WO2022113904A1 - リチウム金属複合酸化物の製造方法 - Google Patents

リチウム金属複合酸化物の製造方法 Download PDF

Info

Publication number
WO2022113904A1
WO2022113904A1 PCT/JP2021/042621 JP2021042621W WO2022113904A1 WO 2022113904 A1 WO2022113904 A1 WO 2022113904A1 JP 2021042621 W JP2021042621 W JP 2021042621W WO 2022113904 A1 WO2022113904 A1 WO 2022113904A1
Authority
WO
WIPO (PCT)
Prior art keywords
firing
mass
positive electrode
alloy
fired
Prior art date
Application number
PCT/JP2021/042621
Other languages
English (en)
French (fr)
Inventor
裕樹 松本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=81754289&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022113904(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2022508798A priority Critical patent/JP7121219B1/ja
Priority to KR1020237017010A priority patent/KR20230110267A/ko
Priority to US18/253,463 priority patent/US20240010519A1/en
Priority to CA3199449A priority patent/CA3199449A1/en
Priority to CN202180078040.6A priority patent/CN116529548A/zh
Priority to EP21897878.1A priority patent/EP4253327A1/en
Publication of WO2022113904A1 publication Critical patent/WO2022113904A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/22Rotary drums; Supports therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/24Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace being carried by a conveyor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a lithium metal composite oxide.
  • a lithium metal composite oxide is used as the positive electrode active material used for the positive electrode of the lithium secondary battery.
  • the method for producing a lithium metal composite oxide includes, for example, a firing step of firing an object to be fired, such as a mixture of a metal composite compound and a lithium compound, or a reaction product of a metal composite compound and a lithium compound.
  • a continuous firing furnace or a fluid firing furnace is used in the firing step.
  • Patent Document 1 describes a method of firing using a firing means whose inner wall is a nickel material.
  • the conventional metal firing furnace has a problem that the contact member in contact with the object to be fired is easily corroded. If the contact member is easily corroded, the contact member needs to be replaced and the production efficiency is lowered.
  • the contact member is specifically the inner wall of the firing furnace. Therefore, there has been a demand for a method capable of efficiently producing a lithium metal composite oxide that can provide a lithium secondary battery having good battery performance.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for efficiently producing a lithium metal composite oxide capable of obtaining a lithium secondary battery having a high initial discharge capacity.
  • the present invention includes [1] to [8].
  • the object to be fired is a mixture of a metal composite compound and a lithium compound, or a mixture containing a reaction product of the metal composite compound and the lithium compound.
  • the material to be fired has a Li content of more than 5% by mass and 10% by mass or less
  • the firing means includes an inner wall, the main material of the inner wall is an alloy, and the alloy is a raw material. It contains Ni and Al, and the content of Ni in the total amount of the alloy is 93% by mass or more and 95% by mass or less, and the content of Al in the total amount of the alloy is 3% by mass or more and 5% by mass or less.
  • a method for producing a lithium metal composite oxide [2] The production method according to [1], wherein the lithium metal composite oxide is represented by the following general formula (I). Li [Li x (Ni (1-y-z) Coy M z ) 1-x ] O 2 ... (I) ( ⁇ 0.1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.9, y + z ⁇ 1, M is Mn, Cu, Ti, Mg, Al, W, B, Mo , Nb, Zn, Sn, Zr, Ga and V represent one or more elements selected from the group.) [3] The production method according to [1] or [2], wherein the alloy contains either or both of Si and Mn.
  • the alloy contains either or both of Si and Mn.
  • the firing step includes a temporary firing step and a main firing step, and at least in the temporary firing step, firing is performed using the firing means, and the firing temperature of the temporary firing step is 100 ° C. or higher and 700 ° C. or lower.
  • the present invention it is possible to provide a method for efficiently producing a lithium metal composite oxide capable of obtaining a lithium secondary battery having a high initial discharge capacity.
  • a metal complex compound is hereinafter referred to as "MCC”.
  • the lithium metal composite oxide is hereinafter referred to as "LiMO”.
  • the cathode active material for lithium second battery batteries for a lithium secondary battery is hereinafter referred to as "CAM”.
  • Ni refers to a nickel atom, not a nickel metal.
  • Co and Li also refer to cobalt atom, lithium atom and the like, respectively.
  • the initial discharge capacity of the lithium secondary battery is measured by the following method.
  • LiMO produced by the production method of this embodiment is used as CAM.
  • N-methyl-2-pyrrolidone is used as an organic solvent.
  • Acetylene black is used as the conductive material.
  • Polyvinylidene fluoride is used as the binder.
  • the obtained positive electrode mixture is applied to an Al foil having a thickness of 40 ⁇ m as a current collector and vacuum dried at 150 ° C. for 8 hours to obtain a positive electrode for a lithium secondary battery.
  • the electrode area of the positive electrode for the lithium secondary battery is 1.65 cm 2 .
  • the separator and the positive electrode mixture layer are sufficiently impregnated with the electrolytic solution.
  • a current set value of 0.2 CA is set for both charging and discharging, and constant current constant voltage charging and constant current discharging are performed, respectively.
  • the negative electrode is metallic Li, the maximum charge voltage is 4.3 V, and the minimum discharge voltage is 2.5 V.
  • the discharge capacity is measured, and the obtained value is defined as the "initial discharge capacity" (mAh / g).
  • the criteria for determining the discharge capacity may differ depending on the composition of the lithium metal composite oxide. Specifically, the determination is made based on either the following determination criteria A or determination criteria B.
  • Judgment Criteria A When the initial discharge capacity is 180 mAh / g or more, it is evaluated that the initial discharge capacity is high.
  • Judgment Criteria B When the initial discharge capacity is 170 mAh / g or more, it is evaluated that the initial discharge capacity is high.
  • the judgment standard A When the Ni content in the total amount of LiMO is 80% or more, the judgment standard A is used, and when the Ni content is less than 80%, the judgment standard B is used.
  • LiMO ⁇ Measurement of corrosion rate and growth rate of corrosion products> Whether or not LiMO can be efficiently produced in the present specification is confirmed by measuring the corrosion rate of the metal test piece and the growth rate of the corrosion product.
  • the metal test piece is a model of an alloy that is the main material of the inner wall provided by the firing means. The smaller the values of the corrosion rate and the growth rate of the corrosion product of the metal test piece, the higher the production efficiency.
  • the corrosion rate and the growth rate of corrosion products are measured by the following methods.
  • a metal test piece as a model of the alloy that is the main material of the inner wall provided by the firing means.
  • the object to be calcined is, for example, a mixture of MCC and a lithium compound, or a raw material of a mixture containing a reaction product of MCC and a lithium compound.
  • the metal test piece is, for example, a plate-shaped test piece having a thickness of several mm.
  • the firing conditions are kept at 680 ° C for 12 hours under an oxygen atmosphere.
  • Baking is performed once or multiple times under the same conditions. When firing is carried out a plurality of times, for example, it is carried out twice or more and 10 times or less under the same conditions.
  • the same condition means that the firing temperature, firing time, and firing atmosphere are the same.
  • the obtained fired product is collected, the work to be fired is loaded, and then the next firing is performed.
  • the material to be fired to be loaded at this time is a mixture of MCC and a lithium compound, or a raw material of a mixture containing a reaction product of MCC and a lithium compound, which is the same as the material to be fired that was placed for the first time.
  • the wall thickness of the unfired metal test piece and the wall thickness of the metal test piece after firing a plurality of times are measured.
  • the thickness at this time is L1 (mm).
  • the thickness of the metal test piece means the value when the thickness of the center of the test piece is measured for the metal test piece.
  • the center of the metal test piece is cut in the thickness direction to obtain a cross section. Observe the obtained cross section with a microscope and measure the wall thickness.
  • the thickness at this time is L2 (mm).
  • L2 means a value when the wall thickness is measured.
  • the difference between L1 and L2 (L1-L2) is defined as the change in wall thickness (mm).
  • the thickness (mm) of the corrosion product formed on the surface of the metal test piece is measured with a microscope.
  • the thickness of the corrosion product means the value when the thickness of the corrosion product is measured.
  • Growth rate of corrosion product [Corrosion product thickness (mm) x 24 x 365] / [Retention time (h) x number of firings]
  • the criteria for the growth rate of corrosion products may differ depending on the composition of the lithium metal composite oxide. Specifically, the determination is made based on either the following determination criteria 1 or determination criteria 2. Judgment Criteria 1: When the growth rate of the corrosion product is 0.9 mm / year or less, it is evaluated that the corrosion rate is slow and the inner wall of the firing means is not easily corroded. Judgment Criteria 2: When the growth rate of the corrosion product is 2.6 mm / year or less, it is evaluated that the corrosion rate is slow and the inner wall of the firing means is not easily corroded.
  • Judgment standard 1 is used when the Li content is 6.5% by mass or less in the total amount of LiMO, and judgment standard 2 is used when the Li content exceeds 6.5% by mass.
  • the method for producing LiMO of the present embodiment includes a firing step of firing the object to be fired using a firing means as an essential step.
  • the method for producing LiMO preferably includes a step of obtaining MCC and a step of obtaining a mixture.
  • the step of obtaining the MCC, the step of obtaining the mixture, and the step of firing will be described in this order.
  • an MCC containing a metal element other than lithium, that is, Ni, and optional metals Co, Al, and element M is prepared.
  • the MCC can be produced by a commonly known batch coprecipitation method or continuous coprecipitation method.
  • the production method thereof will be described in detail by taking as an example a metal composite hydroxide containing Ni, Co and Al as the metal.
  • a nickel salt solution, a cobalt salt solution, an aluminum salt solution, and a complexing agent are reacted by a co-precipitation method, particularly a continuous method described in JP-A-2002-201028, to cause Ni (1-yz) Co.
  • y Al z (OH) 2 A metal composite hydroxide represented by y + z ⁇ 1 in the formula is produced.
  • the nickel salt which is the solute of the nickel salt solution is not particularly limited, but for example, any one or more of nickel sulfate, nickel nitrate, nickel chloride and nickel acetate can be used.
  • cobalt salt which is the solute of the cobalt salt solution
  • any one or more of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used.
  • aluminum salt that is the solute of the aluminum salt solution for example, aluminum sulfate, sodium aluminate, or the like can be used.
  • the above metal salts are used in a ratio corresponding to the composition ratio of the above Ni (1-yz) Coy Al z ( OH) 2 .
  • water is used as a solvent.
  • the complexing agent is a compound capable of forming a complex with Ni, Co, and Al ions in an aqueous solution.
  • Examples include ammonium ion feeders, hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracildiacetic acid, and glycine.
  • ammonium ion feeder examples include ammonium salts such as ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, and ammonium fluoride.
  • the complexing agent may not be contained, and if the complexing agent is contained, the amount of the complexing agent contained in the mixed solution containing the nickel salt solution, the cobalt salt solution, the aluminum salt solution and the complexing agent is, for example, The molar ratio to the total number of moles of the metal salt is greater than 0 and 2.0 or less.
  • the mixed solution in order to adjust the pH value of the mixed solution containing the nickel salt solution, cobalt salt solution, aluminum salt solution and complexing agent, the mixed solution is mixed before the pH of the mixed solution changes from alkaline to neutral.
  • Add an alkaline aqueous solution Sodium hydroxide and potassium hydroxide can be used as the alkaline aqueous solution.
  • the pH value in the present specification is defined as a value measured when the temperature of the mixed solution is 40 ° C.
  • the pH of the mixed solution is measured when the temperature of the mixed solution sampled from the reaction vessel reaches 40 ° C.
  • the temperature of the sampled mixed solution is lower than 40 ° C, heat the mixed solution and measure the pH when it reaches 40 ° C.
  • the pH is measured when the mixed solution is cooled to 40 ° C.
  • Ni, Co, and Al react with each other, and Ni (1-yz) Coy Al.
  • z (OH) 2 is generated.
  • Ni (1-y-z) A nickel salt solution, a cobalt salt solution, a manganese salt solution, and a complexing agent are reacted by the same method as the method for producing Coy Al z (OH) 2 , and Ni ( 1-y-z) is used.
  • yz ) Coy Mn z (OH) 2 (in the formula, y + z ⁇ 1) may be produced to produce a metal composite hydroxide.
  • manganese salt which is the solute of the manganese salt solution
  • any one of manganese sulfate, manganese nitrate, and manganese chloride can be used.
  • the temperature of the reaction vessel is controlled within the range of, for example, 20 ° C. or higher and 80 ° C. or lower, preferably 30 ° C. or higher and 70 ° C. or lower.
