WO2020208872A1 - リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質 - Google Patents

リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質 Download PDF

Info

Publication number
WO2020208872A1
WO2020208872A1 PCT/JP2019/049989 JP2019049989W WO2020208872A1 WO 2020208872 A1 WO2020208872 A1 WO 2020208872A1 JP 2019049989 W JP2019049989 W JP 2019049989W WO 2020208872 A1 WO2020208872 A1 WO 2020208872A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide powder
composite oxide
metal composite
lithium metal
lithium
Prior art date
Application number
PCT/JP2019/049989
Other languages
English (en)
French (fr)
Inventor
健二 高森
友也 黒田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US17/602,602 priority Critical patent/US20220190333A1/en
Priority to KR1020217032208A priority patent/KR20210150399A/ko
Priority to EP19924475.7A priority patent/EP3954658A4/en
Priority to CN201980095183.0A priority patent/CN113661146A/zh
Publication of WO2020208872A1 publication Critical patent/WO2020208872A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium metal composite oxide powder and a positive electrode active material for a lithium secondary battery.
  • the present application claims priority with respect to Japanese Patent Application No. 2019-076522 filed in Japan on April 12, 2019, the contents of which are incorporated herein by reference.
  • Lithium secondary batteries have already been put into practical use not only in small power sources for mobile phones and notebook computers, but also in medium-sized or large-sized power sources for automobiles and power storage.
  • a positive electrode active material is used for the lithium secondary battery.
  • a lithium metal composite oxide is used as the positive electrode active material.
  • the lithium metal composite oxide powder When the lithium metal composite oxide powder is used as the positive electrode active material for a lithium secondary battery, the lithium metal composite oxide powder comes into contact with the electrolytic solution on the surface of the primary particles, on the surface of the secondary particles and inside the secondary particles, and the particles Insertion of lithium ions into the inside and desorption of lithium ions from the inside of the particles occur. Therefore, it is important to control the surface state of the primary particles or secondary particles of the lithium metal composite oxide powder in order to improve the battery characteristics.
  • Patent Document 1 describes a positive electrode active material for a lithium secondary battery adjusted so that the surface portion of the particles of the positive electrode active material and the inner portion of the particles each have a specific atomic concentration ratio.
  • the present invention has been made in view of the above circumstances, and is a lithium metal composite oxide capable of improving the discharge capacity retention rate at a high current rate of a lithium secondary battery when used as a positive electrode active material of a lithium secondary battery.
  • An object of the present invention is to provide a powder and a positive electrode active material for a lithium secondary battery using the powder.
  • a lithium metal composite oxide powder having a layered crystal structure which contains at least Li, Ni, element X, and element M, and the element X is Co, Mn, Fe, Cu, Ti, It is one or more elements selected from the group consisting of Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga and V, and the element M is from the group consisting of B, Si, S and P.
  • One or more elements to be selected, and the ratio of the content of the element M to the total amount of Ni and the element X in the lithium metal composite oxide powder is 0.01 mol% or more and 5 mol% or less.
  • the ratio of the content of Ni to the total amount of Ni represented by Ni / (Ni + X) and the element X in the lithium metal composite oxide powder is 0.4 or more in terms of molar ratio, and the following (1) , (2) and (3), a lithium metal composite oxide powder.
  • the molar ratio of the element concentration of O represented by O / element M and the element M is continuously increasing.
  • the lithium metal composite oxide powder according to [1] which is represented by the following composition formula (A). Li [Li n1 (Ni (1-z-w) X z M w ) 1-n1 ] O 2 (A) (However, X is one or more elements selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga and V.
  • M is one or more elements selected from the group consisting of B, Si, S and P, and has 0 ⁇ n1 ⁇ 0.2, 0 ⁇ z ⁇ 0.6, and 0 ⁇ w ⁇ 0.1. Fulfill.)
  • [3] The lithium metal composite oxide powder according to [1] or [2], which has a BET specific surface area of 2 m 2 / g or less.
  • [4] The lithium metal composite oxide powder according to any one of [1] to [3], wherein the average primary particle size is 0.3 ⁇ m or more and 8 ⁇ m or less.
  • the 50% cumulative diameter (D 50 ) is 2 ⁇ m or more and 10 ⁇ m.
  • the value obtained by dividing the water content (mass%) represented by the water content (mass%) / BET specific surface area (m 2 / g) by the BET specific surface area (m 2 / g) is 0.005 or more.
  • a lithium metal composite oxide powder capable of improving the discharge capacity retention rate at a high current rate of a lithium secondary battery when used as a positive electrode active material of a lithium secondary battery, and a lithium secondary using the same.
  • a positive electrode active material for a battery can be provided.
  • the present embodiment is a lithium metal composite oxide powder having a layered crystal structure.
  • the lithium metal composite oxide powder of the present embodiment contains at least Li, Ni, element X, and element M.
  • the element X is one or more elements selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga and V.
  • the element M is one or more elements selected from the group consisting of B, Si, S and P.
  • the ratio of the content of the element M to the total amount of Ni and the element X in the lithium metal composite oxide powder is 0.01 mol% or more and 5 mol% or less.
  • the ratio of the Ni content (Ni / (Ni + X)) to the total amount of Ni and the element X in the lithium metal composite oxide powder is 0.4 or more in terms of molar ratio.
  • the element X is preferably at least one of Ti, Mg, Al, W and Zr from the viewpoint of obtaining a lithium secondary battery having a high discharge capacity retention rate at a high current rate, and has thermal stability. In the sense of obtaining a high lithium secondary battery, it is preferably at least one of Al, W and Zr.
  • the compound containing the element M has lithium ion conductivity.
  • the element M is preferably at least one of B, S, and P, and more preferably B, from the viewpoint of obtaining a lithium secondary battery having a high discharge capacity retention rate at a high current rate. ..
  • the content of the element M to the total amount of Ni and element X (that is, the ratio of the content of the element M to the total amount of Ni and element X) in the lithium metal composite oxide powder is determined. It is 0.01 mol% or more and 5 mol% or less.
  • the lower limit of the content of the element M is 0.02 mol%, 0.03 mol% or 0.04 mol%.
  • the upper limit of the content of the element M is 4.9 mol%, 4.8 mol% or 4.7 mol%.
  • the above upper limit value and lower limit value can be combined arbitrarily.
  • the content of the element M with respect to the total amount of Ni and the element X is 0.02 mol% or more and 4.9 mol% or less, 0.03 mol% or more and 4.8 mol% or less, or 0. It includes .04 mol% or more and 4.7 mol or less.
  • the lithium metal composite oxide powder has. It is possible to prevent the metal component from eluting into the electrolytic solution. Further, if the content of the element M is not more than the above lower limit value, that is, if the content of the element M is 5 mol% or less with respect to the total amount of Ni and the element X, resistance when used as a positive electrode active material. Can be lowered.
  • the content of the element M with respect to the total amount of Ni and the element X in the lithium metal composite oxide powder can be determined by, for example, the following method. After dissolving the lithium metal composite oxide powder in hydrochloric acid, the composition of the lithium metal composite oxide powder is analyzed using an inductively coupled plasma emission spectrometer (for example, SPS3000 manufactured by SII Nanotechnology Co., Ltd.). From the analysis result, the content of the element M with respect to the total amount of Ni and the element X is calculated.
  • an inductively coupled plasma emission spectrometer for example, SPS3000 manufactured by SII Nanotechnology Co., Ltd.
  • the content of Ni in the lithium metal composite oxide powder to the total amount of Ni and element X is Ni / (Ni + X).
  • the upper limit of (Ni / (Ni + X)) is not particularly limited, and examples thereof include 0.95, 0.92, and 0.90. The above upper limit value and lower limit value can be arbitrarily combined.
  • (Ni / (Ni + X)) is 0.4 or more and 0.95 or less, 0.45 or more and 0.95 or less, 0.50 or more and 0.92 or less, or 0.55 or more and 0.90.
  • the following can be mentioned.
  • the charge / discharge capacity can be improved.
  • the content of Ni in the lithium metal composite oxide powder with respect to the total amount of Ni and element X can be determined by, for example, the following method. After dissolving the lithium metal composite oxide powder in hydrochloric acid, the composition of the lithium metal composite oxide powder is analyzed using an inductively coupled plasma emission spectrometer (for example, SPS3000 manufactured by SII Nanotechnology Co., Ltd.). From the analysis result, the molar ratio of the Ni content to the total amount of Ni and the element X is calculated.
  • an inductively coupled plasma emission spectrometer for example, SPS3000 manufactured by SII Nanotechnology Co., Ltd.
  • the lithium metal composite oxide powder of the present embodiment further satisfies the following (1), (2) and (3).
  • the molar ratio of element M to O (element M / O) inside the particles of the lithium metal composite oxide powder is 0.05 or less.
  • "O" represents an oxygen element.
  • the “particle” includes both a secondary particle in which the primary particles are aggregated or a primary particle that exists independently of the secondary particles.
  • the “primary particles” mean particles in which no clear grain boundary is observed on the particle surface when the particles are observed with a field of view of 5000 times or more and 20000 times or less with a scanning electron microscope or the like.
  • the “secondary particles” are particles in which the primary particles are aggregated, and mean particles having a spherical or substantially spherical shape.
  • Particle surface refers to the outermost surface of a particle.
  • “Particle center” means the geometric center of a particle.
  • “Inside the particle” means a region of D / 2 or more and 3D / 2 or less from the particle surface to the particle center when the radius of the particle is D.
  • “Particle radius” means half the length of the longest diameter in an observed image of a particle.
  • Continuous increasing is meant having a concentration gradient that gradually increases over at least 5 nm from the particle surface to the particle center.
  • “Increase” means that the element concentration on the surface of the particle is set to the minimum value, and the element concentration is increased from this minimum value toward the center of the particle. In the present embodiment, as long as the element concentration is increased from this minimum value, the element concentration may be maintained or slightly decreased from the particle surface to the particle center.
  • a slight decrease means that the decrease width of the measured value on the particle center side is 10% or less with respect to the measured value on the particle surface side when the element concentration is measured from the particle surface to the particle center. ..
  • (Li / element M) and (O / element M) at the particle center and the particle surface are, for example, general transmission electron microscope (TEM) -energy dispersive X-ray spectroscopy (Energy Dispersive). It can be confirmed by the method of X-ray Spectroscopy (EDX) or transmission electron microscope (TEM) -electron energy loss spectroscopy (EELS). Specifically, first, as a measurement target, an arbitrary lithium metal composite oxide powder is subjected to ion milling processing, processing by a focused ion beam, or the like to prepare an observation sample of the particles. Next, the obtained observation sample is TEM-observed at an appropriate magnification.
  • TEM transmission electron microscope
  • the particle center and the particle surface are analyzed by electron energy loss spectroscopy (EELS) to obtain the element concentration (at%) of each.
  • EELS electron energy loss spectroscopy
  • the line analysis by EELS is preferably performed in each range of 0.3 nm or less in the depth direction.
  • the molar ratio of the elemental concentrations of the elements M and O inside the particle can be measured by the following method.
  • the lithium metal composite oxide powder is sliced using a focused ion beam device (FIB, for example, JIB-4501, manufactured by JEOL Ltd.), and the particle cross section is observed with an analytical electron microscope (for example, ARM200F, manufactured by JEOL Ltd.).
  • FIB focused ion beam device
  • ARM200F manufactured by JEOL Ltd.
  • a point is used from the surface of the particle to the center of the particle in a region of D / 2 or more and 3D / 2 or less using an EDX detector (for example, JED-2300T manufactured by JEOL Ltd.).
  • Perform analysis Thereby, the molar ratio (element M / O) of the element concentration of the element M and O is measured.
  • the concentration of the element M is different between the particle center of the lithium metal composite oxide powder and the particle surface.
  • the molar ratio (Li / element M) of the element concentration of Li and the element M continuously increases from the particle surface to the particle center. That is, in the lithium metal composite oxide powder of the present embodiment, the lithium element concentration gradually increases from the particle surface to the particle center.
  • the concentration of the element M on the surface of the particle is relatively higher than that inside the particle. More specifically, it is preferable that the concentration of the element M is continuously increased in the region within 20 nm from the surface of the particles toward the center.
  • the molar ratio (O / element M) of the element concentration of O and the element M continuously increases from the particle surface to the center of the particle. That is, in the lithium metal composite oxide powder of the present embodiment, the oxygen element concentration gradually increases from the particle surface to the particle center. In other words, the concentration of the element M on the surface of the particle is relatively higher than that inside the particle.
  • the concentration of the element M on the particle surface in contact with the electrolytic solution is relatively higher than the concentration of the element M inside the particles.
  • the abundance ratio of the compound containing the element M on the particle surface can be increased. It is considered that the compound containing the element M has a high affinity with the electrolytic solution, facilitates the transfer of lithium ions between the lithium metal composite oxide powder and the electrolytic solution, and increases the discharge capacity retention rate at a high current rate. ..
  • the lithium metal composite oxide powder of the present embodiment has a molar ratio of elements M and O (element M / O) inside the particles of 0.05 or less, preferably 0.02 or less, more preferably 0.01 or less. It is preferable, and 0.009 or less is particularly preferable.
  • element M concentration at the center of the particle is relatively low. That is, the concentration of elements other than the element M is high at the center of the particle.
  • the interaction between the element M and the lithium ion is unlikely to occur at the center of the particle, and a crystal structure having a high charge / discharge capacity can be maintained. Therefore, the charge / discharge capacity can be increased.
  • the lower limit of the molar ratio of the elements M and O (element M / O) inside the particles is not particularly limited, but is, for example, 0.0001.
  • the upper limit value and the lower limit value of the molar ratio of the elements M and O (element M / O) inside the particle can be arbitrarily combined.
  • the molar ratio of element M to O (element M / O) inside the particle is 0.0001 or more and 0.05 or less, preferably 0.0005 or more and 0.02 or less, and 0.0008 or more and 0.01.
  • the following is more preferable, and 0.0012 or more and 0.009 or less are particularly preferable.
  • the lithium metal composite oxide powder of the present embodiment is preferably represented by the following composition formula (A).
  • X is one or more elements selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga and V.
  • M is one or more elements selected from the group consisting of B, Si, S and P, and has 0 ⁇ n1 ⁇ 0.2, 0 ⁇ z ⁇ 0.6, and 0 ⁇ w ⁇ 0.1. Fulfill.
  • n1 is more than 0, preferably 0.001 or more, more preferably 0.002 or more, still more preferably 0.003 or more, from the viewpoint of improving the cycle characteristics. Further, n1 is preferably 0.19 or less, more preferably 0.18 or less, and particularly preferably 0.17 or less. The upper limit value and the lower limit value can be arbitrarily combined. For example, n1 is preferably more than 0 and 0.19 or less, more preferably 0.001 or more and 0.18 or less, further preferably 0.002 or more and 0.17 or less, and 0.003 or more and 0.17 or less. Is particularly preferable.
  • z is more than 0, preferably 0.001 or more, and more preferably 0.02 or more, from the viewpoint of improving the cycle characteristics. Further, 0.50 or less is preferable, 0.48 or less is more preferable, and 0.46 or less is particularly preferable.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • z is preferably more than 0 and 0.50 or less, more preferably 0.001 or more and 0.48 or less, and particularly preferably 0.02 or more and 0.46 or less.
  • w is preferably more than 0, more preferably 0.001 or more, and particularly preferably 0.002 or more, from the viewpoint of improving the cycle characteristics. Further, 0.09 or less is preferable, 0.08 or less is more preferable, and 0.07 or less is particularly preferable.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • w is preferably more than 0 and 0.09 or less, more preferably 0.001 or more and 0.08 or less, and particularly preferably 0.002 or more and 0.07 or less.
  • the lithium metal composite oxide powder of the present embodiment preferably has a BET specific surface area of 2 m 2 / g or less.
  • Lithium metal composite oxide powder of the present embodiment the following is more preferable BET specific surface area of 1.8 m 2 / g, more preferably 1.5 m 2 / g or less, and particularly preferably 1.2 m 2 / g.
  • the lower limit of the BET specific surface area of the lithium metal composite oxide powder is not particularly limited, and examples thereof include 0.1 m 2 / g.
  • a BET specific surface area of the lithium metal composite oxide powder is preferably no greater than 0.1 m 2 / g or more 2m 2 / g, 0.12m 2 / more preferably less than 1.8m 2 / g g, more preferably 0.15 m 2 / g or more 1.5 m 2 / g or less, 0.18 m 2 / g or more 1.2 m 2 / g or less is particularly preferred.
  • the BET specific surface area of the lithium metal composite oxide powder is determined, for example, by drying 1 g of the lithium metal composite oxide powder in a nitrogen atmosphere at 105 ° C. for 30 minutes, and then using a BET specific surface area meter (for example, Macsorb (registered trademark) manufactured by Mountech Co., Ltd.). )) Is obtained by measurement using (unit: m 2 / g).
  • the lithium metal composite oxide powder of the present embodiment preferably has an average primary particle size of 0.3 ⁇ m or more and 8 ⁇ m or less.
  • the average primary particle size of the lithium metal composite oxide powder of the present embodiment is more preferably 0.5 ⁇ m or more, further preferably 0.8 ⁇ m or more, and particularly preferably 1 ⁇ m or more.
  • the average primary particle size of the lithium metal composite oxide powder of the present embodiment is more preferably 8 ⁇ m or less, further preferably 7 ⁇ m or less, and particularly preferably 6 ⁇ m or less.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the average primary particle size of the lithium metal composite oxide powder of the present embodiment is more preferably 0.5 ⁇ m or more and 8 ⁇ m or less, further preferably 0.8 ⁇ m or more and 7 ⁇ m or less, and particularly preferably 1 ⁇ m or more and 6 ⁇ m or less.
  • the average primary particle size of the lithium metal composite oxide powder can be measured by the following method. First, the lithium metal composite oxide powder is placed on a conductive sheet attached on a sample stage, and an electron having an acceleration voltage of 20 kV is used with a scanning electron microscope (SEM, for example, JSM-5510 manufactured by JEOL Ltd.). SEM observation is performed by irradiating a line. Fifty primary particles were randomly extracted from the image (SEM photograph) obtained by SEM observation, and for each primary particle, the distance between parallel lines sandwiched between parallel lines obtained by drawing the projected image of the primary particles from a certain direction. (Constant direction diameter) is measured as the particle size of the primary particles. The arithmetic mean value of the particle size of the obtained primary particles is the average primary particle size of the lithium metal composite oxide powder.
  • SEM scanning electron microscope
  • the lithium metal composite oxide powder of the present embodiment has a particle size distribution of all the particles contained in the lithium metal composite oxide powder, that is, the secondary particles in which the primary particles are aggregated and the primary particles existing independently of the secondary particles.
  • the 50% cumulative diameter (D 50 ) is 2 ⁇ m or more and 10 ⁇ m or less, and further. , It is preferable to satisfy the relationship of the following formula (B). 0.3 ⁇ (D 90- D 10 ) / D 50 ⁇ 3 ... (B)
  • the lower limit of the 50% cumulative diameter (D 50 ) is preferably 2.5 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 3.5 ⁇ m or more.
  • the upper limit of the 50% cumulative diameter (D 50 ) is preferably 9 ⁇ m or less, more preferably 8 ⁇ m or less, and even more preferably 7 ⁇ m or less.
  • the upper and lower limits of the 50% cumulative diameter (D 50 ) can be arbitrarily combined. In the present embodiment, 2.5 ⁇ m or more and 9 ⁇ m or less is preferable, 3 ⁇ m or more and 8 ⁇ m or less is more preferable, and 3.5 ⁇ m or more and 7 ⁇ m or less is further preferable.
  • the lower limit of the relationship represented by the formula (B) is preferably 0.4 or more, more preferably 0.5 or more, and particularly preferably 0.55 or more.
  • the upper limit of the relationship represented by the formula (B) is preferably 2.5 or less, more preferably 2 or less, and particularly preferably 1.5 or less.
  • the upper limit value and the lower limit value of the relationship represented by the formula (B) can be arbitrarily combined. In the present embodiment, 0.4 or more and 2.5 or less is preferable, 0.5 or more and 2 or less is more preferable, and 0.55 or more and 1.5 or less is particularly preferable.
  • the 10% cumulative diameter (D 10 ), 50% cumulative diameter (D 50 ), and 90% cumulative diameter (D 90 ) can be determined by the following methods.
  • 0.1 g of lithium metal composite oxide powder is put into 50 ml of a 0.2 mass% sodium hexametaphosphate aqueous solution to obtain a dispersion liquid in which the powder is dispersed.
