WO2021132228A1 - リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 - Google Patents

リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 Download PDF

Info

Publication number
WO2021132228A1
WO2021132228A1 PCT/JP2020/047907 JP2020047907W WO2021132228A1 WO 2021132228 A1 WO2021132228 A1 WO 2021132228A1 JP 2020047907 W JP2020047907 W JP 2020047907W WO 2021132228 A1 WO2021132228 A1 WO 2021132228A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
lithium secondary
particle size
lithium
Prior art date
Application number
PCT/JP2020/047907
Other languages
English (en)
French (fr)
Inventor
毬恵 竹元
長尾 大輔
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020227020867A priority Critical patent/KR20220120570A/ko
Priority to CN202080088588.4A priority patent/CN114845958B/zh
Priority to US17/787,779 priority patent/US20230069426A1/en
Publication of WO2021132228A1 publication Critical patent/WO2021132228A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium metal composite oxide, a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery, and a lithium secondary battery.
  • the present application claims priority based on Japanese Patent Application No. 2019-231325 filed in Japan on December 23, 2019, the contents of which are incorporated herein by reference.
  • Lithium metal composite oxide is used as a positive electrode active material for lithium secondary batteries.
  • Lithium secondary batteries have already been put into practical use not only in small power sources for mobile phones and notebook computers, but also in medium-sized or large-sized power sources for automobiles and power storage.
  • Patent Document 1 describes a spinel-type lithium manganese-containing composite oxide for the purpose of suppressing the amount of gas generated by the reaction with the electrolytic solution.
  • the positive electrode active material used in lithium secondary batteries is required to further reduce the amount of gas generated.
  • the present invention has been made in view of the above circumstances, and is less likely to generate gas when used as a positive electrode active material for a lithium secondary battery, a lithium metal composite oxide, a positive electrode active material for a lithium secondary battery, and lithium. It is an object of the present invention to provide a positive electrode for a secondary battery and a lithium secondary battery.
  • the present invention includes the following inventions [1] to [7].
  • [1] A lithium metal composite oxide represented by the following composition formula (I) and satisfying all of the following requirements (1) to (3).
  • M is one or more elements selected from the group consisting of P, Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V, and- 0.1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, and 0 ⁇ w ⁇ 0.1 are satisfied.
  • the ratio (I 1 / I 2 ) of the diffraction peak to the integrated intensity I 2 is 2.0 or more.
  • Requirement (2); BET specific surface area is 0.7 m 2 / g or less.
  • Requirement (3); 10% cumulative volume particle size D 10 is 5 ⁇ m or more.
  • a lithium metal composite oxide that does not easily generate gas when used as a positive electrode active material for a lithium secondary battery, a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery, and a lithium secondary battery. Can be provided.
  • the metal composite compound (Metal Composite Compound) is hereinafter referred to as “MCC”
  • the lithium metal composite oxide (Lithium Metal Composite Oxide) is hereinafter referred to as “LiMO”.
  • Material for lithium secondary batteries) is hereinafter referred to as “CAM”.
  • the "primary particle” means a particle having no grain boundary in appearance when observed with a scanning electron microscope or the like in a field of view of 5000 times or more and 20000 times or less.
  • the "secondary particles” are particles in which the primary particles are aggregated. That is, the secondary particles are aggregates of the primary particles.
  • LiMO comprises only primary particles.
  • LiMO is composed of secondary particles that are aggregates of primary particles and primary particles that exist independently of the secondary particles.
  • LiMO is a powder.
  • the number of secondary particles contained in LiMO and the secondary particles are independent of each other.
  • the ratio of the number of primary particles to the total number of existing primary particles is preferably 20% or more, more preferably 30% or more, and particularly preferably 50% or more.
  • the upper limit is not particularly limited, but is less than 100%, preferably 90% or less.
  • the ratio of the number of primary particles is preferably 20% or more and less than 100%, more preferably 30% or more and 90% or less, and further preferably 50% or more and 90% or less.
  • the ratio of the number of primary particles to the total number of secondary particles and primary particles contained in LiMO is determined by the following method. First, LiMO is placed on a conductive sheet attached on a sample stage, and the primary particles and the secondary particles, which are aggregates of the primary particles, are dispersed so as to exist independently without contacting each other.
  • SEM scanning electron microscope
  • JSM-5510 manufactured by JEOL Ltd.
  • an electron beam having an acceleration voltage of 20 kV is irradiated to perform SEM observation.
  • 200 particles are randomly extracted from the image (SEM photograph) obtained by SEM observation, and used as the sum of the number of secondary particles and the number of primary particles.
  • the ratio of the number of primary particles to the total number of secondary particles and primary particles is calculated by dividing the obtained number of primary particles by the total number of secondary particles and the total number of primary particles and multiplying by 100.
  • the magnification of the SEM photograph may be any photograph having a magnification that can specify the particle morphology of the target LiMO, and a magnification of 1000 times or more and 30,000 times or less is preferably used.
  • the LiMO of this embodiment is represented by the composition formula (I) and satisfies the requirements (1) to (3).
  • composition formula (I) Li [Li x (Ni (1 -y-z-w) Co y Mn z M w) 1-x] O 2 ⁇ (I) (However, M is one or more elements selected from the group consisting of P, Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V, and- 0.1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, and 0 ⁇ w ⁇ 0.1 are satisfied.)
  • composition analysis of LiMO is performed by dissolving LiMO powder in hydrochloric acid and then using an inductively coupled plasma emission spectrometer (for example, SPS3000 manufactured by SII Nanotechnology Co., Ltd.).
  • x in the composition formula (I) is preferably more than 0, more preferably 0.01 or more, and further preferably 0.02 or more. .. Further, from the viewpoint of obtaining a lithium secondary battery having a higher initial coulombic efficiency, x in the composition formula (I) is preferably 0.1 or less, more preferably 0.08 or less, and 0.06. The following is more preferable.
  • the upper limit value and the lower limit value of x can be arbitrarily combined. In the present embodiment, 0 ⁇ x ⁇ 0.1 is preferable, 0.01 ⁇ x ⁇ 0.08 is more preferable, and 0.02 ⁇ x ⁇ 0.06 is even more preferable. ..
  • the "cycle characteristic” means a characteristic that the battery capacity decreases due to repeated charging and discharging, and means a capacity ratio at the time of remeasurement to the initial capacity.
  • y in the composition formula (I) is preferably more than 0, more preferably 0.005 or more, and more preferably 0.01 or more. It is more preferable, and it is particularly preferable that it is 0.05 or more. Further, from the viewpoint of obtaining a lithium secondary battery having high thermal stability, y in the composition formula (I) is preferably 0.35 or less, and more preferably 0.33 or less. The upper limit value and the lower limit value of y can be arbitrarily combined. In the present embodiment, 0 ⁇ y ⁇ 0.4 is preferable, 0.005 ⁇ y ⁇ 0.35 is more preferable, and 0.01 ⁇ y ⁇ 0.33 is further preferable. , 0.05 ⁇ y ⁇ 0.35 is particularly preferable.
  • z in the composition formula (I) is preferably 0.01 or more, more preferably 0.02 or more, and 0.1 or more. It is more preferable to have. Further, from the viewpoint of obtaining a lithium secondary battery having high storage stability at a high temperature (for example, in an environment of 60 ° C.), z in the composition formula (I) is preferably 0.39 or less, preferably 0.38 or less. More preferably, it is more preferably 0.35 or less.
  • the upper limit value and the lower limit value of z can be arbitrarily combined. In the present embodiment, 0.01 ⁇ z ⁇ 0.39 is preferable, 0.02 ⁇ z ⁇ 0.38 is more preferable, and 0.1 ⁇ z ⁇ 0.35. More preferred.
  • w in the composition formula (I) is preferably more than 0, more preferably 0.0005 or more, and more preferably 0.001 or more. Is even more preferable.
  • w in the composition formula (I) is preferably 0.09 or less, more preferably 0.08 or less, and 0. It is more preferably .07 or less.
  • the upper limit value and the lower limit value of w can be arbitrarily combined. In the present embodiment, 0 ⁇ w ⁇ 0.09 is preferable, 0.0005 ⁇ w ⁇ 0.08 is more preferable, and 0.001 ⁇ w ⁇ 0.07 is further preferable. ..
  • y in the composition formula (I) is 0.5 times or more and 5 times or less of z. Is preferable.
  • the y in the composition formula (I) is more preferably 0.7 times or more, still more preferably 0.9 times or more of z.
  • the y in the composition formula (I) is more preferably 3 times or less, and further preferably 2 times or less.
  • the above upper limit value and lower limit value can be arbitrarily combined. Examples of combinations include cases where y is 0.5 times or more and 3 times or less, 0.7 times or more and 5 times or less, 0.7 times or more and 3 times or less, and the like.
  • M in the composition formula (I) is one or more elements selected from the group consisting of P, Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V. Represents.
  • M in the composition formula (I) is one or more elements selected from the group consisting of Ti, Mg, Al, W, B, and Zr.
  • M in the composition formula (I) is one or more elements selected from the group consisting of Ti, Al, W, B, and Zr. Is preferable.
  • the ratio (I 1 / I 2 ) of the diffraction peak to the integrated intensity I 2 is 2.0 or more.
  • the powder X-ray diffraction measurement can be performed by an X-ray diffractometer (for example, Ultra IV manufactured by Rigaku Co., Ltd.). Detailed conditions will be described in Examples.
  • analysis software for example, integrated powder X-ray analysis software JADE
  • integrated intensities I 1 and I 2 can be obtained.
  • the lower limit of the ratio (I 1 / I 2 ) is more preferably 2.1 and even more preferably 2.3.
  • the upper limit of the ratio (I 1 / I 2 ) is preferably 3.5, more preferably 3.2, and even more preferably 2.9.
  • the above upper limit value and lower limit value can be arbitrarily combined. Examples of combinations include cases where the ratio (I 1 / I 2 ) is 2.0 or more and 3.5 or less, 2.1 or more and 3.2 or less, 2.3 or more and 2.9 or less.
  • Crystal growth can be grasped by evaluating specific surface indexes among a plurality of surface indexes.
  • the (101) plane and the (110) plane are crystal planes in which the direction of crystal growth is different. Therefore, a crack is formed at the boundary between the crystallite with a large growth of the (101) plane and the crystallite with a large growth of the (110) plane when each crystallite expands and contracts due to the deinsertion of lithium ions.
  • Cheap When the new surface generated by the crack comes into contact with the electrolytic solution, a decomposition reaction of the electrolytic solution occurs and gas is generated.
  • LiMO satisfying the requirement (1) has a large rate of crystal growth in the (101) plane direction. This means that the abundance ratio of the above-mentioned boundaries is small. Such LiMO is less likely to crack. That is, LiMO satisfying the requirement (1) is less likely to generate a new surface in contact with the electrolytic solution, and is less likely to cause a decomposition reaction of the electrolytic solution.
  • LiMO satisfying the requirement (1) is used as the CAM, the amount of gas generated in the battery due to the reaction with the electrolytic solution can be suppressed.
  • float electricity amount As an index for evaluating the amount of gas generated in the battery, there is a decomposition electricity amount (hereinafter, may be referred to as "float electricity amount").
  • the amount of float electricity is the amount of electricity observed when an irreversible reaction with an electrolytic solution occurs at the particle interface. Specifically, the float electric energy indicates the electric energy when constant voltage charging is performed continuously for 30 hours with 0 when fully charged. The larger the value of the observed float electricity, the more gas is generated.
  • Requirement (2) The LiMO of this embodiment satisfies the following requirement (2).
  • Requirement (2); BET specific surface area is 0.7 m 2 / g or less.
  • the BET specific surface area is less than 0.6 m 2 / g, more preferably 0.5 m 2 / g or less, more preferably at most 0.3 m 2 / g , 0.2 m 2 / g or less, which is particularly preferable.
  • the BET specific surface area is 0.01 m 2 / g or more, more preferably 0.05 m 2 / g or more, further preferably 0.1 m 2 / g or more.
  • BET specific surface area is preferably from 0.01 m 2 / g or more 0.6 m 2 / g or less, more preferably 0.05 m 2 / g or more 0.5m 2 / g, 0.1m 2 / It is more preferably g or more and 0.3 m 2 / g or less, and particularly preferably 0.1 m 2 / g or more and less than 0.2 m 2 / g.
  • the LiMO satisfying the requirement (2) preferably contains primary particles having a smooth surface.
  • the BET specific surface area can be measured using a BET specific surface area meter (for example, Macsorb (registered trademark) manufactured by Mountech) after drying 1 g of LiMO powder in a nitrogen atmosphere at 105 ° C. for 30 minutes.
  • a BET specific surface area meter for example, Macsorb (registered trademark) manufactured by Mountech
  • Requirement (3) The LiMO of this embodiment satisfies the following requirement (3).
  • the value of the particle size at the point where the cumulative volume from the fine particle side is 10% is 10% cumulative volume particle size D 10 ( ⁇ m) (hereinafter, may be referred to as “D 10”). .). Further, the value of the particle diameter at the point where the cumulative volume from the fine particle side is 50% is 50% cumulative volume particle size D 50 ( ⁇ m) (hereinafter, may be referred to as “D 50”).
  • the 10% cumulative volume particle size D 10 is preferably 5.0 ⁇ m or more, more preferably 5.2 ⁇ m or more, and even more preferably 5.4 ⁇ m or more.
  • the 10% cumulative volume particle size D 10 is preferably 15 ⁇ m or less, more preferably 14 ⁇ m or less, and even more preferably 12 ⁇ m or less.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the 10% cumulative volume particle size D 10 is preferably 5.0 ⁇ m or more and 15 ⁇ m or less, more preferably 5.2 ⁇ m or more and 14 ⁇ m or less, and further preferably 5.4 ⁇ m or more and 12 ⁇ m or less.
  • the fact that LiMO satisfies the requirement (3) means that the abundance of primary particles having a small particle size or secondary particles having a small particle size is small.
  • LiMO which satisfies the requirements (2) and (3), that is, has a small BET specific surface area and a small amount of primary particles having a small particle size or secondary particles having a small particle size, has a small contact area with the electrolytic solution. .. Therefore, the reaction with the electrolytic solution on the surface of LiMO is suppressed. As a result, the decomposition reaction of the electrolytic solution is unlikely to occur, and the amount of gas generated is reduced.
  • LiMO that satisfies the requirement (1) is unlikely to generate cracks, so that a new surface in contact with the electrolytic solution is unlikely to occur, and a decomposition reaction of the electrolytic solution is unlikely to occur. Further, by satisfying the requirements (2) and (3), it is possible to obtain LiMO in which the decomposition reaction of the electrolytic solution is unlikely to occur and the amount of gas generated is reduced.
  • the 50% cumulative volume particle size D 50 is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and even more preferably 9 ⁇ m or more.
  • the 50% cumulative volume particle size D 50 is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably 20 ⁇ m or less.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the 50% cumulative volume particle size D 50 is preferably 5 ⁇ m or more and 7 ⁇ m or less, more preferably 7 ⁇ m or more and 25 ⁇ m or less, and further preferably 9 ⁇ m or more and 20 ⁇ m or less.
  • the ratio of the 50% cumulative volume particle size D 50 to the average primary particle size (D 50 / average primary particle size) is preferably 2.0 or less, more preferably 1.9 or less. 5 or less is particularly preferable.
  • Examples of the lower limit of the ratio (D 50 / average primary particle size) are 1.0, 1.1, and 1.2.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the ratio (D 50 / average primary particle size) is preferably 1.0 or more and 2.0 or less, more preferably 1.1 or more and 1.9 or less, and 1.2 or more and 1.5 or less. Is even more preferable.
  • the ratio (D 50 / average primary particle size) of 2.0 or less means that the average primary particle size is relatively large with respect to D 50.
  • LiMO having the ratio (D 50 / average primary particle size) of 2.0 or less has a small BET specific surface area and a reduced contact surface with the electrolytic solution, so that gas is less likely to be generated.
  • the average primary particle size of LiMO is determined by the following method. First, LiMO powder is placed on a conductive sheet attached on a sample stage, and an electron beam having an acceleration voltage of 20 kV is irradiated using a scanning electron microscope (SEM, for example, JSM-5510 manufactured by JEOL Ltd.). Then, SEM observation is performed. Fifty primary particles in the field of view were randomly extracted from the image (SEM photograph) obtained by SEM observation, and for each primary particle, a parallel line sandwiched between parallel lines obtained by drawing a projected image of the primary particle from a certain direction. The distance between them (constant direction diameter) is measured as the particle size of the primary particles.
  • SEM scanning electron microscope
  • the average of the maximum distance and the minimum distance between the parallel lines sandwiched between the parallel lines obtained by drawing the projected image of the primary particles from a certain direction can be adopted. If the number of primary particles in the field of view is less than 50, another field of view is observed until the number of primary particles reaches 50, and 50 primary particles are extracted. The arithmetic mean value of the particle size of the obtained primary particles is taken as the average primary particle size of LiMO.
  • the magnification of the SEM photograph may be any photograph having a magnification at which the primary particle size of the target LiMO particles can be measured, and a magnification of 1000 times or more and 30,000 times or less is preferably used.
  • the average primary particle size of LiMO is preferably 4.5 ⁇ m or more, more preferably 5.0 ⁇ m or more, and further preferably 6.0 ⁇ m or more.