  • the pH value in the reaction vessel is controlled, for example, in the range of pH 9 or more and pH 13 or less, preferably pH 11 or more and pH 13 or less.
  • reaction vessel The substances in the reaction vessel are appropriately stirred and mixed.
  • reaction tank used in the continuous coprecipitation method a type of reaction tank in which the formed reaction precipitate overflows for separation can be used.
  • the inside of the reaction tank may have an inert atmosphere.
  • inert atmosphere it is possible to suppress the aggregation of elements that are more easily oxidized than nickel, and to obtain a uniform metal composite hydroxide.
  • the inside of the reaction vessel may be in an atmosphere containing an appropriate oxygen or in the presence of an oxidizing agent while maintaining an inert atmosphere.
  • a predetermined gas species may be aerated in the reaction vessel or the reaction solution may be bubbling directly.
  • various gases such as an inert gas such as nitrogen, argon and carbon dioxide, an oxidizing gas such as air and oxygen, or a mixed gas thereof are supplied into the reaction vessel and obtained.
  • the oxidation state of the reaction product may be controlled.
  • peroxides such as hydrogen peroxide, peroxide salts such as permanganate, perchlorates, hypochlorites, nitrates, halogens, ozone, etc. are used. can do.
  • organic acids such as oxalic acid and formic acid, sulfites, hydrazine and the like can be used.
  • reaction product is washed with water and then dried to obtain MCC.
  • reaction product contains impurities derived from the mixed solution only by washing with water
  • the reaction product contains weak acid water, sodium hydroxide, or potassium hydroxide, if necessary. It may be washed with an alkaline solution.
  • nickel cobalt aluminum metal composite hydroxide is produced as MCC, but nickel cobalt aluminum metal composite oxide may be prepared.
  • a nickel cobalt aluminum metal composite oxide can be prepared by oxidizing a nickel cobalt aluminum metal composite hydroxide.
  • the MCC obtained by the above method and a lithium compound are mixed to obtain a mixture of the MCC and the lithium compound.
  • the lithium compound one or more selected from the group consisting of lithium carbonate, lithium hydroxide, and lithium hydroxide monohydrate can be used.
  • the lithium compound and MCC are mixed in consideration of the composition ratio of the final target product to obtain a mixture. Specifically, it is preferable to mix the lithium compound and MCC in a ratio corresponding to the composition ratio of the composition formula (I) described later.
  • the mixture of MCC and the lithium compound may be heated before the firing step described later.
  • a mixture raw material containing a reaction product of MCC and a lithium compound can be obtained. That is, the mixture raw material contains a reaction product obtained by reacting a part of the MCC and the lithium compound contained in the mixture of the MCC and the lithium compound, and may further contain the MCC and the lithium compound.
  • the heating temperature when heating the mixture of MCC and the lithium compound is, for example, 300 ° C. or higher and 700 ° C. or lower.
  • a mixture raw material containing a mixture of MCC and a lithium compound or a reaction product of MCC and a lithium compound can be adopted as a product to be fired in a firing step described later.
  • the Li content of the object to be fired is more than 5% by mass and 10% by mass or less, preferably 5.1% by mass or more and 9.9% by mass or less, and 5.2% by mass or more and 9.8% by mass or less. preferable. Further, in one aspect of the present invention, the preferable content of Li in the product to be fired is more than 5% by mass and 9.0% by mass or less, more than 5% by mass and 8.0% by mass or less, and more than 5% by mass. 0% by mass or less can be mentioned.
  • LiMO having an increased number of layers having lithium ion conductivity can be produced.
  • Such LiMO can improve the initial efficiency of the lithium secondary battery.
  • the Li content of the object to be fired is not more than the above upper limit value, the inner wall of the firing means is less likely to corrode. As a result, steps such as replacement of members of the firing means are less likely to occur, and production efficiency is improved.
  • the Li content in the product to be fired is measured by the following method.
  • the composition analysis of the object to be calcined can be measured by dissolving the powder of the object to be calcined in hydrochloric acid and then using an ICP emission spectrophotometer.
  • ICP emission spectroscopic analyzer for example, SPS3000 manufactured by SII Nanotechnology Co., Ltd. can be used.
  • the object to be fired is measured by ICP emission spectroscopic analysis, and the content of Li contained in the object to be fired is determined.
  • the "content of Li contained in the object to be fired” is the ratio of Li to the total amount of metal elements contained in the object to be fired.
  • the object to be fired is fired using a firing means.
  • the firing means includes an inner wall that is in direct contact with the object to be fired.
  • the firing means include a rotary kiln or a roller herring squirrel.
  • the inner wall is, for example, a cylindrical kiln inner wall.
  • the firing means is a roller hearth kiln
  • the inner wall is, for example, the inner wall of the firing container.
  • the firing means is preferably a rotary kiln.
  • the rotary kiln may be a continuous type or a batch type.
  • the main material of the inner wall is alloy.
  • the term "main material” means the material most abundant in the inner wall.
  • the alloy which is the main material of the inner wall will be described.
  • the alloy contains Ni and Al.
  • the content of Ni with respect to the total amount of the alloy is 93% by mass or more and 95% by mass or less.
  • the content of Al with respect to the total amount of the alloy is 3% by mass or more and 5% by mass or less.
  • the inner wall provided by the firing means is less likely to be corroded by the lithium compound.
  • the Al content with respect to the total amount of the alloy is equal to or higher than the above lower limit, it is considered that an aluminum oxide film is formed on the surface of the inner wall.
  • the aluminum oxide film functions as a protective film, and the inner wall of the firing means is less likely to be corroded by the lithium compound.
  • the Al content with respect to the total amount of the alloy is not more than the above upper limit value, it becomes easy to alloy with Ni.
  • the inner wall of the firing means is less likely to be corroded by the lithium compound contained in the object to be fired. Therefore, steps such as replacement of the inner wall member and repair of the firing means are unlikely to occur, and LiMO capable of providing a lithium secondary battery exhibiting a high initial discharge capacity can be efficiently produced for a long period of time.
  • the alloy may contain either or both of Si and Mn.
  • the content of Si with respect to the total amount of the alloy as the main material is preferably 0.5% by mass or more and 2.5% by mass or less, and more preferably 0.7% by mass or more and 2.3% by mass or less. preferable.
  • the content of Mn with respect to the total amount of the alloy as the main material is preferably more than 0% by mass and 1.0% by mass or less, and more preferably 0.2% by mass or more and 0.8% by mass or less. ..
  • the total amount of Si and Mn with respect to the total amount of the alloy as the main material is preferably more than 0.5% by mass and 3.5% by mass or less.
  • Si or Mn it is considered that the film formed on the surface of the inner wall is less likely to break.
  • composition of the alloy is determined by the following method.
  • composition analysis of the alloy which is the main material of the inner wall provided in the firing means is performed by using a fluorescent X-ray analyzer. This makes it possible to quantify the amount of metal elements in the alloy.
  • the metal elements contained in the alloy are, for example, Ni, Al, Si, and Mn.
  • the fluorescent X-ray analyzer for example, a model: X-MET8000, manufactured by Hitachi High-Tech, Inc. can be used. Further, it may be quantified using a glow discharge mass spectrometer.
  • the firing conditions may be one-stage firing or two-stage firing.
  • LiMO can be obtained by one-stage firing or two-stage firing.
  • the one-stage firing is a firing in which the object to be fired is held at a specific firing temperature for a certain period of time.
  • the product to be fired is fired by a temporary firing step, and the obtained temporary firing product is fired by the main firing step.
  • the firing temperature is different between the temporary firing process and the main firing process.
  • the firing at a temperature higher than the firing temperature of the temporary firing step is defined as the main firing step.
  • the temporary firing step it is preferable to fire using the firing means.
  • LiMO capable of providing a lithium secondary battery exhibiting a high initial discharge capacity can be efficiently produced over a long period of time.
  • the main firing step may be fired using the firing means, or may be changed to another firing means. Since the main firing is performed at a higher temperature than the temporary firing, the inner wall is easily damaged during firing. In this case, the inner wall is easily corroded by the lithium compound contained in the object to be fired. Therefore, it is preferable that this firing step is carried out by the firing means.
  • the firing temperature is preferably 100 ° C. or higher and 1000 ° C. or lower.
  • the firing temperature is preferably 100 ° C. or higher and 1000 ° C. or lower in either the temporary firing step or the main firing step.
  • the firing temperature in the temporary firing step is preferably 100 ° C. or higher and 700 ° C. or lower
  • the firing temperature in the main firing step is preferably more than 700 ° C. and 1000 ° C. or lower.
  • the firing time is preferably 1 hour or more and 30 hours or less in total from the start of temperature rise to the end of temperature retention.
  • the heating rate of the heating step to reach the maximum holding temperature is preferably 180 ° C./hour or more and 2000 ° C./hour or less, more preferably 200 ° C./hour or more and 1900 ° C./hour or less, and 250 ° C./hour or more and 1800 ° C./hour or less. Especially preferable.
  • the maximum holding temperature in the present specification is the maximum holding temperature of the atmosphere in the firing furnace in the firing step, and means the firing temperature in the firing step. In the case of a firing step having a plurality of heating steps, the maximum holding temperature means the maximum temperature of each firing step.
  • the heating rate in the present specification is the time from the time when the temperature rise is started to the time when the temperature rise is reached in the firing apparatus, and the temperature from the temperature at the start of the temperature rise in the firing furnace of the firing apparatus to the maximum holding temperature. It is calculated from the temperature difference.
  • the oxygen concentration in the firing atmosphere of the firing step is preferably 10% by volume or more.
  • the oxygen concentration in the firing atmosphere in the firing step is 50% by volume or more and 60% by volume or more.
  • the firing conditions of the temporary firing step and the main firing step are preferably carried out in the following combination.
  • the obtained fired product may be washed. Pure water or an alkaline cleaning solution can be used for cleaning.
  • the LiMO produced by the production method of the present embodiment is preferably represented by the following general formula (I).
  • x is preferably more than 0, more preferably 0.01 or more, still more preferably 0.02 or more. Further, from the viewpoint of obtaining a lithium secondary battery having a higher initial Coulomb efficiency, x is preferably 0.1 or less, more preferably 0.08 or less, still more preferably 0.06 or less.
  • the upper limit value and the lower limit value of x can be arbitrarily combined. Examples of combinations include x being greater than 0 and 0.1 or less, 0.01 or more and 0.08 or less, and 0.02 or more and 0.06 or less.
  • a high cycle characteristic means a high discharge capacity retention rate.
  • y is preferably 0.005 or more, more preferably 0.01 or more, still more preferably 0.05 or more. Further, from the viewpoint of obtaining a lithium secondary battery having high thermal stability, y is preferably 0.4 or less, more preferably 0.35 or less, still more preferably 0.33 or less.
  • the upper limit value and the lower limit value of y can be arbitrarily combined. Examples of combinations include y of 0.005 or more and 0.4 or less, 0.01 or more and 0.35 or less, and 0.05 or more and 0.33 or less.
  • z is preferably 0.01 or more, more preferably 0.02 or more, still more preferably 0.03 or more. Further, from the viewpoint of obtaining a lithium secondary battery having high storage characteristics at a high temperature (for example, in an environment of 60 ° C.), z is preferably 0.89 or less, more preferably 0.88 or less, still more preferably 0.87 or less.
  • the upper limit value and the lower limit value of z can be arbitrarily combined. Examples of combinations include z of 0.01 or more and 0.89 or less, 0.02 or more and 0.88 or less, and 0.03 or more and 0.87 or less.
  • M represents one or more elements selected from the group consisting of Mn, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V.
  • M is preferably one or more elements selected from the group consisting of Mn, Ti, Mg, Al, W, B, Zr, and Nb, and heat is preferable.
  • Mn, Ti, Mg, Al, W, B, Zr, and Nb are preferable.
  • composition analysis of LiMO can be measured by dissolving the obtained LiMO powder in hydrochloric acid and then using an ICP emission spectrophotometer.
  • ICP emission spectroscopic analyzer for example, SPS3000 manufactured by SII Nanotechnology Co., Ltd. can be used.
  • LiMO produced by the production method of the present embodiment can be suitably used as CAM.
  • Lithium secondary battery The configuration of a lithium secondary battery suitable for using LiMO produced by the production method of the present embodiment as a CAM will be described. Further, a positive electrode for a lithium secondary battery suitable for using LiMO produced by the production method of the present embodiment as a CAM will be described. Hereinafter, the positive electrode for a lithium secondary battery may be referred to as a positive electrode. Further, a lithium secondary battery suitable for use as a positive electrode will be described.
