WO2022044720A1 - リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 - Google Patents

リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 Download PDF

Info

Publication number
WO2022044720A1
WO2022044720A1 PCT/JP2021/028730 JP2021028730W WO2022044720A1 WO 2022044720 A1 WO2022044720 A1 WO 2022044720A1 JP 2021028730 W JP2021028730 W JP 2021028730W WO 2022044720 A1 WO2022044720 A1 WO 2022044720A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
lithium secondary
active material
lithium
Prior art date
Application number
PCT/JP2021/028730
Other languages
English (en)
French (fr)
Inventor
信吾 橘
友也 黒田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020237005604A priority Critical patent/KR20230056668A/ko
Priority to CN202180051065.7A priority patent/CN115885398A/zh
Priority to US18/042,406 priority patent/US20230327105A1/en
Priority to JP2022545592A priority patent/JPWO2022044720A1/ja
Priority to EP21861148.1A priority patent/EP4203105A1/en
Publication of WO2022044720A1 publication Critical patent/WO2022044720A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery, and a lithium secondary battery.
  • Lithium metal composite oxide is used as a positive electrode active material for lithium secondary batteries.
  • Lithium secondary batteries have already been put into practical use not only in small power sources such as mobile phone applications and notebook computer applications, but also in medium-sized or large-sized power sources such as automobile applications and power storage applications.
  • carbon atoms may remain in the obtained positive electrode active material for a lithium secondary battery. This is because a compound having a carbon atom derived from a raw material used at the time of production remains in the positive electrode active material for a lithium secondary battery. Examples of the compound having a carbon atom include lithium carbonate.
  • the compound having a carbon atom When a large amount of a compound having a carbon atom remains on the outside of the particles (particularly the surface of the particle) contained in the positive electrode active material for a lithium secondary battery, the compound having a carbon atom is decomposed during the discharge reaction to generate gas. Sometimes. Further, when a compound having a carbon atom comes into contact with the electrolytic solution, the electrolytic solution may be decomposed to generate gas. The generated gas causes deterioration of battery characteristics.
  • Patent Document 1 describes that a compound containing tungsten and lithium is provided on the surface of lithium nickel composite oxide particles. Further, Patent Document 1 describes limiting the amount of lithium carbonate present on the surface of the lithium nickel composite oxide particles.
  • the present invention is a positive electrode active material for a lithium secondary battery, which has a high initial discharge capacity and excellent cycle characteristics even if the positive electrode active material for a lithium secondary battery contains a carbon atom. It is an object of the present invention to provide a positive electrode for a lithium secondary battery containing a substance and a lithium secondary battery.
  • high initial discharge capacity means that the value of the initial discharge capacity measured by the method described later is 160 mAh / g or more.
  • excellent in cycle characteristics means that the value of the cycle maintenance rate measured by the method described later is 72% or more.
  • the present invention includes [1] to [15].
  • [1] It contains at least Li, Ni, an element X, and a carbon atom, and the element X is one selected from the group consisting of Al, Ti, Nb, B, W, Zr, Mg, Sn, and P.
  • a positive electrode active material for a lithium secondary battery which is the above element and satisfies the following (1) and (2).
  • (1) Cx / Cy ⁇ 10 (2) 0 ⁇ (Cy / Cz) ⁇ 100
  • Cx is the abundance (mass%) of the element X obtained by measurement using X-ray photoelectron spectroscopy.
  • Cy is X-ray photoelectron spectroscopy.
  • At least Li, Ni, element X, and carbon atom are contained, and the element X is one selected from the group consisting of Al, Ti, Nb, B, W, Zr, Mg, Sn, and P.
  • a positive electrode active material for a lithium secondary battery which is the above element and satisfies the following (1) and (3).
  • Cx / Cy ⁇ 10 (3) 0 ⁇ (Cy / Cz) ⁇ 500 (In the above (1) or (3), Cx is the abundance (mass%) of the element X obtained by measurement using X-ray photoelectron spectroscopy. Cy is the abundance (mass%) of the carbon atom obtained from the C1s spectrum obtained by measurement using X-ray photoelectron spectroscopy. Cz is the abundance (mass%) of the carbon atom obtained by measurement using the combustion-infrared absorption method. ) [3] The positive electrode active material for a lithium secondary battery according to [1] or [2], wherein Cy is 0 ⁇ Cy ⁇ 50.
  • the positive electrode active material for a lithium secondary battery comprises a lithium metal composite oxide and a composite phase, and the lithium metal composite oxide is selected from the group consisting of Li and Ni, and elements M and Al.
  • the element M is one or more elements selected from the group consisting of Co, Mn, Fe, Cu, Mo, Zn, Ga and V.
  • a method for producing a positive electrode active material for a lithium secondary battery comprising the following steps (a), (b) and (c) in this order.
  • Step (a) A step of mixing and firing a metal composite compound containing at least Ni and a lithium compound to obtain a lithium metal composite oxide.
  • the element X is one or more elements selected from the group consisting of Al, Ti, Nb, B, W, Zr, Mg, Sn, and P, and has a 50% cumulative volume particle size of the compound containing the element X.
  • D 50 ( ⁇ m) is 0.02 ⁇ m or more and 90 ⁇ m or less.
  • the step (b) includes a step of mixing the coating material containing the element X and the lithium metal composite oxide in an atmosphere containing water or water and carbon dioxide gas [12] or [13].
  • the step (b) includes a step of mixing a coating material containing element X and a lithium metal composite oxide, and holding the mixture in an atmosphere containing water or water and carbon dioxide gas after mixing [12].
  • the method for producing a positive electrode active material for a lithium secondary battery according to any one of [14].
  • the positive electrode active material for a lithium secondary battery contains a carbon atom
  • the positive electrode active material for a lithium secondary battery and the positive electrode for a lithium secondary battery have a high initial discharge capacity and excellent cycle characteristics.
  • lithium secondary batteries can be provided.
  • FIG. 2 is a schematic view showing a laminate included in an all-solid-state lithium-ion secondary battery.
  • FIG. 3 is a schematic diagram showing the overall configuration of an all-solid-state lithium-ion secondary battery.
  • MCC Metal Complex Compound
  • CAM positive electrode active material for a lithium secondary battery
  • LiMO lithium metal composite oxide
  • the CAM of this embodiment contains at least Li, Ni, element X and a carbon atom.
  • the element X is one or more elements selected from the group consisting of Al, Ti, Nb, B, W, Zr, Mg, Sn, and P.
  • Ni refers not to a nickel metal but a nickel atom
  • Co, Al, Li and the like also refer to a cobalt atom, an aluminum atom, a lithium atom and the like, respectively.
  • the carbon atom contained in the CAM of the present embodiment is preferably derived from a compound having a carbon atom such as lithium carbonate, lithium hydrogen carbonate, an organic lithium compound, and a hydrocarbon.
  • the compound having a carbon atom is a compound contained in a raw material used in the production of CAM, or a compound obtained by reacting in the production of CAM.
  • the CAM of the present embodiment preferably has a carbon atom on the surface, preferably has a carbon atom on the surface and inside, and the LiMO contained in the CAM has a carbon atom on the surface. It is preferable that carbon atoms are present on the surface and inside.
  • CAM is a powder.
  • X-ray photoelectron spectroscopy is referred to as "XPS".
  • XPS X-ray photoelectron spectroscopy
  • X-ray photoelectron spectroscopy As the X-ray photoelectron spectroscope used for the measurement by XPS, specifically, K-Alpha manufactured by Thermo Fisher Scientific can be used. Specifically, the spectrum of C1s and the spectrum of element X are measured. AlK ⁇ rays are used as the X-ray source, and a neutralization gun (acceleration voltage 0.3 V, current 100 ⁇ A) is used for charge neutralization at the time of measurement.
  • the spectral peak of the element X is the spectral peak of each element of aluminum 2p, titanium 2p, niobium 3d, boron 1s, tungsten 4f, zirconium 3d, magnesium 2p, tin 3d and phosphorus 2p.
  • spot size 400 ⁇ m
  • Pass Energy 50 eV
  • Step 0.1 eV
  • Dwelltime 500 ms.
  • the peak area described later is calculated using an Avantage data system manufactured by Thermo Fisher Scientific.
  • the peak attributed to surface-contaminated hydrocarbons in the C1s spectrum is charge-corrected as 284.6 eV.
  • the spectral peaks of element X are aluminum 2p, titanium 2p, niobium 3d, boron 1s, tungsten 4f, zirconium 3d, magnesium 2p, tin 3d and phosphorus 2p.
  • the XPS measurement conditions may be appropriately adjusted to conditions in which most of the particles contained in the CAM can be measured.
  • the condition that the irradiation diameter of X-ray is 400 ⁇ m, Pass Energy is 50 eV, Step is 0.1 eV, and Dwelltime is 500 ms can be mentioned.
  • the spectral peak area of the element X is calculated using the Avantage data system manufactured by Thermo Fisher Scientific, and the abundance of the element X is calculated based on this.
  • charge correction is performed with the C1s peak set to 284.6 eV.
  • the abundance of element X in the surface region of particles existing in the range irradiated with X-rays can be measured.
  • the total value of the abundance of the element X in the surface region of the particles existing in the range irradiated with X-rays is the measured value.
  • the abundance (mass%) of carbon atoms obtained from the C1s spectrum obtained by measurement using X-ray photoelectron spectroscopy, that is, the binding energy is 290 ⁇ 5 eV in the C1s spectrum obtained when CAM is measured by XPS.
  • Cy be the abundance (mass%) of carbon atoms obtained based on the peak area having a peak top.
  • a peak with a binding energy of 290 ⁇ 5 eV indicates the presence of a carbon atom derived from (-CO 3 ).
  • the abundance of carbon atoms in the surface region of particles existing in the range irradiated with X-rays can be measured.
  • the measured value is the total value of the abundance of carbon atoms in the surface region of the particles existing in the range irradiated with X-rays.
  • the abundance (mass%) of carbon atoms obtained when CAM is measured by the combustion-infrared absorption method is defined as Cz.
  • the combustion-infrared absorption method measures by the following method. According to the combustion-infrared absorption method, the abundance of carbon atoms contained in the whole particles of CAM can be measured.
  • the combustion-infrared absorption method is carried out by heating the CAM to a predetermined temperature in a tubular electric resistance furnace and in an oxygen stream and burning it. Carbon-containing gas components such as carbon dioxide and carbon monoxide generated by combustion can be measured with an infrared detector, and the abundance of carbon contained in the entire CAM particles can be measured. Specifically, EMIA-810W (HORIBA, Ltd.) can be used as the device used for the combustion-infrared absorption method.
  • Cx, Cy and Cz satisfy the following (1) and (2).
  • (1) Cx / Cy ⁇ 10 (2) 0 ⁇ (Cy / Cz) ⁇ 100
  • Cx is the abundance (mass%) of the element X in the surface region of the particles contained in the CAM.
  • the value of “Cy” is the abundance (mass%) of carbon atoms in the surface region of the particles contained in the CAM.
  • the value of "Cx / Cy” means the ratio of the abundance (mass%) of the element X and the carbon atom in the surface region of the particles contained in the CAM.
  • the "ionic conduction phase” is a phase containing a carbon atom and an element X that promotes the movement of lithium ions.
  • the surface region of the particles contained in the CAM refers to a region in which constituent elements and electronic states can be analyzed by XPS measurement. Specifically, it refers to a region from the outermost surface to a depth that can be measured by XPS in the direction from the outermost surface toward the center of the particle.
  • Cx / Cy is preferably 9.5 or less, more preferably 9.0 or less, and particularly preferably 8.5 or less.
  • Examples of the lower limit of "Cx / Cy” include 0.10 or more, 0.15 or more, and 0.20 or more.
  • Cx / Cy The upper and lower limits of "Cx / Cy" can be arbitrarily combined. Examples of combinations include 0.10 or more and 10 or less, 0.15 or more and 9.5 or less, 0.20 or more and 9.0 or less, and 0.20 or more and 8.5 or less for "Cx / Cy".
  • Cz is the abundance (mass%) of carbon atoms in the entire particles contained in the CAM.
  • Cy / Cz means the ratio of the abundance of carbon atoms in the surface region of the particles contained in the CAM (mass%) to the abundance of carbon atoms in the entire particles contained in the CAM (mass%). do.
  • the value of "Cy / Cz" is 100 or less, it can be inferred that the abundance of carbon atoms in the surface region of the particles contained in the CAM is sufficiently small. Therefore, it becomes difficult to generate gas due to the reaction of the compound having a carbon atom with the electrolytic solution and the decomposition of the electrolytic solution. As a result, the cycle characteristics of the battery are less likely to deteriorate.
  • Cy / Cz is preferably 80 or less, more preferably 60 or less.
  • Examples of the lower limit of “Cy / Cz” include 1.0 or more, 2.5 or more, 5.0 or more, and 5.3 or more.
  • the upper limit value and the lower limit value of "Cy / Cz" can be arbitrarily combined. Examples of combinations include 1.0 or more and 80 or less, 2.5 or more and 70 or less, 5.0 or more and 60 or less, and 5.3 or more and 60 or less for "Cy / Cz".
  • the initial discharge capacity of the manufactured battery can be increased and the cycle characteristics can be improved. be able to.
  • Cx, Cy and Cz satisfy the above (1) and the following (3) in the CAM.
  • (3) 0 ⁇ (Cy / Cz) ⁇ 500
  • Cy is the abundance (mass%) of the carbon atom obtained from the C1s spectrum obtained by measurement using X-ray photoelectron spectroscopy.
  • Cz is the abundance (mass%) of the carbon atom obtained by measurement using the combustion-infrared absorption method.
  • Cy / Cz is preferably 400 or less, more preferably 375 or less, and even more preferably 350 or less.
  • Examples of the lower limit of "Cy / Cz” include 5.0 or more, 10 or more, 20 or more, and 25 or more.
  • the upper and lower limits of "Cy / Cz" can be arbitrarily combined. Examples of combinations include 5.0 or more and 400 or less, 10 or more and 375 or less, 20 or more and 350 or less, and 25 or more and 350 or less for "Cy / Cz".
  • the initial discharge capacity of the manufactured battery can be increased and the cycle characteristics can be improved. be able to.
  • Cx is preferably 0 ⁇ Cx ⁇ 95. Further, Cx is preferably 0.1 or more, more preferably 2.5 or more, and even more preferably 5.0 or more. Cx is preferably 85 or less, more preferably 75 or less, and even more preferably 65 or less. The upper limit value and the lower limit value of Cx can be arbitrarily combined. Examples of combinations include Cx of 0.1 or more and 85 or less, 2.5 or more and 75 or less, and 5.0 or more and 65 or less.
  • Cy is preferably 0 ⁇ Cy ⁇ 50. Further, Cy is preferably 1.0 or more, more preferably 2.0 or more, further preferably 3.0 or more, and particularly preferably 4.6 or more. Cy is preferably 48 or less, more preferably 45 or less, and even more preferably 40 or less.
  • the upper limit value and the lower limit value of Cy can be arbitrarily combined. Examples of combinations include Cy of 1.0 or more and 48 or less, 2.0 or more and 45 or less, 3.0 or more and 40 or less, and 4.6 or more and 40 or less.
  • Cz is preferably 0 ⁇ Cz ⁇ 2. Further, the Cz is preferably 0.1 or more, more preferably 0.15 or more, still more preferably 0.25 or more.
  • the Cz is preferably 2.0 or less, more preferably 1.8 or less, further preferably 1.6 or less, and particularly preferably 1.5 or less.
  • the upper limit value and the lower limit value of Cz can be arbitrarily combined. Examples of combinations include Cz of more than 0 and 2.0 or less, 0.1 or more and 1.8 or less, 0.15 or more and 1.6 or less, and 0.25 or more and 1.5 or less.
  • Cz is preferably 0 ⁇ Cz ⁇ 0.4.
  • the Cz is preferably 0.01 or more, more preferably 0.03 or more, and even more preferably 0.05 or more.
  • the Cz is preferably 0.4 or less, more preferably 0.38 or less, further preferably 0.35 or less, and particularly preferably 0.3 or less.
  • the upper limit value and the lower limit value of Cz can be arbitrarily combined. Examples of combinations include Cz of more than 0 and 0.4 or less, 0.01 or more and 0.38 or less, 0.03 or more and 0.35 or less, and 0.05 or more and 0.3 or less.
  • the CAM preferably comprises LiMO and a composite phase. Further, it is particularly preferable to have a composite phase in the surface region of LiMO.
  • the surface region of LiMO may be covered with a composite phase, or the composite phase may be scattered in a part of the surface region of LiMO and a part of the surface of LiMO may be exposed.
  • the "surface region of LiMO” refers to the outermost surface of the LiMO particles and the region from the outermost surface to a depth of approximately 10 nm from the outermost surface toward the center of the particles.
  • Examples of the composite phase include those having lithium ion conductivity.
  • the composite phase has a composition different from that of CAM, and examples thereof include composite metal oxides containing Li and element X but not element M.
  • the composite phase is considered to be represented by the sum of the ionic conduction phase and the resistance phase.
  • the ionic conduction phase is likely to be formed in the surface region of the particles contained in the CAM, so that the contribution of the ionic conduction phase becomes large and the composite phase becomes large. It behaves as an ionic conduction phase.
  • LiMO preferably contains at least a lithium atom, Ni, and one or more elements selected from the group consisting of the elements M and Al.
  • the element M is one or more elements selected from the group consisting of Co, Mn, Fe, Cu, Mo, Zn, Ga and V.
  • the composite phase preferably contains the element X, and preferably contains the element X and a carbon atom.
  • the CAM provided with LiMO and the composite phase is represented by the following composition formula (I), and is preferably one containing a carbon atom.
  • the element M is Co, Mn, Fe, Cu, Mo, Zn, Ga. And one or more elements selected from the group consisting of V.)
  • m is preferably ⁇ 0.001 or higher, more preferably ⁇ 0.0015 or higher, and particularly preferably ⁇ 0.002 or higher, from the viewpoint of improving the cycle characteristics. Further, from the viewpoint of obtaining a lithium secondary battery having high discharge rate characteristics, m is preferably 0.1 or less, more preferably 0.08 or less, and particularly preferably 0.06 or less. The above upper limit value and lower limit value of m can be arbitrarily combined. m is preferably ⁇ 0.001 ⁇ m ⁇ 0.1, and more preferably ⁇ 0.002 ⁇ m ⁇ 0.06.
  • composition formula (I) from the viewpoint of obtaining a lithium secondary battery having a high discharge rate characteristic, 0 ⁇ n + p ⁇ 0.6 is preferable, 0 ⁇ n + p ⁇ 0.5 is more preferable, and 0 ⁇ . It is even more preferable that n + p ⁇ 0.25, and even more preferably 0 ⁇ n + p ⁇ 0.2.
  • p is more preferably 0.05 or more, and particularly preferably 0.08 or more, from the viewpoint of obtaining a lithium secondary battery having a low internal resistance of the battery. Further, from the viewpoint of obtaining a lithium secondary battery having high thermal stability, 0.5 or less is preferable, and 0.4 or less is particularly preferable.
  • the upper limit value and the lower limit value of p can be arbitrarily combined. Examples of combinations include p of 0.05 or more and 0.5 or less and 0.08 or more and 0.4 or less.
  • n is more preferably 0.0002 or more, and particularly preferably 0.0005 or more, from the viewpoint of improving the cycle characteristics. Further, 0.15 or less is preferable, 0.13 or less is more preferable, and 0.1 or less is particularly preferable.
  • the upper limit value and the lower limit value of n can be arbitrarily combined. n is preferably 0.0002 ⁇ n ⁇ 0.15.
  • the combination of x, n, and p is preferably 0 ⁇ m ⁇ 0.1, 0.08 ⁇ p ⁇ 0.4, and 0.0002 ⁇ n ⁇ 0.15.
  • composition analysis The composition analysis of CAM or LiMO can be measured by dissolving the obtained CAM or LiMO powder in hydrochloric acid and then using an ICP emission spectrophotometer.
  • ICP emission spectroscopic analyzer for example, SPS3000 manufactured by SII Nanotechnology Co., Ltd. can be used.
  • the composition of the composite phase can be confirmed by using STEM-EDX element line analysis, inductively coupled plasma emission spectrometry, electron probe microanalyzer analysis, etc. of the particle cross section of the CAM.
  • the crystal structure of the composite phase can be confirmed by using powder X-ray diffraction or electron diffraction.
  • the CAM preferably has a BET specific surface area of 2.0 m 2 / g or less, more preferably 1.8 m 2 / g or less, further preferably 1.5 m 2 / g or less, and 1.3 m 2 / g or less. Is particularly preferable. Further, the BET specific surface area is preferably 0.1 m 2 / g or more, more preferably 0.2 m 2 / g or more, and particularly preferably 0.3 m 2 / g or more.
  • the BET specific surface area is not more than the above upper limit value, the volume capacity density of the lithium secondary battery tends to be high. Further, when it is at least the above lower limit value, the discharge rate characteristic of the lithium secondary battery tends to be high.
  • the upper and lower limits of the BET specific surface area can be arbitrarily combined.
  • the BET specific surface area is 0.1 m 2 / g or more and 2.0 m 2 / g or less, 0.2 m 2 / g or more and 1.8 m 2 / g or less, 0.3 m 2 / g or more 1. Examples thereof include 5 m 2 / g or less, 0.3 m 2 / g or more and 1.3 m 2 / g or less.
  • the BET specific surface area of CAM can be measured by a BET specific surface area measuring device.
  • a BET specific surface area measuring device for example, Macsorb (registered trademark) manufactured by Mountech can be used.
  • Macsorb registered trademark manufactured by Mountech
