WO2018181402A1 - リチウムニッケル複合酸化物の製造方法 - Google Patents

リチウムニッケル複合酸化物の製造方法 Download PDF

Info

Publication number
WO2018181402A1
WO2018181402A1 PCT/JP2018/012599 JP2018012599W WO2018181402A1 WO 2018181402 A1 WO2018181402 A1 WO 2018181402A1 JP 2018012599 W JP2018012599 W JP 2018012599W WO 2018181402 A1 WO2018181402 A1 WO 2018181402A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
lithium
nickel composite
lithium nickel
post
Prior art date
Application number
PCT/JP2018/012599
Other languages
English (en)
French (fr)
Inventor
佐藤 雄一
健二 高森
裕介 前田
公保 中尾
亮太 小林
Original Assignee
住友化学株式会社
株式会社田中化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 株式会社田中化学研究所 filed Critical 住友化学株式会社
Priority to CN201880014914.XA priority Critical patent/CN110366540B/zh
Priority to KR1020197026884A priority patent/KR102486071B1/ko
Publication of WO2018181402A1 publication Critical patent/WO2018181402A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a lithium nickel composite oxide.
  • the lithium-nickel composite oxide is used as a positive electrode active material for lithium secondary batteries (hereinafter sometimes referred to as “positive electrode active material”).
  • Lithium secondary batteries have already been put into practical use not only for small power sources for mobile phones and notebook computers, but also for medium and large power sources for automobiles and power storage.
  • Patent Documents 1 to 3 As a method for producing a lithium nickel composite oxide, a method comprising a production process of a lithium nickel composite oxide precursor, a mixing step of a lithium compound and the precursor, a firing step, and a cleaning step after the firing step is known. (For example, Patent Documents 1 to 3).
  • the cleaning step after the firing step is a step aimed at removing impurities.
  • the output at a high current rate at a high voltage may decrease.
  • impurities remain, and in the case of excessive cleaning, lithium is eluted, resulting in a problem that battery characteristics deteriorate.
  • This invention is made
  • the present invention includes the following [1] to [9].
  • [1] A method for producing a lithium nickel composite oxide represented by the following general formula (I), comprising mixing a lithium compound and a nickel-containing metal composite compound to obtain a mixture, and firing the mixture. And a post-treatment step including a washing step for washing the fired product, and in the mixing step, lithium contained in the lithium compound and a metal element in the nickel-containing metal composite compound And the molar ratio (Li / Me) is mixed so that the ratio exceeds 1.
  • the post-treatment step includes residual sulfate groups and residual lithium carbonate in the lithium nickel composite oxide obtained after the post-treatment step.
  • [3] The method for producing a lithium nickel composite oxide according to [1] or [2], wherein the firing temperature is 300 ° C. or higher and 1000 ° C. or lower in the firing step.
  • [4] The lithium nickel composite oxide according to any one of [1] to [3], including a drying step of drying the obtained lithium nickel composite oxide after the cleaning step in the post-treatment step.
  • [5] The lithium nickel composite oxidation according to any one of [1] to [3], wherein the post-treatment step includes a refiring step of refiring the obtained lithium nickel composite oxide after the cleaning step. Manufacturing method.
  • the post-treatment step includes a refiring step of refiring the obtained lithium nickel composite oxide after the drying step.
  • the lithium nickel composite oxide obtained after the cleaning step is mixed with a compound of one or more elements selected from the group consisting of aluminum, boron, titanium, zirconium, and tungsten, and lithium
  • the post-treatment step includes a coating step in which the lithium nickel composite oxide obtained after the cleaning step and an aluminum compound are mixed and the surface of the lithium nickel composite oxide is coated with the aluminum compound.
  • the post-treatment step after the drying step, the obtained lithium nickel composite oxide and a compound of one or more elements selected from the group consisting of aluminum, boron, titanium, zirconium, and tungsten are mixed, The method for producing a lithium nickel composite oxide according to [4], including a coating step of coating the surface of the lithium nickel composite oxide with the compound of the element.
  • the post-treatment step includes a coating step of mixing the lithium nickel composite oxide obtained after the drying step and an aluminum compound and coating the surface of the lithium nickel composite oxide with the aluminum compound.
  • the total amount of residual sulfate radicals and residual lithium carbonate in the lithium nickel composite oxide obtained after the drying step is 0.6% by mass or less based on the total mass of the lithium nickel composite oxide.
  • a method for producing a lithium nickel composite oxide having a high output at a high current rate at a high voltage can be provided.
  • Some embodiments of the present invention are methods for producing a lithium nickel composite oxide represented by the following general formula (I).
  • the present embodiment includes a mixing step of mixing a lithium compound and a nickel-containing metal composite compound to obtain a mixture, a firing step of firing the mixture to obtain a fired product, and a cleaning process for washing the fired product. And a process.
  • some embodiments of the present invention include mixing a lithium compound and a nickel-containing metal composite compound to obtain a mixture, firing the mixture to obtain a fired product, and washing the fired product.
  • a post-processing step including:
  • a mixing process mixes so that the molar ratio (Li / Me) of the lithium contained in a lithium compound and the metal element in a nickel containing metal complex compound may exceed 1.
  • the total amount of residual sulfate radicals and residual lithium carbonate in the lithium nickel composite oxide obtained after the post-treatment step by the production method of the present embodiment is 0.3% by mass or less based on the total mass of the lithium nickel composite oxide.
  • a process of treating the sodium content to be 50 ppm or less with respect to the total mass of the lithium nickel composite oxide.
  • the total amount of residual sulfate radicals and residual lithium carbonate in the lithium nickel composite oxide obtained after the post-treatment step is 0.3% by mass or less based on the total mass of the lithium nickel composite oxide.
  • the sodium content is 50 ppm or less with respect to the total mass of the lithium nickel composite oxide .
  • M is Fe, Cu, Ti Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, and V represent one or more metals selected from the group consisting of V.
  • the amount of residual sulfate radicals relative to the total mass of the lithium nickel composite oxide in the lithium nickel composite oxide obtained after the post-treatment step is determined by inductively coupled plasma emission analysis after dissolving the lithium nickel composite oxide powder in hydrochloric acid. It can be measured using an apparatus (SPS3000, manufactured by SII Nano Technology Co., Ltd.).
  • the amount of residual lithium carbonate relative to the total mass of the lithium nickel composite oxide in the lithium nickel composite oxide obtained after the post-treatment step can be determined by the neutralization titration method shown below.
  • the molecular weight of lithium carbonate (73.882) is calculated assuming that the atomic weight of Li is 6.941, the atomic weight of C is 12, and the atomic weight of O is 16.
  • Lithium carbonate concentration (%) 0.1 ⁇ (BA) /1000 ⁇ 73.882/ (20 ⁇ 60/100) ⁇ 100
  • the amount of sodium relative to the total mass of the lithium nickel composite oxide in the lithium nickel composite oxide obtained after the post-treatment step was induced using an inductively coupled plasma emission spectrometer (manufactured by SII Nanotechnology Inc., SPS3000). It can be obtained by a coupled plasma emission analysis method.
  • the general formula (I) does not contain H, C, S and Na derived from residual sulfate radical, residual lithium carbonate and sodium. This is because the residual sulfate group, residual lithium carbonate and sodium contained in the lithium nickel composite oxide are not contained in the crystal structure of the lithium nickel composite oxide.
  • 1st Embodiment is a manufacturing method of the lithium nickel complex oxide represented by general formula (I), Comprising: The mixing process which mixes a lithium compound and a nickel containing metal complex compound, and obtains a mixture, The said mixture is carried out. There are a firing step for firing and obtaining a fired product, and a post-treatment step including a cleaning step for washing the fired product in this order.
  • the present embodiment includes a post-treatment including mixing a lithium compound and a nickel-containing metal composite compound to obtain a mixture, firing the mixture to obtain a fired product, and washing the fired product. And a process.
  • each step will be described.
  • the mixing step is a step in which a lithium compound and a nickel-containing metal composite compound are mixed to obtain a mixture.
  • This step first includes a metal other than the lithium compound, that is, an essential metal composed of Ni, Co, and Mn, and optionally Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb,
  • a nickel-containing metal composite compound containing any one or more arbitrary metals of Zn, Sn, Zr, Ga and V is prepared, and the nickel-containing metal composite compound is mixed with an appropriate lithium compound, and then the resulting mixture is obtained. It is preferable to fire.
  • the nickel-containing metal composite compound is preferably a nickel-containing metal composite hydroxide or a nickel-containing metal composite oxide.
  • the nickel-containing metal composite compound can be usually produced by a known batch coprecipitation method or continuous coprecipitation method.
  • the manufacturing method will be described in detail by taking as an example a nickel-containing metal composite hydroxide containing nickel, cobalt and manganese.
  • the nickel-containing metal composite hydroxide is reacted with a nickel salt solution, a cobalt salt solution, a manganese salt solution, and a complexing agent by a coprecipitation method, particularly a continuous method described in JP-A-2002-201028, Ni (wherein, 0 ⁇ x ⁇ 0.2,0 ⁇ y ⁇ 0.5,0 ⁇ z ⁇ 0.8) 1-y-z Co y Mn z (OH) 2 nickel-containing metal composite represented by Hydroxides can be produced.
  • nickel salt which is the solute of the said nickel salt solution For example, any one of nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate can be used.
  • cobalt salt that is the solute of the cobalt salt solution for example, any one of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used.
  • manganese salt that is the solute of the manganese salt solution for example, any of manganese sulfate, manganese nitrate, manganese chloride, and manganese acetate can be used.
  • More metal salts are used in proportions corresponding to the composition ratio of the Ni 1-y-z Co y Mn z (OH) 2. That is, the molar ratio of nickel, cobalt, and manganese in the mixed solution containing the metal salt corresponds to (1-yz): y: z in the composition formula (I) of the lithium nickel composite oxide. Define the amount of each metal salt. Moreover, water is used as a solvent.
  • the complexing agent can form a complex with nickel, cobalt, and manganese ions in an aqueous solution.
  • an ammonium ion supplier ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.
  • Hydrazine ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, and glycine.
  • the complexing agent may not be included if desired.
  • the complexing agent contained in the mixed solution containing the nickel salt solution, the cobalt salt solution, the manganese salt solution, the M salt solution and the complexing agent is included.
  • the amount of the agent is, for example, a molar ratio with respect to the total number of moles of the metal salt greater than 0 and 2.0 or less.
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • Ni 1-yz Co y Mn z. (OH) 2 is produced.
  • the temperature of the reaction vessel is controlled within a range of, for example, 20 ° C. or more and 80 ° C. or less, preferably 30 ° C. or more and 70 ° C. or less.
  • it is preferably controlled within a range of pH 11 or more and pH 13 or less, and the substance in the reaction vessel is appropriately stirred.
  • the reaction vessel is of a type that causes the formed reaction precipitate to overflow for separation.
  • reaction conditions depend on the size of the reaction tank to be used, the reaction conditions may be optimized while monitoring various physical properties of the finally obtained lithium nickel composite oxide.
  • the obtained reaction precipitate is washed with water and then dried to isolate the nickel-containing metal composite hydroxide as the nickel-containing metal composite compound. Moreover, you may wash
  • the nickel containing metal complex hydroxide is manufactured, you may prepare a nickel containing metal complex oxide.
  • preparing a nickel-containing metal composite oxide for example, adjusting by performing a step of bringing the coprecipitate slurry into contact with an oxidizing agent or a step of heat-treating after drying the nickel-containing metal composite hydroxide. Can do.
  • the nickel-containing metal composite oxide or nickel-containing metal composite hydroxide is dried and then mixed with a lithium compound.
  • the drying conditions are not particularly limited.
  • the conditions under which the nickel-containing metal composite oxide or nickel-containing metal composite hydroxide is not oxidized and reduced that is, the oxide is maintained as an oxide, the hydroxide is hydroxylated.
  • Conditions under which the nickel-containing metal composite hydroxide is oxidized ie, conditions under which the hydroxide is oxidized into oxide
  • conditions under which the nickel-containing metal composite compound is reduced ie, oxide
  • Any of the conditions under which is reduced to hydroxide may be used.
  • an inert gas such as nitrogen, helium and argon may be used.
  • oxygen or air may be used.
  • a reducing agent such as hydrazine or sodium sulfite may be used in an inert gas atmosphere.
  • lithium compounds use any one of lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium hydroxide, lithium oxide, lithium chloride, and lithium fluoride, or a mixture of two or more. Can do. Classification may be appropriately performed after the nickel-containing metal composite oxide or nickel-containing metal composite hydroxide is dried.
  • the above lithium compound and nickel-containing metal composite compound are mixed so that the molar ratio (Li / Me) between lithium in the lithium compound and the metal element in the nickel-containing metal composite compound exceeds 1.