  • An example of a suitable lithium secondary battery when LiMO manufactured by the manufacturing method of the present embodiment is used as a CAM is a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and between the positive electrode and the negative electrode. Has an electrolyte to be placed.
  • An example of a lithium secondary battery has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution arranged between the positive electrode and the negative electrode.
  • FIG. 1 is a schematic diagram showing an example of a lithium secondary battery.
  • the cylindrical lithium secondary battery 10 is manufactured as follows.
  • a pair of strip-shaped separators 1, a strip-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a strip-shaped negative electrode 3 having a negative electrode lead 31 at one end are divided into a separator 1, a positive electrode 2, and a separator. 1.
  • the negative electrode 3 is laminated in this order and wound to form the electrode group 4.
  • the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
  • the shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape when the electrode group 4 is cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
  • the shape of the lithium secondary battery having such an electrode group 4 the shape defined by IEC60086, which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C8500 can be adopted. ..
  • IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C8500
  • a cylindrical shape or a square shape can be mentioned.
  • the lithium secondary battery is not limited to the above-mentioned winding type configuration, and may be a laminated type configuration in which a laminated structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly laminated.
  • the laminated lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode can be manufactured by first adjusting a positive electrode mixture containing a CAM, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • a carbon material can be used as the conductive material of the positive electrode.
  • the carbon material is, for example, graphite powder, carbon black (for example, acetylene black), or fibrous carbon material.
  • the ratio of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of CAM.
  • thermoplastic resin As the binder contained in the positive electrode, a thermoplastic resin can be used.
  • thermoplastic resin include polyimide resins, fluororesins, polyolefin resins, and the resins described in WO2019 / 098384A1 or US2020 / 0274158A1.
  • the polyimide resin is, for example, polyvinylidene fluoride (hereinafter, may be referred to as PVdF).
  • the fluororesin is, for example, polytetrafluoroethylene.
  • the polyolefin resin is, for example, polyethylene, polypropylene, or the like.
  • a band-shaped member made of a metal material such as Al, Ni, or stainless steel can be used.
  • the positive electrode mixture is made into a paste using an organic solvent, and the obtained positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector and dried.
  • Examples thereof include a method of performing an electrode pressing step to fix the electrodes.
  • NMP N-methyl-2-pyrrolidone
  • Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • the positive electrode can be manufactured by the methods listed above.
  • the negative electrode of the lithium secondary battery may be capable of doping and dedoping lithium ions at a potential lower than that of the positive electrode.
  • an electrode in which a negative electrode mixture containing a negative electrode active material is supported on a negative electrode current collector, and an electrode composed of a negative electrode active material alone can be mentioned.
  • Negative electrode active material examples include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals or alloys, which can be doped and dedoped with lithium ions at a lower potential than the positive electrode. Be done.
  • Examples of the carbon material that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, carbon fiber, and a calcined organic polymer compound.
  • Oxides that can be used as the negative electrode active material include silicon oxides represented by the formula SiO x (where x is a positive real number) such as SiO 2 , SiO; the formula SnO x such as SnO 2 and SnO (here). And x is a positive real number) of tin oxide; a metal composite oxide containing lithium and titanium such as Li 4 Ti 5 O 12 , etc.;
  • the metal that can be used as the negative electrode active material examples include lithium metal, silicon metal, and tin metal.
  • a material that can be used as a negative electrode active material the material described in WO2019 / 098384A1 or US2020 / 0274158A1 may be used.
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil, for example.
  • a carbon material containing graphite as a main component such as natural graphite and artificial graphite, is preferably used. This is because the potential of the negative electrode hardly changes from the uncharged state to the fully charged state during charging (potential flatness is good), the average discharge potential is low, and the capacity retention rate when repeatedly charged and discharged is high (cycle characteristics). Is good).
  • the shape of the carbon material may be, for example, a flaky shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an agglomerate of fine powder.
  • the negative electrode mixture may contain a binder, if necessary.
  • the binder include thermoplastic resins, and specifically, PVdF, thermoplastic polyimide, carboxymethyl cellulose (hereinafter, may be referred to as CMC), and styrene-butadiene rubber (hereinafter, may be referred to as SBR).
  • CMC carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • examples include polyethylene and polypropylene.
  • Negative electrode current collector examples of the negative electrode current collector included in the negative electrode include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel as a forming material.
  • separator of the lithium secondary battery for example, a material having a form such as a porous film, a non-woven fabric, or a woven fabric made of a material such as a polyolefin resin such as polyethylene or polypropylene, a fluororesin, or a nitrogen-containing aromatic polymer is used. Can be used. Further, two or more kinds of these materials may be used to form a separator, or these materials may be laminated to form a separator. Further, the separator described in JP-A-2000-030686 or US20090111025A1 may be used.
  • the electrolytic solution contained in the lithium secondary battery contains an electrolyte and an organic solvent.
  • Examples of the electrolyte contained in the electrolytic solution include lithium salts such as LiClO 4 , LiPF 6 , and LiBF 4 , and a mixture of two or more of these may be used.
  • organic solvent contained in the electrolytic solution for example, carbonates such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate can be used.
  • the organic solvent it is preferable to use a mixture of two or more of these.
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
  • the electrolytic solution it is preferable to use an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is enhanced.
  • a lithium salt containing fluorine such as LiPF 6
  • an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is enhanced.
  • the electrolyte and the organic solvent contained in the electrolytic solution the electrolyte and the organic solvent described in WO2019 / 098384A1 or US2020 / 0274158A1 may be used.
  • FIG. 2 is a schematic diagram showing an example of an all-solid-state lithium secondary battery.
  • the all-solid-state lithium secondary battery 1000 shown in FIG. 2 has a positive electrode 110, a negative electrode 120, a laminated body 100 having a solid electrolyte layer 130, and an exterior body 200 containing the laminated body 100.
  • the all-solid-state lithium secondary battery 1000 may have a bipolar structure in which a CAM and a negative electrode active material are arranged on both sides of a current collector.
  • Specific examples of the bipolar structure include the structure described in JP-A-2004-95400. The materials constituting each member will be described later.
  • the laminated body 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122.
  • the all-solid-state lithium secondary battery 1000 may have a separator between the positive electrode 110 and the negative electrode 120.
  • the all-solid-state lithium secondary battery 1000 further has an insulator (not shown) that insulates the laminate 100 and the exterior body 200, and a sealant (not shown) that seals the opening 200a of the exterior body 200.
  • a container formed of a metal material having high corrosion resistance such as aluminum, stainless steel or nickel-plated steel can be used as the exterior body 200. Further, as the exterior body 200, a container obtained by processing a laminated film having a corrosion resistant treatment on at least one surface into a bag shape can also be used.
  • Examples of the shape of the all-solid-state lithium secondary battery 1000 include a coin type, a button type, a paper type (or a sheet type), a cylindrical type, a square type, and a laminated type (pouch type).
  • the all-solid-state lithium secondary battery 1000 is shown as an example having one laminated body 100, but the present embodiment is not limited to this.
  • the all-solid-state lithium secondary battery 1000 may have a structure in which the laminated body 100 is a unit cell and a plurality of unit cells (laminated body 100) are enclosed inside the exterior body 200.
  • the positive electrode 110 has a positive electrode active material layer 111 and a positive electrode current collector 112.
  • the positive electrode active material layer 111 contains the above-mentioned CAM and solid electrolyte. Further, the positive electrode active material layer 111 may contain a conductive material and a binder.
  • Solid electrolyte As the solid electrolyte contained in the positive electrode active material layer 111, a solid electrolyte having lithium ion conductivity and used in a known all-solid lithium secondary battery can be adopted. Examples of such a solid electrolyte include an inorganic electrolyte and an organic electrolyte.
  • Examples of the inorganic electrolyte include an oxide-based solid electrolyte, a sulfide-based solid electrolyte, and a hydride-based solid electrolyte.
  • organic electrolyte examples include polymer-based solid electrolytes.
  • each electrolyte examples include the compounds described in WO2020 / 208872A1, US2016 / 0235510A1, US2012 / 0251871A1, and US2018 / 0159169A1, and examples thereof include the following compounds.
  • oxide-based solid electrolyte examples include perovskite-type oxides, NASICON-type oxides, LISION-type oxides, and garnet-type oxides. Specific examples of each oxide include the compounds described in WO2020 / 208872A1, US2016 / 0235510A1, and US2020 / 0259213A1, and examples thereof include the following compounds.
  • garnet-type oxide examples include Li-La-Zr-based oxides such as Li 7 La 3 Zr 2 O 12 (also referred to as LLZ).
  • the oxide-based solid electrolyte may be a crystalline material or an amorphous material.
  • Examples of the sulfide-based solid electrolyte include Li 2 SP 2 S 5 series compounds, Li 2 S—SiS 2 series compounds, Li 2 S—GeS 2 series compounds, Li 2 SB 2 S 3 series compounds, and LiI-. Examples thereof include Si 2 SP 2 S 5 series compounds, LiI-Li 2 SP 2 O 5 series compounds, LiI-Li 3 PO 4-P 2 S 5 series compounds , and Li 10 GeP 2 S 12 series. ..
  • system compound which refers to a sulfide-based solid electrolyte is a solid electrolyte mainly containing raw materials such as "Li 2 S” and "P 2 S 5 " described before “system compound”. It is used as a general term for.
  • the Li 2 SP 2 S 5 system compound mainly contains Li 2 S and P 2 S 5 , and further contains a solid electrolyte containing other raw materials.
  • the ratio of Li 2S contained in the Li 2 SP 2 S 5 system compound is, for example, 50 to 90% by mass with respect to the entire Li 2 SP 2 S 5 system compound .
  • the ratio of P 2 S 5 contained in the Li 2 SP 2 S 5 system compound is, for example, 10 to 50% by mass with respect to the entire Li 2 SP 2 S 5 system compound.
  • the ratio of other raw materials contained in the Li 2 SP 2 S 5 system compound is, for example, 0 to 30% by mass with respect to the entire Li 2 SP 2 S 5 system compound.
  • the Li 2 SP 2 S 5 system compound also contains a solid electrolyte having a different mixing ratio of Li 2 S and P 2 S 5 .
  • Li 2 SP 2 S 5 system compounds examples include Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -LiI, Li 2 SP 2 S 5 -LiCl, and Li 2 SP 2 .
  • examples thereof include S 5 -LiBr, Li 2 SP 2 S 5 -LiI-LiBr, and the like.
  • Li 2 S-SiS 2 compounds include Li 2 S-SiS 2 , Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, and Li 2 S-SiS. 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiCl and the like can be mentioned.
  • Li 2 S-GeS 2 compound examples include Li 2 S-GeS 2 and Li 2 S-GeS 2 -P 2 S 5 .
  • the sulfide-based solid electrolyte may be a crystalline material or an amorphous material.
  • Two or more types of solid electrolytes can be used in combination as long as the effects of the invention are not impaired.
  • the conductive material contained in the positive electrode active material layer 111 the material described in the above (conductive material) can be used. Further, as for the ratio of the conductive material in the positive electrode mixture, the ratio described in the above-mentioned (conductive material) can be similarly applied. Further, as the binder contained in the positive electrode, the material described in the above-mentioned (binder) can be used.
  • Positive electrode current collector 112 included in the positive electrode 110 As the positive electrode current collector 112 included in the positive electrode 110, the material described in the above (positive electrode current collector) can be used.
  • a method of pressure molding the CAM layer 111 on the positive electrode current collector 112 can be mentioned.
  • a cold press or a hot press can be used for pressure molding.
  • a mixture of CAM, a solid electrolyte, a conductive material and a binder is made into a paste using an organic solvent to form a positive electrode mixture, and the obtained positive electrode mixture is applied onto at least one surface of the positive electrode current collector 112, dried and pressed.
