JP2023101923A - リチウム金属複合酸化物粉末、固体二次電池用正極活物質、固体二次電池用正極及び固体二次電池 - Google Patents

リチウム金属複合酸化物粉末、固体二次電池用正極活物質、固体二次電池用正極及び固体二次電池 Download PDF

Info

Publication number
JP2023101923A
JP2023101923A JP2022002162A JP2022002162A JP2023101923A JP 2023101923 A JP2023101923 A JP 2023101923A JP 2022002162 A JP2022002162 A JP 2022002162A JP 2022002162 A JP2022002162 A JP 2022002162A JP 2023101923 A JP2023101923 A JP 2023101923A
Authority
JP
Japan
Prior art keywords
metal composite
composite oxide
lithium metal
secondary battery
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022002162A
Other languages
English (en)
Inventor
淳一 影浦
Junichi Kageura
力 村上
Tsutomu Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2022002162A priority Critical patent/JP2023101923A/ja
Publication of JP2023101923A publication Critical patent/JP2023101923A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】充放電に伴う抵抗の上昇が低い固体二次電池を得ることができるリチウム金属複合酸化物粉末、固体二次電池用正極活物質、固体電池用正極及び固体二次電池の提供。【解決手段】層状構造を有し、少なくともLiとMnと元素M1を含む固体二次電池に用いられるリチウム金属複合酸化物粉末であって、静的画像解析によって測定される、前記リチウム金属複合酸化物粉末の投影面積円相当径の体積基準の累積粒度分布において、小粒子側からの累積割合が50%、90%となる円相当径(μm)をそれぞれCD50、CD90としたとき、前記CD50以上前記CD90以下の範囲を満たす粒子の数平均包絡度が0.860以上0.980以下であり、組成式(1)を満たす、リチウム金属複合酸化物粉末。【選択図】なし

