WO2022004323A1 - リチウム二次電池正極活物質用前駆体及びリチウム二次電池正極活物質の製造方法 - Google Patents

リチウム二次電池正極活物質用前駆体及びリチウム二次電池正極活物質の製造方法 Download PDF

Info

Publication number
WO2022004323A1
WO2022004323A1 PCT/JP2021/022047 JP2021022047W WO2022004323A1 WO 2022004323 A1 WO2022004323 A1 WO 2022004323A1 JP 2021022047 W JP2021022047 W JP 2021022047W WO 2022004323 A1 WO2022004323 A1 WO 2022004323A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
secondary battery
electrode active
precursor
Prior art date
Application number
PCT/JP2021/022047
Other languages
English (en)
French (fr)
Inventor
友也 黒田
恵二 出蔵
Original Assignee
住友化学株式会社
株式会社田中化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 株式会社田中化学研究所 filed Critical 住友化学株式会社
Priority to US18/013,065 priority Critical patent/US20230295006A1/en
Priority to EP21834692.2A priority patent/EP4174988A1/en
Priority to CN202180044024.5A priority patent/CN115917788A/zh
Priority to KR1020227038858A priority patent/KR20230031817A/ko
Publication of WO2022004323A1 publication Critical patent/WO2022004323A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a precursor for a positive electrode active material of a lithium secondary battery and a method for producing a positive electrode active material of a lithium secondary battery.
  • the present application claims priority based on Japanese Patent Application No. 2020-11817 filed in Japan on June 29, 2020, the contents of which are incorporated herein by reference.
  • the precursor for the positive electrode active material of the lithium secondary battery is a raw material for the positive electrode active material used in the lithium secondary battery.
  • a method for producing a positive electrode active material for a lithium secondary battery there is a method in which a precursor containing a metal element other than lithium is produced, and the obtained precursor and a lithium compound are mixed and fired.
  • Metallic elements other than lithium are, for example, nickel, cobalt, manganese, aluminum and the like.
  • Lithium secondary batteries are already being put to practical use not only in small power sources such as mobile phones and notebook computers, but also in medium-sized or large-sized power sources such as automobiles and power storage applications.
  • a method of controlling the particle size distribution of the positive electrode active material of the lithium secondary battery is being studied.
  • a lithium secondary battery having excellent battery characteristics such as cycle characteristics can be provided by using a positive electrode active material composed of particles having a narrow particle size distribution.
  • Patent Document 1 describes a positive electrode active material for a non-aqueous electrolyte secondary battery in which [(d90-d10) / average particle size], which is an index showing the spread of particle size distribution, satisfies 0.60 or less.
  • Patent Document 1 discloses that a secondary battery using such a positive electrode active material for a non-aqueous electrolyte secondary battery has a high capacity, high thermal safety, and high output.
  • the electrolytic solution When the positive electrode active material of the lithium secondary battery comes into contact with the electrolytic solution, the electrolytic solution may decompose and gas may be generated. The generated gas causes swelling of the battery and shortens the life of the battery. From the viewpoint of suppressing battery swelling and producing a battery having a longer life than that of a conventional battery, there is room for improvement in the positive electrode active material of a lithium secondary battery and its precursor.
  • the present invention has been made in view of the above circumstances, and is a precursor for a positive electrode active material for a lithium secondary battery capable of suppressing battery swelling and producing a battery having a longer life, and a positive material for a lithium secondary battery.
  • the purpose is to provide a method.
  • the present invention includes the following [1] to [4].
  • [1] A precursor for a positive electrode active material of a lithium secondary battery containing at least a nickel atom, and in a volume-based cumulative particle size distribution curve obtained by laser diffraction type particle size distribution measurement, the cumulative volume ratio from the small particle side is 10. % become particle diameter ([mu] m) and D 10, the particle diameter at 30% ([mu] m) and D 30, the particle diameter at 50% ([mu] m) and D 50, 70% to become the particle diameter ([mu] m) and D 70
  • the particle size ( ⁇ m) to be 90% is D 90
  • the D 10 , the D 30 , the D 50 , the D 70 , and the D 90 satisfy the following (1) to (3).
  • Precursor for positive particle active material of lithium secondary battery (1) (D 50- D 10 ) / D 30 ⁇ 0.6 (2) (D 90- D 50 ) / D 70 ⁇ 0.6 (3) 0.90 ⁇ [(D 50- D 10 ) / D 30 ] / [(D 90- D 50 ) / D 70 ] ⁇ 1.10 [2]
  • Ni 1-x-y Co x M y O z (OH) 2- ⁇ ⁇ formula (A) (In the composition formula (A), 0 ⁇ x ⁇ 0.45, 0 ⁇ y ⁇ 0.45, 0 ⁇ z ⁇ 3, ⁇ 0.5 ⁇ ⁇ ⁇ 2, and M is Mg, Ca, Sr, Ba.
  • a lithium secondary battery comprising a step of mixing the precursor for a positive electrode active material of the lithium secondary battery according to any one of [1] to [3] with a lithium compound and firing the obtained mixture.
  • a precursor for a positive electrode active material of a lithium secondary battery capable of suppressing battery swelling and producing a battery having a longer life than a conventional battery, and a method for producing a positive material of a lithium secondary battery are provided. be able to.
  • This embodiment is a precursor for a positive electrode active material of a lithium secondary battery containing at least a nickel atom.
  • the "precursor for the positive electrode active material of the lithium secondary battery” may be referred to as a “precursor”
  • the "positive material for the positive electrode of the lithium secondary battery” is an abbreviation for "Cathode Active Material for lithium second battery” as "CAM”. May be described.
  • CAM can be produced by mixing the precursor with a lithium compound and firing it.
  • the precursor is composed of primary particles and secondary particles which are aggregates of the primary particles. In one embodiment of the present embodiment, the precursor is a powder.
  • Precursors in cumulative particle size distribution curve based on volume obtained by laser diffraction particle size distribution measurement, particle size of which cumulative volume ratio of from smaller particles is the particle diameter at 10% ([mu] m) 10, 30% D
  • particle size of which cumulative volume ratio of from smaller particles is the particle diameter at 10% ([mu] m) 10, 30% D
  • ( ⁇ m) is D 30
  • the particle diameter ( ⁇ m) which is 50 % is D 50
  • the particle diameter ( ⁇ m) which is 70 % is D 70
  • the particle diameter ( ⁇ m) which is 90% is D 90 .
  • the D 10 , the D 30 , the D 50 , the D 70 , and the D 90 satisfy the following (1) to (3).
  • the cumulative volume particle size distribution of the precursor is measured by laser diffraction scattering.
  • a measuring method for example, first, a powdery precursor is put into a dispersion medium and stirred to obtain a dispersion liquid of the precursor. Next, the particle size distribution is measured using a laser diffraction type particle size distribution measuring device, and a volume-based cumulative particle size distribution curve is obtained.
  • dispersion medium for example, ion-exchanged water can be used.
  • dispersant for example, a 20% by mass sodium hexametaphosphate aqueous solution can be used.
  • the laser diffraction type particle size distribution measuring device for example, LA950 manufactured by HORIBA, Ltd. can be used. It is preferable to add the powdery precursor in such a manner that the transmittance at the time of measurement is 85 ⁇ 3%.
  • D 10 , D 30 , and D 50 satisfy the following (1).
  • the value of (D 50- D 10 ) / D 30 is preferably 0.55 or less, more preferably 0.5 or less, still more preferably 0.48 or less.
  • the lower limit of the value of (D 50- D 10 ) / D 30 is, for example, 0.1 or more, 0.2 or more, and 0.3 or more.
  • the upper limit value and the lower limit value of the value of (D 50- D 10 ) / D 30 can be arbitrarily combined.
  • D 50 , D 70 , and D 90 satisfy the following (2).
  • the value of (D 90- D 50 ) / D 70 is preferably 0.55 or less, more preferably 0.5 or less, still more preferably 0.48 or less.
  • the lower limit of the value of (D 90- D 50 ) / D 70 is, for example, 0.1 or more, 0.2 or more, and 0.3 or more.
  • the upper limit value and the lower limit value of the value of (D 90- D 50 ) / D 70 can be arbitrarily combined.
  • the precursor satisfying (1) and (2) means that the particle size distribution has a narrow peak width in the cumulative particle size distribution curve.
  • the precursor satisfies the following (3).
  • (3) is preferably (3) -1, (3) -2 or (3) -3 below.
  • (3) -1 0.95 ⁇ [(D 50- D 10 ) / D 30 ] / [(D 90- D 50 ) / D 70 ] ⁇ 1.09
  • (3) -2 0.96 ⁇ [(D 50- D 10 ) / D 30 ] / [(D 90- D 50 ) / D 70 ] ⁇ 1.08
  • (3) -3 0.97 ⁇ [(D 50- D 10 ) / D 30 ] / [(D 90- D 50 ) / D 70 ] ⁇ 1.07
  • FIG. 2A is a schematic diagram illustrating an internal state of an electrode obtained from a positive electrode active material 50 manufactured by using the precursor of the present embodiment as a raw material.
  • the amount of the positive electrode active material 50 existing in a certain volume range is the same. That is, the abundance of the positive electrode active material 50 present in a certain volume in the electrode is uniform.
  • FIG. 2B is a schematic diagram illustrating an internal state of an electrode obtained from a positive electrode active material 51 manufactured by using a precursor other than the present invention as a raw material.
  • the variation in the amount of the positive electrode active material 51 existing in a certain volume range becomes large. That is, the abundance of the positive electrode active material 50 present in a certain volume in the electrode is non-uniform.
  • the precursor preferably contains at least one selected from the group consisting of Ni, Co and the element M described below.
  • the precursor include a compound containing Ni and Co, a compound containing one or more metal elements selected from the group consisting of Ni, Mn and Al, a compound containing Ni, Co and Mn, and Ni, Co and Al. Examples thereof include compounds containing.
  • the precursor is preferably represented by the following composition formula (A).
  • the precursor is preferably a metal composite oxide or a metal composite hydroxide.
  • Ni 1-x-y Co x M y O z (OH) 2- ⁇ ⁇ formula (A) (In the composition formula (A), 0 ⁇ x ⁇ 0.45, 0 ⁇ y ⁇ 0.45, 0 ⁇ z ⁇ 3, ⁇ 0.5 ⁇ ⁇ ⁇ 2, and M is Mg, Ca, Sr, Ba. , Zn, B, Al, Mn, Ga, Ti, Zr, Ge, Fe, Cu, Cr, V, W, Mo, Sc, Y, Nb, La, Ta, Tc, Ru, Rh, Pd, Ag, Cd , In, and one or more metal elements selected from the group consisting of Sn.)
  • ⁇ ⁇ X x is preferably 0.01 or more, more preferably 0.02 or more, and even more preferably 0.03 or more. Further, x is preferably 0.44 or less, more preferably 0.42 or less, still more preferably 0.40 or less. The upper limit value and the lower limit value of x can be arbitrarily combined. As an example of the combination, x preferably satisfies 0.01 ⁇ x ⁇ 0.44, more preferably 0.02 ⁇ x ⁇ 0.42, and more preferably 0.03 ⁇ x ⁇ 0.40. Is even more preferable.
  • ⁇ ⁇ Y y is preferably 0.01 or more, more preferably 0.02 or more, and even more preferably 0.03 or more. Further, y is preferably 0.44 or less, more preferably 0.42 or less, still more preferably 0.40 or less. The upper limit value and the lower limit value of y can be arbitrarily combined. As an example of the combination, y is preferably 0.01 ⁇ y ⁇ 0.44, more preferably 0.02 ⁇ y ⁇ 0.42, and even more preferably 0.03 ⁇ y ⁇ 0.40.
  • the z is preferably 0.1 or more, more preferably 0.2 or more, and even more preferably 0.3 or more. Further, z is preferably 2.9 or less, more preferably 2.8 or less, and even more preferably 2.7 or less.
  • the upper limit value and the lower limit value of z can be arbitrarily combined. As an example of the combination, z preferably satisfies 0.1 ⁇ z ⁇ 2.9, more preferably 0.2 ⁇ z ⁇ 2.8, and more preferably 0.3 ⁇ z ⁇ 2.7. Is even more preferable.
  • ⁇ ⁇ ⁇ ⁇ is preferably ⁇ 0.45 or higher, more preferably ⁇ 0.4 or higher, and even more preferably ⁇ 0.35 or higher. Further, ⁇ is preferably 1.8 or less, more preferably 1.6 or less, and even more preferably 1.4 or less.
  • the upper limit value and the lower limit value of ⁇ can be arbitrarily combined. As an example of the combination, ⁇ preferably satisfies ⁇ 0.45 ⁇ ⁇ ⁇ 1.8, more preferably ⁇ 0.4 ⁇ ⁇ ⁇ 1.6, and ⁇ 0.35 ⁇ ⁇ ⁇ 1. It is more preferable to satisfy 4.
  • ⁇ ⁇ X + y x + y is preferably more than 0, more preferably 0.05 or more and 0.70 or less, still more preferably 0.10 or more and 0.50 or less.
  • M is preferably one or more metal elements selected from the group consisting of Zr, Al, and Mn.
  • composition analysis of the precursor can be measured by dissolving the powder of the precursor in hydrochloric acid and then using an ICP emission spectrophotometer.
  • ICP emission spectroscopic analyzer for example, Optima 7300 manufactured by PerkinElmer Co., Ltd. can be used.
  • Precursor is preferably D 50 of less than 10 [mu] m, more preferably 9 ⁇ m or less, and more preferably 8 ⁇ m or less.
  • the value of D 50 is preferably more than 1 ⁇ m, more preferably 2 ⁇ m or more, further preferably 2.0 ⁇ m or more, and even more preferably 3 ⁇ m or more.
  • the lithium compound and the precursor react uniformly in the subsequent firing step, and it is easy to obtain the same CAM as the particle size distribution of the precursor.
  • a CAM When such a CAM is used, it is easy to obtain a lithium secondary battery with more suppressed battery swelling.
  • the upper and lower limits of the value of D 50 can be arbitrarily combined.
  • An example of the combination of the upper limit value and the lower limit value is shown below. 1 ⁇ m ⁇ D 50 ⁇ 10 ⁇ m 2 ⁇ m ⁇ D 50 ⁇ 9 ⁇ m 3 ⁇ m ⁇ D 50 ⁇ 8 ⁇ m
  • the step of producing the precursor is a slurry preparation step of supplying a metal-containing aqueous solution containing at least a nickel atom and an alkaline aqueous solution to a reaction vessel to obtain a hydroxide-containing slurry, and a liquid cyclone of the hydroxide-containing slurry. It is provided with a classification process for classifying using a formula classification device.
  • the method for producing the precursor includes a slurry preparation step, a classification step, and an arbitrary reflux step in this order.
  • a slurry preparation step a classification step
  • an arbitrary reflux step a slurry preparation step
  • each step will be described.
  • the slurry preparation step is a step of supplying a metal-containing aqueous solution containing at least a nickel atom and an alkaline aqueous solution to a reaction vessel to obtain a hydroxide-containing slurry.
  • a metal-containing aqueous solution containing at least a nickel atom and an alkaline aqueous solution are continuously supplied to the reaction vessel while stirring and reacted to obtain a hydroxide-containing slurry.
  • an aqueous solution containing an ammonium ion feeder may be supplied.
  • this step will be described by taking as an example a slurry containing a metal composite hydroxide containing Ni, Co, and Al (sometimes referred to as a nickel cobalt aluminum metal composite hydroxide) as the hydroxide-containing slurry. do.
  • the co-precipitation method is used to react a nickel salt solution, a cobalt salt solution, an aluminum salt solution, and a complexing agent to form Ni 1-xy. producing a metal complex hydroxide represented by Co x Al y (OH) 2 .
  • the nickel salt that is the solute of the nickel salt solution is not particularly limited, but for example, any one or more of nickel sulfate, nickel nitrate, nickel chloride and nickel acetate can be used.
  • cobalt salt which is the solute of the cobalt salt solution
  • any one or more of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used.
  • aluminum salt that is the solute of the aluminum salt solution for example, aluminum sulfate, sodium aluminate, or the like can be used.
  • a manganese salt solution is used.
  • the manganese salt which is the solute of the manganese salt solution for example, any one or more of manganese sulfate, manganese nitrate, manganese chloride, and manganese acetate can be used.
  • More metal salts are used in proportions corresponding to the composition ratio of the Ni 1-x-y Co x Al y (OH) 2. That is, each metal salt, a nickel atom in the solute nickel salt solution, a cobalt atom in the solute cobalt salt solution, the molar ratio of aluminum atoms in the solute aluminum salt solution, Ni 1-x-y Co x Al y (OH ) Use an amount of 1-xy: x: y corresponding to the composition ratio of 2.
  • the solvent of the nickel salt solution, the cobalt salt solution, and the aluminum salt solution is preferably water.
  • the complexing agent is a compound capable of forming a complex with nickel ion, cobalt ion, and aluminum ion in an aqueous solution.
  • the complexing agent include ammonium ion feeder, hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracildiacetic acid, and glycine.
  • ammonium salts such as ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, and ammonium fluoride can be used.
  • the amount of the complexing agent contained in the nickel salt solution, the cobalt salt solution, and the mixed solution containing the aluminum salt solution and the complexing agent is, for example, the total number of moles of the metal salt.
  • the molar ratio to 0 is greater than 0 and 2.0 or less.
  • the co-precipitation method in order to adjust the pH value of the mixed solution containing the nickel salt solution, manganese salt solution, cobalt salt solution, aluminum salt solution and complexing agent, before the pH of the mixed solution changes from alkaline to neutral. , Add an alkaline aqueous solution to the mixture. Sodium hydroxide and potassium hydroxide can be used as the alkaline aqueous solution.
  • the pH value in the present specification is defined as a value measured when the temperature of the mixed solution is 40 ° C.
  • the pH of the mixture is measured when the temperature of the mixture sampled from the reaction vessel reaches 40 ° C.
  • the pH is measured when the mixture is heated to 40 ° C. If the temperature of the sampled mixture is higher than 40 ° C, the pH is measured when the mixture is cooled to 40 ° C.
  • the temperature of the reaction vessel is controlled within the range of, for example, 20 ° C. or higher and 80 ° C. or lower, preferably 30 ° C. or higher and 70 ° C. or lower.
  • the pH value in the reaction vessel is controlled, for example, in the range of pH 9 or more and pH 13 or less, preferably pH 11 or more and pH 13 or less.
  • reaction vessel The substances in the reaction vessel are appropriately stirred and mixed.
  • reaction tank used in the continuous coprecipitation method an overflow type reaction tank can be used in order to separate the formed metal composite hydroxide.
  • the inside of the reaction tank may have an inert atmosphere.
  • inert atmosphere it is possible to suppress the aggregation of elements that are more easily oxidized than nickel, and to obtain a uniform metal composite hydroxide.
  • the inside of the reaction vessel may be in an oxygen-containing atmosphere or in the presence of an oxidizing agent.
  • the oxygen-containing atmosphere having an appropriate amount of oxygen atoms can maintain the inert atmosphere in the reaction vessel.
  • a predetermined gas type may be aerated in the reaction vessel or the reaction solution may be bubbling directly.
  • a peroxide such as hydrogen peroxide, a peroxide salt such as permanganate, a perchlorite, a hypochlorite, a nitrate, a halogen or ozone can be used.
  • the solution in order to promote the crystal growth of the precursor while increasing the uniformity in the reaction vessel, it is preferable to stir the solution with a stirring blade installed in the reaction vessel.
  • the physical characteristics of the precursor can be controlled by adjusting the rotation speed of the stirring blade.
  • the stirring speed depends on the size of the reaction vessel, but for example, the rotation speed of the stirring blade is preferably 300 rpm or more and 2000 rpm or less.
  • a slurry containing nickel-cobalt-aluminum metal composite hydroxide can be obtained as the hydroxide-containing slurry.
  • the hydroxide-containing slurry is continuously extracted from the reaction tank, stored in the slurry storage tank, and classified by a liquid cyclone type classifier. Specifically, in the liquid cyclone type classifier 40 of FIG. 3, among the particles contained in the hydroxide-containing slurry sent from the direction indicated by reference numeral Y, the hydroxide containing particles having a target particle size. The contained slurry A passes through the tapered portion 42 and is discharged from the lower part of the liquid cyclone type classification device 40.