  • the positive electrode active material layer 111 may be supported on the positive electrode current collector 112 by sticking to the positive electrode collector 112.
  • a mixture of CAM, a solid electrolyte and a conductive material is made into a paste using an organic solvent to form a positive electrode mixture, and the obtained positive electrode mixture is applied onto at least one surface of the positive electrode current collector 112, dried and sintered. Therefore, the positive electrode active material layer 111 may be supported on the positive electrode current collector 112.
  • the organic solvent that can be used for the positive electrode mixture the same organic solvent that can be used when the positive electrode mixture described above (positive electrode current collector) is made into a paste can be used.
  • Examples of the method of applying the positive electrode mixture to the positive electrode current collector 112 include the method described in the above-mentioned (positive electrode current collector).
  • the positive electrode 110 can be manufactured by the method described above. Specific examples of the combination of materials used for the positive electrode 110 include the above-mentioned CAM and the combination of the solid electrolyte, the binder and the conductive material shown in Tables 1 to 3.
  • the negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122.
  • the negative electrode active material layer 121 contains a negative electrode active material. Further, the negative electrode active material layer 121 may contain a solid electrolyte and a conductive material. As the negative electrode active material, the negative electrode current collector, the solid electrolyte, the conductive material and the binder, those described above can be used.
  • a method by pressure molding and a paste-like negative electrode mixture containing the negative electrode active material are applied on the negative electrode current collector 122 as in the case of the positive electrode 110.
  • Examples thereof include a method of applying, drying and then pressing and crimping, and a method of applying a paste-like negative electrode mixture containing a negative electrode active material on the negative electrode current collector 122, drying and then sintering.
  • Solid electrolyte layer 130 has the above-mentioned solid electrolyte.
  • the solid electrolyte layer 130 can be formed by depositing an inorganic solid electrolyte on the surface of the positive electrode active material layer 111 of the above-mentioned positive electrode 110 by a sputtering method.
  • the solid electrolyte layer 130 can be formed by applying a paste-like mixture containing a solid electrolyte to the surface of the positive electrode active material layer 111 of the above-mentioned positive electrode 110 and drying it. After drying, the solid electrolyte layer 130 may be formed by press molding and further pressurizing by a cold isotropic pressure pressurization method (CIP).
  • CIP cold isotropic pressure pressurization method
  • the negative electrode 120 is laminated on the solid electrolyte layer 130 provided on the positive electrode 110 as described above by using a known method so that the negative electrode active material layer 121 is in contact with the surface of the solid electrolyte layer 130. It can be manufactured by letting it.
  • composition analysis of LiMO was carried out by the method described in the above ⁇ composition analysis>.
  • ⁇ Measurement of Li content in the object to be fired> The content of Li contained in the object to be fired was determined by the method described in ⁇ Measurement of the content of Li contained in the object to be fired>.
  • the corrosion rate was determined by the method described in ⁇ Measurement of Corrosion Rate and Growth Rate of Corrosion Products>. Specifically, the following metal test pieces 1 to 3 were prepared as metal test pieces.
  • the metal test pieces 1 to 3 had a size of 20 mm in length, 25 mm in width, and 3 mm in thickness.
  • the metal test piece 1 is a metal test piece having a Ni content of 94% by mass, an Al content of 4% by mass, a Si content of 1.5% by mass, and a Mn content of 0.5% by mass. be.
  • the metal test piece 2 is a metal test piece having a Ni content of 62% by mass, a Cr content of 22% by mass, a W content of 14% by mass, and a Mo content of 2% by mass.
  • the metal test piece 3 is a metal test piece having a Ni content of 100% by mass.
  • Example 1 After putting water in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to maintain the liquid temperature at 50 ° C.
  • An aqueous solution of nickel sulfate, an aqueous solution of cobalt sulfate, and an aqueous solution of aluminum sulfate were mixed at a ratio of Ni, Co, and Al at an atomic ratio of 88: 9: 3 to prepare a mixed raw material solution.
  • the mixed raw material solution and the ammonium sulfate aqueous solution were continuously added as a complexing agent into the reaction vessel under stirring.
  • An aqueous sodium hydroxide solution was added dropwise at appropriate times so that the pH of the solution in the reaction vessel was 11.6 (when measured at a liquid temperature of 40 ° C.) to obtain a nickel-cobalt-aluminum composite hydroxide.
  • the nickel-cobalt-aluminum composite hydroxide was washed, dehydrated in a centrifuge, isolated and dried at 105 ° C. to obtain nickel-cobalt-aluminum composite hydroxide 1.
  • the Li content of the product 1 to be fired was 6.3% by mass.
  • Alloy 1 has a Ni content of 94% by mass, an Al content of 4% by mass, a Si content of 1.5% by mass, and a Mn content of 0.5% by mass with respect to the total amount of the alloy. % was used.
  • the object to be fired 1 was placed on the alloy 1 and the object to be fired 1 was tentatively fired. At this time, the object to be fired 1 was fired in a state of being in contact with the alloy 1 and not in contact with the inner wall of the firing furnace.
  • the conditions for temporary firing were 680 ° C. for 12 hours under an oxygen atmosphere.
  • the obtained calcination product was main-baked at 740 ° C. for 6 hours under an oxygen atmosphere, and sieved to obtain LiMO of Example 1.
  • LiMO of Comparative Example 1 was obtained in the same manner as in Example 1 except that the alloy 1 was changed to the alloy 2.
  • the alloy 2 an alloy having a Ni content of 62% by mass, a Cr content of 22% by mass, a W content of 14% by mass, and a Mo content of 2% by mass was used. Further, the corrosion rate and the growth rate of the corrosion product were measured in the same manner as in Example 1 except that the metal test piece 1 was changed to the metal test piece 2.
  • LiMO of Comparative Example 2 was obtained in the same manner as in Example 1 except that the alloy 1 was changed to a metal having a Ni content of 100% by mass. Further, the corrosion rate and the growth rate of the corrosion product were measured in the same manner as in Example 1 except that the metal test piece 1 was changed to the metal test piece 3.
  • LiMO of Comparative Example 3 was obtained in the same manner as in Example 1 except that the object to be fired 1 was changed to the object to be fired 2 having a Li content of 0.7% by mass. Further, the corrosion rate and the growth rate of the corrosion product were measured in the same manner as in Example 1 except that 3 g of the object to be fired 2 was used and the number of times of firing was 4 times in total.
  • LiMO of Comparative Example 4 was obtained in the same manner as in Example 1 except that the product 1 to be fired was changed to the product 3 to be fired having a Li content of 10.9% by mass. Further, the corrosion rate and the growth rate of the corrosion product were measured in the same manner as in Example 1 except that 3 g of the object to be fired 3 was used and the number of times of firing was 3 times in total.
  • Table 4 shows the composition of LiMO produced in Examples 1 and Comparative Examples 1 to 4, the Li content of the object to be calcined, the composition of the alloy, the corrosion rate of the metal test piece, and the growth rate of the corrosion product. Further, Table 4 shows the initial discharge capacity of the lithium secondary battery using LiMO produced in Example 1 and Comparative Examples 1 to 4 as a CAM. In Examples 1 and Comparative Examples 1 to 4, the Ni content in the total amount of LiMO was 80% or more, so the above-mentioned criterion A was used for the evaluation of the initial discharge capacity.
  • Example 1 the Li content in the total amount of LiMO was 6.5% by mass or less, so that the above-mentioned criterion 1 was used for the evaluation of the growth rate of the corrosion product.
  • Comparative Example 4 since the content of Li in the total amount of LiMO exceeded 6.5% by mass, the above-mentioned criterion 2 was used for the evaluation of the growth rate of the corrosion product.
  • Example 1 is a method capable of efficiently producing LiMO. Further, in Example 1, the initial charge capacity of the lithium secondary battery can be set to 180 mAh / g or more, and the performance of the lithium secondary battery can be improved.
  • the firing conditions for the temporary firing and the main firing of Example 1 reproduce the case of firing using a firing means provided with an inner wall in which the main material is alloy 1. That is, from the results of Example 1, even when firing using a firing means in which the main material of the inner wall is alloy 1, LiMO can be efficiently produced, and the initial charge capacity of the lithium secondary battery is 180 mAh / g or more. It can be fully inferred that the performance of the lithium secondary battery will be improved.
  • Comparative Examples 1 and 2 Although the initial charge capacity of the lithium secondary battery could be increased, the corrosion rate of the metal test piece exceeded 5 mm / year in Comparative Example 2, and the corrosion product in Comparative Example 1. The growth rate of was over 0.9 mm / year. Therefore, it was shown that the inner wall of the firing means is easily corroded even when firing is performed by the firing means in which the main material of the inner wall is the alloy 2. Therefore, it can be seen that Comparative Examples 1 and 2 are more inefficient manufacturing methods than those of Example 1. In Comparative Example 3, since the Li content of the object to be fired was low, the values of the corrosion rate of the metal test piece and the growth rate of the corrosion product could be lowered. However, it is considered that the initial charge capacity of the lithium secondary battery is lowered due to the small amount of the lithium conductive layer of LiMO obtained.
  • Comparative Example 4 the corrosion rate of the alloy was as high as 43.8 mm / year because the Li content of the object to be fired was high. In addition, the growth rate of corrosion products was as high as 41.4 mm / year. Therefore, it was shown that the inner wall of the firing means is easily corroded even when firing using the firing means in which the main material of the inner wall is Ni metal. Therefore, it can be seen that Comparative Example 4 is a more inefficient manufacturing method than Example 1. In Comparative Example 4, the object to be fired adhered to the alloy 1 which is a model of the inner wall of the firing means, LiMO could not be recovered, and the battery could not be evaluated.
  • Example 2 After putting water in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to maintain the liquid temperature at 50 ° C.
  • An aqueous solution of nickel sulfate, an aqueous solution of cobalt sulfate, and an aqueous solution of manganese sulfate were mixed at a ratio of Ni, Co, and Mn at an atomic ratio of 60:20:20 to prepare a mixed raw material solution.
  • this mixed raw material solution and an aqueous ammonium sulfate solution were continuously added as a complexing agent into the reaction vessel under stirring.
  • An aqueous sodium hydroxide solution was added dropwise at appropriate times so that the pH of the solution in the reaction vessel was 11.6 (when measured at a liquid temperature of 40 ° C.) to obtain a nickel-cobalt-manganese composite hydroxide.
  • the nickel-cobalt-manganese composite hydroxide was washed, dehydrated with a centrifuge, isolated and dried at 105 ° C. to obtain nickel-cobalt-manganese composite hydroxide 1.
  • the Li content of the product 11 to be fired was 6.6% by mass.
  • LiMO of Example 2 was obtained in the same manner as in Example 1 except that the conditions for the main firing were set at 955 ° C. for 5 hours under an oxygen atmosphere. Further, the corrosion rate and the growth rate of the corrosion product were measured in the same manner as in Example 1 except that 3 g of the object to be fired 11 was used.
  • Table 5 shows the composition of LiMO produced in Example 2, the Li content of the object to be calcined, the composition of the alloy, the corrosion rate of the metal test piece, and the growth rate of the corrosion product. Further, Table 5 shows the initial discharge capacity of the lithium secondary battery using LiMO produced in Example 2 as a CAM.
  • Example 2 since the content of Ni in the total amount of LiMO was less than 80%, the above-mentioned criterion B was used for the evaluation of the initial discharge capacity. In Example 2, since the content of Li in the total amount of LiMO exceeded 6.5% by mass, the above-mentioned criterion 2 was used for the evaluation of the growth rate of the corrosion product.
  • Example 2 As shown in Table 5, in Example 2, the corrosion rate of the metal test piece is 5 mm / year or less, the growth rate of the corrosion product is 2.6 mm / year or less, the corrosion rate is slow, and the alloy is hard to corrode. I was able to confirm that. Therefore, Example 2 was shown to be a method capable of efficiently producing LiMO. Further, in Example 2, the initial charge capacity of the lithium secondary battery can be 170 mAh / g or more, and the performance of the lithium secondary battery can be improved.
  • Negative electrode 4 Electrode group 5: Battery can, 6: Electrolyte, 7: Top insulator, 8: Seal, 10: Lithium secondary battery, 21: Positive electrode lead, 100: Laminate, 110: Positive electrode, 111: Positive electrode active material layer, 112: Positive electrode current collector, 113: External terminal, 120: Negative electrode, 121: Negative electrode active material layer, 122: Negative electrode current collector, 123: External terminal, 130: Solid electrolyte Layer, 200: Exterior, 200a: Opening, 1000: All-solid-state lithium secondary battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