  • the average primary particle size of LiMO is preferably 20 ⁇ m or less, more preferably 19 ⁇ m or less, and even more preferably 16 ⁇ m or less.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the average primary particle size of LiMO is preferably 4.5 ⁇ m or more and 20 ⁇ m or less, more preferably 5.0 ⁇ m or more and 19 ⁇ m or less, and further preferably 6.0 ⁇ m or more and 16 ⁇ m or less.
  • the crystal structure of LiMO is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structure is P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3 m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6mm, P6cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, and P6 3
  • the monoclinic crystal structures are P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, and C2. It belongs to any one space group selected from the group consisting of / c.
  • the crystal structure is a hexagonal crystal structure belonging to the space group R-3m or a monoclinic crystal structure belonging to C2 / m.
  • the structure is particularly preferable.
  • the crystal structure of LiMO can be confirmed by X-ray diffraction measurement of the LiMO powder.
  • the method for producing LiMO of the present embodiment will be described.
  • the method for producing LiMO of the present embodiment is preferably a production method including the following steps (1), (2), and (3) in this order.
  • (1) A step of producing a precursor of LiMO.
  • (2) A mixing step of mixing the precursor and a lithium compound to obtain a mixture.
  • (3) A step of calcining the mixture to obtain LiMO.
  • a nickel-containing MCC containing a metal other than lithium, that is, nickel which is an essential metal, and an optional element M such as cobalt and manganese is prepared.
  • a nickel-containing metal composite hydroxide or a nickel-containing metal composite oxide can be used as the precursor nickel-containing MCC.
  • the precursor can be produced by a commonly known batch co-precipitation method or continuous co-precipitation method.
  • a method for producing the nickel will be described in detail, taking as an example a nickel-containing metal composite hydroxide containing nickel and cobalt and manganese as the element M (hereinafter, may be referred to as “metal composite hydroxide”).
  • the nickel salt which is the solute of the nickel salt solution is not particularly limited, and for example, any one or more of nickel sulfate, nickel nitrate, nickel chloride and nickel acetate can be used.
  • As the cobalt salt which is the solute of the cobalt salt solution for example, any one or more of cobalt sulfate, cobalt nitrate, cobalt chloride and cobalt acetate can be used.
  • the manganese salt which is the solute of the manganese salt solution for example, any one or more of manganese sulfate, manganese nitrate, manganese chloride and manganese acetate can be used.
  • More metal salts are used in proportions corresponding to the Ni (1-y-z) Co y Mn z (OH) 2 composition ratio. That is, the amount of each metal salt is defined so that the molar ratio of nickel, cobalt, and manganese in the mixed solution containing the metal salt corresponds to (1-yz): y: z in the composition formula. Also, water is used as the solvent.
  • the complexing agent can form a complex with ions of nickel, cobalt and manganese in an aqueous solution, and is, for example, an ammonium ion feeder (ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.), hydrazine, ethylenediaminetetraac. Examples include acetic acid, nitrilotriacetic acid, uracildiacetic acid and glycine.
  • the complexing agent may not be contained if desired, and if the complexing agent is contained, the complexing agent contained in the nickel salt solution, the cobalt salt solution, the manganese salt solution, and the mixed solution containing the complexing agent.
  • the amount for example, the molar ratio to the total number of moles of the metal salt is larger than 0 and 2.0 or less.
  • an alkali metal aqueous solution for example, sodium hydroxide, potassium hydroxide
  • sodium hydroxide for example, sodium hydroxide, potassium hydroxide
  • the temperature of the reaction vessel is controlled in the range of, for example, 20 ° C. or higher and 80 ° C. or lower, preferably 30 to 70 ° C.
  • the pH value in the reaction vessel is, for example, pH 9 or higher and pH 13 or lower at the measurement temperature of 40 ° C. It is preferably controlled in the range of pH 11 or more and pH 13 or less, and the substance in the reaction vessel is appropriately stirred.
  • the reaction vessel is a type of reaction vessel in which the formed reaction precipitate overflows for separation.
  • the inside of the reaction tank may have an inert atmosphere.
  • an inert atmosphere it is possible to suppress the aggregation of elements that are more easily oxidized than nickel, and to obtain a uniform metal composite hydroxide.
  • the inside of the reaction vessel may be in an appropriate oxygen-containing atmosphere or in the presence of an oxidizing agent while maintaining an inert atmosphere.
  • an oxidizing agent such as sodium sulfate
  • the oxygen and oxidant in the oxygen-containing gas need only have sufficient oxygen atoms to oxidize the transition metal. If a large amount of oxygen atoms are not introduced, the inert atmosphere in the reaction vessel can be maintained.
  • a predetermined gas type may be aerated in the reaction vessel or bubbling directly with the reaction solution.
  • the obtained reaction precipitate is washed and then dried to isolate a nickel-containing metal composite hydroxide as a nickel-containing MCC.
  • a method of dehydrating a slurry containing a reaction precipitate (co-precipitate slurry) by centrifugation, suction filtration, or the like is preferably used.
  • the coprecipitate obtained by the dehydration is preferably washed with water or a washing liquid containing alkali.
  • a washing solution containing alkali it is preferable to wash with a washing solution containing alkali, and more preferably to wash with a sodium hydroxide solution.
  • cleaning may be performed using a cleaning solution containing a sulfur element.
  • the cleaning solution containing a sulfur element include an aqueous solution of potassium and sodium sulfate.
  • nickel-containing metal composite hydroxide is produced in the above example, a nickel-containing metal composite oxide may be prepared.
  • a method of heat-treating the nickel-containing metal composite hydroxide can be mentioned.
  • reaction conditions such as the amount ratio of the metal salt supplied to the reaction vessel, the amount of the complexing agent added, the stirring speed, the reaction temperature, the reaction pH, the amount of the oxygen-containing gas introduced, the amount of the oxidizing agent added, and the firing conditions described later. Since it depends on the size of the reaction vessel used, the reaction conditions may be optimized while monitoring various physical properties of LiMO finally obtained.
  • the heavy loading density (TD) of the nickel-containing MCC produced by this step is preferably 2.0 g / cc or more and 5.0 g / cc or less, and more preferably 2.1 g / cc or more and 4.9 g / cc or less. It is preferable, and more preferably 2.2 g / cc or more and 4.8 g / cc or less.
  • the reactivity of each particle becomes high at the time of firing, and a large amount of primary particles existing independently of the secondary particles are contained, and the average primary particles.
  • LiMO with a large diameter can be manufactured.
  • the bulk density corresponds to the tap bulk density in JIS R 1628-1997.
  • the D 50 of the nickel-containing MCC produced by this step is preferably 8 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 12 ⁇ m or more.
  • Examples of the upper limit of the D 50 of the nickel-containing MCC may, 20 ⁇ m, 18 ⁇ m, include 16 [mu] m.
  • the above upper limit value and lower limit value can be arbitrarily combined. Examples of combinations include D 50 of 8 ⁇ m or more and 20 ⁇ m or less, 10 ⁇ m or more and 18 ⁇ m or less, and 12 ⁇ m or more and 16 ⁇ m or less.
  • a nickel-containing MCC having D 50 equal to or higher than the above lower limit is used, LiMO satisfying the requirements (1) and (3) can be produced. Further, by using a nickel-containing MCC in which D 50 is equal to or less than the above upper limit value, the reactivity at the firing step is enhanced, and the average primary particle size of LiMO can be controlled within a preferable range of the present embodiment.
  • the D 10 of the nickel-containing MCC produced in this step is preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, and further preferably 5 ⁇ m or more.
  • the nickel-containing MCC D 10 is preferably 10 ⁇ m or less, more preferably 9 ⁇ m or less, and even more preferably 8 ⁇ m or less.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the 10% cumulative volume particle size D 10 is preferably 3 ⁇ m or more and 10 ⁇ m or less, more preferably 4 ⁇ m or more and 9 ⁇ m or less, and further preferably 5 ⁇ m or more and 8 ⁇ m or less.
  • D 10 and D containing nickel MCC 50 can be measured by the same method as the measuring method of D 10 and D 50 of the LiMO.
  • the reaction vessel it is possible to increase the D 10 of the nickel-containing MCC to the desired size by performing stirring sufficiently.
  • a mechanism for controlling the flow of liquid such as a baffle by setting the shape and rotation speed of the stirring blade according to the size of the reaction tank.
  • the nickel-containing MCC having a predetermined heavy loading density, D 50 , and D 10 is, for example, the amount ratio of the metal salt supplied to the reaction vessel and the addition of the complexing agent in the manufacturing process of the nickel-containing MCC by the coprecipitation method. It can be obtained by adjusting the amount, reaction temperature, reaction pH, and amount of oxidizing agent added. For example, if the amount of the complexing agent added is reduced and the concentration of the complexing agent in the reaction vessel is reduced, a nickel-containing MCC having a small heavy loading density, D 50 , and D 10 can be obtained.
  • the amount of the complexing agent added may be adjusted by changing the amount of the solution added or by changing the concentration of the complexing agent in the solution. it can.
  • the complexing agent is used alone, it can be carried out by changing the amount of the complexing agent added.
  • the reaction pH is preferably pH 11 or more and pH 13 or less.
  • the ammonia concentration in the reaction vessel is preferably 0.18 mol / L or more and 0.30 mol / L or less.
  • the ammonia concentration in the reaction vessel can be measured with an ammonia concentration meter.
  • This step is a step of mixing the lithium compound and the precursor to obtain a mixture.
  • the lithium compound used in this embodiment is one or a mixture of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium oxide, lithium chloride, and lithium fluoride. Can be used. Among these, either one or both of lithium hydroxide and lithium carbonate is preferable. When the lithium compound contains lithium carbonate, the content of lithium carbonate in the lithium compound is preferably 5% by mass or less.
  • a method of mixing the precursor and the lithium compound will be described.
  • the precursor is dried and then mixed with the lithium compound.
  • the drying conditions are not particularly limited, and examples thereof include any of the following drying conditions 1) to 3). 1) Conditions under which the precursor is not oxidized or reduced. Specifically, it is a drying condition in which the oxide is maintained as an oxide, or a drying condition in which the hydroxide is maintained as a hydroxide. 2) Conditions under which the precursor is oxidized. Specifically, it is a drying condition for oxidizing from a hydroxide to an oxide. 3) Conditions under which the precursor is reduced. Specifically, it is a drying condition for reducing oxides to hydroxides.
  • the drying conditions 1) to 3) may be appropriately selected depending on whether the nickel-containing MCC to be produced is a nickel-containing metal composite hydroxide or a nickel-containing metal composite oxide.
  • a condition for not being oxidized or reduced it may be dried using an inert gas such as nitrogen, helium or argon.
  • oxygen or air may be used under the condition that the metal composite hydroxide as a precursor is oxidized.
  • a condition for reducing the precursor it may be dried using a reducing agent such as hydrazine or sodium sulfite in an inert gas atmosphere.
  • classification may be performed as appropriate.
  • the above lithium compounds and precursors are mixed in consideration of the composition ratio of the final target product.
  • the lithium compound and the metal composite hydroxide are mixed at a ratio corresponding to the composition ratio of the composition formula (I). Specifically, it is mixed with the lithium salt so that the ratio of the number of lithium atoms to the total number of metal atoms contained in the precursor is greater than 1.0.
  • the ratio of the number of lithium atoms to the number of metal atoms is preferably 1.05 or more, more preferably 1.10 or more.
  • a lithium composite oxide is obtained by firing a mixture of a nickel-containing metal composite hydroxide and a lithium compound in a subsequent firing step.
  • Step of firing the mixture to obtain LiMO In the present embodiment, it is preferable to bake the mixture of the lithium compound and the precursor in the presence of an inert melting agent.
  • an inert melting agent By using a production method (flux method) using an inert melting agent, LiMO satisfying the requirement (1) can be produced.
  • the inert melt may remain in LiMO after firing, or may be removed by washing with a cleaning liquid after firing. In the present embodiment, it is preferable to clean LiMO after firing with pure water, an alkaline cleaning solution, or the like.
  • the primary particle size of the obtained LiMO can be controlled within a preferable range of the present embodiment.
  • the higher the firing temperature the larger the primary particle size and the smaller the BET specific surface area.
  • the firing temperature may be appropriately adjusted according to the type of transition metal element used, the type and amount of the precipitant and the inert melting agent.
  • the average primary particle size of the obtained LiMO can be controlled within a preferable range of the present embodiment.
  • the firing temperature may be set in consideration of the melting point of the inert melting agent, which will be described later, in the range of the melting point of the inert melting agent minus 200 ° C. or higher and the melting point of the inert melting agent plus 200 ° C. or lower. Is preferable. Specific examples of the firing temperature include a range of 200 ° C. or higher and 1150 ° C. or lower, preferably 300 ° C. or higher and 1050 ° C. or lower, and more preferably 500 ° C. or higher and 1000 ° C. or lower.
  • the firing temperature in the present specification means a set temperature of the firing furnace.
  • the primary particle size of the obtained LiMO can be controlled within a preferable range of the present embodiment.
  • the longer the holding time the larger the primary particle size and the smaller the BET specific surface area tends to be.
  • the holding time in firing may be appropriately adjusted according to the type of transition metal element used, the type and amount of the precipitant and the inert melting agent.
  • the time for holding at the firing temperature is 0.1 hour or more and 20 hours or less, preferably 0.5 hours or more and 10 hours or less.
  • the rate of temperature rise to the firing temperature is usually 50 ° C./hour or more and 400 ° C./hour or less, and the rate of temperature decrease from the firing temperature to room temperature is usually 10 ° C./hour or more and 400 ° C./hour or less.
  • the firing atmosphere air, oxygen, nitrogen, argon or a mixed gas thereof can be used as the firing atmosphere.
  • the inert melt that can be used in this embodiment is not particularly limited as long as it does not easily react with the mixture during firing.
  • a fluoride of one or more elements (hereinafter referred to as “A”) selected from the group consisting of Na, K, Rb, Cs, Ca, Mg, Sr and Ba, and a chloride of A. , A carbonate, A sulfate, A nitrate, A phosphate, A hydroxide, A molybdenate and A tungsate. ..
  • NaF (melting point: 993 ° C.), KF (melting point: 858 ° C.), RbF (melting point: 795 ° C.), CsF (melting point: 682 ° C.), CaF 2 (melting point: 1402 ° C.), MgF 2 (Melting point: 1263 ° C.), SrF 2 (melting point: 1473 ° C.) and BaF 2 (melting point: 1355 ° C.).
  • Chlorides of A include NaCl (melting point: 801 ° C.), KCl (melting point: 770 ° C.), RbCl (melting point: 718 ° C.), CsCl (melting point: 645 ° C.), CaCl 2 (melting point: 782 ° C.), MgCl 2 (Melting point: 714 ° C.), SrCl 2 (melting point: 857 ° C.) and NaCl 2 (melting point: 963 ° C.).
  • the carbonates of A include Na 2 CO 3 (melting point: 854 ° C), K 2 CO 3 (melting point: 899 ° C), Rb 2 CO 3 (melting point: 837 ° C), Cs 2 CO 3 (melting point: 793 ° C). , CaCO 3 (melting point: 825 ° C.), MgCO 3 (melting point: 990 ° C.), SrCO 3 (melting point: 1497 ° C.) and BaCO 3 (melting point: 1380 ° C.).
  • the sulfates of A include Na 2 SO 4 (melting point: 884 ° C), K 2 SO 4 (melting point: 1069 ° C), Rb 2 SO 4 (melting point: 1066 ° C), Cs 2 SO 4 (melting point: 1005 ° C). , CaSO 4 (mp: 1460 °C), MgSO 4 (mp: 1137 °C), SrSO 4 (mp: 1605 ° C.) and BaSO 4 (mp: 1580 ° C.) can be mentioned.
  • the nitrates of A include NaNO 3 (melting point: 310 ° C), KNO 3 (melting point: 337 ° C), RbNO 3 (melting point: 316 ° C), CsNO 3 (melting point: 417 ° C), Ca (NO 3 ) 2 (melting point). : 561 ° C.), Mg (NO 3 ) 2 , Sr (NO 3 ) 2 (melting point: 645 ° C.) and Ba (NO 3 ) 2 (melting point: 596 ° C.).
  • Phosphates of A include Na 3 PO 4 , K 3 PO 4 (melting point: 1340 ° C), Rb 3 PO 4 , Cs 3 PO 4 , Ca 3 (PO 4 ) 2 , Mg 3 (PO 4 ) 2 ( Melting point: 1184 ° C.), Sr 3 (PO 4 ) 2 (melting point: 1727 ° C.) and Ba 3 (PO 4 ) 2 (melting point: 1767 ° C.).
  • Hydroxides of A include NaOH (melting point: 318 ° C.), KOH (melting point: 360 ° C.), RbOH (melting point: 301 ° C.), CsOH (melting point: 272 ° C.), Ca (OH) 2 (melting point: 408 ° C.). ), Mg (OH) 2 (melting point: 350 ° C.), Sr (OH) 2 (melting point: 375 ° C.) and Ba (OH) 2 (melting point: 853 ° C.).
  • the molybdates of A include Na 2 MoO 4 (melting point: 698 ° C), K 2 MoO 4 (melting point: 919 ° C), Rb 2 MoO 4 (melting point: 958 ° C), and Cs 2 MoO 4 (melting point: 956 ° C). ), CaMoO 4 (melting point: 1520 ° C.), MgMoO 4 (melting point: 1060 ° C.), SrMoO 4 (melting point: 1040 ° C.) and BaMoO 4 (melting point: 1460 ° C.).
  • the tungstate A Na 2 WO 4 (mp: 687 ° C.), can be exemplified K 2 WO 4, Rb 2 WO 4, Cs 2 WO 4, CaWO 4, MgWO 4, SrWO 4 and BaWO 4 ..