  • the hydroxide-containing slurry B containing particles other than the hydroxide-containing slurry A is discharged from the upper part of the liquid cyclone type classifier 40 along the direction indicated by the reference numeral X.
  • the hydroxide-containing slurry A is recovered by the liquid cyclone type classifier, and the hydroxide-containing slurry B is continuously refluxed to the reaction vessel in the subsequent reflux step.
  • FIG. 3 shows a schematic diagram of the liquid cyclone type classification device 40.
  • the liquid cyclone type classification device 40 includes a cylindrical portion 41 and a tapered portion 42.
  • the hydroxide-containing slurry is sent from the direction indicated by reference numeral Y in FIG. 3, and the hydroxide-containing slurry is introduced into the liquid cyclone type classifier. After that, the hydroxide-containing slurry undergoes a rotational motion and centrifugal force acts, and the particles are classified according to the particle size of the particles contained in the hydroxide-containing slurry.
  • the particles having a small particle diameter gather at the center of the vortex and are discharged in the direction indicated by the reference numeral X on the ascending current (arrow shown by the broken line in FIG. 3) generated in the center.
  • the particles having a large particle diameter gather outside the vortex and are discharged in the direction indicated by the symbol Z on the downward flow (arrow shown by the solid line in FIG. 3) generated on the outer wall portion.
  • the taper angle ⁇ of the taper portion 42 of the liquid cyclone type classifier 40 is preferably 10 ° or more and 60 ° or less.
  • the taper angle ⁇ of the tapered portion 42 is equal to or greater than the above lower limit value, a sufficient centrifugal force is applied to the particles contained in the hydroxide-containing slurry, and the classification efficiency is likely to increase. It is easy to obtain a precursor that meets the requirements.
  • the taper angle ⁇ of the taper portion 42 is not more than the above upper limit value, the amount of discharge from the taper portion 42 can be maintained high. Therefore, the number of particles contained in the hydroxide-containing slurry driven into the liquid cyclone type classification device 40 is unlikely to increase, and the production efficiency can be increased while maintaining high classification efficiency.
  • the slurry flow rate of the liquid cyclone type classifier is preferably 0.6 m / sec or more and 1.5 m / sec or less.
  • the slurry liquid feed flow rate refers to an actually measured value of the flow rate when liquid is fed from the direction indicated by reference numeral Y.
  • the slurry flow rate of the liquid cyclone type classification device is equal to or higher than the above lower limit, a sufficient centrifugal force is applied to the particles contained in the hydroxide-containing slurry, and the classification efficiency is likely to increase, and the above (1) to (3). ) Is easy to obtain.
  • the slurry flow rate of the liquid cyclone type classifier is equal to or less than the above upper limit, it is difficult for excessively strong centrifugal force to be applied to the particles contained in the hydroxide-containing slurry, and particles having a small particle diameter that are not intended are removed from the taper portion 42. Since it is less likely to be discharged, the classification efficiency is likely to increase, and a precursor satisfying the above (1) to (3) is likely to be obtained.
  • the reflux step is a step of returning (refluxing) the hydroxide-containing slurry B classified by the liquid cyclone type classification device into the reaction vessel in the classification step.
  • the reflux method is not particularly limited, and known means can be used.
  • the hydroxide-containing slurry B after classification is returned to the reaction tank as it is, it may be returned to the reaction tank by a pump.
  • the particles contained in the hydroxide-containing slurry B can be continuously grown until the target particle size is reached, and the above (1) to (1) to ( It becomes easy to obtain a precursor satisfying 3).
  • the reflux rate that is, the rate at which the hydroxide-containing slurry B is returned to the reaction vessel may be adjusted according to the supply rate of the metal-containing aqueous solution or the aqueous solution containing the ammonium ion feeder.
  • the precursor obtained by dehydration is preferably washed with a washing solution containing water or alkali.
  • a washing solution containing water or alkali it is preferable to wash with a washing solution containing an alkali, and it is more preferable to wash with a sodium hydroxide solution.
  • the precursor obtained by the above dehydration step is dried in an air atmosphere at 105 ° C. or higher and 200 ° C. or lower for 1 hour or more and 20 hours or less.
  • the metal composite hydroxide is produced as a precursor, but the metal composite oxide may be prepared.
  • the heating temperature in the heating step is preferably 350 ° C. or higher and 800 ° C. or lower, and more preferably 400 ° C. or higher and 700 ° C. or lower.
  • the heating temperature is at least the above lower limit, the amount of metal composite hydroxide that can remain in the obtained precursor can be reduced.
  • the heating temperature is not more than the above upper limit value, sintering of the precursor particles can be suppressed and a precursor having a particle size distribution satisfying (3) can be obtained.
  • the method for producing CAM includes a mixing step of mixing the precursor obtained by the above ⁇ method of producing a precursor> with a lithium compound to obtain a mixture, and a firing step of firing the obtained mixture.
  • the lithium compound can be used by using any one or a mixture of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium oxide, lithium chloride and lithium fluoride. .. Among these, either one or both of lithium hydroxide and lithium carbonate is preferable.
  • the method of mixing the precursor and the lithium compound will be described.
  • the precursor and the lithium compound are mixed in consideration of the composition ratio of the final target product.
  • the precursor and the lithium compound are mixed in consideration of the composition ratio of the final target product.
  • lithium compound and the metal complex hydroxide lithium expressed by LiNi 1-x-y Co x Al y O 2 - nickel-cobalt-aluminum composite oxide It is used in a ratio corresponding to the composition ratio.
  • the molar ratio of Li contained in the lithium compound to the metal element contained in the metal composite hydroxide is 1. Mix in a ratio that exceeds.
  • a lithium-nickel-cobalt-aluminum composite oxide is obtained by firing a mixture of a nickel-cobalt-aluminum metal composite hydroxide and a lithium compound.
  • dry air, an oxygen atmosphere, an inert atmosphere, or the like is used according to the desired composition, and a plurality of heating steps are carried out if necessary.
  • the mixture may be fired in the presence of the Inactive Melting Agent. Firing in the presence of the Inactive Melting Agent can accelerate the reaction of the mixture.
  • the inert melting agent may remain in the positive electrode active material after firing, or may be removed by washing with water or alcohol after firing. Further, it is preferable to wash the CAM after firing with water or alcohol.
  • the particle size of the obtained CAM can be controlled by adjusting the holding temperature in firing.
  • the firing step may be firing only once, or may have a plurality of firing steps.
  • the step of firing at the highest temperature is referred to as main firing.
  • a temporary firing may be performed in which the firing is performed at a temperature lower than that of the main firing.
  • firing may be performed after firing at a temperature lower than that of the main firing.
  • the firing temperature (maximum holding temperature) of the main firing is preferably 600 ° C. or higher, more preferably 700 ° C. or higher, and particularly preferably 800 ° C. or higher from the viewpoint of promoting the growth of CAM particles. Further, from the viewpoint of preventing cracks from occurring in the CAM particles and maintaining the strength of the CAM particles, the temperature is preferably 1200 ° C. or lower, more preferably 1100 ° C. or lower, and particularly preferably 1000 ° C. or lower.
  • the upper limit value and the lower limit value of the maximum holding temperature of the main firing can be arbitrarily combined. Examples of the combination include 600 ° C. or higher and 1200 ° C. or lower, 700 ° C. or higher and 1100 ° C. or lower, and 800 ° C. or higher and 1000 ° C. or lower.
  • the firing temperature of the tentative firing or the post-baking may be lower than the firing temperature of the main firing, and examples thereof include a range of 350 ° C. or higher and 700 ° C. or lower.
  • the holding temperature in firing may be appropriately adjusted according to the type of transition metal element used, the type and amount of the precipitating agent and the inert melting agent.
  • the holding temperature may be set in consideration of the melting point of the inert melting agent described later, and is not less than [melting point of the inert melting agent ⁇ 200 ° C.] or more and not more than [melting point of the inert melting agent + 200 ° C.]. It is preferable to carry out within the range.
  • the time for holding at the holding temperature is 0.1 hour or more and 20 hours or less, preferably 0.5 hours or more and 10 hours or less.
  • the rate of temperature rise to the holding temperature is usually 50 ° C./hour or more and 400 ° C./hour or less, and the temperature lowering rate from the holding temperature to room temperature is usually 10 ° C./hour or more and 400 ° C./hour or less.
  • the atmosphere for firing air, oxygen, nitrogen, argon or a mixed gas thereof can be used as the atmosphere for firing.
  • the inert melting agent that can be used in this embodiment is not particularly limited as long as it does not easily react with the mixture during firing.
  • a fluoride of one or more elements (hereinafter referred to as “A”) selected from the group consisting of Na, K, Rb, Cs, Ca, Mg, Sr and Ba, and a chloride of A.
  • Specific examples include the inert melting agent described in JP6734491B.
  • the amount of the inert melting agent present at the time of firing may be appropriately selected.
  • the abundance of the inert melting agent at the time of firing is preferably 0.1 part by mass or more, and more preferably 1 part by mass or more with respect to 100 parts by mass of the lithium compound.
  • an inert melting agent other than the above-mentioned inert melting agent may be used in combination.
  • the inert melting agent used in this case include ammonium salts such as NH 4 Cl and NH 4 F.
  • the CAM can be obtained by the above-mentioned ⁇ method for producing CAM> using the precursor described above as a raw material. When CAM is used, it is easy to obtain a lithium secondary battery with more suppressed battery swelling.
  • the value of D 50 tends to be less than 10 ⁇ m.
  • Lithium secondary battery> Next, while explaining the configuration of the lithium secondary battery, a positive electrode using the CAM produced by the above method and a lithium secondary battery having the positive electrode will be described.
  • the CAM used when producing the positive electrode is preferably made of the CAM of the present embodiment, but may contain a CAM different from the CAM of the present embodiment as long as the effect of the present invention is not impaired.
  • An example of a lithium secondary battery has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution arranged between the positive electrode and the negative electrode.
  • FIG. 1A and 1B are schematic views showing an example of a lithium secondary battery.
  • the cylindrical lithium secondary battery 10 is manufactured as follows.
  • a pair of strip-shaped separators 1, a strip-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a strip-shaped negative electrode 3 having a negative electrode lead 31 at one end are divided into a separator 1, a positive electrode 2, and a separator.
  • the electrode group 4 is formed by laminating 1 and the negative electrode 3 in this order and winding them.
  • the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
  • the shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape when the electrode group 4 is cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
  • the shape of the lithium secondary battery having such an electrode group 4 the shape defined by IEC60086, which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C8500 can be adopted. ..
  • IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C8500
  • a cylindrical shape, a square shape, or the like can be mentioned.
  • the lithium secondary battery is not limited to the above-mentioned winding type configuration, and may be a laminated type configuration in which a laminated structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly laminated.
  • the laminated lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode can be manufactured by first preparing a positive electrode mixture containing a CAM, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • a carbon material As the conductive material of the positive electrode, a carbon material can be used.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and fibrous carbon material.
  • the ratio of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of CAM.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be reduced.
  • thermoplastic resin As the binder contained in the positive electrode, a thermoplastic resin can be used.
  • the thermoplastic resin include a polyimide resin; polyvinylidene fluoride (hereinafter, may be referred to as PVdF), a fluororesin such as polytetrafluoroethylene; a polyolefin resin such as polyethylene and polypropylene; WO2019 / 098384A1 or US2020 / 0274158A1. Resin can be mentioned.
  • thermoplastic resins may be used by mixing two or more kinds. Fluororesin and polyolefin resin are used as binders, and the ratio of fluororesin to the entire positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of polyolefin resin is 0.1% by mass or more and 2% by mass or less. It is possible to obtain a positive electrode mixture having high adhesion to the current collector and high bonding force inside the positive electrode mixture.
  • a band-shaped member made of a metal material such as Al, Ni, or stainless steel can be used as the positive electrode current collector of the positive electrode.
  • Al is used as a forming material and processed into a thin film is preferable because it is easy to process and inexpensive.
  • the positive electrode mixture As a method of supporting the positive electrode mixture on the positive electrode current collector, there is a method of pressure molding the positive electrode mixture on the positive electrode current collector. Further, the positive electrode mixture is made into a paste using an organic solvent, and the obtained positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed to the positive electrode current collector. The mixture may be carried.
  • the organic solvent that can be used is an amine solvent such as N, N-dimethylaminopropylamine or diethylenetriamine; an ether solvent such as tetrahydrofuran; a ketone solvent such as methylethylketone; methyl acetate.
  • Ester-based solvents such as dimethylacetamide, amide-based solvents such as N-methyl-2-pyrrolidone (hereinafter, may be referred to as NMP); and the like.
  • Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • the positive electrode can be manufactured by the method described above.
  • the negative electrode of the lithium secondary battery may be capable of doping and dedoping lithium ions at a lower potential than that of the positive electrode, and is an electrode in which a negative electrode mixture containing a negative electrode active material is supported on a negative electrode current collector. Examples thereof include an electrode composed of a negative electrode active material alone.
  • Negative electrode active material examples include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals or alloys, which can be doped and dedoped with lithium ions at a lower potential than the positive electrode. Be done.
  • Examples of the carbon material that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, coke, carbon black, pyrolytic carbon, carbon fiber, and calcined organic polymer compound.
  • Oxides that can be used as the negative electrode active material include silicon oxides represented by the formula SiO x (where x is a positive real number) such as SiO 2 , SiO; the formula SnO x such as SnO 2 and SnO (here). , X is a positive real number) tin oxide; a composite metal oxide containing lithium and titanium or vanadium such as Li 4 Ti 5 O 12 , LiVO 2; can be mentioned.
  • Examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
  • the material that can be used as the negative electrode active material the material described in WO2019 / 098384A1 or US2020 / 0274158A1 may be used.
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil, for example.
  • a carbon material containing graphite as a main component such as natural graphite and artificial graphite, is preferably used because of its high value (good cycle characteristics).
  • the shape of the carbon material may be, for example, flaky like natural graphite, spherical like mesocarbon microbeads, fibrous like graphitized carbon fiber, or agglomerates of fine powder.
  • the negative electrode mixture may contain a binder, if necessary.
  • the binder include thermoplastic resins, and specifically, PVdF, thermoplastic polyimide, carboxymethyl cellulose (hereinafter, may be referred to as CMC), and styrene-butadiene rubber (hereinafter, may be referred to as SBR). , Polyethylene and polypropylene.
  • Negative electrode current collector examples of the negative electrode current collector included in the negative electrode include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel as a forming material. Among them, Cu is used as a forming material and processed into a thin film is preferable because it is difficult to form an alloy with lithium and it is easy to process.
  • separator of the lithium secondary battery for example, a material having a form such as a porous film, a non-woven fabric, or a woven fabric made of a material such as a polyolefin resin such as polyethylene or polypropylene, a fluororesin, or a nitrogen-containing aromatic polymer is used. Can be used. Further, two or more of these materials may be used to form a separator, or these materials may be laminated to form a separator. Further, the separator described in JP-A-2000-030686 or US20090111025A1 may be used.
  • the air permeation resistance by the Garley method defined by JIS P 8117 must be 50 seconds / 100 cc or more and 300 seconds / 100 cc or less. It is more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
  • the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, and more preferably 40% by volume or more and 70% by volume or less.
  • the separator may be a stack of separators having different porosity.
  • the electrolytic solution contained in the lithium secondary battery contains an electrolyte and an organic solvent.
  • the electrolyte contained in the electrolytic solution examples include lithium salts such as LiClO 4 , LiPF 6 , and a mixture of two or more of these may be used. Further, the electrolyte described in WO2019 / 098384A1 or US2020 / 0274158A1 may be used. Among them, the electrolyte is at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one type.
  • organic solvent contained in the electrolytic solution for example, the organic solvent described in propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, WO2019 / 098384A1 or US2020 / 0274158A1 can be used.
  • the organic solvent it is preferable to use a mixture of two or more of these, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
  • a mixed solvent of the cyclic carbonate and the acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable.
  • an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent since the safety of the obtained lithium secondary battery is enhanced, it is preferable to use an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent.
  • the positive electrode having the above configuration has the CAM having the above-mentioned configuration, the amount of battery swelling of the lithium secondary battery can be suppressed.
  • FIG. 4 and 5 are schematic views showing an example of an all-solid-state lithium-ion secondary battery.
  • FIG. 4 is a schematic view showing a laminate included in an all-solid-state lithium-ion secondary battery.
  • FIG. 5 is a schematic diagram showing the overall configuration of the all-solid-state lithium-ion secondary battery.