焼成手段を用いて被焼成物を焼成する焼成工程において、前記被焼成物は、金属複合化合物とリチウム化合物との混合物、または前記金属複合化合物と前記リチウム化合物との反応物を含む混合物原料であり、前記被焼成物は、Liの含有率が5質量%を超え10質量%以下であり、前記焼成手段は、内壁を備え、前記内壁の主材は合金であり、前記合金は、Ni及びAlを含有し、前記合金の全量に対する前記Niの含有率は93質量%以上95質量%以下であり、前記合金の全量に対する前記Alの含有率は3質量%以上5質量%以下である、リチウム金属複合酸化物の製造方法。

Description

リチウム金属複合酸化物の製造方法
 本発明は、リチウム金属複合酸化物の製造方法に関する。
 本願は、2020年11月24日に、日本に出願された特願2020-194235号に基づき優先権を主張し、その内容をここに援用する。
 リチウム二次電池の正極に用いられる正極活物質には、リチウム金属複合酸化物が使用される。リチウム金属複合酸化物の製造方法は、例えば、金属複合化合物とリチウム化合物との混合物、金属複合化合物とリチウム化合物との反応物等の被焼成物を焼成する焼成工程を備える。
 焼成工程には、連続焼成炉や流動式焼成炉が用いられる。
 例えば特許文献1には内壁がニッケル材である焼成手段を用いて焼成する方法が記載されている。
JP-A-2019-75253
 従来の金属製の焼成炉は、被焼成物と接する接触部材が腐食されやすいという課題があった。接触部材が腐食されやすいと、接触部材の交換が必要となり生産効率が低下する。接触部材とは、具体的には焼成炉の内壁である。そのため、電池性能が良好なリチウム二次電池を提供できるリチウム金属複合酸化物を効率的に製造できる方法が求められていた。
 本発明は上記事情に鑑みてなされたものであり、初回放電容量が高いリチウム二次電池が得られるリチウム金属複合酸化物を効率的に製造する方法を提供することを目的とする。
 本発明は[1]~[8]を包含する。
[1]焼成手段を用いて被焼成物を焼成する焼成工程において、前記被焼成物は、金属複合化合物とリチウム化合物との混合物、または前記金属複合化合物と前記リチウム化合物との反応物を含む混合物原料であり、前記被焼成物は、Liの含有率が5質量%を超え10質量%以下であり、前記焼成手段は、内壁を備え、前記内壁の主材は合金であり、前記合金は、Ni及びAlを含有し、前記合金の全量に対する前記Niの含有率は93質量%以上95質量%以下であり、前記合金の全量に対する前記Alの含有率は3質量%以上5質量%以下である、リチウム金属複合酸化物の製造方法。
[2]前記リチウム金属複合酸化物は下記の一般式(I)で表される、[1]に記載の製造方法。
 Li[Li(Ni(1-y-z)Co1-x]O …(I)
(-0.1≦x≦0.2、0≦y≦0.5、0≦z≦0.9、y+z<1、Mは、Mn、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。)
[3]前記合金は、Si又はMnのいずれか一方又は両方を含む、[1]又は[2]に記載の製造方法。
[4]前記合金の全量に対する前記Siの含有率は0.5質量%以上2.5質量%以下である、[3]に記載の製造方法。
[5]前記合金の全量に対する前記Mnの含有率は0質量%を超え1.0質量%以下である、[3]に記載の製造方法。
[6]前記焼成工程における焼成温度は、100℃以上900℃以下である、[1]~[5]のいずれか1つに記載の製造方法。
[7]前記焼成手段はロータリーキルンである、[1]~[6]のいずれか1つに記載の製造方法。
[8]前記焼成工程は仮焼成工程と本焼成工程とを有し、少なくとも前記仮焼成工程において、前記焼成手段を用いて焼成し、前記仮焼成工程の焼成温度は100℃以上700℃以下であり、前記本焼成工程の焼成温度は700℃を超え1000℃以下である、[1]~[7]のいずれか1つに記載の製造方法。
 本発明によれば、初回放電容量が高いリチウム二次電池が得られるリチウム金属複合酸化物を効率的に製造する方法を提供することができる。
リチウム二次電池の一例を示す模式図である。 全固体リチウム二次電池の一例を示す模式図である。
 本明細書において、金属複合化合物(metal composite compound)を以下「MCC」と称する。
 リチウム金属複合酸化物(lithium metal composite oxide)を以下「LiMO」と称する。
 リチウム二次電池用正極活物質(cathode active material for lithium secondary batteries)を以下「CAM」と称する。
 「Ni」とは、ニッケル金属ではなく、ニッケル原子を指す。「Co」及び「Li」等も同様に、それぞれコバルト原子及びリチウム原子等を指す。
 本明細書において、リチウム二次電池の初回放電容量は下記の方法により測定する。
<初回放電容量の測定>
(リチウム二次電池用正極の作製)
 本実施形態の製造方法により製造されるLiMOをCAMとして用いる。CAMと導電材とバインダーとを、CAM:導電材:バインダー=92:5:3(質量比)の組成となる割合で加えて混練し、ペースト状の正極合剤を調製する。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いる。導電材にはアセチレンブラックを用いる。バインダーには、ポリフッ化ビニリデンを用いる。
 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得る。このリチウム二次電池用正極の電極面積は1.65cmとする。
(リチウム二次電池の作製)
 以下の操作を、アルゴン雰囲気のグローブボックス内で行う。
 (リチウム二次電池用正極の作製)で作製されるリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上にセパレータ(ポリエチレン製多孔質フィルム)を置く。ここに電解液を300μl注入する。電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの30:35:35(体積比)混合液に、LiPF6を1.0mol/lとなる割合で溶解したものを用いる。
 次に、負極として金属リチウムを用いて、負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型ハーフセルR2032)を作製する。
 上記の方法で作製されるリチウム二次電池を用いて、以下の方法で初回放電容量を測定する。
(測定方法)
 リチウム二次電池を室温で12時間静置することでセパレータ及び正極合剤層に充分電解液を含浸させる。
 試験温度25℃において、充電及び放電ともに電流設定値0.2CAとし、それぞれ定電流定電圧充電と定電流放電を行う。負極を金属Liとし、充電最大電圧は、4.3V、放電最小電圧は2.5Vとする。放電容量を測定し、得られた値を「初回放電容量」(mAh/g)とする。
 放電容量の判定基準は、リチウム金属複合酸化物の組成により判定基準が異なる場合がある。具体的には、下記の判定基準A又は判定基準Bのいずれかにより判定する。
 判定基準A:初回放電容量が180mAh/g以上であると、初回放電容量が高いと評価する。
 判定基準B:初回放電容量が170mAh/g以上であると、初回放電容量が高いと評価する。
 LiMOの全量中、Niの含有率が80%以上の場合には判定基準A、80%未満の場合には判定基準Bを用いる。
<腐食速度及び腐食生成物の成長速度の測定>
 本明細書においてLiMOを効率的に製造できるか否かは、金属試験片の腐食速度および腐食生成物の成長速度を測定して確認する。金属試験片は、焼成手段が備える内壁の主材である合金のモデルである。金属試験片の腐食速度および腐食生成物の成長速度の値が小さいほど、製造効率が高いことを示す。腐食速度及び腐食生成物の成長速度は下記の方法により測定する。
 まず、焼成手段が備える内壁の主材である合金のモデルとして金属試験片を用意する。
 次に、金属試験片の片面に、被焼成物を所定量積載して焼成する。被焼成物は、例えば、MCCとリチウム化合物との混合物、またはMCCとリチウム化合物との反応物を含む混合物原料である。
 金属試験片は、例えば厚みが数mmの板状試験片とする。
 焼成条件は、酸素雰囲気下、680℃で12時間保持する。
 焼成は同一条件で1回又は複数回行う。焼成を複数回実施する場合、同一条件で例えば2回以上10回以下実施する。同一条件とは、焼成温度、焼成時間及び焼成雰囲気が同一であることを意味する。各回の焼成終了後、得られた焼成物を回収し、被焼成物を積載する作業を行った上で、次回の焼成を行う。このとき積載する被焼成物は、MCCとリチウム化合物との混合物、またはMCCとリチウム化合物との反応物を含む混合物原料であって、1回目に載置した被焼成物と同じものを使用する。
 未焼成の金属試験片の肉厚と、複数回焼成した後の金属試験片の肉厚をそれぞれ測定する。
 未焼成の金属試験片はマイクロメーターで金属試験片の厚みを測定する。この時の厚みをL1(mm)とする。
 金属試験片の厚みとは、金属試験片について、試験片中央の厚みを測定したときの値を意味する。
 複数回焼成後の金属試験片の肉厚を測定する際には、まず金属試験片中央を厚み方向に割断し、断面を得る。得られた断面を顕微鏡により観察し、肉厚を測定する。この時の厚みをL2(mm)とする。L2は、肉厚を測定したときの値を意味する。
 L1とL2との差(L1-L2)を、肉厚変化(mm)とする。
 また、得られた断面において、金属試験片の表面に形成された腐食生成物の厚さ(mm)を顕微鏡で測定する。腐食生成物の厚さとは、腐食生成物について、厚みを測定したときの値を意味する。
(腐食速度)
 さらに、得られた肉厚変化から、下記の式により腐食速度を算出する。
 腐食速度(mm/年)=[肉厚変化(mm)×24×365]/[保持時間(h)×焼成回数]
 腐食速度が5mm/年以下であると、腐食速度が遅く、焼成手段が備える内壁が腐食されにくいと評価する。
(腐食生成物の成長速度)
 また、得られた腐食生成物の厚さから、下記の式により腐食生成物の成長速度を算出する。
 腐食生成物の成長速度(mm/年)=[腐食生成物厚さ(mm)×24×365]/[保持時間(h)×焼成回数]
 腐食生成物の成長速度は、リチウム金属複合酸化物の組成により判定基準が異なる場合がある。具体的には、下記の判定基準1又は判定基準2のいずれかにより判定する。
 判定基準1:腐食生成物の成長速度が0.9mm/年以下であると、腐食速度が遅く、焼成手段が備える内壁が腐食されにくいと評価する。
 判定基準2:腐食生成物の成長速度が2.6mm/年以下であると、腐食速度が遅く、焼成手段が備える内壁が腐食されにくいと評価する。
 LiMOの全量中、Liの含有率が6.5質量%以下の場合には判定基準1、6.5質量%を超える場合には判定基準2を用いる。
<リチウム金属複合酸化物の製造方法>
 本実施形態のLiMOの製造方法は、焼成手段を用いて被焼成物を焼成する焼成工程を必須工程とする。LiMOの製造方法は、MCCを得る工程及び混合物を得る工程を備えることが好ましい。以下、MCCを得る工程、混合物を得る工程、及び焼成工程の順に説明する。
≪MCCを得る工程≫
 まず、リチウム以外の金属元素、すなわち、Niと、任意金属であるCo、Al、及び元素Mとを含むMCCを調製する。
 MCCは、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、Ni、Co及びAlを含む金属複合水酸化物を例に、その製造方法を詳述する。
 まず共沈殿法、特にJP-A-2002-201028に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、アルミニウム塩溶液、及び錯化剤を反応させ、Ni(1-y-z)CoAl(OH)(式中、y+z<1)で表される金属複合水酸化物を製造する。
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れか1種又は2種以上を使用することができる。
 上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト、及び酢酸コバルトのうちの何れか1種又は2種以上を使用することができる。
 上記アルミニウム塩溶液の溶質であるアルミニウム塩としては、例えば例えば硫酸アルミニウムやアルミン酸ソーダ等が使用できる。
 以上の金属塩は、上記Ni(1-y-z)CoAl(OH)の組成比に対応する割合で用いられる。また、溶媒として水が使用される。
 錯化剤は、水溶液中で、Ni、Co、及びAlのイオンと錯体を形成可能な化合物である。例えば、アンモニウムイオン供給体、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。
 アンモニウムイオン供給体としては、水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等のアンモニウム塩が挙げられる。
 錯化剤は含まれていなくてもよく、錯化剤が含まれる場合、ニッケル塩溶液、コバルト塩溶液、アルミニウム塩溶液及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩のモル数の合計に対するモル比が0より大きく2.0以下である。
 共沈殿法に際しては、ニッケル塩溶液、コバルト塩溶液、アルミニウム塩溶液及び錯化剤を含む混合液のpH値を調整するため、混合液のpHがアルカリ性から中性になる前に、混合液にアルカリ性水溶液を添加する。アルカリ性水溶液は、水酸化ナトリウム、水酸化カリウムが使用できる。
 なお、本明細書におけるpHの値は、混合液の温度が40℃の時に測定された値であると定義する。混合液のpHは、反応槽からサンプリングした混合液の温度が、40℃になったときに測定する。
 サンプリングした混合液の温度が40℃よりも低い場合には、混合液を加熱して40℃になったときにpHを測定する。
 サンプリングした混合液の温度が40℃よりも高い場合には、混合液を冷却して40℃になったときにpHを測定する。
 上記ニッケル塩溶液、コバルト塩溶液、及びアルミニウム塩溶液のほか、錯化剤を反応槽に連続して供給すると、Ni、Co、及びAlが反応し、Ni(1-y-z)CoAl(OH)が生成する。
 Ni(1-y-z)CoAl(OH)を製造する方法と同様の方法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、Ni(1-y-z)CoMn(OH)(式中、y+z<1)で表される金属複合水酸化物を製造してもよい。
 上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、及び塩化マンガンのうちの何れかを使用することができる。
 反応に際しては、反応槽の温度を、例えば20℃以上80℃以下、好ましくは30℃以上70℃以下の範囲内で制御する。
 また、反応に際しては、反応槽内のpH値を、例えばpH9以上pH13以下、好ましくはpH11以上pH13以下の範囲内で制御する。
 反応槽内の物質は、適宜撹拌して混合する。
 連続式共沈殿法で用いる反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプの反応槽を用いることができる。
 反応槽内は不活性雰囲気であってもよい。不活性雰囲気であると、ニッケルよりも酸化されやすい元素が凝集してしまうことを抑制し、均一な金属複合水酸化物を得ることができる。
 また、反応槽内は、不活性雰囲気を保ちつつも、適度な酸素含有雰囲気または酸化剤存在下であってもよい。
 反応槽内の雰囲気制御をガス種で行う場合、所定のガス種を反応槽内に通気するか、反応液を直接バブリングすればよい。
 上記の条件の制御に加えて、各種気体、例えば、窒素、アルゴン、二酸化炭素等の不活性ガス、空気、酸素等の酸化性ガス、またはそれらの混合ガスを反応槽内に供給し、得られる反応生成物の酸化状態を制御してもよい。
 得られる反応生成物を酸化する化合物として、過酸化水素などの過酸化物、過マンガン酸塩などの過酸化物塩、過塩素酸塩、次亜塩素酸塩、硝酸、ハロゲン、オゾンなどを使用することができる。
 得られる反応生成物を還元する化合物として、シュウ酸、ギ酸などの有機酸、亜硫酸塩、ヒドラジンなどを使用する事ができる。
 以上の反応後、得られた反応生成物を水で洗浄した後、乾燥することで、MCCが得られる。また、反応生成物に水で洗浄するだけでは混合液に由来する夾雑物が残存してしまう場合には、必要に応じて、反応生成物を、弱酸水や水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄してもよい。
 なお、上記の例では、MCCとして、ニッケルコバルトアルミニウム金属複合水酸化物を製造しているが、ニッケルコバルトアルミニウム金属複合酸化物を調製してもよい。
 例えば、ニッケルコバルトアルミニウム金属複合水酸化物を酸化することによりニッケルコバルトアルミニウム金属複合酸化物を調製することができる。
≪混合物を得る工程≫
 上記の方法により得られたMCCと、リチウム化合物とを混合し、MCCとリチウム化合物との混合物を得る。
 リチウム化合物としては、炭酸リチウム、水酸化リチウム、水酸化リチウム一水和物からなる群より選択される1種以上が使用できる。
 リチウム化合物とMCCとを、最終目的物の組成比を勘案して混合し、混合物を得る。具体的には、リチウム化合物とMCCは、後述する組成式(I)の組成比に対応する割合で混合することが好ましい。
 MCCとリチウム化合物との混合物は、後述の焼成工程前に加熱してもよい。前記混合物を加熱することにより、MCCとリチウム化合物との反応物を含む混合物原料を得ることができる。すなわち、前記混合物原料は、MCCとリチウム化合物との混合物中に含まれる一部のMCCとリチウム化合物とが反応した反応物を含み、さらにMCCとリチウム化合物とを含んでいてもよい。
 MCCとリチウム化合物との混合物を加熱する際の加熱温度は、例えば、300℃以上700℃以下である。
 MCCとリチウム化合物との混合物、またはMCCとリチウム化合物との反応物を含む混合物原料は、後述の焼成工程における被焼成物として採用することができる。