  • mixing is performed so that the ratio of the number of moles of lithium in the lithium compound to the total number of moles of nickel, cobalt, manganese, and any metal contained in the nickel-containing metal composite compound exceeds 1.
  • the firing temperature of the nickel-containing metal composite oxide or the mixture of the nickel-containing metal composite hydroxide and the lithium compound is not particularly limited, but is preferably 300 ° C. or higher from the viewpoint of preventing a decrease in charge capacity. 350 ° C. or higher is more preferable, and 400 ° C. or higher is further preferable. Moreover, although there is no restriction
  • the volatilization of Li can be controlled by the firing temperature.
  • the upper limit value and the lower limit value of the firing temperature can be arbitrarily combined.
  • the firing temperature is preferably 300 ° C. or higher and 1000 ° C. or lower, more preferably 350 ° C. or higher and 950 ° C. or lower, and further preferably 400 ° C. or higher and 950 ° C. or lower.
  • the firing time is preferably 1 hour or more and 30 hours or less for the total time from the start of raising the temperature to the end of temperature holding.
  • the time from the start of the temperature rise to the firing temperature is preferably 0.5 hours or more and 20 hours or less.
  • the time from the start of temperature rise to the firing temperature is within this range, a more uniform lithium nickel composite oxide can be obtained.
  • it is preferable that the time from reaching the firing temperature to the end of the temperature holding is 0.5 hours or more and 20 hours or less.
  • the time from reaching the firing temperature to the end of the temperature holding is within this range, the development of crystals progresses better, and the battery performance can be further improved.
  • it is also effective to perform temporary baking before the above baking.
  • the temperature for such preliminary firing is preferably in the range of 300 to 850 ° C. for 1 to 10 hours. By performing the preliminary firing, the firing time may be shortened.
  • the volatilization of lithium can be suppressed by performing the firing step under the above conditions. Thereby, a lithium nickel composite oxide having a high output at a high current rate at a high voltage can be obtained.
  • the post-treatment step includes a washing step for washing the fired product obtained in the above-mentioned firing step, and the total of the residual sulfate radical and the residual lithium carbonate of the lithium nickel composite oxide obtained after the post-treatment step is the total of the lithium nickel composite oxide.
  • This is a step of post-processing such that the sodium is 0.3 mass% or less with respect to the mass and sodium is 50 ppm or less with respect to the total mass of the lithium nickel composite oxide.
  • the washing liquid and the fired product are mixed to form a slurry, and the slurry is stirred to wash the fired product powder.
  • the concentration (slurry concentration) of the slurry in which the cleaning liquid and the fired powder are mixed is not particularly limited, but the mass of the fired powder with respect to the cleaning liquid is adjusted to 50 g / L or more from the viewpoint of suppressing Li elution. It is preferable to adjust to 100 g / L or more.
  • the concentration of the slurry (slurry concentration) in which the cleaning liquid and the fired powder are mixed is preferably adjusted to 2000 g / L or less, and more preferably adjusted to 1000 g / L or less.
  • the mass of the fired powder with respect to the cleaning liquid is preferably adjusted to 50 g / L or more and 2000 g / L or less, and more preferably adjusted to 100 g / L or more and 1000 g / L or less.
  • Li / Me of the lithium nickel composite oxide that is, the molar ratio of lithium (the molar ratio of lithium to the total amount of metal elements excluding lithium) is lowered, but by adjusting the slurry concentration The decrease in Li / Me can be controlled.
  • the average secondary particle diameter of the fired powder used for the washing step is preferably 1 to 30 ⁇ m, and more preferably 3 to 20 ⁇ m.
  • the average secondary particle diameter of the fired powder can be measured using a laser diffraction / scattering particle size distribution analyzer.
  • the fired product powder was put into 50 ml of a 0.2 mass% sodium hexametaphosphate aqueous solution, and the fired product was obtained. A dispersion in which the powder is dispersed is obtained. The particle size distribution of the obtained dispersion is measured to obtain a volume-based cumulative particle size distribution curve. In the obtained cumulative particle size distribution curve, the value of the particle diameter (D50) viewed from the fine particle side when 50% is accumulated is defined as the average secondary particle diameter of the fired powder.
  • the cleaning liquid used in the cleaning process examples include water and an alkaline solution. In the present embodiment, water is preferable.
  • the washing time is not particularly limited, it is preferably 1 minute or more, more preferably 5 minutes or more from the viewpoint of sufficiently removing impurities. Moreover, from a viewpoint of improving productivity, 60 minutes or less are preferable and 30 minutes or less are more preferable. That is, the cleaning time is preferably 1 minute or more and 60 minutes or less, and more preferably 5 minutes or more and 30 minutes or less.
  • impurities refers to sulfur-containing ions (residual sulfate radicals) such as SO 4 2 ⁇ remaining on the surface of particles included in the lithium nickel composite oxide after the firing step, residual lithium carbonate, and pH. Examples include those in which a coprecipitation residue of alkali metal used for control remains. When sulfate is used as the transition metal, sulfate radicals resulting from this may remain.
  • the source of the residual sulfate radical as an impurity is not particularly limited. For example, even when a sulfate is not used, a sulfur-containing compound remaining on the particle surface due to various materials used. Etc. are also included in the impurities.
  • lithium carbonate as an impurity
  • lithium carbonate when lithium carbonate is used as a lithium source (lithium compound), residual lithium carbonate resulting from this can be mentioned. Further, even when a lithium source other than lithium carbonate is used, lithium carbonate that can be generated by reacting with carbon dioxide in the air is also included in the “impurities”.
  • sodium as an impurity include sodium sulfate, sodium carbonate, sodium hydrogen carbonate, sodium hydroxide and the like as alkali metal coprecipitation residues used for pH control.
  • the post-treatment is performed such that the total of the residual sulfate radical and the residual lithium carbonate of the lithium nickel composite oxide obtained after the post-treatment step is 0.27% by mass or less based on the total mass of the lithium nickel composite oxide. It is preferable to carry out post-processing so that the content is 0.24% by mass or less.
  • the lower limit of the total of residual sulfate radicals and residual lithium carbonate contained in the lithium nickel composite oxide obtained after the post-treatment step is preferably as small as possible. For example, it is about 0.03% by mass with respect to the total mass of the lithium nickel composite oxide. .
  • post-process sodium so that it may become 25 ppm or less with respect to the total mass of lithium nickel complex oxide, and it is more preferable to post-process so that it may become 15 ppm or less.
  • the lower limit of the ratio of sodium contained in the lithium nickel composite oxide obtained after the post-treatment step is preferable, it is, for example, about 5 ppm with respect to the total mass of the lithium nickel composite oxide.
  • the present embodiment further includes a drying step after the cleaning step in the post-processing step of the first embodiment. That is, the method for producing a lithium nickel composite oxide of the present embodiment includes a mixing step, a firing step, and a post-treatment step (cleaning step and drying step) in this order. In other words, the method for producing a lithium nickel composite oxide of the present embodiment includes mixing a lithium compound and a nickel-containing metal composite compound to obtain a mixture, firing the mixture to obtain a fired product, and firing the fired product. And a post-processing step including washing the object, and the post-processing step further includes drying the washed object.
  • the temperature and method for drying the lithium nickel composite oxide in the drying step are not particularly limited, but the drying temperature is preferably 30 ° C. or higher and more preferably 40 ° C. or higher from the viewpoint of sufficiently removing moisture. Preferably, it is 50 ° C. or higher. Further, from the viewpoint of preventing the formation of a heterogeneous phase on the surface, it is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
  • the heterogeneous phase refers to a compound having a crystal structure different from that of the lithium nickel composite oxide of the present embodiment, for example, a compound having a rock salt structure such as nickel oxide.
  • the present embodiment further includes a re-baking step after the cleaning step in the post-processing step of the first embodiment. That is, the method for producing a lithium nickel composite oxide of the present embodiment includes a mixing step, a firing step, and a post-treatment step (cleaning step and re-baking step) in this order. In other words, the method for producing a lithium nickel composite oxide of the present embodiment includes mixing a lithium compound and a nickel-containing metal composite compound to obtain a mixture, firing the mixture to obtain a fired product, and firing the fired product. A post-processing step including washing the object, and the post-processing step further includes re-baking the washed object.
  • the description regarding the mixing step, the firing step, and the cleaning step in the present embodiment is the same as the description in the first embodiment.
  • the firing temperature in the re-firing step of the lithium nickel composite oxide is not particularly limited, but is preferably 300 ° C. or higher, more preferably 350 ° C. or higher, from the viewpoint of preventing a reduction in charge capacity. More preferably, it is 400 ° C. or higher. Moreover, although there is no restriction
  • the volatilization of Li can be controlled by the firing temperature.
  • the upper limit value and the lower limit value of the firing temperature can be arbitrarily combined.
  • the firing temperature in the refiring step is preferably 300 ° C. or higher and 1000 ° C. or lower, more preferably 350 ° C. or higher and 950 ° C. or lower, and further preferably 400 ° C. or higher and 950 ° C. or lower.
  • the re-baking time is preferably 1 hour or more and 30 hours or less for the total time from the start of raising the temperature to the end of temperature holding.
  • the time from the start of the temperature rise to the firing temperature is preferably 0.5 hours or more and 20 hours or less.
  • the time from the start of temperature rise to the firing temperature is within this range, a more uniform lithium nickel composite oxide can be obtained.
  • it is preferable that the time from reaching the firing temperature to the end of the temperature holding is 0.5 hours or more and 20 hours or less.
  • the temperature for such preliminary firing is preferably in the range of 300 to 850 ° C. for 1 to 10 hours.
  • impurities such as lithium carbonate can be reduced by performing the re-baking step under the above conditions.
  • impurities can be sufficiently removed by performing the washing process and the re-baking process under the above conditions, and in the slurry in the washing process.
  • the elution of lithium can be suppressed.
  • a lithium nickel composite oxide having a high output at a high current rate at a high voltage can be obtained.
  • the present embodiment further includes a refiring step after the drying step in the post-processing step of the second embodiment. That is, the method for producing a lithium nickel composite oxide according to the fourth embodiment includes a mixing step, a firing step, and a post-treatment step (a washing step, a drying step, and a refire step) in this order.
  • the method for producing a lithium nickel composite oxide of the present embodiment includes mixing a lithium compound and a nickel-containing metal composite compound to obtain a mixture, firing the mixture to obtain a fired product, and firing the fired product.
  • a post-processing step including washing the object, and the post-processing step further includes drying the washed product and re-baking the dried product.
  • the description regarding the mixing process, baking process, washing process, drying process, and re-baking process in the present embodiment is the same as the description in the above-described embodiment.
  • the present embodiment further includes a coating step after the cleaning step in the post-processing step of the first embodiment.
  • the method for producing a lithium nickel composite oxide of this embodiment includes a mixing step, a firing step, and a post-processing step (cleaning step and covering step) in this order.
  • the method for producing a lithium nickel composite oxide of the present embodiment includes mixing a lithium compound and a nickel-containing metal composite compound to obtain a mixture, firing the mixture to obtain a fired product, and firing the fired product.
  • a post-treatment step including washing the object, the post-treatment step further comprising coating the washed object with a coating material.
  • the description regarding the mixing step, the firing step, and the cleaning step in the present embodiment is the same as the description in the first embodiment.
  • a coating layer can be formed on the surface of the secondary particles of the lithium nickel composite oxide by mixing the coating material raw material and the lithium nickel composite oxide and performing heat treatment as necessary.
  • the coating material is made of an oxide, hydroxide, carbonate, nitrate, sulfate, halide, oxalate or alkoxide of one or more elements selected from the group consisting of aluminum, boron, titanium, zirconium, and tungsten Can be used and is preferably an oxide.
  • the covering material examples include aluminum oxide, aluminum hydroxide, aluminum sulfate, aluminum chloride, aluminum alkoxide, boron oxide, boric acid, titanium oxide, titanium chloride, titanium alkoxide, zirconium oxide, zirconium chloride, tungsten oxide, and tungstic acid.
  • aluminum oxide, aluminum hydroxide, boron oxide, boric acid, titanium oxide, zirconium oxide and tungsten oxide are preferable. Since the coating material material is efficiently coated on the surface of the lithium nickel composite oxide, the coating material material is preferably finer than the secondary particles of the lithium nickel composite oxide.
  • the average secondary particle diameter of the lithium nickel composite oxide is preferably 1 to 30 ⁇ m, and more preferably 3 to 20 ⁇ m.
  • the average secondary particle diameter of the coating material is preferably 1 ⁇ m or less, and more preferably 0.1 ⁇ m or less.
  • the lower limit of the average secondary particle diameter of the coating material raw material is preferably as small as possible, but is, for example, 0.001 ⁇ m.
  • the average secondary particle diameter of the lithium nickel composite oxide can be measured using a laser diffraction / scattering particle size distribution analyzer.