  • the all-solid-state lithium-ion secondary battery 1000 has a positive electrode 110, a negative electrode 120, a laminated body 100 having a solid electrolyte layer 130, and an exterior body 200 containing the laminated body 100. Further, the all-solid-state lithium secondary battery 1000 may have a bipolar structure in which a positive electrode active material and a negative electrode active material are arranged on both sides of a current collector. Specific examples of the bipolar structure include the structure described in JP-A-2004-95400. The materials constituting each member will be described later.
  • the laminated body 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122.
  • the positive electrode 110 and the negative electrode 120 sandwich the solid electrolyte layer 130 so as not to short-circuit each other.
  • the all-solid-state lithium-ion secondary battery 1000 has a separator between the positive electrode 110 and the negative electrode 120 as used in a conventional liquid-based lithium-ion secondary battery, and short-circuits the positive electrode 110 and the negative electrode 120. It may be prevented.
  • the all-solid-state lithium-ion secondary battery 1000 has an insulator (not shown) that insulates the laminate 100 and the exterior body 200, and a sealant (not shown) that seals the opening 200a of the exterior body 200.
  • a container formed of a metal material having high corrosion resistance such as aluminum, stainless steel, and nickel-plated steel can be used. Further, it is also possible to use a container in which a laminated film having a corrosion resistant treatment on at least one surface is processed into a bag shape.
  • Examples of the shape of the all-solid-state lithium-ion secondary battery 1000 include a coin type, a button type, a paper type (or a sheet type), a cylindrical type, and a square type.
  • the all-solid-state lithium-ion secondary battery 1000 is shown as having one laminated body 100, but the present invention is not limited to this.
  • the all-solid-state lithium-ion secondary battery 1000 may have a structure in which the laminated body 100 is a unit cell and a plurality of unit cells (laminated body 100) are enclosed inside the exterior body 200.
  • the positive electrode 110 has a positive electrode active material layer 111 and a positive electrode current collector 112.
  • the positive electrode active material layer 111 contains the above-mentioned positive electrode active material for a lithium secondary battery, which is one aspect of the present invention. Further, the positive electrode active material layer 111 may contain a solid electrolyte, a conductive material, and a binder.
  • Solid electrolyte As the solid electrolyte that the positive electrode active material layer 111 may have, a solid electrolyte that has lithium ion conductivity and is used in a known all-solid-state battery can be adopted.
  • a solid electrolyte include an inorganic electrolyte and an organic electrolyte.
  • the inorganic electrolyte include an oxide-based solid electrolyte, a sulfide-based solid electrolyte, and a hydride-based solid electrolyte.
  • the organic electrolyte include polymer-based solid electrolytes. Examples of each electrolyte include the compounds described in WO2010 / 208872A1, US2016 / 0235510A1, US2012 / 0251871A1, and US2018 / 0159169A1, and examples thereof include the following compounds.
  • an oxide-based solid electrolyte or a sulfide-based solid electrolyte it is preferable to use an oxide-based solid electrolyte.
  • oxide-based solid electrolyte examples include perovskite-type oxides, NASICON-type oxides, LISION-type oxides, and garnet-type oxides. Specific examples of each oxide include the compounds described in WO2020 / 208872A1, US2016 / 0235510A1, and US2020 / 0259213A1.
  • garnet-type oxide examples include Li-La-Zr-based oxides such as Li 7 La 3 Zr 2 O 12 (LLZ).
  • the oxide-based solid electrolyte may be a crystalline material or an amorphous material.
  • amorphous solid electrolytes such as Li-BO compounds such as Li 3 BO 3, Li 2 B 4 O 7, LiBO 2 and the like.
  • the oxide-based solid electrolyte preferably contains an amorphous material.
  • sulfide-based solid electrolyte examples include Li 2 SP 2 S 5 series compounds, Li 2 S—SiS 2 series compounds, Li 2 S—GeS 2 series compounds, Li 2 SB 2 S 3 series compounds, and LiI-.
  • Si 2 S-P 2 S 5 type compounds may be mentioned LiI-Li 2 S-P 2 O 5 based compound, LiI-Li 3 PO 4 -P 2 S 5 based compound, and Li 10 GeP 2 S 12 ..
  • system compound which refers to a sulfide-based solid electrolyte is a solid electrolyte mainly containing raw materials such as "Li 2 S" and "P 2 S 5" described before “system compound”. It is used as a general term for.
  • the Li 2 SP 2 S 5 system compound contains a solid electrolyte containing Li 2 S and P 2 S 5, and further contains other raw materials.
  • the Li 2 SP 2 S 5 system compound also contains a solid electrolyte having a different mixing ratio of Li 2 S and P 2 S 5.
  • Li 2 The S-P 2 S 5 -based compounds, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -LiBr, such as Li 2 S-P 2 S 5- LiI-LiBr can be cited.
  • the Li 2 S-SiS 2 based compound Li 2 S-SiS 2, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2- B 2 S 3- LiI, Li 2 S-SiS 2- P 2 S 5- LiI, Li 2 S-SiS 2- P 2 S 5- LiCl and the like can be mentioned.
  • Li 2 S-GeS 2 system compound examples include Li 2 S-GeS 2 and Li 2 S-GeS 2- P 2 S 5 .
  • the sulfide-based solid electrolyte may be a crystalline material or an amorphous material.
  • the sulfide-based solid electrolyte preferably contains an amorphous material.
  • Two or more types of solid electrolytes can be used in combination as long as the effects of the invention are not impaired.
  • the conductive material that the positive electrode active material layer 111 may have, the material described in (conductive material) described above can be used. Further, as for the ratio of the conductive material in the positive electrode mixture, the ratio described in the above-mentioned (conductive material) can be similarly applied. Further, as the binder that the positive electrode may have, the material described in the above-mentioned (binder) can be used.
  • Positive current collector 112 included in the positive electrode 110 As the positive electrode current collector 112 included in the positive electrode 110, the material described above (positive electrode current collector) can be used.
  • a method of pressure molding the positive electrode active material layer 111 on the positive electrode current collector 112 can be mentioned.
  • a cold press or a hot press can be used for pressure molding.
  • a mixture of the positive electrode active material, the solid electrolyte, the conductive material, and the binder is made into a paste using an organic solvent to form a positive electrode mixture, and the obtained positive electrode mixture is applied to at least one surface side of the positive electrode current collector 112 and dried.
  • the positive electrode active material layer 111 may be supported on the positive electrode current collector 112 by pressing and fixing.
  • a mixture of a positive electrode active material, a solid electrolyte, and a conductive material is made into a paste using an organic solvent to form a positive electrode mixture, and the obtained positive electrode mixture is applied to at least one surface of the positive electrode current collector 112, dried, and baked.
  • the positive electrode active material layer 111 may be supported on the positive electrode current collector 112.
  • the organic solvent that can be used for the positive electrode mixture the same organic solvent that can be used when the positive electrode mixture described above (positive electrode current collector) is made into a paste can be used.
  • Examples of the method of applying the positive electrode mixture to the positive electrode current collector 112 include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • the positive electrode 110 can be manufactured by the method described above.
  • the negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122.
  • the negative electrode active material layer 121 contains a negative electrode active material. Further, the negative electrode active material layer 121 may contain a solid electrolyte and a conductive material. As the negative electrode active material, the negative electrode current collector, the solid electrolyte, the conductive material, and the binder, those described above can be used.
  • Solid electrolyte layer 130 has the above-mentioned solid electrolyte.
  • the solid electrolyte layer 130 can be formed by depositing an inorganic solid electrolyte on the surface of the positive electrode active material layer 111 of the above-mentioned positive electrode 110 by a sputtering method.
  • the solid electrolyte layer 130 can be formed by applying a paste-like mixture containing a solid electrolyte to the surface of the positive electrode active material layer 111 of the above-mentioned positive electrode 110 and drying it. After drying, the solid electrolyte layer 130 may be formed by press molding and further pressurizing by a cold isotropic pressure pressurization method (CIP).
  • CIP cold isotropic pressure pressurization method
  • the negative electrode 120 is laminated on the solid electrolyte layer 130 provided on the positive electrode 110 as described above by using a known method so that the negative electrode electrolyte layer 121 is in contact with the surface of the solid electrolyte layer 130. It can be manufactured by. As a result, the solid electrolyte layer 130 comes into contact with the negative electrode active material layer 121 and becomes conductive.
  • the obtained all-solid-state lithium-ion secondary battery 100 is provided with the solid electrolyte layer 130 in contact with the positive electrode 110 and the negative electrode 120 so that the positive electrode 110 and the negative electrode 120 are not short-circuited.
  • the provided all-solid-state lithium-ion battery 100 is connected to an external power source and charged by applying a negative potential to the positive electrode 110 and a positive potential to the negative electrode 120.
  • the charged all-solid-state lithium ion secondary battery 100 is discharged by connecting a discharge circuit to the positive electrode 110 and the negative electrode 120 and energizing the discharge circuit.
  • the positive electrode having the above configuration has the CAM having the above configuration, the amount of battery swelling of the all-solid-state lithium ion secondary battery can be suppressed.
  • composition analysis of the precursor produced by the method described later was carried out by the method described in the above [Composition analysis].
  • the obtained positive electrode mixture was applied to an Al foil having a thickness of 40 ⁇ m as a current collector and vacuum dried at 150 ° C. for 8 hours to obtain a positive electrode.
  • the obtained negative electrode mixture was applied to a Cu foil having a thickness of 12 ⁇ m as a current collector and vacuum dried at 60 ° C. for 8 hours to obtain a negative electrode.
  • the positive electrode produced in ⁇ Preparation of positive electrode> was placed on an aluminum laminated film with the aluminum foil surface facing down, and a laminated film separator (polyethylene porous film (thickness 27 ⁇ m)) was placed on the laminated film separator.
  • a laminated film separator polyethylene porous film (thickness 27 ⁇ m)
  • the negative electrode prepared in ⁇ Preparation of negative electrode> was placed on the upper side of the laminated film separator with the copper foil side facing up, and the aluminum laminated film was placed on it. Further, heat sealing was performed leaving the injection portion of the electrolytic solution.
  • the mixture was transferred to a dry bench having a dry atmosphere with a dew point temperature of ⁇ 50 ° C. or lower, and 1 mL of the electrolytic solution was injected using a vacuum injection machine.
  • the electrolytic solution 1% by volume of vinylene carbonate was added to a 16:10:74 (volume ratio) mixture of ethylene carbonate, dimethyl carbonate and ethylmethyl carbonate, and LiPF 6 was dissolved therein at a ratio of 1.3 mol / l. I used the one.
  • the amount of battery swelling was measured by the following method. First, after the formation of the laminated cell produced as described above, the volume of the laminated cell discharged to 2.5 V at a current value of 0.2 CA was measured by the Archimedes method, and the volume before storage was measured.
  • the volume of the laminated cell discharged to 2.5 V at a current value of 0.2 CA was measured by the Archimedes method, and the volume after storage was measured.
  • the volume difference (cm 3 ) before and after storage was divided by the amount of positive electrode material (g) present in the laminated cell to obtain the battery swelling amount (cm 3 / g) per positive electrode material.
  • the Archimedes method is a method of measuring the actual volume of the entire laminated cell from the difference between the aerial weight and the underwater weight of the laminated cell using an automatic hydrometer.
  • the formation of the laminated cell was carried out under the following conditions. Formation conditions: Charge to SOC 10% at 0.1 CA at test temperature 25 ° C, leave at test temperature 60 ° C for 10 hours, then current at CC-CV charge to 4.3 V at 0.1 CA at test temperature 25 ° C. Charging was performed until the temperature reached 0.05 CA. Further, after discharging to 2.5 V at 0.2 CA, charging / discharging at 0.2 CA was carried out for two cycles.
  • Example 1 ⁇ Slurry adjustment step Water is put into a 500L cylindrical reaction tank equipped with a stirrer equipped with a 220 ⁇ propeller type stirring blade and an overflow pipe, and then the pH is 12.4 (measured value when the temperature of the solution is 40 ° C). A 32 mass% sodium hydroxide solution was added until the temperature became 40 ° C. with a heater. Next, nitrogen gas was continuously blown into the reaction vessel at a flow rate of 5 L / min to make the atmosphere in the reaction vessel an inert atmosphere.
  • An aqueous solution of nickel sulfate and an aqueous solution of cobalt sulfate are mixed at a ratio of atomic ratio of Ni to Co to 92.8: 7.2 to prepare a mixed raw material solution, and the mixed raw material solution is mixed at a constant rate in a reaction tank. Continuously supplied to.
  • ammonia concentration was continuously supplied to the reaction vessel at a constant rate at a rate of 0.23 mol / L.
  • the nickel-cobalt-aluminum metal composite hydroxide-containing slurry obtained by the above reaction was stored in a slurry storage tank by an overflow pipe.
  • the nickel-cobalt-aluminum metal composite hydroxide-containing slurry stored in the slurry storage tank was subjected to a wet classifier liquid cyclone (manufactured by Murata Kogyo Co., Ltd., T-10B) having a taper angle ⁇ of 16 ° as shown in FIG. It was introduced into the -1 type) at a slurry feeding flow rate of 0.84 m / sec.
  • a wet classifier liquid cyclone manufactured by Murata Kogyo Co., Ltd., T-10B
  • the obtained nickel-cobalt-aluminum-metal composite hydroxide was washed and dehydrated, dried and sieved at 105 ° C. for 20 hours, and particle size distribution measurement and composition analysis were performed.
  • the composition formula of the obtained nickel-cobalt-aluminum-metal composite hydroxide was Ni 90.2 Co 7.0 Al 2.8 (OH) 2.1 .
  • Example 2 Slurry adjustment step Water is put into a 500L cylindrical reaction tank equipped with a stirrer equipped with a 220 ⁇ propeller type stirring blade and an overflow pipe, and then the pH is 11.0 (measured value when the temperature of the solution is 40 ° C). A 32 mass% sodium hydroxide solution was added until the temperature became 60 ° C. with a heater. Next, nitrogen gas was continuously blown into the reaction vessel at a flow rate of 5 L / min to make the atmosphere in the reaction vessel an inert atmosphere.
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed at a ratio of Ni, Co, and Mn at an atomic ratio of 88: 9: 3, to prepare a mixed raw material solution, and the mixed raw material solution is kept at a constant rate.
  • the reaction vessel was continuously supplied to the reaction vessel.
  • the ammonia concentration was continuously supplied to the reaction vessel at a constant rate at a ratio of 0.07 mol / L. Furthermore, in order to maintain the pH of the solution in the reaction vessel at 11.0 (measured value when the temperature of the solution was 40 ° C.), 32% by mass of sodium hydroxide was added intermittently.
  • the nickel-cobalt-manganese-metal composite hydroxide-containing slurry obtained by the above reaction was stored in a slurry storage tank from an overflow pipe.
  • the nickel-cobalt-manganese-metal composite hydroxide-containing slurry stored in the slurry storage tank is placed in a wet classifier liquid cyclone (Murata Kogyo Co., Ltd., T-10B-1, type, taper angle ⁇ : 16 °).
  • the liquid cyclone was introduced at a liquid feeding flow rate of 0.47 m / sec.
  • the obtained nickel-cobalt-manganese-metal composite hydroxide was washed and dehydrated, dried and sieved at 105 ° C. for 20 hours, and the particle size distribution was measured and the composition was analyzed.
  • the composition formula of the obtained nickel-cobalt-manganese-metal composite hydroxide was Ni 88.3 Co 8.9 Mn 2.8 (OH) 2.0 .
  • a laminated cell was prepared using the CAM obtained in the same manner as in Example 1 except that the nickel cobalt manganese metal composite hydroxide was used, and the battery swelling amount was measured. These results are shown in Table 2.
  • An aqueous solution of nickel sulfate and an aqueous solution of cobalt sulfate are mixed at a ratio of atomic ratio of Ni to Co to 92.8: 7.2 to prepare a mixed raw material solution, and the mixed raw material solution is mixed at a constant rate in a reaction tank. Continuously supplied to.
  • ammonia concentration was continuously supplied to the reaction vessel at a constant rate at a rate of 0.23 mol / L.
  • a 10.8% by mass aluminum sulfate aqueous solution was added by adjusting the flow rate at a ratio of atomic ratio of Ni, Co and Al to 90: 7: 3.
  • the obtained nickel-cobalt-aluminum-metal composite hydroxide was washed and dehydrated, dried and sieved at 105 ° C. for 20 hours, and particle size distribution measurement and composition analysis were performed.
  • the composition formula of the obtained nickel-cobalt-aluminum-metal composite hydroxide was Ni 90.1 Co 6.8 Al 3.1 (OH) 2.1 .
  • a laminated cell was prepared using the CAM obtained in the same manner as in Example 1 except that the nickel cobalt aluminum metal composite hydroxide was used, and the battery swelling amount was measured. These results are shown in Table 2.
  • Example 2 A nickel cobalt aluminum metal composite hydroxide was produced in the same manner as in Example 1 except that the taper angle of the wet classifier liquid cyclone was set to 9 ° and the liquid feeding flow velocity was changed to 0.59 m / sec.
  • the particle size distribution was measured and the composition of the obtained nickel-cobalt-aluminum-metal composite hydroxide was analyzed.
  • the composition formula of the obtained nickel-cobalt-aluminum-metal composite hydroxide was Ni 90.0 Co 7.0 Al 3.0 (OH) 2.1 .
  • a laminated cell was prepared using the CAM obtained in the same manner as in Example 1 except that the nickel cobalt aluminum metal composite hydroxide was used, and the battery swelling amount was measured. These results are shown in Table 2.
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed at a ratio of Ni, Co, and Mn at an atomic ratio of 88: 8: 4, to prepare a mixed raw material solution, and the mixed raw material solution is kept at a constant rate.
  • the reaction vessel was continuously supplied to the reaction vessel.
  • ammonia concentration was continuously supplied to the reaction vessel at a constant rate at a ratio of 0.23 mol / L.
  • 32% by weight sodium hydroxide was added intermittently to maintain the pH of the solution in the reaction vessel at 12.6 (measured when the temperature of the solution was 40 ° C.).
  • the obtained nickel-cobalt-manganese-metal composite hydroxide was washed and dehydrated, dried and sieved at 105 ° C. for 20 hours, and the particle size distribution was measured and the composition was analyzed.
  • the composition formula of the obtained nickel-cobalt-manganese-metal composite hydroxide was Ni 88.3 Co 7.9 Mn 3.9 (OH) 2.0 .
  • a laminated cell was prepared using the CAM obtained in the same manner as in Example 1 except that the nickel cobalt manganese metal composite hydroxide was used, and the battery swelling amount was measured. These results are shown in Table 2.
  • the battery of the example had a smaller amount of battery swelling than that of the comparative example. Therefore, it was confirmed that a battery having a longer life can be manufactured by using a CAM manufactured by using the precursor to which the present invention is applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