 被焼成物のLiの含有率は、5質量%を超え10質量%以下であり、5.1質量%以上9.9質量%以下が好ましく、5.2質量%以上9.8質量%以下が好ましい。
 また、本発明の一態様において被焼成物のLiの好ましい含有率は、5質量%を超え9.0質量%以下、5質量%を超え8.0質量%以下、5質量%を超え7.0質量%以下が挙げられる。
 被焼成物のLiの含有率が上記下限値を超えると、リチウムイオン導電性を有する層が増加したLiMOを製造できる。このようなLiMOは、リチウム二次電池の初回効率を向上させることができる。
 被焼成物のLiの含有率が上記上限値以下であると、焼成手段が備える内壁が腐食しにくくなる。これにより、焼成手段の部材交換等の工程が発生しにくく、生産効率が向上する。
 被焼成物に含まれるLiの含有率は、下記の方法により測定する。
<被焼成物に含まれるLiの含有率の測定>
 被焼成物の組成分析は、被焼成物の粉末を塩酸に溶解させた後、ICP発光分光分析装置を用いて測定できる。ICP発光分光分析装置としては、例えばエスアイアイ・ナノテクノロジー株式会社製、SPS3000が使用できる。被焼成物をICP発光分光分析で測定し、被焼成物に含まれるLiの含有率を求める。「被焼成物に含まれるLiの含有率」とは、被焼成物に含まれる金属元素の全量に対する、Liの割合である。
≪焼成工程≫
 焼成手段を用いて前記被焼成物を焼成する。
(焼成手段)
 焼成手段は、被焼成物と直接接する内壁を備える。
 焼成手段は、例えばロータリーキルン又はローラーハースキルンが挙げられる。焼成手段がロータリーキルンである場合、内壁は例えば円筒状のキルン内壁である。焼成手段がローラーハースキルンである場合、内壁は例えば焼成容器の内壁である。
 焼成手段はロータリーキルンであることが好ましい。ロータリーキルンは連続式であってもよく、バッチ式であってもよい。
 内壁の主材は合金である。
 本明細書において「主材」とは、内壁に最も多く含まれる材料を意味する。
 以下、内壁の主材である合金について説明する。
 合金はNiとAlとを含有する。
 合金の全量に対するNiの含有率は、93質量%以上95質量%以下である。合金の全量に対するAlの含有率は3質量%以上5質量%以下である。
 合金の全量に対するNiの含有率が上記下限値以上かつ上記上限値以下であると、焼成手段が備える内壁がリチウム化合物により腐食されにくくなる。
 合金の全量に対するAlの含有率が上記下限値以上であると、内壁の表面に酸化アルミニウムの被膜が形成されると考えられる。酸化アルミニウムの被膜は保護膜として機能し、焼成手段が備える内壁がリチウム化合物により腐食されにくくなる。合金の全量に対するAlの含有率が上記上限値以下であると、Niと合金化しやすくなる。
 主材がNi及びAlを特定の比率で含む合金であると、被焼成物に含まれるリチウム化合物により焼成手段が備える内壁が腐食されにくくなる。このため内壁部材の交換や、焼成手段の修繕などの工程が生じにくく、高い初回放電容量示すリチウム二次電池を提供できるLiMOを長期間にわたり効率よく生産できる。
 合金はSi又はMnのいずれか一方又は両方を含有していてもよい。
 合金がSiを含む場合、主材である合金の全量に対するSiの含有率は、0.5質量%以上2.5質量%以下が好ましく、0.7質量%以上2.3質量%以下がより好ましい。
 合金がMnを含む場合、主材である合金の全量に対するMnの含有率は、0質量%を超え1.0質量%以下が好ましく、0.2質量%以上0.8質量%以下がより好ましい。
 合金がSi及びMnを含む場合、主材である合金の全量に対するSi及びMnの合計量は、0.5質量%を超え3.5質量%以下が好ましい。SiまたはMnが含まれると、内壁の表面に形成された被膜がより壊れにくいと考えられる。
 主材である合金の例を下記に記載する。
・Ni及びAlからなる合金
・Ni、Al及びSiからなる合金
・Ni、Al及びMnからなる合金
・Ni、Al、Si及びMnからなる合金
 合金の組成は、下記の方法により求める。
<合金の組成分析>
 焼成手段が備える内壁の主材である合金の組成分析は、蛍光X線分析装置を用いて行う。これにより、合金中の金属元素の量を定量できる。合金に含まれる金属元素は、例えば、Ni、Al、Si、Mnである。
 蛍光X線分析装置としては、例えば型式:X-MET8000、日立ハイテク社製が使用できる。また、グロー放電質量分析装置を用いて定量してもよい。
 焼成条件は、一段焼成であってもよく、二段焼成であってもよい。一段焼成又は二段焼成により、LiMOが得られる。
 一段焼成は、被焼成物を特定の焼成温度で一定時間保持する焼成である。
 二段焼成は、例えば、被焼成物を仮焼成工程により焼成し、得られた仮焼成物を本焼成工程により焼成する。仮焼成工程と本焼成工程とは焼成温度が異なる。仮焼成工程の焼成温度よりも高温の焼成を本焼成工程とする。
 仮焼成工程は、前記焼成手段を用いて焼成することが好ましい。仮焼成工程を、前記焼成手段を用いて焼成することにより、高い初回放電容量示すリチウム二次電池を提供できるLiMOを長期間にわたり効率よく生産できる。
 本焼成工程は前記焼成手段を用いて焼成してもよく、他の焼成手段に変更してもよい。本焼成は仮焼成よりも高温で実施するため、焼成時に内壁がダメージを受けやすい。この場合被焼成物に含まれるリチウム化合物により内壁が腐食されやすい。このため本焼成工程は前記焼成手段により実施することが好ましい。
 一段焼成の場合、焼成温度は100℃以上1000℃以下が好ましい。
 二段焼成の場合、仮焼成工程と本焼成工程のいずれかにおいて焼成温度は100℃以上1000℃以下が好ましい。
 なかでも、仮焼成工程の焼成温度は100℃以上700℃以下が好ましく、本焼成工程は700℃を超え1000℃以下とすることが好ましい。
 焼成時間は、昇温開始から達温して温度保持が終了するまでの合計時間を1時間以上30時間以下とすることが好ましい。最高保持温度に達する加熱工程の昇温速度は180℃/時間以上2000℃/時間以下が好ましく、200℃/時間以上1900℃/時間以下がより好ましく、250℃/時間以上1800℃/時間以下が特に好ましい。
 本明細書における最高保持温度とは、焼成工程における焼成炉内雰囲気の保持温度の最高温度であり、焼成工程における焼成温度を意味する。複数の加熱工程を有する焼成工程の場合、最高保持温度とは、各焼成工程のうちの最高温度を意味する。
 本明細書における昇温速度は、焼成装置において、昇温を開始した時間から最高保持温度に到達するまでの時間と、焼成装置の焼成炉内の昇温開始時の温度から最高保持温度までの温度差とから算出される。
 焼成工程の焼成雰囲気の酸素濃度は10体積%以上が好ましい。焼成工程の焼成雰囲気の酸素濃度は、50体積%以上、60体積%以上が挙げられる。
 二段焼成の場合、仮焼成工程及び本焼成工程の焼成条件は、下記の組み合わせで実施することが好ましい。
 (仮焼成工程)
 焼成温度:600℃以上700℃以下
 焼成時間:1時間以上15時間以下
 焼成雰囲気:酸素雰囲気
 (本焼成工程)
 焼成温度:700℃を超え800℃以下
 焼成時間:5時間以上7時間以下
 焼成雰囲気:酸素雰囲気
・洗浄工程
 焼成後に、得られた焼成物を洗浄してもよい。洗浄には、純水やアルカリ性洗浄液を用いることができる。
≪組成≫
 本実施形態の製造方法により製造されるLiMOは、下記の一般式(I)で表されるものが好ましい。
 Li[Li(Ni(1-y-z)Co1-x]O …(I)
(-0.1≦x≦0.2、0≦y≦0.5、0≦z≦0.9、y+z<1、Mは、Mn、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。)
(x)
 サイクル特性が高いリチウム二次電池を得る観点から、xは0を超えることが好ましく、0.01以上がより好ましく、0.02以上がさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、xは0.1以下が好ましく、0.08以下がより好ましく、0.06以下がさらに好ましい。
 xの上限値と下限値は任意に組み合わせることができる。
 組み合わせの例としては、xは、0を超え0.1以下、0.01以上0.08以下、0.02以上0.06以下が挙げられる。
 サイクル特性が高いとは、放電容量維持率が高いことを意味する。
(y)
 yは電池の内部抵抗が低いリチウム二次電池を得る観点から、0.005以上が好ましく、0.01以上がより好ましく、0.05以上がさらに好ましい。また、熱的安定性が高いリチウム二次電池を得る観点から、yは0.4以下が好ましく、0.35以下がより好ましく、0.33以下がさらに好ましい。
 yの上限値と下限値は任意に組み合わせることができる。
 組み合わせの例としては、yは0.005以上0.4以下、0.01以上0.35以下、0.05以上0.33以下が挙げられる。
(z)
 また、サイクル特性が高いリチウム二次電池を得る観点から、zは0.01以上が好ましく、0.02以上がより好ましく、0.03以上がさらに好ましい。また、高温(例えば60℃環境下)での保存特性が高いリチウム二次電池を得る観点から、zは0.89以下が好ましく、0.88以下がより好ましく、0.87以下がさらに好ましい。
 zの上限値と下限値は任意に組み合わせることができる。
 組み合わせの例としては、zは0.01以上0.89以下、0.02以上0.88以下、0.03以上0.87以下が挙げられる。
 MはMn、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。
 また、サイクル特性が高いリチウム二次電池を得る観点から、Mは、Mn、Ti、Mg、Al、W、B、Zr、及びNbからなる群より選択される1種以上の元素が好ましく、熱的安定性が高いリチウム二次電池を得る観点から、Mn、Al、W、B、Zr、及びNbからなる群より選択される1種以上の元素が好ましい。
<組成分析>
 LiMOの組成分析は、得られたLiMOの粉末を塩酸に溶解させた後、ICP発光分光分析装置を用いて測定できる。
 ICP発光分光分析装置としては、例えばエスアイアイ・ナノテクノロジー株式会社製、SPS3000が使用できる。
<リチウム金属複合酸化物>
 本実施形態の製造方法により製造されるLiMOは、CAMとして好適に用いることができる。
<リチウム二次電池>
 本実施形態の製造方法により製造されるLiMOをCAMとして用いる場合に好適なリチウム二次電池の構成を説明する。
 さらに、本実施形態の製造方法により製造されるLiMOをCAMとして用いる場合に好適なリチウム二次電池用正極について説明する。以下、リチウム二次電池用正極を正極と称することがある。
 さらに、正極の用途として好適なリチウム二次電池について説明する。
 本実施形態の製造方法により製造されるLiMOをCAMとして用いる場合の好適なリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 リチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図1は、リチウム二次電池の一例を示す模式図である。例えば円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図1に示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
 次いで、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形又は角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型又は角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、又はペーパー型(又はシート型)電池を例示することができる。
 以下、各構成について順に説明する。
(正極)
 正極は、まずCAM、導電材及びバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造できる。
(導電材)
 正極が有する導電材には、炭素材料を用いることができる。炭素材料は、例えば黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料である。
 正極合剤中の導電材の割合は、CAM100質量部に対して5質量部以上20質量部以下であると好ましい。
(バインダー)
 正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリイミド樹脂、フッ素樹脂、ポリオレフィン樹脂、WO2019/098384A1またはUS2020/0274158A1に記載の樹脂を挙げることができる。
 ポリイミド樹脂は、例えばポリフッ化ビニリデン(以下、PVdFということがある。)である。
 フッ素樹脂は、例えばポリテトラフルオロエチレンである。
 ポリオレフィン樹脂は、例えばポリエチレン、ポリプロピレンなどである。
(正極集電体)
 正極が有する正極集電体には、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。
 正極集電体に正極合剤を担持させる方法としては、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、電極プレス工程を行って固着する方法が挙げられる。
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N-メチル-2-ピロリドン(以下、NMPということがある。)が挙げられる。
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 リチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよい。例えば、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができる。
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
 負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、炭素繊維及び有機高分子化合物焼成体を挙げることができる。
 負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物、;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;LiTi12、などのリチウムとチタンとを含有する金属複合酸化物;を挙げることができる。
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。
 負極活物質として使用可能な材料として、WO2019/098384A1またはUS2020/0274158A1に記載の材料を用いてもよい。
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
 上記負極活物質の中では、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。これは、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化せず(電位平坦性がよい)、平均放電電位が低く、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)ためである。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース(以下、CMCということがある。)、スチレンブタジエンゴム(以下、SBRということがある。)ポリエチレン及びポリプロピレンを挙げることができる。
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。
 このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
 リチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。また、JP-A-2000-030686やUS20090111025A1に記載のセパレータを用いてもよい。
(電解液)
 リチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
 電解液に含まれる電解質としては、LiClO、LiPF、LiBF、などのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。
 また電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどのカーボネート類を用いることができる。
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。
 電解液に含まれる電解質および有機溶媒として、WO2019/098384A1またはUS2020/0274158A1に記載の電解質および有機溶媒を用いてもよい。
 <全固体リチウム二次電池>
 次いで、全固体リチウム二次電池の構成を説明しながら、本実施形態の製造方法により製造されるLiMOを全固体リチウム二次電池のCAMとして用いた正極、及びこの正極を有する全固体リチウム二次電池について説明する。
 図2は、全固体リチウム二次電池の一例を示す模式図である。図2に示す全固体リチウム二次電池1000は、正極110と、負極120と、固体電解質層130とを有する積層体100と、積層体100を収容する外装体200と、を有する。また、全固体リチウム二次電池1000は、集電体の両側にCAMと負極活物質とを配置したバイポーラ構造であってもよい。バイポーラ構造の具体例として、例えば、JP-A-2004-95400に記載される構造が挙げられる。各部材を構成する材料については、後述する。
 積層体100は、正極集電体112に接続される外部端子113と、負極集電体122に接続される外部端子123と、を有していてもよい。その他、全固体リチウム二次電池1000は、正極110と負極120との間にセパレータを有していてもよい。