  • the crystal structure of the CAM is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • Hexagonal crystal structures are P3, P31, P32, R3, P-3, R-3, P312, P321, P3112, P3121, P3212, P3221, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P61, P65, P62, P64, P63, P-6, P6 / m, P63 / m, P622, From P6122, P6522, P6222, P6422, P6322, P6mm, P6cc, P63cm, P63mc, P-6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P63 / mcm and P63 / mmc It belongs to any one space group selected from the group.
  • the monoclinic crystal structure is composed of P2, P21, C2, Pm, Pc, Cm, Cc, P2 / m, P21 / m, C2 / m, P2 / c, P21 / c and C2 / c. It belongs to any one space group selected from the group.
  • the crystal structure is a hexagonal crystal structure belonging to the space group R-3m or a monoclinic crystal structure belonging to C2 / m. It is particularly preferable to have a crystal structure.
  • Crystal structure measurement method The crystal structure of CAM can be measured by observing using a powder X-ray diffraction measuring device (for example, Ultima IV manufactured by Rigaku Co., Ltd.).
  • the CAM manufacturing method of the present embodiment is a method of sequentially carrying out the MCC manufacturing process, the LiMO manufacturing process, and the CAM manufacturing process.
  • an MCC containing a metal element other than lithium, that is, Ni, the element M which is an arbitrary metal, and Al which is an arbitrary metal is prepared.
  • the MCC containing Ni, the elements M and Al, and the lithium compound it is preferable to calcin the MCC containing Ni, the elements M and Al, and the lithium compound.
  • the MCC containing Ni, elements M and Al a metal composite hydroxide containing Ni, elements M and Al, or a metal composite oxide containing Ni, elements M and Al is preferable.
  • MCC manufacturing process The MCC can be produced by a commonly known batch coprecipitation method or continuous coprecipitation method. Hereinafter, the production method thereof will be described in detail by taking as an example a metal composite hydroxide containing Ni, Co and Al as the metal.
  • a nickel salt solution, a cobalt salt solution, an aluminum salt solution, and a complexing agent are reacted by a co-precipitation method, particularly a continuous method described in JP-A-2002-201028, to cause Ni a Co b Al c (OH). 2
  • the nickel salt which is the solute of the nickel salt solution is not particularly limited, but for example, any one or more of nickel sulfate, nickel nitrate, nickel chloride and nickel acetate can be used.
  • cobalt salt which is the solute of the cobalt salt solution
  • any one or more of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used.
  • aluminum salt that is the solute of the aluminum salt solution for example, aluminum sulfate, sodium aluminate, or the like can be used.
  • the above metal salts are used in a ratio corresponding to the composition ratio of the above Ni a Co b Al c (OH) 2 .
  • water is used as a solvent.
  • the complexing agent is a compound capable of forming a complex with Ni, Co, and Al ions in an aqueous solution.
  • examples thereof include ammonium ion feeders (ammonium salts such as ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride), hydrazine, ethylenediamine tetraacetic acid, nitrilotriacetic acid, uracildiacetic acid, and glycine.
  • the complexing agent may not be contained, and if the complexing agent is contained, the amount of the complexing agent contained in the mixed solution containing the nickel salt solution, the cobalt salt solution, the manganese salt solution and the complexing agent is, for example, The molar ratio to the total number of moles of the metal salt is greater than 0 and 2.0 or less.
  • the mixed solution in order to adjust the pH value of the mixed solution containing the nickel salt solution, cobalt salt solution, manganese salt solution and complexing agent, the mixed solution is mixed before the pH of the mixed solution changes from alkaline to neutral.
  • Add an alkaline aqueous solution Sodium hydroxide and potassium hydroxide can be used as the alkaline aqueous solution.
  • the pH value in the present specification is defined as a value measured when the temperature of the mixed solution is 40 ° C.
  • the pH of the mixture is measured when the temperature of the mixture sampled from the reaction vessel reaches 40 ° C.
  • the temperature of the sampled mixture is lower than 40 ° C, heat the mixture and measure the pH when it reaches 40 ° C.
  • the temperature of the sampled mixture is higher than 40 ° C, cool the mixture and measure the pH when it reaches 40 ° C.
  • the temperature of the reaction vessel is controlled within the range of, for example, 20 ° C. or higher and 80 ° C. or lower, preferably 30 ° C. or higher and 70 ° C. or lower.
  • the pH value in the reaction vessel is controlled, for example, in the range of pH 9 or more and pH 13 or less, preferably pH 11 or more and pH 13 or less.
  • reaction vessel The substances in the reaction vessel are appropriately stirred and mixed.
  • reaction tank used in the continuous coprecipitation method a type of reaction tank in which the formed reaction precipitate overflows for separation can be used.
  • the inside of the reaction tank may have an inert atmosphere.
  • inert atmosphere it is possible to suppress the aggregation of elements that are more easily oxidized than nickel, and to obtain a uniform metal composite hydroxide.
  • the inside of the reaction vessel may be in an atmosphere containing an appropriate oxygen or in the presence of an oxidizing agent while maintaining an inert atmosphere.
  • Increasing the amount of oxidation of the transition metal increases the specific surface area.
  • the oxygen and oxidant in the oxygen-containing gas need only have sufficient oxygen atoms to oxidize the transition metal. If a large amount of oxygen atoms are not introduced, the inert atmosphere in the reaction vessel can be maintained.
  • a predetermined gas type may be aerated in the reaction vessel or the reaction solution may be bubbling directly.
  • various gases such as an inert gas such as nitrogen, argon and carbon dioxide, an oxidizing gas such as air and oxygen, or a mixed gas thereof are supplied into the reaction vessel to obtain the gas.
  • the oxidation state of the reaction product may be controlled.
  • peroxides such as hydrogen peroxide, peroxide salts such as permanganate, perchlorates, hypochlorites, nitrates, halogens, ozone, etc. are used. can do.
  • organic acids such as oxalic acid and formic acid, sulfites, hydrazine and the like can be used.
  • the obtained reaction product is washed with water and then dried to obtain MCC.
  • a nickel cobalt aluminum metal composite hydroxide is obtained as the MCC. If the reaction product contains impurities derived from the mixed solution simply by washing with water, the reaction product contains weak acid water, sodium hydroxide, or potassium hydroxide, if necessary. It may be washed with an alkaline solution.
  • nickel cobalt aluminum metal composite hydroxide is produced as MCC, but nickel cobalt aluminum metal composite oxide may be prepared.
  • a nickel cobalt aluminum metal composite oxide can be prepared by firing a nickel cobalt aluminum metal composite hydroxide.
  • the firing time is preferably 1 hour or more and 30 hours or less in total from the start of temperature rise to the end of temperature retention.
  • the heating rate of the heating step to reach the maximum holding temperature is preferably 180 ° C./hour or more, more preferably 200 ° C./hour or more, and particularly preferably 250 ° C./hour or more.
  • the maximum holding temperature in the present specification is the maximum holding temperature of the atmosphere in the firing furnace in the firing step, and means the firing temperature in the firing step. In the case of the main firing step having a plurality of heating steps, the maximum holding temperature means the maximum temperature in each heating step.
  • the heating rate in the present specification is the time from the time when the temperature rise is started to the time when the temperature rise is reached in the firing apparatus, and the temperature from the temperature at the start of the temperature rise in the firing furnace of the firing apparatus to the maximum holding temperature. It is calculated from the temperature difference.
  • LiMO manufacturing process After the MCC is dried, it is mixed with a lithium compound.
  • LiMO can be obtained by calcining a mixture containing MCC and a lithium compound.
  • lithium compound any one or a mixture of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, and lithium oxide can be used.
  • lithium hydroxide and lithium acetate can react with carbon dioxide in the air and contain several percent of lithium carbonate.
  • the drying conditions of the MCC are not particularly limited.
  • the drying conditions may be, for example, any of the following conditions 1) to 3).
  • Conditions under which the metal composite oxide is reduced Specifically, it is a drying condition in which the metal composite oxide is reduced to the metal composite hydroxide.
  • an inert gas such as nitrogen, helium and argon may be used in the drying atmosphere.
  • Oxygen or air may be used in the drying atmosphere in order to oxidize the metal composite hydroxide.
  • a reducing agent such as hydrazine or sodium sulfite may be used under an inert gas atmosphere at the time of drying.
  • classification may be performed as appropriate.
  • the CAM manufacturing method it is preferable not to perform the step of crushing the MCC. That is, it is preferable to mix the uncrushed MCC and the lithium compound.
  • the CAM obtained using the uncrushed MCC has a lower BET specific surface area and a higher sphericity than that obtained using the crushed MCC. Therefore, when a compound containing the element X described later is added, LiMO having a low BET specific surface area and a high sphericity is used, so that the element X can be easily distributed uniformly.
  • the above lithium compound and MCC are used in consideration of the composition ratio of the final target product.
  • the CAM which is the final target, when the molar ratio of Li contained in the lithium compound and the metal element contained in MCC is 1.1 or less, the obtained CAM Cy and Cz are obtained. It is easy to control to a preferable range of the embodiment.
  • a lithium-nickel cobalt aluminum metal composite oxide can be obtained by firing a mixture of a nickel cobalt aluminum metal composite hydroxide and a lithium compound.
  • a nickel cobalt aluminum metal composite hydroxide for firing, dry air, an oxygen atmosphere, an inert atmosphere, or the like is used depending on the desired composition.
  • the firing step may be firing only once, or may have a plurality of firing steps.
  • the step of firing at the highest temperature is referred to as main firing.
  • a temporary firing may be performed in which the firing is performed at a temperature lower than that of the main firing.
  • firing may be performed after firing at a temperature lower than that of the main firing.
  • the firing temperature (maximum holding temperature) of the main firing is preferably 600 ° C. or higher, more preferably 650 ° C. or higher, and particularly preferably 700 ° C. or higher from the viewpoint of promoting the growth of LiMO particles. Further, from the viewpoint of preventing the formation of cracks in the LiMO particles and maintaining the particle strength, the temperature is preferably 1200 ° C. or lower, more preferably 1100 ° C. or lower, and particularly preferably 1000 ° C. or lower.
  • the upper limit value and the lower limit value of the maximum holding temperature of the main firing can be arbitrarily combined. Examples of the combination include 600 ° C. or higher and 1200 ° C. or lower, 650 ° C. or higher and 1100 ° C. or lower, and 700 ° C. or higher and 1000 ° C. or lower.
  • the main firing is carried out at 600 ° C. or higher, it is easy to control the obtained Cy and Cz of the CAM within the preferable range of the present embodiment.
  • the firing temperature of the tentative firing or the post-baking may be lower than the firing temperature of the main firing, and examples thereof include a range of 350 ° C. or higher and 800 ° C. or lower.
  • the holding temperature in firing may be appropriately adjusted according to the type of transition metal element used, the type and amount of the precipitating agent and the inert melting agent.
  • the time for holding at the holding temperature is 0.1 hours or more and 20 hours or less, preferably 0.5 hours or more and 10 hours or less.
  • the rate of temperature rise to the holding temperature is usually 50 ° C./hour or more and 400 ° C./hour or less, and the temperature lowering rate from the holding temperature to room temperature is usually 10 ° C./hour or more and 400 ° C./hour or less.
  • the atmosphere for firing air, oxygen, nitrogen, argon or a mixed gas thereof can be used as the atmosphere for firing.
  • CAM (CAM manufacturing process) CAM can be obtained by mixing the LiMO obtained in the above step with a compound containing the element X and heat-treating the mixture.
  • Examples of the compound containing the element X include a lithium compound containing the element X, an oxide containing the element X, a hydroxide containing the element X, a carbonate containing the element X, and a nitrate containing the element X. Examples thereof include a sulfate containing the element X, an ammonium salt containing the element X, a halide containing the element X, and a oxalate containing the element X. As the compound containing the element X, an oxide containing the element X is preferable.
  • Compounds containing element X include aluminum oxide, aluminum hydroxide, aluminum sulfate, aluminum chloride, boron oxide, boric acid, lithium borate, niobium oxide, lithium niobate, titanium oxide, titanium hydroxide, tungsten oxide, and tungsten. Acids, tungsten chloride, ammonium dihydrogen phosphate, diphosphorus pentoxide, phosphates, lithium phosphate, zirconium oxide, magnesium oxide, magnesium sulfate, tin oxide and the like, aluminum oxide, aluminum hydroxide, boron oxide, etc. Preferable is boric acid, niobium oxide, lithium niobate, titanium oxide, tungsten oxide, ammonium dihydrogen phosphate, lithium borate, or lithium phosphate.
  • the amount of the compound containing the element X added is adjusted so that the ratio of the molar amount of the element X to the total molar amount of the metal element other than Li contained in LiMO is in a preferable range according to the type of the element X.
  • the element X in the CAM manufacturing process when a compound containing at least one selected from the group consisting of Ti, Nb, P, Zr, Mg, Sn, W and B is used as the element X in the CAM manufacturing process, a compound other than the lithium atom contained in LiMO is used.
  • the ratio of the molar amount of the element X to the total molar amount of the metal element is preferably 1.0 mol% or more and 5.5 mol% or less.
  • the ratio of the molar amount of the element X to the total molar amount of the metal element other than Li contained in LiMO is 1.0 mol% or more. It is preferably 8.0 mol% or less, and more preferably 1.0 mol% or more and 5.5 mol% or less.
  • the 50% cumulative volume particle size D 50 ( ⁇ m) of the compound containing the element X is preferably 90 ⁇ m or less, preferably 80 ⁇ m or less. Is more preferable. Further, the D 50 of the compound containing the element X is preferably 0.02 ⁇ m or more, and particularly preferably 0.05 ⁇ m or more.
  • the upper limit value and the lower limit value of D 50 can be arbitrarily combined. Examples of the combination include 0.02 ⁇ m or more and 90 ⁇ m or less, and 0.05 ⁇ m or more and 80 ⁇ m or less.
  • the D 50 of the compound containing the element X is 0.02 ⁇ m or more and ⁇ m 20 ⁇ m. It is more preferably 0.05 ⁇ m or more, and further preferably 14 ⁇ m or less.
  • the D 50 of the compound containing the element X is preferably 0.02 ⁇ m or more and 90 ⁇ m or less, preferably 0.02 ⁇ m or more. It is more preferably 80 ⁇ m or less.
  • the Cx, Cy and Cz of the obtained CAM can be controlled to the preferable range of the present embodiment.
  • the 50% cumulative volume particle size D50 of the compound containing the element X can be measured by the following wet or dry method.
  • the compound containing B or P as the element X is measured by a dry method.
  • the compound containing an element X other than B and P as the element X is measured by a wet method.
  • the wet measurement method is as follows. Specifically, first, 2 g of the powder of the compound containing the element X is put into 50 ml of a 0.2 mass% sodium hexametaphosphate aqueous solution to obtain a dispersion liquid in which the powder of the compound containing the element X is dispersed.
  • the particle size distribution of the obtained dispersion is measured with a laser diffraction particle size distribution meter to obtain a volume-based cumulative particle size distribution curve. Then, in the obtained cumulative particle size distribution curve, the value of the particle size at the time of 50% accumulation from the fine particle side is 50% cumulative volume particle size D 50 ( ⁇ m).
  • the laser diffraction particle size distribution meter for example, MS2000 manufactured by Malvern can be used.
  • the dry measurement method is as follows. Specifically, first, a dry particle size distribution is measured by a laser diffraction particle size distribution meter using 2 g of a powder of a compound containing the element X, and a volume-based cumulative particle size distribution curve is obtained. In the obtained cumulative particle size distribution curve, the value of the particle size at the time of 50% accumulation from the fine particle side is 50% cumulative volume particle size D 50 ( ⁇ m).
  • the laser diffraction particle size distribution meter for example, MS2000 manufactured by Malvern can be used.
  • the compound containing the element X and LiMO are uniformly mixed until the aggregate of the compound containing the element X or the aggregate of LiMO disappears.
  • the mixing device is not limited as long as the compound containing the element X and LiMO can be uniformly mixed, but it is preferable to mix using, for example, a Ladyge mixer.
  • a composite phase having ionic conductivity can be formed more firmly on the surface of LiMO. ..
  • the compound phase having ionic conductivity can be formed more firmly on the surface of LiMO by retaining the compound containing the element X and LiMO in the atmosphere containing water or water and carbon dioxide gas.
  • the heat treatment conditions may differ depending on the type of the compound containing the element X.
  • the heat treatment conditions include the heat treatment temperature and the heat treatment holding time.
  • the temperature range is 300 ° C. or higher and 650 ° C. or lower for 4 hours. It is preferable to heat-treat for 10 hours or less.
  • the heat treatment temperature is preferably 300 ° C. or higher and 600 ° C. or lower, and the heat treatment is preferably performed in a temperature range of 4 hours or more and 10 hours or less.
  • the compound containing the element X may diffuse into the inside of the crystal structure of LiMO, and the stability of the crystal structure may decrease. If the heat treatment holding time is shorter than 4 hours, the diffusion of the compound containing the element X is insufficient, and the composite phase having ionic conductivity may not be uniformly formed.
  • the ratio of the molar amount of the element X to the total molar amount of the metal element other than Li contained in LiMO and the firing temperature are determined according to the type of the compound having the element X to be added.
  • the 50 % cumulative volume particle size D50 it is easy to control the Cx and Cx / Cy of the obtained CAM within the preferable range of the present embodiment.
  • the CAM manufacturing method 2 includes the following steps (a), steps (b), and steps (c) in this order.
  • Step (a) A step of mixing and firing a metal composite compound containing at least Ni and a lithium compound to obtain a lithium metal composite oxide.
  • the element X is one or more elements selected from the group consisting of Al, Ti, Nb, B, W, Zr, Mg, Sn, and P, and has a 50% cumulative volume particle size of the compound containing the element X.
  • D 50 ( ⁇ m) is 0.02 ⁇ m or more and 90 ⁇ m or less.
  • Step (a) The step (a) is the same as the LiMO manufacturing step in the CAM manufacturing method 1.
  • MCC and a lithium compound are mixed and fired, and the obtained fired product is melted by a stone mill type crusher. It is preferable to include a step of crushing.
  • the step of crushing the fired product obtained after firing the MCC and the lithium compound once may be provided with a stone mill type crusher.
  • the first fired product obtained after firing the MCC and the lithium compound once is crushed by a stone mill type crusher, and the second fired product obtained by firing the crushed product is further crushed by a stone mill type crusher. You may crush it.
  • the conditions for crushing by the stone mill type crusher include, for example, a rotation speed of 1000 rpm or more and 3000 rpm or less, and a clearance of 50 ⁇ m or more and 200 ⁇ m or less.
  • Step (b) and step (c) are the same steps as the CAM manufacturing step in the CAM manufacturing method 1 except that the heat treatment temperature of the mixture is different.
  • the heat treatment conditions are such that the heat treatment temperature is 200 ° C. or higher and 650.
  • the temperature range is preferably 200 ° C. or lower, and more preferably 200 ° C. or higher and 600 ° C. or lower.
  • the heat treatment time is preferably 4 hours or more and 10 hours or less.
  • the heat treatment conditions are preferably in the temperature range of 200 ° C. or higher and 600 ° C. or lower.
  • the heat treatment time is preferably 4 hours or more and 10 hours or less.
  • the compound containing the element X may diffuse into the inside of the crystal structure of LiMO, and the stability of the crystal structure may decrease. If the heat treatment holding time is shorter than 4 hours, the diffusion of the compound containing the element X is insufficient, and the composite phase having ionic conductivity may not be uniformly formed.
  • the step (b) has a step of mixing the coating raw material containing the element X and LiMO in an atmosphere containing water or water and carbon dioxide gas.
  • the water content in the atmosphere is preferably 40% or more in relative humidity.
  • the step (b) has a step of mixing the coating raw material containing the element X and LiMO, and after mixing, holding the mixture in an atmosphere containing water or water and carbon dioxide gas.
  • the holding time after mixing is preferably 0.5 hours or more and 3 hours or less.
  • a positive electrode for a lithium secondary battery using the CAM of the present embodiment (hereinafter, may be referred to as a positive electrode) and a lithium secondary battery having the positive electrode will be described. do.
  • the CAM of the present embodiment is preferably composed of the CAM of the present embodiment, but may contain other components as long as the effects of the present invention are not impaired.