  • the particle size distribution of the obtained dispersion is measured using a laser diffraction scattering particle size distribution measuring device (for example, Mastersizer 2000 manufactured by Malvern) to obtain a volume-based cumulative particle size distribution curve.
  • a laser diffraction scattering particle size distribution measuring device for example, Mastersizer 2000 manufactured by Malvern
  • the volume particle size at the time of 10% accumulation is defined as the 10% cumulative volume particle size D 10 of the lithium metal composite oxide powder.
  • the volume particle size at the time of 90% accumulation is defined as 90% cumulative volume particle size D 90 of the lithium metal composite oxide powder.
  • the lithium metal composite oxide powder of the present embodiment is arranged from the viewpoint of forming an appropriate electrode structure, that is, the lithium metal composite oxide powder, the conductive material, and the binder are appropriately mixed and arranged, and the electrode strength and electrons are arranged. From the viewpoint of achieving both conductivity, the value obtained by dividing the water content (mass%) by the BET specific surface area (m 2 / g) (water content (mass%) / BET specific surface area (m 2 / g)) is It is preferably 0.005 or more and 0.7 or less.
  • the lower limit of the value obtained by dividing the water content (mass%) by the BET specific surface area (m 2 / g) is preferably 0.005 or more, more preferably 0.008 or more, and particularly preferably 0.010 or more.
  • the upper limit of the value obtained by dividing the water content (mass%) by the BET specific surface area (m 2 / g) is preferably 0.7 or less, more preferably 0.6 or less, and particularly preferably 0.5 or less.
  • the upper and lower limits of the value obtained by dividing the water content (mass%) by the BET specific surface area (m 2 / g) can be arbitrarily combined.
  • the value obtained by dividing the water content (mass%) by the BET specific surface area (m 2 / g) is preferably 0.005 or more and 0.7 or less, preferably 0.008 or more and 0.6.
  • the following is more preferable, and 0.010 or more and 0.5 or less is further preferable.
  • the water content of the lithium metal composite oxide powder of the present embodiment is measured using, for example, 1 g of the lithium metal composite oxide powder and a coulometric Karl Fischer titer (for example, 831 Coulometer manufactured by Metrohm). can do.
  • the lithium metal composite oxide powder of the present embodiment has a molar ratio of elemental concentrations of Li and element M from the particle surface to the particle center from the viewpoint of increasing the discharge capacity while increasing the retention rate of the discharge capacity at a high current rate.
  • the maximum concentration gradient R Li / M in the range where Li / element M) is continuously increasing is the molar ratio (O) of the element concentration of O and element M from the particle surface to the center of the lithium metal composite oxide powder.
  • / element M) is smaller than the maximum gradient R O / M in the range continuously increases to (i.e., is the relationship R Li / M ⁇ R O / M) is preferred.
  • R Li / M the amount of change per 1 nm of the element concentration from the particle surface to the particle center obtained by the above-mentioned TEM-EELS measurement is calculated for each measurement point, and the molar ratio of the element concentration of Li and the element M ( The value with the largest amount of change in the range in which Li / element M) is continuously increasing is defined as the maximum concentration gradient R Li / M.
  • RO / M the amount of change per 1 nm of the element concentration of the lithium metal composite oxide powder from the particle surface to the center of the particle is calculated for each measurement point, and the molar ratio of the element concentration of O and element M ( The value with the largest amount of change in the range in which O / element M) is continuously increasing is defined as the maximum concentration gradient RO / M.
  • the lower limit of R Li / M is preferably 0.05 or more, more preferably 0.1 or more, and particularly preferably 0.15 or more.
  • the upper limit of R Li / M is preferably 5 or less, more preferably 4.5 or less, and particularly preferably 4 or less.
  • the upper limit value and the lower limit value of R Li / M can be arbitrarily combined. In the present embodiment, it is preferably 0.05 or more and 5 or less, more preferably 0.1 or more and 4.5 or less, and further preferably 0.15 or more and 4 or less.
  • the lower limit of RO / M is preferably 0.1 or more, more preferably 0.2 or more, and particularly preferably 0.3 or more.
  • the upper limit of RO / M is preferably 8 or less, more preferably 6 or less, and particularly preferably 4 or less.
  • the upper limit value and the lower limit value of RO / M can be arbitrarily combined. In the present embodiment, it is preferably 0.1 or more and 8 or less, more preferably 0.2 or more and 6 or less, and further preferably 0.3 or more and 4 or less.
  • the crystal structure of the positive electrode active material is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structure is P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3 m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6mm, P6cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, and P6 3
  • the monoclinic crystal structures are P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, and C2. It belongs to any one space group selected from the group consisting of / c.
  • the crystal structure is a hexagonal crystal structure belonging to the space group R-3m or a monoclinic crystal structure belonging to C2 / m.
  • the structure is particularly preferable.
  • the method for producing a lithium metal composite oxide powder of the present embodiment includes a step of mixing a precursor of a positive electrode active material for a lithium secondary battery and a lithium compound to obtain a mixture, and a step of firing the mixture to obtain a raw material compound.
  • the step of obtaining and the step of adding a compound containing the element M to the raw material compound are included.
  • Step to obtain a mixture This step is a step of mixing the lithium compound and the precursor to obtain a mixture.
  • a precursor of a positive electrode active material for a lithium secondary battery is produced.
  • the precursor is Ni and one or more metals of the elements X (Co, Mn, Fe, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga and V). It is a composite metal compound containing.
  • a composite metal hydroxide or a composite metal oxide is preferable.
  • the precursor of the positive electrode active material for a lithium secondary battery may be referred to as a “precursor” or a “composite metal compound”.
  • the composite metal compound can be produced by a commonly known batch co-precipitation method or continuous co-precipitation method.
  • the production method thereof will be described in detail by taking a composite metal hydroxide containing nickel, cobalt and manganese as an example.
  • a nickel cobalt manganese composite metal hydroxide is produced by reacting a nickel salt solution, a cobalt salt solution, a manganese salt solution, and a complexing agent by a co-precipitation method, particularly a continuous method described in JP-A-2002-201028. To manufacture.
  • the nickel salt which is the solute of the nickel salt solution is not particularly limited, but for example, any one of nickel sulfate, nickel nitrate, nickel chloride and nickel acetate can be used.
  • As the cobalt salt which is the solute of the cobalt salt solution for example, any one of cobalt sulfate, cobalt nitrate, and cobalt chloride can be used.
  • As the manganese salt which is the solute of the manganese salt solution for example, any one of manganese sulfate, manganese nitrate, and manganese chloride can be used.
  • the above metal salts are used in a ratio corresponding to the composition ratio of the above formula (A).
  • water is used as a solvent for the nickel salt solution, the cobalt salt solution and the manganese salt solution.
  • the complexing agent can form a complex with nickel, cobalt, and manganese ions in an aqueous solution.
  • examples thereof include ammonium ion feeders (ammonium sulfate, ammonium chloride, ammonium carbonate or ammonium fluoride, etc.), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracildiacetic acid, and glycine.
  • the complexing agent may or may not be contained.
  • the amount of the complexing agent contained in the metal salt solution of nickel, cobalt, and manganese and the mixture containing the complexing agent is, for example, the number of moles of the metal salt of nickel, cobalt, and manganese.
  • the molar ratio to total is greater than 0 and less than or equal to 2.0.
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • the temperature of the reaction vessel is controlled within the range of, for example, 20 ° C. or higher and 80 ° C. or lower, preferably 30 ° C. or higher and 70 ° C. or lower.
  • the pH value in the reaction vessel is controlled, for example, in the range of pH 9 or more and pH 13 or less, preferably pH 11 or more and pH 13 or less when the temperature of the aqueous solution is 40 ° C.
  • the substances in the reaction vessel are appropriately stirred.
  • a type that overflows can be used in order to separate the formed reaction precipitate.
  • the inside of the reaction vessel may be in an appropriate oxygen-containing atmosphere or in the presence of an oxidizing agent while maintaining an inert atmosphere.
  • an oxygen-containing gas may be introduced into the reaction vessel.
  • the oxygen-containing gas include oxygen gas, air, and a mixed gas of these and an oxygen-free gas such as nitrogen gas.
  • a mixed gas is preferable from the viewpoint of easily adjusting the oxygen concentration in the oxygen-containing gas.
  • the finally obtained positive electrode active material for a lithium secondary battery can have desired physical properties. Can be controlled.
  • the obtained reaction precipitate is washed with water and then dried to isolate the nickel cobalt manganese composite hydroxide as the nickel cobalt manganese composite compound. Further, if necessary, it may be washed with a weak acid water or an alkaline solution containing sodium hydroxide or potassium hydroxide.
  • the nickel-cobalt-manganese composite hydroxide is produced as a precursor, but a nickel-cobalt-manganese composite oxide may be prepared.
  • a nickel cobalt manganese composite oxide can be prepared by firing a nickel cobalt manganese composite hydroxide.
  • the firing time is preferably 1 hour or more and 30 hours or less, which is the total time from the start of temperature rise to the end of temperature retention.
  • the rate of temperature rise in the heating step to reach the maximum holding temperature is preferably 180 ° C./hour or more, more preferably 200 ° C./hour or more, and particularly preferably 250 ° C./hour or more.
  • the metal raw material liquid and the metal raw material liquid and so that the volume of the metal raw material liquid (that is, all the metal salt solutions) supplied to the reaction vessel becomes larger than the volume of the alkaline solution (that is, the alkali metal hydroxide solution).
  • the concentration of the alkaline solution it is possible to obtain a metal composite hydroxide whose requirements (1) to (3) are easily controlled within the range of the present embodiment.
  • the BET specific surface area of the precursor is 5 m 2 / g or more and 40 m 2 / g or less.
  • the BET specific surface area of the precursor can be measured under the same conditions using the same apparatus as the BET specific surface area of the lithium metal composite oxide powder.
  • the requirements (1) to (3) can be controlled within the range of the present embodiment by adjusting the BET specific surface area of the precursor to 5 m 2 / g or more and 40 m 2 / g or less.
  • the BET specific surface area of the precursor can be adjusted by appropriately controlling the concentration of the metal salt supplied to the reaction vessel, the stirring speed, the reaction temperature, the reaction pH, the atmosphere in the reaction vessel, and the like. Specifically, when the concentration of the metal salt supplied to the reaction vessel is high, the stirring speed is slow, the reaction temperature is low, the reaction pH is high, and the atmosphere in the reaction vessel is an oxidizing atmosphere, the BET specific surface area of the precursor is increased. It tends to be higher.
  • the lithium compound used in the present invention is one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium oxide, lithium chloride and lithium fluoride, or a mixture of two or more. can do. Among these, either one or both of lithium hydroxide and lithium carbonate is preferable. When the lithium hydroxide contains lithium carbonate, the content of lithium carbonate in the lithium hydroxide is preferably 5% by mass or less.
  • a method of mixing the precursor and the lithium compound will be described.
  • the precursor is dried and then mixed with the lithium compound.
  • the drying conditions are not particularly limited, and examples thereof include any of the following drying conditions 1) to 3). 1) Conditions under which the precursor is not oxidized and reduced. Specifically, it is a drying condition in which the oxide is maintained as an oxide, or a drying condition in which the hydroxide is maintained as a hydroxide. 2) Conditions under which the precursor is oxidized. Specifically, it is a drying condition for oxidizing from a hydroxide to an oxide. 3) Conditions under which the precursor is reduced. Specifically, it is a drying condition for reducing oxides to hydroxides.
  • Inert gases such as nitrogen, helium and argon may be used for conditions where oxidation and reduction are not carried out, and oxygen or air may be used under conditions where hydroxides are oxidized.
  • a reducing agent such as hydrazine or sodium sulfite may be used in an inert gas atmosphere.
  • the precursor After the precursor is dried, the precursor may be classified as appropriate.
  • the above lithium compounds and precursors are mixed in consideration of the composition ratio of the final target product.
  • it is mixed with the lithium compound so that the ratio of the number of lithium atoms to the number of metal atoms contained in the composite metal oxide or composite metal hydroxide is greater than 1.0. That is, the lithium compound and the composite metal oxide or composite metal hydroxide are mixed so that the molar ratio of lithium to the total of metal elements other than lithium (total of nickel and element X) exceeds 1. ..
  • the ratio of the number of lithium atoms to the number of metal atoms is preferably 1.05 or more, more preferably 1.10 or more. Further, 1.30 or less is preferable, and 1.20 or less is more preferable.
  • the upper limit and lower limit of the ratio of the number of lithium atoms to the number of metal atoms can be arbitrarily combined, and may be, for example, 1.05 or more and 1.30 or less, and 1.10 or more and 1.20 or less. You may.
  • a raw material compound which is a lithium-nickel-containing composite metal oxide is obtained.
  • Step to obtain raw material compound This step is a step of calcining a mixture of a lithium compound and a precursor to obtain a raw material compound.
  • dry air, an oxygen atmosphere, an inert atmosphere, or the like is used depending on the desired composition, and a plurality of heating steps are performed if necessary.
  • the firing temperature of the mixture is not particularly limited, but is preferably 600 ° C. or higher and 1100 ° C. or lower, and more preferably 650 ° C. or higher and 1100 ° C. or lower.
  • the firing temperature is at least the above lower limit value, that is, at 600 ° C. or higher, a positive electrode active material for a lithium secondary battery having a strong crystal structure can be obtained.
  • the firing temperature is not more than the above upper limit value, that is, not more than 1100 ° C., the volatilization of lithium on the surface of the secondary particles can be reduced.
  • the firing temperature in the present specification means the temperature of the atmosphere in the firing furnace, and is the maximum holding temperature in the main firing step (hereinafter, may be referred to as the maximum holding temperature), and a plurality of heating steps are performed.
  • the main firing step having, it means the temperature when heating at the maximum holding temperature in each heating step.
  • the firing time is preferably 3 hours or more and 50 hours or less. If the firing time exceeds 50 hours, the battery performance tends to be substantially inferior due to the volatilization of lithium. If the firing time is less than 3 hours, crystal development tends to be poor and battery performance tends to be poor. It is also effective to perform temporary firing before the above firing.
  • the temperature of the tentative firing is preferably 300 ° C. or higher and 850 ° C. or lower for 1 to 10 hours.
  • the heating rate of the heating step that reaches the maximum holding temperature is preferably 180 ° C./hour or more, more preferably 200 ° C./hour or more, and particularly preferably 250 ° C./hour or more.
  • the rate of temperature rise in the heating step to reach the maximum holding temperature is calculated from the time from the start of the temperature rise to the time to reach the holding temperature described later in the firing apparatus.
  • the firing step preferably includes a plurality of heating steps having different firing temperatures. For example, it is preferable to have a first firing step and a second firing step in which the firing is performed at a higher temperature than the first firing step. Further, it may have different firing stages of firing temperature and firing time.
  • the raw material compound is obtained by calcining the mixture of the lithium compound and the precursor as described above.
  • Step of adding compound containing element M Specific examples of the compound containing the element M include H 2 SO 4 , H 2 SO 3 , H 2 S 2 O 3 , H 2 SO 6 , H 2 SO 8 , H 3 PO 4 , and H 4 P 2 O. 7 , H 3 PO 3 , H 3 PO 2 , H 3 BO 3 , HBO 2 , H 2 B 4 O 7 , HB 5 O 8 , B 2 O 3 , H 4 SiO 4 , H 2 SiO 3 , H 2 Si Examples thereof include 2 O 5 and SiO 2 .
  • the mixing amount of the compound containing the element M is not particularly limited, but for example, it may be 0.01 mol% or more and 5 mol% with respect to the total amount (100 mol%) of the raw material compound obtained in the above step.
  • the composition gradient of the element M that is, the change in the element concentration of the element M from the particle surface to the particle center
  • the element concentration of the element M inside the particle are required. It can be adjusted within the range of (1) to (3).
  • the compound containing the element M and the raw material compound are mixed and then heat-treated in an atmosphere in which the humidity is adjusted. Specifically, it is preferable to perform heat treatment in an atmosphere adjusted to a relative humidity of 0% or more and 30% or less.
  • the heat treatment time is preferably 1 to 10 hours in the range of 300 ° C. or higher and 500 ° C. or lower.
  • the diffusion of the element M is suppressed by lowering the heat treatment temperature or shortening the heat treatment time. Since the state of the element M changes depending on the type of the element M and the composition of the metal composite hydroxide and the raw material compound, the BET specific surface area, the heat treatment temperature and the heat treatment time of the metal composite hydroxide and the raw material compound are appropriate as described above. To obtain the lithium metal composite oxide powder of the present embodiment.
  • the heat treatment temperature is lower than the heat treatment temperature, that is, less than 300 ° C., and the heat treatment is performed in an atmosphere in which the humidity is low and the relative humidity is specifically adjusted to 30% or less.
  • the value obtained by dividing the water content (mass%) of the composite oxide powder by the BET specific surface area (m 2 / g) of the lithium metal composite oxide powder can be controlled.
  • the lithium metal composite oxide powder after the heat treatment may be cleaned using pure water, an alkaline cleaning solution, or the like as the cleaning solution.
  • the alkaline cleaning solution include LiOH (lithium hydroxide), NaOH (sodium hydroxide), KOH (potassium hydroxide), Li 2 CO 3 (lithium carbonate), Na 2 CO 3 (sodium carbonate), and K 2 CO 3.
  • examples thereof include an aqueous solution of one or more anhydrides selected from the group consisting of (potassium carbonate) and (NH 4 ) 2 CO 3 (ammonium carbonate), and an aqueous solution of the hydrate of the anhydride. Ammonia can also be used as the alkali.
  • the cleaning step as a method of bringing the cleaning liquid into contact with the lithium metal composite oxide powder, a method of putting the lithium metal composite oxide powder into each cleaning liquid and stirring it, or a method of using each cleaning liquid as shower water and lithium metal composite
  • the method of applying the oxide powder or the lithium metal composite oxide powder is added to the cleaning liquid and stirred, and then the lithium metal composite oxide powder is separated from each cleaning liquid, and then each cleaning liquid is separated as shower water.
  • a method of applying to the later lithium metal composite oxide powder can be mentioned.
  • the temperature of the cleaning liquid used for cleaning is preferably 15 ° C. or lower, more preferably 10 ° C. or lower, and even more preferably 8 ° C. or lower.
  • the mixture of the above lithium compound and the precursor when fired, it may be fired in the presence of an inert melting agent.
  • the reaction of the mixture can be promoted by firing the mixture in the presence of the inert melting agent.
  • the inert melting agent may remain in the lithium metal composite oxide powder after firing, or may be removed by washing with a cleaning liquid after firing.
  • the lithium metal composite oxide powder after firing in the presence of the inert melting agent is preferably washed with a cleaning liquid such as pure water or an alkaline cleaning liquid.
  • the firing temperature and the total time may be appropriately adjusted within the above ranges.
  • the inert melting agent that can be used in the present embodiment is not particularly limited as long as it does not easily react with the mixture during firing.
  • a fluoride of one or more elements (hereinafter referred to as “A”) selected from the group consisting of Na, K, Rb, Cs, Ca, Mg, Sr and Ba, and a chloride of A. , A carbonate, A sulfate, A nitrate, A phosphate, A hydroxide, A molybdate and A tungstate, one or more selected from the group. ..
  • the fluorides of A include NaF (melting point: 993 ° C.), KF (melting point: 858 ° C.), RbF (melting point: 795 ° C.), CsF (melting point: 682 ° C.), CaF 2 (melting point: 1402 ° C.), MgF 2 (Melting point: 1263 ° C.), SrF 2 (melting point: 1473 ° C.) and BaF 2 (melting point: 1355 ° C.).
  • Chlorides of A include NaCl (melting point: 801 ° C.), KCl (melting point: 770 ° C.), RbCl (melting point: 718 ° C.), CsCl (melting point: 645 ° C.), CaCl 2 (melting point: 782 ° C.), MgCl 2 (Melting point: 714 ° C.), SrCl 2 (melting point: 857 ° C.) and NaCl 2 (melting point: 963 ° C.).
  • the carbonates of A include Na 2 CO 3 (melting point: 854 ° C), K 2 CO 3 (melting point: 899 ° C), Rb 2 CO 3 (melting point: 837 ° C), Cs 2 CO 3 (melting point: 793 ° C). , CaCO 3 (melting point: 825 ° C.), MgCO 3 (melting point: 990 ° C.), SrCO 3 (melting point: 1497 ° C.) and BaCO 3 (melting point: 1380 ° C.).
  • the sulfates of A include Na 2 SO 4 (melting point: 884 ° C), K 2 SO 4 (melting point: 1069 ° C), Rb 2 SO 4 (melting point: 1066 ° C), Cs 2 SO 4 (melting point: 1005 ° C). , CaSO 4 (mp: 1460 °C), MgSO 4 (mp: 1137 °C), SrSO 4 (mp: 1605 ° C.) and BaSO 4 (mp: 1580 ° C.) can be mentioned.