  • these inert melts can be used. When two or more types are used, the melting point may decrease.
  • any one or a combination of the hydroxide, carbonate, sulfate, and chloride of A can be used. It is preferable to have.
  • A it is preferable that either one or both of sodium (Na) and potassium (K) are used. That is, among the above, a particularly preferable inert melt is selected from the group consisting of NaOH, KOH, NaCl, KCl, Na 2 CO 3 , K 2 CO 3 , Na 2 SO 4 , and K 2 SO 4. More than a seed.
  • K 2 SO 4 is preferable as the inert melting agent.
  • the amount of the inert melting agent used at the time of firing may be appropriately adjusted.
  • the ratio of the number of moles of the inert melt to the total number of moles of the lithium compound and the inert melt is preferably 0.010 or more and 30 or less, preferably 0.015. It is more preferably 20 or more, and further preferably 0.020 or more and 15 or less.
  • the requirement (2) can be easily controlled within the range of the present embodiment by crushing LiMO after firing in an appropriate time.
  • “Appropriate time” refers to the time to disperse agglomeration without causing cracks in the primary particles of LiMO.
  • the crushing time is preferably adjusted according to the agglutination state of LiMO.
  • the crushing time is particularly preferably in the range of, for example, 10 minutes or more and 2 hours or less.
  • Pure water or an alkaline cleaning solution can be used for cleaning the inert melting agent remaining in LiMO after crushing.
  • the alkaline cleaning solution include LiOH (lithium hydroxide), NaOH (sodium hydroxide), KOH (potassium hydroxide), Li 2 CO 3 (lithium carbonate), Na 2 CO 3 (sodium carbonate), and K 2 CO 3.
  • Examples thereof include an aqueous solution of one or more hydroxides selected from the group consisting of (potassium carbonate) and (NH 4 ) 2 CO 3 (ammonium carbonate) and hydrates thereof. Ammonia can also be used as the alkali.
  • the temperature of the cleaning liquid used for cleaning is preferably 15 ° C. or lower, more preferably 10 ° C. or lower, and even more preferably 8 ° C. or lower.
  • the cleaning step as a method of bringing the cleaning liquid into contact with LiMO, a method of adding LiMO into the aqueous solution of each cleaning liquid and stirring it, a method of applying the aqueous solution of each cleaning liquid as shower water to LiMO, or a method of applying the cleaning liquid to LiMO.
  • a method of adding LiMO into the aqueous solution of each cleaning liquid and stirring it a method of applying the aqueous solution of each cleaning liquid as shower water to LiMO
  • a method of applying the cleaning liquid to LiMO examples thereof include a method in which LiMO is put into an aqueous solution and stirred, then LiMO is separated from the aqueous solution of each cleaning solution, and then the aqueous solution of each cleaning solution is used as shower water and applied to LiMO after separation.
  • the cleaning step by bringing the cleaning liquid and LiMO into contact with each other within an appropriate time range, it is possible to obtain a metal composite hydroxide whose requirement (2) can be easily controlled within the range of the present embodiment.
  • “Appropriate time” refers to the time required to disperse each particle of LiMO while removing the inert melting agent remaining on the surface of LiMO.
  • the washing time is preferably adjusted according to the aggregated state of LiMO.
  • the washing time is particularly preferably in the range of, for example, 5 minutes or more and 1 hour or less.
  • This embodiment preferably has a further drying step after the washing step.
  • the temperature and method for drying LiMO in the drying step are not particularly limited, but the drying temperature is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and more preferably 50 ° C. from the viewpoint of sufficiently removing water. The above is more preferable. Further, from the viewpoint of preventing the formation of heterogeneous phases on the surface, the temperature is preferably less than 300 ° C, more preferably 250 ° C or lower, and even more preferably 200 ° C or lower.
  • the atmosphere of the drying process includes an oxygen atmosphere, an inert atmosphere, a reduced pressure atmosphere, and a vacuum atmosphere.
  • the present embodiment may further have a re-baking step after the washing step.
  • the firing temperature in the LiMO re-baking step is not particularly limited, but is preferably 300 ° C. or higher, more preferably 350 ° C. or higher, and 400 ° C. or higher from the viewpoint of preventing a decrease in charging capacity. It is more preferable to have. Further, although there is no particular limitation, the temperature is preferably 1000 ° C. or lower, more preferably 950 ° C. or lower, from the viewpoint of preventing the volatilization of lithium and obtaining LiMO having the target composition. The volatilization of lithium can be controlled by the calcination temperature. The upper limit value and the lower limit value of the firing temperature can be arbitrarily combined.
  • the re-baking time is preferably 1 hour or more and 30 hours or less, which is the total time from the start of temperature rise to the end of temperature retention.
  • the total time is 30 hours or less, the volatilization of lithium can be prevented and the deterioration of battery performance can be prevented.
  • the total time is 1 hour or more, the crystal development progresses satisfactorily and the battery performance can be improved.
  • the present embodiment is a CAM containing the LiMO of the present invention.
  • the content ratio of LiMO with respect to the total mass (100% by mass) of CAM is preferably 70% by mass or more and 99% by mass or less, and more preferably 80% by mass or more and 98% by mass or less.
  • LiMO secondary battery a positive electrode for a lithium secondary battery (hereinafter, may be referred to as a positive electrode) suitable for using the LiMO of the present embodiment as a CAM will be described. Further, a lithium secondary battery suitable for use as a positive electrode will be described.
  • An example of a lithium secondary battery has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution arranged between the positive electrode and the negative electrode.
  • FIG. 1A and 1B are schematic views showing an example of a lithium secondary battery.
  • the cylindrical lithium secondary battery 10 of the present embodiment is manufactured as follows.
  • a pair of strip-shaped separators 1, a strip-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a strip-shaped negative electrode 3 having a negative electrode lead 31 at one end are divided into a separator 1, a positive electrode 2, and a separator. 1.
  • the negative electrode 3 is laminated in this order and wound to form the electrode group 4.
  • the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
  • the shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape when the electrode group 4 is cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners.
  • the shape can be mentioned.
  • the shape of the lithium secondary battery having such an electrode group 4 the shape defined by IEC60086, which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C8500 can be adopted. ..
  • IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C8500
  • a cylindrical shape or a square shape can be mentioned.
  • the lithium secondary battery is not limited to the above-mentioned winding type configuration, and may have a laminated type configuration in which a laminated structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • the laminated lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode can be manufactured by first preparing a positive electrode mixture containing a CAM, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • a carbon material can be used as the conductive material of the positive electrode.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and fibrous carbon material. Since carbon black is fine and has a large surface area, it is possible to improve the conductivity inside the positive electrode by adding a small amount to the positive electrode mixture to improve charge / discharge efficiency and output characteristics, but if too much is added, it depends on the binder. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture decrease, which causes an increase in internal resistance.
  • the ratio of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of CAM.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be reduced.
  • thermoplastic resin can be used as the binder contained in the positive electrode of the present embodiment.
  • thermoplastic resin include a polyimide resin; polyvinylidene fluoride (hereinafter, may be referred to as PVdF), a fluororesin such as polytetrafluoroethylene; a polyolefin resin such as polyethylene and polypropylene, WO2019 / 098384A1 or US2020 / 0274158A1. Resin can be mentioned.
  • thermoplastic resins may be used as a mixture of two or more types. Fluororesin and polyolefin resin are used as binders, and the ratio of fluororesin to the entire positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of polyolefin resin is 0.1% by mass or more and 2% by mass or less. It is possible to obtain a positive electrode mixture having high adhesion to the current collector and high bonding force inside the positive electrode mixture.
  • a band-shaped member made of a metal material such as Al, Ni, or stainless steel can be used as the positive electrode current collector of the positive electrode.
  • Al is used as a forming material and processed into a thin film because it is easy to process and inexpensive.
  • Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure molding the positive electrode mixture on the positive electrode current collector. Further, the positive electrode mixture is made into a paste using an organic solvent, and the obtained positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed to the positive electrode current collector. The mixture may be carried.
  • the organic solvents that can be used include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate.
  • Ester-based solvents such as dimethylacetamide and amide-based solvents such as N-methyl-2-pyrrolidone (hereinafter, may be referred to as NMP);
  • Examples of the method of applying the paste of the positive electrode mixture to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method and an electrostatic spray method.
  • the positive electrode can be manufactured by the method described above.
  • the negative electrode of the lithium secondary battery need only be capable of doping and dedoping lithium ions at a potential lower than that of the positive electrode, and is an electrode in which a negative electrode mixture containing a negative electrode active material is supported on a negative electrode current collector.
  • An electrode composed of the negative electrode active material alone can be mentioned.
  • Negative electrode active material examples of the negative electrode active material contained in the negative electrode include carbon materials, chalcogen compounds (oxides or sulfides, etc.), nitrides, metals or alloys, which can be doped and dedoped with lithium ions at a potential lower than that of the positive electrode. Be done.
  • Examples of the carbon material that can be used as the negative electrode active material include graphite such as natural graphite or artificial graphite, coke, carbon black, pyrolytic carbon, carbon fiber, and calcined organic polymer compound.
  • Oxides that can be used as the negative electrode active material include silicon oxides represented by the formula SiO x (where x is a positive real number) such as SiO 2 , SiO; the formula SnO x such as SnO 2 and SnO (here). , X is a positive real number) tin oxide; a metal composite oxide containing lithium and titanium such as Li 4 Ti 5 O 12; can be mentioned.
  • the metal that can be used as the negative electrode active material examples include lithium metal, silicon metal, and tin metal.
  • the material described in WO2019 / 098384A1 or US2020 / 0274158A1 may be used.
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil, for example.
  • a carbon material containing graphite as a main component such as natural graphite or artificial graphite, is preferably used because of its high value (good cycle characteristics).
  • the shape of the carbon material may be, for example, a flaky shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an agglomerate of fine powder.
  • the negative electrode mixture may contain a binder, if necessary.
  • the binder include thermoplastic resins, and specifically, PVdF, thermoplastic polyimide, carboxymethyl cellulose (hereinafter, may be referred to as CMC), and styrene-butadiene rubber (hereinafter, may be referred to as SBR). , Polyethylene and polypropylene.
  • Negative electrode current collector examples of the negative electrode current collector included in the negative electrode include a band-shaped member made of a metal material such as Cu, Ni, or stainless steel as a forming material. Among them, Cu is used as a forming material and processed into a thin film because it is difficult to form an alloy with lithium and it is easy to process.
  • the separator of the lithium secondary battery is, for example, a material having a form such as a porous film, a non-woven fabric, or a woven fabric made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin or a nitrogen-containing aromatic polymer. Can be used. Further, two or more kinds of these materials may be used to form a separator, or these materials may be laminated to form a separator. Further, the separator described in JP-A-2000-030686 or US20090111025A1 may be used.
  • the separator has an air permeation resistance of 50 seconds / 100 cc or more and 300 seconds / 300 seconds by the Garley method defined by JIS P 8117 in order to allow the electrolyte to permeate well when the battery is used (during charging / discharging). It is preferably 100 cc or less, and more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
  • the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, and more preferably 40% by volume or more and 70% by volume or less with respect to the total volume of the separator.
  • the separator may be a stack of separators having different porosities.
  • the electrolytic solution contained in the lithium secondary battery contains an electrolyte and an organic solvent.
  • the electrolyte contained in the electrolytic solution examples include lithium salts such as LiClO 4 and LiPF 6, and a mixture of two or more of these may be used. Further, the electrolyte described in WO2019 / 098384A1 or US2020 / 0274158A1 may be used. Among them, the electrolyte is at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one type.
  • organic solvent contained in the electrolytic solution for example, the organic solvent described in propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, WO2019 / 098384A1 or US2020 / 0274158A1 can be used.
  • the organic solvent it is preferable to use a mixture of two or more of these.
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
  • a mixed solvent of the cyclic carbonate and the acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable.
  • An electrolytic solution using such a mixed solvent has a wide operating temperature range, is not easily deteriorated even when charged and discharged at a high current rate, is not easily deteriorated even when used for a long time, and is made of natural graphite as an active material of a negative electrode. It has many features that it is resistant to decomposition even when a graphite material such as artificial graphite is used.
  • an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent it is preferable to use an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent.
  • a mixed solvent containing ethers having a fluorine substituent such as pentafluoropropylmethyl ether and 2,2,3,3-tetrafluoropropyldifluoromethyl ether and dimethyl carbonate has a capacity even when charged and discharged at a high current rate. It is more preferable because of its high maintenance rate.
  • FIG. 2 is a schematic view showing an example of the all-solid-state lithium secondary battery of the present embodiment.
  • the all-solid-state lithium secondary battery 1000 shown in FIG. 2 has a positive electrode 110, a negative electrode 120, a laminate 100 having a solid electrolyte layer 130, and an exterior body 200 containing the laminate 100.
  • the all-solid-state lithium secondary battery 1000 may have a bipolar structure in which a positive electrode active material and a negative electrode active material are arranged on both sides of a current collector.
  • Specific examples of the bipolar structure include the structures described in JP-A-2004-95400. The materials constituting each member will be described later.
  • the laminated body 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122.
  • the all-solid-state lithium secondary battery 1000 may have a separator between the positive electrode 110 and the negative electrode 120.
  • the all-solid-state lithium secondary battery 1000 further has an insulator (not shown) that insulates the laminate 100 and the exterior body 200, and a sealant (not shown) that seals the opening 200a of the exterior body 200.
  • a container formed of a metal material having high corrosion resistance such as aluminum, stainless steel or nickel-plated steel can be used as the exterior body 200. Further, as the exterior body 200, a container obtained by processing a laminated film having a corrosion resistant treatment on at least one surface into a bag shape can also be used.
  • Examples of the shape of the all-solid-state lithium secondary battery 1000 include a coin type, a button type, a paper type (or a sheet type), a cylindrical type, a square type, and a laminated type (pouch type).
  • the all-solid-state lithium secondary battery 1000 is illustrated as having one laminate 100 as an example, but the present embodiment is not limited to this.
  • the all-solid-state lithium secondary battery 1000 may have a configuration in which the laminated body 100 is used as a unit cell and a plurality of unit cells (laminated body 100) are sealed inside the exterior body 200.
  • the positive electrode 110 of the present embodiment has a positive electrode active material layer 111 and a positive electrode current collector 112.
  • the positive electrode active material layer 111 contains the positive electrode active material and the solid electrolyte, which is one aspect of the present invention described above. Further, the positive electrode active material layer 111 may contain a conductive material and a binder.
  • Solid electrolyte As the solid electrolyte contained in the positive electrode active material layer 111 of the present embodiment, a solid electrolyte having lithium ion conductivity and used in a known all-solid-state lithium secondary battery can be adopted.
  • a solid electrolyte include an inorganic electrolyte and an organic electrolyte.
  • the inorganic electrolyte include an oxide-based solid electrolyte, a sulfide-based solid electrolyte, and a hydride-based solid electrolyte.
  • the organic electrolyte include polymer-based solid electrolytes.
  • each electrolyte include the compounds described in WO2020 / 208872A1, US2016 / 0233510A1, US2012 / 0251871A1, and US2018 / 0159169A1, and examples thereof include the following compounds.
  • oxide-based solid electrolyte examples include perovskite-type oxides, NASICON-type oxides, LISION-type oxides, garnet-type oxides, and the like. Specific examples of each oxide include the compounds described in WO2020 / 208872A1, US2016 / 0233510A1, and US2020 / 0259213A1.
  • garnet-type oxide examples include Li-La-Zr-based oxides such as Li 7 La 3 Zr 2 O 12 (also referred to as LLZ).
  • the oxide-based solid electrolyte may be a crystalline material or an amorphous material.
  • the sulfide-based solid electrolyte Li 2 S-P 2 S 5 based compound, Li 2 S-SiS 2 based compound, Li 2 S-GeS 2 compound, Li 2 S-B 2 S 3 type compound, LiI- Si 2 S-P 2 S 5 based compound, LiI-Li 2 S-P 2 O 5 based compounds, and the like LiI-Li 3 PO 4 -P 2 S 5 compound and Li 10 GeP 2 S 12 ..
  • system compound which refers to a sulfide-based solid electrolyte is a solid electrolyte mainly containing raw materials such as "Li 2 S” and "P 2 S 5" described before “system compound”. It is used as a general term for.
  • the Li 2 SP 2 S 5 system compound mainly contains Li 2 S and P 2 S 5, and further contains a solid electrolyte containing other raw materials.
  • Li 2 ratio of S contained in the Li 2 S-P 2 S 5 based compound is 50 to 90% by weight, based on the total e.g. Li 2 S-P 2 S 5 type compounds.
  • the ratio of P 2 S 5 contained in the Li 2 SP 2 S 5 system compound is, for example, 10 to 50% by mass with respect to the entire Li 2 SP 2 S 5 system compound.
  • the proportion of other raw materials contained in the Li 2 SP 2 S 5 system compound is, for example, 0 to 30% by mass with respect to the entire Li 2 SP 2 S 5 system compound.
  • the Li 2 SP 2 S 5 series compounds also include solid electrolytes having different mixing ratios of Li 2 S and P 2 S 5.
  • Li 2 The S-P 2 S 5 -based compounds, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -LiBr, such as Li 2 S-P 2 S 5 -LiI-LiBr can be cited.
  • the Li 2 S-SiS 2 based compound Li 2 S-SiS 2, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2- B 2 S 3- LiI, Li 2 S-SiS 2- P 2 S 5- LiI, Li 2 S-SiS 2- P 2 S 5- LiCl and the like can be mentioned.