 全固体リチウム二次電池1000は、さらに積層体100と外装体200とを絶縁する不図示のインシュレーター及び外装体200の開口部200aを封止する不図示の封止体を有する。
 外装体200は、アルミニウム、ステンレス鋼又はニッケルメッキ鋼などの耐食性の高い金属材料を成形した容器を用いることができる。また、外装体200として、少なくとも一方の面に耐食加工を施したラミネートフィルムを袋状に加工した容器を用いることもできる。
 全固体リチウム二次電池1000の形状としては、例えば、コイン型、ボタン型、ペーパー型(またはシート型)、円筒型、角型、又はラミネート型(パウチ型)などの形状を挙げることができる。
 全固体リチウム二次電池1000は、一例として積層体100を1つ有する形態が図示されているが、本実施形態はこれに限らない。全固体リチウム二次電池1000は、積層体100を単位セルとし、外装体200の内部に複数の単位セル(積層体100)を封じた構成であってもよい。
 以下、各構成について順に説明する。
 (正極)
 正極110は、正極活物質層111と正極集電体112とを有している。
 正極活物質層111は、上述したCAM及び固体電解質を含む。また、正極活物質層111は、導電材及びバインダーを含んでいてもよい。
 (固体電解質)
 正極活物質層111に含まれる固体電解質としては、リチウムイオン伝導性を有し、公知の全固体リチウム二次電池に用いられる固体電解質を採用することができる。このような固体電解質としては、無機電解質及び有機電解質を挙げることができる。
 無機電解質としては、酸化物系固体電解質、硫化物系固体電解質及び水素化物系固体電解質を挙げることができる。
 有機電解質としては、ポリマー系固体電解質を挙げることができる。
 各電解質としては、WO2020/208872A1、US2016/0233510A1、US2012/0251871A1、US2018/0159169A1に記載の化合物が挙げられ、例えば、以下の化合物が挙げられる。
 (酸化物系固体電解質)
 酸化物系固体電解質としては、例えば、ペロブスカイト型酸化物、NASICON型酸化物、LISICON型酸化物及びガーネット型酸化物などが挙げられる。各酸化物の具体例は、WO2020/208872A1、US2016/0233510A1、US2020/0259213A1に記載の化合物が挙げられ、例えば、以下の化合物が挙げられる。
 ガーネット型酸化物としては、LiLaZr12(LLZともいう)などのLi-La-Zr系酸化物などが挙げられる。
 酸化物系固体電解質は、結晶性材料であってもよく、非晶質材料であってもよい。
 (硫化物系固体電解質)
 硫化物系固体電解質としては、LiS-P系化合物、LiS-SiS系化合物、LiS-GeS系化合物、LiS-B系化合物、LiI-SiS-P系化合物、LiI-LiS-P系化合物、LiI-LiPO-P系化合物及びLi10GeP12などを挙げることができる。
 なお、本明細書において、硫化物系固体電解質を指す「系化合物」という表現は、「系化合物」の前に記載した「LiS」「P」などの原料を主として含む固体電解質の総称として用いる。例えば、LiS-P系化合物には、LiSとPとを主として含み、さらに他の原料を含む固体電解質が含まれる。LiS-P系化合物に含まれるLiSの割合は、例えばLiS-P系化合物全体に対して50~90質量%である。LiS-P系化合物に含まれるPの割合は、例えばLiS-P系化合物全体に対して10~50質量%である。また、LiS-P系化合物に含まれる他の原料の割合は、例えばLiS-P系化合物全体に対して0~30質量%である。また、LiS-P系化合物には、LiSとPとの混合比を異ならせた固体電解質も含まれる。
 LiS-P系化合物としては、LiS-P、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P-LiI-LiBrなどを挙げることができる。
 LiS-SiS系化合物としては、LiS-SiS、LiS-SiS-LiI、LiS-SiS-LiBr、LiS-SiS-LiCl、LiS-SiS-B-LiI、LiS-SiS-P-LiI、LiS-SiS-P-LiClなどを挙げることができる。
 LiS-GeS系化合物としては、LiS-GeS及びLiS-GeS-Pなどを挙げることができる。
 硫化物系固体電解質は、結晶性材料であってもよく、非晶質材料であってもよい。
 固体電解質は、発明の効果を損なわない範囲において、2種以上を併用することができる。
 (導電材及びバインダー)
 正極活物質層111が有する導電材としては、上述の(導電材)で説明した材料を用いることができる。また、正極合剤中の導電材の割合についても同様に上述の(導電材)で説明した割合を適用することができる。また、正極が有するバインダーとしては、上述の(バインダー)で説明した材料を用いることができる。
(正極集電体)
 正極110が有する正極集電体112としては、上述の(正極集電体)で説明した材料を用いることができる。
 正極集電体112に正極活物質層111を担持させる方法としては、正極集電体112上でCAM層111を加圧成型する方法が挙げられる。加圧成型には、冷間プレスや熱間プレスを用いることができる。
 また、有機溶媒を用いてCAM、固体電解質、導電材及びバインダーの混合物をペースト化して正極合剤とし、得られる正極合剤を正極集電体112の少なくとも一面上に塗布して乾燥させ、プレスし固着することで、正極集電体112に正極活物質層111を担持させてもよい。
 また、有機溶媒を用いてCAM、固体電解質及び導電材の混合物をペースト化して正極合剤とし、得られる正極合剤を正極集電体112の少なくとも一面上に塗布して乾燥させ、焼結することで、正極集電体112に正極活物質層111を担持させてもよい。
 正極合剤に用いることができる有機溶媒としては、上述の(正極集電体)で説明した正極合剤をペースト化する場合に用いることができる有機溶媒と同じものを用いることができる。
 正極合剤を正極集電体112へ塗布する方法としては、上述の(正極集電体)で説明した方法が挙げられる
 以上に挙げられた方法により、正極110を製造することができる。正極110に用いる具体的な材料の組み合わせとしては、前述のCAMと、表1~3に記載する固体電解質、バインダー及び導電材の組み合わせが挙げられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(負極)
 負極120は、負極活物質層121と負極集電体122とを有している。負極活物質層121は、負極活物質を含む。また、負極活物質層121は、固体電解質及び導電材を含んでいてもよい。負極活物質、負極集電体、固体電解質、導電材及びバインダーは、上述したものを用いることができる。
 負極集電体122に負極活物質層121を担持させる方法としては、正極110の場合と同様に、加圧成型による方法、負極活物質を含むペースト状の負極合剤を負極集電体122上に塗布、乾燥後プレスし圧着する方法、及び負極活物質を含むペースト状の負極合剤を負極集電体122上に塗布、乾燥後、焼結する方法が挙げられる。
(固体電解質層)
 固体電解質層130は、上述の固体電解質を有している。
 固体電解質層130は、上述の正極110が有する正極活物質層111の表面に、無機物の固体電解質をスパッタリング法により堆積させることで形成することができる。
 また、固体電解質層130は、上述の正極110が有する正極活物質層111の表面に、固体電解質を含むペースト状の合剤を塗布し、乾燥させることで形成することができる。乾燥後、プレス成型し、さらに冷間等方圧加圧法(CIP)により加圧して固体電解質層130を形成してもよい。
 積層体100は、上述のように正極110上に設けられた固体電解質層130に対し、公知の方法を用いて、固体電解質層130の表面に負極活物質層121が接する態様で負極120を積層させることで製造することができる。
 次に、本発明を実施例によりさらに詳細に説明する。
<組成分析>
 LiMOの組成分析は、前記<組成分析>において説明した方法により実施した。
<被焼成物に含まれるLiの含有率の測定>
 被焼成物に含まれるLiの含有率は、前記<被焼成物に含まれるLiの含有率の測定>において説明した方法により実施した。
<合金の組成分析>
 焼成手段が備える合金または金属の組成分析は、前記<合金の組成分析>において説明した方法により実施した。
<腐食速度及び腐食生成物の成長速度の測定>
 腐食速度は、前記<腐食速度及び腐食生成物の成長速度の測定>において説明した方法により実施した。
 具体的には、金属試験片として、下記の金属試験片1~3を用意した。
 金属試験片1~3は、縦20mm、横25mm、厚さ3mmのサイズとした。
 金属試験片1は、Niの含有率が94質量%、Alの含有率が4質量%、Siの含有率が1.5質量%、Mnの含有率が0.5質量%の金属試験片である。
 金属試験片2は、Niの含有率が62質量%、Crの含有率が22質量%、Wの含有率が14質量%、Moの含有率が2質量%の金属試験片である。
 金属試験片3は、Niの含有率が100質量%の金属試験片である。
<初回放電容量の測定>
 リチウム二次電池の初回放電容量は、前記<初回放電容量の測定>において説明した方法により実施した。
<実施例1>
 攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸アルミニウム水溶液とを、NiとCoとAlとの原子比が88:9:3となる割合で混合して、混合原料液を調製した。
 次に、反応槽内に、攪拌下、この混合原料液と硫酸アンモニウム水溶液を錯化剤として連続的に添加した。反応槽内の溶液のpHが11.6(液温40℃での測定時)になるよう、水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトアルミニウム複合水酸化物を得た。
 ニッケルコバルトアルミニウム複合水酸化物を洗浄した後、遠心分離機で脱水し、単離して105℃で乾燥することで、ニッケルコバルトアルミニウム複合水酸化物1を得た。
 ニッケルコバルトアルミニウム複合水酸化物1と水酸化リチウム一水和物粉末を、モル比がLi/(Ni+Co+Al)=1.10となる割合で秤量して混合し、被焼成物1を得た。
 被焼成物1はLiの含有率が6.3質量%であった。
 その後、焼成手段が備える内壁のモデルとして内部に板状の合金1を設置した焼成炉を用いて被焼成物1を焼成した。
 合金1は、合金の全量に対するNiの含有率が94質量%であり、Alの含有率が4質量%であり、Siの含有率が1.5質量%、Mnの含有率が0.5質量%である合金を用いた。
 合金1の上に被焼成物1を載置し、被焼成物1を仮焼成した。このとき、被焼成物1は合金1と接触する状態であって、焼成炉の内壁とは接触しない状態で焼成した。
 仮焼成の条件は、酸素雰囲気下、680℃、12時間とした。次に、得られた仮焼成物を酸素雰囲気下、740℃で6時間本焼成し、篩別して実施例1のLiMOを得た。
(腐食速度および腐食生成物の成長速度の評価)
 また、3gの上記被焼成物1を金属試験片1の片面に載置し、酸素雰囲気下、680℃で12時間焼成した。焼成終了後、得られた焼成物を回収し、新たに被焼成物1を積載して同様の条件で焼成する作業を、さらに7回繰り返し、腐食速度および腐食生成物の成長速度の評価を行った。実施例1において、焼成回数の合計は8回である。
<比較例1>
 合金1を合金2に変更した以外は実施例1と同様に比較例1のLiMOを得た。合金2は、Niの含有率は62質量%であり、Crの含有率は22質量%であり、Wの含有率が14質量%、Moの含有率が2質量%である合金を用いた。また、金属試験片1を金属試験片2に変更した以外は、実施例1と同様に腐食速度及び腐食生成物の成長速度を測定した。
<比較例2>
 合金1をNiの含有率が100質量%である金属に変更した以外は実施例1と同様に比較例2のLiMOを得た。また、金属試験片1を金属試験片3に変更した以外は、実施例1と同様に腐食速度及び腐食生成物の成長速度を測定した。
<比較例3>
 被焼成物1を、Liの含有率が0.7質量%である被焼成物2に変更した以外は実施例1と同様に比較例3のLiMOを得た。また、3gの被焼成物2を用い、焼成回数を合計4回とした以外は、実施例1と同様に腐食速度及び腐食生成物の成長速度を測定した。
<比較例4>
 被焼成物1を、Liの含有率が10.9質量%である被焼成物3に変更した以外は実施例1と同様に比較例4のLiMOを得た。また、3gの被焼成物3を用い、焼成回数を合計3回とした以外は、実施例1と同様に腐食速度及び腐食生成物の成長速度を測定した。
 実施例1、比較例1~4において製造したLiMOの組成、被焼成物のLi含有率、合金の組成、金属試験片の腐食速度、腐食生成物の成長速度を表4に示す。さらに、実施例1、比較例1~4において製造したLiMOをCAMとして用いたリチウム二次電池の初回放電容量を表4に示す。
 実施例1、比較例1~4は、いずれもLiMOの全量中のNiの含有率が80%以上であったため、初回放電容量の評価には、上記判定基準Aを用いた。
 実施例1、比較例1~3は、LiMOの全量中のLiの含有率が6.5質量%以下であったため、腐食生成物の成長速度の評価には、上記判定基準1を用いた。
 比較例4は、LiMOの全量中のLiの含有率が6.5質量%を超えたため、腐食生成物の成長速度の評価には、上記判定基準2を用いた。
Figure JPOXMLDOC01-appb-T000004
 表4に示すとおり、実施例1は金属試験片の腐食速度が5mm/年以下であり、腐食生成物の成長速度が0.9mm/年以下であり、腐食速度が遅く、合金が腐食しにくいことが確認できた。よって、実施例1は、LiMOを効率的に製造できる方法であることが示された。さらに、実施例1はリチウム二次電池の初回充電容量を180mAh/g以上にすることができ、リチウム二次電池の性能を向上させることができた。
 実施例1の仮焼成及び本焼成の焼成条件は、主材が合金1である内壁を備える焼成手段を用いて焼成する場合を再現している。つまり実施例1の結果から、内壁の主材が合金1である焼成手段を用いて焼成した場合にも、LiMOを効率的に製造でき、且つリチウム二次電池の初回充電容量を180mAh/g以上にすることができ、リチウム二次電池の性能を向上させることが十分推察できる。
 一方、比較例1~2は、リチウム二次電池の初回充電容量を高くすることができたものの、比較例2は金属試験片の腐食速度が5mm/年を超え、比較例1は腐食生成物の成長速度が0.9mm/年を超えていた。このため、内壁の主材が合金2である焼成手段を用いて焼成した場合にも、焼成手段の内壁が腐食しやすいことが示された。よって、比較例1~2は、実施例1よりも非効率な製造方法であることが分かる。
 比較例3は、被焼成物のLiの含有率が低いために、金属試験片の腐食速度と腐食生成物の成長速度の値を低くすることができた。しかし、得られるLiMOのリチウム導電層が少ないために、リチウム二次電池の初回充電容量が低下したと考えられる。
 比較例4は、被焼成物のLiの含有率が高いため、合金の腐食速度が43.8mm/年と高かった。また、腐食生成物の成長速度も41.4mm/年と高かった。このため、内壁の主材がNi金属である焼成手段を用いて焼成した場合にも、焼成手段の内壁が腐食しやすいことが示された。よって、比較例4は、実施例1よりも非効率な製造方法であることが分かる。比較例4は被焼成物が焼成手段の内壁のモデルである合金1に固着してしまい、LiMOを回収することができず、電池評価ができなかった。
<実施例2>
 攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、NiとCoとMnとの原子比が60:20:20となる割合で混合して、混合原料液を調製した。
 次に、反応槽内に、攪拌下、この混合原料液と硫酸アンモニウム水溶液を錯化剤として連続的に添加した。反応槽内の溶液のpHが11.6(液温40℃での測定時)になるよう、水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物を得た。
 ニッケルコバルトマンガン複合水酸化物を洗浄した後、遠心分離機で脱水し、単離して105℃で乾燥することで、ニッケルコバルトマンガン複合水酸化物1を得た。
 ニッケルコバルトマンガン複合水酸化物1と水酸化リチウム一水和物粉末を、モル比がLi/(Ni+Co+Mn)=1.10となる割合で秤量して混合し、被焼成物11を得た。
 被焼成物11はLiの含有率が6.6質量%であった。
 被焼成物11を用い、本焼成の条件を、酸素雰囲気下、955℃で5時間とした以外は実施例1と同様に実施例2のLiMOを得た。また、3gの被焼成物11を用いた以外は、実施例1と同様に腐食速度及び腐食生成物の成長速度を測定した。
 実施例2において製造したLiMOの組成、被焼成物のLi含有率、合金の組成、金属試験片の腐食速度、腐食生成物の成長速度を表5に示す。さらに、実施例2において製造したLiMOをCAMとして用いたリチウム二次電池の初回放電容量を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 実施例2は、LiMOの全量中のNiの含有率が80%未満であったため、初回放電容量の評価には、上記判定基準Bを用いた。
 実施例2は、LiMOの全量中のLiの含有率が6.5質量%を超えたため、腐食生成物の成長速度の評価には、上記判定基準2を用いた。
 表5に示すとおり、実施例2は金属試験片の腐食速度が5mm/年以下であり、腐食生成物の成長速度が2.6mm/年以下であり、腐食速度が遅く、合金が腐食しにくいことが確認できた。よって、実施例2は、LiMOを効率的に製造できる方法であることが示された。さらに、実施例2はリチウム二次電池の初回充電容量を170mAh/g以上にすることができ、リチウム二次電池の性能を向上させることができた。
1:セパレータ、3:負極、4:電極群、5:電池缶、6:電解液、7:トップインシュレーター、8:封口体、10:リチウム二次電池、21:正極リード、100:積層体、110:正極、111:正極活物質層、112:正極集電体、113:外部端子、120:負極、121:負極活物質層、122:負極集電体、123:外部端子、130:固体電解質層、200:外装体、200a:開口部、1000:全固体リチウム二次電池