  • An example of a suitable lithium secondary battery when the CAM of the present embodiment is used has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution arranged between the positive electrode and the negative electrode.
  • FIG. 1A and 1B are schematic views showing an example of a lithium secondary battery.
  • the cylindrical lithium secondary battery 10 is manufactured as follows.
  • a pair of strip-shaped separators 1, a strip-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a strip-shaped negative electrode 3 having a negative electrode lead 31 at one end are divided into a separator 1, a positive electrode 2, and a separator.
  • the electrode group 4 is formed by laminating 1 and the negative electrode 3 in this order and winding them.
  • the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
  • the shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape when the electrode group 4 is cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
  • the shape of the lithium secondary battery having such an electrode group 4 the shape defined by IEC60086, which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C8500 can be adopted. ..
  • IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C8500
  • a cylindrical shape, a square shape, or the like can be mentioned.
  • the lithium secondary battery is not limited to the above-mentioned winding type configuration, and may be a laminated type configuration in which a laminated structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly laminated.
  • the laminated lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode of the present embodiment can be manufactured by first preparing a positive electrode mixture containing a CAM, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • a carbon material As the conductive material of the positive electrode, a carbon material can be used.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and fibrous carbon material.
  • the ratio of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be reduced.
  • thermoplastic resin As the binder contained in the positive electrode, a thermoplastic resin can be used.
  • the thermoplastic resin include a polyimide resin; polyvinylidene fluoride (hereinafter, may be referred to as PVdF), a fluororesin such as polytetrafluoroethylene; a polyolefin resin such as polyethylene and polypropylene, WO2019 / 098384A1 or US2020 / 0274158A1. Resin can be mentioned.
  • thermoplastic resins may be used by mixing two or more kinds. Fluororesin and polyolefin resin are used as binders, and the ratio of fluororesin to the entire positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of polyolefin resin is 0.1% by mass or more and 2% by mass or less. It is possible to obtain a positive electrode mixture having high adhesion to the current collector and high bonding force inside the positive electrode mixture.
  • a band-shaped member made of a metal material such as Al, Ni, or stainless steel can be used as the positive electrode current collector of the positive electrode.
  • Al is used as a forming material and processed into a thin film is preferable because it is easy to process and inexpensive.
  • the positive electrode mixture As a method of supporting the positive electrode mixture on the positive electrode current collector, there is a method of pressure molding the positive electrode mixture on the positive electrode current collector. Further, the positive electrode mixture is made into a paste using an organic solvent, and the obtained positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed to the positive electrode current collector. The mixture may be carried.
  • the organic solvent that can be used is an amine solvent such as N, N-dimethylaminopropylamine or diethylenetriamine; an ether solvent such as tetrahydrofuran; a ketone solvent such as methyl ethyl ketone; methyl acetate.
  • Ester-based solvents such as dimethylacetamide, amide-based solvents such as N-methyl-2-pyrrolidone (hereinafter, may be referred to as NMP); and the like.
  • Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method and an electrostatic spray method.
  • the positive electrode can be manufactured by the method described above.
  • the negative electrode of the lithium secondary battery may be capable of doping and dedoping lithium ions at a lower potential than that of the positive electrode, and is an electrode in which a negative electrode mixture containing a negative electrode active material is supported on a negative electrode current collector. Examples thereof include an electrode composed of a negative electrode active material alone.
  • Negative electrode active material examples include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals, or alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. Be done.
  • Examples of the carbon material that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, coke, carbon black, pyrolytic carbon, carbon fiber, and calcined organic polymer compound.
  • Oxides that can be used as the negative electrode active material include the silicon oxides SnO 2 and SnO represented by the formula SiO x (where x is a positive real number) such as SiO 2 and SiO (here, the formula SnO x ).
  • x is a tin oxide represented by a positive real number); a metal composite oxide containing lithium and titanium such as Li 4 Ti 5 O 12 and LiVO 2 ;
  • the metal that can be used as the negative electrode active material examples include lithium metal, silicon metal, and tin metal.
  • a material that can be used as a negative electrode active material the material described in WO2019 / 098384A1 or US2020 / 0274158A1 may be used.
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil, for example.
  • a carbon material containing graphite as a main component such as natural graphite and artificial graphite, is preferably used because of its high value (good cycle characteristics).
  • the shape of the carbon material may be, for example, a flaky shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an agglomerate of fine powder.
  • the negative electrode mixture may contain a binder, if necessary.
  • the binder include thermoplastic resins, and specifically, PVdF, thermoplastic polyimide, carboxymethyl cellulose (hereinafter, may be referred to as CMC), and styrene-butadiene rubber (hereinafter, may be referred to as SBR). , Polyethylene and polypropylene.
  • Negative electrode current collector examples of the negative electrode current collector included in the negative electrode include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel as a forming material. Among them, Cu is used as a forming material and processed into a thin film is preferable because it is difficult to form an alloy with lithium and it is easy to process.
  • separator contained in the lithium secondary battery for example, a material having a form such as a porous film, a non-woven fabric or a woven fabric made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin or a nitrogen-containing aromatic polymer. Can be used. Further, a separator may be formed by using two or more kinds of these materials, or these materials may be laminated to form a separator. Further, the separator described in JP-A-2000-030686 or US20090111025A1 may be used.
  • the air permeation resistance by the Garley method defined by JIS P 8117 must be 50 seconds / 100 cc or more and 300 seconds / 100 cc or less. It is more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
  • the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, and more preferably 40% by volume or more and 70% by volume or less.
  • the separator may be a stack of separators having different porosities.
  • the electrolytic solution contained in the lithium secondary battery contains an electrolyte and an organic solvent.
  • the electrolyte contained in the electrolytic solution examples include lithium salts such as LiClO 4 , LiPF 6 , and LiBF 4 , and a mixture of two or more of these may be used. Further, the electrolyte described in WO2019 / 098384A1 or US2020 / 0274158A1 may be used. Among them, the electrolyte is at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one type.
  • organic solvent contained in the electrolytic solution for example, the organic solvent described in propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, WO2019 / 098384A1 or US2020 / 0274158A1 can be used.
  • the organic solvent it is preferable to use a mixture of two or more of these, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
  • a mixed solvent of the cyclic carbonate and the acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable.
  • the electrolytic solution it is preferable to use an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is enhanced.
  • a lithium salt containing fluorine such as LiPF 6
  • an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is enhanced.
  • the positive electrode having the above configuration has the CAM having the above-mentioned configuration, the cycle characteristics of the lithium secondary battery can be improved.
  • the lithium secondary battery having the above configuration has the above-mentioned positive electrode, it is a secondary battery having high cycle characteristics.
  • FIGS. 2 and 3 are schematic views showing an example of an all-solid-state lithium-ion secondary battery.
  • FIG. 2 is a schematic view showing a laminate included in an all-solid-state lithium-ion secondary battery.
  • FIG. 3 is a schematic diagram showing the overall configuration of an all-solid-state lithium-ion secondary battery.
  • the all-solid-state lithium-ion secondary battery 1000 has a positive electrode 110, a negative electrode 120, a laminated body 100 having a solid electrolyte layer 130, and an exterior body 200 containing the laminated body 100. Further, the all-solid-state lithium secondary battery 1000 may have a bipolar structure in which a CAM and a negative electrode active material are arranged on both sides of a current collector. Specific examples of the bipolar structure include the structure described in JP-A-2004-95400. The materials constituting each member will be described later.
  • the laminated body 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122.
  • the positive electrode 110 and the negative electrode 120 sandwich the solid electrolyte layer 130 so as not to short-circuit each other.
  • the all-solid-state lithium-ion secondary battery 1000 has a separator between the positive electrode 110 and the negative electrode 120 as used in a conventional liquid-based lithium-ion secondary battery, and short-circuits the positive electrode 110 and the negative electrode 120. It may be prevented.
  • the all-solid-state lithium-ion secondary battery 1000 has an insulator (not shown) that insulates the laminate 100 and the exterior body 200, and a sealant (not shown) that seals the opening 200a of the exterior body 200.
  • a container formed of a metal material having high corrosion resistance such as aluminum, stainless steel, and nickel-plated steel can be used. Further, it is also possible to use a container in which a laminated film having a corrosion resistant treatment on at least one surface is processed into a bag shape.
  • Examples of the shape of the all-solid-state lithium-ion secondary battery 1000 include a coin type, a button type, a paper type (or a sheet type), a cylindrical type, and a square type.
  • the all-solid-state lithium-ion secondary battery 1000 is shown as having one laminated body 100, but the present invention is not limited to this.
  • the all-solid-state lithium-ion secondary battery 1000 may have a structure in which the laminated body 100 is a unit cell and a plurality of unit cells (laminated body 100) are enclosed inside the exterior body 200.
  • the positive electrode 110 has a positive electrode active material layer 111 and a positive electrode current collector 112.
  • the positive electrode active material layer 111 contains the CAM which is one aspect of the present invention described above. Further, the positive electrode active material layer 111 may contain a solid electrolyte (second solid electrolyte), a conductive material, and a binder.
  • the CAM contained in the positive electrode active material layer 111 is in contact with the second solid electrolyte contained in the positive electrode active material layer 111.
  • the positive electrode active material layer 111 contains a plurality of particles (CAM) containing LiMO crystals and a solid electrolyte packed between the plurality of particles (CAM) and in contact with the particles (CAM).
  • Solid electrolyte As the solid electrolyte that the positive electrode active material layer 111 may have, a solid electrolyte that has lithium ion conductivity and is used in a known all-solid-state battery can be adopted.
  • a solid electrolyte include an inorganic electrolyte and an organic electrolyte.
  • the inorganic electrolyte include an oxide-based solid electrolyte, a sulfide-based solid electrolyte, and a hydride-based solid electrolyte.
  • the organic electrolyte include polymer-based solid electrolytes.
  • each electrolyte examples include the compounds described in WO2020 / 208872A1, US2016 / 0235510A1, US2012 / 0251871A1, and US2018 / 0159169A1, and examples thereof include the following compounds.
  • an oxide-based solid electrolyte or a sulfide-based solid electrolyte it is preferable to use an oxide-based solid electrolyte.
  • oxide-based solid electrolyte examples include perovskite-type oxides, NASICON-type oxides, LISION-type oxides, garnet-type oxides, and the like. Specific examples of each oxide include the compounds described in WO2020 / 208872A1, US2016 / 0235510A1, and US2020 / 0259213A1.
  • garnet-type oxide examples include Li-La-Zr-based oxides such as Li 7 La 3 Zr 2 O 12 (LLZ).
  • the oxide-based solid electrolyte may be a crystalline material or an amorphous material.
  • the amorphous solid electrolyte include Li-BO compounds such as Li 3 BO 3 , Li 2 B 4 O 7 , and Li BO 2 .
  • the oxide-based solid electrolyte preferably contains an amorphous material.
  • Examples of the sulfide-based solid electrolyte include Li 2 SP 2 S 5 series compounds, Li 2 S—SiS 2 series compounds, Li 2 S—GeS 2 series compounds, Li 2 SB 2 S 3 series compounds, and LiI-. Examples thereof include Si 2 SP 2 S 5 series compounds, LiI-Li 2 SP 2 O 5 series compounds, LiI-Li 3 PO 4-P 2 S 5 series compounds , and Li 10 GeP 2 S 12 series. ..
  • system compound which refers to a sulfide-based solid electrolyte is a solid electrolyte mainly containing raw materials such as "Li 2 S” and "P 2 S 5 " described before “system compound”. It is used as a general term for.
  • the Li 2 SP 2 S 5 system compound contains a solid electrolyte containing Li 2 S and P 2 S 5 , and further contains other raw materials.
  • the Li 2 SP 2 S 5 system compound also contains a solid electrolyte having a different mixing ratio of Li 2 S and P 2 S 5 .
  • Li 2 SP 2 S 5 system compounds examples include Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -LiI, Li 2 SP 2 S 5 -LiCl, and Li 2 SP 2 .
  • examples thereof include S 5 -LiBr, Li 2 SP 2 S 5- LiI-LiBr, and the like.
  • Li 2 S-SiS 2 compounds include Li 2 S-SiS 2 , Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, and Li 2 S-SiS. 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiCl and the like can be mentioned.
  • Li 2 S-GeS 2 system compound examples include Li 2 S-GeS 2 and Li 2 S-GeS 2 -P 2 S 5 .
  • the sulfide-based solid electrolyte may be a crystalline material or an amorphous material.
  • Two or more types of solid electrolytes can be used in combination as long as the effects of the invention are not impaired.
  • the conductive material contained in the positive electrode active material layer 111 the material described above (conductive material) can be used. Further, as for the ratio of the conductive material in the positive electrode mixture, the ratio described in the above-mentioned (conductive material) can be similarly applied. Further, as the binder contained in the positive electrode, the material described in the above-mentioned (binder) can be used.
  • Positive electrode current collector 112 included in the positive electrode 110 As the positive electrode current collector 112 included in the positive electrode 110, the material described in the above (positive electrode current collector) can be used.
  • a method of pressure molding the positive electrode active material layer 111 on the positive electrode current collector 112 can be mentioned.
  • a cold press or a hot press can be used for pressure molding.
  • a mixture of the positive electrode active material, the solid electrolyte, the conductive material and the binder is made into a paste using an organic solvent to form a positive electrode mixture, and the obtained positive electrode mixture is applied onto at least one surface of the positive electrode current collector 112 and dried.
  • the positive electrode active material layer 111 may be supported on the positive electrode current collector 112 by pressing and fixing.
  • a mixture of the positive electrode active material, the solid electrolyte and the conductive material is made into a paste using an organic solvent to form a positive electrode mixture, and the obtained positive electrode mixture is applied on at least one surface of the positive electrode current collector 112, dried and baked.
  • the positive electrode active material layer 111 may be supported on the positive electrode current collector 112.
  • the organic solvent that can be used for the positive electrode mixture the same organic solvent that can be used when the positive electrode mixture described above (positive electrode current collector) is made into a paste can be used.
  • Examples of the method of applying the positive electrode mixture to the positive electrode current collector 112 include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • the positive electrode 110 can be manufactured by the method described above.
  • the negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122.
  • the negative electrode active material layer 121 contains a negative electrode active material. Further, the negative electrode active material layer 121 may contain a solid electrolyte and a conductive material. As the negative electrode active material, the negative electrode current collector, the solid electrolyte, the conductive material and the binder, those described above can be used.
  • Solid electrolyte layer 130 has the above-mentioned solid electrolyte.
  • the solid electrolyte layer 130 can be formed by depositing an inorganic solid electrolyte on the surface of the positive electrode active material layer 111 of the above-mentioned positive electrode 110 by a sputtering method.
  • the solid electrolyte layer 130 can be formed by applying a paste-like mixture containing a solid electrolyte to the surface of the positive electrode active material layer 111 of the above-mentioned positive electrode 110 and drying it. After drying, the solid electrolyte layer 130 may be formed by press molding and further pressurizing by a cold isotropic pressure pressurization method (CIP).
  • CIP cold isotropic pressure pressurization method
  • the negative electrode 120 is laminated on the solid electrolyte layer 130 provided on the positive electrode 110 as described above by using a known method so that the negative electrode electrolyte layer 121 is in contact with the surface of the solid electrolyte layer 130. It can be manufactured by.
  • lithium ions can be smoothly exchanged between the positive electrode and the solid electrolyte, and the battery performance can be improved.
  • the electrodes having the above configuration since the positive electrode active material for the above-mentioned all-solid-state lithium-ion battery is provided, the battery performance of the all-solid-state lithium-ion battery can be improved.
  • the obtained positive electrode mixture was applied to an Al foil having a thickness of 40 ⁇ m as a current collector and vacuum dried at 150 ° C. for 8 hours to obtain a positive electrode for a lithium secondary battery.
  • the electrode area of the positive electrode for the lithium secondary battery was 1.65 cm 2 .
  • ⁇ Manufacturing of lithium secondary battery (coin type half cell)> The following operations were performed in a glove box with an argon atmosphere. Place the positive electrode for the lithium secondary battery manufactured in ⁇ Manufacturing the positive electrode for the lithium secondary battery> on the lower lid of the part for the coin-type battery R2032 (manufactured by Hosen Co., Ltd.) with the aluminum foil surface facing down. A separator (porous polyethylene film) was placed on top. 300 ⁇ l of the electrolytic solution was injected therein.
  • electrolytic solution a mixture of ethylene carbonate, dimethyl carbonate and ethylmethyl carbonate in a 30:35:35 (volume ratio) solution in which LiPF 6 was dissolved at a ratio of 1.0 mol / l was used.
  • Cycle maintenance rate (%) 50th cycle discharge capacity (mAh / g) / 1st cycle discharge capacity (mAh / g) x 100
  • composition analysis of the CAM produced by the method described later was carried out by the method described in the above-mentioned [Composition analysis].
  • the wet measurement method was carried out according to the above (wet measurement method).
  • the dry measurement method was carried out according to the above (dry measurement method).
  • XPS X-ray Photoelectron Spectroscopy
  • ⁇ Measurement method of initial discharge capacity and cycle maintenance rate The initial discharge capacity and cycle capacity retention rate were evaluated as indicators of the performance of the secondary battery. Specifically, the initial discharge capacity and the cycle capacity retention rate were measured by the method described in the above [Measurement method of initial discharge capacity and cycle retention rate].
  • Example 1 >> 1.
  • Production of CAM-1 After putting water in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to maintain the liquid temperature at 50 ° C.
  • An aqueous solution of nickel sulfate, an aqueous solution of cobalt sulfate, and an aqueous solution of aluminum sulfate were mixed at a ratio of Ni, Co, and Al at an atomic ratio of 88: 9: 3 to prepare a mixed raw material solution.
  • the mixed raw material solution and the ammonium sulfate aqueous solution were continuously added as a complexing agent into the reaction vessel under stirring.
  • An aqueous sodium hydroxide solution was added dropwise at appropriate times so that the pH of the solution in the reaction vessel was 11.6 (when measured at a liquid temperature of 40 ° C.) to obtain particles of nickel-cobalt-aluminum composite hydroxide.
  • the particles of the nickel-cobalt-aluminum composite hydroxide were washed, dehydrated with a centrifuge, isolated and dried at 105 ° C. to obtain a nickel-cobalt-aluminum composite hydroxide 1.
  • the ratio of the molar amount of the element X to the total molar amount of the metal element other than Li in the obtained Niobium oxide (D 50 1.30 ⁇ m), which is a compound containing the LiMO-1 and the element X, is The mixture was mixed at a ratio of 5.1 mol%. By heat-treating at 500 ° C. for 5 hours in an oxygen atmosphere, CAM-1 having a composite phase containing Nb as the element X on the surface of the LiMO powder containing Ni, Co, and Al was obtained.