  • Li 2 S-GeS 2 system compound examples include Li 2 S-GeS 2 and Li 2 S-GeS 2- P 2 S 5 .
  • the sulfide-based solid electrolyte may be a crystalline material or an amorphous material.
  • Two or more types of solid electrolytes can be used in combination as long as the effects of the invention are not impaired.
  • the conductive material contained in the positive electrode active material layer 111 of the present embodiment the material described in (conductive material) described above can be used.
  • the ratio described in (Conductive material) described above can be applied to the ratio of the conductive material in the positive electrode mixture.
  • the binder contained in the positive electrode the material described in (Binder) described above can be used.
  • Examples of the method of supporting the positive electrode active material layer 111 on the positive electrode current collector 112 include a method of pressure molding the positive electrode active material layer 111 on the positive electrode current collector 112.
  • a cold press or a hot press can be used for pressure molding.
  • a mixture of the positive electrode active material, the solid electrolyte, the conductive material and the binder is made into a paste using an organic solvent to prepare a positive electrode mixture, and the obtained positive electrode mixture is applied onto at least one surface of the positive electrode current collector 112 and dried.
  • the positive electrode active material layer 111 may be supported on the positive electrode current collector 112 by pressing and fixing.
  • a mixture of the positive electrode active material, the solid electrolyte, and the conductive material is made into a paste using an organic solvent to obtain a positive electrode mixture, and the obtained positive electrode mixture is applied onto at least one surface of the positive electrode current collector 112, dried, and baked.
  • the positive electrode active material layer 111 may be supported on the positive electrode current collector 112.
  • the organic solvent that can be used for the positive electrode mixture the same organic solvent that can be used when the positive electrode mixture described above (positive electrode current collector) is made into a paste can be used.
  • Examples of the method of applying the positive electrode mixture to the positive electrode current collector 112 include the method described in (Positive electrode current collector) described above.
  • the positive electrode 110 can be manufactured by the methods listed above.
  • the negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122.
  • the negative electrode active material layer 121 contains a negative electrode active material. Further, the negative electrode active material layer 121 may contain a solid electrolyte and a conductive material. As the negative electrode active material, the negative electrode current collector, the solid electrolyte, the conductive material and the binder, those described above can be used.
  • a method by pressure molding and a paste-like negative electrode mixture containing the negative electrode active material are applied on the negative electrode current collector 122 as in the case of the positive electrode 110.
  • Examples thereof include a method of applying, drying and then pressing and crimping, and a method of applying a paste-like negative electrode mixture containing a negative electrode active material on the negative electrode current collector 122, drying and then sintering.
  • Solid electrolyte layer 130 has the above-mentioned solid electrolyte.
  • the solid electrolyte layer 130 can be formed by depositing an inorganic solid electrolyte on the surface of the positive electrode active material layer 111 of the above-mentioned positive electrode 110 by a sputtering method.
  • the solid electrolyte layer 130 can be formed by applying a paste-like mixture containing a solid electrolyte to the surface of the positive electrode active material layer 111 of the above-mentioned positive electrode 110 and drying it. After drying, the solid electrolyte layer 130 may be formed by press molding and further pressurizing by a cold isotropic pressure method (CIP).
  • CIP cold isotropic pressure method
  • the negative electrode 120 is laminated on the solid electrolyte layer 130 provided on the positive electrode 110 as described above by using a known method so that the negative electrode active material layer 121 is in contact with the surface of the solid electrolyte layer 130. It can be manufactured by letting it.
  • the CAM having the above configuration uses LiMO produced by the above-described embodiment, it is possible to reduce the amount of gas generated in the lithium secondary battery using the CAM.
  • the positive electrode having the above configuration has the CAM having the above-described configuration, the amount of gas generated by the lithium secondary battery can be reduced.
  • the lithium secondary battery having the above configuration has the above-mentioned positive electrode, it is a secondary battery with a small amount of gas generated.
  • composition analysis of LiMO produced by the method described later was carried out by dissolving the obtained LiMO powder in hydrochloric acid and then using an inductively coupled plasma emission spectrometer (SPS3000 manufactured by SII Nanotechnology Co., Ltd.). ..
  • the intensity I 2 was obtained, and the ratio of the integrated intensity I 1 to the integrated intensity I 2 (I 1 / I 2 ) was calculated.
  • the BET specific surface area was measured using Macsorb (registered trademark) manufactured by Mountec after drying 1 g of LiMO powder in a nitrogen atmosphere at 105 ° C. for 30 minutes.
  • the value of the particle size at the point where the cumulative volume from the microparticle side is 10% when the whole is 100% is 10% cumulative volume particle size D 10 ( ⁇ m).
  • the value of the particle size at the point where the cumulative volume from the fine particle side is 50% was determined as 50% cumulative volume particle size D 50 ( ⁇ m).
  • LiMO powder is placed on a conductive sheet attached on a sample stage, and an electron beam having an acceleration voltage of 20 kV is irradiated using a scanning electron microscope (SEM, JSM-5510 manufactured by JEOL Ltd.). SEM observation was performed. Fifty primary particles in the field of view were extracted from the images (SEM photographs) obtained by SEM observation at magnifications of 5000 and 10000, and each primary particle was sandwiched between parallel lines drawn from a fixed direction. The distance between parallel lines (constant direction diameter) was measured as the particle size of the primary particles. When the number of primary particles in the visual field was less than 50, another visual field was observed until the number of primary particles reached 50, and 50 primary particles were extracted. The arithmetic mean value of the particle size of the obtained primary particles was taken as the average primary particle size of the LiMO powder.
  • SEM scanning electron microscope
  • the value of the particle size at the point where the cumulative volume from the microparticle side is 10% when the whole is 100% is 10% cumulative volume particle size D 10 ( ⁇ m).
  • the value of the particle size at the point where the cumulative volume from the fine particle side is 50% was determined as 50% cumulative volume particle size D 50 ( ⁇ m).
  • LiMO LiMO
  • a conductive material acetylene black
  • a binder PVdF
  • the obtained positive electrode mixture was applied to an Al foil having a thickness of 40 ⁇ m as a current collector and vacuum dried at 150 ° C. for 8 hours to obtain a positive electrode for a lithium secondary battery.
  • the electrode area of the positive electrode for the lithium secondary battery was 1.65 cm 2 .
  • ⁇ Manufacturing of lithium secondary battery (coin type half cell)> The following operations were performed in a glove box with an argon atmosphere. Place the positive electrode for the lithium secondary battery produced in ⁇ Manufacturing the positive electrode for the lithium secondary battery> on the lower lid of the part for the coin-type battery R2032 (manufactured by Hosen Co., Ltd.) with the aluminum foil surface facing down. A laminated film separator (a heat-resistant porous layer laminated (thickness 16 ⁇ m) on a polyethylene porous film) was placed on the laminated film separator. 300 ⁇ l of the electrolytic solution was injected therein.
  • the electrolytic solution is 16:10 of ethylene carbonate (hereinafter, may be referred to as EC), dimethyl carbonate (hereinafter, may be referred to as DMC) and ethyl methyl carbonate (hereinafter, may be referred to as EMC).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • a mixture of 74 (volume ratio) of LiPF 6 at 1.3 mol / l and vinylene carbonate (VC) of 1.0% was used.
  • VC vinylene carbonate
  • the negative electrode is placed on the upper side of the laminated film separator, the upper lid is closed through a gasket, and the lithium secondary battery (coin type half cell R2032; hereinafter, “half cell”) is crimped with a caulking machine. It may be referred to as).
  • the amount of decomposed electricity (hereinafter, may be referred to as "float electricity amount”) was measured as a correlation value indicating that gas is less likely to be generated in the battery.
  • the amount of float electricity is the amount of electricity observed when an irreversible reaction with an electrolytic solution occurs at the particle interface. Specifically, the float electric energy indicates the electric energy when constant voltage charging is performed continuously for 30 hours with 0 when fully charged. The larger the value of the observed float electricity, the more gas is generated. In the present embodiment, it was evaluated that the amount of gas generated was suppressed when the amount of float electricity was 6.0 mAh / g or less.
  • Example 1 >> 1.
  • Production of LiMO1 After putting water in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to maintain the liquid temperature at 50 ° C.
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed so that the atomic ratio of nickel atom, cobalt atom, and manganese atom is 0.60: 0.20: 0.20 to prepare a mixed raw material solution. Prepared.
  • the mixture is continuously supplied to the reaction vessel at a constant speed so that the ammonia concentration in the reaction vessel becomes 0.29 mol / L. did.
  • An aqueous sodium hydroxide solution is timely added dropwise so that the pH of the solution in the reaction vessel becomes 11.3 (measurement temperature: 40 ° C.) to obtain nickel-cobalt-manganese composite hydroxide particles, which are washed, then dehydrated and washed.
  • Nickel-cobalt-manganese composite hydroxide 1 was obtained by dehydration, isolation, and drying.
  • the heavy loading density (TD) of this nickel cobalt manganese aluminum composite hydroxide 1 was 2.38 m 2 / g, D 50 was 13.9 ⁇ m, and D 10 was 7.86 ⁇ m.
  • the amount (molar ratio) of Li with respect to the total amount 1 of the obtained nickel-cobalt-manganese composite hydroxide 1 and the total amount of Ni, C Cincinnati, and Mn contained in the obtained nickel-cobalt-manganese composite hydroxide 1 is 1.20.
  • the lithium hydroxide weighed in this way and the potassium sulfate weighed so that the amount (molar ratio) of potassium sulfate to the total amount of the inert melts potassium sulfate and lithium hydroxide were 0.1 were mixed with a dairy pot. Mixing gave a mixture. Then, the obtained mixture was held at 1000 ° C. for 10 hours in an oxygen atmosphere and calcined, and then cooled to room temperature to obtain a calcined product.
  • the obtained calcined product was crushed in a mortar, dispersed in pure water at 5 ° C., and then dehydrated. Further, the powder is washed with pure water adjusted to a liquid temperature of 5 ° C., dehydrated, dried at 150 ° C., calcined at 760 ° C. for 5 hours in an air atmosphere, and heat-treated to form a powder. LiMO1 was obtained.
  • I 1 / I 2 is 2.87
  • BET specific surface area is 0.20 m 2 / g
  • D 10 is 11.3 ⁇ m
  • 50% cumulative volume particle size D 50, and average primary was 1.21.
  • the float electricity amount of the coin-type half cell using LiMO1 was 5.30 mAh / g.
  • Example 2 >> 1.
  • Lithium hydroxide weighed so that the value is 1.20, and potassium sulfate weighed so that the amount (molar ratio) of potassium sulfate to the total amount of the inert melting agents potassium sulfate and lithium hydroxide is 0.1.
  • Cobalt and potassium were mixed in a dairy pot to give a mixture. Then, the obtained mixture was held at 940 ° C.
  • I 1 / I 2 is 2.33
  • BET specific surface area is 0.11 m 2 / g
  • D 10 is 5.40 ⁇ m
  • 50% cumulative volume particle size D 50, and average primary was 1.52.
  • the amount of float electricity of the coin-type half cell using CAM2 was 4.90 mAh / g.
  • Example 2 The same as in Example 1 except that an aqueous sodium hydroxide solution was added dropwise at appropriate times so that the pH of the solution in the reaction vessel became 10.6 (measurement temperature: 40 ° C.) to obtain nickel-cobalt-manganese composite hydroxide particles.
  • the operation was carried out to obtain nickel cobalt manganese composite hydroxide 5.
  • the heavy loading density (TD) of the nickel cobalt manganese aluminum composite hydroxide 5 was 1.99 m 2 / g, D 50 was 7.8 ⁇ m, and D 10 was 2.4 ⁇ m.
  • the amount (molar ratio) of Li with respect to the total amount 1 of the nickel-cobalt-manganese composite hydroxide 5 and the obtained nickel-cobalt-manganese composite hydroxide 5 containing Ni, C Cincinnati, and Mn is 1.15.
  • the fired product was obtained by firing at 940 ° C. for 5 hours in an oxygen atmosphere.
  • the obtained fired product was put into a pin mill operated at a rotation speed of 14000 rpm and crushed to obtain LiMO5.
  • Nickel cobalt manganese zirconium composite hydroxide operated in the same manner as in Example 1 except that an aqueous sodium hydroxide solution was added dropwise in a timely manner so that the pH of the solution in the reaction vessel became 12.0 (measurement temperature: 40 ° C.). I got 6.
  • the heavy loading density (TD) of the nickel cobalt manganese zirconium composite hydroxide 6 was 1.11 m 2 / g, D 50 was 3.1 ⁇ m, and D 10 was 2.05 ⁇ m.
  • the amount (molar ratio) of Li with respect to the total amount 1 of the nickel cobalt manganese zirconium composite hydroxide 6 and the obtained nickel cobalt manganese zirconium composite hydroxide 6 of Ni, C Cincinnati, and Mn is 1.03.
  • the mixture was fired at 650 ° C. for 5 hours in an oxygen atmosphere without using an inert melting agent to obtain a primary calcined powder.
  • the obtained primary calcined powder was calcined at 970 ° C. for 5 hours in an oxygen atmosphere to obtain LiMO powder.