  • the nitrates of A include NaNO 3 (melting point: 310 ° C), KNO 3 (melting point: 337 ° C), RbNO 3 (melting point: 316 ° C), CsNO 3 (melting point: 417 ° C), Ca (NO 3 ) 2 (melting point). : 561 ° C.), Mg (NO 3 ) 2 , Sr (NO 3 ) 2 (melting point: 645 ° C.) and Ba (NO 3 ) 2 (melting point: 596 ° C.).
  • Phosphates of A include Na 3 PO 4 , K 3 PO 4 (melting point: 1340 ° C), Rb 3 PO 4 , Cs 3 PO 4 , Ca 3 (PO 4 ) 2 , Mg 3 (PO 4 ) 2 ( Melting point: 1184 ° C.), Sr 3 (PO 4 ) 2 (melting point: 1727 ° C.) and Ba 3 (PO 4 ) 2 (melting point: 1767 ° C.).
  • Hydroxides of A include NaOH (melting point: 318 ° C.), KOH (melting point: 360 ° C.), RbOH (melting point: 301 ° C.), CsOH (melting point: 272 ° C.), Ca (OH) 2 (melting point: 408 ° C.). ), Mg (OH) 2 (melting point: 350 ° C.), Sr (OH) 2 (melting point: 375 ° C.) and Ba (OH) 2 (melting point: 853 ° C.).
  • Examples of the molybdate of A include Na 2 MoO 4 (melting point: 698 ° C), K 2 MoO 4 (melting point: 919 ° C), Rb 2 MoO 4 (melting point: 958 ° C), and Cs 2 MoO 4 (melting point: 956 ° C). ), CaMoO 4 (melting point: 1520 ° C.), MgMoO 4 (melting point: 1060 ° C.), SrMoO 4 (melting point: 1040 ° C.) and BaMoO 4 (melting point: 1460 ° C.).
  • the tungstate A Na 2 WO 4 (mp: 687 ° C.), can be exemplified K 2 WO 4, Rb 2 WO 4, Cs 2 WO 4, CaWO 4, MgWO 4, SrWO 4 and BaWO 4 ..
  • the inert melt for obtaining a lithium metal composite oxide powder having higher crystallinity includes either carbonate and sulfate of A, chloride of A, or a chloride thereof. It is preferably a combination.
  • A it is preferable that either one or both of sodium (Na) and potassium (K) are used. That is, among the above, the particularly preferable inert melting agent is selected from the group consisting of NaOH, KOH, NaCl, KCl, Na 2 CO 3 , K 2 CO 3 , Na 2 SO 4 , and K 2 SO 4. More than a seed.
  • potassium sulfate or sodium sulfate is preferable as the inert melting agent.
  • the cleaning may be appropriately adjusted within the above range.
  • the obtained lithium metal composite oxide powder is appropriately classified after pulverization to be a positive electrode active material for a lithium secondary battery applicable to a lithium secondary battery.
  • Lithium secondary battery a configuration of a lithium secondary battery suitable for use as the positive electrode active material of the present embodiment will be described. Further, a positive electrode suitable for use as a positive electrode active material for a lithium secondary battery containing the positive electrode active material powder of the present embodiment will be described. Further, a lithium secondary battery suitable for use as a positive electrode will be described.
  • An example of a lithium secondary battery suitable for use as the positive electrode active material of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution arranged between the positive electrode and the negative electrode. ..
  • An example of a lithium secondary battery has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution arranged between the positive electrode and the negative electrode.
  • FIG. 1A and 1B are schematic views showing an example of a lithium secondary battery.
  • the cylindrical lithium secondary battery 10 of the present embodiment is manufactured as follows.
  • a pair of strip-shaped separators 1, a strip-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a strip-shaped negative electrode 3 having a negative electrode lead 31 at one end are divided into a separator 1, a positive electrode 2, and a separator.
  • the electrode group 4 is formed by laminating 1 and the negative electrode 3 in this order and winding them.
  • the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
  • the shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape when the electrode group 4 is cut in the direction perpendicular to the winding axis becomes a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
  • the shape of the lithium secondary battery having such an electrode group 4 the shape defined by IEC60086, which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C8500 can be adopted. ..
  • IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C8500
  • a cylindrical shape or a square shape can be mentioned.
  • the lithium secondary battery is not limited to the above-mentioned winding type configuration, and may have a laminated type configuration in which a laminated structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • the laminated lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode can be manufactured by first preparing a positive electrode mixture containing a positive electrode active material, a conductive material, and a binder, and then supporting the positive electrode mixture on a positive electrode current collector.
  • a carbon material can be used as the conductive material of the positive electrode.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and fibrous carbon material. Since carbon black is fine and has a large surface area, it is possible to improve the conductivity inside the positive electrode by adding a small amount to the positive electrode mixture to improve charge / discharge efficiency and output characteristics, but if too much is added, it depends on the binder. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture decrease, which causes an increase in internal resistance.
  • the ratio of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be reduced.
  • thermoplastic resin As the binder contained in the positive electrode, a thermoplastic resin can be used.
  • this thermoplastic resin include polyvinylidene fluoride (hereinafter, may be referred to as PVdF), polytetrafluoroethylene (hereinafter, may be referred to as PTFE), ethylene tetrafluoride, propylene hexafluoride, and vinylidene fluoride.
  • Fluororesin such as copolymers, propylene hexafluoride / vinylidene fluoride copolymers and ethylene / perfluorovinyl ether-based copolymers; polyolefin resins such as polyethylene and polypropylene; may be mentioned.
  • thermoplastic resins may be used by mixing two or more kinds. Fluororesin and polyolefin resin are used as binders, and the ratio of fluororesin to the entire positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of polyolefin resin is 0.1% by mass or more and 2% by mass or less. It is possible to obtain a positive electrode mixture having high adhesion to the current collector and high bonding force inside the positive electrode mixture.
  • a band-shaped member made of a metal material such as Al, Ni or stainless steel can be used as the positive electrode current collector of the positive electrode.
  • Al is used as a forming material and processed into a thin film because it is easy to process and inexpensive.
  • Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure molding the positive electrode mixture on the positive electrode current collector. Further, the positive electrode mixture is made into a paste using an organic solvent, and the obtained positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed to the positive electrode current collector. The mixture may be carried.
  • the organic solvents that can be used include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate.
  • Ester-based solvents such as dimethylacetamide and amide-based solvents such as N-methyl-2-pyrrolidone (hereinafter, may be referred to as NMP);
  • Examples of the method of applying the paste of the positive electrode mixture to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method and an electrostatic spray method.
  • the positive electrode can be manufactured by the method described above.
  • a compound in which lithium and oxygen are bonded remains in the positive electrode even after kneading with a slurrying solvent, in other words, a coating layer remains. It means that it is.
  • the negative electrode of the lithium secondary battery need only be capable of doping and dedoping lithium ions at a potential lower than that of the positive electrode, and is an electrode in which a negative electrode mixture containing a negative electrode active material is supported on a negative electrode current collector.
  • An electrode made of the negative electrode active material alone can be mentioned.
  • Negative electrode active material examples include carbon materials, chalcogen compounds (oxides or sulfides, etc.), nitrides, metals or alloys, which can be doped and dedoped with lithium ions at a lower potential than the positive electrode. Be done.
  • Examples of carbon materials that can be used as the negative electrode active material include graphite such as natural graphite or artificial graphite, cokes, carbon black, thermally decomposed carbons, carbon fibers, and calcined organic polymer compounds.
  • Oxides that can be used as the negative electrode active material include silicon oxides represented by the formula SiO x such as SiO 2 and SiO (where x is a positive real number); the formula TiO x such as TiO 2 and TiO (here). , X is a positive real number) titanium oxide; V 2 O 5 and VO 2 etc. Formula VO x (where x is a positive real number) vanadium oxide; Fe 3 O 4 , Fe 2 O 3 and FeO, etc. The iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2, and SnO, etc., represented by the formula SnO x (where x is a positive real number).
  • Tin oxides Oxides of tungsten represented by the general formula WO x (where x is a positive real number) such as WO 3 and WO 2 ; Lithium and titanium such as Li 4 Ti 5 O 12 and Li VO 2.
  • a composite metal oxide containing vanadium can be mentioned.
  • Sulfides that can be used as the negative electrode active material include Ti 2 S 3 , Ti S 2 and Ti S, etc. Titanium sulfide represented by the formula TiS x (where x is a positive real number); V 3 S 4 , VS 2 and VS, etc. The sulfide of vanadium represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2, and FeS, etc. in the formula FeS x (where x is a positive real number).
  • MoS x wherein, x represents a positive real number
  • SnS 2 and SnS formula SnS x wherein such, Tin sulfide represented
  • the nitrides that can be used as the negative electrode active material are Li 3 N and Li 3-x A x N (where A is either or both of Ni and Co, and 0 ⁇ x ⁇ 3). Such as lithium-containing nitrides can be mentioned.
  • These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. Moreover, these carbon materials, oxides, sulfides and nitrides may be either crystalline or amorphous.
  • Examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
  • Alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn, Sn. -Tin alloys such as Co, Sn—Ni, Sn—Cu and Sn—La; alloys such as Cu 2 Sb and La 3 Ni 2 Sn 7 ; can also be mentioned.
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil, for example.
  • a carbon material containing graphite as a main component such as natural graphite or artificial graphite, is preferably used because of its high value (good cycle characteristics).
  • the shape of the carbon material may be, for example, a flaky shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an agglomerate of fine powder.
  • the negative electrode mixture may contain a binder, if necessary.
  • the binder include thermoplastic resins, and specific examples thereof include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene and polypropylene.
  • Negative electrode current collector examples of the negative electrode current collector included in the negative electrode include a band-shaped member made of a metal material such as Cu, Ni, or stainless steel as a forming material. Among them, Cu is used as a forming material and processed into a thin film because it is difficult to form an alloy with lithium and it is easy to process.
  • separator contained in the lithium secondary battery for example, a material having a form such as a porous film, a non-woven fabric or a woven fabric made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin or a nitrogen-containing aromatic polymer is used. Can be used. Further, two or more kinds of these materials may be used to form a separator, or these materials may be laminated to form a separator.
  • the separator has a permeation resistance of 50 seconds / 100 cc or more and 300 seconds / 100 cc by the Garley method defined by JIS P 8117 in order to allow the electrolyte to permeate well when the battery is used (during charging / discharging). It is preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
  • the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, and more preferably 40% by volume or more and 70% by volume or less with respect to the total volume of the separator.
  • the separator may be a stack of separators having different porosity.
  • the electrolytic solution contained in the lithium secondary battery contains an electrolyte and an organic solvent.
  • the electrolytes contained in the electrolytic solution include LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN.
  • the electrolyte is at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one type.
  • organic solvent contained in the electrolytic solution examples include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one and 1,2-di.
  • Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropylmethyl ether, 2,2,3,3-tetrafluoropropyldifluoromethyl ether, tetrahydrofuran and 2- Ethers such as methyl tetrahydrofuran; esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; nitriles such as acetonitrile and butyronitrile; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; 3-methyl Carbamates such as -2-oxazolidone; sulfur-containing compounds such as sulfolane, dimethylsulfoxide and 1,3-propanesartone, or those in which a fluoro group is further introduced into these organic solvents (1 of the hydrogen atoms of the organic solvent).
  • the above is replaced with
  • the organic solvent it is preferable to use a mixture of two or more of these.
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
  • a mixed solvent of the cyclic carbonate and the acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable.
  • An electrolytic solution using such a mixed solvent has a wide operating temperature range, is not easily deteriorated even when charged and discharged at a high current rate, is not easily deteriorated even when used for a long time, and is made of natural graphite as an active material of a negative electrode. It has many features that it is resistant to decomposition even when a graphite material such as artificial graphite is used.
  • an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is enhanced.
  • a mixed solvent containing ethers having a fluorine substituent such as pentafluoropropylmethyl ether and 2,2,3,3-tetrafluoropropyldifluoromethyl ether and dimethyl carbonate has a capacity even when charged and discharged at a high current rate. It is more preferable because of its high maintenance rate.
  • the positive electrode active material uses the lithium metal composite oxide powder produced by the present embodiment described above, the lithium secondary battery using this positive electrode active material The cycle maintenance rate can be improved.
  • the positive electrode having the above configuration has the positive electrode active material for the lithium secondary battery having the above configuration, the cycle maintenance rate of the lithium secondary battery can be improved.
  • the lithium secondary battery having the above configuration has the above-mentioned positive electrode, it is a secondary battery having a high cycle maintenance rate.
  • FIGS. 3 and 4 are schematic views showing an example of the all-solid-state lithium secondary battery of the present embodiment.
  • the all-solid-state secondary battery 1000 shown in FIGS. 3 and 4 has a positive electrode 110, a negative electrode 120, a laminated body 100 having a solid electrolyte layer 130, and an exterior body 200 containing the laminated body 100.
  • the materials constituting each member will be described later.
  • the laminated body 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122.
  • the all-solid-state secondary battery 1000 may have a separator between the positive electrode 110 and the negative electrode 120.
  • the all-solid-state secondary battery 1000 further has an insulator (not shown) that insulates the laminate 100 and the exterior body 200, and a sealant (not shown) that seals the opening 200a of the exterior body 200.
  • a container formed of a metal material having high corrosion resistance such as aluminum, stainless steel or nickel-plated steel can be used as the exterior body 200. Further, as the exterior body 200, a container obtained by processing a laminated film having a corrosion resistant treatment on at least one surface into a bag shape can also be used.
  • Examples of the shape of the all-solid-state lithium secondary battery 1000 include a coin type, a button type, a paper type (or a sheet type), a cylindrical type, a square type, and a laminated type (pouch type).
  • the all-solid-state secondary battery 1000 is illustrated as having one laminate 100 as an example, but the present embodiment is not limited to this.
  • the all-solid-state secondary battery 1000 may have a configuration in which the laminated body 100 is used as a unit cell and a plurality of unit cells (laminated body 100) are sealed inside the exterior body 200.
  • the positive electrode 110 of the present embodiment has a positive electrode active material layer 111 and a positive electrode current collector 112.
  • the positive electrode active material layer 111 contains the positive electrode active material and the solid electrolyte, which is one aspect of the present invention described above. Further, the positive electrode active material layer 111 may contain a conductive material and a binder.
  • Solid electrolyte As the solid electrolyte contained in the positive electrode active material layer 111 of the present embodiment, a solid electrolyte having lithium ion conductivity and used in a known all-solid-state battery can be adopted.
  • a solid electrolyte include an inorganic electrolyte and an organic electrolyte.
  • the inorganic electrolyte include an oxide-based solid electrolyte, a sulfide-based solid electrolyte, and a hydride-based solid electrolyte.
  • the organic electrolyte include polymer-based solid electrolytes.
  • oxide-based solid electrolyte examples include perovskite-type oxides, NASICON-type oxides, LISICON-type oxides, and garnet-type oxides.
  • Examples of the perovskite-type oxide include Li-La-Ti-based oxides such as Li a La 1-a TIO 3 (0 ⁇ a ⁇ 1) and Li b La 1-b TaO 3 (0 ⁇ b ⁇ 1). Examples thereof include Li-La-Ta-based oxides and Li-La-Nb-based oxides such as Li c La 1-c NbO 3 (0 ⁇ c ⁇ 1).
  • Examples of the NASICON type oxide include Li 1 + d Al d Ti 2-d (PO 4 ) 3 (0 ⁇ d ⁇ 1).
  • the NASICON type oxide is a group consisting of Li m M 1 n M 2 o P p O q (in the formula, M 1 is B, Al, Ga, In, C, Si, Ge, Sn, Sb and Se.
  • M 1 is B, Al, Ga, In, C, Si, Ge, Sn, Sb and Se.
  • M 2 is one or more elements selected from the group consisting of Ti, Zr, Ge, In, Ga, Sn and Al.
  • Li 4 M 3 O 4- Li 3 M 4 O 4 (M 3 is one or more elements selected from the group consisting of Si, Ge, and Ti. M 4 is P. , An oxide represented by one or more elements selected from the group consisting of As and V).
  • garnet-type oxide examples include Li-La-Zr-based oxides such as Li 7 La 3 Zr 2 O 12 (also referred to as LLZ).
  • the oxide-based solid electrolyte may be a crystalline material or an amorphous material.
  • sulfide-based solid electrolyte examples include Li 2 SP 2 S 5 series compounds, Li 2 S—SiS 2 series compounds, Li 2 S—GeS 2 series compounds, Li 2 SB 2 S 3 series compounds, and Li 2 S-P 2 S 3 type compound, LiI-Si 2 S-P 2 S 5, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5 and Li 10 GeP 2 S 12 etc. Can be mentioned.
  • system compound which refers to a sulfide-based solid electrolyte is a solid electrolyte mainly containing raw materials such as "Li 2 S” and "P 2 S 5 " described before “system compound”. It is used as a general term for.
  • the Li 2 SP 2 S 5 system compound mainly contains Li 2 S and P 2 S 5, and further contains a solid electrolyte containing other raw materials.
  • Li 2 ratio of S contained in the Li 2 S-P 2 S 5 based compound is 50 to 90% by weight, based on the total e.g. Li 2 S-P 2 S 5 type compounds.
  • the proportion of P 2 S 5 contained in the Li 2 SP 2 S 5 system compound is, for example, 10 to 50% by mass with respect to the entire Li 2 SP 2 S 5 system compound.
  • the proportion of other raw materials contained in the Li 2 SP 2 S 5 system compound is, for example, 0 to 30% by mass with respect to the entire Li 2 SP 2 S 5 system compound.
  • the Li 2 SP 2 S 5 series compounds also include solid electrolytes having different mixing ratios of Li 2 S and P 2 S 5 .
  • Li 2 The S-P 2 S 5 -based compounds, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -LiBr, Li 2 S- P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI and Li 2 S-P 2 S 5 -Z m S n (m, n Is a positive number.
  • Z is Ge, Zn or Ga) and the like.
  • Li 2 S-SiS 2 based compounds include Li 2 S-SiS 2 , Li 2 S-SiS 2- LiI, Li 2 S-SiS 2- LiBr, Li 2 S-SiS 2- LiCl, and Li 2 S-SiS. 2- B 2 S 3- LiI, Li 2 S-SiS 2- P 2 S 5- LiI, Li 2 S-SiS 2 -Li 3 PO 4 , Li 2 S-SiS 2 -Li 2 SO 4 and Li 2 S -SiS 2- Li x MO y (x, y are positive numbers.
  • M is P, Si, Ge, B, Al, Ga or In) and the like.
  • Li 2 S-GeS 2 system compound examples include Li 2 S-GeS 2 and Li 2 S-GeS 2- P 2 S 5 .
  • the sulfide-based solid electrolyte may be a crystalline material or an amorphous material.
  • the hydride-based solid electrolyte material LiBH 4, LiBH 4 -3KI, LiBH 4 -PI 2, LiBH 4 -P 2 S 5, LiBH 4 -LiNH 2, 3LiBH 4 -LiI, LiNH 2, Li 2 AlH 6, Li (NH 2 ) 2 I, Li 2 NH, LiGd (BH 4 ) 3 Cl, Li 2 (BH 4 ) (NH 2 ), Li 3 (NH 2 ) I and Li 4 (BH 4 ) (NH 2 ) 3 And so on.
  • polymer-based solid electrolyte examples include organic polymer electrolytes such as polyethylene oxide-based polymer compounds and polymer compounds containing at least one selected from the group consisting of polyorganosiloxane chains and polyoxyalkylene chains. .. Further, a so-called gel type compound in which a non-aqueous electrolytic solution is retained in a polymer compound can also be used.
  • Two or more types of solid electrolytes can be used in combination as long as the effects of the invention are not impaired.
  • a carbon material and a metal compound can be used as the conductive material contained in the positive electrode active material layer 111 of the present embodiment.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and fibrous carbon material. Since carbon black is fine and has a large surface area, it is possible to increase the conductivity inside the positive electrode 110 and improve the charge / discharge efficiency and output characteristics by adding an appropriate amount described later to the positive electrode active material layer 111. On the other hand, if the amount of carbon black added is too large, the binding force between the positive electrode active material layer 111 and the positive electrode current collector 112 and the binding force inside the positive electrode active material layer 111 both decrease, and rather increase the internal resistance. It causes.
  • the metal compound include metals having electric conductivity, metal alloys and metal oxides.
  • the ratio of the conductive material in the positive electrode active material layer 111 is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • this ratio can be reduced.
  • thermoplastic resin When the positive electrode active material layer 111 has a binder, a thermoplastic resin can be used as the binder.
  • thermoplastic resin include a polyimide resin; polyvinylidene fluoride (hereinafter, may be referred to as PVdF), polytetrafluoroethylene (hereinafter, may be referred to as PTFE), ethylene tetrafluoride, propylene hexafluoride, and the like.
  • Fluorine resins such as vinylidene fluoride-based copolymers, propylene hexafluoride / vinylidene fluoride-based copolymers, and ethylene / perfluorovinyl ether-based copolymers; and polyolefin resins such as polyethylene and polypropylene; Can be done.
  • thermoplastic resins may be used by mixing two or more kinds.
  • a fluorine resin and a polyolefin resin as a binder and setting the ratio of the fluorine resin to the entire positive electrode active material layer 111 to 1% by mass or more and 10% by mass or less and the ratio of the polyolefin resin to 0.1% by mass or more and 2% by mass or less.