少なくともニッケル原子を含むリチウム二次電池正極活物質用前駆体であって、レーザー回折式粒度分布測定によって得られる体積基準の累積粒度分布曲線において、小粒子側からの累積体積割合が10%となる粒子径(μm)をD10、30%となる粒子径(μm)をD30、50%となる粒子径(μm)をD50、70%となる粒子径(μm)をD70、90%となる粒子径(μm)をD90としたときに、前記D10、前記D30、前記D50、前記D70、及び前記D90が下記(1)~(3)を満たす、リチウム二次電池正極活物質用前駆体。 (1)(D50-D10)/D30≦0.6 (2)(D90-D50)/D70≦0.6 (3)0.90≦[(D50-D10)/D30]/[(D90-D50)/D70]≦1.10

Description

リチウム二次電池正極活物質用前駆体及びリチウム二次電池正極活物質の製造方法
 本発明は、リチウム二次電池正極活物質用前駆体及びリチウム二次電池正極活物質の製造方法に関する。
 本願は、2020年6月29日に、日本に出願された特願2020-111817号に基づき優先権を主張し、その内容をここに援用する。
 リチウム二次電池正極活物質用前駆体は、リチウム二次電池に使用される正極活物質の原料となる。
 リチウム二次電池正極活物質の製造方法の一例としては、リチウム以外の金属元素を含む前駆体を製造し、得られた前駆体とリチウム化合物とを混合して焼成する方法があげられる。リチウム以外の金属元素は例えば、ニッケル、コバルト、マンガン、アルミニウム等である。
 リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型又は大型電源においても、実用化が進んでいる。
 リチウム二次電池の電池特性を向上させるため、リチウム二次電池正極活物質の粒度分布を制御する方法が検討されている。例えば、粒度分布が狭い粒子によって構成される正極活物質を用いると、サイクル特性等の電池特性に優れるリチウム二次電池を提供できることが知られている。
 このような技術として、特許文献1には、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.60以下を満たす非水系電解質二次電池用正極活物質が記載されている。特許文献1は、このような非水系電解質二次電池用正極活物質を用いた二次電池は、高容量で熱的安全性が高く、高出力であることを開示している。
JP-A-2015-43335
 リチウム二次電池正極活物質と電解液が接触すると、電解液が分解してガスが発生することがある。発生したガスは電池の膨れの原因となり、電池の寿命を短くする要因となる。電池膨れを抑制し、従来の電池よりもより長寿命の電池を製造する観点から、リチウム二次電池正極活物質とその原料である前駆体には改良の余地があった。
 本発明は上記事情に鑑みてなされたものであって、電池膨れを抑制し、より長寿命の電池を製造できるリチウム二次電池正極活物質用前駆体、およびリチウム二次電池正極活物質の製造方法を提供することを目的とする。
 本発明は下記の[1]~[4]を包含する。
[1]少なくともニッケル原子を含むリチウム二次電池正極活物質用前駆体であって、レーザー回折式粒度分布測定によって得られる体積基準の累積粒度分布曲線において、小粒子側からの累積体積割合が10%となる粒子径(μm)をD10、30%となる粒子径(μm)をD30、50%となる粒子径(μm)をD50、70%となる粒子径(μm)をD70、90%となる粒子径(μm)をD90としたときに、前記D10、前記D30、前記D50、前記D70、及び前記D90が下記(1)~(3)を満たす、リチウム二次電池正極活物質用前駆体。
(1)(D50-D10)/D30≦0.6
(2)(D90-D50)/D70≦0.6
(3)0.90≦[(D50-D10)/D30]/[(D90-D50)/D70]≦1.10
[2]下記組成式(A)で表される、[1]に記載のリチウム二次電池正極活物質用前駆体。
    Ni1-x-yCo(OH)2-α  ・・・組成式(A)
(組成式(A)中、0≦x≦0.45、0≦y≦0.45、0≦z≦3、-0.5≦α≦2であり、MはMg、Ca、Sr、Ba、Zn、B、Al、Mn、Ga、Ti、Zr、Ge、Fe、Cu、Cr、V、W、Mo、Sc、Y、Nb、La、Ta、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選ばれる1種以上の金属元素である。)
[3]前記D50の値は10μm未満である、[1]又は[2]に記載のリチウム二次電池正極活物質用前駆体。
[4][1]~[3]のいずれか1つに記載のリチウム二次電池正極活物質用前駆体とリチウム化合物とを混合し、得られた混合物を焼成する工程を含む、リチウム二次電池正極活物質の製造方法。
 本発明によれば、電池膨れを抑制し、従来の電池よりもより長寿命の電池を製造できるリチウム二次電池正極活物質用前駆体、およびリチウム二次電池正極活物質の製造方法を提供することができる。
リチウム二次電池の一例を示す概略構成図である。 リチウム二次電池の一例を示す概略構成図である。 本発明の前駆体を用いて製造したリチウム二次電池正極活物質の電極内の状態を説明する模式図である。 本発明ではない前駆体を用いて製造したリチウム二次電池正極活物質の電極内の状態を説明する模式図である。 液体サイクロン分級装置の模式図である。 全固体リチウムイオン二次電池が備える積層体を示す模式図である。 全固体リチウムイオン二次電池の全体構成を示す模式図である。
<リチウム二次電池正極活物質用前駆体>
 本実施形態は、少なくともニッケル原子を含むリチウム二次電池正極活物質用前駆体である。以下、「リチウム二次電池正極活物質用前駆体」を「前駆体」と記載する場合があり、「リチウム二次電池正極活物質」を「Cathode Active Material for lithium secondary batteries」の略称として「CAM」と記載する場合がある。
 前駆体を、リチウム化合物と混合して焼成することにより、CAMを製造することができる。
 本実施形態の一つの態様において、前駆体は一次粒子と一次粒子の凝集体である二次粒子と、から構成される。
 本実施形態の一つの態様において、前駆体は粉末である。
 前駆体は、レーザー回折式粒度分布測定によって得られる体積基準の累積粒度分布曲線において、小粒子側からの累積体積割合が10%となる粒子径(μm)をD10、30%となる粒子径(μm)をD30、50%となる粒子径(μm)をD50、70%となる粒子径(μm)をD70、90%となる粒子径(μm)をD90としたときに、前記D10、前記D30、前記D50、前記D70、及び前記D90が、下記(1)~(3)を満たす。
(1)(D50-D10)/D30≦0.6
(2)(D90-D50)/D70≦0.6
(3)0.90≦[(D50-D10)/D30]/[(D90-D50)/D70]≦1.10
[粒度分布の測定方法]
 前駆体の累積体積粒度分布は、レーザー回折散乱法によって測定される。
 測定方法としては、例えば、まず、粉末状の前駆体を分散媒に投入し撹拌することで、前駆体の分散液を得る。次にレーザー回折式粒度分布測定装置を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得る。
 分散媒としては、例えばイオン交換水が使用できる。また、分散剤としては、例えば、20質量%ヘキサメタリン酸ナトリウム水溶液が使用できる。
 レーザー回折式粒度分布測定装置としては、例えば、株式会社堀場製作所製LA950が使用できる。
 測定の際の透過率が85±3%となる態様で粉末状の前駆体を投入することが好ましい。
 上述の方法により得られた体積基準の累積粒度分布曲線において、小粒子側からの累積体積割合が10%となる粒子径(μm)をD10、30%となる粒子径(μm)をD30、50%となる粒子径(μm)をD50、70%となる粒子径(μm)をD70、90%となる粒子径(μm)をD90とする。なお、本明細書において、「粒子径」とは、二次粒子径を指す。
 D10、D30、及びD50は、下記の(1)を満たす。
(1)(D50-D10)/D30≦0.6
 (1)を満たす前駆体は、D50よりも小さい粒子径である複数の粒子において、複数の粒子間の粒子径のばらつきが小さいことを意味する。
 (D50-D10)/D30の値は、0.55以下が好ましく、0.5以下がより好ましく、0.48以下がさらに好ましい。
 (D50-D10)/D30の値の下限値は、例えば0.1以上、0.2以上、0.3以上が挙げられる。
 (D50-D10)/D30の値の上限値及び下限値は、任意に組み合わせることができる。
 上限値及び下限値の組み合わせの例を以下に示す。
 0.1≦(D50-D10)/D30≦0.55
 0.2≦(D50-D10)/D30≦0.5
 0.3≦(D50-D10)/D30≦0.48
 D50、D70、及びD90は、下記の(2)を満たす。
(2)(D90-D50)/D70≦0.6
 (2)を満たす前駆体は、D50よりも大きい粒子径である複数の粒子において、複数の粒子間の粒子径のばらつきが小さいことを意味する。
 (D90-D50)/D70の値は、0.55以下が好ましく、0.5以下がより好ましく、0.48以下がさらに好ましい。
 (D90-D50)/D70の値の下限値は、例えば0.1以上、0.2以上、0.3以上が挙げられる。
 (D90-D50)/D70の値の上限値及び下限値は、任意に組み合わせることができる。
 上限値及び下限値の組み合わせの例を以下に示す。
 0.1≦(D90-D50)/D70≦0.55
 0.2≦(D90-D50)/D70≦0.5
 0.3≦(D90-D50)/D70≦0.48
 (1)及び(2)を満たす前駆体は、累積粒度分布曲線において、ピークの幅が狭い粒度分布であることを意味する。
 前駆体は、下記(3)を満たす。
(3)0.90≦[(D50-D10)/D30]/[(D90-D50)/D70]≦1.10
 (3)は、下記(3)-1、(3)-2又は(3)-3であることが好ましい。
(3)-1 0.95≦[(D50-D10)/D30]/[(D90-D50)/D70]≦1.09
(3)-2 0.96≦[(D50-D10)/D30]/[(D90-D50)/D70]≦1.08
(3)-3 0.97≦[(D50-D10)/D30]/[(D90-D50)/D70]≦1.07
 (1)~(3)を満たす前駆体を原料として用いて製造したCAMを用いると、CAMの粒子の充填密度がより均一な電極を製造することができる。このことについて、図2A及び図2Bを参照して説明する。
 図2Aは、本実施形態の前駆体を原料に用いて製造した正極活物質50から得られる電極の内部の状態を説明する模式図である。領域S1及び領域S2において、一定体積の範囲に存在する正極活物質50の量は同様である。すなわち、電極内における一定体積中に存在する正極活物質50の存在量が均一である。
 一方、図2Bは、本発明ではない前駆体を原料に用いて製造した正極活物質51から得られる電極の内部の状態を説明する模式図である。領域S3及び領域S4において、一定体積の範囲に存在する正極活物質51の量のばらつきが大きくなる。すなわち、電極内における一定体積中に存在する正極活物質50の存在量が不均一である。
 図2Aのように、電極内における一定体積中に存在するCAMの存在量が均一である場合、得られる電極は、電池を充電又は放電した際に電極内にかかる電圧が均一になりやすい。このような電極は局所的に強い電圧がかかりにくく、電解液の分解に起因するガスが発生しにくい。このため電池膨れを抑制でき、長寿命の電池を得ることができる。
 一方、図2Bのように、電極内における一定体積中に存在するCAMの存在量が不均一である場合、得られる電極は、電池を充電又は放電した際に電極内にかかる電圧がばらつきやすい。このような電極では局所的に強い電圧がかかりやすく、電解液の分解に起因するガスが発生しやすい。
・組成式(A)
 前駆体は、Niと、Co及び後述の元素Mからなる群より選ばれる少なくとも1種を含むことが好ましい。前駆体としては、例えば、NiとCoを含む化合物、NiとMn及びAlからなる群より選ばれる1種以上の金属元素とを含む化合物、NiとCoとMnを含む化合物、NiとCoとAlを含む化合物等が挙げられる。前駆体は、下記組成式(A)で表されることが好ましい。前駆体は、金属複合酸化物又は金属複合水酸化物であることが好ましい。
    Ni1-x-yCo(OH)2-α  ・・・組成式(A)
(組成式(A)中、0≦x≦0.45、0≦y≦0.45、0≦z≦3、-0.5≦α≦2であり、MはMg、Ca、Sr、Ba、Zn、B、Al、Mn、Ga、Ti、Zr、Ge、Fe、Cu、Cr、V、W、Mo、Sc、Y、Nb、La、Ta、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選ばれる1種以上の金属元素である。)
・・x
 xは、0.01以上が好ましく、0.02以上がより好ましく、0.03以上がさらに好ましい。
 またxは、0.44以下が好ましく、0.42以下がより好ましく、0.40以下がさらに好ましい。
 xの上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例として、xは、0.01≦x≦0.44を満たすことが好ましく、0.02≦x≦0.42を満たすことがより好ましく、0.03≦x≦0.40を満たすことがさらに好ましい。
・・y
 yは、0.01以上が好ましく、0.02以上がより好ましく、0.03以上がさらに好ましい。
 またyは、0.44以下が好ましく、0.42以下がより好ましく、0.40以下がさらに好ましい。
 yの上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例としては、yは、0.01≦y≦0.44が好ましく、0.02≦y≦0.42がより好ましく、0.03≦y≦0.40がさらに好ましい。
・・z
 zは、0.1以上が好ましく、0.2以上がより好ましく、0.3以上がさらに好ましい。
 またzは、2.9以下が好ましく、2.8以下がより好ましく、2.7以下がさらに好ましい。
 zの上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例として、zは、0.1≦z≦2.9を満たすことが好ましく、0.2≦z≦2.8を満たすことがより好ましく、0.3≦z≦2.7を満たすことがさらに好ましい。
・・α
 αは、-0.45以上が好ましく、-0.4以上がより好ましく、-0.35以上がさらに好ましい。
 またαは、1.8以下が好ましく、1.6以下がより好ましく、1.4以下がさらに好ましい。
 αの上限値及び下限値は任意に組みわせることができる。
 組み合わせの例として、αは、-0.45≦α≦1.8を満たすことが好ましく、-0.4≦α≦1.6を満たすことがより好ましく、-0.35≦α≦1.4を満たすことがさらに好ましい。
・・x+y
 x+yは、0を超えることが好ましく、0.05以上0.70以下がより好ましく、0.10以上0.50以下がさらに好ましい。
・・M
 組成式(A)中、MはZr、Al、及びMnからなる群より選ばれる1種以上の金属元素が好ましい。
[組成分析]
 前駆体の組成分析は、前駆体の粉末を塩酸に溶解させた後、ICP発光分光分析装置を用いて測定できる。
 ICP発光分光分析装置としては、例えば、株式会社パーキンエルマー製、Optima7300が使用できる。
 前駆体は、D50の値が10μm未満であることが好ましく、9μm以下であることがより好ましく、8μm以下であることがさらに好ましい。D50の値は1μmを超えることが好ましく、2μm以上であることがより好ましく、2.0μm以上であることがさらに好ましく、3μm以上であることがさらにいっそう好ましい。
 前駆体のD50が上記上限値未満であると、後の焼成工程においてリチウム化合物と前駆体とが均一に反応し、前駆体の粒度分布と同じCAMが得られやすい。このようなCAMを用いると、より電池膨れを抑制したリチウム二次電池が得られやすい。