Description

本発明は、リチウム金属複合酸化物粉末、固体二次電池用正極活物質、固体二次電池用正極及び固体二次電池に関する。
リチウム二次電池には、有機溶媒に電解質を溶解させた電解液を使用する液系二次電池と、固体電解質を使用する固体二次電池がある。固体二次電池は、エネルギー密度を向上でき、設計の自由度が高い等のメリットがあるため開発が進んでいる。
一方で固体二次電池は、液系二次電池よりも電極活物質と固体電解質との界面抵抗が増加しやすいというデメリットがある。このため、固体二次電池に用いられる電極活物質の粒子形状は、固体二次電池の性能に影響を与える。
例えば特許文献1は、電池製造工程のプレス時に正極活物質が割れてしまうと、導電パスが途切れて出力低下を招くことから、プレスする際に割れにくい高強度な単粒子を含む全固体リチウムイオン電池用正極活物質を開示している。特許文献1は、単粒子の形状を粒子の包絡度から定義することを開示している。
特開2021-22547号公報
固体二次電池に用いられるリチウム金属複合酸化物粉末の粒子の形状を別の面から制御することで、固体二次電池の性能をさらに改善する余地がある。
本発明は上記事情に鑑みてなされたものであって、充放電サイクル試験後も、正極活物質と固体電解質との界面接合が良好に維持された低抵抗な固体二次電池を得ることができる固体二次電池用リチウム金属複合酸化物粉末、固体二次電池用正極活物質、固体電池用正極及び固体二次電池を提供することを目的とする。
本発明は以下の態様を包含する。
[1]層状構造を有し、少なくともLiとMnと元素M1を含む固体二次電池に用いられるリチウム金属複合酸化物粉末であって、静的画像解析によって測定される、前記リチウム金属複合酸化物粉末の投影面積円相当径の体積基準の累積粒度分布において、小粒子側からの累積割合が50%、90%となる円相当径(μm)をそれぞれCD50、CD90としたとき、前記CD50以上前記CD90以下の範囲を満たす粒子の数平均包絡度が0.860以上0.980以下であり、下記組成式(1)を満たす、リチウム金属複合酸化物粉末。
aLiMnO・(1-a)LiM1O ・・・(1)
(式(1)中、0.1<a<1であり、M1はNi、Co、Mn、Fe、Cu、Ti、V、Na、Mg、Ca、Sr、Ba、B、Al、Si、P、W、Mo、Nb、Zn、Sn、Zr、Cr、Ga、Ge、Pd、Ag、Cd、In及びVからなる群より選択される1種以上の元素である。)
[2]前記累積粒度分布において、小粒子側からの累積割合が10%となる円相当径(μm)をCD10としたとき、前記CD10以上前記CD50以下の範囲を満たす粒子の数平均包絡度が0.950以上1未満である、[1]に記載のリチウム金属複合酸化物粉末。
[3]前記CD90は7.0μmを超え20.0μm以下である、[1]又は[2]に記載のリチウム金属複合酸化物粉末。
[4]前記CD10は3.0μm以上7.0μm以下である、[2]又は[3]に記載のリチウム金属複合酸化物粉末。
[5]BET比表面積が0.3m/g以上2.0m/g以下である、[1]~[4]のいずれか1つに記載のリチウム金属複合酸化物粉末。
[6]前記元素M1はNiを必須とし、元素M1の全量中のNiの割合が20mol%以上である、[1]~[5]のいずれか1つに記載のリチウム金属複合酸化物粉末。
[7][1]~[6]のいずれか1つに記載のリチウム金属複合酸化物粉末を含む、固体二次電池用正極活物質。
[8][7]に記載の固体二次電池用正極活物質を含む固体二次電池用正極。
[9][8]に記載の固体二次電池用正極を含む固体二次電池。
本発明によれば充放電に伴い抵抗が上昇しにくい固体二次電池を得ることができるリチウム金属複合酸化物粉末、固体二次電池用正極活物質、固体二次電池用正極及び固体二次電池を提供することができる。
本明細書において、充放電サイクル試験後も低抵抗な固体二次電池であるか否かは、充放電サイクル試験後の固体二次電池の交流インピーダンス測定から求まる、周波数が0.1Hzの時のインピーダンス値|Z|から判断する。
|Z|が200Ω以下であると、充放電サイクル試験後も低抵抗な固体二次電池であると評価する。このような固体二次電池は、より長寿命の電池であることを意味する。充放電サイクル試験後の抵抗を算出するための固体二次電池の製造条件等についての詳細は後述する。
固体二次電池の全体構成を示す模式図である。 実施例1で製造したリチウム金属複合酸化物の電子顕微鏡写真である。 本実施形態の固体二次電池用リチウム金属複合酸化物粉末と固体電解質とが接する様子を説明するための模式図である。 本実施形態以外の固体二次電池用リチウム金属複合酸化物粉末と固体電解質とが接する様子を説明するための模式図である。 本実施形態以外の固体二次電池用リチウム金属複合酸化物粉末と固体電解質とが接する様子を説明するための模式図である。
<リチウム金属複合酸化物粉末>
本実施形態は、固体二次電池の正極活物質に好適に用いることができるリチウム金属複合酸化物粉末である。
リチウム金属複合酸化物粉末は、層状構造を有し、少なくともLiとMnと元素M1を含み、後述する組成式(1)を満たす。
リチウム金属複合酸化物粉末は、複数の粒子の集合体である。複数の粒子の集合体は、一次粒子の凝集体である二次粒子を含む。複数の粒子の集合体は、二次粒子のみを含んでいてもよく、一次粒子と二次粒子の混合物であってもよい。リチウム金属複合酸化物粉末が一次粒子と二次粒子の混合物である場合、粒子数全体に対する二次粒子数の割合は90%以上である。
「一次粒子」とは、走査型電子顕微鏡などを用いて5000倍以上20000倍以下の視野にて観察した際に、外観上に粒界が存在しない粒子を意味する。
「二次粒子」とは、前記一次粒子が凝集している粒子である。即ち、二次粒子は、一次粒子の凝集体である。
≪数平均包絡度≫
リチウム金属複合酸化物粉末の包絡度とは、リチウム金属複合酸化物粉末の平面画像において測定される一粒子の周囲長に対する包絡線長の比、即ち周囲長包絡度である。以下、周囲長包絡度を包絡度と省略して記載する。
本明細書において、数平均包絡度はリチウム金属複合酸化物粉末が固体電解質に接する度合の大小を示す指標となる。
包絡度は、一粒子について、包絡周囲長と呼ばれる概念と、実際の周囲長とから下記の式により算出する。
包絡度=包絡周囲長/実際の周囲長
包絡周囲長は、一粒子の輪郭の周囲に巻き付けた仮想の輪ゴムから計算する。
リチウム金属複合酸化物粉末の数平均包絡度は、以下の方法により測定する。
[数平均包絡度の測定方法]
リチウム金属複合酸化物粉末の数平均包絡度は、静的画像解析によって測定される。
静的画像解析は、静的自動画像分析装置により行うことができる。静的自動画像分析装置としては例えば、マルバーン・パナリティカル社製のモフォロギ4が使用できる。静的自動画像分析装置により各粒子の包絡度と投影面積円相当径が自動で測定される。
ここで、投影面積円相当径とは、リチウム金属複合酸化物粉末の一粒子の投影面積と、同面積の円の直径である。
まず、静的画像解析によって測定される、リチウム金属複合酸化物粉末の投影面積円相当径の体積基準の累積粒度分布を得る。
具体的には、静的画像解析は以下の方法により実施する。
まず、0.5mgのリチウム金属複合酸化物粉末を分析装置供給部に導入し、プレパラートに吹き付けて固定する。
次に、固定した粒子を光学顕微鏡により観察し、画像を取得する。取得した画像を解析し、リチウム金属複合酸化物粉末の投影面積円相当径を算出する。得られた投影面積円相当径から、体積基準の累積粒度分布を得る。
分析装置供給部に導入するリチウム金属複合酸化物粉末は、被覆層を備えたリチウム金属複合酸化物粉末であってもよく、被覆層を備えないリチウム金属複合酸化物粉末であってもよい。被覆層は厚みが1nm~20nm程度と非常に薄いため、被覆層を有する場合であっても、被覆層を有さない場合とほぼ同じ測定値が包絡度として得られる。
得られた累積粒度分布において、小粒子径側からの累積割合が10%、50%、90%となる円相当径(μm)を、それぞれCD10、CD50、CD90とする。
リチウム金属複合酸化物粉末の静的画像において、円相当径(μm)が、CD50以上CD90以下の範囲を満たす粒子を少なくとも100個選択し、数平均包絡度を自動で測定する。円相当径が、CD50以上CD90以下の範囲の数平均包絡度を「数平均包絡度1」とする。
リチウム金属複合酸化物粉末は、数平均包絡度1が0.860以上0.980以下である。数平均包絡度1は0.880以上が好ましく、0.900以上がより好ましく、0.910以上がさらに好ましい。また、0.970以下が好ましく、0.965以下がより好ましく、0.960以下がさらに好ましい。
上記上限値および下限値は任意に組み合わせることができる。組み合わせの例としては、数平均包絡度1は、0.880以上0.970以下が好ましく、0.900以上0.990以下がより好ましく、0.910以上0.960以下がさらに好ましい。
数平均包絡度1は、円相当径(μm)が、CD50以上CD90以下の範囲を満たす粒子、即ちリチウム金属複合酸化物粉末に含まれる粒子の中でも粒子径が大きい粒子が固体電解質に接する度合の大小を示す指標となる。
数平均包絡度1が上記下限値以上であると、リチウム金属複合酸化物の1粒子の表面の凹部に固体電解質が入り込みやすく、リチウム金属複合酸化物粉末と固体電解質との接触面積が増大しやすい。
また凹部に固体電解質が入り込むことで、充放電サイクル試験中にリチウム金属複合酸化物の粒子が繰り返し膨張収縮する際にも、リチウム金属複合酸化物粉末と固体電解質の接触が維持されやすく、充放電サイクル試験後も低抵抗な固体二次電池が得られる。
図3に示すリチウム金属複合酸化物粒子1は表面に、凸部1aと凹部1bを有する。数平均包絡度1が本発明の範囲を満たすと、リチウム金属複合酸化物粒子1表面の凹部1bに固体電解質2が入り込みやすく、リチウム金属複合酸化物粒子1と固体電解質2との接触面積が増大しやすい。
リチウム金属複合酸化物粉末の1粒子と、固体電解質との接触面積が大きいほど、リチウム金属複合酸化物粉末と固体電解質との間で界面が良好に形成されやすい。
リチウム金属複合酸化物粉末の粒子の凹部に固体電解質が入り込んで、リチウム金属複合酸化物粉末と固体電解質との間の界面が良好に形成されると、固体二次電池の充放電を繰り返した際にリチウム金属複合酸化物粉末と固体電解質の接触が維持されやすく、充放電サイクル試験後も低抵抗な固体二次電池が得られる。
例えば図4に示すリチウム金属複合酸化物粒子3は表面に、凸部3aと凹部3bを有する。数平均包絡度1が本発明の下限値未満であると、リチウム金属複合酸化物粒子3表面の凹部3bに固体電解質2が入り込めず、リチウム金属複合酸化物粒子3の凸部3aで点接触するため、固体電解質2との接触面積が増大しにくい。このような状態で充放電を繰り返すと、リチウム金属複合酸化物の粒子の膨張収縮が生じた際に、固体電解質との接触点が途切れ高抵抗となる。
また、凹部3bに固体電解質2が十分に入り込めず、例えば符号5に示す表面において、リチウム金属複合酸化物粒子3が固体電解質2に接触せず、リチウム金属複合酸化物粒子の利用率が低下しやすい。
数平均包絡度1が本発明の上限値を超え、1又は1に近づきすぎると、図5に示すように表面に凹凸がなく滑らかなリチウム金属酸化物粒子4となる。この場合にもリチウム金属酸化物粒子4と固体電解質2は点接触となり、固体電解質2との接触面積が増大しにくい。このような状態で充放電を繰り返すと、リチウム金属複合酸化物の粒子の膨張収縮が生じた際に、固体電解質との接触点が途切れ高抵抗となる。
リチウム金属複合酸化物粉末の静的画像において、円相当径(μm)が、CD10以上CD50以下の範囲を満たす粒子を少なくとも100個選択し、数平均包絡度を自動で測定する。粒子径が、CD10以上CD50以下の範囲の数平均包絡度を「数平均包絡度2」とする。
数平均包絡度2は、0.950以上1未満が好ましい。数平均包絡度2は0.960以上がより好ましく、0.960以上がさらに好ましい。また数平均包絡度2は0.995以下がより好ましく、0.990以下がさらに好ましい。
上記上限値および下限値は任意に組み合わせることができる。組み合わせの例としては、数平均包絡度2は、0.960以上0.995以下が好ましく、0.960以上0.990以下がより好ましい。
数平均包絡度2は、粒子径が、CD10以上CD50以下の範囲を満たす粒子、即ちリチウム金属複合酸化物粉末に含まれる粒子の中でも粒子径が小さい粒子が固体電解質に接する度合の大小を示す指標となる。
数平均包絡度2が上記範囲を満たすと、リチウム金属複合酸化物の1粒子の表面が適度に凹凸を有し、リチウム金属複合酸化物粉末と固体電解質との間で接触面積が増大して界面が形成されやすくなる。
CD90は7.0μmを超え20.0μm以下が好ましい。CD90は8.0μm以上がより好ましく、8.5μm以上がさらに好ましい。またCD90は16.0μm以下がより好ましく、14.0μm以下がさらに好ましく、13.0μm以下がさらに一層好ましく、12.0μm以下が特に好ましい。