  • the positive electrode active material layer 111 has a high adhesion between the positive electrode active material layer 111 and the positive electrode current collector 112 and a high bonding force inside the positive electrode active material layer 111.
  • a band-shaped member made of a metal material such as Al, Ni, or stainless steel can be used as the positive electrode current collector 112 included in the positive electrode 110 of the present embodiment.
  • a member made of Al as a forming material and processed into a thin film is preferable because it is easy to process and inexpensive.
  • Examples of the method of supporting the positive electrode active material layer 111 on the positive electrode current collector 112 include a method of pressure molding the positive electrode active material layer 111 on the positive electrode current collector 112.
  • a cold press or a hot press can be used for pressure molding.
  • a mixture of the positive electrode active material, the solid electrolyte, the conductive material and the binder is made into a paste using an organic solvent to prepare a positive electrode mixture, and the obtained positive electrode mixture is applied onto at least one surface of the positive electrode current collector 112 and dried.
  • the positive electrode active material layer 111 may be supported on the positive electrode current collector 112 by pressing and fixing.
  • a mixture of the positive electrode active material, the solid electrolyte and the conductive material is made into a paste using an organic solvent to form a positive electrode mixture, and the obtained positive electrode mixture is applied onto at least one surface of the positive electrode current collector 112, dried, and baked.
  • the positive electrode active material layer 111 may be supported on the positive electrode current collector 112.
  • organic solvent examples include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; ester solvents such as methyl acetate.
  • amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine
  • ether solvents such as tetrahydrofuran
  • ketone solvents such as methyl ethyl ketone
  • ester solvents such as methyl acetate.
  • Examples of the method of applying the positive electrode mixture to the positive electrode current collector 112 include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • the positive electrode 110 can be manufactured by the methods listed above.
  • the negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122.
  • the negative electrode active material layer 121 contains a negative electrode active material.
  • the negative electrode active material layer 121 may contain a solid electrolyte and a conductive material. As the solid electrolyte, the conductive material and the binder, those described above can be used.
  • the negative electrode active material contained in the negative electrode active material layer 121 is a carbon material, a chalcogen compound (oxide, sulfide, etc.), a nitride, a metal, or an alloy, and is doped and dedoped with lithium ions at a potential lower than that of the positive electrode 110. Examples of materials that can be used.
  • Examples of carbon materials that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, thermally decomposed carbons, carbon fibers, and calcined organic polymer compounds.
  • Oxides that can be used as the negative electrode active material include silicon oxides represented by the formula SiO x such as SiO 2 and SiO (where x is a positive real number); the formula TiO x such as TiO 2 and TiO (here). , X is a positive real number) titanium oxide; V 2 O 5 and VO 2 etc. Formula VO x (where x is a positive real number) vanadium oxide; Fe 3 O 4 , Fe 2 O 3 and FeO, etc. The iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2, and SnO, etc., represented by the formula SnO x (where x is a positive real number).
  • Tin oxides and tungsten oxides represented by the general formula WO x (where x is a positive real number) such as WO 3 and WO 2 ; and lithium such as Li 4 Ti 5 O 12 and Li VO 2.
  • WO x where x is a positive real number
  • lithium such as Li 4 Ti 5 O 12 and Li VO 2.
  • a metal composite oxide containing titanium or vanadium; can be mentioned.
  • Sulfides that can be used as the negative electrode active material include Ti 2 S 3 , Ti S 2 and Ti S, etc. Titanium sulfide represented by the formula TiS x (where x is a positive real number); V 3 S 4 , VS 2 and VS, etc. The sulfide of vanadium represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2, and FeS, etc. in the formula FeS x (where x is a positive real number).
  • MoS x wherein, x represents a positive real number
  • SnS 2 and SnS formula SnS x wherein such, Tin sulfide
  • the nitrides that can be used as the negative electrode active material include Li 3 N and Li 3-x A x N (where A is either or both of Ni and Co, and 0 ⁇ x ⁇ 3). Such as lithium-containing nitrides can be mentioned.
  • These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. Moreover, these carbon materials, oxides, sulfides and nitrides may be either crystalline or amorphous.
  • Examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
  • Alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn, Sn. — Tin alloys such as Co, Sn—Ni, Sn—Cu and Sn—La; and alloys such as Cu 2 Sb and La 3 Ni 2 Sn 7 ; can also be mentioned.
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil, for example.
  • the potential of the negative electrode 120 hardly changes from the uncharged state to the fully charged state during charging (that is, the potential flatness is good), the average discharge potential is low, and the capacity when repeatedly charged and discharged.
  • a carbon material containing graphite as a main component such as natural graphite and artificial graphite, is preferably used because of its high retention rate (that is, good cycle characteristics).
  • the shape of the carbon material may be, for example, a flaky shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an agglomerate of fine powder.
  • oxides are preferably used because of their high thermal stability and the difficulty of forming dendrites (also referred to as dendritic crystals) by Li metal.
  • a fibrous or fine powder agglomerate is preferably used as the shape of the oxide.
  • Examples of the negative electrode current collector 122 included in the negative electrode 120 include a strip-shaped member made of a metal material such as Cu, Ni, and stainless steel as a forming material. Among them, a member made of Cu as a forming material and processed into a thin film is preferable because it is difficult to form an alloy with lithium and it is easy to process.
  • a method by pressure molding and a paste-like negative electrode mixture containing the negative electrode active material are applied on the negative electrode current collector 122 as in the case of the positive electrode 110.
  • Examples thereof include a method of applying, drying and then pressing and crimping, and a method of applying a paste-like negative electrode mixture containing a negative electrode active material on the negative electrode current collector 122, drying and then sintering.
  • Solid electrolyte layer 130 has the above-mentioned solid electrolyte.
  • the solid electrolyte layer 130 can be formed by depositing an inorganic solid electrolyte on the surface of the positive electrode active material layer 111 of the above-mentioned positive electrode 110 by a sputtering method.
  • the solid electrolyte layer 130 can be formed by applying a paste-like mixture containing a solid electrolyte to the surface of the positive electrode active material layer 111 of the above-mentioned positive electrode 110 and drying it. After drying, the solid electrolyte layer 130 may be formed by press molding and further pressurizing by a cold isotropic pressure method (CIP).
  • CIP cold isotropic pressure method
  • the negative electrode 120 is laminated on the solid electrolyte layer 130 provided on the positive electrode 110 as described above by using a known method so that the negative electrode electrolyte layer 121 is in contact with the surface of the solid electrolyte layer 130. It can be manufactured by.
  • a lithium metal composite oxide powder having a layered crystal structure which contains at least Li, Ni, element X, and element M, and the element X is Co, Mn, Fe, Cu, Ti, It is one or more elements selected from the group consisting of Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga and V, and the element M is from the group consisting of B, Si, S and P.
  • the ratio of the content of the element M to the total amount of Ni and the element X in the lithium metal composite oxide powder, which is one or more selected elements, is 0.03 mol% or more and 1.0 mol%.
  • the ratio of the content of Ni to the total amount of Ni represented by Ni / (Ni + X) and the element X in the lithium metal composite oxide powder is 0.55 or more and 0.90 or less in terms of molar ratio.
  • a lithium metal composite oxide powder that satisfies the following (1), (2) and (3). (1) From the particle surface to the center of the lithium metal composite oxide powder, the molar ratio of the element concentration of Li represented by Li / element M and the element M is continuously increasing. (2) From the particle surface to the center of the particles of the lithium metal composite oxide powder, the molar ratio of the element concentration of O represented by O / element M and the element M is continuously increasing.
  • the lithium metal composite oxide powder according to [11] which is represented by the following composition formula (A). Li [Li n1 (Ni (1-z-w) X z M w ) 1-n1 ] O 2 (A) (However, X is one or more elements selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga and V.
  • BET specific surface area is not more than 0.05 m 2 / g or more 1.2 m 2 / g, [11] or [12] Lithium metal composite oxide powder according to. [14] The lithium metal composite oxide powder according to any one of [11] to [13], wherein the average primary particle size is 1 ⁇ m or more and 6 ⁇ m or less.
  • the 50% cumulative diameter (D 50 ) is 2 ⁇ m or more and 10 ⁇ m.
  • the value obtained by dividing the water content (mass%) represented by the water content (mass%) / BET specific surface area (m 2 / g) by the BET specific surface area (m 2 / g) is 0.010 or more.
  • a positive electrode for a lithium secondary battery is formed, and a mixture of the positive electrode for a secondary battery, a separator made of a porous polyethylene film, and ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate at a ratio of 30:35:35 (volume ratio).
  • a coin-type battery R2032 containing an electrolytic solution obtained by dissolving LiPF 6 in a liquid so as to be 1.0 mol / l and a negative electrode for a secondary battery of metallic lithium was produced, and the coin-type battery R2032 was described below.
  • the discharge rate test is carried out as follows under the charge / discharge test conditions shown in (1), the obtained 10CA / 0.2CA discharge capacity ratio is 60 to 98%, any one of [11] to [17].
  • composition analysis of the lithium metal composite oxide powder produced by the method described below is carried out by dissolving the obtained lithium metal composite oxide powder in hydrochloric acid and then inductively coupled plasma emission spectrometry (SI Nanotechnology Co., Ltd.). , SPS3000).
  • the lithium metal composite oxide powder is placed on a conductive sheet attached on a sample stage, and an electron beam having an accelerating voltage of 20 kV is irradiated using a scanning electron microscope (JSM-5510, manufactured by JEOL Ltd.). SEM observation was performed. 50 primary particles are arbitrarily extracted from the image (SEM photograph) obtained by SEM observation, and for each primary particle, the distance between parallel lines sandwiched by parallel lines drawn from a certain direction (projection image of the primary particles) The constant direction diameter) was measured as the particle diameter of the primary particles. The arithmetic mean value of the particle size of the obtained primary particles was taken as the average primary particle size of the lithium metal composite oxide powder.
  • the volume particle size at 10% cumulative 10% cumulative volume particle size D 10 of the lithium-metal composite oxide powder was the volume particle size at 10% cumulative 10% cumulative volume particle size D 10 of the lithium-metal composite oxide powder. Further, in the obtained cumulative particle size distribution curve, the volume particle size at the time of 90% accumulation was defined as 90% cumulative volume particle size D 90 of the lithium metal composite oxide powder.
  • ⁇ Moist content> The water content of the lithium metal composite oxide powder to be measured was measured with respect to 1 g of the lithium metal composite oxide powder using a coulometric Karl Fischer Moisture Analyzer (831 Columeter manufactured by Metrohm).
  • the lithium metal composite oxide powder to be measured is sliced using a focused ion beam device (FIB, manufactured by JEOL Ltd., JIB-4501), and the particle cross section is observed by TEM with an analytical electron microscope (JEOL Ltd., ARM200F).
  • EELS line analysis was performed from the particle surface to the particle center using an EELS detector (Quantum ER manufactured by Gatan), and the respective element concentrations were calculated from the obtained EELS spectra of Li and elements M and O, and Li And the molar ratio of the element concentration of the element M (Li / element M) was obtained.
  • RO / M the amount of change per 1 nm of the element concentration of the lithium metal composite oxide powder from the particle surface to the center of the particle is calculated for each measurement point, and the molar ratio of the element concentration of O and element M ( The value with the largest amount of change in the range in which O / element M) is continuously increasing was defined as the maximum concentration gradient RO / M.
  • a paste-like positive electrode mixture was prepared by adding and kneading so as to have a composition. N-methyl-2-pyrrolidone was used as an organic solvent when preparing the positive electrode mixture.
  • the obtained positive electrode mixture was applied to an Al foil having a thickness of 40 ⁇ m as a current collector and vacuum dried at 150 ° C. for 8 hours to obtain a positive electrode for a lithium secondary battery.
  • the electrode area of the positive electrode for the lithium secondary battery was 1.65 cm 2 .
  • ⁇ Manufacturing of lithium secondary battery (coin type half cell)> The following operations were performed in a glove box with an argon atmosphere. Place the positive electrode for the lithium secondary battery manufactured in ⁇ Manufacturing the positive electrode for the lithium secondary battery> on the lower lid of the part for the coin-type battery R2032 (manufactured by Hosen Co., Ltd.) with the aluminum foil side facing down. A separator (porous polyethylene film) was placed on top. 300 ⁇ l of the electrolytic solution was injected therein. The electrolytic solution used was a mixture of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate in a 30:35:35 (volume ratio) mixture in which LiPF 6 was dissolved at 1.0 mol / l.
  • the negative electrode is placed on the upper side of the separator, the upper lid is closed via a gasket, and the lithium secondary battery (coin type half cell R2032; hereinafter, referred to as “half cell”) is crimped with a caulking machine. In some cases.) Was prepared.
  • Example 1 >> -Production of Lithium Metal Composite Oxide Powder 1 After putting water in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to maintain the liquid temperature at 60 ° C.
  • the atomic ratio of nickel atom, cobalt atom, manganese atom and zirconium atom of nickel sulfate aqueous solution, cobalt sulfate aqueous solution, manganese sulfate aqueous solution and zirconium sulfate solution is 0.60: 0.20: 0.195: 0.005.
  • the mixed raw material solution and the ammonium sulfate aqueous solution were continuously added as a complexing agent into the reaction vessel under stirring, and nitrogen gas was continuously aerated in the reaction vessel.
  • An aqueous sodium hydroxide solution was added dropwise in an appropriate manner so that the pH of the solution in the reaction vessel became 11.7.
  • a 20% by mass sodium hydroxide aqueous solution was used, and the volumetric flow rate of the alkaline solution was made smaller than the volumetric flow rate of the mixed raw material solution.
  • Nickel cobalt manganese zirconium composite hydroxide particles are obtained by the above operation, washed, dehydrated with a centrifuge, washed, dehydrated, and isolated and dried at 105 ° C. to obtain nickel cobalt manganese zirconium composite water.
  • Oxide 1 was obtained.
  • the lithium metal composite oxide powder 1 was obtained.
  • the results of the 2CA discharge capacity ratio are shown in Tables 1 and 2.
  • Example 2 >> -Production of Lithium Metal Composite Oxide Powder 2 After putting water in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to maintain the liquid temperature at 60 ° C.
  • the atomic ratio of nickel atom, cobalt atom, manganese atom and zirconium atom of nickel sulfate aqueous solution, cobalt sulfate aqueous solution, manganese sulfate aqueous solution and zirconium sulfate solution is 0.55: 0.21: 0.235: 0.005.
  • the mixed raw material solution and the ammonium sulfate aqueous solution were continuously added as a complexing agent into the reaction vessel under stirring, and nitrogen gas was continuously aerated in the reaction vessel.
  • An aqueous sodium hydroxide solution was added dropwise in an appropriate manner so that the pH of the solution in the reaction vessel became 11.4.
  • a 20% by mass sodium hydroxide aqueous solution was used, and the volumetric flow rate of the alkaline solution was made smaller than the volumetric flow rate of the mixed raw material solution.
  • Nickel cobalt manganese zirconium composite hydroxide particles are obtained, washed, dehydrated with a centrifuge, washed, dehydrated and isolated and dried at 105 ° C. to obtain nickel cobalt manganese zirconium composite hydroxide 2. It was.
  • the lithium metal composite oxide powder 2 was obtained.
  • the chemical composition of the lithium metal composite oxide powder 2 The chemical composition of the lithium metal composite oxide powder 2, the composition ratio of the lithium metal composite oxide powder 2 from the particle surface to the inside of the particles, and the molar concentration of the elements M and O inside the particles of the lithium metal composite oxide powder 2.
  • the results of the 2CA discharge capacity ratio are shown in Tables 1 and 2.
  • Example 3 >> -Production of Lithium Metal Composite Oxide Powder 3 After putting water in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to maintain the liquid temperature at 40 ° C.
  • a mixed raw material solution is prepared by mixing a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution so that the atomic ratio of nickel atom, cobalt atom, and manganese atom is 0.80: 0.15: 0.05. did.
  • the mixed raw material solution and the ammonium sulfate aqueous solution were continuously added as a complexing agent into the reaction vessel under stirring, and nitrogen gas was continuously aerated in the reaction vessel.
  • An aqueous sodium hydroxide solution was added dropwise in an appropriate manner so that the pH of the solution in the reaction vessel became 12.0.
  • a 20% by mass sodium hydroxide aqueous solution was used, and the volumetric flow rate of the alkaline solution was made smaller than the volumetric flow rate of the mixed raw material solution.
  • Nickel-cobalt-manganese composite hydroxide particles were obtained, washed, dehydrated with a centrifuge, washed, dehydrated and isolated, and dried at 105 ° C. to obtain nickel-cobalt-manganese composite hydroxide 3.
  • a lithium metal composite oxide powder The slurry prepared by mixing the powder and pure water so that the ratio (weight ratio) of the powder weight to the total amount is 0.5 is stirred for 20 minutes, then dehydrated and isolated, and relative to 105 ° C.
  • the raw material compound 3 was obtained by drying in an atmosphere having a humidity of 30 ° C. or lower.
  • the lithium metal composite oxide powder 3 was obtained.
  • the results of the 2CA discharge capacity ratio are shown in Tables 1 and 2.
  • the results of the 2CA discharge capacity ratio are shown in Tables 1 and 2.
  • the atomic ratio of nickel atom, cobalt atom, manganese atom and zirconium atom of nickel sulfate aqueous solution, cobalt sulfate aqueous solution, manganese sulfate aqueous solution and zirconium sulfate solution is 0.55: 0.21: 0.235: 0.005.
  • the mixed raw material solution and the ammonium sulfate aqueous solution were continuously added as a complexing agent into the reaction vessel under stirring, and nitrogen gas was continuously aerated in the reaction vessel.
  • An aqueous sodium hydroxide solution was added dropwise in an appropriate manner so that the pH of the solution in the reaction vessel became 11.4. Further, a 5% by mass sodium hydroxide aqueous solution was used, and the volumetric flow rate of the alkaline solution was made larger than the volumetric flow rate of the mixed raw material solution.
  • Nickel cobalt manganese zirconium composite hydroxide particles are obtained, washed, dehydrated with a centrifuge, washed, dehydrated, isolated and dried at 105 ° C. to obtain nickel cobalt manganese zirconium composite hydroxide 5. It was.
  • a lithium metal composite oxide powder The slurry prepared by mixing the powder and pure water so that the ratio of the weight of the powder to the total amount is 0.3 is stirred for 20 minutes, then dehydrated and isolated, and the temperature is 105 ° C. and the relative humidity is 30 ° C.
  • the raw material compound 5 was obtained by drying in the air atmosphere adjusted below.
  • the results of the 2CA discharge capacity ratio are shown in Tables 1 and 2.
  • Lithium metal composite oxide powder 6 was obtained by firing at 840 ° C. for 8 hours in an oxygen atmosphere.
  • the results of the 2CA discharge capacity ratio are shown in Tables 1 and 2.
  • the molar ratio of the element concentration of O and the element M (O / element M), the molar ratio of the element concentration of the element M and O inside the particle (element M / O), the BET specific surface area, the average primary particle diameter, (D).
  • 90- D 10 ) / D 50 water content divided by BET specific surface area (water content / BET specific surface area in the table), R Li / M , RO / M values, 10CA / 0.2CA discharge
  • Table 1 refers to the ratio of the content of the element M to the total amount of Ni and the element X.
  • FIG. 2 shows the results of element mapping of the lithium metal composite oxide powders of Example 1 and Comparative Example 2 by electron energy loss spectroscopy (EELS).
  • the horizontal axis of the graph shown in FIG. 2 means the depth (unit: nm) of the lithium metal composite oxide powder from the particle surface toward the particle center, and the vertical axis represents the element concentration of Li or O and the element M. Means the molar ratio of.
  • a means the outermost surface of the lithium metal composite oxide powder particles.
  • “B” means a region of 7 nm from the outermost surface of the lithium metal composite oxide powder particles toward the particle center.
  • Example 2 in the lithium metal composite oxide powder of Example 1, the boron concentration was continuously increased from the particle surface toward the particle center in a region of 7 nm. On the other hand, in the lithium metal composite oxide powder of Comparative Example 2, a continuous increase in boron as in Example 1 was not observed.
  • a lithium metal composite oxide powder capable of improving the discharge capacity retention rate at a high current rate of a lithium secondary battery when used as a positive electrode active material of a lithium secondary battery, and a lithium secondary using the same.
  • a positive electrode active material for a secondary battery can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