  • the obtained LiMO powder was put into a pin mill operated at a rotation speed of 14000 rpm and crushed to obtain LiMO6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明は、組成式(I)で表され、要件(1)~(3)を全て満たす、リチウム金属複合酸化物に関する。要件(1);CuKα線を使用した粉末X線回折測定において、2θ=36.7±1°の範囲内の回折ピークの積分強度I1と、2θ=64.9±1°の範囲内の回折ピークの積分強度I2との比(I1/I2)が2.0以上である。要件(2);BET比表面積が0.7m2/g以下である。要件(3);10%累積体積粒度D10が5μm以上である。

Description

リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
 本発明は、リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池に関する。
 本願は、2019年12月23日に、日本に出願された特願2019-231325号に基づき優先権を主張し、その内容をここに援用する。
 リチウム金属複合酸化物は、リチウム二次電池用正極活物質として用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型又は大型電源においても、実用化が進んでいる。
 充放電特性等のリチウム二次電池の電池特性を向上させるため、様々な試みが行われている。例えば特許文献1には、電解液との反応により発生するガスの発生量を抑制することを目的としたスピネル型リチウムマンガン含有複合酸化物が記載されている。
JP-A-2018-138513
 リチウム二次電池の応用分野が進む中、リチウム二次電池に用いられる正極活物質材料にはさらなるガス発生量の低減が求められる。
 本発明は上記事情に鑑みてなされたものであって、リチウム二次電池用正極活物質として用いた場合にガスが発生しにくい、リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池を提供することを目的とする。
 すなわち、本発明は、下記[1]~[7]の発明を包含する。
[1]下記組成式(I)で表され、下記要件(1)~(3)を全て満たす、リチウム金属複合酸化物。
 Li[Li(Ni(1-y-z-w)CoMn1-x]O  ・・・(I)
(ただし、MはP、Fe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
 要件(1);CuKα線を使用した粉末X線回折測定において、2θ=36.7±1°の範囲内の回折ピークの積分強度Iと、2θ=64.9±1°の範囲内の回折ピークの積分強度Iとの比(I/I)が2.0以上である。
 要件(2);BET比表面積が0.7m/g以下である。
 要件(3);10%累積体積粒度D10が5μm以上である。
[2]50%累積体積粒度D50と平均一次粒子径との比(D50/平均一次粒子径)が2.0以下である、[1]に記載のリチウム金属複合酸化物。
[3]平均一次粒子径が4.5μm以上である[1]又は[2]に記載のリチウム金属複合酸化物。
[4]前記組成式(I)において、yはzの0.5倍以上5倍以下である[1]~[3]のいずれか1項に記載のリチウム金属複合酸化物。
[5][1]~[4]のいずれか1項に記載のリチウム金属複合酸化物を含有するリチウム二次電池用正極活物質。
[6][5]に記載のリチウム二次電池用正極活物質を含有するリチウム二次電池用正極。
[7][6]に記載のリチウム二次電池用正極を有するリチウム二次電池。
 本発明によれば、リチウム二次電池用正極活物質として用いた場合にガスが発生しにくいリチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池を提供することができる。
リチウムイオン二次電池の一例を示す概略構成図である。 リチウムイオン二次電池の一例を示す概略構成図である。 全固体リチウム二次電池の一例を示す模式図である。
 本明細書において金属複合化合物(Metal Composite Compound)を以下「MCC」と称し、リチウム金属複合酸化物(Lithium Metal Composite Oxide)を以下「LiMO」と称し、リチウム二次電池用正極活物質(Cathode Active Material for lithium secondary batteries)を以下「CAM」と称する。
<LiMO>
 本実施形態において、「一次粒子」とは、走査型電子顕微鏡などを用いて5000倍以上20000倍以下の視野にて観察した際に、外観上に粒界が存在しない粒子を意味する。
 本実施形態において、「二次粒子」とは、前記一次粒子が凝集している粒子である。
 即ち、二次粒子は一次粒子の凝集体である。
 本発明の一つの態様においてLiMOは、一次粒子のみからなる。
 本発明の一つの態様においてLiMOは、一次粒子の凝集体である二次粒子と、前記二次粒子とは独立して存在する一次粒子とから構成される。
 本発明の一つの態様においてLiMOは粉末である。
 一次粒子の凝集体である二次粒子と、前記二次粒子とは独立して存在する一次粒子とから構成される場合、LiMOに含まれる二次粒子数及び前記二次粒子とは独立して存在する一次粒子数の総和に対する一次粒子数の割合は、20%以上が好ましく、30%以上がより好ましく、50%以上が特に好ましい。上限は特に限定されないが、100%未満であり、90%以下が好ましい。前記一次粒子数の割合は、20%以上100%未満が好ましく、30%以上90%以下がより好ましく、50%以上90%以下がさらに好ましい。
 一次粒子の数を算出する際には二次粒子を構成している一次粒子は計上せず、二次粒子とは独立して存在する一次粒子の数のみを計上する。
 本実施形態において、LiMOに含まれる二次粒子数及び一次粒子数の総和に対する一次粒子数の割合は、下記の方法により求める。
 まず、LiMOを、サンプルステージ上に貼った導電性シート上に載せ、一次粒子及び前記一次粒子の凝集体である二次粒子が互いに接触せず独立して存在するように分散させる。
 その後、走査型電子顕微鏡(SEM、例えば日本電子株式会社製JSM-5510)を用いて、加速電圧が20kVの電子線を照射してSEM観察を行う。
 次に、SEM観察により得られた画像(SEM写真)から無作為に200個の粒子を抽出し、二次粒子数及び一次粒子数の総和とする。
 次に、抽出した200個の粒子中に含まれる、二次粒子とは独立して存在する一次粒子数を算出する。
 得られた一次粒子数を二次粒子数及び一次粒子数の総和で除して、100を乗じることで、二次粒子数及び一次粒子数の総和に対する一次粒子数の割合を算出する。
 なお、SEM写真の倍率は、対象となるLiMOの粒子形態が特定できる倍率の写真であればよく、1000倍以上30000倍以下が好ましく用いられる。
 本実施形態のLiMOは、組成式(I)で表され、要件(1)~(3)を満たす。
≪組成式≫
 本実施形態のLiMOは、下記組成式(I)を満たす。
 Li[Li(Ni(1-y-z-w)CoMn1-x]O  ・・・(I)
(ただし、MはP、Fe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
 LiMOの組成分析は、LiMOの粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(例えば、エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行う。
 サイクル特性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるxは0を超えることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、前記組成式(I)におけるxは0.1以下であることが好ましく、0.08以下であることがより好ましく、0.06以下であることがさらに好ましい。
 xの上限値と下限値は任意に組み合わせることができる。
 本実施形態においては、0<x≦0.1であることが好ましく、0.01≦x≦0.08であることがより好ましく、0.02≦x≦0.06であることがさらに好ましい。
 本明細書において、「サイクル特性」とは、充放電の繰り返しにより、電池容量が低下する特性を意味し、初期容量に対する再測定時の容量比を意味する。
 また、電池の内部抵抗が低いリチウム二次電池を得る観点から、前記組成式(I)におけるyは0を超えることが好ましく、0.005以上であることがより好ましく、0.01以上であることがさらに好ましく、0.05以上であることが特に好ましい。また、熱的安定性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるyは0.35以下であることが好ましく、0.33以下であることがより好ましい。
 yの上限値と下限値は任意に組み合わせることができる。
 本実施形態においては、0<y≦0.4であることが好ましく、0.005≦y≦0.35であることがより好ましく、0.01≦y≦0.33であることがさらに好ましく、0.05≦y≦0.35であることが特に好ましい。
 また、サイクル特性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるzは0.01以上であることが好ましく、0.02以上であることがより好ましく、0.1以上であることがさらに好ましい。また、高温(例えば60℃環境下)での保存性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるzは0.39以下であることが好ましく、0.38以下であることがより好ましく、0.35以下であることがさらに好ましい。
 zの上限値と下限値は任意に組み合わせることができる。
 本実施形態においては、0.01≦z≦0.39であることが好ましく、0.02≦z≦0.38であることがより好ましく、0.1≦z≦0.35であることがさらに好ましい。
 また、電池の内部抵抗が低いリチウム二次電池を得る観点から、前記組成式(I)におけるwは0を超えることが好ましく、0.0005以上であることがより好ましく、0.001以上であることがさらに好ましい。また、高い電流レートにおいて放電容量が多いリチウム二次電池を得る観点から、前記組成式(I)におけるwは0.09以下であることが好ましく、0.08以下であることがより好ましく、0.07以下であることがさらに好ましい。
 wの上限値と下限値は任意に組み合わせることができる。
 本実施形態においては、0<w≦0.09であることが好ましく、0.0005≦w≦0.08であることがより好ましく、0.001≦w≦0.07であることがさらに好ましい。
 本実施形態においては、電池の内部抵抗が低く、且つサイクル特性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるyは、zの0.5倍以上5倍以下であることが好ましい。前記組成式(I)におけるyは、zの0.7倍以上がより好ましく、0.9倍以上がさらに好ましい。前記組成式(I)におけるyは、3倍以下がより好ましく、2倍以下がさらに好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例としては、yがzの0.5倍以上3倍以下、0.7倍以上5倍以下、0.7倍以上3倍以下等が挙げられる。
 前記組成式(I)におけるMはP、Fe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。
 また、サイクル特性が高いリチウム二次電池を得る観点から、組成式(I)におけるMは、Ti、Mg、Al、W、B、及びZrからなる群より選択される1種以上の元素であることが好ましく、熱的安定性が高いリチウム二次電池を得る観点から、組成式(I)におけるMは、Ti、Al、W、B、及びZrからなる群より選択される1種以上の元素であることが好ましい。
≪要件(1)≫
 本実施形態のLiMOは、下記要件(1)を満たす。
 要件(1);CuKα線を使用した粉末X線回折測定において、2θ=36.7±1°の範囲内の回折ピークの積分強度Iと、2θ=64.9±1°の範囲内の回折ピークの積分強度Iとの比(I/I)が2.0以上である。2θ=36.7±1°(又は64.9±1°)の範囲内の回折ピークの積分強度とは36.7±1°(又は64.9±1°)内に最大強度を有する回折ピークの積分強度を意味する。
 粉末X線回折測定は、X線回折装置(例えば、株式会社リガク製UltimaIV)により行うことができる。詳細な条件は実施例で説明する。得られた粉末X線パターンを解析ソフトウェア(例えば、統合粉末X線解析ソフトウェアJADE)により解析することで、積分強度I、及びIを得ることができる。
 回折角2θ=36.7±1°の範囲内に存在するピークは、後述する空間群R-3mに帰属されるLiMOの場合、結晶構造における最小単位である単位格子の(101)面に相当するピークである。
 回折角2θ=64.9±1°の範囲に存在するピークは、後述する空間群R-3mに帰属されるLiMOの場合、結晶構造における最小単位である単位格子の(110)面に相当するピークである。
 前記比(I/I)の下限値は、2.1がより好ましく、2.3がさらに好ましい。
 前記比(I/I)の上限値は、3.5が好ましく、3.2がより好ましく、2.9がさらに好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例としては、前記比(I/I)が、2.0以上3.5以下、2.1以上3.2以下、2.3以上2.9以下等が挙げられる。
 複数の面指数のうちの特定の面指数同士を評価することにより、結晶成長を把握することができる。
 (101)面と(110)面とは、結晶成長の方向が異なる結晶面である。このため、(101)面が大きく成長した結晶子と(110)面が大きく成長した結晶子の境界にはそれぞれの結晶子がリチウムイオンの脱挿入に伴って膨張・収縮した際にクラックが入りやすい。クラックにより発生した新生面が電解液と接触すると、電解液の分解反応が生じ、ガスが発生する。
 クラックが入りやすい場面としては、例えばLiMOをCAMとして用いた電池の充放電を行った際に、リチウムイオンの脱離と挿入に伴って結晶子が膨張・収縮して結晶子間に応力が生じる場面が挙げられる。
 要件(1)を満たすLiMOは、(101)面方向への結晶成長の割合が大きい。これは前述の境界の存在割合が少ないことを意味する。このようなLiMOは、クラックが入りにくい。つまり、要件(1)を満たすLiMOは、電解液と接する新生面が生じにくく、電解液の分解反応が生じにくい。
 要件(1)を満たすLiMOをCAMとして用いると、電解液との反応により電池内に発生するガスの発生量を抑制することができる。
 電池内のガス発生量を評価する指標として、分解電気量(以下、「フロート電気量」と記載する場合がある。)がある。
 フロート電気量とは、粒子界面で電解液と不可逆反応を起こした際に観測される電気量である。具体的には、フロート電気量とは、満充電時を0として30時間連続で定電圧充電を行った際の電気量を示す。
 観測されるフロート電気量の値が大きいほど、ガス発生量が多いことを意味する。
≪要件(2)≫
 本実施形態のLiMOは、下記要件(2)を満たす。
 要件(2);BET比表面積が0.7m/g以下である。
 本実施形態においては、BET比表面積は0.6m/g以下であることが好ましく、0.5m/g以下であることがより好ましく、0.3m/g以下であることがさらに好ましく、0.2m/g未満であることが特に好ましい。
 また、BET比表面積は0.01m/g以上であることが好ましく、0.05m/g以上であることがより好ましく、0.1m/g以上であることがさらに好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例として、BET比表面積は、0.01m/g以上0.6m/g以下が好ましく、0.05m/g以上0.5m/g以下がより好ましく、0.1m/g以上0.3m/g以下がさらに好ましく、0.1m/g以上0.2m/g未満が特に好ましい。
 本実施形態において、要件(2)を満たすLiMOは、粒子の表面が平滑である一次粒子を含むものが好ましい。
 BET比表面積は、LiMOの粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、BET比表面積計(例えばマウンテック社製Macsorb(登録商標))を用いて測定することができる。
≪要件(3)≫
 本実施形態のLiMOは、下記要件(3)を満たす。
 要件(3);10%累積体積粒度D10が5μm以上である。
[D10及びD50の測定]
 累積体積粒度は、レーザー回折散乱法によって測定される。
 まず、LiMOの粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、前記粉末を分散させた分散液を得る。
 次に、得られた分散液について、レーザー回折散乱粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製マイクロトラックMT3300EXII)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得る。
 得られた累積粒度分布曲線において、微小粒子側からの累積体積が10%となる点の粒子径の値が10%累積体積粒度D10(μm)(以下、「D10」と称することがある。)である。また、微小粒子側からの累積体積が50%となる点の粒子径の値が50%累積体積粒度D50(μm)(以下、「D50」と称することがある。)である。
 10%累積体積粒度D10は、5.0μm以上が好ましく、5.2μm以上がより好ましく、5.4μm以上がさらに好ましい。
 また、10%累積体積粒度D10は、15μm以下が好ましく、14μm以下がより好ましく、12μm以下がさらに好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例として、10%累積体積粒度D10は、5.0μm以上15μm以下が好ましく、5.2μm以上14μm以下がより好ましく、5.4μm以上12μm以下がさらに好ましい。
 本実施形態において、LiMOが要件(3)を満たすとは、粒子径が小さい一次粒子もしくは粒子径が小さい二次粒子の存在量が少ないことを示す。
 要件(2)及び(3)を満たす、つまりBET比表面積が小さく、且つ粒子径が小さい一次粒子もしくは粒子径が小さい二次粒子の存在量が少ないLiMOは、電解液との接触面積が小さくなる。このため、LiMOの表面における電解液との反応が抑制される。これにより、電解液の分解反応は起こりにくく、ガス発生量が低減される。
 要件(1)を満たすLiMOは、前述の通りクラックが発生しにくいため、電解液と接する新生面が生じにくく、電解液の分解反応は起こりにくい。さらに、要件(2)及び(3)を満たすことで、電解液の分解反応は起こりにくく、ガス発生量が低減されたLiMOとすることができる。
 50%累積体積粒度D50は、5μm以上が好ましく、7μm以上がより好ましく、9μm以上がさらに好ましい。
 また、50%累積体積粒度D50は、30μm以下が好ましく、25μm以下がより好ましく、20μm以下がさらに好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例として、50%累積体積粒度D50は、5μm以上7μm以下が好ましく、7μm以上25μm以下がより好ましく、9μm以上20μm以下がさらに好ましい。
[D50/平均一次粒子径]
 本実施形態のLiMOは、50%累積体積粒度D50と平均一次粒子径との比(D50/平均一次粒子径)が、2.0以下が好ましく、1.9以下がより好ましく、1.5以下が特に好ましい。
 前記比(D50/平均一次粒子径)の下限値は、例えば1.0、1.1、1.2が挙げられる。
 上記上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例として、前記比(D50/平均一次粒子径)としては、1.0以上2.0以下が好ましく、1.1以上1.9以下がより好ましく、1.2以上1.5以下がさらに好ましい。
 前記比(D50/平均一次粒子径)が2.0以下であるとは、D50に対し平均一次粒子径が比較的大きいことを意味する。前記比(D50/平均一次粒子径)が2.0以下であるLiMOは、BET比表面積が小さく、電解液との接触面が減少するため、ガスが発生しにくい。
[平均一次粒子径の測定]
 本実施形態において、LiMOの平均一次粒子径は下記の方法により求める。
 まず、LiMOの粉末を、サンプルステージ上に貼った導電性シート上に載せ、走査型電子顕微鏡(SEM、例えば日本電子株式会社製JSM-5510)を用いて、加速電圧が20kVの電子線を照射してSEM観察を行う。SEM観察により得られた画像(SEM写真)から無作為に視野内の50個の一次粒子を抽出し、それぞれの一次粒子について、一次粒子の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を一次粒子の粒子径として測定する。なお、一次粒子の粒子径として、一次粒子の投影像を一定方向から引いた平行線ではさんだ平行線間の最大距離と最小距離の平均を採用することができる。なお、視野内の一次粒子の数が50個に満たない場合には、一次粒子の数が50個に到達するまで他の視野を観察し、50個の一次粒子を抽出する。
 得られた一次粒子の粒子径の算術平均値を、LiMOの平均一次粒子径とする。なお、SEM写真の倍率は、対象となるLiMO粒子の一次粒子径が測定できる倍率の写真であればよく、1000倍以上30000倍以下が好ましく用いられる。
 本実施形態において、LiMOの平均一次粒子径は、4.5μm以上であることが好ましく、5.0μm以上であることがより好ましく、6.0μm以上であることがさらに好ましい。
 LiMOの平均一次粒子径は、20μm以下が好ましく、19μm以下がより好ましく、16μm以下がさらに好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例として、LiMOの平均一次粒子径は、4.5μm以上20μm以下が好ましく、5.0μm以上19μm以下がより好ましく、6.0μm以上16μm以下がさらに好ましい。
(層状構造)
 本実施形態において、LiMOの結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、及びP6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。