  • the mixing of the coating material raw material and the lithium nickel composite oxide may be performed in the same manner as the mixing at the time of producing the lithium nickel composite oxide.
  • the coating layer can be more firmly attached to the surface of the lithium nickel composite oxide by being held in an atmosphere containing water after mixing.
  • the ratio of the coating material raw material when mixing the coating material raw material and the lithium nickel composite oxide is preferably 0.01 to 10% by mass relative to the total mass of the coating material raw material and the lithium nickel composite oxide. It is more preferably 1 to 5% by mass.
  • the heat treatment conditions (temperature, holding time) in heat treatment performed as necessary after mixing the coating material raw material and the lithium nickel composite oxide may differ depending on the type of the coating material raw material.
  • the heat treatment temperature is preferably set in the range of 300 to 850 ° C., and is preferably equal to or lower than the firing temperature of the lithium nickel composite oxide.
  • the holding time in the heat treatment is preferably set shorter than the holding time at the time of firing.
  • an atmosphere in the heat treatment an atmosphere gas similar to that in the above-described firing is exemplified.
  • impurities can be reduced by performing the heat treatment under the above conditions.
  • a positive electrode active material for a lithium secondary battery can be obtained by forming a coating layer on the surface of the lithium nickel composite oxide.
  • the positive electrode active material for a lithium secondary battery can be obtained by mixing and baking the lithium nickel composite oxide, the lithium compound, and the coating material.
  • the coating layer does not need to cover the entire surface of the lithium nickel composite oxide, and may cover at least 30% or more.
  • the coating material raw material and the lithium compound present on the surface of the lithium nickel composite oxide react by heat treatment, and the coating layer can be formed on the surface of the lithium nickel composite oxide.
  • the temperature of the heat treatment is 800 ° C. or higher, lithium atoms in the lithium nickel composite oxide particles diffuse into the coating layer, so that the coating material containing the lithium and the coating layer containing lithium are formed on the surface of the lithium nickel composite oxide. May form.
  • the impurities can be sufficiently removed by performing the cleaning process and the coating process under the above-described conditions, and lithium is contained in the slurry in the cleaning process. Elution can be suppressed. Thereby, a lithium nickel composite oxide having a high output at a high current rate at a high voltage can be obtained.
  • the present embodiment further includes a coating step after the drying step in the post-processing step of the second embodiment.
  • the manufacturing method of the lithium nickel composite oxide of the sixth embodiment includes a mixing process, a firing process, and a post-processing process (a cleaning process, a drying process, and a coating process) in this order.
  • the method for producing a lithium nickel composite oxide of the present embodiment includes mixing a lithium compound and a nickel-containing metal composite compound to obtain a mixture, firing the mixture to obtain a fired product, and firing the fired product.
  • a post-treatment step including washing the object, the post-treatment step further comprising drying the washed object and coating the dried object with a coating material.
  • the description regarding the mixing process, the baking process, the cleaning process, the drying process, and the coating process in the present embodiment is the same as the description in the above embodiment.
  • the total of the residual sulfate group and the residual lithium carbonate of the lithium nickel composite oxide obtained after the drying step is 0 with respect to the total mass of the lithium nickel composite oxide. It is the process of processing so that it may become 50 ppm or less with respect to the total mass of lithium nickel composite oxide and 6 mass% or less.
  • the second embodiment to the sixth embodiment are preferable, the fourth embodiment to the sixth embodiment are more preferable, and the fourth embodiment or the sixth embodiment is particularly preferable.
  • the lithium nickel composite oxide produced by the method for producing a lithium nickel composite oxide of the present invention is represented by the general formula (I).
  • M is Fe, Cu, Ti Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, and V represent one or more metals selected from the group consisting of V.
  • x in the general formula (I) is more preferably 0.005 or more, and particularly preferably 0.01 or more. Further, from the viewpoint of obtaining a lithium secondary battery having a higher capacity retention rate, x in the general formula (I) is preferably 0.15 or less, more preferably 0.12 or less, and 0.09. It is particularly preferred that By setting x in the above range, a lithium secondary battery having high initial coulomb efficiency and high capacity retention can be obtained. When x is 0 or less, the capacity may decrease.
  • the upper limit value and the lower limit value of x can be arbitrarily combined. For example, x is preferably 0.005 or more and 0.15 or less, more preferably 0.01 or more and 0.12 or less, and particularly preferably 0.01 or more and 0.09 or less.
  • y in the general formula (I) is preferably 0.005 or more, more preferably 0.01 or more, and 0.05 or more. It is particularly preferred. Further, from the viewpoint of obtaining a lithium secondary battery having high thermal stability, y in the general formula (I) is preferably 0.4 or less, more preferably 0.35 or less, and 0.33. It is particularly preferred that The upper limit value and the lower limit value of y can be arbitrarily combined. For example, y is preferably 0.005 or more and 0.4 or less, more preferably 0.01 or more and 0.35 or less, and particularly preferably 0.05 or more and 0.33 or less.
  • z in the general formula (I) is preferably 0.005 or more, more preferably 0.01 or more, and 0.015 or more. It is particularly preferred. Further, from the viewpoint of obtaining a lithium secondary battery having high storage characteristics at a high temperature (for example, in an environment of 60 ° C.), z in the general formula (I) is preferably 0.4 or less, and is 0.38 or less. Is more preferable, and it is especially preferable that it is 0.35 or less.
  • the upper limit value and lower limit value of z can be arbitrarily combined. For example, z is preferably 0.005 or more and 0.4 or less, more preferably 0.01 or more and 0.38 or less, and particularly preferably 0.015 or more and 0.35 or less.
  • w is preferably more than 0, more preferably 0.0005 or more, and particularly preferably 0.001 or more.
  • w is preferably 0.09 or less, more preferably 0.08 or less, and particularly preferably 0.07 or less.
  • the upper limit value and the lower limit value of w can be arbitrarily combined. For example, w exceeds 0 and is preferably 0.09 or less, more preferably 0.0005 or more and 0.08 or less, and particularly preferably 0.001 or more and 0.07 or less.
  • M in the general formula (I) represents one or more metals selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V. .
  • M in the general formula (I) is preferably at least one selected from the group consisting of Ti, Mg, Al, W, B, and Zr. From the viewpoint of obtaining a lithium secondary battery with high thermal stability, it is preferably at least one selected from the group consisting of Al, W, B and Zr.
  • the lithium nickel composite oxide produced by the method for producing a lithium nickel composite oxide of the present invention may have a coating layer.
  • the coating layer contains a compound of one or more elements selected from the group consisting of aluminum, boron, titanium, zirconium, and tungsten.
  • the coating layer may contain a lithium compound.
  • the coating layer is preferably an aluminum compound, more preferably lithium aluminate, and even more preferably ⁇ -lithium aluminate.
  • the coating layer may contain one or more metals selected from the group consisting of Mn, Fe, Co, and Ni.
  • the composition of the coating layer can be confirmed by using STEM-EDX element line analysis, inductively coupled plasma emission analysis, electron beam microanalyzer analysis, or the like of the secondary particle cross section.
  • the crystal structure of the coating layer can be confirmed using powder X-ray diffraction or electron beam diffraction.
  • the crystal structure of the lithium nickel composite oxide is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structures are P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, P-
  • Monoclinic crystal structures are P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, and C2. It belongs to any one space group selected from the group consisting of / c.
  • the crystal structure is a hexagonal crystal structure belonging to the space group R-3m or a monoclinic crystal belonging to C2 / m.
  • a crystal structure is particularly preferred.
  • the lithium compound used in the present invention is any one of lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium hydroxide, lithium oxide, lithium chloride, and lithium fluoride, or a mixture of two or more. Can be used. In these, any one or both of lithium hydroxide and lithium carbonate are preferable.
  • the lithium carbonate component contained in the lithium nickel composite oxide is preferably 0.4% by mass or less based on the total mass of the lithium nickel composite oxide. More preferably, it is 0.39 mass% or less, and it is especially preferable that it is 0.38 mass% or less.
  • the lithium hydroxide component contained in the lithium nickel composite oxide is 0.4% by mass or less based on the total mass of the lithium nickel composite oxide. It is preferably 0.39% by mass or less, and particularly preferably 0.38% by mass or less.
  • the lithium carbonate component and the lithium hydroxide component contained in the lithium nickel composite oxide can be determined by the neutralization titration method shown below.
  • the concentration of lithium carbonate contained is calculated.
  • Lithium hydroxide concentration (%) 0.1 ⁇ (2A ⁇ B) /1000 ⁇ 23.941/ (20 ⁇ 60/100) ⁇ 100
  • Lithium secondary battery a positive electrode active material for a lithium secondary battery using the lithium nickel composite oxide produced by the method for producing a lithium nickel composite oxide of the present invention is used as the lithium secondary battery.
  • a positive electrode used as a positive electrode active material and a lithium secondary battery having the positive electrode will be described.
  • An example of the lithium secondary battery of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution disposed between the positive electrode and the negative electrode.
  • FIG. 1A and FIG. 1B are schematic views showing an example of the lithium secondary battery of the present embodiment.
  • the cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
  • a pair of separators 1 having a strip shape, a strip-like positive electrode 2 having a positive electrode lead 21 at one end, and a strip-like negative electrode 3 having a negative electrode lead 31 at one end, a separator 1, a positive electrode 2, and a separator 1 and negative electrode 3 are laminated in this order and wound to form electrode group 4.
  • the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
  • a columnar shape in which the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
  • a shape of the lithium secondary battery having such an electrode group 4 a shape defined by IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC) can be adopted. .
  • IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC)
  • cylindrical shape, square shape, etc. can be mentioned.
  • the lithium secondary battery is not limited to the above-described wound type configuration, and may have a stacked type configuration in which a stacked structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • Examples of the stacked lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode of this embodiment can be manufactured by first adjusting a positive electrode mixture containing a positive electrode active material, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • a carbon material As the conductive material included in the positive electrode of the present embodiment, a carbon material can be used.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Since carbon black is fine and has a large surface area, by adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be improved and the charge / discharge efficiency and output characteristics can be improved. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture are reduced, which causes an increase in internal resistance.
  • the proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
  • thermoplastic resin As the binder included in the positive electrode of the present embodiment, a thermoplastic resin can be used.
  • the thermoplastic resin include polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride.
  • fluororesins such as copolymers, propylene hexafluoride / vinylidene fluoride copolymers, tetrafluoroethylene / perfluorovinyl ether copolymers; polyolefin resins such as polyethylene and polypropylene.
  • thermoplastic resins may be used as a mixture of two or more.
  • a fluororesin and a polyolefin resin as a binder, the ratio of the fluororesin to the total positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of the polyolefin resin is 0.1% by mass or more and 2% by mass or less.
  • a positive electrode mixture having both high adhesion to the current collector and high bonding strength inside the positive electrode mixture can be obtained.
  • a band-shaped member made of a metal material such as Al, Ni, and stainless steel can be used as the positive electrode current collector included in the positive electrode of the present embodiment.
  • a material that is made of Al and formed into a thin film is preferable because it is easy to process and inexpensive.
  • Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure-molding the positive electrode mixture on the positive electrode current collector. Also, the positive electrode mixture is made into a paste using an organic solvent, and the resulting positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed, whereby the positive electrode current collector is bonded to the positive electrode current collector. A mixture may be supported.
  • usable organic solvents include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate And amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine
  • ether solvents such as tetrahydrofuran
  • ketone solvents such as methyl ethyl ketone
  • amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • a positive electrode can be manufactured by the method mentioned above.
  • the negative electrode included in the lithium secondary battery of this embodiment is only required to be able to dope and dedope lithium ions at a lower potential than the positive electrode, and the negative electrode mixture containing the negative electrode active material is supported on the negative electrode current collector. And an electrode composed of the negative electrode active material alone.
  • Negative electrode active material examples of the negative electrode active material possessed by the negative electrode include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals, and alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. It is done.
  • Examples of carbon materials that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies.
  • the oxide can be used as an anode active material, (wherein, x represents a positive real number) SiO 2, SiO, etc. formula SiO x oxides of silicon represented by; TiO 2, TiO, etc. formula TiO x (wherein , X is a positive real number); oxide of titanium represented by formula VO x (where x is a positive real number) such as V 2 O 5 and VO 2 ; Fe 3 O 4 , Fe 2 O 3 , FeO, etc. Iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO, etc.
  • Examples of sulfides that can be used as the negative electrode active material include titanium sulfides represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS; V 3 S 4 , VS 2, VS and other vanadium sulfides represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2 , FeS and other formulas FeS x (where x is a positive real number) Iron sulfide represented; Mo 2 S 3 , MoS 2 and the like MoS x (where x is a positive real number) Molybdenum sulfide; SnS 2, SnS and other formula SnS x (where, a sulfide of tin represented by x is a positive real number; a sulfide of tungsten represented by a formula WS x (where x is a positive real number) such as WS 2
  • Examples of the nitride that can be used as the negative electrode active material include Li 3 N and Li 3-x A x N (where A is one or both of Ni and Co, and 0 ⁇ x ⁇ 3). And lithium-containing nitrides.
