓冲液中消化5μg的pUC VII1923,然后,加入10X高盐缓冲液8μl,28μl水和4μl(40单位)的Bam H1,在37℃温育下反应3小时。1%琼脂糖凝胶电泳分离DNA片段,并按上述方法分离1.7kb片段。
用10单位Hind III在20μl温和缓冲液中消化1μg的pUC13,(37℃,1小时),以制备载体片断。然后加入2μl 10X高盐缓冲液和10单位BamHI,继续培育2小时。在1%琼脂糖凝胶上按上述方法提纯DNA。
等摩尔量(约为0.56ppM)的三种片段在室温下连接45分钟。所用反应液是10μl50mM Tris—HCl pH7.5,10mM Mg·Cl2,1mMDTT,1mM ATP和3单位T4 DNA连接酶。反应混合物被用于转化感受态大肠杆菌JM83。将细胞铺敷在含有40μg/ml氨苄青霉素的培养基上,每个平皿加有50μl 2%X—gal。自7个白色菌落中制备DNA,然后用限制性内切酶消化法筛选之。其中—个给出正确酶切图的克隆被定名为FIX/VII→p UC13。
实施例6:生物活性因子VII类似物的表达
选用哺乳动物细胞表达载体p.D2在转染的动物细胞中表达FIX/VII基因。它是由质粒p DHFR—III以如下的方法构建的(参见Berkner and Sharp,Nuc.Acids.Res.13,841—857,1985)。先以常规连接法将p DHFR III中与DHFR cDNA相毗邻的PstI位点转化成Bam HI位点(参见Scheller,R.H.,Dickerson,R.E.,Boyer,H.W.,Riggs,A.D.,and Hakura,K.,Science 196,177—180,1977)。使p DHFR III DNA与10mM Tris(pH=7.6),6mMβ—MSH,6mMNaCl,10mM MgCl2和2.5单位PstI在37℃保温10分钟,然后用苯酚抽提再用乙醇沉淀。用T4 DNA聚合酶将Pst I粘性末端填平。用苯酚抽提并对10m MTris(pH8.0),1mM EDTA,0.3M NaCl透析后用乙醇沉淀DNA。将DNA重新悬浮在20μl 1.4mM ATP,50mM Tris(pH 7.6),10mM MgCl2,1mM二硫苏糖醇中,然后与5ng T4多聚核苷酸激酶处理的Bam III连接子(New England Biolab)和200单位T4多核苷酸连接酶在12℃保温12小时,再用苯酚抽提和用乙醇沉淀。用90单位BamH I在37℃将所得的DNA水解1小时,然后用1.4%琼脂糖凝胶电泳。将4.9kb DNA片段用电洗脱法洗脱下来,用多核苷酸连接酶再环化后转染到E.Coli HB 101中(4.9kb片段相当于缺少DHFR cDNA和SV40聚腺苷酸化信号的p DHFR DNA)。以快速制备分析法筛选对氨苄青霉素敏感的克隆(参见Birnboim,H.C.and Doly,J.,Nucleic Acid Research 7:1513—1523,1979),并使筛选出的正确克隆繁殖以大量制备的质粒DNA。
用20单位的Bam HI酶切所得质粒,并用25μg小牛肠磷酸酶处理后在1.4%琼脂糖凝胶中电泳。用25单位Bcl I在50C将25μg的pSV40(一个将SV40 DNA插入p BR322的Bam H I位点的克隆)水解一小时后,加入25单位的Bam H I于37℃继续保温1小时。将该DNA在1.4%琼脂糖凝胶电泳。将由BamH I处理的载体(即缺少多聚腺苷酸化信号的)连接到包含晚期多聚腺苷酸化信号的SV40片段(0.14—0.19图距单位)(参见Tooze,J.主编的《DNA瘤病毒—瘤病毒的分子生物学》一书)上去,方法是将这些电泳纯化的片段(每种0.1μg)在20μl 50mM Tris(pH7.6)中10mM MgCl2,1mM二硫苏糖醇,1.4mM ATP和100单位多核苷酸连接酶中在12℃保温4小时,然后将其转化到大肠杆菌RRI中。以快速制备分析法筛选呈阳性反应的克隆,最后大量制备正确的pD2 DNA质粒。
为制得因子IX/VII表达构建体,在20μl高盐缓中液中将1μg的p D2用20单位Bam H I在37℃水解1小时。然后加入20μl的10mMTris—HCl(pH8),1mM EDTA和0.1单位小牛碱性磷酸酶(Boeringer)。在37℃继续保温1小时后升温至75℃并保持10分钟以终止反应。用150单位BamHI在150μl高盐缓冲液中将10μg FIX/VII→p UC13在37℃下水解2小时。以1.2%琼脂糖电泳法分离2.3kbDNA片段。将等摩尔量(0.015pM)的2.3kb Bam H I片段与pD2载体片段,在14℃下保温2.5小时使其连接。用反应混合物转化E.Coli RR1细胞,再将这些细胞铺板在含有10μg/ml氨苄青霉素的培养基上养。最后由所产生的12种克隆制备质粒DNA,并用限制酶解法进行筛选。其中一个具有相应的酶解图谱的克隆被称为FIX/VII/p D2(图6)。由FIX/VII/pD2转化的大肠杆菌RR1现已保存在ATC-C,编号为53068。
用来以FIX/VII/p D2转染幼年仓鼠肾细胞(BHK细胞,ATCCCCL10)的方法与已发表的方法(例如:Wigler et al.,Cell 14,725,1978,Corsaro and Pearson,Somatic Cell Genetics 7,603,1981;Gra-ham and Van der Eb,Virology 52,456,1973)很相似。在60mm的组织培养皿中于37℃和5%的CO2下在Dulbecco培养基(添加10%热处理失活的胎牛血清,其中加有谷氨酰胺和青链霉素)中将BHK细胞培养至20%汇合。转染每个60mm培养皿共需10μgDNA,其中FIX/VII/p D23.75μg,pKO—neo 1.25μg(参见Southorn and Berg,J.Mol Appl Genet.1,327—341,1982)还有5μg鲑精子DNA。将这些DNA用含0.3M NaOAc,75%乙醇沉淀,用70%乙醇洗后溶于20μl10mM Tris—HCl(pH8),1mM EDTA中。将此DNA与440μl水,500μl含280mMNaCl,1.5mM NaHPO4及12mM葡萄糖,50mMHEPES(pH7.12)的溶液相混合。在混合液中滴加60μl 2M CaCl2,并将溶液在室温下静置30分钟。然后将该溶液加到细胞中并将细胞在37℃保温4小时。保温后除去培养基,在室温下用5ml含20%DMSO及血清的Dulbecco氏培养基处理2分钟。然后将培养皿用培养基快速洗二次,并在新鲜培养基中保温过夜。在加入DNA后24小时除去该培养基并加入选择性培养基(在含血清的Dulbecco氏培养基中加入10mg/ml的G418和498μg/mg的(Gibco)。10和13天以后,将已掺入pKO—neo基因,因而对G418有抗性的单个克隆转移至96孔(或24孔)平板中并使之生长以作蛋白质分析。
使细胞生长在添加了10%胎牛血清、含有5μg/ml维生素K(Phytonadione,Merck)的Dulbecco氏培养基中。离心将细胞及其碎片与培养基分离后,用酶联免疫吸附法(ELISA)分析因子VII多肽,并分析其生物学活性。用胰蛋白酶使细胞与培养板分离,再用新鲜的培养基洗细胞,离心后在-20℃下冰冻。使冰冻的细胞在PBS中解冻,沉淀后重新悬浮在含有0.25% Triton X—100的PBS中。将样品稀释后分析多肽及活性。
ELISA分析因子VII的方法如下:在96孔滴定板的每个孔中加入抗人因子VII单克隆抗体(5μl/ml,溶于0.1 M Na2CO3,pH9.6)于37℃保温2小时。然后再加入220μl含0.1%牛血清清蛋白(BSA)和0.05%Tween 20的PBS(pH7.2)于37℃继续保温2小时。最后用水冲洗平板,空气干燥后于4℃保存。为了分析样品,将200μl的样品加入包被有抗体的孔中于室温下保温1小时。然后用含有0.05% Tween 20的PBS冲洗4次,每次200μl。随后在孔中加入200μl兔抗因子VII多克隆抗血清的免疫球蛋白G部分(5μl/ml,溶于含1%BSA和0.05%Tween 20的PBS中)在室温下再保温1小时。接着再与碱性磷酸酶偶联的羊抗兔IgG—起保温。用含有0.05%Tween的PBS冲洗4次后,在孔中加入200μl对硝基苯磷酸酯(30mg)在二乙醇胺缓冲液(每升含96ml)pH9.8(其中含有56mg/L MgCl2)中的溶液。在37℃进行酶促反应,最后用ELISA平板判读器在405nm处监测所显示的黄颜色。所得结果见表3。
因子VII生物学活性的分析是按Quick(《Hemorragic Disease andThrombosis》第2版,Leat Febiger,Philadelphia,1966)描述的一步骤凝集分析法进行的。结果见表3。
              表3
(天)     细胞/ml(X10-4) 因子多肽(ng/ml) 因子VIII活性(ng/ml)
    123456     2.92.71.92.81.962.264.714.148.7911.285.18.4     2547160550725975     6.015.993300531600
实施例7:因子IX的表达
在37℃下用30单位溶于30μl高盐缓冲液的BamH I将14μg FIX(—G)→p UC13水解3小时。然后将DNA加在1%琼脂糖中电泳,并将含有因子IX序列的14kb带从凝胶中分离出来。
用30单位BamH I(溶于30μl高盐缓冲液)37℃下将3μg载体pD2消化3小时。DNA用1%琼脂糖电泳后将1.5kb片段分离出来。将其用0.12单位溶于30μl含1mM EDTA的10mM Tris—HCl(pH8)中的小牛碱性磷酸酶在37℃下处理30分钟。将盐调至0.3MNaOAC,然后将样品用苯酚抽提2次,氯仿抽提一次,再用乙醇沉淀DNA。沉淀物用70%的乙醇冲洗,干燥后重新溶解在20μl含1mMEDTA的10mM Tris—HCl(pH8)中。把等摩尔量的(0.02pM)两种片段用10单位T4DNA连接酶按前述方法连接。用此反应混合物转化大肠杆菌RR1细胞。从12个氨苄青霉素抗性克隆中,用限制酶消化法筛选DNA。其中一个克隆含有按正确方向插入的1.4kb片段,称为FIX(—G)/pD2。用F IX(—G)/p D2转化的大肠杆菌RR1已保存在ATCC,编号为53067)。
按前述方法用F IX(—G)/p D2和p KO—neo共转染BHK细胞。筛选抗药性的细胞用来进行ELISA分析和活性分析,方法见实施例6。
生物学活性分析是基于因子IX把因子IX缺乏病人的血凝时间缩短至正常水平的能力。该分析按Proctor和Rapaport报导的方法进行(参见Amer.J.Clin,Path.36,212,1961)。结果见表4。
                      表4
细胞数/ml天(×10-4)     因子IX多肽(ng/ml)上清液沉淀     因子IX活性(ng/ml)上清液中  %活性蛋白质上清液中
1    1.652    2.663    9.694    14.795    50.85     —    —57    2045    20150    60120    60475   160225   140875   2501000   260     —27247284198150408438     —50%58%50%45%
因子IX多肽的量基本上按实施例6中所述的ELISA方法使用抗因子IX多克隆兔抗血清测定。在将小孔与含有因子IX的样品保温后,洗净小孔并与200μl亲合纯化的兔多克隆抗因子IX抗体在室温保温1小时,其中多克隆抗体是与在含有1%BSA和0.05%吐温20的PBS中1∶1000稀释的碱性磷酸酶结合的。然后用含有0.05%吐温20的PBS将各孔洗4次并加入上述酶底物。4℃过夜或37℃两小时保温。
如表4所示70—80%的因子IX多肽被分泌到培养基中,这个量的约50%有生物学活性。在细胞沉淀物中没有测出因子IX活性。
活性程度高是通过补充浓度为1—10mg/ml的维生素K(phy-tonadione,Merck)到细胞培养基中而达到的。
几种附加分析的完成证明细胞分泌真正的因子IX。将按照上述方法测定的含有因子IX活性样品与缺乏因子VIII的质粒一起保温不影响凝血时间,表明活性是由于真正的因子IX而不是非特异性的凝血剂所致。这一结论97—98%的因子IX活性是通过特异性抗体消耗样品的因子IX活性而进一步证实的。利用兔多克隆抗因子IX抗体,从细胞上清液中免疫沉淀出97—98%的因子IX活性。此抗体也沉淀因子IX活性的99%以上,这部分是来自正常质粒。用抗红细胞生成素的兔多克隆抗体没有从上清液中除去因子IX活性。
实施例8:因子VII表达载体的构建
构建包含合成的因子VII5’编码区域(与部分因子VII cDNA相连)的表达载体。该载体称为M7135,是将来自p M7115的因子IX前导顺序—5’因子VII序列和来自F IX/VII/p D2的3’因子VII序列插入质粒pD3而产生的,其包含SV 40增强子和腺病毒2后期主要启动子及三分立前导序列。
由质粒pDHFR III产生质粒pD3。在p DHFR III中紧靠DHFR序列上游的Pst I位点被转变成Bcl位点,方法是10μg质粒用5单位Pst1将10μg质粒于37℃在100μl缓冲液A(10mM Tris pH8,10mMMgCl2,6mM NaCl,7mMβ—MSH)中消化10分钟。用苯酚提取DNA,并用乙醇沉淀之重新悬浮在40μl含有10mM dCTP和16单位T4DNA多聚酶的缓冲液B(50mM Tris pH8,7mM MgCl2,7mM β—MSH)中,在12℃保温60分钟。经乙醇沉淀后将DNA连接到2.5μg激酶处理的Bcl I接头上,连接反应在14μl含有400单位T4多核苷酸连接酶的缓冲液C(10mM Tris pH8,10mM MgCl2,1mM DTT,1.4mM ATP)中在12℃下进行12小时。经苯酚提取和乙醇沉淀后,DNA在120μl缓冲液D(75mM KCl,6mM Tris pH7.5,10mM MgCl2,1mM DTT)中重悬浮,用80单位Bcl I 50℃消化60分钟,然后通过琼脂糖电泳分离。(10μg)从凝胶中分离出III质粒DNA,并在含有50单位T4多核苷酸连接酶的10μ缓冲液C中12℃连接两小时,并用于转化E.Coli HB101。通过快速DNA制备分析,鉴定出阳性克隆,将由阳性克隆制备的质粒DNA(称为pDHFR’)转化到d AM大肠杆菌中。
然后在100μl缓冲液D中用25单位Bcl I中50℃切割pDHFR’(15μg)和p SV40(25μg)产生质粒p D2’,接着另外加入50单位BamH I在37℃保温60分钟。经琼脂糖凝胶电泳分离DNA片段并分离出4.9kb pDHFR’片段和0.2kb SV40片段。这些片段(200ngpDHFR’DNA和100ng SV40 DNA)在含有100单位T4多核苷酸连接酶的10μl缓冲液C中12℃保温4小时,并用所得构建体(pD2’)转化E.Coli RRI。
通过在pBR322区去掉“毒物”序列得以修饰质粒pD2’(Luskyand Botcham,Nature 293:79—81,1981)。质粒p D2’(6.6μg)和p ML—1(Lusky and Botcham,文献同上)(4μg)在50μl缓冲液A中与各10单位Eco RI和Nru I,37℃保温两小时,随后进行琼脂糖凝胶电泳。分离1.7kb p D2’断片和1.8kb p ML—1片段并且在含有100单位T4核苷酸连接酶的20μl缓冲液C中12℃保温两小时以连接之(各50ng),随后转化到E.Coli H B101中。