Abstract

少なくともLiとNiと元素Xと炭素原子とを含有し、前記元素Xは、Al、Ti、Nb、B、W、Zr、Mg、Sn、及びPからなる群より選択される1種以上の元素であり、下記の(1)及び(2)を満たす、リチウム二次電池用正極活物質。 (1)Cx/Cy≦10 (2)0<(Cy/Cz)≦100 (上記(1)又は(2)中、Cxは、X線光電子分光法を用いた測定により得られる、前記元素Xの存在量(質量%)である。Cyは、X線光電子分光法を用いた測定により得られるC1sスペクトルから求められる、前記炭素原子の存在量(質量%)である。Czは、燃焼-赤外線吸収法を用いた測定により得られる、前記炭素原子の存在量(質量%)である。)

Description

リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
 本発明は、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池に関する。
 本願は、2020年8月24日に、日本に出願された特願2020-141233号に基づき優先権を主張し、その内容をここに援用する。
 リチウム金属複合酸化物は、リチウム二次電池用正極活物質として用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型又は大型電源においても、実用化が進んでいる。
 リチウム二次電池用正極活物質を製造する際、得られるリチウム二次電池用正極活物質中に、炭素原子が残存する場合がある。これは、リチウム二次電池用正極活物質中に、製造時に用いる原料に由来する炭素原子を有する化合物が残存しているためである。炭素原子を有する化合物としては、例えば、炭酸リチウムが挙げられる。
 炭素原子を有する化合物がリチウム二次電池用正極活物質に含まれる粒子の外側(特に粒子の表面)に多く残存すると、炭素原子を有する化合物が、放電反応の際に分解され、ガスが発生することがある。また、炭素原子を有する化合物が電解液と接触すると、電解液が分解してガスが発生することがある。発生したガスは、電池特性を劣化させる原因となる。
 このような電池特性の劣化を抑制するため、リチウム二次電池用正極活物質に含まれるリチウム金属複合酸化物を、金属や金属酸化物で被覆する方法が検討されている。
 例えば特許文献1には、リチウムニッケル複合酸化物粒子の表面に、タングステンとリチウムを含む化合物を設けることが記載されている。さらに特許文献1には、リチウムニッケル複合酸化物粒子の表面に存在する炭酸リチウムの量を制限することが記載されている。
JP-A-2017-134996
 一方で、リチウム二次電池用正極活物質中に炭素原子が残存していても、初回放電容量が高く、かつサイクル特性を向上させることができるリチウム二次電池の正極活物質が求められている。
 本発明は、リチウム二次電池用正極活物質中に炭素原子を含んでいても、初回放電容量が高く、かつサイクル特性に優れるリチウム二次電池用正極活物質、このリチウム二次電池用正極活物質を含むリチウム二次電池用正極及びリチウム二次電池を提供することを目的とする。
 本明細書において「初回放電容量が高い」とは、後述する方法により測定する初回放電容量の値が160mAh/g以上であることを意味する。また、「サイクル特性が優れる」とは、後述する方法により測定するサイクル維持率の値が72%以上であることを意味する。
 本発明は[1]~[15]を包含する。
[1]少なくともLiとNiと元素Xと炭素原子とを含有し、前記元素Xは、Al、Ti、Nb、B、W、Zr、Mg、Sn、及びPからなる群より選択される1種以上の元素であり、下記の(1)及び(2)を満たす、リチウム二次電池用正極活物質。
(1)Cx/Cy≦10
(2)0<(Cy/Cz)≦100
(上記(1)又は(2)中、Cxは、X線光電子分光法を用いた測定により得られる、前記元素Xの存在量(質量%)である。Cyは、X線光電子分光法を用いた測定により得られるC1sスペクトルから求められる、前記炭素原子の存在量(質量%)である。Czは、燃焼-赤外線吸収法を用いた測定により得られる、前記炭素原子の存在量(質量%)である。)
[2]少なくともLiとNiと元素Xと炭素原子とを含有し、前記元素Xは、Al、Ti、Nb、B、W、Zr、Mg、Sn、及びPからなる群より選択される1種以上の元素であり、下記の(1)及び(3)を満たす、リチウム二次電池用正極活物質。
(1)Cx/Cy≦10
(3)0<(Cy/Cz)≦500
(上記(1)又は(3)中、
 Cxは、X線光電子分光法を用いた測定により得られる、前記元素Xの存在量(質量%)である。
 Cyは、X線光電子分光法を用いた測定により得られるC1sスペクトルから求められる、前記炭素原子の存在量(質量%)である。
 Czは、燃焼-赤外線吸収法を用いた測定により得られる、前記炭素原子の存在量(質量%)である。)
[3]前記Cyは、0<Cy≦50である、[1]又は[2]に記載のリチウム二次電池用正極活物質。
[4]前記Czは、0<Cz≦2である、[1]~[3]のいずれか1つに記載のリチウム二次電池用正極活物質。
[5]前記Czは、0<Cz≦0.4である、[1]~[4]のいずれか1つに記載のリチウム二次電池用正極活物質。
[6]前記Cxは、0<Cx≦95である、[1]~[5]のいずれか1つに記載のリチウム二次電池用正極活物質。
[7]下記組成式(I)で表され、さらに炭素原子を含有する[1]~[6]のいずれか1つに記載のリチウム二次電池用正極活物質。
  Li[Li(Ni(1-n-p)1-m]O ・・・(I)
(ただし、-0.1≦m≦0.2、0<p<0.6、及び0<n≦0.2である。元素Mは、Co、Mn、Fe、Cu、Mo、Zn、Ga及びVからなる群より選択される1種以上の元素である。)
[8]前記リチウム二次電池用正極活物質は、リチウム金属複合酸化物と複合相とを備え、前記リチウム金属複合酸化物は、LiとNiと、元素M及びAlからなる群より選択される1種以上の元素とを含有し、前記複合相は前記元素Xを含有する[1]~[7]のいずれか1つに記載のリチウム二次電池用正極活物質。ただし、前記元素Mは、Co、Mn、Fe、Cu、Mo、Zn、Ga及びVからなる群より選択される1種以上の元素である。
[9]BET比表面積が2.0m/g以下である、[1]~[8]のいずれか1つに記載のリチウム二次電池用正極活物質。
[10][1]~[9]のいずれか1つに記載のリチウム二次電池用正極活物質を含むリチウム二次電池用正極。
[11][10]に記載のリチウム二次電池用正極を有するリチウム二次電池。
[12]下記工程(a)、工程(b)及び工程(c)をこの順で備える、リチウム二次電池用正極活物質の製造方法。
 工程(a):少なくともNiを含む金属複合化合物と、リチウム化合物を混合して焼成し、リチウム金属複合酸化物を得る工程。
 工程(b):前記リチウム金属複合酸化物と、元素Xを含む化合物とを、前記リチウム金属複合酸化物に含まれるリチウム原子以外の金属元素の総モル量に対する、前記元素Xのモル量の割合が1.0モル%以上5.5モル%以下となる割合で混合して混合物を得る工程。前記元素Xは、Al、Ti、Nb、B、W、Zr、Mg、Sn、及びPからなる群より選択される1種以上の元素であり、前記元素Xを含む化合物の50%累積体積粒度D50(μm)は0.02μm以上90μm以下である。
 工程(c):前記混合物を酸素含有雰囲気下で200℃以上600℃以下の温度で熱処理する工程。
[13]前記工程(a)は、金属複合化合物と、リチウム化合物とを混合して焼成し、得られた焼成物を石臼式解砕機で解砕する工程を有する、[12]に記載のリチウム二次電池用正極活物質の製造方法。
[14]前記工程(b)は、元素Xを含む被覆原料とリチウム金属複合酸化物とを、水又は水と炭酸ガスを含有する雰囲気中で混合する工程を有する、[12]または[13]に記載のリチウム二次電池用正極活物質の製造方法。
[15]前記工程(b)は、元素Xを含む被覆原料とリチウム金属複合酸化物とを混合し、混合後に水又は水と炭酸ガスを含有する雰囲気中において保持する工程を有する、[12]~[14]のいずれか1つに記載のリチウム二次電池用正極活物質の製造方法。
 本発明によれば、リチウム二次電池用正極活物質中に炭素原子を含んでいても、初回放電容量が高く、かつサイクル特性に優れるリチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池を提供することができる。
リチウム二次電池の一例を示す概略構成図である。 リチウム二次電池の一例を示す概略構成図である。 図2は、全固体リチウムイオン二次電池が備える積層体を示す模式図である。 図3は、全固体リチウムイオン二次電池の全体構成を示す模式図である。
 本明細書において、金属複合化合物(Metal Composite Compound)の略称として「MCC」と記載する場合がある。
 本明細書において、リチウム二次電池用正極活物質を(Cathode Active Material for lithium secondary batteries)の略称として「CAM」と記載する場合がある。
 本明細書において、リチウム金属複合酸化物(Lithium Metal composite Oxide)の略称として「LiMO」と記載する場合がある。
<リチウム二次電池用正極活物質>
 本実施形態のCAMは、少なくともLiとNiと元素Xと炭素原子とを含む。元素Xは、Al、Ti、Nb、B、W、Zr、Mg、Sn、及びPからなる群より選択される1種以上の元素である。
 なお、本明細書において、Niとは、ニッケル金属ではなく、ニッケル原子を指し、Co、Al、及びLi等も同様に、それぞれコバルト原子、アルミニウム原子、及びリチウム原子等を指す。
 本実施形態のCAMに含まれる炭素原子は、炭酸リチウム、炭酸水素リチウム、有機リチウム化合物、炭化水素等の炭素原子を有する化合物に由来することが好ましい。炭素原子を有する化合物は、CAMの製造時に用いる原料に含まれている化合物、あるいはCAMの製造時に反応して得られた化合物である。
 本実施形態のCAMは、表面に炭素原子が存在していることが好ましく、表面および内部に炭素原子が存在していることが好ましく、CAMに含まれるLiMOは、表面に炭素原子が存在していることが好ましく、表面および内部に炭素原子が存在していることが好ましい。
 本実施形態において、CAMは粉末である。
 本実施形態において、「X線光電子分光法」を「XPS」と記載する。
 XPSによれば、CAMに含まれる粒子の表面にX線を照射したときに生じる光電子のエネルギーを測定することで、CAMに含まれる粒子の表面部分の構成元素や電子状態を分析することができる。励起X線としてAlKα線を照射したときにCAMの粒子の表面から放出される光電子の結合エネルギーを分析する。XPSによれば、CAMに含まれる粒子の表面の状態を分析することができる。
[X線光電子分光分析]
 XPSによる測定に用いるX線光電子分光装置としては、具体的にはThermoFisher Scientific社製K-Alphaが使用できる。
 具体的には、C1sのスペクトルと、元素Xのスペクトルを測定する。X線源にはAlKα線を用い、測定時には帯電中和のために中和銃(加速電圧0.3V、電流100μA)を使用する。
 元素Xのスペクトルピークは、アルミニウム2p、チタン2p、ニオブ3d、ホウ素1s、タングステン4f、ジルコニウム3d、マグネシウム2p、スズ3d及びリン2pの、各元素のスペクトルピークである。
 測定の条件は、スポットサイズ=400μm、PassEnergy=50eV、Step=0.1eV、Dwelltime=500msとする。得られたXPSスペクトルについて、ThermoFisherScientific社製Avantageデータシステムを用い、後述のピーク面積を算出する。C1sスペクトルにおいて表面汚染炭化水素に帰属されるピークを284.6eVとして帯電補正する。
≪Cx、Cy及びCz≫
 XPSを用いた測定により得られる元素Xの存在量(質量%)、すなわち、CAMをXPSにより測定したときに得られる元素Xのスペクトルピーク面積に基づいて求めた元素Xの存在量(質量%)をCxとする。
 元素Xのスペクトルピークとしては、アルミニウム2p、チタン2p、ニオブ3d、ホウ素1s、タングステン4f、ジルコニウム3d、マグネシウム2p、スズ3d及びリン2pである。
 XPSの測定条件は、CAMに含まれる粒子の多くが測定できる条件に適宜調整すればよい。一例としては、X線の照射径は400μm、PassEnergyが50eV、Stepが0.1eV、Dwelltimeが500msの条件が挙げられる。
 得られるXPSスペクトルについて、ThermoFisherScientific社製Avantageデータシステムを用いて、元素Xのスペクトルピーク面積を算出し、これに基づいて、元素Xの存在量を算出する。本実施形態においては、C1sピークを284.6eVとして帯電補正を行う。
 XPSによれば、X線が照射される範囲に存在する粒子の表面領域における元素Xの存在量を測定することができる。X線が照射される範囲に存在する、粒子の表面領域の元素Xの存在量の合計値が測定値となる。
 X線光電子分光法を用いた測定により得られるC1sスペクトルから求められる炭素原子の存在量(質量%)、すなわち、CAMをXPSにより測定したときに得られるC1sスペクトルにおいて、結合エネルギーが290±5eVにピークトップを有するピーク面積に基づいて求めた炭素原子の存在量(質量%)をCyとする。結合エネルギーが290±5eVのピークは、(-CO)由来の炭素原子の存在を示す。
 XPSによれば、X線が照射される範囲に存在する粒子の表面領域における炭素原子の存在量を測定することができる。X線が照射される範囲に存在する、粒子の表面領域の炭素原子の存在量の合計値が測定値となる。
 本実施形態において、CAMを、燃焼-赤外線吸収法により測定したときに得られる炭素原子の存在量(質量%)をCzとする。燃焼-赤外線吸収法は下記の方法により測定を行う。燃焼-赤外線吸収法によれば、CAMの粒子の全体に含まれる炭素原子の存在量を測定できる。
 燃焼-赤外線吸収法は、CAMを管状電気抵抗炉内、酸素気流中で所定温度まで加熱し燃焼させることにより実施する。燃焼により生じる二酸化炭素や一酸化炭素等の炭素含有ガス成分を赤外線検出器で測定し、CAMの粒子の全体に含まれる炭素の存在量を測定することができる。
 燃焼-赤外線吸収法に用いる装置としては、具体的にはEMIA-810W(堀場製作所)が使用できる。
 CAMは、Cx、Cy及びCzが下記の(1)及び(2)を満たす。
(1)Cx/Cy≦10
(2)0<(Cy/Cz)≦100
[(1)]
 「Cx」の値は、CAMに含まれる粒子の表面領域における元素Xの存在量(質量%)である。
 「Cy」の値は、CAMに含まれる粒子の表面領域における炭素原子の存在量(質量%)である。
 「Cx/Cy」の値は、CAMに含まれる粒子の表面領域における元素Xと炭素原子の存在量(質量%)の比を意味する。
 「Cx/Cy」の値が10以下であると、CAMに含まれる粒子の表面領域に、イオン伝導相が形成されていると推察できる。「イオン伝導相」は、リチウムイオンの移動を促す、炭素原子と元素Xとを含む相である。CAMに含まれる粒子の表面領域に、イオン伝導相が形成されていると、電池の初回放電容量が高くなりやすく、且つサイクル特性を向上させやすい。
 一方で、「Cx/Cy」の値が10を超えると、CAMに含まれる粒子の表面領域でリチウムイオンの移動を阻害する抵抗相が形成されやすいと推察できる。この場合、製造される電池の初回放電容量が低くなりやすく、サイクル特性も悪くなりやすい。
 ここで、CAMに含まれる粒子の表面領域とは、XPS測定によって構成元素や、電子状態を分析できる領域を指す。具体的には、最表面から粒子の中心に向かう方向において、最表面からXPSにより測定が可能な深さまでの領域を指す。
 「Cx/Cy」は、9.5以下が好ましく、9.0以下がさらに好ましく、8.5以下が特に好ましい。「Cx/Cy」の下限値は、例えば0.10以上、0.15以上、0.20以上が挙げられる。
 「Cx/Cy」の上限値及び下限値は任意に組み合わせることができる。組み合わせの例としては、「Cx/Cy」は、0.10以上10以下、0.15以上9.5以下、0.20以上9.0以下、0.20以上8.5以下が挙げられる。
[(2)]
 「Cz」の値は、CAMに含まれる粒子全体における炭素原子の存在量(質量%)である。
 「Cy/Cz」の値は、CAMに含まれる粒子の表面領域における炭素原子の存在量(質量%)と、CAMに含まれる粒子全体の炭素原子の存在量(質量%)との比を意味する。
 「Cy/Cz」の値が小さいほど、CAMに含まれる粒子の内部における炭素原子の存在量に対する、CAMに含まれる粒子の表面領域の炭素原子の存在量が少なくなる。「Cy/Cz」の値が100以下であると、CAMに含まれる粒子の表面領域の炭素原子の存在量が十分に少ないと推察できる。このため、炭素原子を有する化合物が電解液と反応して電解液が分解することによるガスが発生しにくくなる。その結果、電池のサイクル特性が劣化しにくくなる。
 「Cy/Cz」は80以下が好ましく、60以下がさらに好ましい。「Cy/Cz」の下限値は、例えば、1.0以上、2.5以上、5.0以上、5.3以上が挙げられる。
 「Cy/Cz」の上限値及び下限値は任意に組み合わせることができる。組み合わせの例としては、「Cy/Cz」は、1.0以上80以下、2.5以上70以下、5.0以上60以下、5.3以上60以下が挙げられる。
 (1)及び(2)を満たすCAMは、上述のイオン伝導相が、粒子の表面領域に十分に形成されているため、製造される電池の初回放電容量を高くでき、且つサイクル特性を向上させることができる。
 本発明の一実施形態においてCAMは、Cx、Cy及びCzが上記の(1)及び下記(3)を満たす。
(3)0<(Cy/Cz)≦500
((3)中、Cyは、X線光電子分光法を用いた測定により得られるC1sスペクトルから求められる、前記炭素原子の存在量(質量%)である。
 Czは、燃焼-赤外線吸収法を用いた測定により得られる、前記炭素原子の存在量(質量%)である。)
 [(3)]
 Cy及びCzに関する説明は、上記(2)におけるCy及びCzに関する説明と同様である。
 「Cy/Cz」の値が500以下であると、CAMに含まれる粒子の表面領域の炭素原子の存在量が十分に少ないと推察できる。このため、炭素原子を有する化合物が電解液と反応して電解液が分解することによるガスが発生しにくくなる。その結果、電池のサイクル特性が劣化しにくくなる。
 「Cy/Cz」は400以下が好ましく、375以下がより好ましく、350以下がさらに好ましい。「Cy/Cz」の下限値は、例えば、5.0以上、10以上、20以上、25以上が挙げられる。
 「Cy/Cz」の上限値及び下限値は任意に組み合わせることができる。組み合わせの例としては、「Cy/Cz」は、5.0以上400以下、10以上375以下、20以上350以下、25以上350以下が挙げられる。
 (1)及び(3)を満たすCAMは、上述のイオン伝導相が、粒子の表面領域に十分に形成されているため、製造される電池の初回放電容量を高くでき、且つサイクル特性を向上させることができる。
 Cxは、0<Cx≦95であることが好ましい。また、Cxは0.1以上が好ましく、2.5以上がより好ましく、5.0以上がさらに好ましい。Cxは85以下が好ましく、75以下がより好ましく、65以下がさらに好ましい。
 Cxの上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例としては、Cxは、0.1以上85以下、2.5以上75以下及び5.0以上65以下が挙げられる。
 Cyは、0<Cy≦50であることが好ましい。また、Cyは1.0以上が好ましく、2.0以上がより好ましく、3.0以上がさらに好ましく、4.6以上が特に好ましい。Cyは48以下が好ましく、45以下がより好ましく、40以下がさらに好ましい。
 Cyの上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例としては、Cyは、1.0以上48以下、2.0以上45以下、3.0以上40以下、及び4.6以上40以下が挙げられる。
 Czは、0<Cz≦2であることが好ましい。また、Czは0.1以上が好ましく、0.15以上がより好ましく、0.25以上がさらに好ましい。Czは2.0以下が好ましく、1.8以下がより好ましく、1.6以下がさらに好ましく、1.5以下が特に好ましい。
 Czの上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例としては、Czは、0を超え2.0以下、0.1以上1.8以下、0.15以上1.6以下及び0.25以上1.5以下が挙げられる。