  • These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. These carbon materials, oxides, sulfides and nitrides may be crystalline or amorphous.
  • examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
  • Alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn, and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn, Sn -Tin alloys such as Co, Sn-Ni, Sn-Cu, Sn-La; alloys such as Cu 2 Sb, La 3 Ni 2 Sn 7 ;
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil shape, for example.
  • carbon materials containing graphite as a main component such as natural graphite and artificial graphite, are preferably used.
  • the shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
  • the negative electrode mixture may contain a binder as necessary.
  • the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
  • the negative electrode current collector of the negative electrode examples include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel. In particular, it is preferable to use Cu as a forming material and process it into a thin film from the viewpoint that it is difficult to make an alloy with lithium and it is easy to process.
  • Examples of the separator included in the lithium secondary battery of the present embodiment include a porous film, a nonwoven fabric, a woven fabric, and the like made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin, and a nitrogen-containing aromatic polymer. A material having the following can be used. Moreover, a separator may be formed by using two or more of these materials, or a separator may be formed by laminating these materials.
  • the separator allows the electrolyte to permeate well when the battery is used (during charging / discharging). Therefore, the air resistance according to the Gurley method defined in JIS P 8117 is 50 seconds / 100 cc or more, 300 seconds / 100 cc. Or less, more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
  • the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less with respect to the volume of the separator.
  • the separator may be a laminate of separators having different porosity.
  • the electrolyte solution included in the lithium secondary battery of this embodiment contains an electrolyte and an organic solvent.
  • the electrolyte contained in the electrolyte includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalato) borate LiFSI (herein, FSI is bis (fluorosulfonyl) imide), lithium compounds such as lower aliphatic carboxylic acid lithium salt and LiAlCl 4, and mixtures of two or more of these May be used.
  • BOB bis (oxalato) borate LiFSI
  • FSI is bis (fluorosulfonyl) imide
  • lithium compounds such as lower aliphatic carboxylic acid
  • the electrolyte at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one kind.
  • Examples of the organic solvent contained in the electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-di- Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethyla Amides such as toamide; Carbamates such as 3-methyl-2-oxazolidone;
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
  • a mixed solvent of a cyclic carbonate and an acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable.
  • the electrolyte using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of the negative electrode. Even when a graphite material such as artificial graphite is used, it has many features that it is hardly decomposable.
  • an electrolytic solution containing a lithium compound containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is increased.
  • a mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate is capable of capacity even when charging / discharging at a high current rate. Since the maintenance rate is high, it is more preferable.
  • a solid electrolyte may be used instead of the above electrolytic solution.
  • the solid electrolyte for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used.
  • maintained the non-aqueous electrolyte in the high molecular compound can also be used.
  • Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 -Li 2 SO 4, Li 2 S-GeS 2 -P 2 S 5 inorganic solid electrolytes containing a sulfide, and the like, may be used a mixture of two or more thereof. By using these solid electrolytes, the safety of the lithium secondary battery may be further improved.
  • the solid electrolyte when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.
  • the life of the lithium secondary battery using the positive electrode active material can be extended.
  • the positive electrode having the above-described configuration has the above-described positive electrode active material for a lithium secondary battery according to this embodiment, the life of the lithium secondary battery can be extended.
  • the lithium secondary battery having the above-described configuration has the above-described positive electrode, it becomes a lithium secondary battery having a longer life than before.
  • evaluation of a positive electrode active material for a lithium secondary battery and production evaluation of a positive electrode for a lithium secondary battery and a lithium secondary battery were performed as follows.
  • (1) Evaluation of positive electrode active material for lithium secondary battery 1 Composition analysis of lithium nickel composite oxide, measurement of residual sulfate radical and residual lithium sulfate present in lithium nickel composite oxide Lithium nickel composite produced by the method described later The composition analysis of oxides and the measurement of residual sulfate radicals and residual lithium sulfate present in lithium-nickel composite oxides were conducted by dissolving the obtained lithium-nickel composite oxide powder in hydrochloric acid and then using an inductively coupled plasma emission spectrometer ( SII Nano Technology Co., Ltd., SPS3000).
  • a positive electrode active material for lithium secondary battery, a conductive material (acetylene black), and a binder (PVdF) obtained by the production method described later are used as a positive electrode active material for lithium secondary battery:
  • N-methyl-2-pyrrolidone was used as the organic solvent.
  • the obtained positive electrode mixture was applied to a 15 ⁇ m thick Al foil serving as a current collector and vacuum dried at 60 ° C. for 3 hours to obtain a positive electrode for a lithium secondary battery.
  • the electrode area of the positive electrode for the lithium secondary battery was 1.65 cm 2 .
  • the electrolytic solution was ethylene carbonate (hereinafter sometimes referred to as EC), dimethyl carbonate (hereinafter sometimes referred to as DMC), and ethyl methyl carbonate (hereinafter sometimes referred to as EMC) 30:35.
  • 35 (volume ratio) used was a solution in which LiPF 6 was dissolved to 1.0 mol / l (hereinafter sometimes referred to as LiPF 6 / EC + DMC + EMC).
  • LiPF 6 / EC + DMC + EMC lithium metal as the negative electrode
  • the negative electrode is placed on the upper side of the laminated film separator, covered with a gasket, and then caulked with a caulking machine to form a lithium secondary battery (coin type half cell R2032, hereinafter "half cell”).
  • coin type half cell R2032 hereinafter "half cell”
  • the baked product 1 was dried at 150 degreeC for 12 hours, and the washing
  • Washed dry powder 1 and aluminum oxide (Alumina C, Nippon Aerosil Co., Ltd., average primary particle size 13 nm) were dry mixed with a mixer to obtain a mixed powder.
  • Al in the aluminum oxide was 0.015 mol with respect to 1 mol of the total content of Ni, Co, Mn and Al in the washed dry powder 1. That is, the ratio of the atomic ratio of Al of aluminum oxide to the sum of the atomic ratios of Ni, Co, Mn and Al in the washed dry powder 1 was 1.5 mol%.
  • the obtained powder was baked at 760 ° C. for 10 hours in an oxygen atmosphere to obtain lithium nickel composite oxide 1.
  • the 3CA discharge capacity retention rate at 4.45 V of lithium nickel composite oxide 1 was 85.4%.
  • Washing step The fired product 2 was washed with 11 times as much water as the weight of the fired product 2.
  • the baked product 2 was dried at 150 degreeC for 12 hours, and the washing
  • the 3CA discharge capacity retention rate at 4.45 V of lithium nickel composite oxide 2 was 76.4%.
  • the baked product 3 was dried at 150 degreeC for 12 hours, and the washing
  • drying powder 3 and aluminum oxide (Nippon Aerosil Co., Ltd. alumina C, average primary particle diameter 13nm) were dry-mixed with the mixer, and mixed powder was obtained.
  • the total amount of Ni, Co, Mn and Al in the washed dry powder 3 was 1 mol, and the aluminum oxide content was 0.015 mol. That is, the ratio of the Al atomic ratio of aluminum oxide to the sum of the atomic ratios of Ni, Co, Mn, and Al in the washed dry powder 3 was 1.5 mol%.
  • the obtained powder was baked at 760 ° C. for 10 hours in an oxygen atmosphere to obtain lithium nickel composite oxide 3.
  • the 3CA discharge capacity retention rate at 4.45 V of lithium nickel composite oxide 3 was 78.9%.
  • the 3CA discharge capacity retention rate at 4.45 V of the lithium nickel composite oxide 4 was 63.9%.
  • the fired product 5 and aluminum oxide (Alumina C, Nippon Aerosil Co., Ltd., average primary particle size 13 nm) were dry-mixed with a mixer to obtain a mixed powder.
  • the total content of Ni, Co, Mn, and Al in the fired product 5 was 1 mol, and the aluminum oxide content was 0.020 mol. That is, the ratio of the atomic ratio of Al in aluminum oxide to the sum of the atomic ratios of Ni, Co, Mn and Al in the fired product 5 was 2.0 mol%.
  • the mixer atmosphere was controlled to 50 ° C. and relative humidity 100%, and left for 1 hour.
  • the obtained powder was baked at 770 ° C. for 5 hours in an oxygen atmosphere to obtain a lithium nickel composite oxide 5.
  • the 3CA discharge capacity retention rate at 4.45 V of the lithium nickel composite oxide 5 was 65.1%.
  • the baked product 6 was dried at 150 degreeC for 12 hours, and the washing
  • drying powder 6 and aluminum oxide (Nippon Aerosil Co., Ltd. alumina C, average primary particle diameter 13nm) were dry-mixed with the mixer, and mixed powder was obtained.
  • the total amount of Ni, Co, Mn, and Al in the washed dry powder 6 was 1 mol
  • Al in the aluminum oxide was 0.015 mol. That is, the ratio of the Al atomic ratio of aluminum oxide to the sum of the atomic ratios of Ni, Co, Mn and Al in the washed dry powder 6 was 1.5 mol%.
  • the obtained powder was fired at 760 ° C. for 10 hours in an oxygen atmosphere to obtain lithium nickel composite oxide 6.
  • the 3CA discharge capacity retention rate at 4.45 V of the lithium nickel composite oxide 6 was 64.7%.
  • the baked product 7 was dried at 150 degreeC for 12 hours, and the washing
  • the fired product 7 and aluminum oxide (Alumina C, Nippon Aerosil Co., Ltd., average primary particle size 13 nm) were dry-mixed with a mixer to obtain a mixed powder.
  • the total amount of Ni, Co, Mn and Al in the washed dry powder 7 was 1 mol, and the aluminum oxide content was 0.015 mol. That is, the ratio of the Al atomic ratio of aluminum oxide to the sum of the atomic ratios of Ni, Co, Mn and Al in the washed dry powder 7 was 1.5 mol%.
  • the obtained powder was baked at 760 ° C. for 10 hours in an oxygen atmosphere to obtain lithium nickel composite oxide 7.
  • the 3CA discharge capacity retention rate at 4.45 V of lithium nickel composite oxide 7 was 68.4%.
  • Example 1 The results of Examples 1 to 3 and Comparative Examples 1 to 4 are summarized in Table 1.
  • “Li / Me” is the molar ratio of lithium in the obtained lithium nickel composite oxide (the molar ratio of lithium to the total amount of nickel, cobalt, manganese, and aluminum).
  • “after the drying step” means the analysis result of the washed dry powder after the drying step in the post-treatment step.
  • “after refiring or coating step” means the result of analysis of the lithium nickel composite oxides 1-7.