Claims (8)

  1.  焼成手段を用いて被焼成物を焼成する焼成工程において、前記被焼成物は、金属複合化合物とリチウム化合物との混合物、または前記金属複合化合物と前記リチウム化合物との反応物を含む混合物原料であり、前記被焼成物は、Liの含有率が5質量%を超え10質量%以下であり、前記焼成手段は、内壁を備え、前記内壁の主材は合金であり、前記合金は、Ni及びAlを含有し、前記合金の全量に対する前記Niの含有率は93質量%以上95質量%以下であり、前記合金の全量に対する前記Alの含有率は3質量%以上5質量%以下である、リチウム金属複合酸化物の製造方法。
  2.  前記リチウム金属複合酸化物は下記の一般式(I)で表される、請求項1に記載の製造方法。
     Li[Li(Ni(1-y-z)Co1-x]O …(I)
    (-0.1≦x≦0.2、0≦y≦0.5、0≦z≦0.9、y+z<1、Mは、Mn、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。)
  3.  前記合金は、Si又はMnのいずれか一方又は両方を含む、請求項1又は2に記載の製造方法。
  4.  前記合金の全量に対する前記Siの含有率は0.5質量%以上2.5質量%以下である、請求項3に記載の製造方法。
  5.  前記合金の全量に対する前記Mnの含有率は0質量%を超え1.0質量%以下である、請求項3に記載の製造方法。
  6.  前記焼成工程における焼成温度は、100℃以上900℃以下である、請求項1~5のいずれか1項に記載の製造方法。
  7.  前記焼成手段はロータリーキルンである、請求項1~6のいずれか1項に記載の製造方法。
  8.  前記焼成工程は仮焼成工程と本焼成工程とを有し、少なくとも前記仮焼成工程において、前記焼成手段を用いて焼成し、前記仮焼成工程の焼成温度は100℃以上700℃以下であり、前記本焼成工程の焼成温度は700℃を超え1000℃以下である、請求項1~7のいずれか1項に記載の製造方法。
PCT/JP2021/042621 2020-11-24 2021-11-19 リチウム金属複合酸化物の製造方法 WO2022113904A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022508798A JP7121219B1 (ja) 2020-11-24 2021-11-19 リチウム金属複合酸化物の製造方法
KR1020237017010A KR20230110267A (ko) 2020-11-24 2021-11-19 리튬 금속 복합 산화물의 제조 방법
US18/253,463 US20240010519A1 (en) 2020-11-24 2021-11-19 Method for producing lithium metal composite oxide
CA3199449A CA3199449A1 (en) 2020-11-24 2021-11-19 Method for producing lithium metal composite oxide
CN202180078040.6A CN116529548A (zh) 2020-11-24 2021-11-19 锂金属复合氧化物的制造方法
EP21897878.1A EP4253327A1 (en) 2020-11-24 2021-11-19 Method for producing lithium metal composite oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-194235 2020-11-24
JP2020194235 2020-11-24

Publications (1)

Publication Number Publication Date
WO2022113904A1 true WO2022113904A1 (ja) 2022-06-02

Family

ID=81754289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042621 WO2022113904A1 (ja) 2020-11-24 2021-11-19 リチウム金属複合酸化物の製造方法

Country Status (7)

Country Link
US (1) US20240010519A1 (ja)
EP (1) EP4253327A1 (ja)
JP (1) JP7121219B1 (ja)
KR (1) KR20230110267A (ja)
CN (1) CN116529548A (ja)
CA (1) CA3199449A1 (ja)
WO (1) WO2022113904A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353432B1 (ja) 2022-07-15 2023-09-29 住友化学株式会社 金属複合化合物及びリチウム金属複合酸化物の製造方法
WO2024014551A1 (ja) * 2022-07-15 2024-01-18 住友化学株式会社 金属複合化合物、金属複合化合物の製造方法、及びリチウム金属複合酸化物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022127805A (ja) * 2021-02-22 2022-09-01 中外炉工業株式会社 ロータリーキルン、ロータリーキルンの製造方法、及びロータリーキルンの改修方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585741A (ja) * 1991-09-30 1993-04-06 Asahi Chem Ind Co Ltd 複合酸化物の焼成方法
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2004095400A (ja) 2002-08-30 2004-03-25 Nissan Motor Co Ltd バイポーラ電池とその制御方法
US20090111025A1 (en) 2004-12-22 2009-04-30 Lg Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
US20120251871A1 (en) 2011-03-29 2012-10-04 Tohoku University All-solid-state battery
WO2013073633A1 (ja) * 2011-11-16 2013-05-23 Agcセイミケミカル株式会社 リチウム含有複合酸化物の製造方法
US20160233510A1 (en) 2013-11-08 2016-08-11 Hitachi, Ltd. All-solid state battery, electrode for all-solid state battery, and method of manufacturing the same
US20180159169A1 (en) 2015-10-30 2018-06-07 Lg Chem, Ltd. Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
JP2019075253A (ja) * 2017-10-16 2019-05-16 日立金属株式会社 リチウム二次電池用正極活物質の製造方法
WO2019098384A1 (ja) 2017-11-20 2019-05-23 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2020116631A1 (ja) * 2018-12-07 2020-06-11 住友化学株式会社 リチウム二次電池用正極活物質の製造方法
US20200259213A1 (en) 2017-11-13 2020-08-13 Murata Manufacturing Co., Ltd. All-solid-state battery
WO2020208872A1 (ja) 2019-04-12 2020-10-15 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
JP2020194235A (ja) 2019-05-24 2020-12-03 株式会社アース・カー 課金装置、課金方法、およびプログラム

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585741A (ja) * 1991-09-30 1993-04-06 Asahi Chem Ind Co Ltd 複合酸化物の焼成方法
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2004095400A (ja) 2002-08-30 2004-03-25 Nissan Motor Co Ltd バイポーラ電池とその制御方法
US20090111025A1 (en) 2004-12-22 2009-04-30 Lg Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
US20120251871A1 (en) 2011-03-29 2012-10-04 Tohoku University All-solid-state battery
WO2013073633A1 (ja) * 2011-11-16 2013-05-23 Agcセイミケミカル株式会社 リチウム含有複合酸化物の製造方法
US20160233510A1 (en) 2013-11-08 2016-08-11 Hitachi, Ltd. All-solid state battery, electrode for all-solid state battery, and method of manufacturing the same
US20180159169A1 (en) 2015-10-30 2018-06-07 Lg Chem, Ltd. Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
JP2019075253A (ja) * 2017-10-16 2019-05-16 日立金属株式会社 リチウム二次電池用正極活物質の製造方法
US20200259213A1 (en) 2017-11-13 2020-08-13 Murata Manufacturing Co., Ltd. All-solid-state battery
WO2019098384A1 (ja) 2017-11-20 2019-05-23 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US20200274158A1 (en) 2017-11-20 2020-08-27 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2020116631A1 (ja) * 2018-12-07 2020-06-11 住友化学株式会社 リチウム二次電池用正極活物質の製造方法
WO2020208872A1 (ja) 2019-04-12 2020-10-15 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
JP2020194235A (ja) 2019-05-24 2020-12-03 株式会社アース・カー 課金装置、課金方法、およびプログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353432B1 (ja) 2022-07-15 2023-09-29 住友化学株式会社 金属複合化合物及びリチウム金属複合酸化物の製造方法
WO2024014556A1 (ja) * 2022-07-15 2024-01-18 住友化学株式会社 金属複合化合物及びリチウム金属複合酸化物の製造方法
WO2024014551A1 (ja) * 2022-07-15 2024-01-18 住友化学株式会社 金属複合化合物、金属複合化合物の製造方法、及びリチウム金属複合酸化物の製造方法
JP2024011937A (ja) * 2022-07-15 2024-01-25 住友化学株式会社 金属複合化合物及びリチウム金属複合酸化物の製造方法

Also Published As

Publication number Publication date
JPWO2022113904A1 (ja) 2022-06-02
US20240010519A1 (en) 2024-01-11
KR20230110267A (ko) 2023-07-21
EP4253327A1 (en) 2023-10-04
CN116529548A (zh) 2023-08-01
CA3199449A1 (en) 2022-06-02
JP7121219B1 (ja) 2022-08-17

Similar Documents

Publication Publication Date Title
JP6952247B2 (ja) 正極活物質、および、電池
WO2022113904A1 (ja) リチウム金属複合酸化物の製造方法
EP3327835B1 (en) Positive electrode active material and battery
US20180090760A1 (en) Positive-electrode active material and battery
JPWO2009060603A1 (ja) 非水電解質二次電池用正極活物質ならびにそれを用いた非水電解質二次電池
JP2018085324A (ja) 電池用正極活物質、および、電池用正極活物質を用いた電池
KR20230108268A (ko) 전구체, 리튬 이차 전지용 정극 활물질, 리튬 이차 전지용 정극 및 리튬 이차 전지
WO2020116631A1 (ja) リチウム二次電池用正極活物質の製造方法
WO2022050311A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022044720A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7135433B2 (ja) リチウムニッケル複合酸化物の製造方法
US11569504B2 (en) Positive electrode active material for lithium ion secondary batteries and method for producing same
WO2022107754A1 (ja) リチウム金属複合酸化物の製造方法
US9966601B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery
JP7455795B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7233511B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7219802B1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7116267B1 (ja) 金属複合化合物、リチウム金属複合酸化物の製造方法及び金属複合化合物の製造方法
WO2022004323A1 (ja) リチウム二次電池正極活物質用前駆体及びリチウム二次電池正極活物質の製造方法
JP7353432B1 (ja) 金属複合化合物及びリチウム金属複合酸化物の製造方法
WO2021210524A1 (ja) リチウム二次電池用正極活物質粒子、リチウム二次電池用正極及びリチウム二次電池
JP2023004695A (ja) リチウム金属複合酸化物の製造方法
JP2023142148A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム二次電池用正極活物質の製造方法
KR101671067B1 (ko) 고용량의 리튬 이차 전지용 양극 활물질, 이를 포함하는 리튬 이차 전지용 양극 및 리튬 이차 전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022508798

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897878

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3199449

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18253463

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180078040.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021897878

Country of ref document: EP

Effective date: 20230626