 本発明の一実施形態において、Czは、0<Cz≦0.4であることが好ましい。また、Czは0.01以上が好ましく、0.03以上がより好ましく、0.05以上がさらに好ましい。Czは0.4以下が好ましく、0.38以下がより好ましく、0.35以下がさらに好ましく、0.3以下が特に好ましい。
 Czの上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例としては、Czは、0を超え0.4以下、0.01以上0.38以下、0.03以上0.35以下及び0.05以上0.3以下が挙げられる。
 Cx、Cy、又はCzが上記の範囲であると、製造される電池の初回放電容量をより高くすることができ、且つサイクル特性をより向上させることができる。
 CAMは、LiMOと複合相とを備えることが好ましい。また、LiMOの表面領域に複合相を備えることが特に好ましい。LiMOの表面領域は複合相に覆われていてもよく、LiMOの表面領域の一部に複合相が点在し、LiMOの表面の一部が露出していてもよい。
 なお、「LiMOの表面領域」とは、LiMOの粒子の最表面と、最表面から粒子の中心に向かって概ね10nmの深さまでの領域をいう。
 複合相としては、リチウムイオン伝導性を有するものが挙げられる。
 複合相とは、CAMと異なる組成を有するものであり、例えば、Liと、元素Xとを含み、元素Mを含まない複合金属酸化物等を挙げることができる。
 複合相は、イオン伝導相と抵抗相の和で表されると考えられる。上述の通り、「Cx/Cy」の値が10以下であると、CAMに含まれる粒子の表面領域にイオン伝導相が形成されるやすくなるため、イオン伝導相の寄与が大きくなり、複合相はイオン伝導相として振る舞う。
 一方で、「Cx/Cy」の値が10を超えると、CAMに含まれる粒子の表面領域でリチウムイオンの移動を阻害する抵抗相が形成されやすくなるため、抵抗相の寄与が大きくなり、複合相は抵抗相として振る舞う。
 LiMOは少なくともリチウム原子とNiと、元素M及びAlからなる群より選択される1種以上の元素とを含有することが好ましい。元素Mは、Co、Mn、Fe、Cu、Mo、Zn、Ga及びVからなる群より選択される1種以上の元素である。また、複合相は元素Xを含有することが好ましく、元素Xと炭素原子とを含有することが好ましい。
 LiMOと複合相とを備えるCAMは、下記組成式(I)で表され、さらに炭素原子を含有するものが好ましい。
  Li[Li(Ni(1-n-p)1-m]O ・・・(I)
(ただし、-0.1≦m≦0.2、0<p<0.6、及び0<n≦0.2である。元素Mは、Co、Mn、Fe、Cu、Mo、Zn、Ga及びVからなる群より選択される1種以上の元素である。)
 組成式(I)において、mはサイクル特性を向上させる観点から、-0.001以上が好ましく、-0.0015以上であることがより好ましく、-0.002以上が特に好ましい。また、放電レート特性が高いリチウム二次電池を得る観点から、mは0.1以下が好ましく、0.08以下がより好ましく、0.06以下が特に好ましい。
 mの上記上限値及び下限値は任意に組み合わせることができる。
 mは、-0.001≦m≦0.1であることが好ましく、-0.002≦m≦0.06であることがより好ましい。
 組成式(I)において、放電レート特性が高いリチウム二次電池を得る観点から、0<n+p<0.6であることが好ましく、0<n+p≦0.5であることがより好ましく、0<n+p≦0.25であることがさらに好ましく、0<n+p≦0.2であることがさらにいっそう好ましい。
 組成式(I)において、pは電池の内部抵抗が低いリチウム二次電池を得る観点から、0.05以上がより好ましく、0.08以上が特に好ましい。また、熱的安定性が高いリチウム二次電池を得る観点から、0.5以下が好ましく、0.4以下が特に好ましい。
 pの上限値と下限値は任意に組み合わせることができる。組み合わせの例としては、pは、0.05以上0.5以下、0.08以上0.4以下が挙げられる。
 組成式(I)において、nはサイクル特性を向上させる観点から0.0002以上がより好ましく、0.0005以上が特に好ましい。また、0.15以下が好ましく、0.13以下がより好ましく、0.1以下が特に好ましい。
 nの上限値と下限値は任意に組み合わせることができる。
 nは0.0002≦n≦0.15であることが好ましい。
 x、n、及びpの組み合わせとしては、0≦m≦0.1かつ0.08≦p≦0.4かつ0.0002≦n≦0.15であることが好ましい。
[組成分析]
 CAM又はLiMOの組成分析は、得られたCAM又はLiMOの粉末を塩酸に溶解させた後、ICP発光分光分析装置を用いて測定できる。
 ICP発光分光分析装置としては、例えばエスアイアイ・ナノテクノロジー株式会社製、SPS3000が使用できる。
 本実施形態において、複合相の組成の確認は、CAMの粒子断面のSTEM-EDX元素ライン分析、誘導結合プラズマ発光分析、電子線マイクロアナライザ分析などを用いることで行うことができる。複合相の結晶構造の確認は、粉末X線回折や、電子線回折を用いて行うことができる。
 CAMは、BET比表面積が、2.0m/g以下であることが好ましく、1.8m/g以下がより好ましく、1.5m/g以下がさらに好ましく、1.3m/g以下が特に好ましい。また、BET比表面積が、0.1m/g以上が好ましく、0.2m/g以上がより好ましく、0.3m/g以上が特に好ましい。
 BET比表面積が上記上限値以下であると、リチウム二次電池の体積容量密度が高くなりやすい。また、上記下限値以上であると、リチウム二次電池の放電レート特性が高くなりやすい。
 BET比表面積の上限値と下限値は任意に組み合わせることができる。組み合わせの例としては、BET比表面積が、0.1m/g以上2.0m/g以下、0.2m/g以上1.8m/g以下、0.3m/g以上1.5m/g以下、0.3m/g以上1.3m/g以下が挙げられる。
[BET比表面積の測定]
 CAMのBET比表面積は、BET比表面積測定装置により測定できる。BET比表面積測定装置としては、例えば、マウンテック社製Macsorb(登録商標)を用いることができる。粉末状のCAMのBET比表面積を測定する場合、前処理として窒素雰囲気中、105℃で30分間乾燥させることが好ましい。
(層状構造)
 本実施形態において、CAMの結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
 六方晶型の結晶構造は、P3、P31、P32、R3、P-3、R-3、P312、P321、P3112、P3121、P3212、P3221、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P61、P65、P62、P64、P63、P-6、P6/m、P63/m、P622、P6122、P6522、P6222、P6422、P6322、P6mm、P6cc、P63cm、P63mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P63/mcm及びP63/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。
 また、単斜晶型の結晶構造は、P2、P21、C2、Pm、Pc、Cm、Cc、P2/m、P21/m、C2/m、P2/c、P21/c及びC2/cからなる群から選ばれるいずれか一つの空間群に帰属される。
 これらのうち、初回放電容量が高いリチウム二次電池を得るため、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。
[結晶構造の測定方法]
 CAMの結晶構造は、粉末X線回折測定装置(例えば、株式会社リガク製UltimaIV)を用いて観察することにより測定できる。
<CAMの製造方法1>
 本実施形態のCAMの製造方法は、MCCの製造工程と、LiMOの製造工程と、CAMの製造工程とを順に実施する方法である。
 LiMOを製造するにあたって、まず、リチウム以外の金属元素、すなわち、Niと任意金属である元素Mと任意金属であるAlとを含むMCCを調製する。
 次いで、Niと元素MとAlとを含むMCCと、リチウム化合物とを焼成することが好ましい。Niと元素MとAlとを含むMCCとしては、Niと元素MとAlとを含む金属複合水酸化物、又はNiと元素MとAlとを含む金属複合酸化物が好ましい。
(MCCの製造工程)
 MCCは、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、Ni、Co及びAlを含む金属複合水酸化物を例に、その製造方法を詳述する。
 まず共沈殿法、特にJP-A-2002-201028に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、アルミニウム塩溶液、及び錯化剤を反応させ、NiCoAl(OH)(式中、a+b+c=1)で表される金属複合水酸化物を製造する。
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れか1種又は2種以上を使用することができる。
 上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト、及び酢酸コバルトのうちの何れか1種又は2種以上を使用することができる。
 上記アルミニウム塩溶液の溶質であるアルミニウム塩としては、例えば例えば硫酸アルミニウムやアルミン酸ソーダ等が使用できる。
 以上の金属塩は、上記NiCoAl(OH)の組成比に対応する割合で用いられる。また、溶媒として水が使用される。
 錯化剤は、水溶液中で、Ni、Co、及びAlのイオンと錯体を形成可能な化合物である。例えば、アンモニウムイオン供給体(水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等のアンモニウム塩)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。錯化剤は含まれていなくてもよく、錯化剤が含まれる場合、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩のモル数の合計に対するモル比が0より大きく2.0以下である。
 共沈殿法に際しては、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液及び錯化剤を含む混合液のpH値を調整するため、混合液のpHがアルカリ性から中性になる前に、混合液にアルカリ性水溶液を添加する。アルカリ性水溶液は、水酸化ナトリウム、水酸化カリウムが使用できる。
 なお、本明細書におけるpHの値は、混合液の温度が40℃の時に測定された値であると定義する。混合液のpHは、反応槽からサンプリングした混合液の温度が、40℃になったときに測定する。
 サンプリングした混合液の温度が40℃よりも低い場合には、混合液を加熱して40℃になったときにpHを測定する。
 サンプリングした混合液の温度が40℃よりも高い場合には、混合液を冷却して40℃になったときにpHを測定する。
 上記ニッケル塩溶液、コバルト塩溶液、及びアルミニウム塩溶液のほか、錯化剤を反応槽に連続して供給すると、Ni、Co、及びAlが反応し、NiCoAl(OH)が生成する。
 反応に際しては、反応槽の温度を、例えば20℃以上80℃以下、好ましくは30℃以上70℃以下の範囲内で制御する。
 また、反応に際しては、反応槽内のpH値を、例えばpH9以上pH13以下、好ましくはpH11以上pH13以下の範囲内で制御する。
 反応槽内の物質は、適宜撹拌して混合する。
 連続式共沈殿法で用いる反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプの反応槽を用いることができる。
 反応槽内は不活性雰囲気であってもよい。不活性雰囲気であると、ニッケルよりも酸化されやすい元素が凝集してしまうことを抑制し、均一な金属複合水酸化物を得ることができる。
 また、反応槽内は、不活性雰囲気を保ちつつも、適度な酸素含有雰囲気または酸化剤存在下であってもよい。
 遷移金属の酸化量を増やすと、比表面積は大きくなる。酸素含有ガス中の酸素や酸化剤は、遷移金属を酸化させるために十分な酸素原子があればよい。多量の酸素原子を導入しなければ、反応槽内の不活性雰囲気を保つことができる。なお、反応槽内の雰囲気制御をガス種で行う場合、所定のガス種を反応槽内に通気するか、反応液を直接バブリングすればよい。
 上記の条件の制御に加えて、各種気体、例えば、窒素、アルゴン、二酸化炭素等の不活性ガス、空気、酸素等の酸化性ガス、またはそれらの混合ガスを反応槽内に供給し、得られる反応生成物の酸化状態を制御してもよい。
 得られる反応生成物を酸化する化合物として、過酸化水素などの過酸化物、過マンガン酸塩などの過酸化物塩、過塩素酸塩、次亜塩素酸塩、硝酸、ハロゲン、オゾンなどを使用することができる。
 得られる反応生成物を還元する化合物として、シュウ酸、ギ酸などの有機酸、亜硫酸塩、ヒドラジンなどを使用する事ができる。
 以上の反応後、得られた反応生成物を水で洗浄した後、乾燥することで、MCCが得られる。本実施形態では、MCCとして、ニッケルコバルトアルミニウム金属複合水酸化物が得られる。また、反応生成物に水で洗浄するだけでは混合液に由来する夾雑物が残存してしまう場合には、必要に応じて、反応生成物を、弱酸水や水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄してもよい。
 なお、上記の例では、MCCとして、ニッケルコバルトアルミニウム金属複合水酸化物を製造しているが、ニッケルコバルトアルミニウム金属複合酸化物を調製してもよい。
 例えば、ニッケルコバルトアルミニウム金属複合水酸化物を焼成することによりニッケルコバルトアルミニウム金属複合酸化物を調製することができる。焼成時間は、昇温開始から達温して温度保持が終了するまでの合計時間を1時間以上30時間以下とすることが好ましい。最高保持温度に達する加熱工程の昇温速度は180℃/時間以上が好ましく、200℃/時間以上がより好ましく、250℃/時間以上が特に好ましい。
 本明細書における最高保持温度とは、焼成工程における焼成炉内雰囲気の保持温度の最高温度であり、焼成工程における焼成温度を意味する。複数の加熱工程を有する本焼成工程の場合、最高保持温度とは、各加熱工程のうちの最高温度を意味する。
 本明細書における昇温速度は、焼成装置において、昇温を開始した時間から最高保持温度に到達するまでの時間と、焼成装置の焼成炉内の昇温開始時の温度から最高保持温度までの温度差とから算出される。
(LiMOの製造工程)
 上記MCCを乾燥させた後、リチウム化合物と混合する。
 MCCと、リチウム化合物と、を含む混合物を焼成することにより、LiMOが得られる。
 リチウム化合物としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、または、二つ以上を混合して使用することができる。
 これらのリチウム化合物のうち、水酸化リチウムや酢酸リチウムは、空気中の二酸化炭素と反応して、炭酸リチウムを数%含みうる。
 本実施形態において、上記MCCの乾燥条件は特に制限されない。上記MCCが金属複合酸化物又は金属水酸化物である場合、乾燥条件は、例えば、下記1)~3)のいずれの条件でもよい。
 1)金属複合酸化物又は金属複合水酸化物が酸化又は還元されない条件。具体的には、金属複合酸化物が金属複合酸化物のまま維持される乾燥条件、金属複合水酸化物が金属複合水酸化物のまま維持される乾燥条件である。
 2)金属複合水酸化物が酸化される条件。具体的には、金属複合水酸化物が金属複合酸化物に酸化される乾燥条件である。
 3)金属複合酸化物が還元される条件。具体的には、金属複合酸化物が金属複合水酸化物に還元される乾燥条件である。
 金属複合酸化物又は金属複合水酸化物が酸化又は還元されない条件にするためには、乾燥時の雰囲気に窒素、ヘリウム及びアルゴン等の不活性ガスを使用すればよい。
 金属複合水酸化物が酸化される条件にするためには、乾燥時の雰囲気に酸素又は空気を使用すればよい。
 また、金属複合酸化物が還元される条件にするためには、乾燥時に、不活性ガス雰囲気下、ヒドラジン、亜硫酸ナトリウム等の還元剤を使用すればよい。
 MCCの乾燥後に、適宜分級を行ってもよい。
 CAMの製造方法において、MCCを解砕する工程は行わないことが好ましい。すなわち、解砕していないMCCとリチウム化合物を混合することが好ましい。解砕していないMCCを用いて得られるCAMは、解砕しているMCCを用いて得られるものよりも、BET比表面積が低く球形度が高い。そのため、後述の元素Xを含有する化合物を添加する際に、BET比表面積が低く球形度が高いLiMOを用いることで、元素Xが均一に分布しやすくなる。
 以上のリチウム化合物とMCCとは、最終目的物の組成比を勘案して用いられる。例えば、MCCとしてニッケルコバルトアルミニウム金属複合水酸化物を用いる場合、リチウム化合物と当該金属複合水酸化物は、LiNiCoAl(式中、a+b+c=1)の組成比に対応する割合で用いられる。また、最終目的物であるCAMにおいて、リチウム化合物に含まれるLiと、MCCに含まれる金属元素とのモル比が1.1以下となる比率で混合すると、得られるCAMのCy、及びCzを本実施形態の好ましい範囲に制御しやすい。
 ニッケルコバルトアルミニウム金属複合水酸化物及びリチウム化合物の混合物を焼成することによって、リチウム-ニッケルコバルトアルミニウム金属複合酸化物が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられる。
 焼成工程は、1回のみの焼成であってもよく、複数回の焼成段階を有していてもよい。
 複数回の焼成段階を有する場合、最も高い温度で焼成する工程を本焼成と記載する。本焼成の前には、本焼成よりも低い温度で焼成する仮焼成を行ってもよい。また、本焼成の後には本焼成よりも低い温度で焼成する後焼成を行ってもよい。
 本焼成の焼成温度(最高保持温度)は、LiMOの粒子の成長を促進させる観点から、600℃以上が好ましく、650℃以上がより好ましく、700℃以上が特に好ましい。また、LiMOの粒子にクラックが形成されることを防止し、粒子強度を維持する観点から、1200℃以下が好ましく、1100℃以下がより好ましく、1000℃以下が特に好ましい。
 本焼成の最高保持温度の上限値及び下限値は任意に組みわせることができる。
 組み合わせの例としては、600℃以上1200℃以下、650℃以上1100℃以下、700℃以上1000℃以下が挙げられる。
 本焼成を600℃以上で実施すると、得られるCAMのCy、及びCzを本実施形態の好ましい範囲に制御しやすい。
 仮焼成又は後焼成の焼成温度は、本焼成の焼成温度よりも低ければよく、例えば350℃以上800℃以下の範囲が挙げられる。
 焼成における保持温度は、用いる遷移金属元素の種類、沈殿剤、不活性溶融剤の種類、量に応じて適宜調整すればよい。
 また、前記保持温度で保持する時間は、0.1時間以上20時間以下が挙げられ、0.5時間以上10時間以下が好ましい。前記保持温度までの昇温速度は、通常50℃/時間以上400℃/時間以下であり、前記保持温度から室温までの降温速度は、通常10℃/時間以上400℃/時間以下である。また、焼成の雰囲気としては、大気、酸素、窒素、アルゴンまたはこれらの混合ガスを用いることができる。
(CAMの製造工程)
 上記工程で得られたLiMOと、元素Xを含有する化合物とを混合し、熱処理することにより、CAMを得ることができる。
 元素Xを含有する化合物としては、元素Xを含有するリチウム化合物と、元素Xを含有する酸化物、元素Xを含有する水酸化物、元素Xを含有する炭酸塩、元素Xを含有する硝酸塩、元素Xを含有する硫酸塩、元素Xを含有するアンモニウム塩、元素Xを含有するハロゲン化物、元素Xを含有するシュウ酸塩等が挙げられる。元素Xを含有する化合物としては、元素Xを含有する酸化物が好ましい。
 元素Xを含有する化合物としては、酸化アルミニウム、水酸化アルミニウム、硫酸アルミニウム、塩化アルミニウム、酸化ホウ素、ホウ酸、ホウ酸リチウム、酸化ニオブ、ニオブ酸リチウム、酸化チタン、水酸化チタン、酸化タングステン、タングステン酸、塩化タングステン、リン酸二水素アンモニウム、五酸化二リン、リン酸塩、リン酸リチウム、酸化ジルコニウム、酸化マグネシウム、硫酸マグネシウム、酸化スズ等が挙げられ、酸化アルミニウム、水酸化アルミニウム、酸化ホウ素、ホウ酸、酸化ニオブ、ニオブ酸リチウム、酸化チタン、酸化タングステン、リン酸二水素アンモニウム、ホウ酸リチウム、又はリン酸リチウムが好ましい。