  • a method for producing a lithium nickel composite oxide having a high output at a high current rate at a high voltage can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

このリチウムニッケル複合酸化物の製造方法は、一般式(I)で表されるリチウムニッケル複合酸化物の製造方法であって、リチウム化合物と、ニッケル含有金属複合化合物とを混合し混合物を得る混合工程と、前記混合物を焼成し、焼成物を得る焼成工程と、焼成物を洗浄する洗浄工程を含む後処理工程と、を有し、前記混合工程は、前記リチウム化合物に含まれるリチウムと、ニッケル含有金属複合化合物中の金属元素と、のモル比(Li/Me)が1を超える比率となるように混合し、前記後処理工程後に得られるリチウムニッケル複合酸化物中の、残留硫酸根と残留炭酸リチウムとの合計量が0.3質量%以下であり、かつナトリウムの含有量が50ppm以下となるように処理する工程を含む。

Description

リチウムニッケル複合酸化物の製造方法
 本発明は、リチウムニッケル複合酸化物の製造方法に関する。
 本願は、2017年3月31日に、日本に出願された特願2017-072868号に基づき優先権を主張し、その内容をここに援用する。
 リチウムニッケル複合酸化物は、リチウム二次電池用正極活物質(以下、「正極活物質」と記載することがある)として用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型及び大型電源においても、実用化が進んでいる。
 リチウムニッケル複合酸化物の製造方法としては、リチウムニッケル複合酸化物前駆体の製造工程、リチウム化合物と前記前駆体との混合工程、焼成工程、及び焼成工程後の洗浄工程を備える方法が知られている(例えば特許文献1~3)。
国際公開第2013/015007号公報 国際公開第2014/115380号公報 国際公開第2014/189108号公報
 焼成工程後の洗浄工程は、不純物の除去を目的とする工程である。しかし、洗浄方法によっては、リチウムニッケル複合酸化物を正極活物質として使用したリチウム二次電池において、高電圧での高い電流レートにおける出力が低下する場合がある。例えば、洗浄不足の場合には不純物が残留し、過洗浄の場合にはリチウムが溶出してしまい、電池特性が低下してしまうという課題がある。
 本発明は、上記事情に鑑みてなされたものであって、高電圧での高い電流レートにおける出力が高いリチウムニッケル複合酸化物の製造方法を提供することを課題とする。
 すなわち、本発明は、下記[1]~[9]の発明を包含する。
[1]下記一般式(I)で表されるリチウムニッケル複合酸化物の製造方法であって、リチウム化合物と、ニッケル含有金属複合化合物とを混合し混合物を得る混合工程と、前記混合物を焼成し、焼成物を得る焼成工程と、焼成物を洗浄する洗浄工程を含む後処理工程と、を有し、前記混合工程では、前記リチウム化合物に含まれるリチウムと、ニッケル含有金属複合化合物中の金属元素と、のモル比(Li/Me)が1を超える比率となるように混合し、前記後処理工程は、前記後処理工程後に得られるリチウムニッケル複合酸化物中の、残留硫酸根と残留炭酸リチウムとの合計量が前記リチウムニッケル複合酸化物の総質量に対し0.3質量%以下であり、かつナトリウムの含有量が前記リチウムニッケル複合酸化物の総質量に対し50ppm以下となるように処理する工程を含む、リチウムニッケル複合酸化物の製造方法。
 Li[Li(Ni(1-y-z-w)CoMn1-x]O ・・・(I)
(式(I)中、0<x≦0.2、0<y≦0.5、0<z≦0.8、0≦w≦0.1、y+z+w<1、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属を表す。)
[2]前記一般式(I)において、y+z+w≦0.3である、[1]に記載のリチウムニッケル複合酸化物の製造方法。
[3]前記焼成工程において、焼成温度が300℃以上1000℃以下である、[1]又は[2]に記載のリチウムニッケル複合酸化物の製造方法。
[4]前記後処理工程において、洗浄工程後に、得られたリチウムニッケル複合酸化物を乾燥する乾燥工程を含む、[1]~[3]のいずれか1つに記載のリチウムニッケル複合酸化物の製造方法。
[5]前記後処理工程において、洗浄工程後に、得られたリチウムニッケル複合酸化物を再焼成する再焼成工程を含む、[1]~[3]のいずれか1つに記載のリチウムニッケル複合酸化物の製造方法。
[6]前記後処理工程において、乾燥工程後に、得られたリチウムニッケル複合酸化物を再焼成する再焼成工程を含む、[4]に記載のリチウムニッケル複合酸化物の製造方法。
[7]前記後処理工程において、洗浄工程後に得られたリチウムニッケル複合酸化物とアルミニウム、ホウ素、チタン、ジルコニウム、及びタングステンからなる群から選ばれる1種以上の元素の化合物とを混合し、リチウムニッケル複合酸化物の表面を前記元素の化合物で被覆する被覆工程を含む[1]~[3]のいずれか1つに記載のリチウムニッケル複合酸化物の製造方法。
[8]前記後処理工程において、洗浄工程後に得られたリチウムニッケル複合酸化物とアルミニウム化合物とを混合し、リチウムニッケル複合酸化物の表面にアルミニウム化合物を被覆させる被覆工程を含む[1]~[3]のいずれか1つに記載のリチウムニッケル複合酸化物の製造方法。
[9]前記後処理工程において、乾燥工程後に、得られたリチウムニッケル複合酸化物とアルミニウム、ホウ素、チタン、ジルコニウム、及びタングステンからなる群から選ばれる1種以上の元素の化合物とを混合し、リチウムニッケル複合酸化物の表面を前記元素の化合物で被覆する被覆工程を含む[4]に記載のリチウムニッケル複合酸化物の製造方法。
[10]前記後処理工程において、乾燥工程後に得られたリチウムニッケル複合酸化物とアルミニウム化合物とを混合し、リチウムニッケル複合酸化物の表面をアルミニウム化合物で被覆する被覆工程を含む[4]に記載のリチウムニッケル複合酸化物の製造方法。
[11]前記後処理工程において、乾燥工程後に得られるリチウムニッケル複合酸化物中の、残留硫酸根と残留炭酸リチウムの合計量がリチウムニッケル複合酸化物の総質量に対し0.6質量%以下であり、かつナトリウムの含有量がリチウムニッケル複合酸化物の総質量に対し50ppm以下となるように処理する、[6]~[10]のいずれか1つに記載のリチウムニッケル複合酸化物の製造方法。
 本発明によれば、高電圧での高い電流レートにおける出力が高いリチウムニッケル複合酸化物の製造方法を提供することができる。
リチウムイオン二次電池の一例を示す概略構成図である。 リチウムイオン二次電池の一例を示す概略構成図である。
<リチウムニッケル複合酸化物の製造方法>
 本発明のいくつかの態様は、下記一般式(I)で表されるリチウムニッケル複合酸化物の製造方法である。本実施形態は、リチウム化合物と、ニッケル含有金属複合化合物とを混合し混合物を得る混合工程と、前記混合物を焼成し、焼成物を得る焼成工程と、焼成物を洗浄する洗浄工程を含む後処理工程と、を有する。
 言い換えれば、本発明のいくつかの態様は、リチウム化合物と、ニッケル含有金属複合化合物とを混合し混合物を得ることと、前記混合物を焼成し焼成物を得ることと、前記焼成物を洗浄することを含む後処理工程と、を有する。
 本実施形態において、混合工程は、リチウム化合物に含まれるリチウムと、ニッケル含有金属複合化合物中の金属元素と、のモル比(Li/Me)が1を超える比率となるように混合する。
 本実施形態の製造方法により、後処理工程後に得られるリチウムニッケル複合酸化物中の、残留硫酸根と残留炭酸リチウムとの合計量がリチウムニッケル複合酸化物の総質量に対し0.3質量%以下であり、かつナトリウムの含有量がリチウムニッケル複合酸化物の総質量に対し50ppm以下となるように処理する工程を含む。
 なお、本明細書において、「後処理工程後に得られるリチウムニッケル複合酸化物中の、残留硫酸根と残留炭酸リチウムとの合計量がリチウムニッケル複合酸化物の総質量に対し0.3質量%以下であり、かつナトリウムの含有量がリチウムニッケル複合酸化物の総質量に対し50ppm以下」とは、後処理工程後に得られるリチウムニッケル複合酸化物の結晶構造中に残留硫酸根、残留炭酸リチウム及びナトリウムである不純物が入り込んでいるのではなく、リチウムニッケル複合酸化物の結晶構造の外に不純物が存在することを意味する。すなわち、リチウムニッケル複合酸化物表面に、残留硫酸根、残留炭酸リチウム及びナトリウムが付着している状態であってもよい。
 Li[Li(Ni(1-y-z-w)CoMn1-x]O ・・・(I)
(式(I)中、0<x≦0.2、0<y≦0.5、0<z≦0.8、0≦w≦0.1、y+z+w<1、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属を表す。)
 後処理工程後に得られるリチウムニッケル複合酸化物中の、リチウムニッケル複合酸化物の総質量に対する残留硫酸根の量は、リチウムニッケル複合酸化物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて測定することができる。
 後処理工程後に得られるリチウムニッケル複合酸化物中の、リチウムニッケル複合酸化物の総質量に対する残留炭酸リチウムの量は、以下に示す中和滴定法により求めることができる。
 リチウムニッケル複合酸化物20gと純水100gとを、100mLビーカーに入れ、5分間撹拌する。撹拌後、リチウムニッケル複合酸化物を濾過し、得られる濾液の60gに0.1mol/L塩酸を滴下し、pHメーターにて濾液のpHを測定する。濾液のpHが8.3±0.1の時点の塩酸の滴定量をAmL、pHが4.5±0.1の時点の塩酸の滴定量をBmLとして、下記の計算式に基づき、リチウムニッケル複合酸化物中に含まれる炭酸リチウム濃度を算出する。なお、炭酸リチウムの分子量(73.882)は、Liの原子量を6.941、Cの原子量を12、Oの原子量を16、として算出する。
 炭酸リチウム濃度(%)=0.1×(B-A)/1000×73.882/(20×60/100)×100
 後処理工程後に得られるリチウムニッケル複合酸化物中の、リチウムニッケル複合酸化物の総質量に対するナトリウムの量は、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いた誘導結合プラズマ発光分析法により得ることができる。
 なお、一般式(I)には、残留硫酸根、残留炭酸リチウム及びナトリウムに由来するH,C,S,及びNaを含んでいない。リチウムニッケル複合酸化物に含まれる残留硫酸根、残留炭酸リチウム及びナトリウムは、前記リチウムニッケル複合酸化物の結晶構造中には含まれていないためである。
 以下、本発明のリチウムニッケル複合酸化物の製造方法の好ましい実施形態について説明する。
≪第1実施形態≫
 第1実施形態は、一般式(I)で表されるリチウムニッケル複合酸化物の製造方法であって、リチウム化合物と、ニッケル含有金属複合化合物とを混合し混合物を得る混合工程と、前記混合物を焼成し焼成物を得る焼成工程と、前記焼成物を洗浄する洗浄工程を含む後処理工程と、をこの順で有する。
 言い換えれば、本実施形態は、リチウム化合物と、ニッケル含有金属複合化合物とを混合し混合物を得ることと、前記混合物を焼成し焼成物を得ることと、前記焼成物を洗浄することを含む後処理工程と、を有する。
 以下、各工程について説明する。
[混合工程]
 混合工程は、リチウム化合物と、ニッケル含有金属複合化合物とを混合し混合物を得る工程である。本工程は、まず、リチウム化合物以外の金属、すなわち、Ni、Co及びMnから構成される必須金属を含み、並びに、所望によりFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVのうちいずれか1種以上の任意金属を含むニッケル含有金属複合化合物を調製し、前記ニッケル含有金属複合化合物を適当なリチウム化合物と混合した後、得られる混合物を焼成することが好ましい。ニッケル含有金属複合化合物としては、ニッケル含有金属複合水酸化物又はニッケル含有金属複合酸化物が好ましい。以下に、混合工程を、ニッケル含有金属複合化合物の製造工程と、リチウムニッケル複合酸化物の製造工程とに分けて説明する。
(ニッケル含有金属複合化合物の製造工程)
 ニッケル含有金属複合化合物は、通常、公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含むニッケル含有金属複合水酸化物を例に、その製造方法を詳述する。
 前記ニッケル含有金属複合水酸化物は、共沈殿法、特に特開2002-201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、Ni1-y-zCoMn(OH)(式中、0<x≦0.2、0<y≦0.5、0<z≦0.8)で表されるニッケル含有金属複合水酸化物を製造することができる。
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れかを使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト、及び酢酸コバルトのうちの何れかを使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、塩化マンガン、及び酢酸マンガンのうちの何れかを使用することができる。以上の金属塩は、上記Ni1-y-zCoMn(OH)の組成比に対応する割合で用いられる。すなわち、上記金属塩を含む混合溶液中におけるニッケル、コバルト、マンガンのモル比が、リチウムニッケル複合酸化物の組成式(I)中の(1-y-z):y:zと対応するように各金属塩の量を規定する。
 また、溶媒として水が使用される。
 錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。錯化剤は、所望により含まれていなくてもよく、錯化剤が含まれる場合、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、M塩溶液及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩のモル数の合計に対するモル比が0より大きく2.0以下である。
 沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム及び水酸化カリウム)を添加する。
 上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、Ni1-y-zCoMn(OH)が製造される。反応に際しては、反応槽の温度が例えば20℃以上80℃以下、好ましくは30℃以上70℃以下の範囲内で制御され、反応槽内のpH値は、例えば40℃測定時において、pH9以上pH13以下、好ましくはpH11以上pH13以下の範囲内で制御され、反応槽内の物質が適宜撹拌される。反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプのものである。