上記上限値および下限値は任意に組み合わせることができる。組み合わせの例としては、CD90は、8.0μm以上16.0μm以下が好ましく、8.5μm以上14.0μm以下がより好ましく、8.5μm以上13.0μm以下がさらに好ましく、8.5μm以上12.0μm以下が特に好ましい。
CD90が上記範囲を満たすと、リチウムイオンの拡散距離が長い粗大なリチウム金属複合酸化物の割合が少ないため、放電レート特性が優れるため好ましい。
CD10は3.0μmを以上7.0μm以下が好ましい。CD10は4.0μm以上がより好ましく、4.5μm以上がさらに好ましい。またCD10は6.5μm以下がより好ましく、6.0μm以下がさらに好ましい。
上記上限値および下限値は任意に組み合わせることができる。組み合わせの例としては、CD10は、4.0μm以上6.5μm以下が好ましく、4.5μm以上6.0μm以下がより好ましい。
CD10が上記範囲を満たすと、正極内で導電材や固体電解質と接触できずに電気的に孤立する微小なリチウム金属複合酸化物粉末の割合を低減でき、高い充放電容量が得られるため好ましい。
リチウム金属複合酸化物粉末は、BET比表面積が0.3m/g以上2.0m/g以下を満たすことが好ましく、0.4m/g以上1.6m/g以下がより好ましく、0.5m/g以上1.4m/g以下がさらに好ましい。
BET比表面積が上記範囲を満たすと、リチウム金属複合酸化物粉末と固体電解質との間で接触面積が増大し、界面が形成されやすくなる。
[BET比表面積の測定方法]
「BET比表面積」は、BET(Brunauer,Emmett,Teller)法によって測定される値である。BET比表面積の測定では、吸着ガスとして窒素ガスを用いる。例えば、測定対象粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、BET比表面積計(例えば、マウンテック社製、Macsorb(登録商標))を用いて測定することができる(単位:m/g)。
リチウム金属複合酸化物粉末は、下記組成式(1)を満たす。
aLiMnO・(1-a)LiM1O ・・・(1)
(式(1)中、0.1<a<1であり、M1はNi、Co、Mn、Fe、Cu、Ti、V、Na、Mg、Ca、Sr、Ba、B、Al、Si、P、W、Mo、Nb、Zn、Sn、Zr、Cr、Ga、Ge、Pd、Ag、Cd、In及びVからなる群より選択される1種以上の元素である。)
式(1)中、より高容量の固体二次電池を得る観点から、aは、0.25以上が好ましく、0.35以上がより好ましく、0.45以上がさらに好ましい。また0.90以下が好ましく、0.80以下がより好ましく、0.75以下がさらに好ましい。
上記上限値および下限値は任意に組み合わせることができる。組み合わせの例としては、aは、0.25以上0.90以下が好ましく、0.35以上0.80以下がより好ましく、0.45以上0.75以下がさらに好ましい。
式(1)中、元素M1はNiを含むことが好ましい。元素M1の全量に含まれるNiの割合は、20モル%以上が好ましく、25モル%以上がより好ましく、30モル%以上がさらに好ましい。また元素M1の全量に含まれるNiの割合は、90モル%以下が好ましく、80モル%以下がより好ましく、70モル%以下がさらに好ましい。
上記上限値および下限値は任意に組み合わせることができる。組み合わせの例としては、元素M1の全量に含まれるNiの割合は、20モル%以上90モル%以下が好ましく、25モル%以上80モル%以下がより好ましく、30モル%以上70モル%以下がさらに好ましい。
式(1)中、元素M1はMnを含むことが好ましい。元素M1の全量に含まれるMnの割合は、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上がさらに好ましい。また元素M1の全量に含まれるMnの割合は、50モル%以下が好ましく、40モル%以下がより好ましく、35モル%以下がさらに好ましい。
上記上限値および下限値は任意に組み合わせることができる。組み合わせの例としては、元素M1の全量に含まれるMnの割合は、5モル%以上50モル%以下が好ましく、10モル%以上40モル%以下がより好ましく、15モル%以上35モル%以下がさらに好ましい。
[組成分析]
リチウム金属複合酸化物粉末の組成は、例えば、リチウム金属複合酸化物粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(例えば、エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行うことができる。
リチウム金属複合酸化物粉末の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、及びP6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。
また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、及びC2/cからなる群から選ばれるいずれか一つの空間群に帰属される。
これらのうち、放電容量が高い固体二次電池を得る観点から、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、及びC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。
式(1)におけるLiMnOは、空間群C2/mに帰属される単斜晶型の結晶構造を有する。Mnを含む組成とすることで、LiMnOの結晶構造を有するリチウム金属複合酸化物が得られ、高容量を発現しやすい。
リチウム金属複合酸化物の結晶構造は、CuKαを線源とし、かつ回折角2θの測定範囲を10°以上90°以下とするリチウム金属複合酸化物の粉末X線回折測定を行うことで算出できる。具体的には、粉末X線回折測定装置(例えば、株式会社リガク製UltimaIV)を用いて観察することにより確認できる。
[被覆層]
リチウム金属複合酸化物の粒子の表面には、リチウムイオン伝導性を有する金属複合酸化物からなる被覆層を形成してもよい。リチウム金属複合酸化物の粒子の表面に被覆層を形成することで、リチウム金属複合酸化物と固体電解質との間で生じる固体電解質の分解反応が抑制され、固体二次電池の充放電効率が高くなる。例えば固体電解質として、後述のアルジロダイト型硫化物固体電解質や硫化物固体電解質を用いる場合、リチウム金属複合酸化物の表面に被覆層を形成することで、固体電解質の分解反応が抑制され、安定した電池動作が可能となる。
被覆層の厚さは、本願の効果を損なわない範囲で調整すればよい。具体的には、1nm~20nm程度が好ましい。
被覆層の厚さは、走査型透過電子顕微鏡(Scanning Transmission Electron Microscope:STEM)-エネルギー分散型X線分光法(Energy Dispersive X-ray Spectroscopy:EDX)を用いた分析結果により求める。被覆層に特有の元素のラインプロファイルを作成し、得られたラインプロファイルに基づいて、上記特有の元素が検出される範囲を被覆層の存在範囲として、被覆層の厚さを求めることができる。
このような金属複合酸化物としては、例えば、Liと、Nb、Si、P、Al、W、Ta、Ti、Zr、Mo及びBからなる群から選ばれる少なくとも1種の元素との金属複合酸化物を挙げることができる。
被覆層の形成方法は、例えばリチウム金属複合酸化物に被覆層に含まれる元素を有する化合物を添加・混合し熱処理する方法、リチウム金属複合酸化物に被覆層に含まれる元素を有する溶液を噴霧し、熱処理する方法、リチウム金属複合酸化物を被覆層に含まれる元素を有する溶液に浸漬し、熱処理する方法などが挙げられる。
<リチウム金属複合酸化物粉末の製造方法>
次に、リチウム金属複合酸化物粉末の製造方法について説明する。
リチウム金属複合酸化物粉末の製造方法は、水酸化物前駆体の製造工程と、水酸化物前駆体とリチウム化合物との混合物を焼成する工程、焼成工程により得られた焼成品を解砕する工程を少なくとも含む。
[水酸化物前駆体の製造工程]
水酸化物前駆体は、通常公知の半連続法(セミバッチ法)により製造することが可能である。好ましい反応槽としては、オーバーフローパイプを備えない反応槽、オーバーフローパイプに連結された濃縮槽を備え、オーバーフローした生成物を濃縮槽で濃縮し、再び反応槽へ循環させる機構を有する装置が挙げられる。
以下、金属として、Ni、Co及びMnを含む水酸化物前駆体を半連続法にて製造する方法を例に、その製造方法を詳述する。
具体的には、まず水酸化物前駆体の粒子の核を生成させ、その後、核を成長させる。
水酸化物前駆体は、Ni、Co、及びMnを含む金属複合水酸化物が挙げられる。
Ni、Co、及びMnを含む水酸化物前駆体を製造する場合の金属原料液としては、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液が挙げられる。
上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れか1種又は2種以上を使用することができる。
上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト、及び酢酸コバルトのうちの何れか1種又は2種以上を使用することができる。
上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、塩化マンガン、及び酢酸マンガンのうちの何れか1種又は2種以上を使用できる。
・核生成工程
金属原料混合液、錯化剤及びアルカリ性水溶液を反応させ、Ni1-x-yCoMn(OH)2-w(0<1-x-y、0<x、0<y、0<w<1)で表される金属複合水酸化物の核を生成する。金属原料混合液は、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液の混合液である。
金属原料混合液、錯化剤及びアルカリ性水溶液を、撹拌機を備えた反応槽にそれぞれ連続的に同時に供給する。これにより、核が生成する。
半連続法に際しては、金属原料混合液及び錯化剤を含む混合液のpH値を調整するため、混合液のpHがアルカリ性から中性になる前に、混合液にアルカリ性水溶液を添加する。アルカリ性水溶液は、水酸化ナトリウム、水酸化カリウムが使用できる。
また、錯化剤は、水溶液中で、ニッケルイオン、コバルトイオンと錯体を形成可能な化合物である。錯化剤は、例えば、アンモニウムイオン供給体、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。アンモニウムイオン供給体としては、例えば水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等のアンモニウム塩が使用できる。
錯化剤としては、アンモニウムイオン供給体が好ましい。
核生成工程においては、反応槽内のアンモニウムのモル濃度に対する金属原料液に含まれるマンガン塩のモル濃度の比が1.0以上2.0以下の範囲となるよう反応槽内の錯化剤の濃度を制御することで、数平均包絡度1を本発明の範囲内に制御できる。
なお、本明細書におけるpHの値は、混合液の温度が40℃の時に測定された値であると定義する。混合液のpHは、反応槽からサンプリングした混合液の温度が、40℃になったときに測定する。
サンプリングした混合液の温度が40℃よりも低い場合には、混合液を加熱して40℃になったときにpHを測定する。サンプリングした混合液の温度が40℃よりも高い場合には、混合液を冷却して40℃になったときにpHを測定する。
反応に際しては、反応槽の温度を、例えば20℃以上80℃以下、好ましくは30℃以上70℃以下の範囲内で制御する。
また、核生成工程においては、反応槽内のpH値を、例えばpH10以上pH13以下、好ましくはpH11以上pH13以下の範囲内で制御する。
核生成工程において反応槽内の物質は、撹拌して混合する。
攪拌回転数の一例をあげると、攪拌回転数は1000rpmを超えることが好ましく、1100rpm以上がより好ましく、1500rpm以上がさらに好ましい。このような攪拌条件で攪拌することにより、供給した各原料液が均一に混合されやすい。
核生成工程の開始から、一定時間が経過した後、生成した核は、反応槽からオーバーフローされ、オーバーフロー管に連結された濃縮槽で沈降濃縮する。前記一定時間は、原料液の送液量や反応槽中のスラリー濃度に応じて適宜調整することが好ましい。一般的には0.1時間以上10時間以下が好ましい。
[核成長工程]
濃縮された核含有スラリーは反応槽に還流され、反応槽において再度、核を成長させる。
反応槽内及び濃縮槽内には、窒素ガス又はアルゴンガスを供給することが好ましい。これらのガスを供給することで、酸化物になりやすいMnが酸化されて不定形状の酸化物粒子に変化することを防止できる。Mnの酸化を抑制して得られた前駆体を用いることで、数平均包絡度1を本発明の範囲内に制御できる。