含有所要求的构建体的克隆(称为△p D2)通过快速制备分析得到证实。然后在50μl缓冲液A中用各20单位Eco RI和Bgl II37℃消化10μg的pD2 2小时。DNA通过琼脂糖电泳,分离出要求的2.8kb片段(片段C),其包括p BR322,3’剪接位点和多腺苷酸化序列。
为了产生用于构建pD3的其余片,修饰p DHFR III,把Sac II(Sst II)位点变成Hind III或Kpn I位点。10μg pDHFR III用20单位Sst II37C消化两小时,接着用酚提取并用乙醇沉淀。
重悬浮的DNA在含有10m Md CTP和16单位T4 DNA聚合酶的100μl缓冲液B中,在12℃条件下保温60分钟,苯酚提取、透析、并用乙醇沉淀。DNA(5μg)与50ng激酶处理的Hind III或Kpn I连接子在含有400单位T4 DNA连接酶的20μl缓冲液C中,在12℃条件下连接10小时,苯酚提取和乙醇沉淀之。在50μl缓冲液A中重悬浮后,用50单位Hind III或Kpn I消化得到的质粒,并通过琼脂糖电泳。凝胶分离的DNA(250ng)在含有400单位T4 DNA连接酶的30μl缓冲液C中在12℃条件下连接4小时,并用于转化E.ColiRRI。所得到的质粒被称为p DHFRIII(Hind III)和pDHFR III(KpnI)。用Bgl II和Kpn I消化并经琼脂糖凝胶电泳从pDHFR III(KpnI)中纯化出700 bp KnpI—Bgl II片段(片段A)。
将SV 40增强子序列插入到p DHFR III(Hind III)中,方法如下:50μg SV40 DNA在含有50个单位Hind III的120μl缓冲液A中37℃保温2小时,然后,对Hind III cSV 40片段(5089—968bp)进行凝胶纯化。质粒p DHFR III(Hind III)(10μg)用250ng小牛肠磷酸酶在37℃下处理1小时,苯酚提取并乙醇沉淀。线性化的质粒(50ng)与250ng Hind III cSV40在12℃、16μl缓冲液C中使用200单位T4多核苷酸连接酶连结3小时,然后转化到大肠杆菌HB 101菌株中。从该质粒中分离700bp Eco R I—Kpn I片段(片段B)。
为了完成pD3的最后构建,将片段A和B(各50ng)用200单位T4多聚核苷酸连接酶与10ng片段C在12℃下连结4小时,然后转染到大肠杆菌RRI菌株中。由快速制备分析法来检测阳性克隆,以大批量的制备p D3。
然后构建表达载体pM7135。用BamH I和Xba I消化复制形式的pM 7115,凝胶纯化含有IX因子前导子和5’因子VII序列的550bp片段。
用Xba I和BamHI消化质粒F IX/VII/p D2,并凝胶纯化含有因子VII c DNA的3’部分的1700bp片段。用Bcl I消化质粒p D3,用小牛碱性磷酸酶处理,并将这三个片段以三联形式连接在一起。根据一个2000bp Xba I片段的存在筛选所得的构建体。选择具有正确定位的质粒,并定名为p M7135(图8)。
实施例9:来自于cDNA克隆的因子VII的表达
为了表达含有因子VII前导子的因子VII cDNA,将来源于λVII2463或λVII565和λVII2463的DNA克隆到含有Ad2主要晚期启动子、SV40增强子序列、Ad2三部分前导序列、一个拼接位点和SV40多聚腺苷酸化信号的一个表达载体中。这个载体很合适以至它包含—个作为cDNA插入位点的独特的Eco RI序列。估计来源于λVII2463,编码60个核苷酸前导序列的和来源于λVII 565及λVII2463,缺少-18至-39氨基酸之密码子并因而编码一个长度为38氨基酸的前导子之序列的表达。
因为因子VII前导子的结构已经且只能由cDNA克隆来鉴定,且因为错读(该错读是由于获得两种不同的5’末端cDNA所引起的),所以本发明人也构建了基因组—cDNA因子VII序列。λVII2463的3’部分(从外显子2的Bgl II位点到将3’连结在poly(A)尾上的Eco R I位点)连接到克隆7ml的亚基因组片段上,它编码外显子1a、1b和外显子2的剩余部分。将这个作为Eco RI—Bgl II4.4kb片段重新构建的亚基因组片段连接到λVII 2463 cDNA上,然后克隆到哺乳动物表达载体中。
简单地讲,为了建立亚克隆,将λVII 2463的因子VII cDNA EcoRI片段克隆在p UC18的EcoRI位点上,并定名为pVII2463。同样地,将λVII565的Eco R1 cDNA插入序列克隆到p UC 18中,并定名为p VII565。通过将p VII565的5’端Eco R I—Bgl II因子VII片段和p VII2463的Bgl II—Hind III因子VII片段(p VII 2463多聚连接物中的Hind III位点)克隆到用Eco R I和Hind III消化过的p UC18中,使克隆p VII565克隆的因子VII序列的5’部分与p VII2463的因子VII DNA的3′片段间形成杂合体。这个构造体被定名为pVII2397。p VII2463和p VII 2397的插入段经Eco R I消化而被除去,经过凝胶纯化以便按下述方法插入到哺乳动物表达载体中。
A.全长因子VII cDNA的表达
因子VII的表达在载体p DX中完成。这个载体是由p D3(上述实施例8中已经描述)和p D3’衍生的,p D3’是与pD3相似的载体,SV40多聚腺苷酸化信号〔即从SV40 BamH I(2533bp)到Bcl I(2770bp)的片段〕处于更晚的(更靠后)的方向上。因此,p D3’包含一个BamH I位点作为基因插入的位点。
要产生p DX将pD3’中的Eco R I位点转化成Bcl I位点,可通过Eco R I切割,与S1核酸酶温育,然后与Bcl I连接物连接而实现。从阳性克隆中制备得到DNA,1.9kb的Xho I片段含有变动的限制性内切酶切点,这个断片通过琼脂糖凝胶电泳制备。第二次修饰中,用Bcl I切割的p D3与用激酶处理过的Eco R I—Bcl I接头(从寡聚核苷酸Zc525,5’GGAATTCT3’;和Zc526,5’GATCA-GAATTCC3建造而成)连接;目的是产生一个Eco R I切点作为一个将基因插入表达载体的位置。阳性克隆通过限制性内切酶分析而识别,从中得到的DNA用来分离2.3kb的Xho I—Pst片段,这个片段包含经修饰的限制性内切酶切点。将以上描述的两个DNA片段T4DNA连接酶一起温育,转化到大肠杆菌HB101中,并经限制性内切酶分析鉴定阳性克隆。这样制备的DNA称为p DX(图12)。这个DNA用Eco R I切割,然后与小牛肠磷酸酶一起温育。纯化的DNA然后与T4 DNA连接酶和来自p VII2463的因子VII cDNA片段或来自p VII2397的因子VII Eco R I片段一起温育。最终的克隆分别称为F VII(2463)/p DX和FVII(565+2463)/p DX(图12)。转化进入大肠杆菌JM83和以后的限制性酶分析之后,质粒DNA制备得以完成,然后经过广泛限制性内切酶消化来检验之。质粒FVII(2463)/p DX和F VII(565—2463)/p DX已经由美国典型培养物收集中心保存,编号分别为40206和40205。
FVII(2463)/p DX和FVII(565+2463)/p DX(各10μg),每种与10μg鲑精子DNA一起转染到BHK tk-t 13细胞(Floros et al.,Exper.Cell Res.132:215—223,1981)或COS细胞中(用标准磷酸钙沉淀法)。转染后,细胞培养在适当的培养基中,培养两天,培养基中包含5μg/ml维生素K。这一次细胞上清液使用抗因子VII单克隆抗体检验ELISA阳性材料。FVII(2463)/p DX和FVII(565+2463)/p DX两者均指导因子VII多肽链的生产,这可以在COS细胞上清液中得以检测,来自FVII(565+2463)/p DX的因子VII在BHK细胞上清液中可以检测到。假转染的BHK细胞或COS细胞不产生可检测水平的因子VII(表5)。
            表5
DNA 细胞系 细胞数    ELISA阳性材料(ng/ml培养基)
 FVII(2463)/pDXFVIII(565+2463)/pDX对照FVI(2463)/pDXFVIII(565+2463)/pDX对照  COSCOSCOSBHKBHKBHK     2×1062×102×1069×1069×1069×106     1512<2626<2
因子VII的短暂表达也可以在其他一些细胞系中检查到,这些细胞系列于表6中。
                 表6
名称 描述       参考(ATTC#)
    1.大鼠Hep I2.大鼠Hep II3.TCMK4.人肺5.人肝细胞瘤6.Hep G27.小鼠肝8.COS9.BHK10.29311.DUKX 大鼠肝细胞瘤H4-II-E-C3大鼠肝细胞瘤H4-II-E小鼠肾,SV40病毒转化的TCMK-lSV40转化的病毒W I-38 V Al3,亚系2RA腺瘤SK-HEP-1人肝细胞瘤NCTC克隆1469SV40病毒转化的CV-1(猴)细胞幼仓鼠肾BHK-21(C-13)人胚胎肾/腺病毒转化的CHO-DHFR     CRL1600CRL1548CCL139CCL75.1HTB-52HTB8065CC29.1CRL1650CCL10CRL1573(Urlaub和Chasin,PNAS(USA)77:4216-4220,1980)
细胞用10μg FVII(2463)/p DX或FVII(565+2463)/pDX同lμg质粒(该质粒包含氯霉素乙酰转移酶基因(用以鉴定共转染的细胞)]和10μg鲑精子DNA共转染。假转染的细胞用作对照。用过的培养基6天后用ELISA法分析检测。结果见表7。
                   表7
样品 细胞系 质粒     细胞数目×10-6 ELISA(ng/ml)
    12345678910111213141516 大鼠HepI大鼠HepI大鼠HepI大鼠Hep2大鼠Hep2大鼠Hep2TCMKTCMKTCMK人肺人肺人肺人肝细胞瘤人肝细胞瘤人肝细胞瘤Hep G2  MOCKFVII(565+2463)/pDXFVII(2463)/pDXMOCKFVII(565+2463)/pDXFVII(2463)/pDXMOCKFVIII(565+2463)/pDXFVII(2463)/pDXMOCKFVII(565+2463)/pDXFVII(2463)/pDXMOCKFVII(565+2463)/pDXFVII(2463)/pDXMOCK    11.67.07.013.018.414.618.89.812.87.23.43.413.011.06.06.8     2.42<2<2<2<2<2<2<2<216.512.2<23.53.021
    1718192021222324252627282930313233     Hep G2Hep G2小鼠肝小鼠肝小鼠肝COSCOSCOSBHKtk-t13BHKtk-t13BHKtk-t13293293293DUKXDUKXDUKX     FVII(565+2463)/pDXFVII(2463)/pDXMOCKFVII(565+2463)/pDXFVII(2463)/pDXMOCKFVIII(565+2463)/pDXFVII(2463)/pDXMOCKFVII(565+2463)/pDXFVII(2463)/pDXMOCKFVII(565+2463)/pDXFVII(2463)/pDXMOCKFVII(565+2463)/pDXFVII(2463)/pDX     6.06.03.84.03.65.65.64.43.05.04.05.86.28.211.613.013.6     45.528<2<2<2<215.514.5<22522.5<294100<2<2<2
FVII(2463)/pDX(10μg)或FVII(565+2463)/pDX(10μg)与10μg鲑精子DNA和1μg编码二氢叶酸还原酶抗性形式的质粒(Simonsen and Levinson,Proc.Natl.Acad.Sci USA80:2495—2499,1983)(在哺乳动物表达载体中),共转染进到BHK tkt13细胞中。两天后,细胞被分成1∶14并且放在所选择培养基中,此培养基含250nM或1000nM氨甲蝶呤(MIX)和5μg/ml维生素K(phyta-dione,Merck)。两星期后,分离克隆并且使之生长到50—90%汇合。然后通过ELISA测定上清培养基中的因子VII多肽。对25个阳性克隆中的22个作进一步分析。将细胞以5×104(组I)或1×105(组II)个铺敷在10厘米含有5μg/ml维生素K,250nM或1000nM氨甲蝶呤的平板上。五天后,将生长最快的克隆(在表8中打星号*)1:2分开,24小时后,改变平板上的所有培养基。32小时(组I)或20小时(组II)后,收集上清培养基并得到每个克隆的细胞计数。通过ELISA和一步凝集试验检测培养基。结果在表8中示出。
                  表8
             组1-23小时测定
克隆 质粒              ELISA(pg/         ELISA       凝集细胞数      细胞/        (ng/      (ng/       %×10-5      天)          ml)       ml)      活性
    B4-A1*B4-B1*B4-C1B4-C2*B4-C3*B4-D1*B4-D2*B4-E1B4-E2*B4-E3B4-E4B3-5.3*  FVII(565+2463)/pDXFVII(565+2463)/pDXFVII(565+2463)/pDXFVII(565+2463)/pDXFVII(565+2463)/pDXFVII(565+2463)/pDXFVII(565+2463)/pDXFVII(565+2463)/pDXFVII(565+2463)/pDXFVII(565+2463)/pDXFVII(565+2463)/pDXFVII(565+2463)/pDX     22716952271339823315     6.51.92.5<0.21.52.01.22.22.51.21.38.2     130513393<20800553150870205275410410     206360480219105701541160240320300290  15870122-1141031031331171167370
                 组II-20小时测定
克隆 质粒                ELISA细包         (pg/         ELISA         凝集细胞数        细胞/        (ng/          (ng/          %×10-5        天)          ml)           ml)         活性
 B3-2.2B3-2.3B3-3.2B3-4.2B3-5.1B3-5.2B6-DB6-EB6-GB6-M  FVII(2463)/pDXFVII(2463)/pDXFVII(2463)/pDXFVII(2463)/pDXFVII(2463)/pDXFVII(2463)/pDXFVII(2463)/pDXFVII(2463)/pDXFVII(2463)/pDXFVII(2463)/pDX     41191341149541013175     2.53.01.51.83.32.73.01.65.72.2     10435801977604602571700164018531743     5006102166204001847807901080940     4810511082877246595854