 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、及びC2/cからなる群から選ばれるいずれか一つの空間群に帰属される。
 これらのうち、放電容量が高いリチウム二次電池を得るため、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。
 LiMOの結晶構造は、LiMO粉末をX線回折測定することにより確認できる。
<LiMOの製造方法>
 本実施形態のLiMOの製造方法について説明する。
本実施形態のLiMOの製造方法は、以下の(1)の工程、(2)の工程、(3)の工程をこの順で含む製造方法であることが好ましい。
(1)LiMOの前駆体を製造する工程。
(2)前記前駆体とリチウム化合物とを混合し、混合物を得る混合工程。
(3)前記混合物を焼成し、LiMOを得る工程。
[LiMOの前駆体を製造する工程]
 まず、リチウム以外の金属、すなわち、必須金属であるニッケルと、コバルト、マンガンといった任意元素Mとを含むニッケル含有MCCを調製する。前駆体であるニッケル含有MCCは、ニッケル含有金属複合水酸化物又はニッケル含有金属複合酸化物を用いることができる。
 前駆体は、通常公知のバッチ式共沈殿法又は連続式共沈殿法により製造することが可能である。以下、ニッケル、元素Mとしてコバルト及びマンガンを含むニッケル含有金属複合水酸化物(以下、「金属複合水酸化物」と記載することがある。)を例に、その製造方法を詳述する。
 まず、JP-A-2002-201028に記載された連続式共沈殿法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液及び錯化剤を反応させ、Ni(1-y-z)CoMn(OH)(式中、0≦y≦0.4、0≦z≦0.4、y+z<1)で表される金属複合水酸化物を製造する。
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れか1種又は2種以上を使用することができる。
 上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト及び酢酸コバルトのうちの何れか1種又は2種以上を使用することができる。
 上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、塩化マンガン及び酢酸マンガンのうちの何れか1種又は2種以上を使用することができる。
 以上の金属塩は上記Ni(1-y-z)CoMn(OH)の組成比に対応する割合で用いられる。すなわち、上記金属塩を含む混合溶液中におけるニッケル、コバルト、マンガンのモル比が、前記組成式の(1-y-z):y:zと対応するように各金属塩の量を規定する。また、溶媒として水が使用される。
 錯化剤は、水溶液中で、ニッケル、コバルト及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸及びグリシンが挙げられる。
 錯化剤は、所望により含まれていなくてもよく、錯化剤が含まれる場合、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を含む混合液に含まれる錯化剤の量としては、例えば金属塩のモル数の合計に対するモル比が0より大きく2.0以下が挙げられる。
 沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水溶液(例えば水酸化ナトリウム、水酸化カリウム)を添加する。
 上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、金属複合水酸化物が製造される。反応に際しては、反応槽の温度が例えば20℃以上80℃以下、好ましくは30~70℃の範囲内で制御され、反応槽内のpH値は、例えば、測定温度40℃において、pH9以上pH13以下、好ましくはpH11以上pH13以下の範囲内で制御され、反応槽内の物質が適宜撹拌される。反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプの反応槽である。
 反応槽内は不活性雰囲気であってもよい。不活性雰囲気であると、ニッケルよりも酸化されやすい元素が凝集してしまうことを抑制し、均一な金属複合水酸化物を得ることができる。
 また、反応槽内は、不活性雰囲気を保ちつつも、適度な酸素含有雰囲気又は酸化剤存在下であってもよい。これは遷移金属を適度に酸化させることで、金属複合水酸化物の形態を制御しやすくなるためである。酸素含有ガス中の酸素や酸化剤は、遷移金属を酸化させるために十分な酸素原子があればよい。多量の酸素原子を導入しなければ、反応槽内の不活性雰囲気を保つことができる。なお、反応槽内の雰囲気制御をガス種で行う場合、所定のガス種を反応槽内に通気するか、反応液に直接バブリングすればよい。
 以上の反応後、得られた反応沈殿物を洗浄した後、乾燥させ、ニッケル含有MCCとしてのニッケル含有金属複合水酸化物を単離する。
 前記単離には、反応沈殿物を含むスラリー(共沈物スラリー)を遠心分離や吸引ろ過などで脱水する方法が好ましく用いられる。
 前記脱水により得た共沈物は、水又はアルカリが含まれる洗浄液で洗浄することが好ましい。本実施形態においては、アルカリが含まれる洗浄液で洗浄することが好ましく、水酸化ナトリウム溶液で洗浄することがより好ましい。また、硫黄元素を含有する洗浄液を用いて洗浄してもよい。硫黄元素を含有する洗浄液としては、カリウムやナトリウムの硫酸塩水溶液等が挙げられる。
 なお、上記の例では、ニッケル含有金属複合水酸化物を製造しているが、ニッケル含有金属複合酸化物を調製してもよい。ニッケル含有金属複合酸化物を調製する場合には、ニッケル含有金属複合水酸化物を熱処理する方法が挙げられる。
 反応槽に供給する金属塩の量比、錯化剤の添加量、攪拌速度、反応温度、反応pH、酸素含有ガスの導入量、酸化剤の添加量及び後述する焼成条件等の反応条件については、使用する反応槽のサイズ等にも依存することから、最終的に得られるLiMOの各種物性をモニタリングしつつ、反応条件を最適化すればよい。
 本工程により製造されるニッケル含有MCCの重装密度(TD)は、2.0g/cc以上5.0g/cc以下であることが好ましく、2.1g/cc以上4.9g/cc以下がより好ましく、2.2g/cc以上4.8g/cc以下がさらに好ましい。
 重装密度(TD)が上記下限値以上のニッケル含有MCCを用いることで、要件(1)及び要件(3)を満たすLiMOを製造できる。
 重装密度(TD)が上記上限値以下のニッケル含有MCCを用いることで、焼成時に各粒子の反応性が高くなり、二次粒子と独立して存在する一次粒子を多く含み、かつ平均一次粒子径が大きいLiMOを製造できる。ここで、重装密度は、JIS R 1628-1997におけるタップかさ密度に該当する。
 本工程により製造されるニッケル含有MCCのD50は、8μm以上であることが好ましく、10μm以上であることがより好ましく、12μm以上であることがさらに好ましい。
 ニッケル含有MCCのD50の上限値の例としては、20μm、18μm、16μmが挙げられる。
 上記上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例としては、D50が、8μm以上20μm以下、10μm以上18μm以下、12μm以上16μm以下が挙げられる。
 D50が上記下限値以上のニッケル含有MCCを用いると、要件(1)及び要件(3)を満たすLiMOを製造できる。
 またD50が上記上限値以下のニッケル含有MCCを用いることで、焼成工程時の反応性が高められ、LiMOの平均一次粒子径を、本実施形態の好ましい範囲に制御できる。
 また、本工程により製造されるニッケル含有MCCのD10は、3μm以上であることが好ましく、4μm以上であることがより好ましく、5μm以上であることがさらに好ましい。
 また、ニッケル含有MCCのD10は、10μm以下が好ましく、9μm以下がより好ましく、8μm以下がさらに好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例として、10%累積体積粒度D10は、3μm以上10μm以下が好ましく、4μm以上9μm以下がより好ましく、5μm以上8μm以下がさらに好ましい。
 D10が上記範囲内のニッケル含有MCCを用いることで、要件(3)を満たすLiMOを製造できる。
 ニッケル含有MCCのD10及びD50は、LiMOのD10及びD50の測定方法と同様の方法により測定できる。
 反応槽内において、攪拌を十分に行うことでニッケル含有MCCのD10を所望の大きさまで高めることができる。反応槽内の攪拌を十分に行うためには、反応槽の大きさに合った攪拌翼の形状や回転数に設定し、バッフルなどの液体の流れを制御する機構を備えることが好ましい。なお、反応槽内の攪拌が十分であることを確認するには反応槽内の複数個所で、共沈物スラリーを採取し、粒度分布が同等であることを確認すればよい。
 所定の重装密度、D50、及びD10を有するニッケル含有MCCは、例えば、前記共沈法によるニッケル含有MCCの製造工程において、反応槽に供給する金属塩の量比、錯化剤の添加量、反応温度、反応pH、酸化剤の添加量を調整することにより得ることができる。例えば、錯化剤の添加量を減らし反応槽内の錯化剤の濃度を小さくすると、重装密度、D50、及びD10が小さいニッケル含有MCCを得ることができる。すなわち、錯化剤の添加量を増やし反応槽内の錯化剤の濃度を大きくすると、重装密度、D50、及びD10が大きいニッケル含有MCCを得ることができる。錯化剤の添加量の調整は、錯化剤を含む溶液を用いる場合は、前記溶液の添加量を変更することにより、又は前記溶液中の錯化剤の濃度を変更することにより行うことができる。また、錯化剤を単独で使用する場合は、錯化剤の添加量を変更することにより行うことができる。
 例えば、反応pHは、pH11以上pH13以下であることが好ましい。また、錯化剤がアンモニウムイオン供給体である場合は、反応槽内のアンモニア濃度は0.18mol/L以上0.30mol/L以下が好ましい。なお、反応槽内のアンモニア濃度は、アンモニア濃度計により測定することができる。
[混合工程]
 本工程は、リチウム化合物と、前駆体とを混合し、混合物を得る工程である。
・リチウム化合物
 本実施形態に用いるリチウム化合物は、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、酸化リチウム、塩化リチウム、フッ化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。これらの中では、水酸化リチウム及び炭酸リチウムのいずれか一方又は両方が好ましい。
 また、リチウム化合物が炭酸リチウムを含む場合には、リチウム化合物中の炭酸リチウムの含有量は5質量%以下であることが好ましい。
 前記前駆体と、前記リチウム化合物との混合方法について説明する。
 前記前駆体を乾燥させた後、リチウム化合物と混合する。乾燥条件は、特に制限されないが、例えば、下記の乾燥条件1)~3)のいずれかが挙げられる。
 1)前駆体が酸化・還元されない条件。
 具体的には、酸化物が酸化物のまま維持される乾燥条件、又は水酸化物が水酸化物のまま維持される乾燥条件である。
 2)前駆体が酸化される条件。
 具体的には、水酸化物から酸化物へ酸化する乾燥条件である。
 3)前駆体が還元される条件。
 具体的には、酸化物から水酸化物へ還元する乾燥条件である。
 乾燥条件1)~3)は、製造するニッケル含有MCCが、ニッケル含有金属複合水酸化物であるか、ニッケル含有金属複合酸化物のいずれかであるかによって、適宜選択すればよい。
 酸化・還元がされない条件としては、窒素、ヘリウム及びアルゴン等の不活性ガスを使用して乾燥すればよい。前駆体である金属複合水酸化物が酸化される条件では、酸素又は空気を使用して行えばよい。
 また、前駆体が還元される条件としては、不活性ガス雰囲気下、ヒドラジン、亜硫酸ナトリウム等の還元剤を使用して乾燥すればよい。
 前駆体の乾燥後に、適宜分級を行ってもよい。
 以上のリチウム化合物と前駆体とを、最終目的物の組成比を勘案して混合する。例えば、前駆体としてニッケル含有金属複合水酸化物を用いる場合、リチウム化合物と前記金属複合水酸化物を、上記組成式(I)の組成比に対応する割合で混合する。具体的には、前駆体に含まれる金属原子の総数に対するリチウム原子の数の比が1.0より大きくなるようにリチウム塩と混合する。金属原子の数に対するリチウム原子の数の比は、1.05以上が好ましく、1.10以上がより好ましい。ニッケル含有金属複合水酸化物及びリチウム化合物の混合物を、後の焼成工程において焼成することによって、リチウム複合酸化物が得られる。
[混合物を焼成し、LiMOを得る工程]
 本実施形態においては、上記リチウム化合物と、前駆体との混合物を不活性溶融剤の存在下で焼成することが好ましい。不活性溶融剤を用いた製法(フラックス法)を用いることで、要件(1)を満たすLiMOを製造できる。
 不活性溶融剤の存在下で混合物の焼成を行うことで、混合物の反応を促進させることができる。不活性溶融剤は、焼成後のLiMOに残留していてもよいし、焼成後に洗浄液で洗浄すること等により除去されていてもよい。本実施形態においては、焼成後のLiMOは純水やアルカリ性洗浄液などを用いて洗浄することが好ましい。
 焼成温度を調整することにより、得られるLiMOの一次粒子径を本実施形態の好ましい範囲に制御できる。
 通常、焼成温度が高くなればなるほど、一次粒子径は大きくなり、BET比表面積は小さくなる傾向にある。焼成温度は、用いる遷移金属元素の種類、沈殿剤、不活性溶融剤の種類、量に応じて適宜調整すればよい。
 焼成温度を調整すること、高密度かつ粒径の大きい前駆体を用いること、又はその両方を組み合わせることで、得られるLiMOの平均一次粒子径を本実施形態の好ましい範囲に制御できる。
 本実施形態においては、焼成温度の設定は、後述する不活性溶融剤の融点を考慮すればよく、不活性溶融剤の融点マイナス200℃以上不活性溶融剤の融点プラス200℃以下の範囲で行うことが好ましい。
 焼成温度として、具体的には、200℃以上1150℃以下の範囲を挙げることができ、300℃以上1050℃以下が好ましく、500℃以上1000℃以下がより好ましい。
 本明細書における焼成温度とは、焼成炉の設定温度を意味する。
 焼成における保持時間を調整することにより、得られるLiMOの一次粒子径を本実施形態の好ましい範囲に制御できる。保持時間が長くなればなるほど、一次粒子径は大きくなり、BET比表面積は小さくなる傾向にある。焼成における保持時間は、用いる遷移金属元素の種類、沈殿剤、不活性溶融剤の種類、量に応じて適宜調整すればよい。
 具体的には、前記焼成温度で保持する時間は、0.1時間以上20時間以下が挙げられ、0.5時間以上10時間以下が好ましい。前記焼成温度までの昇温速度は、通常50℃/時間以上400℃/時間以下であり、前記焼成温度から室温までの降温速度は、通常10℃/時間以上400℃/時間以下である。また、焼成の雰囲気としては、大気、酸素、窒素、アルゴン又はこれらの混合ガスを用いることができる。
 本実施形態に使用することができる不活性溶融剤は、焼成の際に混合物と反応し難いものであれば特に限定されない。本実施形態においては、Na、K、Rb、Cs、Ca、Mg、Sr及びBaからなる群より選ばれる1種以上の元素(以下、「A」と称する。)のフッ化物、Aの塩化物、Aの炭酸塩、Aの硫酸塩、Aの硝酸塩、Aのリン酸塩、Aの水酸化物、Aのモリブデン酸塩及びAのタングステン酸塩からなる群より選ばれる1種以上が挙げられる。
 Aのフッ化物としては、NaF(融点:993℃)、KF(融点:858℃)、RbF(融点:795℃)、CsF(融点:682℃)、CaF(融点:1402℃)、MgF(融点:1263℃)、SrF(融点:1473℃)及びBaF(融点:1355℃)を挙げることができる。
 Aの塩化物としては、NaCl(融点:801℃)、KCl(融点:770℃)、RbCl(融点:718℃)、CsCl(融点:645℃)、CaCl(融点:782℃)、MgCl(融点:714℃)、SrCl(融点:857℃)及びBaCl(融点:963℃)を挙げることができる。
 Aの炭酸塩としては、NaCO(融点:854℃)、KCO(融点:899℃)、RbCO(融点:837℃)、CsCO(融点:793℃)、CaCO(融点:825℃)、MgCO(融点:990℃)、SrCO(融点:1497℃)及びBaCO(融点:1380℃)を挙げることができる。
 Aの硫酸塩としては、NaSO(融点:884℃)、KSO(融点:1069℃)、RbSO(融点:1066℃)、CsSO(融点:1005℃)、CaSO(融点:1460℃)、MgSO(融点:1137℃)、SrSO(融点:1605℃)及びBaSO(融点:1580℃)を挙げることができる。
 Aの硝酸塩としては、NaNO(融点:310℃)、KNO(融点:337℃)、RbNO(融点:316℃)、CsNO(融点:417℃)、Ca(NO(融点:561℃)、Mg(NO、Sr(NO(融点:645℃)及びBa(NO(融点:596℃)を挙げることができる。
 Aのリン酸塩としては、NaPO、KPO(融点:1340℃)、RbPO、CsPO、Ca(PO、Mg(PO(融点:1184℃)、Sr(PO(融点:1727℃)及びBa(PO(融点:1767℃)を挙げることができる。
 Aの水酸化物としては、NaOH(融点:318℃)、KOH(融点:360℃)、RbOH(融点:301℃)、CsOH(融点:272℃)、Ca(OH)(融点:408℃)、Mg(OH)(融点:350℃)、Sr(OH)(融点:375℃)及びBa(OH)(融点:853℃)を挙げることができる。
 Aのモリブデン酸塩としては、NaMoO(融点:698℃)、KMoO(融点:919℃)、RbMoO(融点:958℃)、CsMoO(融点:956℃)、CaMoO(融点:1520℃)、MgMoO(融点:1060℃)、SrMoO(融点:1040℃)及びBaMoO(融点:1460℃)を挙げることができる。
 Aのタングステン酸塩としては、NaWO(融点:687℃)、KWO、RbWO、CsWO、CaWO、MgWO、SrWO及びBaWOを挙げることができる。
 本実施形態においては、これらの不活性溶融剤を2種以上用いることもできる。2種以上用いる場合は、融点が下がることもある。また、これらの不活性溶融剤の中でも、より結晶性が高いLiMOを得るための不活性溶融剤としては、Aの水酸化物、炭酸塩、硫酸塩、及び塩化物のいずれか又はその組み合わせであることが好ましい。また、Aとしては、ナトリウム(Na)及びカリウム(K)のいずれか一方又は両方であることが好ましい。すなわち、上記の中で、とりわけ好ましい不活性溶融剤は、NaOH、KOH、NaCl、KCl、NaCO、KCO、NaSO、及びKSOからなる群より選ばれる1種以上である。
 本実施形態において、不活性溶融剤としては、KSOが好ましい。
 本実施形態において、焼成時の不活性溶融剤の使用量は適宜調整すればよい。焼成時の不活性溶融剤の使用量は、リチウム化合物と不活性溶融剤の合計モル数に対する不活性溶融剤のモル数の割合が、0.010以上30以下であることが好ましく、0.015以上20以下であることがより好ましく、0.020以上15以下であることがさらに好ましい。
 本実施形態において、焼成後のLiMOを適正な時間で解砕することにより、前記要件(2)を本実施形態の範囲内に制御しやすい。
 「適正な時間」とは、LiMOの一次粒子にクラックを生じさせることなく、凝集を分散させる程度の時間を指す。解砕時間は、LiMOの凝集状態に応じて調整することが好ましい。解砕時間は、例えば10分以上2時間以下の範囲が特に好ましい。
 解砕後のLiMOに残留する不活性溶融剤の洗浄には、純水やアルカリ性洗浄液を用いることができる。
 アルカリ性洗浄液としては、例えば、LiOH(水酸化リチウム)、NaOH(水酸化ナトリウム)、KOH(水酸化カリウム)、LiCO(炭酸リチウム)、NaCO(炭酸ナトリウム)、KCO(炭酸カリウム)及び(NHCO(炭酸アンモニウム)からなる群より選ばれる1種以上の無水物並びにその水和物の水溶液を挙げることができる。また、アルカリとして、アンモニアを使用することもできる。
 洗浄に用いる洗浄液の温度は、15℃以下が好ましく、10℃以下がより好ましく、8℃以下がさらに好ましい。洗浄液の温度を凍結しない範囲で上記範囲に制御することで、洗浄時にLiMOの結晶構造中から洗浄液中へのリチウムイオンの過度な溶出が抑制できる。
 洗浄工程において、洗浄液とLiMOとを接触させる方法としては、各洗浄液の水溶液中に、LiMOを投入して撹拌する方法や、各洗浄液の水溶液をシャワー水として、LiMOにかける方法や、前記洗浄液の水溶液中に、LiMOを投入して撹拌した後、各洗浄液の水溶液からLiMOを分離し、次いで、各洗浄液の水溶液をシャワー水として、分離後のLiMOにかける方法が挙げられる。
 前記洗浄工程において、洗浄液とLiMOを適正な時間の範囲で接触させることにより、前記要件(2)を本実施形態の範囲内に制御しやすい金属複合水酸化物を得ることができる。
 「適正な時間」とは、LiMOの表面に残留する不活性溶融剤を除去しつつ、LiMOの各粒子を分散させる程度の時間を指す。洗浄時間は、LiMOの凝集状態に応じて調整することが好ましい。洗浄時間は、例えば5分間以上1時間以下の範囲が特に好ましい。
[乾燥工程]
 本実施形態は、前記洗浄工程後にさらに乾燥工程を有することが好ましい。乾燥工程のLiMOを乾燥する温度や方法は特に限定されないが、乾燥温度は、充分に水分を除去する観点から、30℃以上であることが好ましく、40℃以上であることがより好ましく、50℃以上であることがさらに好ましい。また、表面に異相が形成するのを防止する観点から、300℃未満であることが好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましい。
 乾燥工程の雰囲気は、酸素雰囲気、不活性雰囲気、減圧雰囲気、真空雰囲気が挙げられる。洗浄後の乾燥工程を上記雰囲気で行うことで、乾燥工程中にLiMOと雰囲気中の水分、二酸化炭素との反応が抑制され、不純物の少ないLiMOが得られる。
[再焼成工程]
 本実施形態は、洗浄工程後にさらに再焼成工程を有していてもよい。
 LiMOの再焼成工程の焼成温度としては、特に制限はないが、充電容量の低下を防止できる観点から、300℃以上であることが好ましく、350℃以上であることがより好ましく、400℃以上であることがさらに好ましい。また、特に制限はないが、リチウムの揮発を防止でき、目標とする組成のLiMOを得る観点から、1000℃以下であることが好ましく、950℃以下であることがより好ましい。
 リチウムの揮発は焼成温度により制御することができる。
 焼成温度の上限値と下限値は任意に組み合わせることができる。