核成長工程における反応槽内の錯化剤の濃度は、反応槽内のアンモニウムのモル濃度に対する金属原料液に含まれるマンガン塩のモル濃度の比が1.0以上2.0以下の範囲となる割合で反応槽内の錯化剤の濃度を制御することで、数平均包絡度1を本発明の範囲内に制御できる。
核成長工程におけるpHは、例えばpH9以上12以下、好ましくはpH9以上11.5以下の範囲内で制御する。
上述の工程により、金属複合水酸化物含有スラリーとして、ニッケルコバルトマンガン金属複合水酸化物を含むスラリーが得られる。ニッケルコバルトマンガン金属複合水酸化物を単離する際には、金属複合水酸化物含有スラリーを遠心分離や吸引ろ過などで脱水する方法が好ましい。
以上の反応後、脱水、乾燥及び篩別し、Ni、Co及びMnを含む水酸化物前駆体が得られる。
[水酸化物前駆体とリチウム化合物との混合物を焼成する工程]
本工程は、リチウム化合物と水酸化物前駆体とを混合して得られる混合物を焼成する工程である。
水酸化物前駆体を乾燥させた後、リチウム化合物と混合する。水酸化物前駆体の乾燥後に、適宜分級を行ってもよい。
リチウム化合物は、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、酸化リチウム、塩化リチウム及びフッ化リチウムの少なくとも何れか一つを使用することができる。これらの中では、水酸化リチウム及び炭酸リチウムのいずれか一方又はその混合物が好ましい。また、水酸化リチウムが炭酸リチウムを含む場合には、水酸化リチウム中の炭酸リチウムの含有量は、5質量%以下であることが好ましい。
リチウム化合物と水酸化物前駆体とを、最終目的物の組成比を勘案して混合し、混合物を得る。具体的には、リチウム化合物と水酸化物前駆体は、上記組成式(1)の組成比に対応する割合で混合する。水酸化物前駆体に含まれる金属原子の合計量1に対するリチウム原子の量(モル比)は、1.10以上が好ましく、1.12以上がより好ましく、1.15以上がさらに好ましい。
リチウム化合物と水酸化物前駆体の混合物を、焼成することによって、焼成物が得られる。
得られた混合物を例えば酸素含有雰囲気下、500℃以上1050℃以下の焼成温度で焼成する。混合物を焼成することにより、リチウム金属複合酸化物の結晶が成長する。
本明細書における焼成温度とは、焼成炉内の雰囲気の温度であって、保持温度の最高温度(最高保持温度)を意味する。
焼成工程が、複数の加熱工程を有する場合、焼成温度とは、各加熱工程のうち最高保持温度で加熱した際の温度を意味する。
保持温度として、具体的には、550℃以上1000℃以下が好ましく、600℃以上1000℃以下が好ましい。
また、前記保持温度で保持する時間は、0.1時間以上20時間以下が挙げられ、0.5時間以上10時間以下が好ましい。
また、酸素含有雰囲気下で焼成することが好ましい。具体的には、酸素含有ガスを導入し、焼成炉内を酸素含有雰囲気とすることが好ましい。
昇温速度は、焼成装置において、昇温を開始した時間から最高保持温度に到達するまでの時間と、焼成装置の焼成炉内の昇温開始時の温度から最高保持温度までの温度差と、から算出される。
混合物を上述のような焼成条件で焼成することにより、リチウム金属複合酸化物粉末の数平均包絡度1及び2、CD10及びCD90を上述の範囲に制御しやすくなる。
焼成工程の後、焼成により得られた焼成品を解砕力の弱い条件、又は解砕力の弱い装置を用いて弱解砕する。
焼成品の解砕は、例えばディスクミル等による解砕が挙げられる。ディスクミルによる反応物の解砕条件としては、例えば、回転数が500rpm以上2000rpm以下となる条件でディスクミルを運転することが挙げられる。
焼成品をこのような条件で解砕することによって、リチウム金属複合酸化物粉末の数平均包絡度1及び2、CD10及びCD90を上述の範囲に制御できる。
<固体二次電池>
次いで、固体二次電池の構成を説明しながら、本発明の一態様に係るリチウム金属複合酸化物粉末を固体二次電池の正極活物質として用いた正極、及びこの正極を有する固体二次電池について説明する。
固体二次電池は、固体電解質からなる固体電解質層を備える全固体二次電池であってもよく、固体電解質層が微量の有機溶媒やイオン液体を含む固体二次電池であってもよい。
図1は、固体二次電池の一例を示す模式図である。図1に示す固体二次電池1000は、正極110と、負極120と、固体電解質層130とを有する積層体100と、積層体100を収容する外装体200と、を有する。また、固体二次電池1000は、集電体の両側に正極活物質と負極活物質とを配置したバイポーラ構造であってもよい。バイポーラ構造の具体例として、例えば、JP-A-2004-95400に記載される構造が挙げられる。各部材を構成する材料については、後述する。
積層体100は、正極集電体112に接続される外部端子113と、負極集電体122に接続される外部端子123と、を有していてもよい。その他、固体二次電池1000は、正極110と負極120との間にセパレータを有していてもよい。
固体二次電池1000は、さらに積層体100と外装体200とを絶縁する不図示のインシュレーター及び外装体200の開口部200aを封止する不図示の封止体を有する。
外装体200は、アルミニウム、ステンレス鋼又はニッケルメッキ鋼などの耐食性の高い金属材料を成形した容器を用いることができる。また、外装体200として、少なくとも一方の面に耐食加工を施したラミネートフィルムを袋状に加工した容器を用いることもできる。
固体二次電池1000の形状としては、例えば、コイン型、ボタン型、ペーパー型(またはシート型)、円筒型、角型、又はラミネート型(パウチ型)などの形状を挙げることができる。
固体二次電池1000は、一例として積層体100を1つ有する形態が図示されているが、本実施形態はこれに限らない。固体二次電池1000は、積層体100を単位セルとし、外装体200の内部に複数の単位セル(積層体100)を封じた構成であってもよい。
以下、各構成について順に説明する。
(正極)
正極110は、正極活物質層111と正極集電体112とを有している。
正極活物質層111は、上述した本発明の一態様であるリチウム金属複合酸化物粉末及び固体電解質を含む。また、正極活物質層111は、導電材及びバインダーを含んでいてもよい。
(固体電解質)
正極活物質層111に含まれる固体電解質としては、リチウムイオン伝導性を有し、公知の固体二次電池に用いられる固体電解質を採用することができる。このような固体電解質としては、無機電解質及び有機電解質を挙げることができる。
無機電解質としては、アルジロダイド型硫化物固体電解質、酸化物系固体電解質、硫化物系固体電解質及び水素化物系固体電解質を挙げることができる。有機電解質としては、ポリマー系固体電解質を挙げることができる。各電解質としては、WO2020/208872A1、US2016/0233510A1、US2012/0251871A1、US2018/0159169A1に記載の化合物が挙げられ、例えば、以下の化合物が挙げられる。
(アルジロダイド型硫化物固体電解質)
アルジロダイド型硫化物固体電解質としては、例えば、LiPSCl、LiPSBr及びLiPSIが挙げられる。
(酸化物系固体電解質)
酸化物系固体電解質としては、例えば、ペロブスカイト型酸化物、NASICON型酸化物、LISICON型酸化物及びガーネット型酸化物などが挙げられる。各酸化物の具体例は、WO2020/208872A1、US2016/0233510A1、US2020/0259213A1に記載の化合物が挙げられ、例えば、以下の化合物が挙げられる。
ペロブスカイト型酸化物としては、LiLa1-aTiO(0<a<1)などのLi-La-Ti系酸化物、LiLa1-bTaO(0<b<1)などのLi-La-Ta系酸化物及びLiLa1-cNbO(0<c<1)などのLi-La-Nb系酸化物などが挙げられる。
NASICON型酸化物としては、Li1+dAlTi2-d(PO(0≦d≦1)などが挙げられる。NASICON型酸化物とは、Li (式中、Mは、B、Al、Ga、In、C、Si、Ge、Sn、Sb及びSeからなる群から選ばれる1種以上の元素である。Mは、Ti、Zr、Ge、In、Ga、Sn及びAlからなる群から選ばれる1種以上の元素である。m、n、o、p及びqは、任意の正数である。)で表される酸化物である。
LISICON型酸化物としては、Li-Li(Mは、Si、Ge、及びTiからなる群から選ばれる1種以上の元素である。Mは、P、As及びVからなる群から選ばれる1種以上の元素である。)で表される酸化物などが挙げられる。
ガーネット型酸化物としては、LiLaZr12(LLZともいう)などのLi-La-Zr系酸化物などが挙げられる。
酸化物系固体電解質は、結晶性材料であってもよく、非晶質材料であってもよい。
(硫化物系固体電解質)
硫化物系固体電解質としては、LiS-P系化合物、LiS-SiS系化合物、LiS-GeS系化合物、LiS-B系化合物、LiI-SiS-P系化合物、LiI-LiS-P系化合物、LiI-LiPO-P系化合物及びLi10GeP12系化合物などを挙げることができる。
なお、本明細書において、硫化物系固体電解質を指す「系化合物」という表現は、「系化合物」の前に記載した「LiS」「P」などの原料を主として含む固体電解質の総称として用いる。例えば、LiS-P系化合物には、LiSとPとを主として含み、さらに他の原料を含む固体電解質が含まれる。LiS-P系化合物に含まれるLiSの割合は、例えばLiS-P系化合物全体に対して50~90質量%である。LiS-P系化合物に含まれるPの割合は、例えばLiS-P系化合物全体に対して10~50質量%である。また、LiS-P系化合物に含まれる他の原料の割合は、例えばLiS-P系化合物全体に対して0~30質量%である。また、LiS-P系化合物には、LiSとPとの混合比を異ならせた固体電解質も含まれる。
LiS-P系化合物としては、LiS-P、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P-LiI-LiBr、LiS-P-LiO、LiS-P-LiO-LiI及びLiS-P-Z(m、nは正の数である。Zは、Ge、ZnまたはGaである。)などを挙げることができる。
LiS-SiS系化合物としては、LiS-SiS、LiS-SiS-LiI、LiS-SiS-LiBr、LiS-SiS-LiCl、LiS-SiS-B-LiI、LiS-SiS-P-LiI、LiS-SiS-P-LiCl、LiS-SiS-LiPO、LiS-SiS-LiSO及びLiS-SiS-LiMO(x、yは正の数である。Mは、P、Si、Ge、B、Al、Ga又はInである。)などを挙げることができる。
LiS-GeS系化合物としては、LiS-GeS及びLiS-GeS-Pなどを挙げることができる。
硫化物系固体電解質は、結晶性材料であってもよく、非晶質材料であってもよい。
(水素化物系固体電解質)
水素化物系固体電解質材料としては、LiBH、LiBH-3KI、LiBH-PI、LiBH-P、LiBH-LiNH、3LiBH-LiI、LiNH、LiAlH、Li(NHI、LiNH、LiGd(BHCl、Li(BH)(NH)、Li(NH)I及びLi(BH)(NHなどを挙げることができる。
(ポリマー系固体電解質)
ポリマー系固体電解質として、例えばポリエチレンオキサイド系の高分子化合物及びポリオルガノシロキサン鎖及びポリオキシアルキレン鎖からなる群から選ばれる1種以上を含む高分子化合物などの有機系高分子電解質を挙げることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。
固体電解質は、発明の効果を損なわない範囲において、2種以上を併用することができる。
固体電解質の粉末の平均粒子径は50μm以下が好ましく、10μm以下がより好ましく、1μm以下がさらに好ましい。
(導電材)
正極活物質層111が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)及び繊維状炭素材料などを挙げることができる。
正極活物質層111中の導電材の割合は、正極活物質100質量部に対して1質量部以上10質量部以下であると好ましい。
(バインダー)
正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリイミド樹脂;ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレンなどのフッ素樹脂;ポリエチレン及びポリプロピレンなどのポリオレフィン樹脂、WO2019/098384A1またはUS2020/0274158A1に記載の樹脂を挙げることができる。
(正極集電体)
正極110が有する正極集電体112としては、Al、Ni又はステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。
正極集電体112に正極活物質層111を担持させる方法としては、正極集電体112上で正極活物質層111を加圧成型する方法が挙げられる。加圧成型には、冷間プレスや熱間プレスを用いることができる。