 反応条件については、使用する反応槽のサイズ等にも依存することから、最終的に得られるリチウムニッケル複合酸化物の各種物性をモニタリングしつつ、反応条件を最適化すればよい。
 以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケル含有金属複合化合物としてのニッケル含有金属複合水酸化物を単離する。また、必要に応じて得られた反応沈殿物を弱酸水又は水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄してもよい。
 なお、上記の例では、ニッケル含有金属複合水酸化物を製造しているが、ニッケル含有金属複合酸化物を調製してもよい。ニッケル含有金属複合酸化物を調製する場合は、例えば、前記共沈物スラリーと酸化剤を接触させる工程や、ニッケル含有金属複合水酸化物を乾燥した後、熱処理する工程を行うことにより調整することができる。
(リチウムニッケル複合酸化物の製造工程)
 上記ニッケル含有金属複合酸化物又はニッケル含有金属複合水酸化物を乾燥した後、リチウム化合物と混合する。乾燥条件は、特に制限されないが、例えば、ニッケル含有金属複合酸化物又はニッケル含有金属複合水酸化物が酸化及び還元されない条件(すなわち酸化物が酸化物のまま維持される、水酸化物が水酸化物のまま維持される条件)、ニッケル含有金属複合水酸化物が酸化される条件(すなわち水酸化物が酸化物に酸化される条件)、ニッケル含有金属複合化合物が還元される条件(すなわち酸化物が水酸化物に還元される条件)のいずれの条件でもよい。酸化及び還元がされない条件のためには、窒素、ヘリウム及びアルゴン等の不活性ガスを使用すれば良い。ニッケル含有金属複合水酸化物が酸化される条件では、酸素又は空気を使用すれば良い。また、ニッケル含有金属複合酸化物が還元される条件としては、不活性ガス雰囲気下、ヒドラジン、亜硫酸ナトリウム等の還元剤を使用すれば良い。リチウム化合物としては、炭酸リチウム、硝酸リチウム、硫酸リチウム、酢酸リチウム、水酸化リチウム、酸化リチウム、塩化リチウム、及びフッ化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。
 ニッケル含有金属複合酸化物又はニッケル含有金属複合水酸化物の乾燥後に、適宜分級を行ってもよい。以上のリチウム化合物とニッケル含有金属複合化合物とは、リチウム化合物中のリチウムとニッケル含有金属複合化合物中の金属元素とのモル比(Li/Me)が1を超える比率となるように混合する。本実施形態においては、リチウム化合物中のリチウムのモル数と、ニッケル含有金属複合化合物に含まれるニッケル、コバルト、マンガン及び任意金属の総モル数との比が、1を超える比率となるように混合する。
[焼成工程]
 ニッケル含有金属複合化合物及びリチウム化合物の混合物を焼成することによって、リチウムニッケル複合酸化物である焼成粉末が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気又は不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。
 上記ニッケル含有金属複合酸化物又はニッケル含有金属複合水酸化物及びリチウム化合物の混合物の焼成温度としては、特に制限はないが、充電容量の低下を防止できる観点から、300℃以上であることが好ましく、350℃以上であることがより好ましく、400℃以上であることがさらに好ましい。また、特に制限はないが、Liの揮発を防止でき、目標とする組成のリチウムニッケル複合酸化物を得る観点から、1000℃以下であることが好ましく、950℃以下であることがより好ましい。
 Liの揮発は焼成温度により制御することができる。
 焼成温度の上限値と下限値は任意に組み合わせることができる。例えば、焼成温度は、300℃以上1000℃以下であることが好ましく、350℃以上950℃以下であることがより好ましく、400℃以上950℃以下であることがさらに好ましい。
 焼成時間は、昇温開始から達温して温度保持が終了するまでの合計時間を1時間以上30時間以下とすることが好ましい。合計時間が30時間以下であると、Liの揮発を防止でき、電池性能の劣化を防止できる。
 合計時間が1時間以上であると、結晶の発達が良好に進行し、電池性能を向上させることができる。
 昇温開始から焼成温度に達するまでの時間は、0.5時間以上20時間以下であることが好ましい。昇温開始から焼成温度に達するまでの時間がこの範囲であると、より均一なリチウムニッケル複合酸化物を得ることができる。また、焼成温度に達してから温度保持が終了するまでの時間は、0.5時間以上20時間以下であることが好ましい。焼成温度に達してから温度保持が終了するまでの時間がこの範囲であると、結晶の発達がより良好に進行し、電池性能をより向上させることができる。
 なお、上記の焼成の前に、仮焼成を行うことも有効である。この様な仮焼成の温度は、300~850℃の範囲で、1~10時間行うことが好ましい。仮焼成を行うことにより、焼成時間を短縮することができることもある。
 焼成工程を上記の条件で行うことにより、リチウムの揮発を抑制することができる。これにより、高電圧での高い電流レートにおける出力が高いリチウムニッケル複合酸化物を得ることができる。
[後処理工程]
 後処理工程は、前記焼成工程で得た焼成物を洗浄する洗浄工程を含み、後処理工程後に得られるリチウムニッケル複合酸化物の残留硫酸根と残留炭酸リチウムの合計がリチウムニッケル複合酸化物の総質量に対し0.3質量%以下、かつナトリウムがリチウムニッケル複合酸化物の総質量に対し50ppm以下となるように後処理する工程である。
[洗浄工程]
 洗浄工程は、洗浄液と焼成物とを混合してスラリーを形成し、このスラリーを撹拌することによって焼成物粉末を洗浄する。その際に、洗浄液と焼成物粉末が混合されたスラリーの濃度(スラリー濃度)は、特に限定されないが、Liの溶出を抑える観点から、洗浄液に対する焼成物粉末の質量が50g/L以上に調整することが好ましく、100g/L以上に調整することがより好ましい。
 また、充分なハンドリング性を持たせる観点から、洗浄液と焼成物粉末が混合したスラリーの濃度(スラリー濃度)は、2000g/L以下に調整することが好ましく、1000g/L以下に調整することがより好ましい。
 つまりスラリーは、洗浄液に対する焼成物粉末の質量が50g/L以上2000g/L以下に調整されることが好ましく、100g/L以上1000g/L以下に調整されることがより好ましい。
 洗浄工程によりLiが溶出すると、リチウムニッケル複合酸化物のLi/Me、すなわちリチウムのモル比(リチウムを除く金属元素の合計量に対するリチウムのモル比)が低下するが、スラリー濃度を調整することでLi/Meの低下を制御することができる。
 洗浄工程に供する焼成物粉末の平均二次粒子径は、1~30μmであることが好ましく、3~20μmであることがより好ましい。焼成物粉末の平均二次粒子径が1~30μmであれば、焼成粉末と洗浄液の接触面積が調整され、リチウムニッケル複合酸化物に含まれるLiの過度な溶出を抑制することができる。
 焼成物粉末の平均二次粒子径は、レーザー回折散乱粒度分布測定装置を用いて測定できる。具体的には、レーザー回折粒度分布計(株式会社堀場製作所製、型番:LA-950)を用い、焼成物粉末0.1gを、0.2質量%ヘキサメタリン酸ナトリウム水溶液50mlに投入し、焼成物粉末を分散させた分散液を得る。得られた分散液について粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、50%累積時の微小粒子側から見た粒子径(D50)の値を、焼成物粉末の平均二次粒子径とする。
 洗浄工程に用いる洗浄液はたとえば、水及びアルカリ溶液が挙げられる。本実施形態においては水であることが好ましい。
 洗浄時間は、特に限定されないが、不純物を充分に除去する観点から、1分間以上とすることが好ましく、5分間以上とすることがより好ましい。また、生産性を高める観点から、60分間以下が好ましく、30分間以下がより好ましい。つまり、洗浄時間は、1分間以上60分間以下とすることが好ましく、5分間以上30分間以下とすることがより好ましい。
 洗浄工程を上記の条件で行うことにより、不純物を充分に除去することができ、かつ、スラリー中にリチウムが溶出することを抑制することができる。これにより、高電圧での高い電流レートにおける出力が高いリチウムニッケル複合酸化物を得ることができる。
 本実施形態において「不純物」とは、焼成工程後のリチウムニッケル複合酸化物に含まれる粒子の表面に残存するSO 2-などの硫黄含有イオン(残留硫酸根)や、残留炭酸リチウム、及びpH制御に使用するアルカリ金属の共沈残物が残留したもの等が挙げられる。
 遷移金属として硫酸塩を使用した場合には、これに起因する硫酸根が残留する場合がある。本実施形態においては、不純物としての残留硫酸根の発生源は特に限定されず、例えば硫酸塩を使用しない場合であっても、使用する各種材料に起因して、粒子表面に残留する硫黄含有化合物等も不純物に含まれるものとする。
 さらに、不純物としての炭酸リチウムは、リチウム源(リチウム化合物)として炭酸リチウムを使用した場合には、これに起因する残留炭酸リチウムが挙げられる。また、炭酸リチウム以外のリチウム源を使用した場合であっても、空気中の二酸化炭素と反応して生じうる炭酸リチウムも「不純物」に含まれるものとする。
 不純物としてのナトリウムは、pH制御に使用するアルカリ金属の共沈残物としての硫酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム及び水酸化ナトリウム等が挙げられる。
 本実施形態においては、後処理工程後に得られるリチウムニッケル複合酸化物の残留硫酸根と残留炭酸リチウムの合計がリチウムニッケル複合酸化物の総質量に対し0.27質量%以下となるように後処理することが好ましく、0.24質量%以下となるように後処理することがより好ましい。後処理工程後に得られるリチウムニッケル複合酸化物に含まれる残留硫酸根と残留炭酸リチウムの合計の下限は小さいほど好ましいが、例えばリチウムニッケル複合酸化物の総質量に対し0.03質量%程度である。
 また、ナトリウムは、リチウムニッケル複合酸化物の総質量に対し25ppm以下となるように後処理することが好ましく、15ppm以下となるように後処理することがより好ましい。後処理工程後に得られるリチウムニッケル複合酸化物に含まれるナトリウムの割合の下限は小さいほど好ましいが、例えば、リチウムニッケル複合酸化物の総質量に対し5ppm程度である。
≪第2実施形態≫
 本実施形態は、前記第1実施形態の後処理工程において、洗浄工程後にさらに乾燥工程を有する。即ち、本実施形態のリチウムニッケル複合酸化物の製造方法は、混合工程と、焼成工程と、後処理工程(洗浄工程と、乾燥工程)とをこの順で有する。言い換えれば、本実施形態のリチウムニッケル複合酸化物の製造方法は、リチウム化合物と、ニッケル含有金属複合化合物とを混合し混合物を得ることと、前記混合物を焼成し焼成物を得ることと、前記焼成物を洗浄することを含む後処理工程と、を有し、後処理工程はさらに前記洗浄物を乾燥することを含む。
 乾燥工程のリチウムニッケル複合酸化物を乾燥する温度や方法は特に限定されないが、乾燥温度は、充分に水分を除去する観点から、30℃以上であることが好ましく、40℃以上であることがより好ましく、50℃以上であることがさらに好ましい。
 また、表面に異相が形成するのを防止する観点から、300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましい。
 ここで異相とは、本実施形態のリチウムニッケル複合酸化物とは異なる結晶構造を有する物を示し、例えば酸化ニッケルのような岩塩構造の化合物を示す。
≪第3実施形態≫
 本実施形態は、前記第1実施形態の後処理工程において、洗浄工程後にさらに再焼成工程を有する。即ち、本実施形態のリチウムニッケル複合酸化物の製造方法は、混合工程と、焼成工程と、後処理工程(洗浄工程と、再焼成工程)と、をこの順で有する。言い換えれば、本実施形態のリチウムニッケル複合酸化物の製造方法は、リチウム化合物と、ニッケル含有金属複合化合物とを混合し混合物を得ることと、前記混合物を焼成し焼成物を得ることと、前記焼成物を洗浄することを含む後処理工程と、を有し、後処理工程はさらに前記洗浄物を再焼成することを含む。本実施形態における混合工程と、焼成工程と、洗浄工程に関する説明は、前記第1実施形態における説明と同様である。
[再焼成工程]
 リチウムニッケル複合酸化物の再焼成工程の焼成温度としては、特に制限はないが、充電容量の低下を防止できる観点から、300℃以上であることが好ましく、350℃以上であることがより好ましく、400℃以上であることがさらに好ましい。また、特に制限はないが、Liの揮発を防止でき、目標とする組成のリチウムニッケル複合酸化物を得る観点から、1000℃以下であることが好ましく、950℃以下であることがより好ましい。
 Liの揮発は焼成温度により制御することができる。
 焼成温度の上限値と下限値は任意に組み合わせることができる。例えば、再焼成工程の焼成温度は、300℃以上1000℃以下であることが好ましく、350℃以上950℃以下であることがより好ましく、400℃以上950℃以下であることがさらに好ましい。
 再焼成時間は、昇温開始から達温して温度保持が終了するまでの合計時間を1時間以上30時間以下とすることが好ましい。合計時間が30時間以下であると、Liの揮発を防止でき、電池性能の劣化を防止できる。
 合計時間が1時間以上であると、結晶の発達が良好に進行し、電池性能を向上させることができる。
 昇温開始から焼成温度に達するまでの時間は、0.5時間以上20時間以下であることが好ましい。昇温開始から焼成温度に達するまでの時間がこの範囲であると、より均一なリチウムニッケル複合酸化物を得ることができる。また、焼成温度に達してから温度保持が終了するまでの時間は、0.5時間以上20時間以下であることが好ましい。焼成温度に達してから温度保持が終了するまでの時間がこの範囲であると、結晶の発達がより良好に進行し、電池性能をより向上させることができる。
 なお、上記の焼成の前に、仮焼成を行うことも有効である。この様な仮焼成の温度は、300~850℃の範囲で、1~10時間行うことが好ましい。
 また、再焼成工程を上記の条件で行うことにより、炭酸リチウム等の不純物を低減することができる。
 洗浄工程と、再焼成工程とを有する後処理工程では、洗浄工程と、再焼成工程とを前記の条件で行うことにより、不純物を充分に除去することができ、かつ、洗浄工程においてスラリー中にリチウムが溶出することを抑制することができる。これにより、高電圧での高い電流レートにおける出力が高いリチウムニッケル複合酸化物を得ることができる。