B.因子VIII基因组—cDNA杂合体的表达
一个含有代表因子VII基因组5’末端之基因组序列和来源于因子VII基因3’末端之cDNA序列的表达载体可按下法制备。用基因组质粒7ml的三个亚克隆重建末端5’:7Bamm、7SD和7SE。质粒7Bam是包含外显子1a的3.6kb Eeo R I—BamH1片段将其亚克隆到pVC12中。从该亚克隆中分离一个包含有外显子1a的0.7kb EcoRI-Xba I片段并定名为片段a。质粒7SD是含有外显子1b的3.7kb SstI片段,被亚克隆到p UC18中。一个包含外显子1b的3.1kb Xba I—Sst I片段从上述亚克隆中分离出并称之为片段b。质粒7SE是含有外显子2—4的3.9kb Sst I片段,将其亚克隆到M13mp 19中。凝胶分离出含有外显子2的5’部分的Sst I—Bgl II(0.6kb)片段并定名为片段C。3’—因子VII cDNA(片段d)的剩余部分可从p UVII2463中以2kb Bgl II—Eco R I片段的形式获得。将片段a—d连接到经用Eco R I裂解和牛小肠磷酸酶处理的pDX上,然后转化到大肠杆菌JM83或HB101中。阳性克隆用限制性内切酶分析鉴定,并由这些克隆中制备质粒DNA。
为表达因子VII,将质粒DNA如前所述共转染到BHK或COS细胞中,被转染的细胞在含维生素K的培养基中培养2天,培养基用ELISA法来测定因子VII的产生。
从前面所述可以看出,尽管出于说明本发明的目的在此描述了优选实施方案,但在不背离本发明的精神和范围的情况下,各种修饰是可以做出的。因此,除了待批权利要求外,本发明不受其他限制。

Claims (8)

1.一种生产对因子VIIa所介导的凝血过程具有生物学活性的蛋白质的方法,该方法包括:
建立一种含有DNA构建物的哺乳动物宿主细胞,该构建物含有编码人因子VII的核苷酸序列;
在含有维生素K的适宜的培养基中使所说的哺乳动物宿主细胞生长;
分离由所说的哺乳动物宿主细胞所产生的所说的DNA构建物编码的蛋白质产物;和
使所说的蛋白质产物活化,生成一种对凝血过程具有因子VIIa的生物学活性的蛋白质。
2.权利要求1的方法,该方法包括通过用编码二氢叶酸还原酶的基因其传染宿主细胞而扩增DNA构建物,其中适宜的培养基包括氨甲蝶呤。
3.权利要求1的方法,其中所说的蛋白质产物是通过使蛋白质与选自因子XIIa,因子IXa,激肽释放酶,因子Xa和凝血酶的蛋白水解酶反应而活化的。
4.权利要求1的方法,其中所说的编码人因子VII的核苷酸序列如下所示:
  +1                      +10
 AlaAsnAlaPheLeuGluGluLeuArgPro
 GCCAACGCGTTCCTGGAGGAGCTGCGGCCG
  220    230       240
                       +20                           +30GlySerLeuGluArgGluCysLysGluGluGlnCysSerPheGluGluAlaArgGluIleGGCTCCCTGGAGAGGGAGTGCAAGGAGGAGCAGTGCTCCTTCGAGGAGGCCCGGGAGATC250       260       270       280       290       300
                       +40                           +50PheLysAspAlaGluArgThrLysLeuPheTrpIleSerTyrSerAspGlyAspGlnCysTTCAAGGACGCGGAGAGGACGAAGCTGTTCTGGATTTCTTACAGTGATGGGGACCAGTGT310       320       330       340       350       360
                       +60                           +70AlaSerSerProCysGlnAsnGlyGlySerCysLysAspGlnLeuGlnSerTyrIleCysGCCTCAAGTCCATGCCAGAATGGGGGCTCCTGCAAGGACCAGCTCCAGTCCTATATCTGC370       380       390       400       410       420
                       +80                           +90PheCysLeuProAlaPheGluGlyArgAsnCysGluThrHisLysAspAspGlnLeuIleTTCTGCCTCCCTGCCTTCGAGGGCCGGAACTGTGAGACGCACAAGGATGACCAGCTGATC430       440       450       460       470       480
                      +100                          +110CysValAsnGluAsnGlyGlyCysGluGlnTyrCysSerAspHisThrGlyThrLysArgTGTGTGAACGAGAACGGCGGCTGTGAGCAGTACTGCAGTGACCACACGGGCACCAAGCGC490       500       510       520       530       540
                       +120                          +130SerCysArgCysHisGluGlyTyrSerLeuLeuAlaAspGlyValSerCysThrProThrTCCTGTCGGTGCCACGAGGGGTACTCTCTGCTGGCAGACGGGGTGTCCTGCACACCCACA550       560      570      580      590      600
                      +140                          +150ValGluTyrProCysGlyLysIleProIleLeuGluLysArgAsnAlaSerLysProGlnGTTGAATATCCATGTGGAAAAATACCTATTCTAGAAAAAAGAAATGCCAGCAAACCCCAA610       620       630       640       650       660
                             +160                   +170GlyArgIleValGlyGlyLysValCysProLysGlyGluCysProTrpGlnValLeuLeuGGCCGAATTGTGGGGGGCAAGGTGTGCCCCAAAGGGGAGTGTCCATGGCAGGTCCTGTTG670       680       690       700       710       720
                      +180                          +190LeuValAsnGlyAlaGlnLeuCysGlyGlyThrLeuIleAsnThrIleTrpValValSerTTGGTGAATGGAGCTCAGTTGTGTGGGGGGACCCTGATCAACACCATCTGGGTGGTCTCC730       740       750       760       770       780
                      +200                          +210AlaAlaHisCysPheAspLysIleLysAsnTrpArgAsnLeuIleAlaValLeuGlyGluGCGGCCCACTGTTTCGACAAAATCAAGAACTGGAGGAACCTGATCGCGGTGCTGGGCGAG790       880       810       820       830       840
                      +220                          +230HisAspLeuSerGluHisAspGlyAspGluGlnSerArgArgValAlaGlnValIleIleCACGACCTCAGCGAGCACGACGGGGATGAGCAGAGCCGGCGGGTGGCGCAGGTCATCATC850       860       870       880       890       900
                      +240                          +250ProSerThrTyrValProGlyThrThrAsnHisAspIleAlaLeuLeuArgLeuHisGlnCCCAGCACGTACGTCCCGGGCACCACCAACCACGACATCGCGCTGCTCCGCCTGCACCAG910       920       930       940       950       960
                      +260                          +270ProValValLeuThrAspHisValValProLeuCysLeuProGluArgThrPheSerGluCCCGTGGTCCTCACTGACCATGTGGTGCCCCTCTGCCTGCCCGAACGGACGTTCTCTGAG970       980       990      1000      1010      1020
                      +280                          +290ArgThrLeuAlaPheValArgPheSerLeuValSerGlyTrpGlyGlnLeuLeuAspArgAGGACGCTGGCCTTCGTGCGCTTCTCATTGGTCAGCGGCTGGGGCCAGCTGCTGGACCGT1030      1040      1050      1060      1070      1080
                      +300                          +310GlyAlaThrAlaLeuGluLeuMetValLeuAsnValProArgLeuMetThrGlnAspCysGGCGCCACGGCCCTGGAGCTCATGGTCCTCAACGTGCCCCGGCTGATGACCCAGGACTGC1090      1100      1110      1120      1130      1140
                      +320                          +330LeuGlnGlnSerArgLysValGlyAspSerProAsnIleThrGluTyrMetPheCysAlaCTGCAGCAGTCACGGAAGGTGGGAGACTCCCCAAATATCACGGAGTACATGTTCTGTGCC1150      1160      1170      1180      1190      1200
                      +340                          +350GlyTyrSerAspGlySerLysAspSerCysLysGlyAspSerGlyGlyProHisAlaThrGGCTACTCGGATGGCAGCAAGGACTCCTGCAAGGGGGACAGTGGAGGCCCACATGCCACC1210      1220      1230      1240      1250      1260
                      +360                          +370HisTyrArgGlyThrTrpTyrLeuThrGlyIleValSerTrpGlyGlnGlyCysAlaThrCACTACCGGGGCACGTGGTACCTGACGGGCATCGTCAGCTGGGGCCAGGGCTGCGCAACC1270      1280      1290      1300      1310      1320
                      +380                          +390ValGlyHisPheGlyValTyrThrArgValSerGlnTyrIleGluTrpLeuGlnLysLeuGTGGGCCACTTTGGGGTGTACACCAGGGTCTCCCAGTACATCGAGTGGCTGCAAAAGCTC1330      1340      1350      1360      1370      1380
                      +400              +406MetArgSerGluProArgProGlyValLeuLeuArgAlaProPhePro***ATGCGCTCAGAGCCACGCCCAGGAGTCCTCCTGCGAGCCCCATTTCCCTAGCCCAGCAGC1390      1400      1410      1420      1430      1440CCTGGCCTGTGGAGAGAAAGCCAAGGCTGCGTCGAACTGTCCTGGCACCAAATCCCATAT1450      1460      1470      1480      1490      1500ATTCTTCTGCAGTTAATGGGGTAGAGGAGGGCATGGGAGGGAGGGAGAGGTGGGGAGGGA1510      1520      1530      1540      1550      1560GACAGAGACAGAAACAGAGAGAGACAGAGACAGAGAGAGACTGAGGGAGAGACTCTGAGG1570      1580      1590      1600      1610      1620ACATGGAGAGAGACTCAAAGAGACTCCAAGATTCAAAGAGACTAATAGAGACACAGAGAT1630      1640      1650      1660      1670      1680GGAATAGAAAAGATGAGAGGCAGAGGCAGACAGGCGCTGGACAGAGGGGCAGGGGAGTGC1690      1700      1710      1720      1730      1740CAAGGTTGTCCTGGAGGCAGACAGCCCAGCTGAGCCTCCTTACCTCCCTTCAGCCAAGCC1750      1760      1770      1780      1790      1800CCACCTGCACGTGATCTGCTGGCCCTCAGGCTGCTGCTCTGCCTTCATTGCTGGAGACAG1810      1820      1830      1840      1850      1860TAGAGGCATGAACACACATGGATGCACACACACACACGCCAATGCACACACACAGAGATA1870      1880      1890      1900      1910      1920TGCACACACACGGATGCACACACAGATGGTCACACAGAGATACGCAAACACACCGATGCA1930      1940      1950      1960      1970      1980CACGCACATAGAGATATGCACACACAGATGCACACACAGATATACACATGGATGCACGCA1990      2000      2010      2020      2030      2040CATGCCAATGCACGCACACATCAGTGCACACGGATGCACAGAGATATGCACACACCGATG2050      2060      2070      2080      2090      2100TGCGCACACACAGATATGCACACACATGGATGAGCACACACACACCAAGTGCGCACACAC2110      2120      2130      2140      2150      2160ACCGATGTACACACACAGATGCACACACAGATGCACACACACCGATGCTGACTCCATGTG2170      2180      2190      2200      2210      2220TGCTGTCCTCTGAAGGCGGTTGTTTAGCTCTCACTTTTCTGGTTCTTATCCATTATCATC2230      2240      2250      2260      2270      2280TTCACTTCAGACAATTCAGAAGCATCACCATGCATGGTGGCGAATGCCCCCAAACTCTCC2290      2300      2310      2320      2330      2340CCCAAATGTATTTCTCCCTTCGCTGGGTGCCGGGCTGCACAGACTATTCCCCACCTGCTT2350      2360      2370      2380      2390      2400CCCAGCTTCACAATAAACGGCTGCGTCTCCTCCGCACACCTGTGGTGCCTGCCACCCAAA2410      2420      2430      2240      2450      2460AAAAAAAAAAAAAAAAAA2470      2480