また、有機溶媒を用いて正極活物質、固体電解質、導電材及びバインダーの混合物をペースト化して正極合剤とし、得られる正極合剤を正極集電体112の少なくとも一面上に塗布して乾燥させ、プレスし固着することで、正極集電体112に正極活物質層111を担持させてもよい。
また、有機溶媒を用いて正極活物質、固体電解質及び導電材の混合物をペースト化して正極合剤とし、得られる正極合剤を正極集電体112の少なくとも一面上に塗布して乾燥させ、焼結することで、正極集電体112に正極活物質層111を担持させてもよい。
正極合剤に用いることができる有機溶媒としては、N-メチル-2-ピロリドン(以下、NMPということがある。)が挙げられる。
正極合剤を正極集電体112へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。
以上に挙げられた方法により、正極を製造することができる。
以上に挙げられた方法により、正極110を製造することができる。正極110に用いる具体的な材料の組み合わせとしては、本実施形態の正極活物質と表1に記載する組み合わせが挙げられる。
Figure 2023101923000001
Figure 2023101923000002
Figure 2023101923000003
(負極)
負極120は、負極活物質層121と負極集電体122とを有している。負極活物質層121は、負極活物質を含む。また、負極活物質層121は、固体電解質及び導電材を含んでいてもよい。負極活物質、負極集電体、固体電解質、導電材及びバインダーは、上述したものを用いることができる。
負極集電体122に負極活物質層121を担持させる方法としては、正極110の場合と同様に、加圧成型による方法、負極活物質を含むペースト状の負極合剤を負極集電体122上に塗布、乾燥後プレスし圧着する方法、及び負極活物質を含むペースト状の負極合剤を負極集電体122上に塗布、乾燥後、焼結する方法が挙げられる。
(固体電解質層)
固体電解質層130は、上述の固体電解質を有している。
本発明の一態様において、固体電解質層130は固体電解質からなる。
本発明の一態様において、固体電解質層130は、固体電解質と微量の有機溶媒とイオン液体のいずれか一方又は両方を含んでもよい。
固体電解質層130が含んでいてもよい有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、エチルメチルカーボネートなどが挙げられる。
固体電解質130が含んでいてもよいイオン液体としては、トリフレート、ビス(トリフルオロメタンスルホニル)イミドなどのアニオンと、アンモニウム、イミダゾリウム、ピリジニウムなどのカチオンから構成される。
有機溶媒とイオン液体のいずれか一方又は両方は、固体電解質層130に含まれる固体電解質の全量に対し、0.1重量割合以上1.0重量割合以下が好ましい。
固体電解質層130は、上述の正極110が有する正極活物質層111の表面に、無機物の固体電解質をスパッタリング法により堆積させることで形成することができる。
また、固体電解質層130は、上述の正極110が有する正極活物質層111の表面に、固体電解質を含むペースト状の合剤を塗布し、乾燥させることで形成することができる。乾燥後、プレス成型し、さらに冷間等方圧加圧法(CIP)により加圧して固体電解質層130を形成してもよい。
積層体100は、上述のように正極110上に設けられた固体電解質層130に対し、公知の方法を用いて、固体電解質層130の表面に負極活物質層121が接する態様で負極120を積層させることで製造することができる。
以上のような構成の固体二次電池において、正極活物質層は、上述した本実施形態のリチウム金属複合酸化物粉末を用いているため、固体二次電池の充放電を繰り返した場合にも低抵抗である。
[充放電サイクル試験後の抵抗測定]
(固体二次電池の製造)
以下の操作を、アルゴン雰囲気のグローブボックス内で行う。
(正極、固体二次電池の作製)
φ10mmのペレット成型用金型(宝泉株式会社製)内に、固体電解質(MSE社製、75LiS・25P、平均粒径1μm以下)を0.16g入れ、上下ポンチを金型内に押し込み、一軸プレス機で10MPaまで加圧し、固体電解質層を作製する。
次いで、正極活物質として被覆処理したリチウム金属複合酸化物粉末1.000gと、導電材(アセチレンブラック)0.0543gと、固体電解質(MSE社製、LiPSCl)8.6mgとを秤量する。
正極活物質、導電材及び固体電解質を、乳鉢で15分間混合し、正極合材を作製し、金型内で成型された固体電解質層の上に、上述の正極合材を15mg入れる。上ポンチを再度挿入し、一軸プレス機で10MPaまで加圧することで、固体電解質層上に正極を作製する。
次に下部ポンチを引き抜き、正極合剤を添加した面と反対側の固体電解質の上に、リチウム金属箔(本荘ケミカル株式会社製)とインジウム金属箔(株式会社ニラコ製)を入れ、下部ポンチを再度挿入し、一軸プレスで14MPaまで加圧し、外部から拘束することで固体二次電池を作製する。
<充放電試験>
上記の方法で作製した固体二次電池を用いて、以下に示す条件で充放電試験を実施する。
(充放電条件)
試験温度:60℃
(充放電1回目(初回))
充電最大電圧3.98V、充電電流密度0.1C、カットオフ電流密度0.02C、定電流-定電圧充電
放電最小電圧1.38V、放電電流密度0.1C、定電流放電
(充放電サイクル試験)
充電最大電圧3.88V、充電電流密度0.2C、カットオフ電流密度0.02C、定電流-定電圧充電
放電最小電圧1.38V、放電電流密度0.2C、定電流放電
上記充電と放電を1サイクルとし、計20サイクル実施する。
(交流インピーダンス測定)
充電最大電圧3.98V、充電電流密度0.1C、カットオフ電流密度0.02C、定電流-定電圧充電後、25℃にて電圧振幅10mV、周波数範囲1MHz~10mHzの範囲で交流インピーダンス測定を実施する。
上記の方法により、固体二次電池の交流インピーダンス測定から求まる、周波数が0.1Hzの時のインピーダンス値|Z|を算出し、充放電サイクル試験後の抵抗値とする。充放電サイクル試験後の抵抗値が200Ω以下の場合を、充放電サイクル試験後も低抵抗であると判断する。
次に、本発明を実施例によりさらに詳細に説明する。
<組成分析>
後述する方法により製造したリチウム金属複合酸化物粉末の組成分析は、上記[組成分析]に記載の方法により実施した。
<数平均包絡度の測定>
上記[数平均包絡度の測定方法]に記載の方法により、後述する方法により製造したリチウム金属複合酸化物粉末の数平均包絡度1及び数平均包絡度2を測定した。
<CD90及びCD10の測定>
上記[数平均包絡度の測定方法]に記載の方法により、後述する方法により製造したリチウム金属複合酸化物粉末のCD90及びCD10を測定した。
<BET比表面積の測定>
上記[BET比表面積の測定方法]に記載の方法により、後述する方法により製造したリチウム金属複合酸化物粉末のBET比表面積を測定した。
<電子顕微鏡による観察>
後述する方法により製造したリチウム金属複合酸化物粉末を、サンプルステージ上に貼った導電性シート上に載せた。次いで、走査型電子顕微鏡を用い、リチウム金属複合酸化物粉末に加速電圧が15kVの電子線を照射して、SEM観察(倍率:10000倍)を行った。
走査型電子顕微鏡としては、日本電子株式会社製JSM-5510を使用した。
<充放電サイクル試験後の抵抗測定>
後述する方法により製造した正極活物質を用いた固体二次電池の充放電サイクル試験後の抵抗値は、上記[充放電サイクル試験後の抵抗測定]に記載の方法により測定した。
<リチウム金属複合酸化物の被覆処理>
上記の方法で固体二次電池を作製、評価するにあたり、後述の実施例、比較例により製造したリチウム金属複合酸化物粉末にHBO(Wako製)を1重量%添加混合し、300℃熱処理することで、リチウム金属複合酸化物の表面に膜厚約5nmのリチウム-ホウ素複合酸化物層を形成し、正極活物質として用いた。被覆層は約5nmと非常に薄いため、正極活物質はリチウム金属複合酸化物と同等の数平均包絡度1、数平均包絡度2、CD10およびCD90を有している。
≪実施例1≫
<リチウム金属複合酸化物E1の製造>
[核生成工程]
攪拌器及びオーバーフローパイプを備えた反応槽内と、オーバーフローパイプに連結された濃縮槽、および濃縮槽から反応槽へ循環を行う機構を有する装置を用い、反応槽に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を30℃に保持した。
硫酸ニッケル水溶液と硫酸マンガン水溶液とを、NiとMnとの原子比が0.35:0.65となる割合で混合して、金属原料混合液を調製した。
次に反応槽内に錯化剤である硫酸アンモニウム結晶を投入し、反応槽および濃縮槽に窒素ガスを連続的に供給した。攪拌下、金属原料混合液を10mL/minの送液速度で連続的に添加し、反応槽内のアンモニウムのモル濃度に対する金属原料液に含まれるマンガン塩のモル濃度の比が1.6となる割合で反応槽内に硫酸アンモニウム水溶液を連続的に添加した。また反応槽内の溶液のpHが11.7(設定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下した。
核生成工程開始から2時間経過した後、すべての送液を停止した。
[核成長工程]
続いて、反応槽および濃縮槽に窒素ガスを連続的に供給した状態で、核生成工程を行った反応槽に、金属原料混合液を8mL/min、反応槽内のアンモニウムのモル濃度に対する金属原料液に含まれるマンガン塩のモル濃度の比が1.6となる割合で反応槽内に硫酸アンモニウム水溶液を連続的に添加した。また反応槽内の溶液のpHが11.0(測定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下した。核成長工程開始から94時間経過した後、すべての送液を停止し晶析反応を終了した。
得られたニッケルマンガン金属複合水酸化物含有スラリーを洗浄して脱水した後、105℃で20時間乾燥および篩別し、ニッケルマンガン金属複合水酸化物E1を得た。ニッケルマンガン金属複合水酸化物E1と、水酸化リチウム粉末とを、前駆体中のNi、Mnに対する水酸化リチウム粉末中のLiのモル比が、Li/(Ni+Mn)=1.30となる割合で秤量して混合し、混合原料を得た。
その後、得られた混合原料を、大気雰囲気下、1000℃で10時間焼成し、ディスクミルを用いて回転数1200rpmで解砕することによりリチウム金属複合酸化物E1を得た。組成分析を行い、組成式(1)に対応させたところ、a=0.34、M1=Ni、Mnであった。またM1に含まれるNiの割合は、54.7モル%であった。
リチウム金属複合酸化物E1は、層状構造を有しており、比表面積が0.6m/gであった。
表4に、リチウム金属複合酸化物E1の数平均包絡度1、数平均包絡度2、CD10、CD90及びBET比表面積の測定結果を示す。図2にリチウム金属複合酸化物E1の走査型電子顕微鏡写真を示す。
≪実施例2≫
<リチウム金属複合酸化物E2の製造>
[核生成工程]
攪拌器及びオーバーフローパイプを備えた反応槽内と、オーバーフローパイプに連結された濃縮槽、および濃縮槽から反応槽へ循環を行う機構を有する装置を用い、反応槽に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を30℃に保持した。
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、Niと、Coと、Mnとの原子比が0.34:0.14:0.52となる割合で混合して、金属原料混合液を調製した。
次に反応槽内に錯化剤である硫酸アンモニウム結晶を投入し、反応槽および濃縮槽に窒素ガスを連続的に供給した。攪拌下、金属原料混合液を10mL/minの送液速度で連続的に添加し、反応槽内のアンモニウムのモル濃度に対する金属原料液に含まれるマンガン塩のモル濃度の比が1.2となる割合で反応槽内に硫酸アンモニウム水溶液を連続的に添加した。また反応槽内の溶液のpHが11.7(設定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下した。
核生成工程開始から2時間経過した後、すべての送液を停止した。
[核成長工程]
続いて、反応槽および濃縮槽に窒素ガスを連続的に供給した状態で、核生成工程を行った反応槽に、金属原料混合液を8mL/min、反応槽内のアンモニウムのモル濃度に対する金属原料液に含まれるマンガン塩のモル濃度の比が1.2となる割合で反応槽内に硫酸アンモニウム水溶液を連続的に添加した。また反応槽内の溶液のpHが11.0(測定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下した。核成長工程開始から44時間経過した後、すべての送液を停止し晶析反応を終了した。