 元素Xを含有する化合物の添加量は、元素Xの種類に応じて、LiMOに含まれるLi以外の金属元素の総モル量に対する、元素Xのモル量の割合が好ましい範囲になるよう調整する。
 例えば、CAMの製造工程において、元素XとしてTi、Nb、P、Zr、Mg、Sn、W及びBからなる群より選ばれる少なくとも一つを含有する化合物を用いる場合、LiMOに含まれるリチウム原子以外の金属元素の総モル量に対する、元素Xのモル量の割合は、1.0モル%以上5.5モル%以下であることが好ましい。
 また、CAMの製造工程において、元素XとしてAlを含有する化合物を用いる場合、LiMOに含まれるLi以外の金属元素の総モル量に対する、元素Xのモル量の割合は、1.0モル%以上8.0モル%以下であることが好ましく、1.0モル%以上5.5モル%以下であることがより好ましい。
 LiMOの表面に効率的にイオン伝導性を有する複合相を形成するため、元素Xを含有する化合物の50%累積体積粒度D50(μm)は、90μm以下であることが好ましく、80μm以下であることがより好ましい。また、元素Xを含有する化合物のD50は0.02μm以上であることが好ましく、0.05μm以上であることが特に好ましい。
 D50の上限値及び下限値は任意に組み合わせることができる。組み合わせの例としては、0.02μm以上90μm以下、0.05μm以上80μm以下が挙げられる。
 元素XとしてAl、Ti、Nb、Zr、Mg、Sn、及びWからなる群より選ばれる少なくとも一つを含有する化合物を用いる場合、元素Xを含有する化合物のD50は、0.02μm以上μm20μm以下であることがより好ましく、0.05μm以上14μm以下であることがさらに好ましい。
 元素XとしてB及びPからなる群より選ばれる少なくとも一つを含有する化合物を用いる場合、元素Xを含有する化合物のD50は、0.02μm以上90μm以下であることが好ましく、0.02μm以上80μm以下であることがより好ましい。
 D50が上記の範囲である元素Xを含有する化合物を用いると、得られるCAMのCx、Cy及びCzを本実施形態の好ましい範囲に制御できる。
[元素Xを含む化合物のD50の測定方法]
 元素Xを含有する化合物の50%累積体積粒度D50は、下記の湿式または乾式の方法により測定できる。本実施形態では、元素XとしてBまたはPを含有する化合物は、乾式の方法で測定する。また、元素XとしてBおよびP以外の元素Xを含有する化合物は、湿式の方法で測定する。
(湿式の測定方法)
 湿式の測定方法は、以下のとおりである。
 具体的には、まず、元素Xを含有する化合物の粉末2gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、元素Xを含有する化合物の粉末を分散させた分散液を得る。
 次に、得られた分散液について、レーザー回折粒度分布計により粒度分布を測定し、体積基準の累積粒度分布曲線を得る。そして、得られた累積粒度分布曲線において、微小粒子側から50%累積時の粒子径の値が、50%累積体積粒度D50(μm)である。レーザー回折粒度分布計としては、例えばマルバーン製、MS2000が使用できる。
(乾式の測定方法)
 乾式の測定方法は、以下のとおりである。
 具体的には、まず、元素Xを含有する化合物の粉末2gを用いてレーザー回折粒度分布計により乾式粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、微小粒子側から50%累積時の粒子径の値が、50%累積体積粒度D50(μm)である。レーザー回折粒度分布計としては、例えばマルバーン製、MS2000が使用できる。
 元素Xを含有する化合物及びLiMOは、元素Xを含有する化合物の凝集体又はLiMOの凝集体がなくなるまで均一に混合される。元素Xを含有する化合物及びLiMOを均一に混合できれば混合装置は限定されないが、例えば、レーディゲミキサーを用いて混合することが好ましい。
 また、元素Xを含有する化合物と、LiMOとの混合を水又は水と炭酸ガスを含有する雰囲気中で行うことによって、イオン伝導性を有する複合相をLiMOの表面により強固に形成させることができる。
 混合後に水又は水と炭酸ガスを含有する雰囲気中において、元素Xを含有する化合物及びLiMOを保持させることによってもイオン伝導性を有する複合相をLiMOの表面により強固に形成させることができる。
 元素Xを含有する化合物及びLiMOの混合後に熱処理する場合、熱処理条件は、元素Xを含有する化合物の種類に応じて、異なる場合がある。熱処理条件としては、熱処理温度及び熱処理の保持時間が挙げられる。
 本工程にて元素XとしてTi、Nb、Zr、Mg、Sn、W及びBからなる群より選ばれる少なくとも一つを含有する化合物を用いる場合、300℃以上650℃以下の温度範囲で、4時間以上10時間以下で熱処理することが好ましい。
 本工程において元素XとしてAlを含有する化合物を用いる場合、熱処理温度としては、300℃以上600℃以下の温度範囲で、4時間以上10時間以下で熱処理することが好ましい。
 熱処理温度が上記の範囲よりも高い温度であると、元素Xを含有する化合物がLiMOの結晶構造内部まで拡散し、結晶構造の安定性が低下する場合がある。熱処理の保持時間が4時間よりも短いと元素Xを含有する化合物の拡散が不十分で、イオン伝導性を有する複合相が均一に形成されない場合がある。
 元素Xを有する化合物の添加工程において、添加する元素Xを有する化合物の種類に応じて、LiMOに含まれるLi以外の金属元素の総モル量に対する、元素Xのモル量の割合と、焼成温度と50%累積体積粒度D50とを調整することにより、得られるCAMのCx及びCx/Cyを本実施形態の好ましい範囲に制御しやすい。
<CAMの製造方法2>
 CAMの製造方法2は、下記工程(a)、工程(b)及び工程(c)をこの順で備える。
 工程(a):少なくともNiを含む金属複合化合物と、リチウム化合物を混合して焼成し、リチウム金属複合酸化物を得る工程。
 工程(b):前記リチウム金属複合酸化物と、元素Xを含む化合物とを、前記リチウム金属複合酸化物に含まれるリチウム原子以外の金属元素の総モル量に対する、前記元素Xのモル量の割合が1.0モル%以上5.5モル%以下となる割合で混合して混合物を得る工程。前記元素Xは、Al、Ti、Nb、B、W、Zr、Mg、Sn、及びPからなる群より選択される1種以上の元素であり、前記元素Xを含む化合物の50%累積体積粒度D50(μm)は0.02μm以上90μm以下である。
 工程(c):前記混合物を酸素含有雰囲気下で200℃以上600℃以下の温度で熱処理する工程。
 工程(a)
 工程(a)は、前記CAMの製造方法1におけるLiMOの製造工程と同様の工程である。CAMの製造方法2においては、前記CAMの製造方法1におけるLiMOの製造工程からの変更点として、MCCと、リチウム化合物とを混合して焼成し、得られた焼成物を石臼式解砕機で解砕する工程を備えることが好ましい。
 MCCと、リチウム化合物と、を1回焼成後に得られた焼成物を石臼式解砕機で解砕する工程を備えていてもよい。
 MCCと、リチウム化合物と、を1回焼成後に得られた第1焼成物を石臼式解砕機で解砕し、解砕物を焼成して得られた第2焼成品をさらに石臼式解砕機で解砕してもよい。
 石臼式解砕機による解砕の条件としては、例えば、回転数は1000rpm以上3000rpm以下、クリアランスは50μm以上200μm以下が挙げられる。
 上記の条件により焼成物を解砕することで、(1)及び(2)を満たすCAM、(1)及び(3)を満たすCAMが得られやすくなる。
 工程(b)及び工程(c)
 工程(b)及び工程(c)は、混合物の熱処理温度が相違する以外は前記CAMの製造方法1におけるCAMの製造工程と同様の工程である。
 工程(b)では、元素XとしてTi、Nb、Zr、Mg、Sn、W及びBからなる群より選ばれる少なくとも一つを含有する化合物を用いる場合、熱処理条件は、熱処理温度が200℃以上650℃以下の温度範囲とすることが好ましく、200℃以上600℃以下がより好ましい。熱処理時間は、4時間以上10時間以下であることが好ましい。
 工程(b)では、元素XとしてAlを含有する化合物を用いる場合、熱処理条件は、熱処理温度が200℃以上600℃以下の温度範囲とすることが好ましい。熱処理時間は、4時間以上10時間以下とすることが好ましい。
 熱処理温度が上記の範囲よりも高い温度であると、元素Xを含有する化合物がLiMOの結晶構造内部まで拡散し、結晶構造の安定性が低下する場合がある。熱処理の保持時間が4時間よりも短いと元素Xを含有する化合物の拡散が不十分で、イオン伝導性を有する複合相が均一に形成されない場合がある。
 工程(b)は、元素Xを含む被覆原料とLiMOとを、水又は水と炭酸ガスを含有する雰囲気中で混合する工程を有することが好ましい。水と炭酸ガスを含有する雰囲気で混合する場合、雰囲気中の水分量は相対湿度で40%以上であることが好ましい。
 工程(b)は、元素Xを含む被覆原料とLiMOとを混合し、混合後に水又は水と炭酸ガスを含有する雰囲気中において保持する工程を有することが好ましい。混合後の保持時間は0.5時間以上3時間以下であることが好ましい。
<リチウム二次電池>
 次いで、リチウム二次電池の構成を説明しながら、本実施形態のCAMを用いたリチウム二次電池用正極(以下、正極と称することがある。)、およびこの正極を有するリチウム二次電池について説明する。
 本実施形態のCAMは、前記本実施形態のCAMからなることが好ましいが、本発明の効果を損なわない範囲で他の成分を含有していてもよい。
 本実施形態のCAMを用いる場合の好適なリチウム二次電池の一例は、正極および負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図1A、図1Bは、リチウム二次電池の一例を示す模式図である。円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、および一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することで、電極群4とする。
 次いで、図1Bに示すように、電池缶5に電極群4および不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7および封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(又はシート型)電池を例示することができる。
 以下、各構成について順に説明する。
(正極)
 本実施形態の正極は、まずCAM、導電材およびバインダーを含む正極合剤を調製し、正極合剤を正極集電体に担持させることで製造することができる。
(導電材)
 正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)及び繊維状炭素材料などを挙げることができる。
 正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
(バインダー)
 正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリイミド樹脂;ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレンなどのフッ素樹脂;ポリエチレン及びポリプロピレンなどのポリオレフィン樹脂、WO2019/098384A1またはUS2020/0274158A1に記載の樹脂を挙げることができる。
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂およびポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力および正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
 正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N‐ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法および静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 リチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、および負極活物質単独からなる電極を挙げることができる。
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
 負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維および有機高分子化合物焼成体を挙げることができる。
 負極活物質として使用可能な酸化物としては、SiO及びSiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物SnO及びSnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;LiTi12及びLiVOなどのリチウムとチタンとを含有する金属複合酸化物;を挙げることができる。
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。
 負極活物質として使用可能な材料として、WO2019/098384A1またはUS2020/0274158A1に記載の材料を用いてもよい。
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース(以下、CMCということがある。)、スチレンブタジエンゴム(以下、SBRということがある。)、ポリエチレンおよびポリプロピレンを挙げることができる。
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
 このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
 リチウム二次電池が有するセパレータとしては、例えば、ポリエチレン及びポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂又は含窒素芳香族重合体などの材質からなる、多孔質膜、不織布又は織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。また、JP-A-2000-030686やUS20090111025A1に記載のセパレータを用いてもよい。
 セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。
 また、セパレータの空孔率は、好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。
(電解液)
 リチウム二次電池が有する電解液は、電解質および有機溶媒を含有する。
 電解液に含まれる電解質としては、LiClO、LiPF、LiBFなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。また、WO2019/098384A1またはUS2020/0274158A1に記載の電解質を用いてもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF及びLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、WO2019/098384A1またはUS2020/0274158A1に記載の有機溶媒を用いることができる。
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む混合溶媒が好ましい。
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。
 また、以上のような構成の正極は、上述した構成のCAMを有するため、リチウム二次電池のサイクル特性を向上させることができる。
 さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、サイクル特性の高い二次電池となる。
<全固体リチウムイオン二次電池>
 次いで、全固体リチウム二次電池の構成を説明しながら、本発明の一態様に係るCAMを全固体リチウム二次電池のCAMとして用いた正極、及びこの正極を有する全固体リチウム二次電池について説明する。
 図2、3は、全固体リチウムイオン二次電池の一例を示す模式図である。図2は、全固体リチウムイオン二次電池が備える積層体を示す模式図である。図3は、全固体リチウムイオン二次電池の全体構成を示す模式図である。
 全固体リチウムイオン二次電池1000は、正極110と、負極120と、固体電解質層130とを有する積層体100と、積層体100を収容する外装体200と、を有する。また、全固体リチウム二次電池1000は、集電体の両側にCAMと負極活物質とを配置したバイポーラ構造であってもよい。バイポーラ構造の具体例として、例えば、JP-A-2004-95400に記載される構造が挙げられる。
 各部材を構成する材料については、後述する。
 積層体100は、正極集電体112に接続される外部端子113と、負極集電体122に接続される外部端子123と、を有していてもよい。
 積層体100において、正極110と負極120とは、互いに短絡しないように固体電解質層130を挟持している。その他、全固体リチウムイオン二次電池1000は、正極110と負極120との間に、従来の液系リチウムイオン二次電池で用いられるようなセパレータを有し、正極110と負極120との短絡を防止していてもよい。
 全固体リチウムイオン二次電池1000は、積層体100と外装体200とを絶縁する不図示のインシュレーターや、外装体200の開口部200aを封止する不図示の封止体を有する。
 外装体200は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼などの耐食性の高い金属材料を成形した容器を用いることができる。また、少なくとも一方の面に耐食加工を施したラミネートフィルムを袋状に加工した容器を用いることもできる。
 全固体リチウムイオン二次電池1000の形状としては、例えば、コイン型、ボタン型、ペーパー型(又はシート型)、円筒型、角型などの形状を挙げることができる。
 全固体リチウムイオン二次電池1000は、積層体100を1つ有することとして図示しているが、これに限らない。全固体リチウムイオン二次電池1000は、積層体100を単位セルとし、外装体200の内部に複数の単位セル(積層体100)を封じた構成であってもよい。
 以下、各構成について順に説明する。
(正極)
 正極110は、正極活物質層111と正極集電体112とを有している。
 正極活物質層111は、上述した本発明の一態様であるCAMを含む。また、正極活物質層111は、固体電解質(第2の固体電解質)、導電材、バインダーを含むこととしてもよい。
 正極活物質層111に含まれるCAMは、正極活物質層111に含まれる第2の固体電解質と接触している。詳しくは、正極活物質層111は、LiMOの結晶を含む複数の粒子(CAM)と、複数の粒子(CAM)の間に充填され粒子(CAM)と接触する固体電解質とを含む。
(固体電解質)
 正極活物質層111が有してもよい固体電解質としては、リチウムイオン伝導性を有し、公知の全固体電池に用いられる固体電解質を採用することができる。このような固体電解質としては、無機電解質、有機電解質を挙げることができる。無機電解質としては、酸化物系固体電解質、硫化物系固体電解質、水素化物系固体電解質を挙げることができる。有機電解質としては、ポリマー系固体電解質を挙げることができる。
 各電解質としては、WO2020/208872A1、US2016/0233510A1、US2012/0251871A1、US2018/0159169A1に記載の化合物が挙げられ、例えば、以下の化合物が挙げられる。
 本実施形態においては、酸化物系固体電解質、又は硫化物系固体電解質を用いることが好ましく、酸化物系固体電解質を用いることがより好ましい。
(酸化物系固体電解質)
 酸化物系固体電解質としては、例えば、ペロブスカイト型酸化物、NASICON型酸化物、LISICON型酸化物、ガーネット型酸化物などが挙げられる。各酸化物の具体例は、WO2020/208872A1、US2016/0233510A1、US2020/0259213A1に記載の化合物が挙げられる。
 ガーネット型酸化物としては、LiLaZr12(LLZ)などのLi-La-Zr系酸化物などが挙げられる。