このリチウム金属複合酸化物粉末は、層状構造の結晶構造を有し、少なくともLiとNiと元素Xと元素Mとを含有し、前記元素Xは、Co、Mn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、前記元素Mは、B、Si、S及びPからなる群より選択される1種以上の元素であり、リチウム金属複合酸化物粉末中の、Niと前記元素Xの合計量に対する前記元素Mの含有量は、0.01モル%以上5モル%以下であり、リチウム金属複合酸化物粉末中の、Niと前記元素Xの合計量に対するNiの含有量(Ni/(Ni+X))は、モル比で0.4以上であり、(1)、(2)及び(3)を満たす。

Description

リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
 本発明は、リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質に関する。
 本願は、2019年4月12日に日本に出願された特願2019-076522号について優先権を主張し、その内容をここに援用する。
 リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型又は大型電源においても、実用化が進んでいる。リチウム二次電池には正極活物質が用いられる。正極活物質には、リチウム金属複合酸化物が用いられる。
 リチウム金属複合酸化物粉末をリチウム二次電池用正極活物質として用いたとき、リチウム金属複合酸化物粉末は一次粒子の表面、二次粒子の表面及び二次粒子の内部で電解液と接し、粒子内へのリチウムイオンの挿入及び粒子内からのリチウムイオンの脱離が起こる。このため、リチウム金属複合酸化物粉末の一次粒子又は二次粒子の表面の状態を制御することは、電池特性を向上させる上で重要である。
 例えば特許文献1には、正極活物質の粒子の表面部と、粒子の内側部とで、それぞれ特定の原子濃度比となるよう調整されたリチウム二次電池用正極活物質が記載されている。
特開2014-38828号公報
 リチウム二次電池の様々な分野へ適用が進む中、リチウム二次電池の正極活物質には、高い電流レートにおける放電容量維持率等の電池特性のさらなる向上が求められる。
 本発明は上記事情に鑑みてなされたものであって、リチウム二次電池の正極活物質として用いた場合に、リチウム二次電池の高い電流レートにおける放電容量維持率を向上できるリチウム金属複合酸化物粉末、及びこれを用いたリチウム二次電池用正極活物質を提供することを目的とする。
 すなわち、本発明は、下記[1]~[8]の発明を包含する。
[1]層状構造の結晶構造を有するリチウム金属複合酸化物粉末であって、少なくともLiとNiと元素Xと元素Mとを含有し、前記元素Xは、Co、Mn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、前記元素Mは、B、Si、S及びPからなる群より選択される1種以上の元素であり、リチウム金属複合酸化物粉末中の、Niと元素Xの合計量に対する前記元素Mの含有量の割合は、0.01モル%以上5モル%以下であり、リチウム金属複合酸化物粉末中の、Ni/(Ni+X)で表されるNiと前記元素Xの合計量に対するNiの含有量の割合は、モル比で0.4以上であり、下記(1)、(2)及び(3)を満たす、リチウム金属複合酸化物粉末。
(1) リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけて、Li/元素Mで表されるLiと前記元素Mの元素濃度のモル比が連続的に増加している。
(2) リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけて、O/元素Mで表されるOと前記元素Mの元素濃度のモル比が連続的に増加している。
(3) リチウム金属複合酸化物粉末の粒子内部における、元素M/Oで表される前記元素MとOとの元素濃度のモル比が0.05以下である。
[2]下記組成式(A)で表される、[1]に記載のリチウム金属複合酸化物粉末。
 Li[Lin1(Ni(1-z-w)1-n1]O   (A)
 (ただし、Xは、Co、Mn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、Mは、B、Si、S及びPからなる群より選択される1種以上の元素であり、0≦n1≦0.2、0<z≦0.6、及び0<w≦0.1を満たす。)
[3]BET比表面積が、2m/g以下である、[1]又は[2]に記載のリチウム金属複合酸化物粉末。
[4]平均一次粒子径が0.3μm以上8μm以下である、[1]~[3]のいずれか1つに記載のリチウム金属複合酸化物粉末。
[5]粒度分布測定値から求めた10%累積径(D10)、50%累積径(D50)及び90%累積径(D90)において、50%累積径(D50)が2μm以上10μm以下であり、さらに、下記式(B)の関係を満たす、[1]~[4]のいずれか1つに記載のリチウム金属複合酸化物粉末。
     0.3≦(D90-D10)/D50≦3・・・(B)
[6]水分含有量(質量%)/BET比表面積(m/g)で表される水分含有量(質量%)をBET比表面積(m/g)で除した値が0.005以上0.7以下である[1]~[5]のいずれか1つに記載のリチウム金属複合酸化物粉末。
[7]リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけて、Li/元素Mで表されるLiと前記元素Mの元素濃度のモル比が連続的に増加している範囲における最大濃度勾配RLi/Mが、リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけて、O/元素Mで表されるOと前記元素Mの元素濃度のモル比が連続的に増加して範囲における最大濃度勾配RO/Mに比べて小さい(RO/M>RLi/M)、[1]~[6]のいずれか1つに記載のリチウム金属複合酸化物粉末。
[8][1]~[7]のいずれか1つに記載のリチウム金属複合酸化物粉末を含有するリチウム二次電池用正極活物質。
 さらに、本発明の態様として以下の態様が挙げられる。
[9][8]に記載のリチウム二次電池用正極活物質を含有するリチウム二次電池用正極。
[10][9]に記載のリチウム二次電池用正極を有するリチウム二次電池。
 本発明によれば、リチウム二次電池の正極活物質として用いる場合に、リチウム二次電池の高い電流レートにおける放電容量維持率を向上できるリチウム金属複合酸化物粉末、及びこれを用いたリチウム二次電池用正極活物質を提供することができる。
リチウムイオン二次電池の一例を示す概略構成図である。 リチウムイオン二次電池の一例を示す概略構成図である。 実施例1及び比較例2の元素の濃度傾斜を示すグラフである。 本実施形態の全固体リチウムイオン電池が備える積層体を示す模式図である。 本実施形態の全固体リチウムイオン電池の全体構成を示す模式図である。
<リチウム金属複合酸化物粉末>
 本実施形態は、層状構造の結晶構造を有するリチウム金属複合酸化物粉末である。
 本実施形態のリチウム金属複合酸化物粉末は、少なくともLiとNiと元素X及び元素Mとを含有する。
 元素Xは、Co、Mn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素である。
 元素Mは、B、Si、S及びPからなる群より選択される1種以上の元素である。
 リチウム金属複合酸化物粉末中の、Niと元素Xの合計量に対する前記元素Mの含有量の割合は、0.01モル%以上5モル%以下である。
 リチウム金属複合酸化物粉末中の、Niと元素Xの合計量に対するNiの含有量の割合(Ni/(Ni+X))は、モル比で0.4以上である。
 本実施形態において元素Xは、高い電流レートにおける放電容量維持率が高いリチウム二次電池を得る観点から、Ti、Mg、Al、W及びZrの少なくとも一種であることが好ましく、熱的安定性が高いリチウム二次電池を得る意味では、Al、W及びZrの少なくとも一種であることが好ましい。
 本実施形態において元素Mを含む化合物は、リチウムイオン伝導性を有している。本実施形態においては、高い電流レートにおける放電容量維持率が高いリチウム二次電池を得る観点から、元素Mは、B、S及びPの少なくとも一種であることが好ましく、Bであることがより好ましい。
 本実施形態において、リチウム金属複合酸化物粉末中の、Niと元素Xの合計量に対する前記元素Mの含有量(つまり、Niと元素Xの合計量に対する前記元素Mの含有量の割合)は、0.01モル%以上5モル%以下である。元素Mの含有量の下限値は、0.02モル%、0.03モル%又は0.04モル%が挙げられる。元素Mの含有量の上限値は、4.9モル%、4.8モル%又は4.7モル%が挙げられる。
 上記上限値及び下限値は任意に組み合わせることができる。組み合わせの例としては、Niと元素Xの合計量に対する前記元素Mの含有量が、0.02モル%以上4.9モル%以下、0.03モル%以上4.8モル%以下、又は0.04モル%以上4.7モル以下が挙げられる。
 元素Mの含有量が上記の下限値以上であると、つまり、Niと元素Xの合計量に対する前記元素Mの含有量が0.01モル%以上であると、リチウム金属複合酸化物粉末中の金属成分が電解液中に溶出することを防止できる。また、元素Mの含有量が上記下限値以下であると、つまり、Niと元素Xの合計量に対する前記元素Mの含有量が5モル%以下であると、正極活物質として用いた場合に抵抗を低くできる。
 リチウム金属複合酸化物粉末中の、Niと元素Xの合計量に対する前記元素Mの含有量は、例えば以下の方法で求めることができる。リチウム金属複合酸化物粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(例えば、エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いてリチウム金属複合酸化物粉末の組成分析を行う。分析結果からNiと元素Xの合計量に対する前記元素Mの含有量を算出する。
 本実施形態において、リチウム金属複合酸化物粉末中の、Niと元素Xの合計量に対するNiの含有量(つまり、Niと元素Xの合計量に対するNiの含有量の割合であり、Ni/(Ni+X)で表される)は、モル比で0.4以上であり、0.45以上が好ましく、0.50以上がより好ましく、0.55以上が特に好ましい。(Ni/(Ni+X))の上限値は特に限定されないが、一例を挙げると、0.95、0.92、又は0.90が挙げられる。
 上記上限値及び下限値は任意に組み合わせることができる。組み合わせの例としては、(Ni/(Ni+X))が、0.4以上0.95以下、0.45以上0.95以下、0.50以上0.92以下、又は0.55以上0.90以下が挙げられる。
 Niの含有量が上記の範囲内、つまり0.4以上であると、充放電容量を向上させることができる。
 リチウム金属複合酸化物粉末中の、Niと元素Xの合計量に対するNiの含有量は、例えば以下の方法で求めることができる。リチウム金属複合酸化物粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(例えば、エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いてリチウム金属複合酸化物粉末の組成分析を行う。分析結果からNiと元素Xの合計量に対するNiの含有量のモル比を算出する。
 本実施形態のリチウム金属複合酸化物粉末は、さらに下記(1)、(2)及び(3)を満たす。
(1) リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけて、Liと元素Mの元素濃度のモル比(Li/元素M)が連続的に増加している。
(2) リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけて、Oと元素Mの元素濃度のモル比(O/元素M)が連続的に増加している。
(3) リチウム金属複合酸化物粉末の粒子内部における、元素MとOとのモル比(元素M/O)が0.05以下である。
 なお、本明細書において、「O」とは、酸素元素を表す。
 以下の説明において、「粒子」とは、一次粒子が凝集した二次粒子、又は二次粒子とは独立して存在する一次粒子の両方を含む。なお、「一次粒子」とは、走査型電子顕微鏡等で5000倍以上20000倍以下の視野にて粒子を観察した場合に、粒子表面に明確な粒界が見られない粒子を意味する。また、「二次粒子」とは、前記一次粒子が凝集した粒子であり、球状又は略球状の形状を有する粒子を意味する。
 「粒子表面」とは、粒子の最表面をいう。
 「粒子中心」とは、粒子の幾何学的中心を意味する。
 「粒子内部」とは、粒子の半径をDとしたときに、粒子表面から粒子中心にかけて、D/2以上3D/2以下の領域を意味する。
 「粒子の半径」とは、粒子の観察画像における最も長い径の半分の長さを意味する。
 「連続的に増加している」とは、粒子表面から粒子中心にかけて、少なくとも5nmにわたり、漸進的に増加する濃度勾配を有していることを意味する。
 「増加」とは、粒子表面の元素濃度を最小値とし、粒子中心にかけて、この最小値よりも元素濃度が増加していることを意味する。本実施形態においては、この最小値よりも元素濃度が増加していれば、粒子表面から粒子中心にかけて元素濃度が維持されていてもよく、わずかに減少していてもよい。ここで、わずかに減少するとは、粒子表面から粒子中心にかけて元素濃度を測定した際に粒子表面側の測定値に対し、粒子中心側の測定値の減少幅が10%以下であることを意味する。
 また、粒子中心と、粒子表面における(Li/元素M)および(O/元素M)は、例えば一般的な透過型電子顕微鏡(Transmission Electron Microscope:TEM)-エネルギー分散型X線分光法(Energy Dispersive X-ray Spectroscopy:EDX)や透過型電子顕微鏡(Transmission Electron Microscope:TEM)-電子線エネルギー損失分光法(Electron energy-loss spectroscopy:EELS)の手法によって確認することができる。
 具体的には、まず測定対象として、任意のリチウム金属複合酸化物粉末を、イオンミリング加工や集束イオンビーム等による加工等を施し、当該粒子の観察用サンプルを作製する。
 次に、得られた観察用サンプルを適切な倍率でTEM観察する。得られたTEM観察画像において、粒子中心と粒子表面とを電子エネルギー損失分光法(EELS)で解析して、それぞれ元素濃度(at%)を求める。
 得られた元素濃度を比較することで、粒子中心と粒子表面との元素濃度のモル比を把握することができる。
 本実施形態においては、粒子の最表面に位置する任意の点から中心へ向かう直線上をEELSで線分析することが好ましい。線分析によれば、粒子の表面から中心までの元素濃度の濃度比の推移を的確に把握することができる。また、EELSによる線分析は、深さ方向に0.3nm以下の範囲ごとに分析することが好ましい。
 粒子内部における元素MとOとの元素濃度のモル比の測定は、以下の方法によって測定することができる。リチウム金属複合酸化物粉末を、集束イオンビーム装置(FIB、例えば、日本電子社製、JIB-4501)を用いて薄片化し、粒子断面を分析電子顕微鏡(例えば、日本電子社製、ARM200F)で観察し、粒子の半径をDとしたときに、粒子表面から粒子中心にかけて、D/2以上3D/2以下の領域において、EDX検出器(例えば、日本電子社製、JED-2300T)を用いて点分析を行う。これにより、元素MとOとの元素濃度のモル比(元素M/O)を測定する。
 要件(1)
 本実施形態のリチウム金属複合酸化物粉末は、元素Mの濃度がリチウム金属複合酸化物粉末の粒子中心と、粒子表面とで異なっている。
 本実施形態のリチウム金属複合酸化物粉末は、粒子表面から粒子中心にかけて、Liと元素Mの元素濃度のモル比(Li/元素M)が連続的に増加している。つまり、本実施形態のリチウム金属複合酸化物粉末は、粒子表面から粒子中心にかけてリチウム元素濃度が漸進的に大きくなっている。換言すれば、粒子表面の元素Mの濃度が粒子内部よりも相対的に高くなっている。また、より詳細には、粒子の表面から中心に向かって20nm以内の領域において、元素Mの濃度が連続的に増加していることが好ましい。
 要件(2)
 本実施形態のリチウム金属複合酸化物粉末は、粒子表面から粒子中心にかけて、Oと元素Mの元素濃度のモル比(O/元素M)が連続的に増加している。つまり、本実施形態のリチウム金属複合酸化物粉末は、粒子表面から粒子中心にかけて酸素元素濃度が漸進的に大きくなっている。換言すれば、粒子表面の元素Mの濃度が、粒子内部よりも相対的に高くなっている。
 要件(1)及び要件(2)により、本実施形態のリチウム金属複合酸化物粉末は、電解液に接触する粒子表面の元素Mの濃度が粒子内部の元素Mの濃度よりも相対的に高い。換言すると粒子表面における元素Mを含有する化合物の存在割合を高めることができる。元素Mを含有する化合物は電解液との親和性が高く、リチウム金属複合酸化物粉末と電解液の間のリチウムイオンの授受が行いやすく、高い電流レートでの放電容量維持率が高くなると考えられる。
 要件(3)
 本実施形態のリチウム金属複合酸化物粉末は、粒子内部における元素MとOとのモル比(元素M/O)が0.05以下であり、0.02以下が好ましく、0.01以下がより好ましく、0.009以下が特に好ましい。これは、粒子中心の元素M濃度が相対的に低いことを意味する。すなわち、粒子中心では元素M以外の元素濃度が高い。これにより、粒子中心では元素Mとリチウムイオンとの相互作用が生じにくく、充放電容量の高い結晶構造を保持できる。このため、充放電容量を高めることができる。粒子内部における元素MとOとのモル比(元素M/O)の下限値は、特に限定されないが、例えば0.0001ある。
 粒子内部における元素MとOとのモル比(元素M/O)の上限値と下限値は、任意に組み合わせることができる。例えば、粒子内部における元素MとOとのモル比(元素M/O)は、0.0001以上0.05以下であり、0.0005以上0.02以下が好ましく、0.0008以上0.01以下がより好ましく、0.0012以上0.009以下が特に好ましい。
 本実施形態のリチウム金属複合酸化物粉末は、下記組成式(A)で表されることが好ましい。
 Li[Lin1(Ni(1-z-w)1-n1]O   (A)
 (ただし、Xは、Co、Mn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、Mは、B、Si、S及びPからなる群より選択される1種以上の元素であり、0≦n1≦0.2、0<z≦0.6、及び0<w≦0.1を満たす。)
 ・n1
 組成式(A)において、n1はサイクル特性を向上させる観点から、0を超え、0.001以上が好ましく、0.002以上がより好ましく、0.003以上がさらに好ましい。また、n1は0.19以下が好ましく、0.18以下がより好ましく、0.17以下が特に好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。例えば、n1は、0を超え0.19以下であることが好ましく、0.001以上0.18以下がより好ましく、0.002以上0.17以下がさらに好ましく、0.003以上0.17以下が特に好ましい。
 ・z
 組成式(A)において、zはサイクル特性を向上させる観点から、0を超え、0.001以上が好ましく、0.02以上がより好ましい。また、0.50以下が好ましく、0.48以下がより好ましく、0.46以下が特に好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。例えば、zは、0を超え0.50以下であることが好ましく、0.001以上0.48以下がより好ましく、0.02以上0.46以下が特に好ましい。
 ・w
 組成式(A)において、wはサイクル特性を向上させる観点から0を超えることが好ましく、0.001以上がより好ましく、0.002以上が特に好ましい。また、0.09以下が好ましく、0.08以下がより好ましく、0.07以下が特に好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。例えば、wは、0を超え0.09以下であることが好ましく、0.001以上0.08以下がより好ましく、0.002以上0.07以下が特に好ましい。
 本実施形態のリチウム金属複合酸化物粉末は、BET比表面積が、2m/g以下であることが好ましい。
 本実施形態のリチウム金属複合酸化物粉末は、BET比表面積が1.8m/g以下がより好ましく、1.5m/g以下がさらに好ましく、1.2m/g以下が特に好ましい。
 リチウム金属複合酸化物粉末のBET比表面積の下限値は、特に限定されないが、例えば0.1m/gが挙げられる。
 上記上限値及び下限値は任意に組み合わせることができ、例えばリチウム金属複合酸化物粉末のBET比表面積は、0.1m/g以上2m/g以下であることが好ましく、0.12m/g以上1.8m/g以下がより好ましく、0.15m/g以上1.5m/g以下がさらに好ましく、0.18m/g以上1.2m/g以下が特に好ましい。
 リチウム金属複合酸化物粉末のBET比表面積は、例えば、リチウム金属複合酸化物粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、BET比表面積計(例えばマウンテック社製、Macsorb(登録商標))を用いて測定することで得られる(単位:m/g)。
 本実施形態のリチウム金属複合酸化物粉末は、平均一次粒子径が0.3μm以上8μm以下であることが好ましい。
 本実施形態のリチウム金属複合酸化物粉末の平均一次粒子径は0.5μm以上がより好ましく、0.8μm以上がさらに好ましく、1μm以上が特に好ましい。
 また、本実施形態のリチウム金属複合酸化物粉末の平均一次粒子径は8μm以下がより好ましく、7μm以下がさらに好ましく、6μm以下が特に好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。例えば、本実施形態のリチウム金属複合酸化物粉末の平均一次粒子径は、0.5μm以上8μm以下がより好ましく、0.8μm以上7μm以下がさらに好ましく、1μm以上6μm以下が特に好ましい。
・・平均一次粒子径
 リチウム金属複合酸化物粉末の平均一次粒子径は、下記の方法により測定できる。
 まず、リチウム金属複合酸化物粉末を、サンプルステージ上に貼った導電性シート上に載せ、走査電子顕微鏡(SEM、例えば日本電子株式会社製、JSM-5510)を用いて、加速電圧が20kVの電子線を照射してSEM観察を行う。SEM観察により得られた画像(SEM写真)から無作為に50個の一次粒子を抽出し、それぞれの一次粒子について、一次粒子の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を一次粒子の粒子径として測定する。得られた一次粒子の粒子径の算術平均値が、リチウム金属複合酸化物粉末の平均一次粒子径である。
 本実施形態のリチウム金属複合酸化物粉末は、リチウム金属複合酸化物粉末に含まれる全ての粒子、即ち、一次粒子が凝集した二次粒子及び二次粒子と独立して存在する一次粒子の粒度分布測定値から求めた10%累積径(D10)、50%累積径(D50)及び90%累積径(D90)において、50%累積径(D50)が2μm以上10μm以下であり、さらに、下記式(B)の関係を満たすことが好ましい。
      0.3≦(D90-D10)/D50≦3・・・(B)
 前記50%累積径(D50)の下限値は、2.5μm以上が好ましく、3μm以上がより好ましく、3.5μm以上がさらに好ましい。
 前記50%累積径(D50)の上限値は、9μm以下が好ましく、8μm以下がより好ましく、7μm以下がさらに好ましい。
 50%累積径(D50)の上限値及び下限値は任意に組み合わせることができる。本実施形態においては、2.5μm以上9μm以下が好ましく、3μm以上8μm以下がより好ましく、3.5μm以上7μm以下がさらに好ましい。
 式(B)で表される関係の下限値は、0.4以上が好ましく、0.5以上がより好ましく、0.55以上が特に好ましい。
 式(B)で表される関係の上限値は、2.5以下が好ましく、2以下がより好ましく、1.5以下が特に好ましい。
 式(B)で表される関係の上限値及び下限値は任意に組み合わせることができる。本実施形態においては、0.4以上2.5以下が好ましく、0.5以上2以下がより好ましく、0.55以上1.5以下が特に好ましい。
 10%累積径(D10)、50%累積径(D50)及び90%累積径(D90)は、以下の方法で求めることができる。
 リチウム金属複合酸化物粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、該粉末を分散させた分散液を得る。得られた分散液についてレーザー回折散乱粒度分布測定装置(例えば、マルバーン社製、マスターサイザー2000)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、50%累積時の体積粒度をリチウム金属複合酸化物粉末の50%累積体積粒度D50とする。さらに、得られた累積粒度分布曲線において、10%累積時の体積粒度をリチウム金属複合酸化物粉末の10%累積体積粒度D10とする。さらに、得られた累積粒度分布曲線において、90%累積時の体積粒度をリチウム金属複合酸化物粉末の90%累積体積粒度D90とする。
 本実施形態のリチウム金属複合酸化物粉末は、適正な電極構造を形成する観点、即ちリチウム金属複合酸化物粉末と導電材とバインダーとが、適度に混合されて配置しており、電極強度と電子導電性を両立できる観点から、水分含有量(質量%)をBET比表面積(m/g)で除した値(水分含有量(質量%)/BET比表面積(m/g))は、0.005以上0.7以下であることが好ましい。
 水分含有量(質量%)をBET比表面積(m/g)で除した値の下限値は、0.005以上が好ましく、0.008以上がより好ましく、0.010以上が特に好ましい。
 水分含有量(質量%)をBET比表面積(m/g)で除した値の上限値は、0.7以下が好ましく、0.6以下がより好ましく、0.5以下が特に好ましい。
 水分含有量(質量%)をBET比表面積(m/g)で除した値の上限値及び下限値は任意に組み合わせることができる。本実施形態においては、水分含有量(質量%)をBET比表面積(m/g)で除した値が、0.005以上0.7以下であることが好ましく、0.008以上0.6以下がより好ましく、0.010以上0.5以下がさらに好ましい。
 本実施形態のリチウム金属複合酸化物粉末の水分含有量は、例えば、測定対象をリチウム金属複合酸化物粉末1gとし、電量法カールフィッシャー水分計(例えば、Metrohm社製、831 Coulometer)を用いて測定することができる。
 本実施形態のリチウム金属複合酸化物粉末は、高い電流レートにおける放電容量の維持率を高めつつ、放電容量を高める観点から、粒子表面から粒子中心にかけて、Liと元素Mの元素濃度のモル比(Li/元素M)が連続的に増加している範囲における最大濃度勾配RLi/Mが、リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけて、Oと元素Mの元素濃度のモル比(O/元素M)が連続的に増加して範囲における最大濃度勾配RO/Mに比べて小さい(つまり、RLi/M<RO/Mの関係である)ことが好ましい。
 RLi/Mは、前述したTEM-EELS測定により得た粒子表面から粒子中心にかけての元素濃度について、1nm当たりの変化量を測定点ごとに算出し、Liと元素Mの元素濃度のモル比(Li/元素M)が連続的に増加している範囲における変化量が最も大きい値を最大濃度勾配RLi/Mとする。また、RO/Mは、リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけての元素濃度について、1nm当たりの変化量を測定点ごとに算出し、Oと元素Mの元素濃度のモル比(O/元素M)が連続的に増加している範囲における変化量が最も大きい値を最大濃度勾配RO/Mとする。
 RLi/Mの下限値は、0.05以上が好ましく、0.1以上がより好ましく、0.15以上が特に好ましい。
  RLi/Mの上限値は、5以下が好ましく、4.5以下がより好ましく、4以下が特に好ましい。
 RLi/Mの上限値及び下限値は任意に組み合わせることができる。本実施形態においては、0.05以上5以下であることが好ましく、0.1以上4.5以下がより好ましく、0.15以上4以下がさらに好ましい。
 RO/Mの下限値は、0.1以上が好ましく、0.2以上がより好ましく、0.3以上が特に好ましい。
  RO/Mの上限値は、8以下が好ましく、6以下がより好ましく、4以下が特に好ましい。
 RO/Mの上限値及び下限値は任意に組み合わせることができる。本実施形態においては、0.1以上8以下であることが好ましく、0.2以上6以下がより好ましく、0.3以上4以下がさらに好ましい。
(層状構造)
 本実施形態において、正極活物質の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、及びP6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。
 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、及びC2/cからなる群から選ばれるいずれか一つの空間群に帰属される。
 これらのうち、放電容量が高いリチウム二次電池を得るため、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。
<リチウム金属複合酸化物粉末の製造方法>
 本実施形態のリチウム金属複合酸化物粉末の製造方法は、リチウム二次電池用正極活物質の前駆体と、リチウム化合物とを混合して混合物を得る工程と、前記混合物を焼成し、原料化合物を得る工程と、原料化合物に元素Mを含有する化合物を添加する工程とを含む。
[混合物を得る工程]
 本工程は、リチウム化合物と、前駆体とを混合し、混合物を得る工程である。
・前駆体
 リチウム金属複合酸化物粉末を製造するにあたり、まず、リチウム二次電池用正極活物質の前駆体を製造する。
 前駆体は、Niと、元素X(Co、Mn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びV)のうちいずれか1種以上の金属を含む複合金属化合物である。複合金属化合物としては、複合金属水酸化物又は複合金属酸化物が好ましい。
 以下において、リチウム二次電池用正極活物質の前駆体を「前駆体」又は「複合金属化合物」と記載する場合がある。
(複合金属化合物の製造工程)
 複合金属化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む複合金属水酸化物を例に、その製造方法を詳述する。
 まず共沈殿法、特に特開2002-201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、ニッケルコバルトマンガン複合金属水酸化物を製造する。
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れかを使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、及び塩化コバルトのうちの何れかを使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、及び塩化マンガンのうちの何れかを使用することができる。
 以上の金属塩は、前記式(A)の組成比に対応する割合で用いられる。例えばニッケル塩:(コバルト塩及びマンガン塩)=(1-z-w):zとなる割合で用いてもよい。また、ニッケル塩溶液、コバルト塩溶液及びマンガン塩溶液の溶媒としては、水が使用される。
  錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものである。例えばアンモニウムイオン供給体(硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム又は弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。錯化剤は含まれていなくてもよく、含まれていてもよい。錯化剤が含まれる場合、ニッケル、コバルト、及びマンガンの金属塩溶液及び錯化剤を含む混合液に含まれる錯化剤の量は、例えばニッケル、コバルト、及びマンガンの金属塩のモル数の合計に対するモル比が0より大きく2.0以下である。
 バッチ共沈殿法又は連続共沈殿法に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム又は水酸化カリウム)を添加する。
 反応に際しては、反応槽の温度が例えば20℃以上80℃以下、好ましくは30℃以上70℃以下の範囲内で制御する。
 反応槽内のpH値は、例えば水溶液の温度が40℃の時にpH9以上pH13以下、好ましくはpH11以上pH13以下の範囲内で制御される。
 反応槽内の物質は、適宜撹拌される。反応槽は、形成された反応沈殿物を分離するためオーバーフローさせるタイプのものを用いることができる。
 また反応槽内は、不活性雰囲気を保ちつつも、適度な酸素含有雰囲気又は酸化剤存在下とするとよい。反応槽内を酸素含有雰囲気とするには、反応槽内に酸素含有ガスを導入すればよい。
 酸素含有ガスとしては、酸素ガス、空気、又はこれらと窒素ガスなどの酸素非含有ガスとの混合ガスが挙げられる。酸素含有ガス中の酸素濃度を調整しやすい観点から、上記の中でも混合ガスであることが好ましい。