 再焼成時間は、昇温開始から達温して温度保持が終了するまでの合計時間を1時間以上30時間以下とすることが好ましい。合計時間が30時間以下であると、リチウムの揮発を防止でき、電池性能の劣化を防止できる。
 合計時間が1時間以上であると、結晶の発達が良好に進行し、電池性能を向上させることができる。
 また、再焼成工程を上記の条件で行うことにより、不純物を低減することができる。
<CAM>
 本実施形態は、本発明のLiMOを含有するCAMである。CAMの総質量(100質量%)に対するLiMOの含有割合は、70質量%以上99質量%以下が好ましく、80質量%以上98質量%以下がより好ましい。
<リチウム二次電池>
 次いで、本実施形態のLiMOをCAMとして用いる場合の好適なリチウム二次電池の構成を説明する。
 さらに、本実施形態のLiMOをCAMとして用いる場合に好適なリチウム二次電池用正極(以下、正極と称することがある。)について説明する。
 さらに、正極の用途として好適なリチウム二次電池について説明する。
 リチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図1A及び図1Bは、リチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
 次いで、図1Bに示すように、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、又は角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、又は角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、又はペーパー型(又はシート型)電池を例示することができる。
 以下、各構成について順に説明する。
(正極)
 正極は、まずCAM、導電材及びバインダーを含む正極合剤を調製し、正極合剤を正極集電体に担持させることで製造することができる。
(導電材)
 正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、及び繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率及び出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、及び正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
 正極合剤中の導電材の割合は、CAM100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維又はカーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
(バインダー)
 本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリイミド樹脂;ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレンなどのフッ素樹脂;ポリエチレン及びポリプロピレンなどのポリオレフィン樹脂、WO2019/098384A1またはUS2020/0274158A1に記載の樹脂を挙げることができる。
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂及びポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力及び正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
 正極が有する正極集電体としては、Al、Ni、又はステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド及びN-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 リチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができる。
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物又は硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
 負極活物質として使用可能な炭素材料としては、天然黒鉛又は人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維及び有機高分子化合物焼成体を挙げることができる。
 負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;LiTi12などのリチウムとチタンとを含有する金属複合酸化物;を挙げることができる。
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。
 負極活物質として使用可能な材料として、WO2019/098384A1またはUS2020/0274158A1に記載の材料を用いてもよい。
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、及び繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛又は人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース(以下、CMCということがある。)、スチレンブタジエンゴム(以下、SBRということがある。)、ポリエチレン及びポリプロピレンを挙げることができる。
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
 このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
 リチウム二次電池が有するセパレータとしては、例えば、ポリエチレン及びポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂又は含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、又は織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。また、JP-A-2000-030686やUS20090111025A1に記載のセパレータを用いてもよい。
 本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、且つ300秒/100cc以下であることが好ましく、50秒/100cc以上、且つ200秒/100cc以下であることがより好ましい。
 また、セパレータの空孔率は、セパレータの総体積に対し好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは、空孔率の異なるセパレータを積層したものであってもよい。
(電解液)
 リチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
 電解液に含まれる電解質としては、LiClO、LiPFなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。また、WO2019/098384A1またはUS2020/0274158A1に記載の電解質を用いてもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF及びLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、WO2019/098384A1またはUS2020/0274158A1に記載の有機溶媒を用いることができる。
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル及び2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。
 <全固体リチウム二次電池>
 次いで、全固体リチウム二次電池の構成を説明しながら、本発明の一態様に係るLiMOを全固体リチウム二次電池の正極活物質として用いた正極、及びこの正極を有する全固体リチウム二次電池について説明する。
 図2は、本実施形態の全固体リチウム二次電池の一例を示す模式図である。図2に示す全固体リチウム二次電池1000は、正極110と、負極120と、固体電解質層130とを有する積層体100と、積層体100を収容する外装体200と、を有する。また、全固体リチウム二次電池1000は、集電体の両側に正極活物質と負極活物質とを配置したバイポーラ構造であってもよい。バイポーラ構造の具体例として、例えば、JP-A-2004-95400に記載される構造が挙げられる。各部材を構成する材料については、後述する。
 積層体100は、正極集電体112に接続される外部端子113と、負極集電体122に接続される外部端子123と、を有していてもよい。その他、全固体リチウム二次電池1000は、正極110と負極120との間にセパレータを有していてもよい。
 全固体リチウム二次電池1000は、さらに積層体100と外装体200とを絶縁する不図示のインシュレーター及び外装体200の開口部200aを封止する不図示の封止体を有する。
 外装体200は、アルミニウム、ステンレス鋼又はニッケルメッキ鋼などの耐食性の高い金属材料を成形した容器を用いることができる。また、外装体200として、少なくとも一方の面に耐食加工を施したラミネートフィルムを袋状に加工した容器を用いることもできる。
 全固体リチウム二次電池1000の形状としては、例えば、コイン型、ボタン型、ペーパー型(またはシート型)、円筒型、角型、又はラミネート型(パウチ型)などの形状を挙げることができる。
 全固体リチウム二次電池1000は、一例として積層体100を1つ有する形態が図示されているが、本実施形態はこれに限らない。全固体リチウム二次電池1000は、積層体100を単位セルとし、外装体200の内部に複数の単位セル(積層体100)を封じた構成であってもよい。
 以下、各構成について順に説明する。
 (正極)
 本実施形態の正極110は、正極活物質層111と正極集電体112とを有している。
 正極活物質層111は、上述した本発明の一態様である正極活物質及び固体電解質を含む。また、正極活物質層111は、導電材及びバインダーを含んでいてもよい。
 (固体電解質)
 本実施形態の正極活物質層111に含まれる固体電解質としては、リチウムイオン伝導性を有し、公知の全固体リチウム二次電池に用いられる固体電解質を採用することができる。このような固体電解質としては、無機電解質及び有機電解質を挙げることができる。無機電解質としては、酸化物系固体電解質、硫化物系固体電解質及び水素化物系固体電解質を挙げることができる。有機電解質としては、ポリマー系固体電解質を挙げることができる。各電解質としては、WO2020/208872A1、US2016/0233510A1、US2012/0251871A1、US2018/0159169A1に記載の化合物が挙げられ、例えば、以下の化合物が挙げられる。
 (酸化物系固体電解質)
 酸化物系固体電解質としては、例えば、ペロブスカイト型酸化物、NASICON型酸化物、LISICON型酸化物及びガーネット型酸化物などが挙げられる。各酸化物の具体例は、WO2020/208872A1、US2016/0233510A1、US2020/0259213A1に記載の化合物が挙げられる。
 ガーネット型酸化物としては、LiLaZr12(LLZともいう)などのLi-La-Zr系酸化物などが挙げられる。
 酸化物系固体電解質は、結晶性材料であってもよく、非晶質材料であってもよい。
 (硫化物系固体電解質)
 硫化物系固体電解質としては、LiS-P系化合物、LiS-SiS系化合物、LiS-GeS系化合物、LiS-B系化合物、LiI-SiS-P系化合物、LiI-LiS-P系化合物、LiI-LiPO-P系化合物及びLi10GeP12などを挙げることができる。
 なお、本明細書において、硫化物系固体電解質を指す「系化合物」という表現は、「系化合物」の前に記載した「LiS」「P」などの原料を主として含む固体電解質の総称として用いる。例えば、LiS-P系化合物には、LiSとPとを主として含み、さらに他の原料を含む固体電解質が含まれる。LiS-P系化合物に含まれるLiSの割合は、例えばLiS-P系化合物全体に対して50~90質量%である。LiS-P系化合物に含まれるPの割合は、例えばLiS-P系化合物全体に対して10~50質量%である。また、LiS-P系化合物に含まれる他の原料の割合は、例えばLiS-P系化合物全体に対して0~30質量%である。また、LiS-P系化合物には、LiSとPとの混合比を異ならせた固体電解質も含まれる。
 LiS-P系化合物としては、LiS-P、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P-LiI-LiBrなどを挙げることができる。
 LiS-SiS系化合物としては、LiS-SiS、LiS-SiS-LiI、LiS-SiS-LiBr、LiS-SiS-LiCl、LiS-SiS-B-LiI、LiS-SiS-P-LiI、LiS-SiS-P-LiClなどを挙げることができる。
 LiS-GeS系化合物としては、LiS-GeS及びLiS-GeS-Pなどを挙げることができる。
 硫化物系固体電解質は、結晶性材料であってもよく、非晶質材料であってもよい。
 固体電解質は、発明の効果を損なわない範囲において、2種以上を併用することができる。
 (導電材及びバインダー)
 本実施形態の正極活物質層111が有する導電材としては、上述の(導電材)で説明した材料を用いることができる。また、正極合剤中の導電材の割合についても同様に上述の(導電材)で説明した割合を適用することができる。また、正極が有するバインダーとしては、上述の(バインダー)で説明した材料を用いることができる。
(正極集電体)
 本実施形態の正極110が有する正極集電体112としては、上述の(正極集電体)で説明した材料を用いることができる。
 正極集電体112に正極活物質層111を担持させる方法としては、正極集電体112上で正極活物質層111を加圧成型する方法が挙げられる。加圧成型には、冷間プレスや熱間プレスを用いることができる。
 また、有機溶媒を用いて正極活物質、固体電解質、導電材及びバインダーの混合物をペースト化して正極合剤とし、得られる正極合剤を正極集電体112の少なくとも一面上に塗布して乾燥させ、プレスし固着することで、正極集電体112に正極活物質層111を担持させてもよい。
 また、有機溶媒を用いて正極活物質、固体電解質及び導電材の混合物をペースト化して正極合剤とし、得られる正極合剤を正極集電体112の少なくとも一面上に塗布して乾燥させ、焼結することで、正極集電体112に正極活物質層111を担持させてもよい。
 正極合剤に用いることができる有機溶媒としては、上述の(正極集電体)で説明した正極合剤をペースト化する場合に用いることができる有機溶媒と同じものを用いることができる。
 正極合剤を正極集電体112へ塗布する方法としては、上述の(正極集電体)で説明した方法が挙げられる。
 以上に挙げられた方法により、正極110を製造することができる。
(負極)
 負極120は、負極活物質層121と負極集電体122とを有している。負極活物質層121は、負極活物質を含む。また、負極活物質層121は、固体電解質及び導電材を含んでいてもよい。負極活物質、負極集電体、固体電解質、導電材及びバインダーは、上述したものを用いることができる。
 負極集電体122に負極活物質層121を担持させる方法としては、正極110の場合と同様に、加圧成型による方法、負極活物質を含むペースト状の負極合剤を負極集電体122上に塗布、乾燥後プレスし圧着する方法、及び負極活物質を含むペースト状の負極合剤を負極集電体122上に塗布、乾燥後、焼結する方法が挙げられる。
(固体電解質層)
 固体電解質層130は、上述の固体電解質を有している。
 固体電解質層130は、上述の正極110が有する正極活物質層111の表面に、無機物の固体電解質をスパッタリング法により堆積させることで形成することができる。
 また、固体電解質層130は、上述の正極110が有する正極活物質層111の表面に、固体電解質を含むペースト状の合剤を塗布し、乾燥させることで形成することができる。乾燥後、プレス成型し、さらに冷間等方圧加圧法(CIP)により加圧して固体電解質層130を形成してもよい。
 積層体100は、上述のように正極110上に設けられた固体電解質層130に対し、公知の方法を用いて、固体電解質層130の表面に負極活物質層121が接するように負極120を積層させることで製造することができる。
 以上のような構成のCAMは、上述した本実施形態により製造されるLiMOを用いているため、CAMを用いたリチウム二次電池のガス発生量を低減させることができる。
 また、以上のような構成の正極は、上述した構成のCAMを有するため、リチウム二次電池のガス発生量を低減させることができる。
 さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、ガス発生量の小さい二次電池となる。
次に、本発明を実施例によりさらに詳細に説明する。
≪組成分析≫
 後述の方法で製造されるLiMOの組成分析は、得られたLiMOの粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
≪積分強度Iと積分強度Iの比(I/I)の測定≫
 粉末X線回折測定は、X線回折装置(株式会社リガク製UltimaIV)を用いて行った。LiMOの粉末を専用の基板に充填し、Cu-Kα線源を用いて、回折角2θ=10°~90°、サンプリング幅0.02°、スキャンスピード4°/minの条件にて測定を行うことで、粉末X線回折パターンを得た。
 統合粉末X線解析ソフトウェアJADEを用い、前記粉末X線回折パターンから2θ=36.7±1°の範囲内の積分強度I及び2θ=64.9±1°の範囲内の回折ピークの積分強度Iを得て、積分強度Iと積分強度Iの比(I/I)を算出した。
≪BET比表面積の測定≫
 BET比表面積はLiMOの粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、マウンテック社製Macsorb(登録商標)を用いて測定した。
≪LiMOの10%累積体積粒度D10及び50%累積体積粒度D50の測定≫
 LiMOの粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、前記粉末を分散させた分散液を得た。次に、得られた分散液についてマイクロトラック・ベル株式会社製マイクロトラックMT3300EXII(レーザー回折散乱粒度分布測定装置)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得た。そして、得られた累積粒度分布曲線において、全体を100%としたときに、微小粒子側からの累積体積が10%となる点の粒子径の値を10%累積体積粒度D10(μm)、微小粒子側からの累積体積が50%となる点の粒子径の値を50%累積体積粒度D50(μm)として求めた。
[平均一次粒子径の測定]
 まず、LiMOの粉末を、サンプルステージ上に貼った導電性シート上に載せ、走査型電子顕微鏡(SEM、日本電子株式会社製JSM-5510)を用いて、加速電圧が20kVの電子線を照射してSEM観察を行った。
 倍率5000及び10000のSEM観察により得られた画像(SEM写真)から、視野内の一次粒子を50個抽出し、それぞれの一次粒子について、一次粒子の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を一次粒子の粒子径として測定した。
 なお、視野内の一次粒子の数が50個に満たない場合には、一次粒子の数が50個に到達するまで他の視野を観察し、50個の一次粒子を抽出した。
 得られた一次粒子の粒子径の算術平均値を、LiMOの粉末の平均一次粒子径とした。
≪D50/平均一次粒子径≫
 得られたD50と平均一次粒子径との比(D50/平均一次粒子径)を算出した。
≪ニッケル含有MCCの10%累積体積粒度D10及び50%累積体積粒度D50の測定≫
 ニッケル含有MCCの粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、前記粉末を分散させた分散液を得た。
 次に、得られた分散液についてマイクロトラック・ベル株式会社製マイクロトラックMT3300EXII(レーザー回折散乱粒度分布測定装置)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得た。そして、得られた累積粒度分布曲線において、全体を100%としたときに、微小粒子側からの累積体積が10%となる点の粒子径の値を10%累積体積粒度D10(μm)、微小粒子側からの累積体積が50%となる点の粒子径の値を50%累積体積粒度D50(μm)として求めた。
≪重装密度≫
 JIS R 1628-1997に従って測定したタップかさ密度をニッケル含有MCCの重装密度とした。
<リチウム二次電池用正極の作製>
 後述する製造方法で得られるLiMOと導電材(アセチレンブラック)とバインダー(PVdF)とを、LiMO:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いた。
 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得た。このリチウム二次電池用正極の電極面積は1.65cmとした。
<リチウム二次電池(コイン型ハーフセル)の作製>
 以下の操作を、アルゴン雰囲気のグローブボックス内で行った。
 <リチウム二次電池用正極の作製>で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置いた。ここに電解液を300μl注入した。電解液は、エチレンカーボネート(以下、ECと称することがある。)とジメチルカーボネート(以下、DMCと称することがある。)とエチルメチルカーボネート(以下、EMCと称することがある。)の16:10:74(体積比)混合液に、LiPF6を1.3mol/lとなるように溶解し、炭酸ビニレン(VC)を1.0%溶解させたものを用いた。
 次に、負極として金属リチウムを用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型ハーフセルR2032。以下、「ハーフセル」と称することがある。)を作製した。
 <リチウム二次電池(コイン型ハーフセル)の作製>で作製したハーフセルを用いて、以下に示す条件でフロート試験を実施した。
<ガス発生の評価>