得られたニッケルコバルトマンガン金属複合水酸化物含有スラリーを洗浄して脱水した後、105℃で20時間乾燥および篩別し、ニッケルコバルトマンガン金属複合水酸化物E2を得た。ニッケルコバルトマンガン金属複合水酸化物E2と、水酸化リチウム粉末とを、前駆体中のNi、Co、及びMnに対する水酸化リチウム粉末中のLiのモル比が、Li/(Ni+Co+Mn)=1.30となる割合で秤量して混合し、混合原料を得た。
その後、得られた混合原料を、大気雰囲気下、900℃で10時間焼成し、ディスクミルを用いて回転数1200rpmで解砕することによりリチウム金属複合酸化物E2を得た。組成分析を行い、組成式(1)に対応させたところ、a=0.27、M1=Ni、Co、Mnであった。またM1に含まれるNiの割合は、47.3モル%であった。
リチウム金属複合酸化物E2は、層状構造を有しており、比表面積が0.9m/gであった。
表4に、リチウム金属複合酸化物E2の数平均包絡度1、数平均包絡度2、CD10、CD90及びBET比表面積の測定結果を示す。
≪実施例3≫
<リチウム金属複合酸化物E3の製造>
[核生成工程]
攪拌器及びオーバーフローパイプを備えた反応槽内と、オーバーフローパイプに連結された濃縮槽、および濃縮槽から反応槽へ循環を行う機構を有する装置を用い、反応槽に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を30℃に保持した。
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、Niと、Coと、Mnとの原子比が0.17:0.17:0.66となる割合で混合して、金属原料混合液を調製した。
次に反応槽内に錯化剤である硫酸アンモニウム結晶を投入し、反応槽および濃縮槽に窒素ガスを連続的に供給した。攪拌下、金属原料混合液を10mL/minの送液速度で連続的に添加し、反応槽内のアンモニウムのモル濃度に対する金属原料液に含まれるマンガン塩のモル濃度の比が1.6となる割合で反応槽内に硫酸アンモニウム水溶液を連続的に添加した。また反応槽内の溶液のpHが11.7(設定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下した。
核生成工程開始から2時間経過した後、すべての送液を停止した。
[核成長工程]
続いて、反応槽および濃縮槽に窒素ガスを連続的に供給した状態で、核生成工程を行った反応槽に、金属原料混合液を8mL/min、反応槽内のアンモニウムのモル濃度に対する金属原料液に含まれるマンガン塩のモル濃度の比が1.2となる割合で反応槽内に硫酸アンモニウム水溶液を連続的に添加した。また反応槽内の溶液のpHが11.0(測定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下した。核成長工程開始から91時間経過した後、すべての送液を停止し晶析反応を終了した。
得られたニッケルコバルトマンガン金属複合水酸化物含有スラリーを洗浄して脱水した後、105℃で20時間乾燥および篩別し、ニッケルコバルトマンガン金属複合水酸化物E3を得た。ニッケルコバルトマンガン金属複合水酸化物E3と、水酸化リチウム粉末とを、前駆体中のNi、Co、及びMnに対する水酸化リチウム粉末中のLiのモル比が、Li/(Ni+Co+Mn)=1.50となる割合で秤量して混合し、混合原料を得た。
その後、得られた混合原料を、大気雰囲気下、900℃で10時間焼成し、ディスクミルを用いて回転数1200rpmで解砕することによりリチウム金属複合酸化物E3を得た。組成分析を行い、組成式(1)に対応させたところ、a=0.47、M1=Ni、Co、Mnであった。またM1に含まれるNiの割合は、32.5モル%であった。
リチウム金属複合酸化物E3は、層状構造を有しており、比表面積が0.9m/gであった。
表4に、リチウム金属複合酸化物E3の数平均包絡度1、数平均包絡度2、CD10、CD90及びBET比表面積の測定結果を示す。
≪実施例4≫
<リチウム金属複合酸化物E4の製造>
[核生成工程]
攪拌器及びオーバーフローパイプを備えた反応槽内と、オーバーフローパイプに連結された濃縮槽、および濃縮槽から反応槽へ循環を行う機構を有する装置を用い、反応槽に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を30℃に保持した。
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、Niと、Coと、Mnとの原子比が0.23:0.23:0.54となる割合で混合して、金属原料混合液を調製した。
次に反応槽内に錯化剤である硫酸アンモニウム結晶を投入し、反応槽および濃縮槽に窒素ガスを連続的に供給した。攪拌下、金属原料混合液を10mL/minの送液速度で連続的に添加し、反応槽内のアンモニウムのモル濃度に対する金属原料液に含まれるマンガン塩のモル濃度の比が1.3となる割合で反応槽内に硫酸アンモニウム水溶液を連続的に添加した。また反応槽内の溶液のpHが12.5(設定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下した。
核生成工程開始から2時間経過した後、すべての送液を停止した。
[核成長工程]
続いて、反応槽および濃縮槽に窒素ガスを連続的に供給した状態で、核生成工程を行った反応槽に、金属原料混合液を8mL/min、反応槽内のアンモニウムのモル濃度に対する金属原料液に含まれるマンガン塩のモル濃度の比が1.3となる割合で反応槽内に硫酸アンモニウム水溶液を連続的に添加した。また反応槽内の溶液のpHが11.0(測定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下した。核成長工程開始から47時間経過した後、すべての送液を停止し晶析反応を終了した。
得られたニッケルコバルトマンガン金属複合水酸化物含有スラリーを洗浄して脱水した後、105℃で20時間乾燥および篩別し、ニッケルコバルトマンガン金属複合水酸化物E4を得た。ニッケルコバルトマンガン金属複合水酸化物E4と、水酸化リチウム粉末とを、前駆体中のNi、Co、及びMnに対する水酸化リチウム粉末中のLiのモル比が、Li/(Ni+Co+Mn)=1.30となる割合で秤量して混合し、混合原料を得た。
その後、得られた混合原料を、大気雰囲気下、900℃で10時間焼成し、ディスクミルを用いて回転数1200rpmで解砕することによりリチウム金属複合酸化物E4を得た。組成分析を行い、組成式(1)に対応させたところ、a=0.28、M1=Ni、Co、Mnであった。またM1に含まれるNiの割合は、32.5モル%であった。
リチウム金属複合酸化物E4は、層状構造を有しており、比表面積が0.9m/gであった。
表4に、リチウム金属複合酸化物E4の数平均包絡度1、数平均包絡度2、CD10、CD90及びBET比表面積の測定結果を示す。
≪比較例1≫
<リチウム金属複合酸化物C1の製造>
[核生成工程]
攪拌器及びオーバーフローパイプを備えた反応槽内と、オーバーフローパイプに連結された濃縮槽、および濃縮槽から反応槽へ循環を行う機構を有する装置を用い、反応槽に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を30℃に保持した。
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、Niと、Coと、Mnとの原子比が0.23:0.23:0.54となる割合で混合して、金属原料混合液を調製した。
次に反応槽内に錯化剤である硫酸アンモニウム結晶を投入し、反応槽に窒素ガスを連続的に供給し、濃縮槽は大気雰囲気下とした。攪拌下、金属原料混合液を10mL/minの送液速度で連続的に添加し、反応槽内のアンモニウムのモル濃度に対する金属原料液に含まれるマンガン塩のモル濃度の比が1.3となる割合で反応槽内に硫酸アンモニウム水溶液を連続的に添加した。また反応槽内の溶液のpHが11.7(設定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下した。
核生成工程開始から2時間経過した後、すべての送液を停止した。
[核成長工程]
続いて、反応槽に窒素ガスを連続的に供給し、濃縮槽は大気雰囲気とした状態で、核生成工程を行った反応槽に、金属原料混合液を8mL/min、反応槽内のアンモニウムのモル濃度に対する金属原料液に含まれるマンガン塩のモル濃度の比が1.3となる割合で反応槽内に硫酸アンモニウム水溶液を連続的に添加した。また反応槽内の溶液のpHが11.0(測定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下した。核成長工程開始から27時間経過した後、すべての送液を停止し晶析反応を終了した。
得られたニッケルコバルトマンガン金属複合水酸化物含有スラリーを洗浄して脱水した後、105℃で20時間乾燥および篩別し、ニッケルコバルトマンガン金属複合水酸化物C1を得た。ニッケルコバルトマンガン金属複合水酸化物C1と、水酸化リチウム粉末とを、前駆体中のNi、Co、及びMnに対する水酸化リチウム粉末中のLiのモル比が、Li/(Ni+Co+Mn)=1.30となる割合で秤量して混合し、混合原料を得た。
その後、得られた混合原料を、大気雰囲気下、1100℃で10時間焼成し、ディスクミルを用いて回転数1200rpmで解砕し、加えてメノウ乳鉢で解砕することによりリチウム金属複合酸化物C1を得た。組成分析を行い、組成式(1)に対応させたところ、a=0.29、M1=Ni、Co、Mnであった。またM1に含まれるNiの割合は、33.2モル%であった。
リチウム金属複合酸化物C1は、層状構造を有しており、比表面積が0.6m/gであった。
表4に、リチウム金属複合酸化物C1の数平均包絡度1、数平均包絡度2、CD10、CD90及びBET比表面積の測定結果を示す。
≪比較例2≫
<リチウム金属複合酸化物C2の製造>
[核生成工程]
攪拌器及びオーバーフローパイプを備えた反応槽内と、オーバーフローパイプに連結された濃縮槽、および濃縮槽から反応槽へ循環を行う機構を有する装置を用い、反応槽に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を30℃に保持した。
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、Niと、Coと、Mnとの原子比が0.34:0.33:0.33となる割合で混合して、金属原料混合液を調製した。
次に反応槽内に錯化剤である硫酸アンモニウム結晶を投入し、反応槽に窒素ガスを連続的に供給し、濃縮槽は大気雰囲気下とした。攪拌下、金属原料混合液を10mL/minの送液速度で連続的に添加し、反応槽内のアンモニウムのモル濃度に対する金属原料液に含まれるマンガン塩のモル濃度の比が0.8となる割合で反応槽内に硫酸アンモニウム水溶液を連続的に添加した。また反応槽内の溶液のpHが11.7(設定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下した。
核生成工程開始から2時間経過した後、すべての送液を停止した。
[核成長工程]
続いて、反応槽に窒素ガスを連続的に供給し、濃縮槽は大気雰囲気とした状態で、核生成工程を行った反応槽に、金属原料混合液を8mL/min、反応槽内のアンモニウムのモル濃度に対する金属原料液に含まれるマンガン塩のモル濃度の比が0.8となる割合で反応槽内に硫酸アンモニウム水溶液を連続的に添加した。また反応槽内の溶液のpHが11.0(測定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下した。核成長工程開始から18時間経過した後、すべての送液を停止し晶析反応を終了した。
得られたニッケルコバルトマンガン金属複合水酸化物含有スラリーを洗浄して脱水した後、105℃で20時間乾燥および篩別し、ニッケルコバルトマンガン金属複合水酸化物C2を得た。ニッケルコバルトマンガン金属複合水酸化物C2と、水酸化リチウム粉末とを、前駆体中のNi、Co、及びMnに対する水酸化リチウム粉末中のLiのモル比が、Li/(Ni+Co+Mn)=1.03となる割合で秤量して混合し、混合原料を得た。
その後、得られた混合原料を、大気雰囲気下、950℃で10時間焼成し、ディスクミルを用いて回転数1200rpmで解砕することによりリチウム金属複合酸化物C2を得た。組成分析を行い、組成式(1)に対応させたところ、a=0.03、M1=Ni、Co、Mnであった。またM1に含まれるNiの割合は、34.9モル%であった。
リチウム金属複合酸化物C2は、層状構造を有しており、比表面積が1.0m/gであった。
表4に、リチウム金属複合酸化物C2の数平均包絡度1、数平均包絡度2、CD10、CD90及びBET比表面積の測定結果を示す。
Figure 2023101923000004
100:積層体、110:正極、111:正極活物質層、112:正極集電体、113:外部端子、120:負極、121:負極活物質層、122:負極集電体、123:外部端子、130:固体電解質層、200:外装体、200a:開口部、1000:固体二次電池