 反応槽に供給する金属塩の濃度、攪拌速度、反応温度、反応pH、及び後述する焼成条件等を適宜制御することにより、最終的に得られるリチウム二次電池用正極活物質を所望の物性に制御することができる。
 以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケルコバルトマンガン複合化合物としてのニッケルコバルトマンガン複合水酸化物を単離する。また、必要に応じて弱酸水や水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄してもよい。なお、上記の例では、前駆体としてニッケルコバルトマンガン複合水酸化物を製造しているが、ニッケルコバルトマンガン複合酸化物を調製してもよい。例えば、ニッケルコバルトマンガン複合水酸化物を焼成することによりニッケルコバルトマンガン複合酸化物を調製することができる。焼成時間は、昇温開始から達温して温度保持が終了するまでの合計時間を1時間以上30時間以下とすることが好ましい。最高保持温度に達する加熱工程の昇温速度は180℃/時間以上が好ましく、200℃/時間以上がより好ましく、250℃/時間以上が特に好ましい。
 ニッケルと元素Xの複合水酸化物(ここでの説明の具体例としては、ニッケルコバルトマンガン複合水酸化物)から、ニッケルと元素Xの複合酸化物を調整する際は、300℃以上800℃以下の温度で1時間以上10時間以下の範囲で焼成し、酸化物化する酸化物化工程を実施してもよい。
 本実施形態において、反応槽に供給する金属原料液(つまり全ての金属塩溶液)の体積が、アルカリ溶液(つまりアルカリ金属水酸化物溶液)の体積に対して大きくなるように、金属原料液及びアルカリ溶液の濃度を調整することにより、前記要件(1)~要件(3)を本実施形態の範囲内に制御しやすい金属複合水酸化物を得ることができる。
 本実施形態において、前駆体のBET比表面積は、5m/g以上40m/g以下である。前駆体のBET比表面積は、リチウム金属複合酸化物粉末のBET比表面積と同じ装置を用いて、同じ条件で測定することができる。
 本実施形態において、前駆体のBET比表面積を5m/g以上40m/g以下に調整することにより、前記要件(1)~要件(3)を本実施形態の範囲内に制御できる。前駆体のBET比表面積は、反応槽に供給する金属塩の濃度、攪拌速度、反応温度、反応pH、及び反応槽中の雰囲気等を適宜制御することにより調整することができる。具体的には、反応槽に供給する金属塩の濃度を高く、攪拌速度を遅く、反応温度を低く、反応pHを高く、反応槽中の雰囲気を酸化雰囲気にすると、前駆体のBET比表面積が高くなる傾向にある。
 ・リチウム化合物
 本発明に用いるリチウム化合物は、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、酸化リチウム、塩化リチウム及びフッ化リチウムのうち何れか1種、又は、2種以上を混合して使用することができる。これらの中では、水酸化リチウム及び炭酸リチウムのいずれか一方又は両方が好ましい。
 また、水酸化リチウムが炭酸リチウムを含む場合には、水酸化リチウム中の炭酸リチウムの含有量は、5質量%以下であることが好ましい。
 前記前駆体と、前記リチウム化合物との混合方法について説明する。
 前記前駆体を乾燥させた後、リチウム化合物と混合する。乾燥条件は、特に制限されないが、例えば、下記の乾燥条件1)~3)のいずれかが挙げられる。
1)前駆体が酸化及び還元されない条件。具体的には、酸化物が酸化物のまま維持される乾燥条件、又は水酸化物が水酸化物のまま維持される乾燥条件である。
2)前駆体が酸化される条件。具体的には、水酸化物から酸化物へ酸化する乾燥条件である。
3)前駆体が還元される条件。具体的には、酸化物から水酸化物へ還元する乾燥条件である。
 酸化及び還元がされない条件のためには、窒素、ヘリウム及びアルゴン等の不活性ガスを使用すればよく、水酸化物が酸化される条件では、酸素又は空気を使用すればよい。
 また、前駆体が還元される条件では、不活性ガス雰囲気下、ヒドラジン又は亜硫酸ナトリウム等の還元剤を使用すればよい。
 前駆体の乾燥後に、適宜前駆体の分級を行ってもよい。
 以上のリチウム化合物と前駆体とを、最終目的物の組成比を勘案して混合する。たとえば、前記複合金属酸化物又は複合金属水酸化物に含まれる金属原子の数に対するリチウム原子の数の比が1.0より大きくなるようにリチウム化合物と混合する。つまり、リチウムと、リチウムを除く金属元素の合計(ニッケル及び元素Xの合計)とのモル比が1を超える比率となるようにリチウム化合物と前記複合金属酸化物又は複合金属水酸化物を混合する。
 金属原子の数に対するリチウム原子の数の比は、1.05以上が好ましく、1.10以上がより好ましい。また、1.30以下が好ましく、1.20以下がより好ましい。金属原子の数に対するリチウム原子の数の比の上限値と下限値は任意に組み合わせることができ、例えば1.05以上1.30以下であってもよく、1.10以上1.20以下であってもよい。前駆体及びリチウム化合物の混合物を後の焼成工程において焼成することによって、リチウム-ニッケル含有複合金属酸化物である原料化合物が得られる。
 [原料化合物を得る工程]
 本工程は、リチウム化合物と、前駆体との混合物を焼成し、原料化合物を得る工程である。
 焼成には、所望の組成に応じて乾燥空気、酸素雰囲気又は不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。
 上記混合物の焼成温度としては、特に制限はないが、例えば600℃以上1100℃以下であることが好ましく、650℃以上1100℃以下であることがより好ましい。
 焼成温度が上記下限値以上、つまり600℃以上であると、強固な結晶構造を有するリチウム二次電池用正極活物質を得ることができる。また、焼成温度が上記上限値以下、つまり1100℃以下であると、二次粒子表面のリチウムの揮発を低減できる。
 本明細書における焼成温度とは、焼成炉内雰囲気の温度を意味し、かつ本焼成工程での保持温度の最高温度(以下、最高保持温度と呼ぶことがある)であり、複数の加熱工程を有する本焼成工程の場合、各加熱工程のうち、最高保持温度で加熱した際の温度を意味する。
 焼成時間は、3時間以上50時間以下が好ましい。焼成時間が50時間を超えると、リチウムの揮発によって実質的に電池性能に劣る傾向となる。焼成時間が3時間より少ないと、結晶の発達が悪く、電池性能が悪くなる傾向となる。なお、上記の焼成の前に、仮焼成を行うことも有効である。仮焼成の温度は、300℃以上850℃以下の範囲で、1~10時間行うことが好ましい。
 本実施形態において、最高保持温度に達する加熱工程の昇温速度は180℃/時間以上が好ましく、200℃/時間以上がより好ましく、250℃/時間以上が特に好ましい。
 最高保持温度に達する加熱工程の昇温速度は、焼成装置において、昇温を開始した時間から後述の保持温度に到達するまでの時間から算出される。
 焼成工程は、焼成温度が異なる複数の加熱工程を有することが好ましい。例えば、第1の焼成段階と、第1の焼成段階よりも高温で焼成する第2の焼成段階を有することが好ましい。さらに焼成温度及び焼成時間が異なる焼成段階を有していてもよい。
 以上のようにリチウム化合物と、前駆体との混合物を焼成することで、原料化合物が得られる。
 [元素Mを含有する化合物を添加する工程]
 元素Mを含有する化合物として、具体的には、HSO、HSO、H、HSO、HSO、HPO、H、HPO、HPO、HBO、HBO、H、HB、B、HSiO、HSiO、HSi、及びSiO等が挙げられる。
 元素Mを含有する化合物の混合量は、特に限定されないが、例えば、上述の工程で得られた原料化合物全量(100モル%)に対して、0.01モル%以上5モル%とするとよい。元素Mを含有する化合物の混合量を制御することにより、元素Mの組成傾斜(つまり、粒子表面から粒子中心にかけての元素Mの元素濃度の変化)と粒子内部の元素Mの元素濃度を、要件(1)~(3)の範囲内に調整することができる。
 元素Mを含有する化合物と、原料化合物とを混合したのち、湿度を調整した雰囲気下で熱処理することが好ましい。具体的には、相対湿度0%以上30%以下に調整した雰囲気下で熱処理することが好ましい。熱処理時間は、300℃以上500℃以下の範囲で、1~10時間行うことが好ましい。金属複合水酸化物及び原料化合物のBET比表面積と前記熱処理温度及び熱処理時間とを適切に制御することで、前記要件(1)~要件(3)を本実施形態の範囲内に制御することができる。
 一例としては、金属複合水酸化物(つまり前駆体)及び原料化合物のBET比表面積が高い場合は熱処理温度を低く、あるいは熱処理時間を短くすることで、元素Mの拡散が抑制される。元素Mの種類や金属複合水酸化物及び原料化合物の組成によっても元素Mの状態は変化するため、上述のように金属複合水酸化物及び原料化合物のBET比表面積、熱処理温度や熱処理時間を適正に制御し、本実施形態のリチウム金属複合酸化物粉末が得られるように調整する。
 また、本実施形態において、熱処理温度は、前記熱処理温度よりも低い温度、即ち300℃未満、かつ湿度を低く、具体的に相対湿度30%以下に調整した雰囲気下で熱処理することにより、リチウム金属複合酸化物粉末の水分含有量(質量%)をリチウム金属複合酸化物粉末のBET比表面積(m/g)で除した値を制御することができる。熱処理を実施するにより、本実施形態のリチウム金属複合酸化物粉末を得ることができる。
[任意工程]
 本実施形態においては、熱処理後のリチウム金属複合酸化物粉末は、純水又はアルカリ性洗浄液などを洗浄液として用いて洗浄してもよい。
 アルカリ性洗浄液としては、例えば、LiOH(水酸化リチウム)、NaOH(水酸化ナトリウム)、KOH(水酸化カリウム)、LiCO(炭酸リチウム)、NaCO(炭酸ナトリウム)、KCO(炭酸カリウム)及び(NHCO(炭酸アンモニウム)からなる群より選ばれる1種以上の無水物の水溶液並びに前記無水物の水和物の水溶液を挙げることができる。また、アルカリとして、アンモニアを使用することもできる。
 洗浄工程において、洗浄液とリチウム金属複合酸化物粉末とを接触させる方法としては、各洗浄液中に、リチウム金属複合酸化物粉末を投入して撹拌する方法や、各洗浄液をシャワー水として、リチウム金属複合酸化物粉末にかける方法や、前記洗浄液中に、リチウム金属複合酸化物粉末を投入して撹拌した後、各洗浄液からリチウム金属複合酸化物粉末を分離し、次いで、各洗浄液をシャワー水として、分離後のリチウム金属複合酸化物粉末にかける方法が挙げられる。
 洗浄に用いる洗浄液の温度は、15℃以下が好ましく、10℃以下がより好ましく、8℃以下がさらに好ましい。洗浄液の温度を上記範囲で洗浄液が凍結しない温度に制御することで、洗浄時にリチウム金属複合酸化物粉末の結晶構造中から洗浄液中へリチウムイオンが過度に溶出することを抑制できる。
 本実施形態においては、上記リチウム化合物と、前駆体との混合物を焼成する際、不活性溶融剤の存在下で焼成してもよい。
 不活性溶融剤の存在下で混合物の焼成を行うことで、混合物の反応を促進させることができる。不活性溶融剤は、焼成後のリチウム金属複合酸化物粉末に残留していてもよいし、焼成後に洗浄液で洗浄すること等により除去されていてもよい。本実施形態においては、不活性溶融剤の存在下での焼成後のリチウム金属複合酸化物粉末は、純水やアルカリ性洗浄液などの洗浄液を用いて洗浄することが好ましい。
 本実施形態においては、原料化合物を得る工程において不活性溶融剤を添加した場合においても、焼成温度と合計時間は上記の範囲内で適宜調整すればよい。
 本実施形態に使用することができる不活性溶融剤は、焼成の際に混合物と反応し難いものであれば特に限定されない。本実施形態においては、Na、K、Rb、Cs、Ca、Mg、Sr及びBaからなる群より選ばれる1種以上の元素(以下、「A」と称する。)のフッ化物、Aの塩化物、Aの炭酸塩、Aの硫酸塩、Aの硝酸塩、Aのリン酸塩、Aの水酸化物、Aのモリブデン酸塩及びAのタングステン酸塩からなる群より選ばれる1種以上が挙げられる。
 Aのフッ化物としては、NaF(融点:993℃)、KF(融点:858℃)、RbF(融点:795℃)、CsF(融点:682℃)、CaF(融点:1402℃)、MgF(融点:1263℃)、SrF(融点:1473℃)及びBaF(融点:1355℃)を挙げることができる。
 Aの塩化物としては、NaCl(融点:801℃)、KCl(融点:770℃)、RbCl(融点:718℃)、CsCl(融点:645℃)、CaCl(融点:782℃)、MgCl(融点:714℃)、SrCl(融点:857℃)及びBaCl(融点:963℃)を挙げることができる。
 Aの炭酸塩としては、NaCO(融点:854℃)、KCO(融点:899℃)、RbCO(融点:837℃)、CsCO(融点:793℃)、CaCO(融点:825℃)、MgCO(融点:990℃)、SrCO(融点:1497℃)及びBaCO(融点:1380℃)を挙げることができる。
 Aの硫酸塩としては、NaSO(融点:884℃)、KSO(融点:1069℃)、RbSO(融点:1066℃)、CsSO(融点:1005℃)、CaSO(融点:1460℃)、MgSO(融点:1137℃)、SrSO(融点:1605℃)及びBaSO(融点:1580℃)を挙げることができる。
 Aの硝酸塩としては、NaNO(融点:310℃)、KNO(融点:337℃)、RbNO(融点:316℃)、CsNO(融点:417℃)、Ca(NO(融点:561℃)、Mg(NO、Sr(NO(融点:645℃)及びBa(NO(融点:596℃)を挙げることができる。
 Aのリン酸塩としては、NaPO、KPO(融点:1340℃)、RbPO、CsPO、Ca(PO、Mg(PO(融点:1184℃)、Sr(PO(融点:1727℃)及びBa(PO(融点:1767℃)を挙げることができる。
 Aの水酸化物としては、NaOH(融点:318℃)、KOH(融点:360℃)、RbOH(融点:301℃)、CsOH(融点:272℃)、Ca(OH)(融点:408℃)、Mg(OH)(融点:350℃)、Sr(OH)(融点:375℃)及びBa(OH)(融点:853℃)を挙げることができる。
 Aのモリブデン酸塩としては、NaMoO(融点:698℃)、KMoO(融点:919℃)、RbMoO(融点:958℃)、CsMoO(融点:956℃)、CaMoO(融点:1520℃)、MgMoO(融点:1060℃)、SrMoO(融点:1040℃)及びBaMoO(融点:1460℃)を挙げることができる。
 Aのタングステン酸塩としては、NaWO(融点:687℃)、KWO、RbWO、CsWO、CaWO、MgWO、SrWO及びBaWOを挙げることができる。
 本実施形態においては、これらの不活性溶融剤を2種以上用いることもできる。不活性溶融剤を2種以上用いる場合は、融点が下がることもある。また、これらの不活性溶融剤の中でも、より結晶性が高いリチウム金属複合酸化物粉末を得るための不活性溶融剤としては、Aの炭酸塩及び硫酸塩、Aの塩化物のいずれか又はその組み合わせであることが好ましい。また、Aとしては、ナトリウム(Na)及びカリウム(K)のいずれか一方又は両方であることが好ましい。すなわち、上記の中で、とりわけ好ましい不活性溶融剤は、NaOH、KOH、NaCl、KCl、NaCO、KCO、NaSO、及びKSOからなる群より選ばれる1種以上である。
 本実施形態において、不活性溶融剤として、硫酸カリウム又は硫酸ナトリウムが好ましい。
 本実施形態においては、原料化合物を得る工程において不活性溶融剤を添加した場合においても、洗浄は上記の範囲内で適宜調整すればよい。
 得られたリチウム金属複合酸化物粉末は、粉砕後に適宜分級され、リチウム二次電池に適用可能なリチウム二次電池用正極活物質とされる。
<リチウム二次電池>
 次いで、本実施形態の正極活物質の用途として好適なリチウム二次電池の構成を説明する。
 さらに、本実施形態の正極活物質粉末を含有するリチウム二次電池用正極活物質の用途として好適な正極について説明する。
 さらに、正極の用途として好適なリチウム二次電池について説明する。
 本実施形態の正極活物質の用途として好適なリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 リチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図1A及び図1Bは、リチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
 次いで、図1Bに示すように、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形又は角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型又は角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、又はペーパー型(又はシート型)電池を例示することができる。
 以下、各構成について順に説明する。
(正極)
 正極は、まず正極活物質、導電材及びバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
(導電材)
 正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)及び繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率及び出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、及び正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
 正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維又はカーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
(バインダー)
 正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体及び四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン及びポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂及びポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力及び正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
 正極が有する正極集電体としては、Al、Ni又はステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン及びジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド及びN-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極を製造することができる。
 式(A)を満たすリチウム金属複合酸化物粉末を含む正極は、スラリー化溶媒と混練した後でも正極中にリチウムと酸素とが結合した化合物が残存している、換言すれば被覆層が残存していることを意味する。
(負極)
 リチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができる。
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物又は硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
 負極活物質として使用可能な炭素材料としては、天然黒鉛又は人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維及び有機高分子化合物焼成体を挙げることができる。
 負極活物質として使用可能な酸化物としては、SiO及びSiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO及びTiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V及びVOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe及びFeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO及びSnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO及びWOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12及びLiVOなどのリチウムとチタン又はバナジウムとを含有する複合金属酸化物;を挙げることができる。
 負極活物質として使用可能な硫化物としては、Ti、TiS及びTiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS及びVSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS及びFeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo及びMoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS及びSnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS及びSeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。
 負極活物質として使用可能な窒化物としては、LiN及びLi3-xN(ここで、AはNi及びCoのいずれか一方又は両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。
 これらの炭素材料、酸化物、硫化物及び窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物及び窒化物は、結晶質又は非晶質のいずれでもよい。
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。
 負極活物質として使用可能な合金としては、Li-Al、Li-Ni、Li-Si、Li-Sn及びLi-Sn-Niなどのリチウム合金;Si-Znなどのシリコン合金;Sn-Mn、Sn-Co、Sn-Ni、Sn-Cu及びSn-Laなどのスズ合金;CuSb及びLaNiSnなどの合金;を挙げることもできる。
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い及び繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛又は人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレン及びポリプロピレンを挙げることができる。
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni又はステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
 このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布又は乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
 リチウム二次電池が有するセパレータとしては、例えば、ポリエチレン及びポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂又は含窒素芳香族重合体などの材質からなる、多孔質膜、不織布又は織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
 本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上且つ300秒/100cc以下であることが好ましく、50秒/100cc以上且つ200秒/100cc以下であることがより好ましい。
 また、セパレータの空孔率は、セパレータの総体積に対し好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは、空孔率の異なるセパレータを積層したものであってもよい。
(電解液)
 リチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、及びLiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF及びLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン及び1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン及び2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル及びγ-ブチロラクトンなどのエステル類;アセトニトリル及びブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド及びN,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド及び1,3-プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル及び2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。
 以上のような構成のリチウム二次電池において、正極活物質は、上述した本実施形態により製造されるリチウム金属複合酸化物粉末を用いているため、この正極活物質を用いたリチウム二次電池のサイクル維持率を向上させることができる。
 また、以上のような構成の正極は、上述した構成のリチウム二次電池用正極活物質を有するため、リチウム二次電池のサイクル維持率を向上させることができる。
 さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、サイクル維持率の高い二次電池となる。
 <全固体リチウム二次電池>
 次いで、全固体リチウム二次電池の構成を説明しながら、本発明の一態様に係る二次電池用正極活物質を全固体リチウム二次電池の正極活物質として用いた正極、及びこの正極を有する全固体リチウム二次電池について説明する。
 図3及び図4は、本実施形態の全固体リチウム二次電池の一例を示す模式図である。図3及び図4に示す全固体二次電池1000は、正極110と、負極120と、固体電解質層130とを有する積層体100と、積層体100を収容する外装体200と、を有する。各部材を構成する材料については、後述する。
 積層体100は、正極集電体112に接続される外部端子113と、負極集電体122に接続される外部端子123と、を有していてもよい。その他、全固体二次電池1000は、正極110と負極120との間にセパレータを有していてもよい。
 全固体二次電池1000は、さらに積層体100と外装体200とを絶縁する不図示のインシュレーター及び外装体200の開口部200aを封止する不図示の封止体を有する。
 外装体200は、アルミニウム、ステンレス鋼又はニッケルメッキ鋼などの耐食性の高い金属材料を成形した容器を用いることができる。また、外装体200として、少なくとも一方の面に耐食加工を施したラミネートフィルムを袋状に加工した容器を用いることもできる。
 全固体リチウム二次電池1000の形状としては、例えば、コイン型、ボタン型、ペーパー型(またはシート型)、円筒型、角型、又はラミネート型(パウチ型)などの形状を挙げることができる。
 全固体二次電池1000は、一例として積層体100を1つ有する形態が図示されているが、本実施形態はこれに限らない。全固体二次電池1000は、積層体100を単位セルとし、外装体200の内部に複数の単位セル(積層体100)を封じた構成であってもよい。
 以下、各構成について順に説明する。
 (正極)
 本実施形態の正極110は、正極活物質層111と正極集電体112とを有している。
 正極活物質層111は、上述した本発明の一態様である正極活物質及び固体電解質を含む。また、正極活物質層111は、導電材及びバインダーを含んでいてもよい。
 (固体電解質)
 本実施形態の正極活物質層111に含まれる固体電解質としては、リチウムイオン伝導性を有し、公知の全固体電池に用いられる固体電解質を採用することができる。このような固体電解質としては、無機電解質及び有機電解質を挙げることができる。無機電解質としては、酸化物系固体電解質、硫化物系固体電解質及び水素化物系固体電解質を挙げることができる。有機電解質としては、ポリマー系固体電解質を挙げることができる。
 (酸化物系固体電解質)
 酸化物系固体電解質としては、例えば、ペロブスカイト型酸化物、NASICON型酸化物、LISICON型酸化物及びガーネット型酸化物などが挙げられる。
 ペロブスカイト型酸化物としては、LiLa1-aTiO(0<a<1)などのLi-La-Ti系酸化物、LiLa1-bTaO(0<b<1)などのLi-La-Ta系酸化物及びLiLa1-cNbO(0<c<1)などのLi-La-Nb系酸化物などが挙げられる。
 NASICON型酸化物としては、Li1+dAlTi2-d(PO(0≦d≦1)などが挙げられる。NASICON型酸化物とは、Li (式中、Mは、B、Al、Ga、In、C、Si、Ge、Sn、Sb及びSeからなる群から選ばれる1種以上の元素である。Mは、Ti、Zr、Ge、In、Ga、Sn及びAlからなる群から選ばれる1種以上の元素である。m、n、o、pおよびqは、任意の正数である。)で表される酸化物である。
 LISICON型酸化物としては、Li-Li(Mは、Si、Ge、及びTiからなる群から選ばれる1種以上の元素である。Mは、P、As及びVからなる群から選ばれる1種以上の元素である。)で表される酸化物などが挙げられる。
 ガーネット型酸化物としては、LiLaZr12(LLZともいう)などのLi-La-Zr系酸化物などが挙げられる。
 酸化物系固体電解質は、結晶性材料であってもよく、非晶質材料であってもよい。
 (硫化物系固体電解質)
 硫化物系固体電解質としては、LiS-P系化合物、LiS-SiS系化合物、LiS-GeS系化合物、LiS-B系化合物、LiS-P系化合物、LiI-SiS-P、LiI-LiS-P、LiI-LiPO-P及びLi10GeP12などを挙げることができる。
 なお、本明細書において、硫化物系固体電解質を指す「系化合物」という表現は、「系化合物」の前に記載した「LiS」「P」などの原料を主として含む固体電解質の総称として用いる。例えば、LiS-P系化合物には、LiSとPとを主として含み、さらに他の原料を含む固体電解質が含まれる。LiS-P系化合物に含まれるLiSの割合は、例えばLiS-P系化合物全体に対して50~90質量%である。LiS-P系化合物に含まれるPの割合は、例えばLiS-P系化合物全体に対して10~50質量%である。また、LiS-P系化合物に含まれる他の原料の割合は、例えばLiS-P系化合物全体に対して0~30質量%である。また、LiS-P系化合物には、LiSとPとの混合比を異ならせた固体電解質も含まれる。
 LiS-P系化合物としては、LiS-P、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P-LiO、LiS-P-LiO-LiI及びLiS-P-Z(m、nは正の数である。Zは、Ge、ZnまたはGaである。)などを挙げることができる。
 LiS-SiS系化合物としては、LiS-SiS、LiS-SiS-LiI、LiS-SiS-LiBr、LiS-SiS-LiCl、LiS-SiS-B-LiI、LiS-SiS-P-LiI、LiS-SiS-LiPO、LiS-SiS-LiSO及びLiS-SiS-LiMO(x、yは正の数である。Mは、P、Si、Ge、B、Al、Ga又はInである。)などを挙げることができる。
 LiS-GeS系化合物としては、LiS-GeS及びLiS-GeS-Pなどを挙げることができる。
 硫化物系固体電解質は、結晶性材料であってもよく、非晶質材料であってもよい。
 (水素化物系固体電解質)
 水素化物系固体電解質材料としては、LiBH、LiBH-3KI、LiBH-PI、LiBH-P、LiBH-LiNH、3LiBH-LiI、LiNH、LiAlH、Li(NHI、LiNH、LiGd(BHCl、Li(BH)(NH)、Li(NH)I及びLi(BH)(NHなどを挙げることができる。
 (ポリマー系固体電解質)
 ポリマー系固体電解質として、例えばポリエチレンオキサイド系の高分子化合物及びポリオルガノシロキサン鎖及びポリオキシアルキレン鎖からなる群から選ばれる1種以上を含む高分子化合物などの有機系高分子電解質を挙げることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。
 固体電解質は、発明の効果を損なわない範囲において、2種以上を併用することができる。
 (導電材)
 本実施形態の正極活物質層111が有する導電材としては、炭素材料及び金属化合物の少なくとも1つを用いることができる。炭素材料として、黒鉛粉末、カーボンブラック(例えばアセチレンブラック)及び繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、後述する適切な量を正極活物質層111に添加することにより正極110の内部の導電性を高め、充放電効率及び出力特性を向上させることができる。一方、カーボンブラックの添加量が多すぎると、正極活物質層111と正極集電体112との結着力、及び正極活物質層111内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。また、金属化合物としては電気導電性を有する金属、金属合金や金属酸化物が挙げられる。