 電池内において、ガスが発生しにくいことを示す相関値として、分解電気量(以下、「フロート電気量」と記載する場合がある。)を測定した。
 フロート電気量とは、粒子界面で電解液と不可逆反応を起こした際に観測される電気量である。具体的には、フロート電気量とは、満充電時を0として30時間連続で定電圧充電を行った際の電気量を示す。
 観測されるフロート電気量の値が大きいほど、ガス発生量が多いことを意味する。
 本実施形態においては、フロート電気量が6.0mAh/g以下の場合に、ガス発生量が抑制されていると評価した。
 [フロート試験条件]
  試験温度:60℃
  充電最大電圧4.3V、充電電流0.2CA、定電流定電圧充電
  休止時間 30時間
 フロート試験における、4.3Vの定電圧モードに移行してからの休止時間の間の積算電気量をフロート電気量(mAh/g)として算出した。
≪実施例1≫
1.LiMO1の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.60:0.20:0.20となるように混合して、混合原料液を調製した。
 次に、反応槽内に、攪拌下、この混合原料液と錯化剤として硫酸アンモニウム溶液を用いて反応槽内のアンモニア濃度が0.29mol/Lになるように一定速度にて反応槽に連続供給した。反応槽内の溶液のpHが11.3(測定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、脱水し、洗浄、脱水、単離、乾燥することにより、ニッケルコバルトマンガン複合水酸化物1を得た。このニッケルコバルトマンガンアルミニウム複合水酸化物1の重装密度(TD)は、2.38m/g、D50は13.9μm、D10は7.86μmであった。
 得られたニッケルコバルトマンガン複合水酸化物1と、得られたニッケルコバルトマンガン複合水酸化物1に含まれるNi、Cо、Mnの合計量1に対するLiの量(モル比)が1.20となるように秤量した水酸化リチウムと、不活性溶融剤である硫酸カリウムと水酸化リチウムの合計量に対する硫酸カリウムの量(モル比)が0.1となるように秤量した硫酸カリウムと、を乳鉢により混合して混合物を得た。
 次いで、得られた混合物を酸素雰囲気中1000℃で10時間保持して焼成した後、室温まで冷却して焼成物を得た。
 得られた焼成物を乳鉢で解砕し、5℃の純水に分散させた後、脱水した。さらに、液温5℃に調整した純水を用いて、上記粉末を洗浄した後、脱水し、150℃で乾燥して、大気雰囲気下760℃で5時間焼成して熱処理を行い、粉末状のLiMO1を得た。
2.LiMO1の評価
 LiMO1の組成分析を行い、組成式(I)に対応させたところ、x=0.013、y=0.199、z=0.197、w=0であった。
 LiMO1の粉末X線回折測定の結果、I/Iは2.87であり、BET比表面積は0.20m/g、D10は11.3μm、50%累積体積粒度D50と平均一次粒子径との比(D50/平均一次粒子径)は1.21であった。また、LiMO1を使用したコイン型ハーフセルのフロート電気量は5.30mAh/gであった。
≪実施例2≫
1.LiMO2の製造
 実施例1で得たニッケルコバルトマンガン複合水酸化物1と、得られたニッケルコバルトマンガン複合水酸化物1に含まれるNi、Cо、Mnの合計量1に対するLiの量(モル比)が1.20となるように秤量した水酸化リチウムと、不活性溶融剤である硫酸カリウムと水酸化リチウムの合計量に対する硫酸カリウムの量(モル比)が0.1となるように秤量した硫酸カリウムと、を乳鉢により混合して混合物を得た。
 次いで、得られた混合物を大気雰囲気中940℃で10時間保持して加熱した後、室温まで冷却して焼成物を得た。
 得られた焼成物を乳鉢で解砕し、5℃の純水に分散させた後、脱水した。さらに、液温5℃に調整した純水を用いて、上記粉末を洗浄した後、脱水し、150℃で乾燥して、大気雰囲気下760℃で5時間焼成して熱処理を行い、粉末状のLiMO2を得た。
2.LiMO2の評価
 LiMO2の組成分析を行い、組成式(I)に対応させたところ、x=0.020、y=0.199、z=0.198、w=0であった。
 LiMO2の粉末X線回折測定の結果、I/Iは2.33であり、BET比表面積は0.11m/g、D10は5.40μm、50%累積体積粒度D50と平均一次粒子径との比(D50/平均一次粒子径)は1.52であった。また、CAM2を使用したコイン型ハーフセルのフロート電気量は4.90mAh/gであった。
≪比較例1≫
1.LiMO3の製造
 実施例1で得たニッケルコバルトマンガン複合水酸化物1と、得られたニッケルコバルトマンガン複合水酸化物1に含まれるNi、Cо、Mnの合計量1に対するLiの量(モル比)が1.05となるように秤量した水酸化リチウムとを乳鉢により混合して混合物を得た。
 次いで、得られた混合物を、不活性溶融剤を用いずに大気雰囲気中940℃で10時間保持して焼成した後、室温まで冷却して焼成物を得た。得られた焼成物を乳鉢で解砕し、5℃の純水に分散させた後、脱水した。さらに、液温5℃に調整した純水を用いて、上記粉末を洗浄した後、脱水し、150℃で乾燥して粉末状のLiMO3を得た。
2.LiMO3の評価
 LiMO3の組成分析を行い、組成式(I)に対応させたところ、x=-0.006、y=0.198、z=0.196、w=0であった。
 LiMO3の粉末X線回折測定の結果、I/Iは1.87であり、BET比表面積は0.21m/g、D10は5.64μm、50%累積体積粒度D50と平均一次粒子径との比(D50/平均一次粒子径)は79.7であった。また、CAM3を使用したコイン型ハーフセルのフロート電気量は9.60mAh/gであった。
≪比較例2≫
1.LiMO4の製造
 実施例1で得たニッケルコバルトマンガン複合水酸化物1と、得られたニッケルコバルトマンガン複合水酸化物1に含まれるNi、Cо、Mnの合計量1に対するLiの量(モル比)が1.10となるように秤量した水酸化リチウムを乳鉢により混合して混合物を得た。
 次いで、得られた混合物を、不活性溶融剤を用いずに大気雰囲気中850℃10時間保持して焼成した後、室温まで冷却して粉末状のLiMO4を得た。得られた焼成物を乳鉢で解砕し、5℃の純水に分散させた後、脱水した。さらに、液温5℃に調整した純水を用いて、上記粉末を洗浄した後、脱水し、150℃で乾燥して粉末状のLiMO4を得た。
2.LiMO4の評価
 LiMO4の組成分析を行い、組成式(I)に対応させたところ、x=0.016、y=0.198、z=0.197、w=0であった。
 LiMO4の粉末X線回折測定の結果、I/Iは1.64であり、BET比表面積は1.05m/g、D10は6.88μm、50%累積体積粒度D50と平均一次粒子径との比(D50/平均一次粒子径)は18.3であった。また、LiMO4を使用したコイン型ハーフセルのフロート電気量は8.77mAh/gであった。
≪比較例3≫
1.LiMO5の製造 
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.55:0.25:0.30となるように混合し、錯化剤として硫酸アンモニウム溶液を用いて反応槽内のアンモニア濃度が0.27mol/Lになるように一定速度にて反応槽に連続供給した。反応槽内の溶液のpHが10.6(測定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得た以外は、実施例1と同様に操作してニッケルコバルトマンガン複合水酸化物5を得た。このニッケルコバルトマンガンアルミニウム複合水酸化物5の重装密度(TD)は、1.99m/g、D50は7.8μm、D10は2.4μmであった。
 ニッケルコバルトマンガン複合水酸化物5と、得られたニッケルコバルトマンガン複合水酸化物5に含まれるNi、Cо、Mnの合計量1に対するLiの量(モル比)が1.15となるように秤量した水酸化リチウムと、不活性溶融剤である硫酸カリウムと水酸化リチウムの合計量に対する硫酸カリウムの量(モル比)が0.1となるように秤量した硫酸カリウムと、を乳鉢で混合した後、酸素雰囲気下940℃で5時間焼成して、焼成物を得た。得られた焼成物を14000rpmの回転数で運転したピンミルに投入し解砕することによりLiMO5を得た。
2.LiMO5の評価
 LiMO5の組成分析を行い、組成式(I)に対応させたところ、x=0.067、y=0.20、z=0.30、w=0であった。
 LiMO5の粉末X線回折測定の結果、I/Iは1.84であり、BET比表面積は1.02m/g、D10は1.98μm、50%累積体積粒度D50と平均一次粒子径との比(D50/平均一次粒子径)は4.64であった。また、LiMO5を使用したコイン型ハーフセルのフロート電気量は10.8mAh/gであった。
≪比較例4≫
1.LiMO6の製造
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液と硫酸ジルコニウム水溶液とを、ニッケル原子とコバルト原子とマンガン原子とジルコニウム原子との原子比が0.547:0.199:0.:0.249:0.005となるように混合し、錯化剤として硫酸アンモニウム溶液を用いて反応槽内のアンモニア濃度が0.17mol/Lになるように一定速度にて反応槽に連続供給し、反応槽内の溶液のpHが12.0(測定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下した以外は、実施例1と同様に操作してニッケルコバルトマンガンジルコニウム複合水酸化物6を得た。このニッケルコバルトマンガンジルコニウム複合水酸化物6の重装密度(TD)は、1.11m/g、D50は3.1μm、D10は2.05μmであった。
 ニッケルコバルトマンガンジルコニウム複合水酸化物6と、得られたニッケルコバルトマンガンジルコニウム複合水酸化物6に含まれるNi、Cо、Mnの合計量1に対するLiの量(モル比)が1.03となるように秤量した水酸化リチウムを混合した後、不活性溶融剤を用いずに酸素雰囲気下650℃で5時間焼成して、一次焼成粉を得た。得られた一次焼成粉を酸素雰囲気下970℃で5時間焼成して、LiMOの粉末を得た。得られたLiMOの粉末を14000rpmの回転数で運転したピンミルに投入し解砕することによりLiMO6を得た。
 2.LiMO6の評価
 LiMO6の組成分析を行い、組成式(I)に対応させたところ、x=0.018、y=0.198、z=0.247、w=0.004であった。
 LiMO6の粉末X線回折測定の結果、I/Iは2.28であり、BET比表面積は0.77m/g、D10は2.03μm、50%累積体積粒度D50と平均一次粒子径との比(D50/平均一次粒子径)は2.05であった。また、LiMO6を使用したコイン型ハーフセルのフロート電気量は7.14mAh/gであった。
Figure JPOXMLDOC01-appb-T000001
 上記結果に示したとおり、本発明を適用した実施例1、2は、フロート電気量が6.0mAh/g以下であり、ガス発生量が抑制されていることが確認できた。
 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード、100…積層体、110…正極、111…正極活物質層、112…正極集電体、113…外部端子、120…負極、121…負極活物質層、122…負極集電体、123…外部端子、130…固体電解質層、200…外装体、200a…開口部、1000…全固体リチウム二次電池

Claims (7)

  1.  下記組成式(I)で表され、
     下記要件(1)~(3)を全て満たす、リチウム金属複合酸化物。
     Li[Li(Ni(1-y-z-w)CoMn1-x]O  ・・・(I)
    (ただし、MはP、Fe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
     要件(1);CuKα線を使用した粉末X線回折測定において、2θ=36.7±1°の範囲内の回折ピークの積分強度Iと、2θ=64.9±1°の範囲内の回折ピークの積分強度Iとの比(I/I)が2.0以上である。
     要件(2);BET比表面積が0.7m/g以下である。
     要件(3);10%累積体積粒度D10が5μm以上である。
  2.  50%累積体積粒度D50と平均一次粒子径との比(D50/平均一次粒子径)が2.0以下である、請求項1に記載のリチウム金属複合酸化物。
  3.  平均一次粒子径が4.5μm以上である請求項1又は2に記載のリチウム金属複合酸化物。
  4.  前記組成式(I)において、yはzの0.5倍以上5倍以下である請求項1~3のいずれか1項に記載のリチウム金属複合酸化物。
  5.  請求項1~4のいずれか1項に記載のリチウム金属複合酸化物を含有するリチウム二次電池用正極活物質。
  6. 請求項5に記載のリチウム二次電池用正極活物質を含有するリチウム二次電池用正極。
  7.  請求項6に記載のリチウム二次電池用正極を有するリチウム二次電池。
PCT/JP2020/047907 2019-12-23 2020-12-22 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 WO2021132228A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227020867A KR20220120570A (ko) 2019-12-23 2020-12-22 리튬 금속 복합 산화물, 리튬 이차 전지용 정극 활물질, 리튬 이차 전지용 정극 및 리튬 이차 전지
CN202080088588.4A CN114845958B (zh) 2019-12-23 2020-12-22 锂金属复合氧化物、锂二次电池用正极活性物质、锂二次电池用正极及锂二次电池
US17/787,779 US20230069426A1 (en) 2019-12-23 2020-12-22 Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019231325A JP7227894B2 (ja) 2019-12-23 2019-12-23 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2019-231325 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021132228A1 true WO2021132228A1 (ja) 2021-07-01

Family

ID=76540770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047907 WO2021132228A1 (ja) 2019-12-23 2020-12-22 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Country Status (5)

Country Link
US (1) US20230069426A1 (ja)
JP (1) JP7227894B2 (ja)
KR (1) KR20220120570A (ja)
CN (1) CN114845958B (ja)
WO (1) WO2021132228A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198759A (ja) * 2010-02-23 2011-10-06 Toda Kogyo Corp 正極活物質前駆体粒子粉末及び正極活物質粒子粉末、並びに非水電解質二次電池
JP2017525089A (ja) * 2014-06-10 2017-08-31 ユミコア 優れた硬強度を有する正極材料
JP6600066B1 (ja) * 2018-12-20 2019-10-30 住友化学株式会社 リチウム複合金属酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2020102327A (ja) * 2018-12-20 2020-07-02 住友化学株式会社 リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質前駆体の製造方法、及びリチウム二次電池用正極活物質の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313543B2 (ja) * 2008-04-28 2013-10-09 パナソニック株式会社 リチウム電池
JP2011181367A (ja) * 2010-03-02 2011-09-15 Sumitomo Chemical Co Ltd 非水電解質二次電池
CN103081191B (zh) * 2010-08-05 2015-05-20 昭和电工株式会社 锂二次电池用负极活性物质
JP5174283B2 (ja) * 2010-12-24 2013-04-03 京セラ株式会社 リチウム二次電池
JP6497537B2 (ja) * 2013-11-18 2019-04-10 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用電極、リチウム二次電池
JP6220365B2 (ja) * 2015-06-30 2017-10-25 宇部興産株式会社 蓄電デバイスの電極用チタン酸リチウム粉末および活物質材料、並びにそれを用いた電極シートおよび蓄電デバイス
JP6391857B2 (ja) 2016-02-29 2018-09-19 三井金属鉱業株式会社 スピネル型リチウムマンガン含有複合酸化物
JP6983152B2 (ja) 2016-05-24 2021-12-17 住友化学株式会社 正極活物質、その製造方法およびリチウムイオン二次電池用正極
JP6256956B1 (ja) * 2016-12-14 2018-01-10 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6412094B2 (ja) * 2016-12-26 2018-10-24 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198759A (ja) * 2010-02-23 2011-10-06 Toda Kogyo Corp 正極活物質前駆体粒子粉末及び正極活物質粒子粉末、並びに非水電解質二次電池
JP2017525089A (ja) * 2014-06-10 2017-08-31 ユミコア 優れた硬強度を有する正極材料
JP6600066B1 (ja) * 2018-12-20 2019-10-30 住友化学株式会社 リチウム複合金属酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2020102327A (ja) * 2018-12-20 2020-07-02 住友化学株式会社 リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質前駆体の製造方法、及びリチウム二次電池用正極活物質の製造方法

Also Published As

Publication number Publication date
KR20220120570A (ko) 2022-08-30
CN114845958A (zh) 2022-08-02
JP7227894B2 (ja) 2023-02-22
US20230069426A1 (en) 2023-03-02
JP2021098631A (ja) 2021-07-01
CN114845958B (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
JP6650064B1 (ja) 全固体リチウムイオン電池用正極活物質、電極および全固体リチウムイオン電池
WO2020208872A1 (ja) リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
JP6962838B2 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
JP6836369B2 (ja) リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質の製造方法
JP6871888B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
KR102705592B1 (ko) 리튬 금속 복합 산화물 분말, 리튬 이차 전지용 정극 활물질, 리튬 이차 전지용 정극 및 리튬 이차 전지
WO2020208966A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池
US20230163294A1 (en) Lithium-metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7194703B2 (ja) 全固体リチウムイオン電池用正極活物質、電極および全固体リチウムイオン電池
WO2020208873A1 (ja) リチウム複合金属酸化物粉末及びリチウム二次電池用正極活物質
WO2020129374A1 (ja) リチウム複合金属酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2021117890A1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6810287B1 (ja) 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
WO2021141112A1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム金属複合酸化物の製造方法
WO2021132228A1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2022050314A1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極及びリチウム二次電池
WO2021172509A1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6980053B2 (ja) リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質前駆体の製造方法及びリチウム二次電池用正極活物質の製造方法
WO2022039088A1 (ja) リチウム金属複合酸化物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906696

Country of ref document: EP

Kind code of ref document: A1