Claims (9)

  1. 層状構造を有し、少なくともLiとMnと元素M1を含む固体二次電池に用いられるリチウム金属複合酸化物粉末であって、
    静的画像解析によって測定される、前記リチウム金属複合酸化物粉末の投影面積円相当径の体積基準の累積粒度分布において、小粒子側からの累積割合が50%、90%となる円相当径(μm)をそれぞれCD50、CD90としたとき、
    前記CD50以上前記CD90以下の範囲を満たす粒子の数平均包絡度が0.860以上0.980以下であり、
    下記組成式(1)を満たす、リチウム金属複合酸化物粉末。
    aLiMnO・(1-a)LiM1O・・・(1)
    (式(1)中、0.1<a<1であり、M1はNi、Co、Mn、Fe、Cu、Ti、V、Na、Mg、Ca、Sr、Ba、B、Al、Si、P、W、Mo、Nb、Zn、Sn、Zr、Cr、Ga、Ge、Pd、Ag、Cd、In及びVからなる群より選択される1種以上の元素である。)
  2. 前記累積粒度分布において、小粒子側からの累積割合が10%となる円相当径(μm)をCD10としたとき、前記CD10以上前記CD50以下の範囲を満たす粒子の数平均包絡度が0.950以上1未満である、請求項1に記載のリチウム金属複合酸化物粉末。
  3. 前記CD90は7.0μmを超え20.0μm以下である、請求項1又は2に記載のリチウム金属複合酸化物粉末。
  4. 前記CD10は3.0μm以上7.0μm以下である、請求項2又は3に記載のリチウム金属複合酸化物粉末。
  5. BET比表面積が0.3m/g以上2.0m/g以下である、請求項1~4のいずれか1項に記載のリチウム金属複合酸化物粉末。
  6. 前記元素M1はNiを必須とし、元素M1の全量中のNiの割合が20mol%以上である、請求項1~5のいずれか1項に記載のリチウム金属複合酸化物粉末。
  7. 請求項1~6のいずれか1項に記載のリチウム金属複合酸化物粉末を含む、固体二次電池用正極活物質。
  8. 請求項7に記載の固体二次電池用正極活物質を含む固体二次電池用正極。
  9. 請求項8に記載の固体二次電池用正極を含む固体二次電池。
JP2022002162A 2022-01-11 2022-01-11 リチウム金属複合酸化物粉末、固体二次電池用正極活物質、固体二次電池用正極及び固体二次電池 Pending JP2023101923A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022002162A JP2023101923A (ja) 2022-01-11 2022-01-11 リチウム金属複合酸化物粉末、固体二次電池用正極活物質、固体二次電池用正極及び固体二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022002162A JP2023101923A (ja) 2022-01-11 2022-01-11 リチウム金属複合酸化物粉末、固体二次電池用正極活物質、固体二次電池用正極及び固体二次電池