 正極活物質層111中の導電材の割合は、炭素材料の場合は正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維及びカーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
(バインダー)
 正極活物質層111がバインダーを有する場合、バインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリイミド系樹脂;ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体及び四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;及びポリエチレン及びポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂及びポリオレフィン樹脂を用い、正極活物質層111全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極活物質層111と正極集電体112との密着力、及び正極活物質層111内部の結合力がいずれも高い正極活物質層111となる。
(正極集電体)
 本実施形態の正極110が有する正極集電体112としては、Al、Ni及びステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工した部材が好ましい。
 正極集電体112に正極活物質層111を担持させる方法としては、正極集電体112上で正極活物質層111を加圧成型する方法が挙げられる。加圧成型には、冷間プレスや熱間プレスを用いることができる。
 また、有機溶媒を用いて正極活物質、固体電解質、導電材及びバインダーの混合物をペースト化して正極合剤とし、得られる正極合剤を正極集電体112の少なくとも一面上に塗布して乾燥させ、プレスし固着することで、正極集電体112に正極活物質層111を担持させてもよい。
 また、有機溶媒を用いて正極活物質、固体電解質及び導電材の混合物をペースト化して正極合剤とし、得られる正極合剤を正極集電体112の少なくとも一面上に塗布して乾燥させ、焼結することで、正極集電体112に正極活物質層111を担持させてもよい。
 正極合剤に用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン及びジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド及びN-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
 正極合剤を正極集電体112へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法及びグラビア塗工法及び静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極110を製造することができる。
(負極)
 負極120は、負極活物質層121と負極集電体122とを有している。負極活物質層121は、負極活物質を含む。また、負極活物質層121は、固体電解質及び導電材を含んでいてもよい。固体電解質、導電材及びバインダーは、上述したものを用いることができる。
(負極活物質)
 負極活物質層121が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金であり、正極110よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
 負極活物質として使用可能な炭素材料としては、天然黒鉛及び人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維及び有機高分子化合物焼成体を挙げることができる。
 負極活物質として使用可能な酸化物としては、SiO及びSiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO及びTiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V及びVOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe及びFeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO及びSnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO及びWOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;及びLiTi12及びLiVOなどのリチウムとチタン又はバナジウムとを含有する金属複合酸化物;を挙げることができる。
 負極活物質として使用可能な硫化物としては、Ti、TiS及びTiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS及びVSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS及びFeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo及びMoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS及びSnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;及びSe、SeS及びSeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。
 負極活物質として使用可能な窒化物としては、LiN及びLi3-xN(ここで、AはNi及びCoのいずれか一方または両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。
 これらの炭素材料、酸化物、硫化物及び窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物及び窒化物は、結晶質または非晶質のいずれでもよい。
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。
 負極活物質として使用可能な合金としては、Li-Al、Li-Ni、Li-Si、Li-Sn及びLi-Sn-Niなどのリチウム合金;Si-Znなどのシリコン合金;Sn-Mn、Sn-Co、Sn-Ni、Sn-Cu及びSn-Laなどのスズ合金;及びCuSb及びLaNiSnなどの合金;を挙げることもできる。
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極120の電位がほとんど変化しない(つまり、電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(つまり、サイクル特性がよい)などの理由から、天然黒鉛及び人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。
 また、上記負極活物質の中では、熱的安定性が高い、Li金属によるデンドライト(樹枝状晶ともいう)が生成しがたいなどの理由から、酸化物が好ましく用いられる。酸化物の形状としては、繊維状、又は微粉末の凝集体などが好ましく用いられる。
(負極集電体)
 負極120が有する負極集電体122としては、Cu、Ni及びステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工した部材が好ましい。
 負極集電体122に負極活物質層121を担持させる方法としては、正極110の場合と同様に、加圧成型による方法、負極活物質を含むペースト状の負極合剤を負極集電体122上に塗布、乾燥後プレスし圧着する方法、及び負極活物質を含むペースト状の負極合剤を負極集電体122上に塗布、乾燥後、焼結する方法が挙げられる。
(固体電解質層)
 固体電解質層130は、上述の固体電解質を有している。
 固体電解質層130は、上述の正極110が有する正極活物質層111の表面に、無機物の固体電解質をスパッタリング法により堆積させることで形成することができる。
 また、固体電解質層130は、上述の正極110が有する正極活物質層111の表面に、固体電解質を含むペースト状の合剤を塗布し、乾燥させることで形成することができる。乾燥後、プレス成型し、さらに冷間等方圧加圧法(CIP)により加圧して固体電解質層130を形成してもよい。
 積層体100は、上述のように正極110上に設けられた固体電解質層130に対し、公知の方法を用いて、固体電解質層130の表面に負極電解質層121が接するように負極120を積層させることで製造することができる。
 本発明のもう一つの側面は、以下の通りである。
[11]層状構造の結晶構造を有するリチウム金属複合酸化物粉末であって、少なくともLiとNiと元素Xと元素Mとを含有し、前記元素Xは、Co、Mn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、前記元素Mは、B、Si、S及びPからなる群より選択される1種以上の元素であり、リチウム金属複合酸化物粉末中の、Niと前記元素Xの合計量に対する前記元素Mの含有量の割合は、0.03モル%以上1.0モル%以下であり、リチウム金属複合酸化物粉末中の、Ni/(Ni+X)で表されるNiと前記元素Xの合計量に対するNiの含有量の割合は、モル比で0.55以上0.90以下であり、下記(1)、(2)及び(3)を満たす、リチウム金属複合酸化物粉末。
(1) リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけて、Li/元素Mで表されるLiと前記元素Mの元素濃度のモル比が連続的に増加している。
(2) リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけて、O/元素Mで表されるOと前記元素Mの元素濃度のモル比が連続的に増加している。
(3) リチウム金属複合酸化物粉末の粒子内部における、元素M/Oで表される前記元素MとOとの元素濃度のモル比が0.0001以上0.009以下である。
[12]下記組成式(A)で表される、[11]に記載のリチウム金属複合酸化物粉末。
 Li[Lin1(Ni(1-z-w)1-n1]O   (A)
 (ただし、Xは、Co、Mn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、Mは、B、Si、S及びPからなる群より選択される1種以上の元素であり、0.003≦n1≦0.17、0.02≦z≦0.37、及び0.002≦w≦0.07を満たす。)
[13]BET比表面積が、0.05m/g以上1.2m/g以下である、[11]又は[12]に記載のリチウム金属複合酸化物粉末。
[14]平均一次粒子径が1μm以上6μm以下である、[11]~[13]のいずれか1つに記載のリチウム金属複合酸化物粉末。
[15]粒度分布測定値から求めた10%累積径(D10)、50%累積径(D50)及び90%累積径(D90)において、50%累積径(D50)が2μm以上10μm以下であり、さらに、下記式(B)の関係を満たす、[11]~[14]のいずれか1つに記載のリチウム金属複合酸化物粉末。
     0.55≦(D90-D10)/D50≦1.5・・・(B)
[16]水分含有量(質量%)/BET比表面積(m/g)で表される水分含有量(質量%)をBET比表面積(m/g)で除した値が0.010以上0.5以下である[11]~[15]のいずれか1つに記載のリチウム金属複合酸化物粉末。
[17]リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけて、Li/元素Mで表されるLiと前記元素Mの元素濃度のモル比が連続的に増加している範囲における最大濃度勾配RLi/Mが、リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけて、O/元素Mで表されるOと前記元素Mの元素濃度のモル比が連続的に増加して範囲における最大濃度勾配RO/Mに比べて小さい(RO/M>RLi/M)、[11]~[16]のいずれか1つに記載のリチウム金属複合酸化物粉末。
[18]前記リチウム金属複合酸化物粉末とアセチレンブラックとPVdFとの質量比が、リチウム金属複合酸化物粉末:アセチレンブラック:PVdF=92:5:3であり、電極面積を1.65cmであるリチウム二次電池用正極を形成し、前記二次電池用正極と、ポリエチレン製多孔質フィルムのセパレータと、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとが30:35:35(体積比)である混合液にLiPFを1.0mol/lとなるように溶解したものである電解液と、金属リチウムの二次電池用負極と、を含むコイン型電池R2032を作製し、前記コイン型電池R2032について以下に示す充放電試験条件にて、以下のように放電レート試験を実施したとき、得られる10CA/0.2CA放電容量比率が60~98%である、[11]~[17]のいずれか1つに記載のリチウム金属複合酸化物粉末。
・放電レート試験
 試験温度25℃
 充電最大電圧4.3V、充電電流1CA、定電流定電圧充電
 放電最小電圧2.5V、放電電流0.2CA又は10CA、定電流放電
[19][11]~[18]のいずれか1つに記載のリチウム金属複合酸化物粉末を含有するリチウム二次電池用正極活物質。
 さらに、本発明の他の態様として以下の態様が挙げられる。
[20][19]に記載のリチウム二次電池用正極活物質を含有するリチウム二次電池用正極。
[21][20]に記載のリチウム二次電池用正極を有するリチウム二次電池。
 次に、本発明を実施例によりさらに詳細に説明する。
<組成分析>
 後述の方法で製造されるリチウム金属複合酸化物粉末の組成分析は、得られたリチウム金属複合酸化物粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
<BET比表面積測定>
 リチウム金属複合酸化物粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、BET比表面積計(マウンテック社製、Macsorb(登録商標))を用いて測定した(単位:m/g)。
<平均一次粒子径の測定>
 リチウム金属複合酸化物粉末を、サンプルステージ上に貼った導電性シート上に載せ、走査電子顕微鏡(日本電子株式会社製、JSM-5510)を用いて、加速電圧が20kVの電子線を照射してSEM観察を行った。SEM観察により得られた画像(SEM写真)から任意に50個の一次粒子を抽出し、それぞれの一次粒子について、一次粒子の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を一次粒子の粒子径として測定した。得られた一次粒子の粒子径の算術平均値が、リチウム金属複合酸化物粉末の平均一次粒子径とした。
<リチウム金属複合酸化物粉末の粒度分布測定>
 測定するリチウム金属複合酸化物粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、該粉末を分散させた分散液を得た。得られた分散液についてレーザー回折散乱粒度分布測定装置(マルバーン社製、マスターサイザー2000)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得た。得られた累積粒度分布曲線において、50%累積時の体積粒度をリチウム金属複合酸化物粉末の50%累積体積粒度D50とした。さらに、得られた累積粒度分布曲線において、10%累積時の体積粒度をリチウム金属複合酸化物粉末の10%累積体積粒度D10とした。さらに、得られた累積粒度分布曲線において、90%累積時の体積粒度をリチウム金属複合酸化物粉末の90%累積体積粒度D90とした。
<水分含有量>
 測定するリチウム金属複合酸化物粉末1gについて電量法カールフィッシャー水分計(Metrohm社製、831 Coulometer)を用い、リチウム金属複合酸化物粉末の水分含有量を測定した。
<(1)粒子表面から粒子中心におけるLiと元素Mの元素濃度のモル比の測定>
 測定するリチウム金属複合酸化物粉末を、集束イオンビーム装置(FIB、日本電子社製、JIB-4501)を用いて薄片化し、粒子断面を分析電子顕微鏡(日本電子社製、ARM200F)でTEM観察し、粒子表面から粒子中心にかけて、EELS検出器(Gatan社製、Quantum ER)を用いてEELSライン分析を行い、得られたLiと元素MとOのEELSスペクトルからそれぞれの元素濃度を算出し、Liと元素Mの元素濃度のモル比(Li/元素M)を得た。
<(2)粒子表面から粒子中心におけるOと元素Mの元素濃度のモル比の測定>
 上記(2)の測定において得られたOと元素MのEELSスペクトルからそれぞれの元素濃度を算出し、Oと元素Mの元素濃度のモル比(O/元素M)を得た。
<(3)粒子内部における元素MとOとの元素濃度のモル比の測定>
 測定するリチウム金属複合酸化物粉末を、集束イオンビーム装置(FIB、日本電子社製、JIB-4501)を用いて薄片化し、粒子断面を分析電子顕微鏡(日本電子社製、ARM200F)で観察し、粒子の半径をDとしたときに、粒子表面から粒子中心にかけて、D/2以上3D/2以下の領域において、EDX検出器(日本電子社製、JED-2300T)を用いて点分析を行い、元素MとOとの元素濃度のモル比(元素M/O)を測定した。
<RLi/M、RO/Mの測定>
 RLi/Mは、上記(1)及び(2)の測定により得た粒子表面から粒子中心にかけての元素濃度について、1nm当たりの変化量を測定点ごとに算出し、Liと元素Mの元素濃度のモル比(Li/元素M)が連続的に増加している範囲における変化量が最も大きい値を最大濃度勾配RLi/Mとした。また、RO/Mは、リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけての元素濃度について、1nm当たりの変化量を測定点ごとに算出し、Oと元素Mの元素濃度のモル比(O/元素M)が連続的に増加している範囲における変化量が最も大きい値を最大濃度勾配RO/Mとした。
 <リチウム二次電池用正極の作製>
 後述する製造方法で得られるリチウム金属複合酸化物粉末と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム金属複合酸化物粉末:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いた。
 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得た。このリチウム二次電池用正極の電極面積は1.65cmとした。
 <リチウム二次電池(コイン型ハーフセル)の作製>
 以下の操作を、アルゴン雰囲気のグローブボックス内で行った。
 <リチウム二次電池用正極の作製>で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上にセパレータ(ポリエチレン製多孔質フィルム)を置いた。ここに電解液を300μl注入した。電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの30:35:35(体積比)混合液に、LiPFを1.0mol/lとなるように溶解したものを用いた。
 次に、負極として金属リチウムを用いて、前記負極をセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型ハーフセルR2032。以下、「ハーフセル」と称することがある。)を作製した。
 ・充放電試験
 上記の方法で作製したハーフセルを用いて、初期充放電後に、放電レート試験を実施し、放電レート特性を評価した。
 前記初期充放電は、試験温度25℃において、充放電ともに電流0.2CAにてそれぞれ定電流定電圧充電と定電流放電を行った。
・・放電レート試験
 試験温度25℃
 充電最大電圧4.3V、充電電流1CA、定電流定電圧充電
 放電最小電圧2.5V、放電電流0.2CA又は10CA、定電流放電
 0.2CAで定電流放電させたときの放電容量と10CAで定電流放電させたときの放電容量とを用い、以下の式で求められる10CA/0.2CA放電容量比率を求め、放電レート特性の指標とする。10CA/0.2CA放電容量比率が高ければ高いほど、放電レート特性が高く、リチウム二次電池が高出力を示すことを意味する。
 ・・10CA/0.2CA放電容量比率
 10CA/0.2CA放電容量比率(%)
    =10CAにおける放電容量/0.2CAにおける放電容量×100
≪実施例1≫
・リチウム金属複合酸化物粉末1の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を60℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液と硫酸ジルコニウム溶液とを、ニッケル原子とコバルト原子とマンガン原子とジルコニウム原子の原子比が0.60:0.20:0.195:0.005となるように混合して、混合原料液を調製した。
 次いで、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、窒素ガスを反応槽内に連続通気させた。反応槽内の溶液のpHが11.7になるよう水酸化ナトリウム水溶液を適時滴下した。また、20質量%の水酸化ナトリウム水溶液を用い、混合原料液の体積流量よりもアルカリ溶液の体積流量を小さくした。以上の操作によりニッケルコバルトマンガンジルコニウム複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、及び単離して105℃で乾燥することにより、ニッケルコバルトマンガンジルコニウム複合水酸化物1を得た。
 ニッケルコバルトマンガンジルコニウム複合水酸化物1と水酸化リチウム粉末とを、Li/(Ni+Co+Mn+Zr)=1.07(モル比)となるように秤量して混合した後、酸素雰囲気下650℃で5時間焼成して、解砕した後、酸素雰囲気下970℃で5時間焼成して原料化合物1を得た。
 ついで、原料化合物1とホウ酸をB/(Ni+Co+Mn+Zr)=0.005(モル比)となるように秤量して混合した後、酸素且つ相対湿度10%以下の雰囲気下400℃で5時間熱処理して、リチウム金属複合酸化物粉末1を得た。
 リチウム金属複合酸化物粉末1の化学組成、リチウム金属複合酸化物粉末1の粒子表面から粒子内部にかけての組成比、リチウム金属複合酸化物粉末1の粒子内部における元素MとOとの元素濃度のモル比、BET比表面積、平均一次粒子径、(D90-D10)/D50、水分含有量をBET比表面積で除した値、RLi/M、RO/Mの値及び10CA/0.2CA放電容量比率の結果を表1及び表2に記載する。
≪実施例2≫
・リチウム金属複合酸化物粉末2の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を60℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液と硫酸ジルコニウム溶液とを、ニッケル原子とコバルト原子とマンガン原子とジルコニウム原子の原子比が0.55:0.21:0.235:0.005となるように混合して、混合原料液を調製した。
 次いで、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、窒素ガスを反応槽内に連続通気させた。反応槽内の溶液のpHが11.4になるよう水酸化ナトリウム水溶液を適時滴下した。また、20質量%の水酸化ナトリウム水溶液を用い、混合原料液の体積流量よりもアルカリ溶液の体積流量を小さくした。ニッケルコバルトマンガンジルコニウム複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水及び単離して105℃で乾燥することにより、ニッケルコバルトマンガンジルコニウム複合水酸化物2を得た。
 ニッケルコバルトマンガンジルコニウム複合水酸化物2と水酸化リチウム粉末と硫酸カリウム粉末を、Li/(Ni+Co+Mn+Zr)=1.07(モル比)となるように秤量して混合した後、酸素雰囲気下650℃で5時間焼成して、解砕した後、酸素雰囲気下970℃で5時間焼成して原料化合物2を得た。
 ついで、原料化合物2とホウ酸をB/(Ni+Co+Mn+Zr)=0.005(モル比)となるように秤量して混合した後、酸素且つ相対湿度10%以下の雰囲気下400℃で5時間熱処理して、リチウム金属複合酸化物粉末2を得た。
 リチウム金属複合酸化物粉末2の化学組成、リチウム金属複合酸化物粉末2の粒子表面から粒子内部にかけての組成比、リチウム金属複合酸化物粉末2の粒子内部における元素MとOとの元素濃度のモル比、BET比表面積、平均一次粒子径、(D90-D10)/D50、水分含有量をBET比表面積で除した値及びRLi/M、RO/Mの値、10CA/0.2CA放電容量比率の結果を表1及び表2に記載する。
≪実施例3≫
・リチウム金属複合酸化物粉末3の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を40℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子の原子比が0.80:0.15:0.05となるように混合して、混合原料液を調製した。
 次いで、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、窒素ガスを反応槽内に連続通気させた。反応槽内の溶液のpHが12.0になるよう水酸化ナトリウム水溶液を適時滴下した。また、20質量%の水酸化ナトリウム水溶液を用い、混合原料液の体積流量よりもアルカリ溶液の体積流量を小さくした。ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水及び単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物3を得た。
 ニッケルコバルトマンガン複合水酸化物3と水酸化リチウム粉末とを、Li/(Ni+Co+Mn)=1.02(モル比)となるように秤量して混合した後、酸素雰囲気下820℃で8時間焼成して、リチウム金属複合酸化物粉末を得た。上記粉末と純水とを全体量に対して上記粉末重量の割合(重量比)が0.5になるように混合し作製したスラリーを20分間撹拌させた後、脱水及び単離し、105℃相対湿度30℃以下の雰囲気で乾燥し、原料化合物3を得た。
 ついで、原料化合物3とホウ酸をB/(Ni+Co+Mn)=0.004(モル比)となるように秤量して混合した後、酸素且つ相対湿度10%以下の雰囲気下300℃で5時間熱処理して、リチウム金属複合酸化物粉末3を得た。
 リチウム金属複合酸化物粉末3の化学組成、リチウム金属複合酸化物粉末3の粒子表面から粒子内部にかけての組成比、リチウム金属複合酸化物粉末3の粒子内部における元素MとOとの元素濃度のモル比、BET比表面積、平均一次粒子径、(D90-D10)/D50、水分含有量をBET比表面積で除した値、RLi/M、RO/Mの値及び10CA/0.2CA放電容量比率の結果を表1及び表2に記載する。
≪比較例1≫
・リチウム金属複合酸化物粉末4の製造
 ニッケルコバルトマンガンジルコニウム複合水酸化物1と水酸化リチウム粉末をLi/(Ni+Co+Mn+Zr)=1.05(モル比)となるように秤量して混合した後、酸素雰囲気下970℃で8時間焼成して原料化合物4を得た。
 ついで、原料化合物4とホウ酸をB/(Ni+Co+Mn+Zr)=0.005(モル比)となるように秤量して混合した後、酸素且つ相対湿度10%以下の雰囲気下700℃で5時間熱処理して、リチウム金属複合酸化物粉末4を得た。
 リチウム金属複合酸化物粉末4の化学組成、リチウム金属複合酸化物粉末4の粒子表面から粒子内部にかけての組成比、リチウム金属複合酸化物粉末4の粒子内部における元素MとOとの元素濃度のモル比、BET比表面積、平均一次粒子径、(D90-D10)/D50、水分含有量をBET比表面積で除した値、RLi/M、RO/Mの値及び10CA/0.2CA放電容量比率の結果を表1及び表2に記載する。
≪比較例2≫
・リチウム金属複合酸化物粉末5の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を60℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液と硫酸ジルコニウム溶液とを、ニッケル原子とコバルト原子とマンガン原子とジルコニウム原子の原子比が0.55:0.21:0.235:0.005となるように混合して、混合原料液を調製した。
 次いで、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、窒素ガスを反応槽内に連続通気させた。反応槽内の溶液のpHが11.4になるよう水酸化ナトリウム水溶液を適時滴下した。また、5質量%の水酸化ナトリウム水溶液を用い、混合原料液の体積流量よりもアルカリ溶液の体積流量を大きくした。ニッケルコバルトマンガンジルコニウム複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガンジルコニウム複合水酸化物5を得た。
 ニッケルコバルトマンガンジルコニウム複合水酸化物5と水酸化リチウム粉末を、Li/(Ni+Co+Mn+Zr)=1.20(モル比)となるように秤量して混合した後、酸素雰囲気下940℃で8時間焼成して、リチウム金属複合酸化物粉末を得た。上記粉末と純水とを全体量に対して上記粉末重量の割合が0.3になるように混合し作製したスラリーを20分間撹拌させた後、脱水及び単離し、105℃、相対湿度30℃以下に調整された大気雰囲気で乾燥し、原料化合物5を得た。
 ついで、原料化合物5とホウ酸をB/(Ni+Co+Mn)=0.004(モル比)となるように秤量して混合した後、酸素且つ相対湿度10%以下の雰囲気下200℃で5時間熱処理して、リチウム金属複合酸化物粉末5を得た。
 リチウム金属複合酸化物粉末5の化学組成、リチウム金属複合酸化物粉末5の粒子表面から粒子内部にかけての組成比、リチウム金属複合酸化物粉末5の粒子内部における元素MとOとの元素濃度のモル比、BET比表面積、平均一次粒子径、(D90-D10)/D50、水分含有量をBET比表面積で除した値、RLi/M、RO/Mの値及び10CA/0.2CA放電容量比率の結果を表1及び表2に記載する。
≪比較例3≫
・リチウム金属複合酸化物粉末6の製造
 ニッケルコバルトマンガン複合水酸化物3と水酸化リチウム粉末とを、Li/(Ni+Co+Mn)=1.02(モル比)となるように秤量して混合した後、酸素雰囲気下840℃で8時間焼成して、リチウム金属複合酸化物粉末6を得た。
 リチウム金属複合酸化物粉末6の化学組成、リチウム金属複合酸化物粉末6の粒子表面から粒子内部にかけての組成比、リチウム金属複合酸化物粉末6の粒子内部における元素MとOとの元素濃度のモル比、BET比表面積、平均一次粒子径、(D90-D10)/D50、水分含有量をBET比表面積で除した値、RLi/M、RO/Mの値及び10CA/0.2CA放電容量比率の結果を表1及び表2に記載する。
 実施例1~3及び比較例1~3それぞれのリチウム金属複合酸化物粉末の組成、粒子表面から粒子中心におけるLiと元素Mの元素濃度のモル比(Li/元素M)、粒子表面から粒子中心におけるOと元素Mの元素濃度のモル比(O/元素M)、粒子内部における元素MとOとの元素濃度のモル比(元素M/O)、BET比表面積、平均一次粒子径、(D90-D10)/D50、水分含有量をBET比表面積で除した値(表中の水分量/BET比表面積)、RLi/M、RO/Mの値、10CA/0.2CA放電容量比率の結果を表1、表2及び表3にまとめて記載する。なお、表1の「M/(Ni+X)」は、Niと元素Xの合計量に対する前記元素Mの含有量の割合を指す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図2に、実施例1及び比較例2のリチウム金属複合酸化物粉末を、電子エネルギー損失分光法(EELS)により元素マッピングした結果を示す。図2に示すグラフの横軸は、リチウム金属複合酸化物粉末の粒子表面から粒子中心方向への深さ(単位:nm)を意味し、縦軸は、LiもしくはOと元素Mとの元素濃度のモル比を意味する。図2中、「a」は、リチウム金属複合酸化物粉末粒子の最表面を意味する。「b」は、リチウム金属複合酸化物粉末粒子の最表面から粒子中心に向かって7nmの領域を意味する。
 図2に示すように、実施例1のリチウム金属複合酸化物粉末は、粒子表面から粒子中心に向かって7nmの領域にかけて、ホウ素濃度が連続的に増加していた。一方、比較例2のリチウム金属複合酸化物粉末は、実施例1のようなホウ素の連続的な増加は観察されなかった。
 本発明によれば、リチウム二次電池の正極活物質として用いた場合に、リチウム二次電池の高い電流レートにおける放電容量維持率を向上できるリチウム金属複合酸化物粉末、及びこれを用いたリチウム二次電池用正極活物質を提供することができる。
 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード

Claims (8)

  1.  層状構造の結晶構造を有するリチウム金属複合酸化物粉末であって、
     少なくともLiとNiと元素Xと元素Mとを含有し、
     前記元素Xは、Co、Mn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、
     前記元素Mは、B、Si、S及びPからなる群より選択される1種以上の元素であり、
     リチウム金属複合酸化物粉末中の、Niと前記元素Xの合計量に対する前記元素Mの含有量の割合は、0.01モル%以上5モル%以下であり、
     リチウム金属複合酸化物粉末中の、Ni/(Ni+X)で表されるNiと前記元素Xの合計量に対するNiの含有量の割合は、モル比で0.4以上であり、
     下記(1)、(2)及び(3)を満たす、リチウム金属複合酸化物粉末。
    (1) リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけて、Li/元素Mで表されるLiと前記元素Mの元素濃度のモル比が連続的に増加している。
    (2) リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけて、O/元素Mで表されるOと前記元素Mの元素濃度のモル比が連続的に増加している。
    (3) リチウム金属複合酸化物粉末の粒子内部における、元素M/Oで表される前記元素MとOとの元素濃度のモル比が0.05以下である。
  2.  下記組成式(A)で表される、請求項1に記載のリチウム金属複合酸化物粉末。
     Li[Lin1(Ni(1-z-w)1-n1]O   (A)
    (ただし、Xは、Co、Mn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、Mは、B、Si、S及びPからなる群より選択される1種以上の元素であり、0≦n1≦0.2、0<z≦0.6、及び0<w≦0.1を満たす。)
  3.  BET比表面積が、2m/g以下である、請求項1又は2に記載のリチウム金属複合酸化物粉末。
  4.  平均一次粒子径が0.3μm以上8μm以下である、請求項1~3のいずれか1項に記載のリチウム金属複合酸化物粉末。
  5.  粒度分布測定値から求めた10%累積径(D10)、50%累積径(D50)及び90%累積径(D90)において、50%累積径(D50)が2μm以上10μm以下であり、さらに、下記式(B)の関係を満たす、請求項1~4のいずれか1項に記載のリチウム金属複合酸化物粉末。
          0.3≦(D90-D10)/D50≦3・・・(B)
  6.  水分含有量(質量%)/BET比表面積(m/g)で表される水分含有量(質量%)をBET比表面積(m/g)で除した値が0.005以上0.7以下である請求項1~5のいずれか1項に記載のリチウム金属複合酸化物粉末。
  7.  リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけて、Li/元素Mで表されるLiと前記元素Mの元素濃度のモル比が連続的に増加している範囲における最大濃度勾配RLi/Mが、リチウム金属複合酸化物粉末の粒子表面から粒子中心にかけて、O/元素Mで表されるOと前記元素Mの元素濃度のモル比が連続的に増加している範囲における最大濃度勾配RO/Mに比べて小さい(RO/M>RLi/M)、請求項1~6のいずれか1項に記載のリチウム金属複合酸化物粉末。
  8.  請求項1~7のいずれか1項に記載のリチウム金属複合酸化物粉末を含有するリチウム二次電池用正極活物質。
PCT/JP2019/049989 2019-04-12 2019-12-20 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質 WO2020208872A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/602,602 US20220190333A1 (en) 2019-04-12 2019-12-20 Lithium metal composite oxide powder and positive electrode active material for lithium secondary battery
KR1020217032208A KR20210150399A (ko) 2019-04-12 2019-12-20 리튬 금속 복합 산화물 분말 및 리튬 이차 전지용 정극 활물질
EP19924475.7A EP3954658A4 (en) 2019-04-12 2019-12-20 LITHIUM METAL COMPLEX OXIDE POWDER AND POSITIVE ELECTRODE ACTIVE MATERIAL OF LITHIUM SECONDARY BATTERY
CN201980095183.0A CN113661146A (zh) 2019-04-12 2019-12-20 锂金属复合氧化物粉末以及锂二次电池用正极活性物质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-076522 2019-04-12
JP2019076522A JP6630863B1 (ja) 2019-04-12 2019-04-12 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質

Publications (1)

Publication Number Publication Date
WO2020208872A1 true WO2020208872A1 (ja) 2020-10-15

Family

ID=69146537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049989 WO2020208872A1 (ja) 2019-04-12 2019-12-20 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質

Country Status (6)

Country Link
US (1) US20220190333A1 (ja)
EP (1) EP3954658A4 (ja)
JP (1) JP6630863B1 (ja)
KR (1) KR20210150399A (ja)
CN (1) CN113661146A (ja)
WO (1) WO2020208872A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021015790A (ja) * 2019-07-11 2021-02-12 日亜化学工業株式会社 正極活物質及びその製造方法
WO2021117890A1 (ja) 2019-12-13 2021-06-17 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2021125271A1 (ja) 2019-12-17 2021-06-24 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2021141112A1 (ja) 2020-01-09 2021-07-15 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム金属複合酸化物の製造方法
WO2021172509A1 (ja) 2020-02-26 2021-09-02 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2021210524A1 (ja) 2020-04-14 2021-10-21 住友化学株式会社 リチウム二次電池用正極活物質粒子、リチウム二次電池用正極及びリチウム二次電池
WO2021225094A1 (ja) 2020-05-07 2021-11-11 住友化学株式会社 リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質前駆体の製造方法及びリチウム二次電池用正極活物質の製造方法
WO2021225095A1 (ja) 2020-05-07 2021-11-11 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022004323A1 (ja) 2020-06-29 2022-01-06 住友化学株式会社 リチウム二次電池正極活物質用前駆体及びリチウム二次電池正極活物質の製造方法
WO2022009843A1 (ja) 2020-07-06 2022-01-13 住友化学株式会社 リチウム二次電池正極活物質用前駆体、リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022039088A1 (ja) 2020-08-19 2022-02-24 住友化学株式会社 リチウム金属複合酸化物の製造方法
WO2022044720A1 (ja) 2020-08-24 2022-03-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022050311A1 (ja) 2020-09-04 2022-03-10 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022050314A1 (ja) 2020-09-04 2022-03-10 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極及びリチウム二次電池
WO2022107861A1 (ja) 2020-11-19 2022-05-27 住友化学株式会社 前駆体、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022107754A1 (ja) 2020-11-17 2022-05-27 住友化学株式会社 リチウム金属複合酸化物の製造方法
WO2022113904A1 (ja) 2020-11-24 2022-06-02 住友化学株式会社 リチウム金属複合酸化物の製造方法
WO2022168780A1 (ja) 2021-02-03 2022-08-11 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022196376A1 (ja) 2021-03-16 2022-09-22 住友化学株式会社 金属複合化合物、リチウム金属複合酸化物の製造方法及び金属複合化合物の製造方法
WO2022209506A1 (ja) 2021-03-31 2022-10-06 住友化学株式会社 リチウム二次電池用負極活物質、金属負極及びリチウム二次電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023505048A (ja) * 2019-12-06 2023-02-08 エルジー エナジー ソリューション リミテッド 二次電池用正極材の製造方法
JP2024037355A (ja) * 2022-09-07 2024-03-19 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2010086922A (ja) * 2008-10-02 2010-04-15 Toda Kogyo Corp リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池
JP2014038828A (ja) 2012-08-14 2014-02-27 Samsung Sdi Co Ltd リチウム2次電池用正極活物質、リチウム2次電池用正極活物質の製造方法および前記正極活物質を含むリチウム2次電池
JP2016033854A (ja) * 2014-07-31 2016-03-10 日亜化学工業株式会社 非水電解液二次電池用正極活物質
WO2017150506A1 (ja) * 2016-02-29 2017-09-08 三井金属鉱業株式会社 リチウム二次電池用正極活物質
JP2018172257A (ja) * 2017-03-31 2018-11-08 住友化学株式会社 リチウム金属複合酸化物の製造方法
JP2019076522A (ja) 2017-10-25 2019-05-23 株式会社三共 遊技機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116566A (ja) * 1997-06-20 1999-01-22 Hitachi Ltd 電 池
JP2003109599A (ja) * 2000-12-27 2003-04-11 Toshiba Corp 正極活物質およびそれを用いた非水電解液二次電池
JP5223166B2 (ja) * 2006-02-07 2013-06-26 日産自動車株式会社 電池活物質および二次電池
JP6284542B2 (ja) * 2013-10-29 2018-02-28 エルジー・ケム・リミテッド 正極活物質の製造方法、及びこれによって製造されたリチウム二次電池用正極活物質
US9627680B2 (en) * 2013-11-15 2017-04-18 Sumitomo Metal Mining Co., Ltd. Method for producing surface-treated oxide particles, and oxide particles produced by said production method
TWI600202B (zh) * 2014-03-06 2017-09-21 烏明克公司 用於在汽車應用中的電池組之摻雜並且塗覆的鋰過渡金屬氧化物陰極材料
CN104409700B (zh) * 2014-11-20 2018-07-24 深圳市贝特瑞新能源材料股份有限公司 一种镍基锂离子电池正极材料及其制备方法
KR101989398B1 (ko) * 2015-11-30 2019-06-17 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR102004457B1 (ko) * 2015-11-30 2019-07-29 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
CN107293744A (zh) * 2016-04-12 2017-10-24 河南科隆新能源股份有限公司 一种高电压类单晶三元正极材料及其制备方法
JP7087381B2 (ja) * 2016-12-27 2022-06-21 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7131056B2 (ja) * 2017-04-28 2022-09-06 住友金属鉱山株式会社 非水系電解液二次電池用正極活物質、非水系電解液二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2010086922A (ja) * 2008-10-02 2010-04-15 Toda Kogyo Corp リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池
JP2014038828A (ja) 2012-08-14 2014-02-27 Samsung Sdi Co Ltd リチウム2次電池用正極活物質、リチウム2次電池用正極活物質の製造方法および前記正極活物質を含むリチウム2次電池
JP2016033854A (ja) * 2014-07-31 2016-03-10 日亜化学工業株式会社 非水電解液二次電池用正極活物質
WO2017150506A1 (ja) * 2016-02-29 2017-09-08 三井金属鉱業株式会社 リチウム二次電池用正極活物質
JP2018172257A (ja) * 2017-03-31 2018-11-08 住友化学株式会社 リチウム金属複合酸化物の製造方法
JP2019076522A (ja) 2017-10-25 2019-05-23 株式会社三共 遊技機

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7007610B2 (ja) 2019-07-11 2022-01-24 日亜化学工業株式会社 正極活物質及びその製造方法
JP2021015790A (ja) * 2019-07-11 2021-02-12 日亜化学工業株式会社 正極活物質及びその製造方法
WO2021117890A1 (ja) 2019-12-13 2021-06-17 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2021125271A1 (ja) 2019-12-17 2021-06-24 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2021141112A1 (ja) 2020-01-09 2021-07-15 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム金属複合酸化物の製造方法
WO2021172509A1 (ja) 2020-02-26 2021-09-02 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2021210524A1 (ja) 2020-04-14 2021-10-21 住友化学株式会社 リチウム二次電池用正極活物質粒子、リチウム二次電池用正極及びリチウム二次電池
WO2021225095A1 (ja) 2020-05-07 2021-11-11 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2021225094A1 (ja) 2020-05-07 2021-11-11 住友化学株式会社 リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質前駆体の製造方法及びリチウム二次電池用正極活物質の製造方法
WO2022004323A1 (ja) 2020-06-29 2022-01-06 住友化学株式会社 リチウム二次電池正極活物質用前駆体及びリチウム二次電池正極活物質の製造方法
WO2022009843A1 (ja) 2020-07-06 2022-01-13 住友化学株式会社 リチウム二次電池正極活物質用前駆体、リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022039088A1 (ja) 2020-08-19 2022-02-24 住友化学株式会社 リチウム金属複合酸化物の製造方法
WO2022044720A1 (ja) 2020-08-24 2022-03-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022050311A1 (ja) 2020-09-04 2022-03-10 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022050314A1 (ja) 2020-09-04 2022-03-10 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極及びリチウム二次電池
WO2022107754A1 (ja) 2020-11-17 2022-05-27 住友化学株式会社 リチウム金属複合酸化物の製造方法
WO2022107861A1 (ja) 2020-11-19 2022-05-27 住友化学株式会社 前駆体、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022113904A1 (ja) 2020-11-24 2022-06-02 住友化学株式会社 リチウム金属複合酸化物の製造方法
WO2022168780A1 (ja) 2021-02-03 2022-08-11 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022196376A1 (ja) 2021-03-16 2022-09-22 住友化学株式会社 金属複合化合物、リチウム金属複合酸化物の製造方法及び金属複合化合物の製造方法
WO2022209506A1 (ja) 2021-03-31 2022-10-06 住友化学株式会社 リチウム二次電池用負極活物質、金属負極及びリチウム二次電池

Also Published As

Publication number Publication date
US20220190333A1 (en) 2022-06-16
EP3954658A1 (en) 2022-02-16
CN113661146A (zh) 2021-11-16
JP6630863B1 (ja) 2020-01-15
JP2020172417A (ja) 2020-10-22
KR20210150399A (ko) 2021-12-10
EP3954658A4 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2020208872A1 (ja) リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
JP6836369B2 (ja) リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質の製造方法
JP6871888B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2020208966A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池
WO2020130123A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2020208874A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、及びリチウム金属複合酸化物粉末の製造方法
KR20200131236A (ko) 리튬 금속 복합 산화물 분말, 리튬 이차 전지용 정극 활물질, 정극 및 리튬 이차 전지
WO2020208873A1 (ja) リチウム複合金属酸化物粉末及びリチウム二次電池用正極活物質
WO2020208963A1 (ja) リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
WO2020208964A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、及びリチウム金属複合酸化物粉末の製造方法
JP6803451B1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7471903B2 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7235650B2 (ja) リチウム遷移金属複合酸化物粉末、ニッケル含有遷移金属複合水酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2020172426A (ja) リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
JP7227894B2 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6980053B2 (ja) リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質前駆体の製造方法及びリチウム二次電池用正極活物質の製造方法
JP6976392B1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極及びリチウム二次電池
JP6935526B2 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019924475

Country of ref document: EP

Effective date: 20211112