≪第4実施形態≫
 本実施形態は、前記第2実施形態の後処理工程において、乾燥工程後にさらに再焼成工程を有する。即ち、第4実施形態のリチウムニッケル複合酸化物の製造方法は、混合工程と、焼成工程と、後処理工程(洗浄工程と、乾燥工程と、再焼成工程)とをこの順で有する。言い換えれば、本実施形態のリチウムニッケル複合酸化物の製造方法は、リチウム化合物と、ニッケル含有金属複合化合物とを混合し混合物を得ることと、前記混合物を焼成し焼成物を得ることと、前記焼成物を洗浄することを含む後処理工程と、を有し、後処理工程はさらに前記洗浄物を乾燥することと、前記乾燥物を再焼成することを含む。
 本実施形態における混合工程と、焼成工程と、洗浄工程と、乾燥工程と、再焼成工程に関する説明は、前記実施形態における説明と同様である。
≪第5実施形態≫
 本実施形態は、前記第1実施形態の後処理工程において、洗浄工程後にさらに被覆工程を有する。即ち、本実施形態のリチウムニッケル複合酸化物の製造方法は、混合工程と、焼成工程と、後処理工程(洗浄工程と、被覆工程)とをこの順で有する。言い換えれば、本実施形態のリチウムニッケル複合酸化物の製造方法は、リチウム化合物と、ニッケル含有金属複合化合物とを混合し混合物を得ることと、前記混合物を焼成し焼成物を得ることと、前記焼成物を洗浄することを含む後処理工程と、を有し、後処理工程はさらに前記洗浄物を被覆材料により被覆することを含む。本実施形態における混合工程と、焼成工程と、洗浄工程に関する説明は、前記第1実施形態における説明と同様である。
[被覆工程]
 被覆材原料及びリチウムニッケル複合酸化物を混合して、必要に応じて熱処理することによりリチウムニッケル複合酸化物の二次粒子の表面に被覆層を形成することができる。
 被覆材原料は、アルミニウム、ホウ素、チタン、ジルコニウム、及びタングステンからなる群から選ばれる1種以上の元素の酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、ハロゲン化物、シュウ酸塩又はアルコキシドを用いることができ、酸化物であることが好ましい。被覆材原料は、例えば酸化アルミニウム、水酸化アルミニウム、硫酸アルミニウム、塩化アルミニウム、アルミニウムアルコキシド、酸化ホウ素、ホウ酸、酸化チタン、塩化チタン、チタンアルコキシド、酸化ジルコニウム、塩化ジルコニウム、酸化タングステン、タングステン酸等が挙げられる。被覆原材料としては、酸化アルミニウム、水酸化アルミニウム、酸化ホウ素、ホウ酸、酸化チタン、酸化ジルコニウム及び酸化タングステンが好ましい。
 被覆材原料がリチウムニッケル複合酸化物の表面により効率的に被覆されるため、被覆材原料はリチウムニッケル複合酸化物の二次粒子に比べて微粒であることが好ましい。具体的には、リチウムニッケル複合酸化物の平均二次粒子径は、1~30μmであることが好ましく、3~20μmであることがより好ましい。被覆材原料の平均二次粒子径は、1μm以下であることが好ましく、0.1μm以下であることがより好ましい。被覆材原料の平均二次粒子径の下限は小さいほど好ましいが、例えば0.001μmである。
 リチウムニッケル複合酸化物の平均二次粒子径は、レーザー回折散乱粒度分布測定装置を用いて測定できる。具体的には、レーザー回折粒度分布計(株式会社堀場製作所製、型番:LA-950)を用い、リチウムニッケル複合酸化物0.1gを、0.2質量%ヘキサメタリン酸ナトリウム水溶液50mlに投入し、リチウムニッケル複合酸化物を分散させた分散液を得る。得られた分散液について粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、50%累積時の微小粒子側から見た粒子径(D50)の値を、リチウムニッケル複合酸化物の平均二次粒子径とする。
 被覆材料の平均二次粒子径も同様の手順で測定される。
 被覆材原料及びリチウムニッケル複合酸化物の混合は、リチウムニッケル複合酸化物製造時における混合と同様にして行えばよい。攪拌翼を内部に備えた粉体混合機を用いて混合する方法など、ボールなどの混合メディアを備えず、強い粉砕を伴わない混合装置を用いて混合する方法が好ましい。また、混合後に水を含有する雰囲気中において、保持させることによって被覆層をリチウムニッケル複合酸化物の表面により強固に付着させることができる。
 被覆材原料及びリチウムニッケル複合酸化物の混合時における被覆材原料の割合は、被覆材原料及びリチウムニッケル複合酸化物の総質量に対し、0.01~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。
 被覆材原料及びリチウムニッケル複合酸化物の混合後に必要に応じて行う熱処理における熱処理条件(温度、保持時間)は、被覆材原料の種類に応じて、異なる場合がある。熱処理温度は、300~850℃の範囲に設定することが好ましく、前記リチウムニッケル複合酸化物の焼成温度以下の温度であることが好ましい。リチウムニッケル複合酸化物焼成温度よりも高い温度であると、被覆材原料がリチウムニッケル複合酸化物と固溶し、被覆層が形成されない場合がある。熱処理における保持時間は、焼成時の保持時間より短く設定することが好ましい。熱処理における雰囲気としては、前記焼成と同様の雰囲気ガスが挙げられる。
 また、熱処理を上記の条件で行うことにより、不純物を低減することができる。
 スパッタリング、CVD又は蒸着などの手法を用いることにより、リチウムニッケル複合酸化物の表面に、被覆層を形成させて、リチウム二次電池用正極活物質を得ることもできる。
 また、前記リチウムニッケル複合酸化物とリチウム化合物と被覆材原料を混合及び焼成することによりリチウム二次電池用正極活物質を得られる場合もある。
 なお、本明細書において被覆層は、リチウムニッケル複合酸化物の表面全体を覆っている必要はなく、少なくとも30%以上を覆っていればよい。
 上述の被覆工程を行うことにより、被覆材原料と、リチウムニッケル複合酸化物の表面に存在するリチウム化合物とが熱処理により反応し、被覆層をリチウムニッケル複合酸化物の表面に形成することができる。熱処理の温度が800℃以上である場合には、リチウムニッケル複合酸化物の粒子内のリチウム原子が被覆層に拡散することにより、被覆材原料及びリチウムを含む被覆層をリチウムニッケル複合酸化物の表面に形成する場合がある。
 洗浄工程と、被覆工程と、を有する後処理工程では、洗浄工程と、被覆工程とを前記の条件で行うことにより、不純物を充分に除去することができ、かつ、洗浄工程においてスラリー中にリチウムが溶出することを抑制することができる。これにより、高電圧での高い電流レートにおける出力が高いリチウムニッケル複合酸化物を得ることができる。
≪第6実施形態≫
 本実施形態は、前記第2実施形態の後処理工程において、乾燥工程後にさらに被覆工程を有する。即ち、第6実施形態のリチウムニッケル複合酸化物の製造方法は、混合工程と、焼成工程と、後処理工程(洗浄工程と、乾燥工程と、被覆工程)とをこの順で有する。言い換えれば、本実施形態のリチウムニッケル複合酸化物の製造方法は、リチウム化合物と、ニッケル含有金属複合化合物とを混合し混合物を得ることと、前記混合物を焼成し焼成物を得ることと、前記焼成物を洗浄することを含む後処理工程と、を有し、後処理工程はさらに前記洗浄物を乾燥することと、前記乾燥物を被覆材料により被覆することを含む。本実施形態における混合工程と、焼成工程と、洗浄工程と、乾燥工程と、被覆工程に関する説明は、前記実施形態における説明と同様である。
 前記第4実施形態、及び第6実施形態の後処理工程は、乾燥工程後に得られるリチウムニッケル複合酸化物の残留硫酸根と残留炭酸リチウムの合計がリチウムニッケル複合酸化物の総質量に対して0.6質量%以下、かつナトリウムがリチウムニッケル複合酸化物の総質量に対して50ppm以下となるように処理する工程である。
 本発明においては、前記第2実施形態から第6実施形態が好ましく、第4実施形態から第6実施形態がより好ましく、第4実施形態又は第6実施形態が特に好ましい。
 <リチウムニッケル複合酸化物>
 上記本発明のリチウムニッケル複合酸化物の製造方法により製造されるリチウムニッケル複合酸化物は、一般式(I)で表される。
 Li[Li(Ni(1-y-z-w)CoMn1-x]O ・・・(I)
(式(I)中、0<x≦0.2、0<y≦0.5、0<z≦0.8、0≦w≦0.1、y+z+w<1、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属を表す。)
 初回クーロン効率がより高いリチウム二次電池を得る観点から、一般式(I)におけるxは0.005以上であることがより好ましく、0.01以上であることが特に好ましい。また、容量維持率がより高いリチウム二次電池を得る観点から、前記一般式(I)におけるxは0.15以下であることが好ましく、0.12以下であることがより好ましく、0.09以下であることが特に好ましい。xを上記の範囲とすることで、初回クーロン効率が高く、かつ容量維持率の高いリチウム二次電池を得ることができる。xが0以下となると、容量が低下する可能性がある。
 xの上限値と下限値は任意に組み合わせることができる。例えば、xは0.005以上0.15以下であることが好ましく、0.01以上0.12以下であることより好ましく、0.01以上0.09以下であることが特に好ましい。
 また、サイクル特性が高いリチウム二次電池を得る観点から、前記一般式(I)におけるyは0.005以上であることが好ましく、0.01以上であることがより好ましく、0.05以上であることが特に好ましい。また、熱的安定性が高いリチウム二次電池を得る観点から、前記一般式(I)におけるyは0.4以下であることが好ましく、0.35以下であることがより好ましく、0.33以下であることが特に好ましい。
 yの上限値と下限値は任意に組み合わせることができる。例えば、yは0.005以上0.4以下であることが好ましく、0.01以上0.35以下であることがより好ましく、0.05以上0.33以下であることが特に好ましい。
 また、サイクル特性が高いリチウム二次電池を得る観点から、前記一般式(I)におけるzは0.005以上であることが好ましく、0.01以上であることがより好ましく、0.015以上であることが特に好ましい。また、高温(例えば60℃環境下)での保存特性が高いリチウム二次電池を得る観点から、前記一般式(I)におけるzは0.4以下であることが好ましく、0.38以下であることがより好ましく、0.35以下であることが特に好ましい。
 zの上限値と下限値は任意に組み合わせることができる。例えば、zは0.005以上0.4以下であることが好ましく、0.01以上0.38以下であることがより好ましく、0.015以上0.35以下であることが特に好ましい。
 また、前記一般式(I)におけるwは0を超えることが好ましく、0.0005以上であることがより好ましく、0.001以上であることが特に好ましい。前記一般式(I)におけるwは0.09以下であることが好ましく、0.08以下であることがより好ましく、0.07以下であることが特に好ましい。
 wの上限値と下限値は任意に組み合わせることができる。例えば、wは0を超え、0.09以下であることが好ましく、0.0005以上0.08以下であることがより好ましく、0.001以上0.07以下であることが特に好ましい。
 前記一般式(I)において、y+z+w≦0.3であることが好ましい。
 前記一般式(I)におけるMはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属を表す。
 また、サイクル特性が高いリチウム二次電池を得る観点から、一般式(I)におけるMは、Ti、Mg、Al、W、B及びZrからなる群より選択される1種以上であることが好ましく、熱的安定性が高いリチウム二次電池を得る観点からは、Al、W、B及びZrからなる群より選択される1種以上であることが好ましい。
 上記本発明のリチウムニッケル複合酸化物の製造方法により製造されるリチウムニッケル複合酸化物は、被覆層を有していてもよい。
 被覆層は、アルミニウム、ホウ素、チタン、ジルコニウム及びタングステンからなる群から選ばれる1種以上の元素の化合物を含む。被覆層は、リチウム化合物を含んでもよい。被覆層は、アルミニウム化合物であることが好ましく、アルミン酸リチウムであることがより好ましく、α―アルミン酸リチウムであることがさらに好ましい。
 本実施形態において、被覆層は、Mn、Fe、Co、及びNiからなる群から選ばれる1種以上の金属を含んでいてもよい。
 本実施形態において、被覆層の組成の確認は、二次粒子断面のSTEM-EDX元素ライン分析、誘導結合プラズマ発光分析又は電子線マイクロアナライザ分析などを用いることで行うことができる。被覆層の結晶構造の確認は、粉末X線回折や、電子線回折を用いて行うことができる。
(層状構造)
 リチウムニッケル複合酸化物の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、及びP6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。
 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、及びC2/cからなる群から選ばれるいずれか一つの空間群に帰属される。
 これらのうち、放電容量が高いリチウム二次電池を得る観点から、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。
 本発明に用いるリチウム化合物は、炭酸リチウム、硝酸リチウム、硫酸リチウム、酢酸リチウム、水酸化リチウム、酸化リチウム、塩化リチウム、及びフッ化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。これらの中では、水酸化リチウム及び炭酸リチウムのいずれか一方又は両方が好ましい。
 リチウム二次電池用正極活物質のハンドリング性を高める観点から、リチウムニッケル複合酸化物に含まれる炭酸リチウム成分は、リチウムニッケル複合酸化物の総質量に対し0.4質量%以下であることが好ましく、0.39質量%以下であることがより好ましく、0.38質量%以下であることが特に好ましい。
 また、リチウム二次電池用正極活物質のハンドリング性を高める観点から、リチウムニッケル複合酸化物に含まれる水酸化リチウム成分は、リチウムニッケル複合酸化物の総質量に対し0.4質量%以下であることが好ましく、0.39質量%以下であることがより好ましく、0.38質量%以下であることが特に好ましい。
 リチウムニッケル複合酸化物に含まれる炭酸リチウム成分及び水酸化リチウム成分は、以下に示す中和滴定法で求めることができる。
<リチウムニッケル複合酸化物中の炭酸リチウム定量(中和滴定)>