 酸化物系固体電解質は、結晶性材料であってもよく、非晶質(アモルファス)材料であってもよい。非晶質(アモルファス)固体電解質として、例えばLiBO、Li、LiBOなどのLi-B-O化合物が挙げられる。酸化物系固体電解質は、非晶質材料が含まれることが好ましい。
(硫化物系固体電解質)
 硫化物系固体電解質としては、LiS-P系化合物、LiS-SiS系化合物、LiS-GeS系化合物、LiS-B系化合物、LiI-SiS-P系化合物、LiI-LiS-P系化合物、LiI-LiPO-P系化合物及びLi10GeP12などを挙げることができる。
 なお、本明細書において、硫化物系固体電解質を指す「系化合物」という表現は、「系化合物」の前に記載した「LiS」「P」などの原料を主として含む固体電解質の総称として用いる。例えば、LiS-P系化合物には、LiSとPとを含み、さらに他の原料を含む固体電解質が含まれる。また、LiS-P系化合物には、LiSとPとの混合比を異ならせた固体電解質も含まれる。
 LiS-P系化合物としては、LiS-P、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P5-LiI-LiBrなどを挙げることができる。
 LiS-SiS系化合物としては、LiS-SiS、LiS-SiS-LiI、LiS-SiS-LiBr、LiS-SiS-LiCl、LiS-SiS-B-LiI、LiS-SiS-P-LiI、LiS-SiS-P-LiClなどを挙げることができる。
 LiS-GeS系化合物としては、LiS-GeS、LiS-GeS-Pなどを挙げることができる。
 硫化物系固体電解質は、結晶性材料であってもよく、非晶質材料であってもよい。
 固体電解質は、発明の効果を損なわない範囲において、2種以上を併用することができる。
(導電材及びバインダー)
 正極活物質層111が有する導電材としては、上述の(導電材)で説明した材料を用いることができる。また、正極合剤中の導電材の割合についても同様に上述の(導電材)で説明した割合を適用することができる。また、正極が有するバインダーとしては、上述の(バインダー)で説明した材料を用いることができる。
(正極集電体)
 正極110が有する正極集電体112としては、上述の(正極集電体)で説明した材料を用いることができる。
 正極集電体112に正極活物質層111を担持させる方法としては、正極集電体112上で正極活物質層111を加圧成型する方法が挙げられる。加圧成型には、冷間プレスや熱間プレスを用いることができる。
 また、有機溶媒を用いて正極活物質、固体電解質、導電材及びバインダーの混合物をペースト化して正極合剤とし、得られる正極合剤を正極集電体112の少なくとも一面上に塗布して乾燥させ、プレスし固着することで、正極集電体112に正極活物質層111を担持させてもよい。
 また、有機溶媒を用いて正極活物質、固体電解質及び導電材の混合物をペースト化して正極合剤とし、得られる正極合剤を正極集電体112の少なくとも一面上に塗布して乾燥させ、焼結することで、正極集電体112に正極活物質層111を担持させてもよい。
 正極合剤に用いることができる有機溶媒としては、上述の(正極集電体)で説明した正極合剤をペースト化する場合に用いることができる有機溶媒と同じものを用いることができる。
 正極合剤を正極集電体112へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法及びグラビア塗工法及び静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極110を製造することができる。
(負極)
 負極120は、負極活物質層121と負極集電体122とを有している。負極活物質層121は、負極活物質を含む。また、負極活物質層121は、固体電解質及び導電材を含んでいてもよい。負極活物質、負極集電体、固体電解質、導電材及びバインダーは、上述したものを用いることができる。
(固体電解質層)
 固体電解質層130は、上述の固体電解質を有している。
 固体電解質層130は、上述の正極110が有する正極活物質層111の表面に、無機物の固体電解質をスパッタリング法により堆積させることで形成することができる。
 また、固体電解質層130は、上述の正極110が有する正極活物質層111の表面に、固体電解質を含むペースト状の合剤を塗布し、乾燥させることで形成することができる。乾燥後、プレス成型し、さらに冷間等方圧加圧法(CIP)により加圧して固体電解質層130を形成してもよい。
 積層体100は、上述のように正極110上に設けられた固体電解質層130に対し、公知の方法を用いて、固体電解質層130の表面に負極電解質層121が接する態様で負極120を積層させることで製造することができる。
 以上のような構成のCAMによれば、正極において固体電解質との間でリチウムイオンの授受をスムーズに行うことができ、電池性能を向上させることができる。
 以上のような構成の電極によれば、上述の全固体リチウムイオン電池用正極活物質を有するため、全固体リチウムイオン電池の電池性能を向上させることができる。
[初回放電容量及びサイクル維持率の測定方法]
<リチウム二次電池用正極の作製>
 後述する製造方法で得られるCAMと導電材(アセチレンブラック)とバインダー(PVdF)とを、CAM:導電材:バインダー=92:5:3(質量比)の組成となる割合で加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いた。
 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得た。このリチウム二次電池用正極の電極面積は1.65cmとした。
<リチウム二次電池(コイン型ハーフセル)の作製>
 以下の操作を、アルゴン雰囲気のグローブボックス内で行った。
 <リチウム二次電池用正極の作製>で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上にセパレータ(ポリエチレン製多孔質フィルム)を置いた。ここに電解液を300μl注入した。電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの30:35:35(体積比)混合液に、LiPF6を1.0mol/lとなる割合で溶解したものを用いた。
 次に、負極として金属リチウムを用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型ハーフセルR2032。以下、「ハーフセル」と称することがある。)を作製した。
<充放電試験>
 上記の方法で作製したハーフセルを用いて、初回充放電効率試験とサイクル試験を実施し、二次電池の性能の指標として、初回放電容量およびサイクル容量維持率を評価した。
・初回充放電試験
 試験温度25℃において、充放電ともに電流設定値0.2CAとし、それぞれ定電流定電圧充電と定電流放電を行った。
 充電最大電圧は4.35V、放電最小電圧は2.8Vとした。
・サイクル試験
 サイクル試験は、初回充放電試験に続いて行い、試験温度は25℃とした。充放電サイクルの繰り返し回数は50回とした。電流設定値1CAとし、それぞれ定電流定電圧充電と定電流放電を行った。
   充電:電流設定値1CA、最大電圧4.35V、定電圧定電流充電
   放電:電池設定値1CA、最小電圧2.8V、定電流放電
・サイクル維持率
 サイクル試験における1サイクル目の放電容量と50サイクル目の放電容量から、下記の式でサイクル容量維持率とした。サイクル容量維持率が高いほど、充放電を繰り返した後の電池の容量低下が抑制されるため、電池性能として望ましい。
    サイクル維持率(%)=
    50サイクル目の放電容量(mAh/g)/1サイクル目の放電容量(mAh/g)×100
 次に、本発明を実施例によりさらに詳細に説明する。
<組成分析>
 後述の方法で製造されるCAMの組成分析は、前記[組成分析]に記載の方法により実施した。
<BET比表面積測定>
 CAMのBET比表面積は、前記[BET比表面積の測定]に記載の方法により実施した。
<元素Xを含む化合物のD50の測定>
 元素Xを含有する化合物の50%累積体積粒度D50は、前記[元素Xを含む化合物のD50の測定方法]に記載の方法により測定した。元素XとしてBまたはPを含有する化合物は、乾式の方法で測定した。また、BおよびP以外の元素Xを含有する化合物は、以下の湿式の方法で測定した。
 湿式の測定方法は、上記(湿式の測定方法)により実施した。
 乾式の測定方法は、上記(乾式の測定方法)により実施した。
<X線光電子分光分析(XPS)>
 XPSを用いた測定は、上記[X線光電子分光分析]に記載の方法により実施した。
・Cxの測定
 元素Xのスペクトル(元素Xのスペクトルピークとしては、アルミニウム2p、チタン2p、ニオブ3d、ホウ素1s、タングステン4f、ジルコニウム3d、マグネシウム2p、スズ3d及びリン2pである。)について、各元素のスペクトルのピーク面積より各元素の存在量(質量%)を算出した。
・Cyの測定
 結合エネルギーが290±5eVにピークトップを有するC1sスペクトルのピーク面積に基づいて炭素原子の存在量(質量%)を算出した。
<燃焼-赤外線吸収法>
・Czの測定
 燃焼‐赤外線吸収法により、CAMの粒子の全体に含まれる炭素原子の存在量(質量%)を算出した。
 燃焼‐赤外線吸収法は、EMIA-810Wを用いて測定した。測定は、酸素気流中で行い、燃焼温度は1400℃とした。燃焼開始後、60秒間分析を行い、発生した炭素含有ガス成分を赤外検出器により測定し、炭素原子の存在量を算出した。
<Cx/Cyの算出>
 上記の方法により得たCxとCyの値を用いてCxとCyとの比であるCx/Cyを算出した。
<Cy/Czの算出>
 上記の方法により得たCyとCzの値を用いてCyとCzとの比であるCy/Czを算出した。
<初回放電容量及びサイクル維持率の測定方法>
 二次電池の性能の指標として、初回放電容量およびサイクル容量維持率を評価した。具体的には上記[初回放電容量及びサイクル維持率の測定方法]に記載の方法により、初回放電容量およびサイクル容量維持率を測定した。
≪実施例1≫
1.CAM-1の製造
 攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸アルミニウム水溶液とを、NiとCoとAlとの原子比が88:9:3となる割合で混合して、混合原料液を調製した。
 次に、反応槽内に、攪拌下、この混合原料液と硫酸アンモニウム水溶液を錯化剤として連続的に添加した。反応槽内の溶液のpHが11.6(液温40℃での測定時)になるよう、水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトアルミニウム複合水酸化物の粒子を得た。
 ニッケルコバルトアルミニウム複合水酸化物の粒子を洗浄した後、遠心分離機で脱水し、単離して105℃で乾燥することで、ニッケルコバルトアルミニウム複合水酸化物1を得た。
 ニッケルコバルトアルミニウム複合水酸化物1と水酸化リチウム一水和物粉末を、モル比がLi/(Ni+Co+Al)=1.03となる割合で秤量して混合した。
 その後、酸素雰囲気下650℃で5時間焼成し、石臼式粉砕機により粉砕し、さらに酸素雰囲気下760℃で5時間焼成した。再度、石臼型粉砕機により粉砕し、LiMO-1の粉末を得た。
 得られたLiMO-1と元素Xを含む化合物である酸化ニオブ(D50=1.30μm)を、LiMO-1中のLi以外の金属元素の総モル量に対する、元素Xのモル量の割合が、5.1モル%となる割合で混合した。酸素雰囲気下500℃で5時間熱処理することにより、Ni,Co,Alを含むLiMOの粉末の表面に、元素XとしてNbを含む複合相を有するCAM-1を得た。
2.CAM-1の評価
 CAM-1の組成分析を行ったところ、m=0.03、n=0.08、p=0.09、であり、元素MはCoであり、元素XはAl、Nbであった。
 CAM-1のCx、Cy、Cz、Cx/Cy、Cy/Cz、初回放電容量及びサイクル維持率の結果を表1~2に記載する。
≪実施例2≫
 元素Xを含む化合物を酸化チタン(D50=2.5μm)とし、LiMO-1中のLi以外の金属元素の総モル量に対する、元素Xのモル量の割合が、4.1モル%となる割合で混合した以外は実施例1同様の操作を行った。
 酸素雰囲気下500℃で5時間熱処理することにより、Ni,Co,Alを含むLiMO-の粉末の表面に、元素XとしてTiを含む複合相を有するCAM-2を得た。
2.CAM-2の評価
 CAM-2の組成分析を行ったところ、m=0.04、n=0.07、p=0.09であり、元素MはCoであり、元素XはAl、Tiであった。
 CAM-2のCx、Cy、Cz、Cx/Cy、Cy/Cz、初回放電容量及びサイクル維持率の結果を表1~2に記載する。
≪実施例3≫
 元素Xを含む化合物をリン酸二水素アンモニウム(D50=75.6μm)とし、LiMO-1中のLi以外の金属元素の総モル量に対する、元素Xのモル量の割合が、4.4モル%となる割合で混合した以外は実施例1同様の操作を行った。
 酸素雰囲気下600℃で5時間熱処理することにより、Ni,Co,Alを含むLiMO-の粉末の表面に、元素XとしてPを含む複合相を有するCAM-3を得た。
2.CAM-3の評価
 CAM-3の組成分析を行ったところ、m=0.03、n=0.05、p=0.09であり、元素MはCoであり、元素XはAl、Pであった。
 CAM-3のCx、Cy、Cz、Cx/Cy、Cy/Cz、初回放電容量及びサイクル維持率の結果を表1~2に記載する。
≪実施例4≫
 元素Xを含む化合物を酸化タングステン(D50=3.17μm)とし、LiMO-1中のLi以外の金属元素の総モル量に対する、元素Xのモル量の割合が、5.1モル%となる割合で混合した以外は実施例1同様の操作を行った。
 酸素雰囲気下500℃で5時間熱処理することにより、Ni,Co,Alを含むLiMOの粉末の表面に、元素XとしてWを含む複合相を有するCAM-4を得た。
2.CAM-4の評価
 CAM-4の組成分析を行ったところ、m=0.03、n=0.06、p=0.09であり、元素MはCoであり、元素XはAl、Wであった。
 CAM-4のCx、Cy、Cz、Cx/Cy、Cy/Cz、初回放電容量及びサイクル維持率の結果を表1~2に記載する。
≪実施例5≫
 元素Xを含む化合物をホウ酸(D50=16.3μm)とし、LiMO-1中のLi以外の金属元素の総モル量に対する、元素Xのモル量の割合が、4.6モル%となる割合で混合した以外は実施例1同様の操作を行った。
 酸素雰囲気下400℃で5時間熱処理することにより、Ni,Co,Alを含むLiMO-の粉末の表面に、元素XとしてBを含む複合相を有するCAM-5を得た。
2.CAM-5の評価
 CAM-5の組成分析を行ったところ、m=0.04、n=0.06、p=0.09であり、元素MはCoであり、元素XはAl、Bであった。
 CAM-5のCx、Cy、Cz、Cx/Cy、Cy/Cz、初回放電容量及びサイクル維持率の結果を表1~2に記載する。
≪実施例6≫
 元素Xを含む化合物をアルミナ(D50=3.5μm)とし、LiMO-1中のLi以外の金属元素の総モル量に対する、元素Xのモル量の割合が、5.1モル%となる割合で混合した以外は実施例1同様の操作を行った。
 酸素雰囲気下600℃で5時間熱処理することにより、Ni,Co,Alを含むLiMO-の粉末の表面に、元素XとしてAlを含む複合相を有するCAM-6を得た。
2.CAM-6の評価
 CAM-6の組成分析を行ったところ、m=-0.002、n=0.07、p=0.09であり、元素MはCoであり、元素XはAlであった。
 CAM-6のCx、Cy、Cz、Cx/Cy、Cy/Cz、初回放電容量及びサイクル維持率の結果を表1~2に記載する。
≪実施例7≫
 元素Xを含む化合物を酸化チタン(D50=15.1μm)とし、LiMO-1中のLi以外の金属元素の総モル量に対する、元素Xのモル量の割合が、1.1モル%となる割合で混合した以外は実施例1同様の操作を行った。
 酸素雰囲気下500℃で5時間熱処理することにより、Ni,Co,Alを含むLiMO-の粉末の表面に、元素XとしてTiを含む複合相を有するCAM-7を得た。
2.CAM-7の評価
 CAM-7の組成分析を行ったところ、m=0.04、n=0.06、p=0.09であり、元素MはCoであり、元素XはAl、Tiであった。
 CAM-7のCx、Cy、Cz、Cx/Cy、Cy/Cz、初回放電容量及びサイクル維持率の結果を表1~2に記載する。
≪比較例1≫
 元素Xを含む化合物を酸化チタン(D50=2.53μm)とし、LiMO-1中のLi以外の金属元素の総モル量に対する、元素Xのモル量の割合が、4.6モル%となる割合で混合した以外は実施例1同様の操作を行った。
 酸素雰囲気下700℃で5時間熱処理することにより、Ni,Co,Alを含むLiMO-の粉末の表面に、元素XとしてTiを含む複合相を有するCAM-8を得た。
2.CAM-8の評価
 CAM-8の組成分析を行ったところ、m=0.01、n=0.07、p=0.09であり、元素MはCoであり、元素XはAl、Tiであった。
 CAM-8のCx、Cy、Cz、Cx/Cy、Cy/Cz、初回放電容量及びサイクル維持率の結果を表1~2に記載する。
≪比較例2≫
 元素Xを含む化合物を酸化ニオブ(D50=1.30μm)とし、LiMO-1中のLi以外の金属元素の総モル量に対する、元素Xのモル量の割合が、6.1モル%となる割合で混合した以外は実施例1同様の操作を行った。
 酸素雰囲気下700℃で5時間熱処理することにより、Ni,Co,Alを含むLiMO-の粉末の表面に、元素XとしてNbを含む複合相を有するCAM-9を得た。
2.CAM-9の評価
 CAM-9の組成分析を行ったところ、m=-0.04、n=0.12、p=0.09であり、元素MはCoであり、元素XはAl、Nbであった。
 CAM-9のCx、Cy、Cz、Cx/Cy、Cy/Cz、初回放電容量及びサイクル維持率の結果を表1~2に記載する。
≪比較例3≫
 元素Xを含む化合物をアルミナ(粒子径D50=3.5μm)とし、LiMO-1中のLi以外の金属元素の総モル量に対する、元素Xのモル量の割合が、8.5モル%となる割合で混合した以外は実施例1と同様の操作を行った。
 酸素雰囲気下600℃で5時間熱処理することにより、Ni,Co,Alを含むLiMO-1の粉末の表面に、元素XとしてAlを含む複合相を有するCAM-10を得た。
2.CAM-10の評価
 CAM-10の組成分析を行ったところ、m=-0.05、n=0.12、p=0.09であり、元素MはCoであり、元素XはAlであった。
 CAM-10のCx、Cy、Cz、Cx/Cy、Cy/Cz、初回放電容量及びサイクル維持率の結果を表1~2に記載する。
≪実施例8≫
 元素Xを含む化合物を酸化マグネシウム(D50=0.1μm)とし、LiMO-1中のLi以外の金属元素の総モル量に対する、元素Xのモル量の割合が、4.7モル%となる割合で混合した以外は実施例1同様の操作を行った。
 酸素雰囲気下400℃で5時間熱処理することにより、Ni,Co,Alを含むLiMO-の粉末の表面に、元素XとしてMgを含む複合相を有するCAM-11を得た。
2.CAM-11の評価
 CAM-11の組成分析を行ったところ、m=0.04、n=0.05、p=0.09であり、元素MはCoであり、元素XはAl、Mgであった。
 CAM-11のCx、Cy、Cz、Cx/Cy、Cy/Cz、初回放電容量及びサイクル維持率の結果を表1~2に記載する。
≪実施例9≫
 元素Xを含む化合物を硫酸マグネシウム(D50=1.9μm)とし、LiMO-1中のLi以外の金属元素の総モル量に対する、元素Xのモル量の割合が、4.7モル%となる割合で混合した以外は実施例1同様の操作を行った。
 酸素雰囲気下400℃で5時間熱処理することにより、Ni,Co,Alを含むLiMO-1の粉末の表面に、元素XとしてMgを含む複合相を有するCAM-12を得た。
2.CAM-12の評価
 CAM-12の組成分析を行ったところ、m=0.05、n=0.04、p=0.09であり、元素MはCoであり、元素XはAl、Mgであった。
 CAM-12のCx、Cy、Cz、Cx/Cy、Cy/Cz、初回放電容量及びサイクル維持率の結果を表1~2に記載する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード、100…積層体、110…正極、111…正極活物質層、112…正極集電体、113…外部端子、120…負極、121…負極電解質層、122…負極集電体、123…外部端子、130…固体電解質層、200…外装体、200a…開口部、1000…全固体リチウムイオン二次電池