 D50の値の上限値及び下限値は任意に組み合わせることができる。
 上限値及び下限値の組み合わせの例を以下に示す。
 1μm<D50<10μm
 2μm≦D50≦9μm
 3μm≦D50≦8μm
<前駆体の製造方法> 
 本実施形態の前駆体を製造する方法について説明する。
 前駆体を製造する工程は、少なくともニッケル原子を含む金属含有水溶液とアルカリ性水溶液とを、反応槽に供給して水酸化物含有スラリーを得るスラリー調製工程と、前記水酸化物含有スラリーを、液体サイクロン式分級装置を用いて分級する分級工程と、を備える。
 前駆体を製造する方法は、スラリー調製工程、分級工程、及び任意の還流工程をこの順で備えることが好ましい。以下、各工程について説明する。
[スラリー調製工程]
 スラリー調製工程は、少なくともニッケル原子を含む金属含有水溶液とアルカリ性水溶液とを、反応槽に供給して水酸化物含有スラリーを得る工程である。
 本工程では、少なくともニッケル原子を含む金属含有水溶液と、アルカリ性水溶液とを、攪拌しながらそれぞれ連続的に反応槽に供給して反応させ、水酸化物含有スラリーを得る。
 このとき、アンモニウムイオン供給体を含む水溶液を供給してもよい。
 以下、水酸化物含有スラリーとして、Ni、Co、及びAlを含む金属複合水酸化物(ニッケルコバルトアルミニウム金属複合水酸化物と称することがある。)を含有するスラリーを例に、本工程について説明する。
 まず共沈殿法、特にJP-A-2002-201028に記載された連続式共沈殿法により、ニッケル塩溶液、コバルト塩溶液、アルミニウム塩溶液、及び錯化剤を反応させ、Ni1-x-yCoAl(OH)で表される金属複合水酸化物を製造する。
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れか1種又は2種以上を使用することができる。
 上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト、及び酢酸コバルトのうちの何れか1種又は2種以上を使用することができる。
 上記アルミニウム塩溶液の溶質であるアルミニウム塩としては、例えば硫酸アルミニウムやアルミン酸ソーダ等が使用できる。
 なお、水酸化物含有スラリーとして、マンガンを含む金属複合水酸化物を含有するスラリーを製造する場合、マンガン塩溶液を用いる。この場合には、マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、塩化マンガン、及び酢酸マンガンのうちの何れか1種又は2種以上を使用することができる。
 以上の金属塩は、上記Ni1-x-yCoAl(OH)の組成比に対応する割合で用いる。すなわち、各金属塩は、ニッケル塩溶液の溶質におけるニッケル原子、コバルト塩溶液の溶質におけるコバルト原子、アルミニウム塩溶液の溶質におけるアルミニウム原子のモル比が、Ni1-x-yCoAl(OH)の組成比に対応して1-x-y:x:yとなる量を用いる。
 また、ニッケル塩溶液、コバルト塩溶液、及びアルミニウム塩溶液の溶媒は、水であることが好ましい。
 錯化剤は、水溶液中で、ニッケルイオン、コバルトイオン、及びアルミニウムイオンと錯体を形成可能な化合物である。錯化剤は、例えば、アンモニウムイオン供給体、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。
 アンモニウムイオン供給体としては、例えば水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等のアンモニウム塩が使用できる。
 スラリー調整工程において、錯化剤を用いる場合、ニッケル塩溶液、コバルト塩溶液、及びアルミニウム塩溶液及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩のモル数の合計に対するモル比が0より大きく2.0以下である。
 共沈殿法に際しては、ニッケル塩溶液、マンガン塩溶液、コバルト塩溶液、アルミニウム塩溶液及び錯化剤を含む混合液のpH値を調整するため、混合液のpHがアルカリ性から中性になる前に、混合液にアルカリ性水溶液を添加する。アルカリ性水溶液は、水酸化ナトリウム、水酸化カリウムが使用できる。
 なお、本明細書におけるpHの値は、混合液の温度が40℃の時に測定された値であると定義する。混合液のpHは、反応槽からサンプリングした混合液の温度が、40℃になったときに測定する。
 サンプリングした混合液の温度が40℃よりも低い場合には、混合液を加熱して40℃になったときにpHを測定する。
 サンプリングした混合液の温度が40℃よりも高い場合には、混合液を冷却して40℃になったときにpHを測定する。
 反応に際しては、反応槽の温度を、例えば20℃以上80℃以下、好ましくは30℃以上70℃以下の範囲内で制御する。
 また、反応に際しては、反応槽内のpH値を、例えばpH9以上pH13以下、好ましくはpH11以上pH13以下の範囲内で制御する。
 反応槽内の物質は、適宜撹拌して混合する。
 連続式共沈殿法で用いる反応槽は、形成された金属複合水酸化物を分離するために、オーバーフローさせるタイプの反応槽を用いることができる。
 反応槽内は不活性雰囲気であってもよい。不活性雰囲気であると、ニッケルよりも酸化されやすい元素が凝集してしまうことを抑制し、均一な金属複合水酸化物を得ることができる。
 また、反応槽内は酸素含有雰囲気または酸化剤存在下であってもよい。
 適度な量の酸素原子を有する酸素含有雰囲気であれば、反応槽内の不活性雰囲気を保つことができる。なお、反応槽内の雰囲気制御をガス種で行う場合、所定のガス種を反応槽内に通気するか、反応液を直接バブリングすればよい。
 酸化剤として、過酸化水素などの過酸化物、過マンガン酸塩などの過酸化物塩、過塩素酸塩、次亜塩素酸塩、硝酸、ハロゲン又はオゾンなどを使用できる。
 また、反応槽内の均一性を高めつつ、前駆体の結晶成長を促進するため、反応槽中に設置した撹拌翼により溶液を撹拌することが好ましい。攪拌翼の回転速度を調整することにより、前駆体の物性を制御することが出来る。攪拌速度は反応槽のサイズにも依存するが、一例をあげると、攪拌翼の回転速度は300rpm以上2000rpm以下であることが好ましい。
 上述の工程により、水酸化物含有スラリーとして、ニッケルコバルトアルミニウム金属複合水酸化物を含むスラリーが得られる。
[分級工程]
 本工程においては、上記スラリー調製工程で得られる水酸化物含有スラリーを、液体サイクロン式分級装置を用いて分級する。
 水酸化物含有スラリーは、連続的に反応槽から抜き出されてスラリー貯槽に貯められ、液体サイクロン式分級装置によって分級される。具体的には、図3の液体サイクロン式分級装置40において、符号Yに示す方向から送液された水酸化物含有スラリーに含まれる粒子のうち、目的の粒子径を有する粒子を含む水酸化物含有スラリーAは、テーパー部42を通って、液体サイクロン式分級装置40の下部より排出される。
 水酸化物含有スラリーA以外の粒子を含む水酸化物含有スラリーBは、符号Xに示す方向に沿って、液体サイクロン式分級装置40の上部より排出される。液体サイクロン式分級装置により、水酸化物含有スラリーAは回収され、水酸化物含有スラリーBは後の還流工程にて連続的に反応槽に還流される。
 図3に液体サイクロン式分級装置40の模式図を示す。液体サイクロン式分級装置40は、円筒部41と、テーパー部42とを備える。
 まず、図3の符号Yに示す方向から水酸化物含有スラリーが送液され、液体サイクロン式分級装置に水酸化物含有スラリーが導入される。その後、水酸化物含有スラリーは回転運動を起こして遠心力が働き、水酸化物含有スラリーに含まれる粒子の粒子径に応じて粒子が分級される。
 遠心力により、粒子径が小さい粒子は渦の中心部に集まり、中心部に発生する上昇流(図3中、破線に示す矢印)に乗って符号Xに示す方向に排出される。
 粒子径が大きい粒子は渦の外側に集まり、外壁部に発生する下降流(図3中、実線に示す矢印)に乗って符号Zに示す方向に排出される。
 液体サイクロン式分級装置40のテーパー部42のテーパー角θは、10°以上60°以下であることが好ましい。
 テーパー部42のテーパー角θが上記下限値以上である場合、水酸化物含有スラリーに含まれる粒子に対して十分な遠心力が加わり、分級効率が上がりやすく、上記(1)~(3)を満たす前駆体が得られやすい。
 具体的には、液体サイクロン式分級装置のテーパー角θを大きくすると、(D50-D10)/D30の値は小さくなりやすく、(D90-D50)/D70の値は小さくなりやすく、[(D50-D10)/D30]/[(D50-D10)/D30]の値は1に近くなりやすくなる。
 テーパー部42のテーパー角θが上記上限値以下である場合、テーパー部42からの排出量を高いまま維持できる。このため、液体サイクロン式分級装置40内に打ち込まれた水酸化物含有スラリーに含まれる粒子数が増大しにくく、高い分級効率を維持したまま、生産効率を上げることができる。
 液体サイクロン式分級装置のスラリー送液流速は、0.6m/秒以上1.5m/秒以下とすることが好ましい。スラリー送液流速とは、符号Yに示す方向から送液する際の流速の実測値を指す。
 液体サイクロン式分級装置のスラリー送液流速が上記下限値以上の場合、水酸化物含有スラリーに含まれる粒子に対して十分な遠心力が加わり、分級効率が上がりやすく、上記(1)~(3)を満たす前駆体が得られやすい。
 具体的には、液体サイクロン式分級装置のスラリー送液流速を大きくすると、(D50-D10)/D30の値は小さくなりやすく、(D90-D50)/D70の値は小さくなりやすく、[(D50-D10)/D30]/[(D50-D10)/D30]の値は1に近くなりやすくなる。
 また、テーパー部42から粒子が多く排出され、前駆体の生産効率を上げることができる。
 液体サイクロン式分級装置のスラリー送液流速が上記上限値以下の場合、水酸化物含有スラリーに含まれる粒子に過剰に強い遠心力が加わりにくく、目的としない小さい粒子径の粒子がテーパー部42から排出されにくくなるため、分級効率が上がりやすく、上記(1)~(3)を満たす前駆体が得られやすい。
 分級工程を実施し、さらにテーパー角θと、スラリー送液流速を上記の範囲とすることにより、前述の(1)~(3)を満たす前駆体を得ることができる。
[還流工程]
 還流工程は、分級工程において、液体サイクロン式分級装置によって分級された水酸化物含有スラリーBを反応槽内に戻す(還流する)工程である。還流方法は、特に限定されることなく公知の手段を用いることができる。たとえば、分級後の水酸化物含有スラリーBをそのまま反応槽に戻す場合にはポンプにより反応槽へ戻せばよい。
 分級工程、還流工程及び反応槽内での粒子成長を繰り返すことにより、水酸化物含有スラリーBに含まれる粒子を、目的の粒子径に達するまで成長させ続けることができ、上記(1)~(3)を満たす前駆体が得られやすくなる。
 なお、還流速度、すなわち、水酸化物含有スラリーBを反応槽に戻す速度は、金属含有水溶液やアンモニウムイオン供給体を含む水溶液などの供給速度に応じて調整すればよい。
[脱水工程]
 以上の反応後、得られた水酸化物含有スラリーを洗浄した後、乾燥し、前駆体としてのニッケルコバルトアルミニウム金属複合水酸化物が得られる。
 前駆体を単離する際には、水酸化物含有スラリーを遠心分離や吸引ろ過などで脱水する方法が好ましい。
 脱水により得られた前駆体は、水またはアルカリが含まれる洗浄液で洗浄することが好ましい。本実施形態においては、アルカリが含まれる洗浄液で洗浄することが好ましく、水酸化ナトリウム溶液で洗浄することがより好ましい。
[乾燥工程]
 上記脱水工程によって得られた前駆体は、大気雰囲気下、105℃以上200℃以下の条件で、1時間以上20時間以下、乾燥させる。
 なお、上記の例では、前駆体として金属複合水酸化物を製造しているが、金属複合酸化物を調製してもよい。
[任意の加熱工程]
 前駆体として金属複合酸化物を製造する場合には、得られた金属複合水酸化物を、酸素含有雰囲気下、300℃以上900℃以下の温度範囲で加熱する工程を有することが好ましい。上記温度範囲で金属複合水酸化物を加熱することで、金属複合水酸化物が酸化し、金属複合酸化物を得ることができる。上記加熱工程は、1時間以上20時間以下で実施することが好ましい。
 上記加熱工程における加熱温度は、350℃以上800℃以下が好ましく、400℃以上700℃以下がより好ましい。加熱温度が上記下限値以上であると、得られる前駆体中に残り得る金属複合水酸化物の量を少なくすることができる。加熱温度が上記上限値以下であると、前駆体の粒子同士の焼結を抑制し、粒度分布が(3)を満たす前駆体を得ることができる。
<CAMの製造方法>
 CAMの製造方法は、前記<前駆体の製造方法>によって得られた前駆体と、リチウム化合物と混合し、混合物を得る混合工程と、得られた混合物を焼成する焼成工程とを有する。
[混合工程]
 本工程では、前駆体と、リチウム化合物とを混合し、混合物を得る。
・リチウム化合物
 リチウム化合物は、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、酸化リチウム、塩化リチウム、フッ化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。これらの中では、水酸化リチウム及び炭酸リチウムのいずれか一方又は両方が好ましい。
 前駆体と、リチウム化合物との混合方法について説明する。
 前駆体と、リチウム化合物とを、最終目的物の組成比を勘案して混合する。例えば、ニッケルコバルトアルミニウム金属複合水酸化物を用いる場合、リチウム化合物と当該金属複合水酸化物は、LiNi1-x-yCoAlで表されるリチウム-ニッケルコバルトアルミニウム複合酸化物の組成比に対応する割合で用いられる。
 また、リチウムが過剰(含有モル比が1超)なリチウム金属複合酸化物を製造する場合には、リチウム化合物に含まれるLiと、金属複合水酸化物に含まれる金属元素とのモル比が1を超える比率となる割合で混合する。
[焼成工程]
 ニッケルコバルトアルミニウム金属複合水酸化物とリチウム化合物との混合物を焼成することによって、リチウム-ニッケルコバルトアルミニウム複合酸化物が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。
 不活性溶融剤の存在下で混合物の焼成を行ってもよい。不活性溶融剤の存在下で焼成を行うことにより、混合物の反応を促進させることができる。不活性溶融剤は、焼成後の正極活物質に残留していてもよいし、焼成後に水やアルコールで洗浄すること等により除去されていてもよい。また、焼成後のCAMは水やアルコールを用いて洗浄することが好ましい。
 焼成における保持温度を調整することにより、得られるCAMの粒子径を制御できる。
 焼成工程は、1回のみの焼成であってもよく、複数回の焼成段階を有していてもよい。
 複数回の焼成段階を有する場合、最も高い温度で焼成する工程を本焼成と記載する。本焼成の前には、本焼成よりも低い温度で焼成する仮焼成を行ってもよい。また、本焼成の後には本焼成よりも低い温度で焼成する後焼成を行ってもよい。
 本焼成の焼成温度(最高保持温度)は、CAMの粒子の成長を促進させる観点から、600℃以上が好ましく、700℃以上がより好ましく、800℃以上が特に好ましい。また、CAMの粒子にクラックが発生しにくくし、CAMの粒子の強度を維持する観点から、1200℃以下が好ましく、1100℃以下がより好ましく、1000℃以下が特に好ましい。
 本焼成の最高保持温度の上限値及び下限値は任意に組みわせることができる。
 組み合わせの例としては、600℃以上1200℃以下、700℃以上1100℃以下、800℃以上1000℃以下が挙げられる。
 仮焼成又は後焼成の焼成温度は、本焼成の焼成温度よりも低ければよく、例えば350℃以上700℃以下の範囲が挙げられる。
 焼成における保持温度は、用いる遷移金属元素の種類、沈殿剤、不活性溶融剤の種類、量に応じて適宜調整すればよい。