5.权利要求4的方法,其中至少一部分所说的核苷酸序列衍生于因子VII的cDNA克隆或基因组克隆。
6.权利要求4的方法,其中所说的核苷酸序列包括如下所示的序列:
                               -60
                               MetValSerGlnAlaLeuArgLeuLeu
                               ATGGTCTCCCAGGCCCTCAGGCTCCTC
                                   40       50       60-50                           -40 ↓CysLeuLeuLeuGlyLeuGlnGlyCysLeuAlaAlaGlyGlyValAlaLysAlaSerGlyGlyTGCCTTCTGCTTGGGCTTCAGGGCTGCCTGGCTGCAGGCGGGGTCGCTAAGGCCTCAGGAGGA
  70        80        90       100       110       120-30                           -20      ↓GluThrArgAspMetProTrpLysProGlyProHisArgValPheValThrGlnGluGluGAAACACGGGACATGCCGTGGAAGCCGGGGCCTCACAGAGTCTTCGTAACCCAGGAGGAA130       140       150       160       170       180-10                         -1 +1                        +10AlaHisGlyValLeuHisArgArgArgArgAlaAsnAlaPheLeuGluGluLeuArgProGCCCACGGCGTCCTGCACCGGCGCCGGCGCGCCAACGCGTTCCTGGAGGAGCTGCGGCCG190       200       210       220       230       240
                       +20                           +30GlySerLeuGluArgGluCysLysGluGluGlnCysSerPheGluGluAlaArgGluIleGGCTCCCTGGAGAGGGAGTGCAAGGAGGAGCAGTGCTCCTTCGAGGAGGCCCGGGAGATC250       260       270       280       290       300
                       +40                           +50PheLysAspAlaGluArgThrLysLeuPheTrpIleSerTyrSerAspGlyAspGlnCysTTCAAGGACGCGGAGAGGACGAAGCTGTTCTGGATTTCTTACAGTGATGGGGACCAGTGT310       320       330       340       350       360
                       +60                           +70AlaSerSerProCysGlnAsnGlyGlySerCysLysAspGlnLeuGlnSerTyrIleCysGCCTCAAGTCCATGCCAGAATGGGGGCTCCTGCAAGGACCAGCTCCAGTCCTATATCTGC370       380       390       400       410       420
                       +80                           +90PheCysLeuProAlaPheGluGlyArgAsnCysGluThrHisLysAspAspGlnLeuIleTTCTGCCTCCCTGCCTTCGAGGGCCGGAACTGTGAGACGCACAAGGATGACCAGCTGATC430        440       450       460       470       480
                      +100                          +110CysValAsnGluAsnGlyGlyCysGluGlnTyrCysSerAspHisThrGlyThrLysArgTGTGTGAACGAGAACGGCGGCTGTGAGCAGTACTGCAGTGACCACACGGGCACCAAGCGC490       500       510       520       530       540
                      +120                          +130SerCysArgCysHisGluGlyTyrSerLeuLeuAlaAspGlyValSerCysThrProThrTCCTGTCGGTGCCACGAGGGGTACTCTCTGCTGGCAGACGGGGTGTCCTGCACACCCACA550       560       570       580       590       600
                      +140                          +150ValGluTyrProCysGlyLysIleProIleLeuGluLysArgAsnAlaSerLysProGlnGTTGAATATCCATGTGGAAAAATACCTATTCTAGAAAAAAGAAATGCCAGCAAACCCCAA610       620       630       640       650       660
                      +160                          +170GlyArgIleValGlyGlyLysValCysProLysGlyGluCysProTrpGlnValLeuLeuGGCCGAATTGTGGGGGGCAAGGTGTGCCCCAAAGGGGAGTGTCCATGGCAGGTCCTGTTG670       680       690       700       710       720
                      +180                          +190LeuValAsnGlyAlaGlnLeuCysGlyGlyThrLeuIleAsnThrIleTrpValValSerTTGGTGAATGGAGCTCAGTTGTGTGGGGGGACCCTGATCAACACCATCTGGGTGGTCTCC730       740       750       760       770       780
                      +200                          +210AlaAlaHisCysPheAspLysIleLysAsnTrpArgAsnLeuIleAlaValLeuGlyGluGCGGCCCACTGTTTCGACAAAATCAAGAACTGGAGGAACCTGATCGCGGTGCTGGGCGAG790       880       810       820       830       840
                      +220                          +230HisAspLeuSerGluHisAspGlyAspGluGlnSerArgArgValAlaGlnValIleIleCACGACCTCAGCGAGCACGACGGGGATGAGCAGAGCCGGCGGGTGGCGCAGGTCATCATC850       860       870       880       890       900
                      +240                          +250ProSerThrTyrValProGlyThrThrAsnHisAspIleAlaLeuLeuArgLeuHisGlnCCCAGCACGTACGTCCCGGGCACCACCAACCACGACATCGCGCTGCTCCGCCTGCACCAG910       920       930       940       950       960
                      +260                          +270ProValValLeuThrAspHisValValProLeuCysLeuProGluArgThrPheSerGluCCCGTGGTCCTCACTGACCATGTGGTGCCCCTCTGCCTGCCCGAACGGACGTTCTCTGAG970       980       990      1000      1010      1020
                      +280                          +290ArgThrLeuAlaPheValArgPheSerLeuValSerGlyTrpGlyGlnLeuLeuAspArgAGGACGCTGGCCTTCGTGCGCTTCTCATTGGTCAGCGGCTGGGGCCAGCTGCTGGACCGT1030      1040      1050      1060      1070      1080
                      +300                          +310GlyAlaThrAlaLeuGluLeuMetValLeuAsnValProArgLeuMetThrGlnAspCysGGCGCCACGGCCCTGGAGCTCATGGTCCTCAACGTGCCCCGGCTGATGACCCAGGACTGC1090      1100      1110      1120      1130      1140
                      +320                          +330LeuGlnGlnSerArgLysValGlyAspSerProAsnIleThrGluTyrMetPheCysAlaCTGCAGCAGTCACGGAAGGTGGGAGACTCCCCAAATATCACGGAGTACATGTTCTGTGCC1150      1160      1170      1180      1190      1200
                      +340                          +350GlyTyrSerAspGlySerLysAspSerCysLysGlyAspSerGlyGlyProHisAlaThrGGCTACTCGGATGGCAGCAAGGACTCCTGCAAGGGGGACAGTGGAGGCCCACATGCCACC1210      1220      1230      1240      1250      1260
                      +360                          +370HisTyrArgGlyThrTrpTyrLeuThrGlyIleValSerTrpGlyGlnGlyCysAlaThrCACTACCGGGGCACGTGGTACCTGACGGGCATCGTCAGCTGGGGCCAGGGCTGCGCAACC1270      1280      1290      1300      1310      1320
                      +380                          +390ValGlyHisPheGlyValTyrThrArgValSerGlnTyrIleGluTrpLeuGlnLysLeuGTGGGCCACTTTGGGGTGTACACCAGGGTCTCCCAGTACATCGAGTGGCTGCAAAAGCTC1330      1340      1350      1360      1370      1380
                      +400              +406MetArgSerGluProArgProGlyValLeuLeuArgAlaProPheProATGCGCTCAGAGCCACGCCCAGGAGTCCTCCTGCGAGCCCCATTTCCC1390      1400      1410      1420      1430
7.权利要求4的方法,其中所说的核苷酸序列包括如下所示的序列:
                                   ValPheValThrGlnGluGlu
                                   GTCTTCGTAACCCAGGAGGAA
                                           170       180-10                         -1 +1                        +10AlaHisGlyValLeuHisArgArgArgArgAlaAShAlaPheLeuGluGluLeuArgProGCCCACGGCGTCCTGCACCGGCGCCGGCGCGCCAACGCGTTCCTGGAGGAGCTGCGGCCG190       200       210       220       230       240