Claims (15)

  1.  少なくともLiとNiと元素Xと炭素原子とを含有し、前記元素Xは、Al、Ti、Nb、B、W、Zr、Mg、Sn、及びPからなる群より選択される1種以上の元素であり、下記の(1)及び(2)を満たす、リチウム二次電池用正極活物質。
    (1)Cx/Cy≦10
    (2)0<(Cy/Cz)≦100
    (上記(1)又は(2)中、
     Cxは、X線光電子分光法を用いた測定により得られる、前記元素Xの存在量(質量%)である。
     Cyは、X線光電子分光法を用いた測定により得られるC1sスペクトルから求められる、前記炭素原子の存在量(質量%)である。
     Czは、燃焼-赤外線吸収法を用いた測定により得られる、前記炭素原子の存在量(質量%)である。)
  2.  少なくともLiとNiと元素Xと炭素原子とを含有し、前記元素Xは、Al、Ti、Nb、B、W、Zr、Mg、Sn、及びPからなる群より選択される1種以上の元素であり、下記の(1)及び(3)を満たす、リチウム二次電池用正極活物質。
    (1)Cx/Cy≦10
    (3)0<(Cy/Cz)≦500
    (上記(1)又は(3)中、
     Cxは、X線光電子分光法を用いた測定により得られる、前記元素Xの存在量(質量%)である。
     Cyは、X線光電子分光法を用いた測定により得られるC1sスペクトルから求められる、前記炭素原子の存在量(質量%)である。
     Czは、燃焼-赤外線吸収法を用いた測定により得られる、前記炭素原子の存在量(質量%)である。)
  3.  前記Cyは、0<Cy≦50である請求項1又は2に記載のリチウム二次電池用正極活物質。
  4.  前記Czは、0<Cz≦2である、請求項1~3のいずれか1項に記載のリチウム二次電池用正極活物質。
  5.  前記Czは、0<Cz≦0.4である、請求項1~4のいずれか1項に記載のリチウム二次電池用正極活物質。
  6.  前記Cxは、0<Cx≦95である、請求項1~5のいずれか1項に記載のリチウム二次電池用正極活物質。
  7.  下記組成式(I)で表され、さらに炭素原子を含有する請求項1~6のいずれか1項に記載のリチウム二次電池用正極活物質。
      Li[Li(Ni(1-n-p)1-m]O ・・・(I)
    (ただし、-0.1≦m≦0.2、0<p<0.6、及び0<n≦0.2である。元素Mは、Co、Mn、Fe、Cu、Mo、Zn、Ga及びVからなる群より選択される1種以上の元素である。)
  8.  前記リチウム二次電池用正極活物質は、リチウム金属複合酸化物と複合相とを備え、前記リチウム金属複合酸化物は、LiとNiと、元素M及びAlからなる群より選択される1種以上の元素とを含有し、前記複合相は前記元素Xを含有する請求項1~7のいずれか1項に記載のリチウム二次電池用正極活物質。ただし、前記元素Mは、Co、Mn、Fe、Cu、Mo、Zn、Ga及びVからなる群より選択される1種以上の元素である。
  9.  BET比表面積が2.0m/g以下である、請求項1~8のいずれか1項に記載のリチウム二次電池用正極活物質。
  10.  請求項1~9のいずれか1項に記載のリチウム二次電池用正極活物質を含むリチウム二次電池用正極。
  11.  請求項10に記載のリチウム二次電池用正極を有するリチウム二次電池。
  12.  下記工程(a)、工程(b)及び工程(c)をこの順で備える、リチウム二次電池用正極活物質の製造方法。
     工程(a):少なくともNiを含む金属複合化合物と、リチウム化合物を混合して焼成し、リチウム金属複合酸化物を得る工程。
     工程(b):前記リチウム金属複合酸化物と、元素Xを含む化合物とを、前記リチウム金属複合酸化物に含まれるリチウム原子以外の金属元素の総モル量に対する、前記元素Xのモル量の割合が1.0モル%以上5.5モル%以下となる割合で混合して混合物を得る工程。前記元素Xは、Al、Ti、Nb、B、W、Zr、Mg、Sn、及びPからなる群より選択される1種以上の元素であり、前記元素Xを含む化合物の50%累積体積粒度D50(μm)は0.02μm以上90μm以下である。
     工程(c):前記混合物を酸素含有雰囲気下で200℃以上600℃以下の温度で熱処理する工程。
  13.  前記工程(a)は、金属複合化合物と、リチウム化合物とを混合して焼成し、得られた焼成物を石臼式解砕機で解砕する工程を有する、請求項12に記載のリチウム二次電池用正極活物質の製造方法。
  14.  前記工程(b)は、元素Xを含む被覆原料とリチウム金属複合酸化物とを、水又は水と炭酸ガスを含有する雰囲気中で混合する工程を有する、請求項12または13に記載のリチウム二次電池用正極活物質の製造方法。
  15.  前記工程(b)は、元素Xを含む被覆原料とリチウム金属複合酸化物とを混合し、混合後に水又は水と炭酸ガスを含有する雰囲気中において保持する工程を有する、請求項12~14のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。
PCT/JP2021/028730 2020-08-24 2021-08-03 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 WO2022044720A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237005604A KR20230056668A (ko) 2020-08-24 2021-08-03 리튬 이차 전지용 정극 활물질, 리튬 이차 전지용 정극 및 리튬 이차 전지
CN202180051065.7A CN115885398A (zh) 2020-08-24 2021-08-03 锂二次电池用正极活性物质、锂二次电池用正极及锂二次电池
US18/042,406 US20230327105A1 (en) 2020-08-24 2021-08-03 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2022545592A JPWO2022044720A1 (ja) 2020-08-24 2021-08-03
EP21861148.1A EP4203105A1 (en) 2020-08-24 2021-08-03 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-141233 2020-08-24
JP2020141233 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022044720A1 true WO2022044720A1 (ja) 2022-03-03

Family

ID=80355142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028730 WO2022044720A1 (ja) 2020-08-24 2021-08-03 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Country Status (6)

Country Link
US (1) US20230327105A1 (ja)
EP (1) EP4203105A1 (ja)
JP (1) JPWO2022044720A1 (ja)
KR (1) KR20230056668A (ja)
CN (1) CN115885398A (ja)
WO (1) WO2022044720A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353454B1 (ja) * 2022-11-25 2023-09-29 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2023238580A1 (ja) * 2022-06-10 2023-12-14 パナソニックホールディングス株式会社 被覆活物質、それを用いた電池、および、被覆活物質の製造方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2004095400A (ja) 2002-08-30 2004-03-25 Nissan Motor Co Ltd バイポーラ電池とその制御方法
JP2009081130A (ja) * 2007-09-04 2009-04-16 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法、及びその噴霧乾燥工程で得られる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
US20090111025A1 (en) 2004-12-22 2009-04-30 Lg Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
US20120251871A1 (en) 2011-03-29 2012-10-04 Tohoku University All-solid-state battery
JP2013037950A (ja) * 2011-08-09 2013-02-21 Toyota Motor Corp 複合正極活物質、全固体電池、および複合正極活物質の製造方法
WO2014185547A1 (ja) * 2013-05-17 2014-11-20 三井金属鉱業株式会社 リチウム二次電池用正極活物質
JP2014238957A (ja) * 2013-06-07 2014-12-18 Dowaホールディングス株式会社 正極活物質粉末およびその製造法
US20160233510A1 (en) 2013-11-08 2016-08-11 Hitachi, Ltd. All-solid state battery, electrode for all-solid state battery, and method of manufacturing the same
JP2017134996A (ja) * 2016-01-27 2017-08-03 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び該正極活物質を用いた非水系電解質二次電池
US20180159169A1 (en) 2015-10-30 2018-06-07 Lg Chem, Ltd. Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
JP2019021623A (ja) * 2017-07-14 2019-02-07 ユミコア 充電式リチウムイオン電池のためのNi系カソード材料
WO2019098384A1 (ja) 2017-11-20 2019-05-23 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US20200259213A1 (en) 2017-11-13 2020-08-13 Murata Manufacturing Co., Ltd. All-solid-state battery
JP2020141233A (ja) 2019-02-27 2020-09-03 キヤノン株式会社 情報処理装置、制御方法およびプログラム
WO2020208872A1 (ja) 2019-04-12 2020-10-15 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2004095400A (ja) 2002-08-30 2004-03-25 Nissan Motor Co Ltd バイポーラ電池とその制御方法
US20090111025A1 (en) 2004-12-22 2009-04-30 Lg Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
JP2009081130A (ja) * 2007-09-04 2009-04-16 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法、及びその噴霧乾燥工程で得られる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
US20120251871A1 (en) 2011-03-29 2012-10-04 Tohoku University All-solid-state battery
JP2013037950A (ja) * 2011-08-09 2013-02-21 Toyota Motor Corp 複合正極活物質、全固体電池、および複合正極活物質の製造方法
WO2014185547A1 (ja) * 2013-05-17 2014-11-20 三井金属鉱業株式会社 リチウム二次電池用正極活物質
JP2014238957A (ja) * 2013-06-07 2014-12-18 Dowaホールディングス株式会社 正極活物質粉末およびその製造法
US20160233510A1 (en) 2013-11-08 2016-08-11 Hitachi, Ltd. All-solid state battery, electrode for all-solid state battery, and method of manufacturing the same
US20180159169A1 (en) 2015-10-30 2018-06-07 Lg Chem, Ltd. Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
JP2017134996A (ja) * 2016-01-27 2017-08-03 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び該正極活物質を用いた非水系電解質二次電池
JP2019021623A (ja) * 2017-07-14 2019-02-07 ユミコア 充電式リチウムイオン電池のためのNi系カソード材料
US20200259213A1 (en) 2017-11-13 2020-08-13 Murata Manufacturing Co., Ltd. All-solid-state battery
WO2019098384A1 (ja) 2017-11-20 2019-05-23 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US20200274158A1 (en) 2017-11-20 2020-08-27 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2020141233A (ja) 2019-02-27 2020-09-03 キヤノン株式会社 情報処理装置、制御方法およびプログラム
WO2020208872A1 (ja) 2019-04-12 2020-10-15 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238580A1 (ja) * 2022-06-10 2023-12-14 パナソニックホールディングス株式会社 被覆活物質、それを用いた電池、および、被覆活物質の製造方法
JP7353454B1 (ja) * 2022-11-25 2023-09-29 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Also Published As

Publication number Publication date
CN115885398A (zh) 2023-03-31
JPWO2022044720A1 (ja) 2022-03-03
EP4203105A1 (en) 2023-06-28
KR20230056668A (ko) 2023-04-27
US20230327105A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
TWI633699B (zh) 用於可充電電池組之鋰過渡金屬氧化物陰極材料之前驅物
EP3145000B1 (en) Electrode, nonaqueous electrolyte battery, battery pack and vehicle
EP2471133A2 (en) Metal oxide coated positive electrode materials for lithium-based batteries
WO2013119571A1 (en) Mixed phase lithium metal oxide compositions with desirable battery performance
JP6096985B1 (ja) 非水電解質電池及び電池パック
WO2022107861A1 (ja) 前駆体、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022044720A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
CN115885397A (zh) 锂离子二次电池用正极活性物质、其制造方法、及锂离子二次电池
WO2022050311A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7157219B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
CN115516668A (zh) 锂金属复合氧化物、锂二次电池用正极活性物质、锂二次电池用正极及锂二次电池
JP7233511B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7219802B1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022004323A1 (ja) リチウム二次電池正極活物質用前駆体及びリチウム二次電池正極活物質の製造方法
JP7108095B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム二次電池用正極活物質の製造方法
JP7284244B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2021172509A1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US20230022902A1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7204868B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2021132228A1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2011125202A1 (ja) リチウム二次電池
JP2023142148A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム二次電池用正極活物質の製造方法
JP2022122296A (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545592

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021861148

Country of ref document: EP

Effective date: 20230324