 本実施形態においては、保持温度の設定は、後述する不活性溶融剤の融点を考慮すればよく、[不活性溶融剤の融点-200℃]以上[不活性溶融剤の融点+200℃]以下の範囲で行うことが好ましい。
 また、保持温度で保持する時間は、0.1時間以上20時間以下が挙げられ、0.5時間以上10時間以下が好ましい。保持温度までの昇温速度は、通常50℃/時間以上400℃/時間以下であり、保持温度から室温までの降温速度は、通常10℃/時間以上400℃/時間以下である。また、焼成の雰囲気としては、大気、酸素、窒素、アルゴン又はこれらの混合ガスを用いることができる。
 焼成工程後、適宜粉砕および篩別され、正極活物質が得られる。
 本実施形態に使用することができる不活性溶融剤は、焼成の際に混合物と反応し難いものであれば特に限定されない。本実施形態においては、Na、K、Rb、Cs、Ca、Mg、Sr及びBaからなる群より選ばれる1種以上の元素(以下、「A」と称する。)のフッ化物、Aの塩化物、Aの炭酸塩、Aの硫酸塩、Aの硝酸塩、Aのリン酸塩、Aの水酸化物、Aのモリブデン酸塩及びAのタングステン酸塩からなる群より選ばれる少なくとも1つが挙げられる。具体的な化合物としては、JP6734491Bに記載の不活性溶融剤が挙げられる。
 焼成時の不活性溶融剤の存在量は適宜選択すればよい。一例を挙げると、焼成時の不活性溶融剤の存在量はリチウム化合物100質量部に対して0.1質量部以上であることが好ましく、1質量部以上であることがより好ましい。 また、結晶の成長を更に促進させる必要がある場合、上記に挙げた不活性溶融剤以外の不活性溶融剤を併せて用いてもよい。この場合に用いる不活性溶融剤としては、NHCl、NHFなどのアンモニウム塩等を挙げることができる。
<リチウム二次電池正極活物質>
 CAMは、前述した前駆体を原料に用いて、前記<CAMの製造方法>により得られる。CAMを用いると、より電池膨れを抑制したリチウム二次電池が得られやすい。
 また、CAMは、D50の値が10μm未満となりやすい。
<リチウム二次電池>
 次いで、リチウム二次電池の構成を説明しながら、上述の方法によって製造されるCAMを用いた正極、およびこの正極を有するリチウム二次電池について説明する。
 正極を製造する時に用いるCAMは、前記本実施形態のCAMからなることが好ましいが、本発明の効果を損なわない範囲で前記本実施形態のCAMとは異なるCAMを含有していてもよい。
 リチウム二次電池の一例は、正極および負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図1A、図1Bは、リチウム二次電池の一例を示す模式図である。円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、および一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することで、電極群4とする。
 次いで、図1Bに示すように、電池缶5に電極群4および不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7および封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(又はシート型)電池を例示することができる。
 以下、各構成について順に説明する。
(正極)
 正極は、まずCAM、導電材およびバインダーを含む正極合剤を調製し、正極合剤を正極集電体に担持させることで製造することができる。
(導電材)
 正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。
 正極合剤中の導電材の割合は、CAM100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
(バインダー)
 正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリイミド樹脂;ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレンなどのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;WO2019/098384A1またはUS2020/0274158A1に記載の樹脂を挙げることができる。
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂およびポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力および正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
 正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N-ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法および静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 リチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、および負極活物質単独からなる電極を挙げることができる。
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
 負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維および有機高分子化合物焼成体を挙げることができる。
 負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;LiTi12、LiVOなどのリチウムとチタン又はバナジウムとを含有する複合金属酸化物;を挙げることができる。
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属およびスズ金属などを挙げることができる。負極活物質として使用可能な材料として、WO2019/098384A1またはUS2020/0274158A1に記載の材料を用いてもよい。
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース(以下、CMCということがある。)、スチレンブタジエンゴム(以下、SBRということがある。)、ポリエチレンおよびポリプロピレンを挙げることができる。
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
 このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
 リチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。また、JP-A-2000-030686やUS20090111025A1に記載のセパレータを用いてもよい。
 セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。
 また、セパレータの空孔率は、好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。
(電解液)
 リチウム二次電池が有する電解液は、電解質および有機溶媒を含有する。
 電解液に含まれる電解質としては、LiClO、LiPF、などのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。また、WO2019/098384A1またはUS2020/0274158A1に記載の電解質を用いてもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCFおよびLiC(SOCFからなる群から選ばれる少なくとも1種を含むものを用いることが好ましい。
 また電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、WO2019/098384A1またはUS2020/0274158A1に記載の有機溶媒を用いることができる。
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましく、環状カーボネートと非環状カーボネートとの混合溶媒および環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒が好ましい。
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩およびフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。
 また、以上のような構成の正極は、上述した構成のCAMを有するため、リチウム二次電池の電池膨れ量を抑制できる。
<全固体リチウムイオン二次電池>
 次いで、全固体リチウムイオン二次電池の構成を説明しながら、本実施形態によって製造されるリチウム二次電池正極活物質を用いた正極、及びこの正極を有する全固体リチウムイオン二次電池について説明する。
 図4及び5は、全固体リチウムイオン二次電池の一例を示す模式図である。図4は、全固体リチウムイオン二次電池が備える積層体を示す模式図である。図5は、全固体リチウムイオン二次電池の全体構成を示す模式図である。
 全固体リチウムイオン二次電池1000は、正極110と、負極120と、固体電解質層130とを有する積層体100と、積層体100を収容する外装体200と、を有する。また、全固体リチウム二次電池1000は、集電体の両側に正極活物質と負極活物質とを配置したバイポーラ構造であってもよい。バイポーラ構造の具体例として、例えば、JP-A-2004-95400に記載される構造が挙げられる。
 各部材を構成する材料については、後述する。
 積層体100は、正極集電体112に接続される外部端子113と、負極集電体122に接続される外部端子123と、を有していてもよい。
 積層体100において、正極110と負極120とは、互いに短絡しないように固体電解質層130を挟持している。その他、全固体リチウムイオン二次電池1000は、正極110と負極120との間に、従来の液系リチウムイオン二次電池で用いられるようなセパレータを有し、正極110と負極120との短絡を防止していてもよい。
 全固体リチウムイオン二次電池1000は、積層体100と外装体200とを絶縁する不図示のインシュレーターや、外装体200の開口部200aを封止する不図示の封止体を有する。
 外装体200は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼などの耐食性の高い金属材料を成形した容器を用いることができる。また、少なくとも一方の面に耐食加工を施したラミネートフィルムを袋状に加工した容器を用いることもできる。
 全固体リチウムイオン二次電池1000の形状としては、例えば、コイン型、ボタン型、ペーパー型(又はシート型)、円筒型、角型などの形状を挙げることができる。
 全固体リチウムイオン二次電池1000は、積層体100を1つ有することとして図示しているが、これに限らない。全固体リチウムイオン二次電池1000は、積層体100を単位セルとし、外装体200の内部に複数の単位セル(積層体100)を封じた構成であってもよい。
 以下、各構成について順に説明する。
(正極)
 正極110は、正極活物質層111と正極集電体112とを有している。
 正極活物質層111は、上述した本発明の一態様であるリチウム二次電池正極活物質を含む。また、正極活物質層111は、固体電解質、導電材、バインダーを含むこととしてもよい。
(固体電解質)
 正極活物質層111が有してもよい固体電解質としては、リチウムイオン伝導性を有し、公知の全固体電池に用いられる固体電解質を採用することができる。このような固体電解質としては、無機電解質、有機電解質を挙げることができる。無機電解質としては、酸化物系固体電解質、硫化物系固体電解質、水素化物系固体電解質を挙げることができる。有機電解質としては、ポリマー系固体電解質を挙げることができる。各電解質としては、WO2020/208872A1、US2016/0233510A1、US2012/0251871A1、US2018/0159169A1に記載の化合物が挙げられ、例えば、以下の化合物が挙げられる。
 本実施形態においては、酸化物系固体電解質、又は硫化物系固体電解質を用いることが好ましく、酸化物系固体電解質を用いることがより好ましい。
(酸化物系固体電解質)
 酸化物系固体電解質としては、例えば、ペロブスカイト型酸化物、NASICON型酸化物、LISICON型酸化物、ガーネット型酸化物などが挙げられる。各酸化物の具体例は、WO2020/208872A1、US2016/0233510A1、US2020/0259213A1に記載の化合物が挙げられる。
 ガーネット型酸化物としては、LiLaZr12(LLZ)などのLi-La-Zr系酸化物などが挙げられる。
 酸化物系固体電解質は、結晶性材料であってもよく、非晶質(アモルファス)材料であってもよい。非晶質(アモルファス)固体電解質として、例えばLiBO、Li、LiBOなどのLi-B-O化合物が挙げられる。酸化物系固体電解質は、非晶質材料が含まれることが好ましい。
(硫化物系固体電解質)
 硫化物系固体電解質としては、LiS-P系化合物、LiS-SiS系化合物、LiS-GeS系化合物、LiS-B系化合物、LiI-SiS-P系化合物、LiI-LiS-P系化合物、LiI-LiPO-P系化合物、Li10GeP12などを挙げることができる。
 なお、本明細書において、硫化物系固体電解質を指す「系化合物」という表現は、「系化合物」の前に記載した「LiS」「P」などの原料を主として含む固体電解質の総称として用いる。例えば、LiS-P系化合物には、LiSとPとを含み、さらに他の原料を含む固体電解質が含まれる。また、LiS-P系化合物には、LiSとPとの混合比を異ならせた固体電解質も含まれる。
 LiS-P系化合物としては、LiS-P、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P5-LiI-LiBrなどを挙げることができる。
 LiS-SiS系化合物としては、LiS-SiS、LiS-SiS-LiI、LiS-SiS-LiBr、LiS-SiS-LiCl、LiS-SiS-B-LiI、LiS-SiS-P-LiI、LiS-SiS-P-LiClなどを挙げることができる。
 LiS-GeS系化合物としては、LiS-GeS、LiS-GeS-Pなどを挙げることができる。
 硫化物系固体電解質は、結晶性材料であってもよく、非晶質(アモルファス)材料であってもよい。硫化物系固体電解質は、非晶質材料が含まれることが好ましい。
 固体電解質は、発明の効果を損なわない範囲において、2種以上を併用することができる。
(導電材及びバインダー)
 正極活物質層111が有してもよい導電材としては、上述の(導電材)で説明した材料を用いることができる。また、正極合剤中の導電材の割合についても同様に上述の(導電材)で説明した割合を適用することができる。また、正極が有してもよいバインダーとしては、上述の(バインダー)で説明した材料を用いることができる。
(正極集電体)
 正極110が有する正極集電体112としては、上述の(正極集電体)で説明した材料を用いることができる。
 正極集電体112に正極活物質層111を担持させる方法としては、正極集電体112上で正極活物質層111を加圧成型する方法が挙げられる。加圧成型には、冷間プレスや熱間プレスを用いることができる。
 また、有機溶媒を用いて正極活物質、固体電解質、導電材、バインダーの混合物をペースト化して正極合剤とし、得られる正極合剤を正極集電体112の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体112に正極活物質層111を担持させてもよい。