                       +20                           +30GlySerLeuGluArgGluCysLysGluGluGlnCysSerPheGluGluAlaArgGluIIeGGCTCCCTGGAGAGGGAGTGCAAGGAGGAGCAGTGCTCCTTCGAGGAGGCCCGGGAGATC250       260       270       280       290       300
                       +40                           +50PheLysAspAlaGluArgThrLysLeuPheTrpIleSerTyrSerAspGlyAspGlnCysTTCAAGGACGCGGAGAGGACGAAGCTGTTCTGGATTTCTTACAGTGATGGGGACCAGTGT310       320       330       340       350       360
                       +60                           +70AlaSerSerProCysGlnAsnGlyGlySerCysLysAspGlnLeuGlnSerTyrIleCysGCCTCAAGTCCATGCCAGAATGGGGGCTCCTGCAAGGACCAGCTCCAGTCCTATATCTGC370       380       390       400       410       420
                       +80                           +90PheCysLeuProAlaPheGluGlyArgAsnCysGluThrHisLysAspAspGlnLeuIleTTCTGCCTCCCTGCCTTCGAGGGCCGGAACTGTGAGACGCACAAGGATGACCAGCTGATC430       440       450       460       470       480
                      +100                          +110CysValAsnGluAsnGlyGlyCysGluGlnTyrCysSerAspHisThrGlyThrLysArgTGTGTGAACGAGAACGGCGGCTGTGAGCAGTACTGCAGTGACCACACGGGCACCAAGCGC490       500       510       520       530       540
                      +120                          +130SerCysArgCysHisGluGlyTyrSerLeuLeuAlaAspGlyValSerCysThrProThrTCCTGTCGGTGCCACGAGGGGTACTCTCTGCTGGCAGACGGGGTGTCCTGCACACCCACA550       560       570       580       590       600
                      +140                          +150ValGluTyrProCysGlyLysIleProIleLeuGluLysArgAsnAlaSerLysProGlnGTTGAATATCCATGTGGAAAAATACCTATTCTAGAAAAAAGAAATGCCAGCAAACCCCAA6l0       620       630       640       650       660
                      +160                          +170GlyArgIleValGlyGlyLysValCysProLysGlyGluCysProTrpGlnValLeuLeuGGCCGAATTGTGGGGGGCAAGGTGTGCCCCAAAGGGGAGTGTCCATGGCAGGTCCTGTTG670       680       690       700       710       720
                      +180                          +190LeuValAsnGlyAlaGlnLeuCysGlyGlyThrLeuIleAsnThrIleTrpValValSerTTGGTGAATGGAGCTCAGTTGTGTGGGGGGACCCTGATCAACACCATCTGGGTGGTCTCC730       740       750       760       770       780
                      +200                          +210AlaAlaHisCysPheAspLysIleLysAsnTrpArgAsnLeuIleAlaValLeuGlyGluGCGGCCCACTGTTTCGACAAAATCAAGAACTGGAGGAACCTGATCGCGGTGCTGGGCGAG790       880       810       820       830       840
                      +220                          +230HisAspLeuSerGluHisAspGlyAspGluGlnSerArgArgValAlaGlnValIleIleCACGACCTCAGCGAGCACGACGGGGATGAGCAGAGCCGGCGGGTGGCGCAGGTCATCATC850       860       870       880       890       900
                      +240                          +250ProSerThrTyrValProGlyThrThrAsnHisAspIleAlaLeuLeuArgLeuHisGlnCCCAGCACGTACGTCCCGGGCACCACCAACCACGACATCGCGCTGCTCCGCCTGCACCAG910       920       930       940       950       960
                      +260                          +270ProValValLeuThrAspHisValValProLeuCysLeuProGluArgThrPheSerGluCCCGTGGTCCTCACTGACCATGTGGTGCCCCTCTGCCTGCCCGAACGGACGTTCTCTGAG970       980       990      1000      1010      1020
                      +280                          +290ArgThrLeuAlaPheValArgPheSerLeuValSerGlyTrpGlyGlnLeuLeuAspArgAGGACGCTGGCCTTCGTGCGCTTCTCATTGGTCAGCGGCTGGGGCCAGCTGCTGGACCGT1030      1040      1050      1060      1070      1080
                      +300                          +310GlyAlaThrAlaLeuGluLeuMetValLeuAsnValProArgLeuMetThrGlnAspCysGGCGCCACGGCCCTGGAGCTCATGGTCCTCAACGTGCCCCGGCTGATGACCCAGGACTGC1090      1100      1110      1120      1130      1140
                      +320                          +330LeuGlnGlnSerArgLysValGlyAspSerProAsnIleThrGluTyrMetPheCysAlaCTGCAGCAGTCACGGAAGGTGGGAGACTCCCCAAATATCACGGAGTACATGTTCTGTGCC1150      1160      1170      1180      1190      1200
                      +340                          +350GlyTyrSerAspGlySerLysAspSerCysLysGlyAspSerGlyGlyProHisAlaThrGGCTACTCGGATGGCAGCAAGGACTCCTGCAAGGGGGACAGTGGAGGCCCACATGCCACC1210      1220      1230      1240      1250      1260
                      +360                          +370HisTyrArgGlyThrTrpTyrLeuThrGlyIleValSerTrpGlyGlnGlyCysAlaThrCACTACCGGGGCACGTGGTACCTGACGGGCATCGTCAGCTGGGGCCAGGGCTGCGCAACC1270      1280      1290      1300      1310      1320
                      +380                          +390ValGlyHisPheGlyValTyrThrArgValSerGlnTyrIleGluTrpLeuGlnLysLeuGTGGGCCACTTTGGGGTGTACACCAGGGTCTCCCAGTACATCGAGTGGCTGCAAAAGCTC1330      1340      1350      1360      1370      1380
                      +400              +406MetArgSerGluProArgProGlyValLeuLeuArgAlaProPheProATGCGCTCAGAGCCACGCCCAGGAGTCCTCCTGCGAGCCCCATTTCCC1390      1400      1410      1420      1430
8.权利要求1,2或3的方法,其中所说的宿主细胞是非肝细胞。
CN86102644A 1985-04-17 1986-04-16 在哺乳动物细胞内表达因子vii活性的方法 Expired - Lifetime CN1032142C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US72431185A 1985-04-17 1985-04-17
US724,311 1985-04-17
US810,002 1985-12-16
US06/810,002 US4784950A (en) 1985-04-17 1986-12-16 Expression of factor VII activity in mammalian cells

Publications (2)

Publication Number Publication Date
CN86102644A CN86102644A (zh) 1987-06-03
CN1032142C true CN1032142C (zh) 1996-06-26

Family

ID=27110961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN86102644A Expired - Lifetime CN1032142C (zh) 1985-04-17 1986-04-16 在哺乳动物细胞内表达因子vii活性的方法

Country Status (18)

Country Link
US (1) US4784950A (zh)
EP (1) EP0200421B1 (zh)
JP (4) JPH0824587B2 (zh)
CN (1) CN1032142C (zh)
AT (1) ATE92105T1 (zh)
AU (1) AU603983B2 (zh)
CA (1) CA1340512C (zh)
DE (1) DE3688760T2 (zh)
DK (2) DK175616B1 (zh)
ES (1) ES8800343A1 (zh)
FI (1) FI100055B (zh)
GR (1) GR860984B (zh)
HU (1) HU204556B (zh)
IE (1) IE61982B1 (zh)
LU (1) LU88806I2 (zh)
NO (3) NO175066B (zh)
NZ (1) NZ215842A (zh)
PT (1) PT82408B (zh)

Families Citing this family (225)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171569A (en) * 1985-03-15 1992-12-15 National Research Development Corporation Factor IX preparations uncontaminated by plasma components or pox virus
ZA862768B (en) * 1985-04-17 1986-12-30 Zymogenetics Inc Expression of factor vii and ix activities in mammalian cells
ATE74164T1 (de) * 1985-04-22 1992-04-15 Genetics Inst Herstellung mit hoher leistung des aktivfaktors ix.
US5516650A (en) * 1985-06-27 1996-05-14 Zymogenetics, Inc. Production of activated protein C
US4959318A (en) * 1985-06-27 1990-09-25 Zymogenetics, Inc. Expression of protein C
US4968626A (en) * 1985-08-15 1990-11-06 Board Of Reagents Of The University Of Washington DNA sequence coding for protein C
USRE38981E1 (en) * 1985-08-15 2006-02-14 Board Of Regents Of The University Of Washington DNA sequence coding for protein C
ATE66374T1 (de) * 1985-11-26 1991-09-15 Novo Nordisk As Zubereitungen und verfahren zur behandlung von blutungsstoerungen.