Publications (1)

Publication Number Publication Date
JP2023101923A true JP2023101923A (ja) 2023-07-24

Family

ID=87425437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022002162A Pending JP2023101923A (ja) 2022-01-11 2022-01-11 リチウム金属複合酸化物粉末、固体二次電池用正極活物質、固体二次電池用正極及び固体二次電池

Country Status (1)

Country Link
JP (1) JP2023101923A (ja)

Similar Documents

Publication Publication Date Title
JP6650064B1 (ja) 全固体リチウムイオン電池用正極活物質、電極および全固体リチウムイオン電池
WO2021145420A1 (ja) 全固体リチウムイオン電池用正極活物質、電極および全固体リチウムイオン電池
WO2021145431A1 (ja) 全固体リチウムイオン電池用混合粉末、全固体リチウムイオン電池用混合ペースト、電極および全固体リチウムイオン電池
JP6930015B1 (ja) 前駆体、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2021145438A1 (ja) 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
WO2022044720A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2021145179A1 (ja) 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
WO2021145444A1 (ja) 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
JP7157219B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022050311A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7471903B2 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2023101923A (ja) リチウム金属複合酸化物粉末、固体二次電池用正極活物質、固体二次電池用正極及び固体二次電池
JP7204868B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7233511B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7219802B1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7116267B1 (ja) 金属複合化合物、リチウム金属複合酸化物の製造方法及び金属複合化合物の製造方法
WO2022004323A1 (ja) リチウム二次電池正極活物質用前駆体及びリチウム二次電池正極活物質の製造方法
WO2021125271A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2023101586A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2022191727A (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2023076015A (ja) 前駆体粉末、正極活物質粉末、正極活物質粉末の製造方法、正極及びリチウム二次電池
KR20230002399A (ko) 리튬 이차 전지용 정극 활물질 입자, 리튬 이차 전지용 정극 및 리튬 이차 전지