 また、有機溶媒を用いて正極活物質、固体電解質、導電材の混合物をペースト化して正極合剤とし、得られる正極合剤を正極集電体112の少なくとも一面側に塗布して乾燥させ、焼結することで、正極集電体112に正極活物質層111を担持させてもよい。
 正極合剤に用いることができる有機溶媒としては、上述の(正極集電体)で説明した正極合剤をペースト化する場合に用いることができる有機溶媒と同じものを用いることができる。
 正極合剤を正極集電体112へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極110を製造することができる。
(負極)
 負極120は、負極活物質層121と負極集電体122とを有している。負極活物質層121は、負極活物質を含む。また、負極活物質層121は、固体電解質、導電材を含むこととしてもよい。負極活物質、負極集電体、固体電解質、導電材、バインダーは、上述したものを用いることができる。
(固体電解質層)
 固体電解質層130は、上述の固体電解質を有している。
 固体電解質層130は、上述の正極110が有する正極活物質層111の表面に、無機物の固体電解質をスパッタリング法により堆積させることで形成することができる。
 また、固体電解質層130は、上述の正極110が有する正極活物質層111の表面に、固体電解質を含むペースト状の合剤を塗布し、乾燥させることで形成することができる。乾燥後、プレス成型し、さらに冷間等方圧加圧法(CIP)により加圧して固体電解質層130を形成してもよい。
 積層体100は、上述のように正極110上に設けられた固体電解質層130に対し、公知の方法を用いて、固体電解質層130の表面に負極電解質層121が接する態様で負極120を積層させることで製造することができる。これにより、固体電解質層130は、負極活物質層121と接触し、導通する。
 上述のように、得られた全固体リチウムイオン二次電池100は、正極110と負極120とが短絡しないように、固体電解質層130を正極110と負極120とを接触させて提供される。提供された全固体リチウムイオン電池100は、外部電源に接続し、正極110に負の電位、負極120に正の電位を印加することで充電される。
 さらに、充電された前記全固体リチウムイオン二次電池100は、正極110及び負極120に放電回路を接続し、放電回路に通電させることで放電する。
 以上のような構成の正極は、上述した構成のCAMを有するため、全固体リチウムイオン二次電池の電池膨れ量を抑制できる。
 次に、本発明を実施例によりさらに詳細に説明する。
<組成分析>
 後述の方法で製造される前駆体の組成分析は、上記[組成分析]に記載の方法により実施した。
<粒度分布の測定>
 前駆体の累積体積粒度分布は、上記[粒度分布の測定]に記載の方法により測定した。詳細な測定条件を下記表1に示す。得られたD10、D30、D50、D70、及びD90の値を用いて、(D50-D10)/D30、(D90-D50)/D70、及び[(D50-D10)/D30]/[(D90-D50)/D70]の値をそれぞれ算出した。
Figure JPOXMLDOC01-appb-T000001
<正極の作製>
 後述する製造方法で得られるCAMと導電材(アセチレンブラック)とバインダー(PVdF)とを、CAM:導電材:バインダー=92:5:3(質量比)の組成となる割合で加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、NMPを有機溶媒として用いた。
 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、正極を得た。
<負極の作製>
 次に、負極活物質として人造黒鉛(日立化成株式会社製MAGD)と、バインダーとしてCMC(第一工業薬製株式会社製)とSBR(日本エイアンドエル株式会社製)とを、負極活物質:CMC:SBR=98:1:1(質量比)の組成となる割合で加えて混練することにより、ペースト状の負極合剤を調製した。負極合剤の調製時には、溶媒としてイオン交換水を用いた。
 得られた負極合剤を、集電体となる厚さ12μmのCu箔に塗布して60℃で8時間真空乾燥を行い、負極を得た。
<リチウム二次電池(ラミネートセル)の作製>
 <正極の作製>で作製した正極を、アルミ箔面を下に向けてアルミラミネートフィルムに置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルム(厚み27μm))を置いた。
 次に、積層フィルムセパレータの上側に<負極の作製>で作製した負極を銅箔面を上にして置き、その上にアルミラミネートフィルムを置いた。さらに、電解液の注入部分を残してヒートシールした。
 その後、露点温度マイナス50℃以下の乾燥雰囲気のドライベンチ内に移し、真空注液機を用いて、電解液を1mL注入した。電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの16:10:74(体積比)混合液にビニレンカーボネートを1体積%加え、そこにLiPF6を1.3mol/lとなる割合で溶解したものを用いた。
 最後に、電解液注液部分をヒートシールし、ラミネートセルを作製した。
[電池膨れ量の測定]
 電池膨れ量は以下の方法で測定した。
 まず、上記のように作製したラミネートセルのフォーメーション後、0.2CAの電流値で2.5Vまで放電を実施したラミネートセルの体積をアルキメデス法で測定し、保存前の体積を測定した。
 その後、4.3Vまで充電し、60℃の恒温槽で7日間保存した。
 保存後、0.2CAの電流値で2.5Vまで放電を実施したラミネートセルの体積をアルキメデス法で測定し、保存後の体積を測定した。
 保存前後の体積差(cm)を、ラミネートセル中に存在する正極材量(g)で除し、正極材当たりの電池膨れ量(cm/g)とした。
 アルキメデス法は、自動比重計を用いて、ラミネートセルの空中重量と水中重量の差からラミネートセル全体の実体積を測定する方法である。
 ラミネートセルのフォーメーションは、以下条件で実施した。
 フォーメーション条件:試験温度25℃で0.1CAでSOC10%まで充電し、試験温度60℃で10時間放置し、その後、試験温度25℃で、0.1CAで4.3VまでCC-CV充電で電流が0.05CAになるまで充電を行った。さらに、0.2CAで2.5Vまで放電した後、0.2CAでの充放電を2サイクル実施した。
(実施例1)
・スラリー調整工程
 220φプロペラタイプの攪拌羽根を備えた攪拌機とオーバーフローパイプを備えた500L円筒形反応槽に水を入れ、次いでpHが12.4(溶液の温度が40℃のときの測定値)となるまで32質量%水酸化ナトリウム溶液を加え、ヒーターで温度を40℃に保持した。次いで、反応槽内に窒素ガスを5L/分の流量で連続的に吹き込み反応槽内の雰囲気を不活性雰囲気とした。
 硫酸ニッケル水溶液と硫酸コバルト水溶液とを、NiとCoとの原子比が92.8:7.2となる割合で混合して、混合原料液を調製し、混合原料液を一定速度にて反応槽に連続供給した。
 錯化剤として0.76mol/L硫酸アンモニウム溶液を用いて、アンモニア濃度が0.23mol/Lになる割合で、一定速度にて反応槽に連続供給した。
 次いで、54質量%の硫酸アルミニウム水溶液を、NiとCoとAlとの原子比が90:7:3となる割合で流量を調整して加えた。
 さらに、反応槽内の溶液のpHを12.4(溶液の温度が40℃のときの測定値)に維持するために、32質量%水酸化ナトリウムを断続的に加えた。
 上記反応によって得られたニッケルコバルトアルミニウム金属複合水酸化物含有スラリーをオーバーフローパイプによりスラリー貯槽に貯めた。
・分級工程
 次いで、スラリー貯槽に貯められたニッケルコバルトアルミニウム金属複合水酸化物含有スラリーを、図3に示すテーパー角θを16°にした湿式分級機液体サイクロン(村田工業株式会社製、T-10B-1型)内に、スラリー送液流速0.84m/秒で導入した。
 湿式分級機液体サイクロンの下部から排出されたニッケルコバルトアルミニウム金属複合水酸化物含有スラリーを分級して回収した。
・還流工程
 また、湿式分級機液体サイクロンの上部から排出されたニッケルコバルトアルミニウム金属複合水酸化物含有スラリーを反応槽に還流する作業を繰り返した。スラリー貯槽にあるニッケルコバルトアルミニウム金属複合水酸化物含有スラリーは、適宜脱水しながら反応槽に還流した。
 得られたニッケルコバルトアルミニウム金属複合水酸化物を洗浄して脱水した後、105℃で20時間、乾燥および篩別し、粒度分布測定と組成分析を行った。得られたニッケルコバルトアルミニウム金属複合水酸化物の組成式は、Ni90.2Co7.0Al2.8(OH)2.1であった。
 上記ニッケルコバルトアルミニウム金属複合水酸化物と水酸化リチウム粉末とをモル比でLi/(Ni+Co+Al)=1.15となる割合で秤量して混合し、混合物を得た。その後、得られた混合物を、酸素雰囲気下、760℃で5時間焼成した後、洗浄して脱水・乾燥することでCAMを得た。得られたCAMを用いてラミネートセルを作製し、電池膨れ量の測定の測定を行った。これらの結果を表2に示す。
(実施例2)
・スラリー調整工程
 220φプロペラタイプの攪拌羽根を備えた攪拌機とオーバーフローパイプを備えた500L円筒形反応槽に水を入れ、次いでpHが11.0(溶液の温度が40℃のときの測定値)となるまで32質量%水酸化ナトリウム溶液を加え、ヒーターで温度を60℃に保持した。次いで、反応槽内に窒素ガスを5L/分の流量で連続的に吹き込み反応槽内の雰囲気を不活性雰囲気とした。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、NiとCoとMnの原子比が88:9:3となる割合で混合して、混合原料液を調製し、混合原料液を一定速度にて反応槽に連続供給した。
 錯化剤として0.76mol/Lの硫酸アンモニウム溶液を用いて、アンモニア濃度が0.07mol/Lとなる割合で、一定速度にて反応槽に連続供給した。さらに、反応槽内の溶液のpHを11.0(溶液の温度が40℃のときの測定値)に維持するために、32質量%の水酸化ナトリウムを断続的に加えた。
 上記反応によって得られたニッケルコバルトマンガン金属複合水酸化物含有スラリーを、オーバーフローパイプよりスラリー貯槽に貯めた。
・分級工程
 次いで、スラリー貯槽に貯められたニッケルコバルトマンガン金属複合水酸化物含有スラリーを、湿式分級機液体サイクロン(村田工業株式会社製、T-10B-1型、テーパー角θ:16°)内に、液体サイクロン送液流速0.47m/秒で導入した。
 湿式分級機液体サイクロンの下部から排出されたニッケルコバルトマンガン金属複合水酸化物含有スラリーを分級して回収した。
・還流工程
 また、湿式分級機液体サイクロンの上部から排出されたニッケルコバルトマンガン金属複合水酸化物含有スラリーを反応槽に還流する作業を繰り返した。スラリー貯槽にあるニッケルコバルトマンガン金属複合水酸化物含有スラリーは、適宜脱水しながら反応槽に還流した。
 得られたニッケルコバルトマンガン金属複合水酸化物を洗浄して脱水した後、105℃で20時間、乾燥および篩別し、粒度分布測定と組成分析を行った。得られたニッケルコバルトマンガン金属複合水酸化物の組成式は、Ni88.3Co8.9Mn2.8(OH)2.0であった。
 上記ニッケルコバルトマンガン金属複合水酸化物を用いた以外は実施例1と同様にして得られたCAMを用いてラミネートセルを作製し、電池膨れ量の測定を行った。これらの結果を表2に示す。
(比較例1)
・スラリー調整工程
 220φプロペラタイプの攪拌羽根を備えた攪拌機とオーバーフローパイプを備えた500L円筒形反応槽に水を入れ、次いでpHが12.0(溶液の温度が40℃のときの測定値)となるまで32質量%水酸化ナトリウム溶液を加え、ヒーターで温度を40℃に保持した。
 次いで、反応槽内に窒素ガスを5L/分の流量で連続的に吹き込み反応槽内の雰囲気を不活性雰囲気とした。
 硫酸ニッケル水溶液と硫酸コバルト水溶液とを、NiとCoとの原子比が92.8:7.2となる割合に混合して、混合原料液を調製し、混合原料液を一定速度にて反応槽に連続供給した。
 錯化剤として0.76mol/Lの硫酸アンモニウム溶液を用いて、アンモニア濃度が0.23mol/Lになる割合で、一定速度にて反応槽に連続供給した。10.8質量%の硫酸アルミニウム水溶液を、NiとCoとAlとの原子比が90:7:3となる割合で流量を調整して加えた。
 さらに、反応槽内の溶液のpHを12.0(溶液の温度が40℃のときの測定値)に維持するために32質量%の水酸化ナトリウムを断続的に加えた。
 得られたニッケルコバルトアルミニウム金属複合水酸化物を洗浄して脱水した後、105℃で20時間、乾燥および篩別し、粒度分布測定と組成分析を行った。得られたニッケルコバルトアルミニウム金属複合水酸化物の組成式は、Ni90.1Co6.8Al3.1(OH)2.1であった。
 上記ニッケルコバルトアルミニウム金属複合水酸化物を用いた以外は実施例1と同様にして得られたCAMを用いてラミネートセルを作製し、電池膨れ量の測定を行った。これらの結果を表2に示す。
(比較例2)
 上記湿式分級機液体サイクロンのテーパー角を9°とし、送液流速を0.59m/秒に変更した以外は実施例1と同様にしてニッケルコバルトアルミニウム金属複合水酸化物を製造した。
 得られたニッケルコバルトアルミニウム金属複合水酸化物に対して、粒度分布測定と組成分析を行った。得られたニッケルコバルトアルミニウム金属複合水酸化物の組成式は、Ni90.0Co7.0Al3.0(OH)2.1であった。
 上記ニッケルコバルトアルミニウム金属複合水酸化物を用いた以外は実施例1と同様にして得られたCAMを用いてラミネートセルを作製し、電池膨れ量の測定を行った。これらの結果を表2に示す。
(比較例3)
・スラリー調整工程
 220φプロペラタイプの攪拌羽根を備えた攪拌機とオーバーフローパイプを備えた500L円筒形反応槽に水を入れ、次いでpHが12.6(溶液の温度が40℃のときの測定値)となるまで32質量%水酸化ナトリウム溶液を加え、ヒーターで温度を60℃に保持した。次いで、反応槽内に窒素ガスを5L/分の流量で連続的に吹き込み反応槽内の雰囲気を不活性雰囲気とした。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、NiとCoとMnの原子比が88:8:4となる割合に混合して、混合原料液を調製し、混合原料液を一定速度にて反応槽に連続供給した。
 錯化剤として0.76mol/Lの硫酸アンモニウム溶液を用いて、アンモニア濃度が0.23mol/Lとなる割合で、一定速度にて反応槽に連続供給した。さらに、反応槽内の溶液のpHを12.6(溶液の温度が40℃のときの測定値)に維持するために32質量%の水酸化ナトリウムを断続的に加えた。
 得られたニッケルコバルトマンガン金属複合水酸化物を洗浄して脱水した後、105℃で20時間、乾燥および篩別し、粒度分布測定と組成分析を行った。得られたニッケルコバルトマンガン金属複合水酸化物の組成式は、Ni88.3Co7.9Mn3.9(OH)2.0であった。
 上記ニッケルコバルトマンガン金属複合水酸化物を用いた以外は実施例1と同様にして得られたCAMを用いてラミネートセルを作製し、電池膨れ量の測定を行った。これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例の電池は、比較例よりも電池膨れ量が抑制されていた。このため、本発明を適用した前駆体を用いて製造したCAMを使用すると、より長寿命の電池が製造できることが確認された。
1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード、100…積層体、110…正極、111…正極活物質層、112…正極集電体、113…外部端子、120…負極、121…負極電解質層、122…負極集電体、123…外部端子、130…固体電解質層、200…外装体、200a…開口部、1000…全固体リチウムイオン二次電池