IL82648A0 (en) * 1986-05-27 1987-11-30 Lilly Co Eli Human protein s,a plasma protein regulator of hemostasis
FR2599752B1 (fr) * 1986-06-10 1989-11-03 Transgene Sa Variants de l'alpha1- antitrypsine utiles notamment comme inhibiteurs de la kallikreine
FR2600334B1 (fr) * 1986-06-23 1989-05-12 Transgene Sa Vecteurs d'integration dans les cellules eucaryotes assurant l'expression du facteur ix, lignees celullaires obtenues et procede pour leur preparation
US5258288A (en) * 1986-07-25 1993-11-02 Genzyme Corporation Vector containing DNA encoding mature human protein S
DK323587D0 (da) * 1987-06-25 1987-06-25 Novo Industri As Protein
JPH01502080A (ja) * 1986-11-17 1989-07-27 ニュー・イングランド・メディカル・センター 組み換えビタミンk依存性蛋白質のガンマカルボキシル化の増強
WO1989012685A1 (en) * 1987-05-18 1989-12-28 Integrated Genetics, Inc. Improved protein c molecules and method for making and activating same
EP0296413A2 (en) * 1987-06-12 1988-12-28 Hoechst Japan Limited Hybrid protein C and method for its preparation
US5648254A (en) * 1988-01-15 1997-07-15 Zymogenetics, Inc. Co-expression in eukaryotic cells
US5580560A (en) * 1989-11-13 1996-12-03 Novo Nordisk A/S Modified factor VII/VIIa
US5225537A (en) * 1989-12-29 1993-07-06 Zymogenetics, Inc. Methods for producing hybrid phospholipid-binding proteins
US5358932A (en) * 1989-12-29 1994-10-25 Zymogenetics, Inc. Hybrid protein C
WO1991011514A1 (en) * 1990-01-29 1991-08-08 Zymogenetics, Inc. Anticoagulant proteins
DE4007902A1 (de) * 1990-03-13 1991-09-19 Behringwerke Ag Synthetische peptide, die sequenzen aus faktor viia enthalten und deren verwendung
DK0574402T3 (da) * 1990-11-26 1998-05-18 Chiron Corp Ekspression af PACE i værtsceller og fremgangsmåder til anvendelse deraf
US5997864A (en) * 1995-06-07 1999-12-07 Novo Nordisk A/S Modified factor VII
US5788965A (en) * 1991-02-28 1998-08-04 Novo Nordisk A/S Modified factor VII
US5861374A (en) * 1991-02-28 1999-01-19 Novo Nordisk A/S Modified Factor VII
US20040087498A1 (en) * 1991-02-28 2004-05-06 Novo Nordisk Health Care Ag Modified factor VII
US5833982A (en) 1991-02-28 1998-11-10 Zymogenetics, Inc. Modified factor VII
US5817788A (en) * 1991-02-28 1998-10-06 Zymogenetics, Inc. Modified factor VII
US5876985A (en) * 1991-04-25 1999-03-02 Board Of Regents, The University Of Texas System Methods and compositions for the preparation of recombinant Trichomonas vaginalis proteins and peptides
US6039944A (en) * 1992-02-28 2000-03-21 Zymogenetics, Inc. Modified Factor VII
US5965350A (en) * 1994-04-08 1999-10-12 Syntex (U.S.A.) Inc. Cloning and expression of human GMP synthetase, its use in screening for inhibitors of human GMP synthetase and inhibitors of human GMP synthetase
US5843752A (en) * 1995-05-12 1998-12-01 Schering Corporation Soluble active hepatitis C virus protease
EP2264175B1 (en) 1996-10-16 2012-11-21 ZymoGenetics, Inc. Fibroblast growth factor homologs
JP2001510168A (ja) 1997-07-18 2001-07-31 ノボ ノルディスク アクティーゼルスカブ FVIIa媒介性細胞内シグナル伝達経路に関連する反対条件の処理のためのFVIIa又はFVIIaiの使用
ATE374247T1 (de) 1997-10-14 2007-10-15 Darwin Molecular Corp Thymidinkinase mutanten und fusionproteine mit thymidinkinase und guanylatekinase aktivitäten
US6747003B1 (en) 1997-10-23 2004-06-08 Regents Of The University Of Minnesota Modified vitamin K-dependent polypeptides
US7247708B2 (en) * 1997-10-23 2007-07-24 Regents Of The University Of Minnesota Modified vitamin K-dependent polypeptides
EP0927764B1 (de) * 1997-12-03 2004-05-26 Boehringer Mannheim Gmbh Chimäre Serinproteasen
US6159722A (en) 1997-12-03 2000-12-12 Boehringer Mannheim Gmbh Chimeric serine proteases
AT408613B (de) * 1998-06-17 2002-01-25 Immuno Ag Pharmazeutisches faktor vii-präparat
KR20010085838A (ko) 1998-09-23 2001-09-07 리스 데브라 케이. 사이토킨 리셉터 zalpha11
US20040009535A1 (en) 1998-11-27 2004-01-15 Celltech R&D, Inc. Compositions and methods for increasing bone mineralization
EP1133558B2 (en) 1998-11-27 2016-04-13 UCB Pharma S.A. Compositions and methods for increasing bone mineralization
AU764039B2 (en) 1998-12-07 2003-08-07 Zymogenetics Inc. Growth factor homolog ZVEGF3
US7063850B1 (en) * 1998-12-22 2006-06-20 University Of Tennessee Research Foundation Protective antigen of group A Streptococci
BR0007423A (pt) 1999-01-07 2002-01-22 Zymogenetics Inc Métodos para inibir a atividade de ztnf4 em um mamìfero e o acoplamento de receptor-ligando br43x2, taci ou bcma e para produzir um polipeptìdeo, molécula de polinucleotìdeo isolada, vetor de expressão, célula cultivada, e, polipeptìdeo isolado
US7833529B1 (en) 1999-01-07 2010-11-16 Zymogenetics, Inc. Methods for inhibiting B lymphocyte proliferation with soluble ztnf4 receptor
EP1165791B1 (en) 1999-03-09 2007-10-31 ZymoGenetics, Inc. Human cytokine as ligand of the zalpha receptor and uses thereof
US6451987B1 (en) 1999-03-15 2002-09-17 Novo Nordisk A/S Ion exchange chromatography of proteins and peptides
EP2348044A1 (en) 1999-03-15 2011-07-27 Novo Nordisk A/S Ion exchange chromatography of GLP-1, analogs and derivatives thereof
DE10023923A1 (de) * 1999-06-10 2000-12-14 Aventis Behring Gmbh Verfahren zur Bestimmung der Aktivität der Faktor VII-aktivierenden Protease aus Proteinlösungen
US6924359B1 (en) 1999-07-01 2005-08-02 Yale University Neovascular-targeted immunoconjugates
SK782002A3 (en) 1999-07-21 2003-08-05 Lexigen Pharm Corp FC fusion proteins for enhancing the immunogenicity of protein and peptide antigens
US20040235715A1 (en) * 1999-11-12 2004-11-25 Bayer Corporation Method of producing glycosylated bikunin
EP1242600B1 (en) 1999-12-23 2010-03-03 ZymoGenetics, Inc. Cytokine zcyto18
RU2278123C2 (ru) 2000-02-11 2006-06-20 Максиджен Холдингз Лтд. Молекулы, подобные фактору vii или viia
JP2003530838A (ja) 2000-04-12 2003-10-21 ヒューマン ゲノム サイエンシズ インコーポレイテッド アルブミン融合タンパク質
US7812132B2 (en) 2000-04-28 2010-10-12 Regents Of The University Of Minnesota Modified vitamin K-dependent polypeptides
US7220837B1 (en) 2000-04-28 2007-05-22 Regents Of The University Of Minnesota Modified vitamin K-dependent polypeptides
US6905683B2 (en) 2000-05-03 2005-06-14 Novo Nordisk Healthcare A/G Human coagulation factor VII variants
WO2002000721A2 (en) 2000-06-26 2002-01-03 Zymogenetics, Inc. Cytokine receptor zcytor17
DK1717316T3 (da) 2000-06-30 2008-12-08 Zymogenetics Inc Allelisk variant af interferon-lignende protein Zcyto21
US20030211094A1 (en) * 2001-06-26 2003-11-13 Nelsestuen Gary L. High molecular weight derivatives of vitamin k-dependent polypeptides
CA2420892A1 (en) 2000-09-13 2002-03-21 Novo Nordisk A/S Human coagulation factor vii variants
JP4361728B2 (ja) 2000-09-13 2009-11-11 ノボ ノルディスク ヘルス ケア アクチェンゲゼルシャフト ヒト凝固因子vii変異型
FR2814170B1 (fr) * 2000-09-18 2005-05-27 Rhodia Chimie Sa Nouveau latex a proprietes de surface modifiees par l' ajout d'un copolymere hydrosoluble a caractere amphiphile
DE60137950D1 (de) * 2000-10-02 2009-04-23 Novo Nordisk Healthcare Ag Verfahren zur herstellung vitamin-k-abhängiger proteine
US20040185534A1 (en) * 2000-10-02 2004-09-23 Knudsen Ida Molgaard Industrial-scale serum-free production of recombinant proteins in mammalian cells
US7615537B2 (en) * 2000-10-25 2009-11-10 Genzyme Corporation Methods for treating blood coagulation disorders
AU2002218029A1 (en) 2000-11-09 2002-05-21 The Scripps Research Institute Modified factor viia
US7235638B2 (en) 2001-03-22 2007-06-26 Novo Nordisk Healthcare A/G Coagulation factor VII derivatives
CA2441580A1 (en) 2001-03-22 2002-10-03 Novo Nordisk Health Care Ag Coagulation factor vii derivatives
WO2002079507A2 (de) * 2001-04-02 2002-10-10 Bayer Aktiengesellschaft Verfahren zur spezifischen detektion, isolation und charakterisierung von zellen aus körperproben durch transfektion von nukleinsäurekonstrukten
JP4353701B2 (ja) 2001-05-08 2009-10-28 ダーウィン モレキュラー コーポレイション Foxp3蛋白質を用いた霊長類における免疫機能の調節方法
US7052868B2 (en) 2001-09-27 2006-05-30 Novo Nordisk Healthcare A/G Human coagulation factor VII polypeptides
ES2376694T3 (es) 2001-09-27 2012-03-16 Novo Nordisk Health Care Ag Polipã‰ptidos del factor vii de coagulaciã“n humano.
ES2516041T3 (es) 2001-10-10 2014-10-30 Ratiopharm Gmbh Remodelación y glicoconjugación de la hormona del crecimiento humano (hGH)
US7214660B2 (en) 2001-10-10 2007-05-08 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
EP2305311A3 (en) 2001-10-10 2011-07-20 BioGeneriX AG Glycoconjugation of peptides
US7173003B2 (en) 2001-10-10 2007-02-06 Neose Technologies, Inc. Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF
JP2005523000A (ja) * 2001-10-26 2005-08-04 アイディー バイオメディカル コーポレイション オブ ワシントン 多価連鎖球菌性ワクチン組成物および使用方法
US6960657B2 (en) 2001-11-02 2005-11-01 Novo Nordisk Healthcare A/G Human coagulation factor VII polypeptides
DK1451322T3 (da) 2001-11-05 2010-02-01 Zymogenetics Inc Il-21-antagonister
JP2005515175A (ja) * 2001-11-09 2005-05-26 ノボ ノルディスク ヘルス ケア アクチェンゲゼルシャフト 第vii因子ポリペプチドおよびアルファ2−抗プラスミンポリペプチドを含む薬学的組成物
US20030119743A1 (en) * 2001-11-09 2003-06-26 Rasmus Rojkjaer Pharmaceutical composition comprising factor VII polypeptides and tissue plasminogen inhibitors
EP1446153A1 (en) * 2001-11-09 2004-08-18 Novo Nordisk Health Care AG Pharmaceutical composition comprising factor vii polypeptides and tissue plasminogen inhibitors
US7078479B2 (en) 2001-11-09 2006-07-18 Novo Nordisk Healthcare A/G Pharmaceutical composition comprising factor VII polypeptides and alpha2-antiplasmin polypeptides
HUP0402315A3 (en) * 2001-12-21 2009-03-30 Novo Nordisk Healthcare Ag Liquid composition of factor vii polypeptides
KR20040065278A (ko) * 2001-12-21 2004-07-21 노보 노르디스크 에이/에스 변경된 인자 ⅶ 폴리펩티드의 액체 조성물
US20050158296A1 (en) 2002-01-11 2005-07-21 Starr Christopher M. Use of p97 as an enzyme delivery system for the delivery of therapeutic lysosomal enzymes
EP1476541B1 (en) 2002-01-18 2008-07-16 ZymoGenetics, Inc. Cytokine (zcytor17 ligand)
CA2473733C (en) 2002-01-18 2014-09-09 Zymogenetics, Inc. Cytokine receptor zcytor17 multimers
EP1497415B1 (en) 2002-04-19 2010-12-29 ZymoGenetics, L.L.C. Methods for detection or modulation of the interaction of a cytokine receptor with its ligand
US7700733B2 (en) * 2002-04-30 2010-04-20 Bayer Healthcare Llc Factor VII or VIIa polypeptide variants
US20040009918A1 (en) * 2002-05-03 2004-01-15 Hanne Nedergaard Stabilised solid compositions of modified factor VII
CN1671410B (zh) 2002-06-21 2010-05-12 诺和诺德医疗保健公司 因子ⅶ多肽的稳定化固体组合物
PT1517710E (pt) 2002-06-21 2011-07-08 Novo Nordisk Healthcare Ag Glicoformas do factor vii peguilado
US6933136B2 (en) * 2002-09-20 2005-08-23 Novo Nordisk A/S Method for making recombinant proteins
DE60315847T2 (de) 2002-09-25 2008-05-15 Novo Nordisk Health Care Ag Varianten des menschliche koagulationsfaktors vii
US6911323B2 (en) 2002-09-25 2005-06-28 Novo Nordisk Healthcare A/G Human coagulation factor VII polypeptides
WO2004082708A2 (en) * 2003-03-18 2004-09-30 Novo Nordisk Health Care Ag Liquid, aqueous, pharmaceutical compositions of factor vii polypeptides
EP3103869A1 (en) 2003-03-18 2016-12-14 Novo Nordisk Health Care AG Method for the production of factor vii polypeptides
ES2327044T3 (es) * 2003-03-20 2009-10-23 Bayer Healthcare Llc Variantes de fvii o fviia.