Claims (4)

  1.  少なくともニッケル原子を含むリチウム二次電池正極活物質用前駆体であって、レーザー回折式粒度分布測定によって得られる体積基準の累積粒度分布曲線において、小粒子側からの累積体積割合が10%となる粒子径(μm)をD10、30%となる粒子径(μm)をD30、50%となる粒子径(μm)をD50、70%となる粒子径(μm)をD70、90%となる粒子径(μm)をD90としたときに、前記D10、前記D30、前記D50、前記D70、及び前記D90が下記(1)~(3)を満たす、リチウム二次電池正極活物質用前駆体。
    (1)(D50-D10)/D30≦0.6
    (2)(D90-D50)/D70≦0.6
    (3)0.90≦[(D50-D10)/D30]/[(D90-D50)/D70]≦1.10
  2.  下記組成式(A)で表される、請求項1に記載のリチウム二次電池正極活物質用前駆体。
        Ni1-x-yCo(OH)2-α  ・・・組成式(A)
    (組成式(A)中、0≦x≦0.45、0≦y≦0.45、0≦z≦3、-0.5≦α≦2であり、MはMg、Ca、Sr、Ba、Zn、B、Al、Mn、Ga、Ti、Zr、Ge、Fe、Cu、Cr、V、W、Mo、Sc、Y、Nb、La、Ta、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選ばれる1種以上の金属元素である。)
  3.  前記D50の値は10μm未満である、請求項1又は2に記載のリチウム二次電池正極活物質用前駆体。
  4.  請求項1~3のいずれか1項に記載のリチウム二次電池正極活物質用前駆体とリチウム化合物とを混合し、得られた混合物を焼成する工程を含む、リチウム二次電池正極活物質の製造方法。
PCT/JP2021/022047 2020-06-29 2021-06-10 リチウム二次電池正極活物質用前駆体及びリチウム二次電池正極活物質の製造方法 WO2022004323A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/013,065 US20230295006A1 (en) 2020-06-29 2021-06-10 Precursor for lithium secondary battery positive electrode active material and method for producing lithium secondary battery positive electrode active material
EP21834692.2A EP4174988A1 (en) 2020-06-29 2021-06-10 Positive electrode active material precursor for lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
CN202180044024.5A CN115917788A (zh) 2020-06-29 2021-06-10 锂二次电池正极活性物质用前体及锂二次电池正极活性物质的制造方法
KR1020227038858A KR20230031817A (ko) 2020-06-29 2021-06-10 리튬 이차 전지 정극 활물질용 전구체 및 리튬 이차 전지 정극 활물질의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-111817 2020-06-29
JP2020111817A JP6964724B1 (ja) 2020-06-29 2020-06-29 リチウム二次電池正極活物質用前駆体及びリチウム二次電池正極活物質の製造方法

Publications (1)

Publication Number Publication Date
WO2022004323A1 true WO2022004323A1 (ja) 2022-01-06

Family

ID=78466203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022047 WO2022004323A1 (ja) 2020-06-29 2021-06-10 リチウム二次電池正極活物質用前駆体及びリチウム二次電池正極活物質の製造方法

Country Status (6)

Country Link
US (1) US20230295006A1 (ja)
EP (1) EP4174988A1 (ja)
JP (2) JP6964724B1 (ja)
KR (1) KR20230031817A (ja)
CN (1) CN115917788A (ja)
WO (1) WO2022004323A1 (ja)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434491B2 (ja) 1984-12-17 1992-06-08 Dynic Corp
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2004095400A (ja) 2002-08-30 2004-03-25 Nissan Motor Co Ltd バイポーラ電池とその制御方法
JP2008153197A (ja) * 2006-11-21 2008-07-03 Sumitomo Chemical Co Ltd 正極活物質用粉末および正極活物質
US20090111025A1 (en) 2004-12-22 2009-04-30 Lg Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
JP2012518871A (ja) * 2009-02-20 2012-08-16 ユミコア ソシエテ アノニム Li蓄電池内での高い安全性と高出力とを兼備する非均質な正電極材料
US20120251871A1 (en) 2011-03-29 2012-10-04 Tohoku University All-solid-state battery
JP2013232319A (ja) * 2012-04-27 2013-11-14 Sumitomo Chemical Co Ltd リチウム二次電池正極活物質の製造方法
US20160233510A1 (en) 2013-11-08 2016-08-11 Hitachi, Ltd. All-solid state battery, electrode for all-solid state battery, and method of manufacturing the same
JP2017033881A (ja) * 2015-08-05 2017-02-09 トヨタ自動車株式会社 リチウムイオン二次電池
US20180159169A1 (en) 2015-10-30 2018-06-07 Lg Chem, Ltd. Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
WO2019098384A1 (ja) 2017-11-20 2019-05-23 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2020111817A (ja) 2019-01-17 2020-07-27 株式会社神戸製鋼所 塊成物の造粒方法
US20200259213A1 (en) 2017-11-13 2020-08-13 Murata Manufacturing Co., Ltd. All-solid-state battery
WO2020208872A1 (ja) 2019-04-12 2020-10-15 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5811383B2 (ja) 2014-10-24 2015-11-11 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質と該正極活物質を用いた非水系電解質二次電池

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434491B2 (ja) 1984-12-17 1992-06-08 Dynic Corp
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2004095400A (ja) 2002-08-30 2004-03-25 Nissan Motor Co Ltd バイポーラ電池とその制御方法
US20090111025A1 (en) 2004-12-22 2009-04-30 Lg Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
JP2008153197A (ja) * 2006-11-21 2008-07-03 Sumitomo Chemical Co Ltd 正極活物質用粉末および正極活物質
JP2012518871A (ja) * 2009-02-20 2012-08-16 ユミコア ソシエテ アノニム Li蓄電池内での高い安全性と高出力とを兼備する非均質な正電極材料
US20120251871A1 (en) 2011-03-29 2012-10-04 Tohoku University All-solid-state battery
JP2013232319A (ja) * 2012-04-27 2013-11-14 Sumitomo Chemical Co Ltd リチウム二次電池正極活物質の製造方法
US20160233510A1 (en) 2013-11-08 2016-08-11 Hitachi, Ltd. All-solid state battery, electrode for all-solid state battery, and method of manufacturing the same
JP2017033881A (ja) * 2015-08-05 2017-02-09 トヨタ自動車株式会社 リチウムイオン二次電池
US20180159169A1 (en) 2015-10-30 2018-06-07 Lg Chem, Ltd. Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
US20200259213A1 (en) 2017-11-13 2020-08-13 Murata Manufacturing Co., Ltd. All-solid-state battery
WO2019098384A1 (ja) 2017-11-20 2019-05-23 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US20200274158A1 (en) 2017-11-20 2020-08-27 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2020111817A (ja) 2019-01-17 2020-07-27 株式会社神戸製鋼所 塊成物の造粒方法
WO2020208872A1 (ja) 2019-04-12 2020-10-15 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質

Also Published As

Publication number Publication date
EP4174988A1 (en) 2023-05-03
US20230295006A1 (en) 2023-09-21
CN115917788A (zh) 2023-04-04
JP2022013945A (ja) 2022-01-18
JP6964724B1 (ja) 2021-11-10
JP2022010981A (ja) 2022-01-17
KR20230031817A (ko) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2018079816A1 (ja) リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質の製造方法
WO2018110256A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018181530A1 (ja) リチウム金属複合酸化物の製造方法
WO2018181402A1 (ja) リチウムニッケル複合酸化物の製造方法
KR20100071950A (ko) 전극의 제조 방법 및 비수전해질 전지의 제조 방법
CN110366541B (zh) 锂复合金属氧化物的制造方法
CN115023831A (zh) 全固体锂离子电池用混合粉末、全固体锂离子电池用混合糊剂、电极及全固体锂离子电池
JP6930015B1 (ja) 前駆体、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022044720A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
KR20210096118A (ko) 리튬 이차 전지 정극 활물질용 전구체, 리튬 이차 전지 정극 활물질용 전구체의 제조 방법 및 리튬 복합 금속 화합물의 제조 방법
WO2022050311A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7157219B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
CN111788725A (zh) 锂金属复合氧化物、锂二次电池用正极活性物质、正极以及锂二次电池
WO2022004323A1 (ja) リチウム二次電池正極活物質用前駆体及びリチウム二次電池正極活物質の製造方法
JP7219802B1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022196376A1 (ja) 金属複合化合物、リチウム金属複合酸化物の製造方法及び金属複合化合物の製造方法
US20230022902A1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2021172509A1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7233402B2 (ja) リチウム二次電池正極活物質用前駆体、リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2021210524A1 (ja) リチウム二次電池用正極活物質粒子、リチウム二次電池用正極及びリチウム二次電池
CN109997259B (zh) 锂二次电池用正极活性物质、锂二次电池用正极和锂二次电池
JP2023101923A (ja) リチウム金属複合酸化物粉末、固体二次電池用正極活物質、固体二次電池用正極及び固体二次電池
JP2023085144A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021834692

Country of ref document: EP

Effective date: 20230130