US7897734B2 (en) * 2003-03-26 2011-03-01 Novo Nordisk Healthcare Ag Method for the production of proteins
EP1615945B1 (en) 2003-04-09 2011-09-28 BioGeneriX AG Glycopegylation methods and proteins/peptides produced by the methods
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
EP3552627A1 (en) 2003-05-06 2019-10-16 Bioverativ Therapeutics Inc. Clotting factor-fc chimeric proteins to treat hemophilia
US7348004B2 (en) 2003-05-06 2008-03-25 Syntonix Pharmaceuticals, Inc. Immunoglobulin chimeric monomer-dimer hybrids
AU2004238263A1 (en) * 2003-05-06 2004-11-25 Syntonix Pharmaceuticals, Inc. Inhibition of drug binding to serum albumin
AU2004241698A1 (en) * 2003-05-23 2004-12-02 Novo Nordisk Health Care Ag Protein stabilization in solution
NZ544728A (en) * 2003-06-19 2009-04-30 Bayer Healthcare Llc Factor VII or VIIa Gla domain variants
ES2382157T3 (es) * 2003-06-25 2012-06-05 Novo Nordisk Health Care Ag Composición líquida de polipépttidos del factor VII
ES2335994T3 (es) * 2003-07-01 2010-04-07 Novo Nordisk Health Care Ag Composicion farmaceutica liquida, acuosa de polipeptidos factor vii.
US9005625B2 (en) 2003-07-25 2015-04-14 Novo Nordisk A/S Antibody toxin conjugates
WO2005044849A2 (en) * 2003-08-05 2005-05-19 Eli Lilly And Company Lp mammalian proteins; related reagents
EP2251352A1 (en) 2003-08-07 2010-11-17 ZymoGenetics, L.L.C. Homogeneous preparations of IL-28 and IL-29
CA2534028A1 (en) 2003-08-14 2005-02-24 Novo Nordisk Health Care Ag Liquid, aqueous pharmaceutical composition of factor vii polypeptides
ES2381110T3 (es) 2003-09-09 2012-05-23 Novo Nordisk Health Care Ag Polipéptidos de factor VII de coagulación
GB0324044D0 (en) * 2003-10-14 2003-11-19 Astrazeneca Ab Protein
US20080305992A1 (en) 2003-11-24 2008-12-11 Neose Technologies, Inc. Glycopegylated erythropoietin
EP1711513B1 (en) 2003-12-01 2014-07-02 Novo Nordisk Health Care AG Nanofiltration of factor vii solutions to remove virus
EP3378470A1 (en) 2003-12-19 2018-09-26 Novo Nordisk Health Care AG Stabilised compositions of factor vii polypeptides
ATE550041T1 (de) 2004-01-21 2012-04-15 Novo Nordisk Healthcare Ag Transglutaminase-vermittelte konjugation von peptiden
CA2558811A1 (en) 2004-03-08 2005-09-22 Zymogenetics, Inc. Dimeric fusion proteins and materials and methods for producing them
US20080300173A1 (en) 2004-07-13 2008-12-04 Defrees Shawn Branched Peg Remodeling and Glycosylation of Glucagon-Like Peptides-1 [Glp-1]
CA2574564C (en) 2004-07-29 2013-04-16 Zymogenetics, Inc. Use of il-28 and il-29 to treat cancer and autoimmune disorders
BRPI0514396A2 (pt) * 2004-08-17 2009-05-12 Csl Behring Gmbh polipeptìdeos dependentes de vitamina k modificada
US20080176790A1 (en) 2004-10-29 2008-07-24 Defrees Shawn Remodeling and Glycopegylation of Fibroblast Growth Factor (Fgf)
PL1831242T3 (pl) 2004-12-23 2013-04-30 Novo Nordisk Healthcare Ag Zmniejszanie zawartości zanieczyszczeń białkowych w kompozycjach zawierających zależne od witaminy K białko będące przedmiotem zainteresowania
US9029331B2 (en) 2005-01-10 2015-05-12 Novo Nordisk A/S Glycopegylated granulocyte colony stimulating factor
US20070154992A1 (en) 2005-04-08 2007-07-05 Neose Technologies, Inc. Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
EP1874928A1 (en) * 2005-04-13 2008-01-09 AstraZeneca AB A host cell comprising a vector for production of proteins requiring gamma-carboxylation
EP1728798A1 (en) * 2005-06-01 2006-12-06 ZLB Behring GmbH Coagulation factor X polypeptides with modified activation properties
EP1893632B1 (en) 2005-06-17 2015-08-12 Novo Nordisk Health Care AG Selective reduction and derivatization of engineered factor vii proteins comprising at least one non-native cysteine
US8088728B2 (en) * 2005-06-24 2012-01-03 Drugrecure Aps Airway administration of tissue factor pathway inhibitor in inflammatory conditions affecting the respiratory tract
EP1922079A2 (en) 2005-08-09 2008-05-21 ZymoGenetics, Inc. Methods for the treatment and prevention of abnormal cell proliferation using taci-fusion molecules
KR20080056714A (ko) * 2005-08-09 2008-06-23 지모제넥틱스, 인코포레이티드 TACI―Ig 융합 분자를 사용하여 B―세포 악성종양을치료하는 방법
US20070105755A1 (en) 2005-10-26 2007-05-10 Neose Technologies, Inc. One pot desialylation and glycopegylation of therapeutic peptides
CN101268185B (zh) 2005-09-01 2013-03-27 诺沃-诺迪斯克保健股份有限公司 因子ⅶ多肽的疏水作用色谱纯化
WO2007031559A2 (en) 2005-09-14 2007-03-22 Novo Nordisk Health Care Ag Human coagulation factor vii polypeptides
US20090048440A1 (en) 2005-11-03 2009-02-19 Neose Technologies, Inc. Nucleotide Sugar Purification Using Membranes
EP1816201A1 (en) 2006-02-06 2007-08-08 CSL Behring GmbH Modified coagulation factor VIIa with extended half-life
EP1820508A1 (en) * 2006-02-21 2007-08-22 CSL Behring GmbH Coagulation factor X polypeptides with modified activation properties
DK2004214T3 (da) * 2006-03-16 2013-02-18 Stellaris Pharmaceuticals Aps Lokalbehandling med faktor VII
GB0606190D0 (en) 2006-03-28 2006-05-10 Isis Innovation Construct
KR101492422B1 (ko) * 2006-04-11 2015-02-12 체에스엘 베링 게엠베하 치료용 폴리펩타이드의 생체내 회수율을 증가시키는 방법
CN101489573B (zh) * 2006-05-15 2013-05-22 阿雷斯贸易股份有限公司 用TACI-Ig融合分子治疗自身免疫疾病的方法
FR2901707B1 (fr) 2006-05-31 2017-09-29 Lab Francais Du Fractionnement Composition de facteur vii recombinant ou transgenique, chaque molecule de facteur vii possedant deux sites de n-glycosylation a motifs glycanniques definis
WO2007144173A1 (en) 2006-06-14 2007-12-21 Csl Behring Gmbh Proteolytically cleavable fusion protein comprising a blood coagulation factor
EP1867660A1 (en) 2006-06-14 2007-12-19 CSL Behring GmbH Proteolytically cleavable fusion protein comprising a blood coagulation factor
US7939632B2 (en) * 2006-06-14 2011-05-10 Csl Behring Gmbh Proteolytically cleavable fusion proteins with high molar specific activity
US20080242607A1 (en) 2006-07-21 2008-10-02 Neose Technologies, Inc. Glycosylation of peptides via o-linked glycosylation sequences
US20100056428A1 (en) 2006-09-01 2010-03-04 Novo Nordisk Health Care Ag Modified proteins
US20100075375A1 (en) 2006-10-03 2010-03-25 Novo Nordisk A/S Methods for the purification of polypeptide conjugates
EP2094301A4 (en) * 2006-11-30 2012-02-01 Taplmmune Inc TREATMENT OF POXVIRIDAE COMPRISING TAP-1 AND / OR TAP-2 AS MOLECULAR ADJUVANT
CN105838699A (zh) * 2006-12-15 2016-08-10 巴克斯艾尔塔公司 具有延长的体内半衰期的因子VIIa-聚唾液酸结合物
JP5448839B2 (ja) * 2006-12-22 2014-03-19 ツェー・エス・エル・ベーリング・ゲー・エム・ベー・ハー インビボで長い半減期を有する修飾された凝固因子
FR2910786B1 (fr) 2006-12-29 2017-08-11 Laboratoire Francais Du Fractionnement Et Des Biotechnologies (Lfb) "procede d'extraction d'une proteine presente dans du lait"
JP5558106B2 (ja) * 2007-01-03 2014-07-23 ノボ ノルディスク ヘルス ケア アーゲー 凝固第vii因子関連ポリペプチドの皮下投与
KR20100016160A (ko) 2007-04-03 2010-02-12 바이오제너릭스 에이지 글리코페길화 g―csf를 이용하는 치료 방법
EP2147096B1 (en) * 2007-04-13 2015-03-25 Catalyst Biosciences, Inc. Modified factor VII polypeptides and uses thereof
MX2009013259A (es) 2007-06-12 2010-01-25 Novo Nordisk As Proceso mejorado para la produccion de azucares de nucleotidos.
US8206967B2 (en) * 2007-07-06 2012-06-26 Medimmune Limited Method for production of recombinant human thrombin
PT2574677T (pt) 2007-12-27 2017-10-19 Baxalta Inc Processos para cultura de células
US20130189239A1 (en) 2008-02-27 2013-07-25 Novo Nordisk A/S Conjugated Factor VIII Molecules
WO2009120922A2 (en) 2008-03-27 2009-10-01 Zymogenetics, Inc. Compositions and methods for inhibiting pdgfrbeta and vegf-a
TWI538916B (zh) 2008-04-11 2016-06-21 介控生化科技公司 經修飾的因子vii多肽和其用途
WO2009158696A1 (en) 2008-06-27 2009-12-30 Zymogenetics, Inc. SOLUBLE HYBRID Fcγ RECEPTORS AND RELATED METHODS
CA2742107A1 (en) * 2008-11-12 2010-05-20 Baxter International Inc. Method of producing serum-free insulin-free factor vii
EP3243835B1 (en) 2009-02-11 2024-04-10 Albumedix Ltd Albumin variants and conjugates
FR2942231B1 (fr) 2009-02-19 2015-03-20 Lfb Biotechnologies Acides nucleiques se liant specifiquement au facteur vii/viia humain, et utilisations
WO2010149172A2 (en) 2009-06-24 2010-12-29 Rigshospitalet SYSTEMIC PRO-HEMOSTATIC EFFECT OF CLOTTING FACTORS IN COMBINATION WITH SYMPATHICOMIMETICS WITH AGONISTIC EFFECTS ON α-ADRENERGIC AND/OR β-ADRENERGIC RECEPTORS OF THE SYMPATHETIC NERVOUS SYSTEM, RELATED TO IMPROVED CLOT STRENGTH.
FR2947181B1 (fr) 2009-06-26 2012-05-04 Lfb Biotechnologies Composition de facteur vii
US20120148557A1 (en) 2009-08-20 2012-06-14 Ulrich Kronthaler Albumin fused coagulation factors for non-intravenous administration in the therapy and prophylactic treatment of bleeding disorders
AU2010290131C1 (en) 2009-08-24 2015-12-03 Amunix Operating Inc. Coagulation factor VII compositions and methods of making and using same
JP5851410B2 (ja) 2009-10-30 2016-02-03 シーエヌジェイ ホールディングス、インク. 組換えビタミンk依存性タンパク質の生成法
GB2488077A (en) 2009-10-30 2012-08-15 Novozymes Biopharma Dk As Albumin variants
SG10201407983VA (en) 2009-12-18 2015-01-29 Csl Ltd Method of purifying polypeptides
JP5969458B2 (ja) 2010-04-09 2016-08-17 アルブミディクス アクティーゼルスカブ アルブミン誘導体及び変異体
WO2011156356A1 (en) 2010-06-09 2011-12-15 Zymogenetics, Inc. Dimeric vstm3 fusion proteins and related compositions and methods
TWI541252B (zh) 2010-10-26 2016-07-11 韓美科學股份有限公司 因子vii/viia之量產方法
TWI557135B (zh) 2010-11-03 2016-11-11 介控生化科技公司 經修飾之第九因子多胜肽及其用途
HUE029855T2 (en) 2011-07-05 2017-04-28 Bioasis Technologies Inc p97 antibody conjugates
PT2739649T (pt) 2011-08-05 2018-01-03 Bioasis Technologies Inc Fragmentos de p97 com atividade de transferência
US20140315817A1 (en) 2011-11-18 2014-10-23 Eleven Biotherapeutics, Inc. Variant serum albumin with improved half-life and other properties
WO2013116771A1 (en) 2012-02-01 2013-08-08 Synthetic Genomics, Inc. Materials and methods for the synthesis of error-minimized nucleic acid molecules
CA2864126A1 (en) 2012-02-15 2013-08-22 Biogen Idec Ma Inc. Recombinant factor viii proteins
SI3564260T1 (sl) 2012-02-15 2023-02-28 Bioverativ Therapeutics Inc. Sestavki faktorja VIII in postopki njegove izdelave in uporabe
MX2014010278A (es) 2012-03-16 2015-03-05 Novozymes Biopharma Dk As Variantes de albumina.
EP2687595B1 (en) 2012-07-19 2018-05-30 Laboratoire Français du Fractionnement et des Biotechnologies Method for purifying transgenic factor VII
CA2880162C (en) 2012-07-31 2023-04-04 Bioasis Technologies, Inc. Dephosphorylated lysosomal storage disease proteins and methods of use thereof
CN104717973A (zh) 2012-10-10 2015-06-17 诺和诺德保健Ag(股份有限公司) 因子vii多肽的液体药物组合物
US20150307865A1 (en) 2012-10-15 2015-10-29 Novo Nordisk Health Care Ag Coagulation factor vii polypeptides
US20150259665A1 (en) 2012-10-15 2015-09-17 Novo Nordisk Health Care Ag Factor vii conjugates
CA2890766A1 (en) 2012-11-08 2014-05-15 Novozymes Biopharma Dk A/S Albumin variants
WO2014160438A1 (en) 2013-03-13 2014-10-02 Bioasis Technologies Inc. Fragments of p97 and uses thereof
ES2703341T3 (es) 2013-03-14 2019-03-08 Genvivo Inc Ensayo diagnóstico de timidina quinasa para aplicaciones de terapia génica
TWI788044B (zh) 2013-03-15 2022-12-21 美商百歐維拉提夫治療公司 因子ix多肽調配物
AU2013204728B2 (en) 2013-03-15 2016-09-15 Baxalta GmbH Methods for treating bleeding disorders using a platelet subpopulation
FR3006591B1 (fr) 2013-06-11 2016-05-06 Lab Francais Du Fractionnement Composition de facteur vii presentant un point isoelectrique substantiellement homogene
EP3033097B1 (en) 2013-08-14 2021-03-10 Bioverativ Therapeutics Inc. Factor viii-xten fusions and uses thereof
AU2015210612B2 (en) 2014-02-03 2020-04-09 Bioasis Technologies Inc. P97 fusion proteins
DK3107562T3 (da) 2014-02-19 2019-12-16 Bioasis Technologies Inc P97-ids-fusionsproteiner
CN106413757B (zh) 2014-05-01 2022-01-14 比奥阿赛斯技术有限公司 p97-多核苷酸结合物
BR102015012334A2 (pt) 2015-05-27 2016-11-29 Fundação Hemoct De Ribeirão Preto Fundherp processo de produção do fator vii de coagulação sanguínea e fator vii de coagulação sanguínea
EP3307237A1 (en) 2015-06-12 2018-04-18 Laboratoire Français du Fractionnement et des Biotechnologies Injectable composition of factor vii and fillers
CN108472337B (zh) 2015-08-03 2022-11-25 比奥贝拉蒂治疗公司 因子ix融合蛋白以及其制备和使用方法
AU2016308504A1 (en) 2015-08-20 2018-01-18 Albumedix Ltd. Albumin variants and conjugates
CA2997263C (en) 2015-09-08 2022-10-04 Theripion, Inc. Apoa-1 fusion polypeptides and related compositions and methods
WO2018136163A2 (en) 2016-12-09 2018-07-26 Theripion, Inc. Tandem apoa-1 fusion polypeptides
WO2019016402A1 (en) 2017-07-20 2019-01-24 Aptevo Research And Development Llc BINDING PROTEINS BINDING AT 5T4 AND 4-1BB, COMPOSITIONS AND METHODS RELATED THERETO
US10603275B2 (en) 2017-11-07 2020-03-31 Rani Therapeutics, Llc Clotting factor preparations for delivery into tissue of the intestinal tract using a swallowable drug delivery device
EP4295915A3 (en) 2017-12-20 2024-05-22 Harbour Biomed (Shanghai) Co., Ltd Antibodies binding ctla-4 and uses thereof
US10150801B1 (en) 2017-12-27 2018-12-11 Imunami Laboratories Pte. Ltd. Recombinant polypeptides and methods of use thereof
CN111801346A (zh) 2017-12-27 2020-10-20 免疫实验室私人有限公司 重组多肽及其使用方法
FR3082427B1 (fr) 2018-06-14 2020-09-25 Lab Francais Du Fractionnement Combinaison de facteur vii et d'un anticorps bispecifique anti-facteurs ix et x
JP2022520886A (ja) * 2019-03-27 2022-04-01 シギロン セラピューティクス, インコーポレイテッド 第vii因子療法のための組成物、デバイス及び方法
US20210069306A1 (en) 2019-08-15 2021-03-11 Catalyst Biosciences, Inc. Modified factor vii polypeptides for subcutaneous administration and on-demand treatment
EP4021512A1 (en) 2019-08-26 2022-07-06 Imunami Laboratories Pte. Ltd. Recombinant polypeptides and methods of use thereof
US10675332B1 (en) 2019-08-26 2020-06-09 Imunami Laboratories Pte. Ltd. Recombinant polypeptides and methods of use thereof
EP4168034A1 (en) 2020-06-22 2023-04-26 Imunami Laboratories Pte. Ltd. Recombinant polypeptides and combinations for use in the treatment of cancer
CA3190513A1 (en) 2020-09-03 2022-03-10 Jeffrey S. Bartlett Soluble alkaline phosphatase constructs and expression vectors including a polynucleotide encoding for soluble alkaline phosphatase constructs
WO2022178090A2 (en) 2021-02-19 2022-08-25 Theripion, Inc. Dnase fusion polypeptides and related compositions and methods
WO2024042148A1 (en) 2022-08-26 2024-02-29 Stellaris Pharmaceuticals Aps Haemorrhage inhibiting compositions and methods involving the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459288A (en) * 1981-05-11 1984-07-10 Baxter Travenol Laboratories, Inc. Therapeutic blood clotting factor compositions and their use
US4382083A (en) * 1981-06-25 1983-05-03 Baxter Travenol Laboratories, Inc. Therapeutic method for treating blood-clotting defects with factor VIIa
US4456591A (en) * 1981-06-25 1984-06-26 Baxter Travenol Laboratories, Inc. Therapeutic method for activating factor VII
US4361509A (en) * 1981-12-14 1982-11-30 Scripps Clinic And Research Foundation Ultrapurification of factor VIII using monoclonal antibodies
US4481189A (en) * 1982-04-14 1984-11-06 New York Blood Center Inc. Process for preparing sterilized plasma and plasma derivatives
AU560686B2 (en) * 1982-08-04 1987-04-16 British Technology Group Limited Cloning vehicle dna h-factor ix elements

Also Published As

Publication number Publication date
CA1340512C (en) 1999-04-27
AU603983B2 (en) 1990-12-06
FI861598A0 (fi) 1986-04-16
JPS62283A (ja) 1987-01-06
JP2726806B2 (ja) 1998-03-11
FI861598A (fi) 1986-10-18
US4784950A (en) 1988-11-15
NO861482L (no) 1986-10-20
DK175616B1 (da) 2004-12-27
NO1996012I1 (no) 1996-10-21
HU204556B (en) 1992-01-28
ES554038A0 (es) 1987-11-01
DE3688760T2 (de) 1993-10-28
JP2835038B2 (ja) 1998-12-14
NZ215842A (en) 1988-04-29
JPH0824587B2 (ja) 1996-03-13
DE3688760D1 (de) 1993-09-02
JPH07163375A (ja) 1995-06-27
JPH07163374A (ja) 1995-06-27
ES8800343A1 (es) 1987-11-01
FI100055B (fi) 1997-09-15
GR860984B (en) 1986-08-18
ATE92105T1 (de) 1993-08-15
IE61982B1 (en) 1994-12-14
AU5617786A (en) 1986-11-06
DK200401261A (da) 2004-08-20
JPH10117787A (ja) 1998-05-12
DK177386A (da) 1986-10-18
DK177386D0 (da) 1986-04-17
LU88806I2 (fr) 1997-01-03
PT82408A (en) 1986-05-01
HUT43634A (en) 1987-11-30
NO175066B (no) 1994-05-16
NO1996007I1 (no) 1996-06-26
JP2544090B2 (ja) 1996-10-16
IE860995L (en) 1986-10-17
EP0200421B1 (en) 1993-07-28
CN86102644A (zh) 1987-06-03
EP0200421A3 (en) 1987-06-03
PT82408B (pt) 1988-08-17
EP0200421A2 (en) 1986-11-05
NO175066C (zh) 1994-08-24

Similar Documents

Publication Publication Date Title
CN1032142C (zh) 在哺乳动物细胞内表达因子vii活性的方法
EP0319312B1 (en) Vectors and compounds for direct expression of activated human protein C
JP2561677B2 (ja) プロテインcの発現
US5225537A (en) Methods for producing hybrid phospholipid-binding proteins
US5501853A (en) Peptide plasminogen activators
FI104734B (fi) Menetelmä plasminogeenin valmistamiseksi
EP0215548B1 (en) Expression of protein c
JPH08502176A (ja) エンテロキナーゼのクローニングおよび使用方法
US5302529A (en) Plasmid coding for human protein C
IE66337B1 (en) Vectors and compounds for expression of zymogen forms of human protein C
US8603777B1 (en) Expression of factor VII and IX activities in mammalian cells
WO1991012320A1 (en) Activated protein c with truncated light chain
JP2769170B2 (ja) 真核細肪中での同時発現
IE902912A1 (en) Cell culture methods for producing activated protein C
USRE38981E1 (en) DNA sequence coding for protein C
WO1991009951A2 (en) Recombinant protein c with truncated light chain
SI8810195A (sl) Hibridni proteini

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term