 リチウムニッケル複合酸化物20gと純水100gを100mLビーカーに入れ、5分間撹拌する。撹拌後、リチウムニッケル複合酸化物を濾過し、残った濾液の60gに0.1mol/L塩酸を滴下し、pHメーターにて濾液のpHを測定する。pH=8.3±0.1時の塩酸の滴定量をAmL、pH=4.5±0.1時の塩酸の滴定量をBmLとして、下記の計算式より、リチウムニッケル複合酸化物中に含まれる炭酸リチウム濃度を算出する。下記の式中、炭酸リチウムの分子量は、各原子量を、Li;6.941、C;12、O;16、として算出する。
炭酸リチウム濃度(%)=0.1×(B-A)/1000×73.882/(20×60/100)×100
水酸化リチウム濃度(%)=0.1×(2A-B)/1000×23.941/(20×60/100)×100
<リチウム二次電池>
 次いで、リチウム二次電池の構成を説明しながら、本発明のリチウムニッケル複合酸化物の製造方法により製造されるリチウムニッケル複合酸化物を用いたリチウム二次電池用正極活物質を、リチウム二次電池の正極活物質として用いた正極、及びこの正極を有するリチウム二次電池について説明する。
 本実施形態のリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図1Aおよび図1Bは、本実施形態のリチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
 次いで、図1Bに示すように、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(又はシート型)電池を例示することができる。
 以下、各構成について順に説明する。
(正極)
 本実施形態の正極は、まず正極活物質、導電材及びバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
(導電材)
 本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率及び出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、及び正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
 正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
(バインダー)
 本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。
この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂及びポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力及び正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
 本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができる。
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
 負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維及び有機高分子化合物焼成体を挙げることができる。
 負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタン又はバナジウムとを含有する金属複合酸化物;を挙げることができる。
 負極活物質として使用可能な硫化物としては、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。
 負極活物質として使用可能な窒化物としては、LiN、Li3-xN(ここで、AはNi及びCoのいずれか一方又は両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。
 これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質又は非晶質のいずれでもよい。
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。
 負極活物質として使用可能な合金としては、Li-Al、Li-Ni、Li-Si、Li-Sn、Li-Sn-Niなどのリチウム合金;Si-Znなどのシリコン合金;Sn-Mn、Sn-Co、Sn-Ni、Sn-Cu、Sn-Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレン及びポリプロピレンを挙げることができる。
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
 このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
 本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
 本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。
 また、セパレータの空孔率は、セパレータの体積に対して好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。
(電解液)
 本実施形態のリチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、LiAlClなどのリチウム化合物が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF及びLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム化合物及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。
 上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS-SiS、LiS-GeS、LiS-P、LiS-B、LiS-SiS-LiPO、LiS-SiS-LiSO、LiS-GeS-Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。
 また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。
 以上のような構成の正極活物質は、上述した本実施形態のリチウム金属複合酸化物を用いているため、正極活物質を用いたリチウム二次電池の寿命を延ばすことができる。
 また、以上のような構成の正極は、上述した本実施形態のリチウム二次電池用正極活物質を有するため、リチウム二次電池の寿命を延ばすことができる。
 さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、従来よりも寿命の長いリチウム二次電池となる。
 次に、本発明を実施例によりさらに詳細に説明する。
 本実施例においては、リチウム二次電池用正極活物質の評価、リチウム二次電池用正極及びリチウム二次電池の作製評価を、次のようにして行った。
 (1)リチウム二次電池用正極活物質の評価
 1 リチウムニッケル複合酸化物の組成分析、リチウムニッケル複合酸化物に存在する残留硫酸根と残留硫酸リチウムの測定
 後述の方法で製造されるリチウムニッケル複合酸化物の組成分析とリチウムニッケル複合酸化物に存在する残留硫酸根と残留硫酸リチウムの測定は、得られたリチウムニッケル複合酸化物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
 2 リチウムニッケル複合酸化物に存在する金属元素の測定
 誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて、誘導結合プラズマ発光分析法により分析した。
(2)リチウム二次電池用正極の作製
 後述する製造方法で得られるリチウム二次電池用正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いた。
 得られた正極合剤を、集電体となる厚さ15μmのAl箔に塗布して60℃で3時間真空乾燥を行い、リチウム二次電池用正極を得た。このリチウム二次電池用正極の電極面積は1.65cmとした。
(3)リチウム二次電池(コイン型ハーフセル)の作製
 以下の操作を、乾燥空気雰囲気のグローブボックス内で行った。
 「(2)リチウム二次電池用正極の作製」で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置いた。ここに電解液を300μl注入した。電解液は、エチレンカーボネート(以下、ECと称することがある。)とジメチルカーボネート(以下、DMCと称することがある。)とエチルメチルカーボネート(以下、EMCと称することがある。)の30:35:35(体積比)混合液に、LiPFを1.0mol/lとなるように溶解したもの(以下、LiPF/EC+DMC+EMCと表すことがある。)を用いた。
 次に、負極として金属リチウムを用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型ハーフセルR2032。以下、「ハーフセル」と称することがある。)を作製した。
(4)放電容量
 「(3)リチウム二次電池(コイン型ハーフセル)の作製」で作製したハーフセルを用いて、以下に示す条件で充放電試験を実施した。
<放電試験>
 <リチウム二次電池(コイン型ハーフセル)の作製>で作製したハーフセルを用いて、以下に示す条件で放電レート試験を実施した。放電レート試験における、3CA放電容量維持率をそれぞれ以下のようにして求めた。
<放電レート試験>
 試験温度25℃
 充電最大電圧4.45V、充電時間8時間、充電電流0.2CA定電流定電圧充電
 放電最小電圧2.5V、定電流放電
 0.2CAで定電流放電させたときの放電容量と、3CAで放電させたときの放電容量とを求めることで、以下の式で求められる3CA放電容量維持率を求めた。3CA放電容量維持率が高ければ高いほど、高出力を示すことを意味する。
<3CA放電容量維持率>
 3CA放電容量維持率(%)
    =(3CAにおける放電容量/0.2CAにおける放電容量)×100
(実施例1)
[混合工程]
1.リチウムニッケル複合酸化物1の製造
 ニッケル含有金属複合化合物として、微粒子状のニッケルコバルトマンガンアルミニウム金属複合水酸化物1(Ni0.875Co0.095Mn0.02Al0.01(OH))を連続式共沈殿法により作製した。得られたニッケルコバルトマンガンアルミニウム金属複合水酸化物1を、電気炉を用いて、乾燥空気雰囲気下、昇温速度100℃/時間で650℃まで昇温し、650℃で5時間保持した。その後、室温まで放冷し、ニッケルコバルトマンガンアルミニウム金属複合酸化物1を得た。
 ニッケルコバルトマンガンアルミニウム金属複合酸化物1と、水酸化リチウム粉末とを、Li/(Ni+Co+Mn+Al)=1.10(モル比)となるように秤量して混合した。
[焼成工程]
 その後、酸素雰囲気下760℃で5時間焼成し、焼成物1を得た。
[後処理工程]
 その後、下記、洗浄工程、乾燥工程、被覆工程を有する後処理工程を実施した。
 ・洗浄工程
 焼成物1を、焼成物1の質量に対して11質量倍の水で洗浄した。
 ・乾燥工程
 その後、焼成物1を150℃で12時間乾燥させ、洗浄乾燥粉1を得た。
 ・被覆工程
 洗浄乾燥粉1と、酸化アルミニウム(日本アエロジル株式会社製 アルミナC、平均一次粒子径13nm)を混合機で乾式混合して、混合粉末を得た。この時、洗浄乾燥粉1のNi、Co、Mn及びAlの総含有量1molに対し、酸化アルミニウムのAlは0.015molであった。即ち、洗浄乾燥粉1におけるNi、Co、Mn及びAlの原子比の和に対する酸化アルミニウムのAlの原子比の割合は、1.5モル%であった。得られた粉末を、酸素雰囲気下において760℃で10時間の焼成を行い、リチウムニッケル複合酸化物1を得た。
2.洗浄乾燥粉1及びリチウムニッケル複合酸化物1の評価
 洗浄乾燥粉1の組成分析を行い、一般式(1)に対応させたところ、x=0.006、y=0.093、z=0.020、w=0.009であった。
 リチウムニッケル複合酸化物1の組成分析を行い、一般式(1)に対応させたところ、x=0.001、y=0.093、z=0.020、w=0.022であった。
 リチウムニッケル複合酸化物1の4.45Vにおける3CA放電容量維持率は、85.4%であった。
(実施例2)
[混合工程]
1.リチウムニッケル複合酸化物2の製造
 ニッケル含有金属複合化合物として、微粒子状のニッケルコバルトマンガンアルミニウム金属複合水酸化物2(Ni0.875Co0.095Mn0.02Al0.01(OH))を連続式共沈殿法により作製した。得られたニッケルコバルトマンガンアルミニウム金属複合水酸化物2を、電気炉を用いて、乾燥空気雰囲気下、昇温速度100℃/時間で650℃まで昇温し、650℃で5時間保持した。その後、室温まで放冷し、ニッケルコバルトマンガンアルミニウム金属複合酸化物2を得た。
 ニッケルコバルトマンガンアルミニウム金属複合酸化物2と、水酸化リチウム粉末とを、Li/(Ni+Co+Mn+Al)=1.10(モル比)となるように秤量して混合した。
[焼成工程]
 その後、酸素雰囲気下760℃で5時間焼成し、焼成物2を得た。
[後処理工程]
 その後、下記、洗浄工程、乾燥工程、再焼成工程を有する後処理工程を実施した。
・洗浄工程
 焼成物2を、焼成物2の質量に対して11質量倍の水で洗浄した。
・乾燥工程
 その後、焼成物2を150℃で12時間乾燥させ、洗浄乾燥粉2を得た。
・再焼成工程
 その後、洗浄乾燥粉2を酸素雰囲気下において760℃で10時間焼成し、リチウムニッケル複合酸化物2を得た。
2.洗浄乾燥粉2及びリチウムニッケル複合酸化物2の評価
 洗浄乾燥粉2の組成分析を行い、一般式(1)に対応させたところ、x=0.007、y=0.093、z=0.020、w=0.009であった。
 リチウムニッケル複合酸化物2の組成分析を行い、一般式(1)に対応させたところ、x=0.007、y=0.094、z=0.020、w=0.009であった。
 リチウムニッケル複合酸化物2の4.45Vにおける3CA放電容量維持率は、76.4%であった。
(実施例3)
[混合工程]
1.リチウムニッケル複合酸化物3の製造
 ニッケル含有金属複合化合物として、微粒子状のニッケルコバルトマンガンアルミニウム金属複合水酸化物3(Ni0.875Co0.095Mn0.02Al0.01(OH))を連続式共沈殿法により作製した。得られたニッケルコバルトマンガンアルミニウム金属複合水酸化物3を、電気炉を用いて、乾燥空気雰囲気下、昇温速度100℃/時間で650℃まで昇温し、650℃で5時間保持した。その後、室温まで放冷し、ニッケルコバルトマンガンアルミニウム金属複合酸化物3を得た。
 ニッケルコバルトマンガンアルミニウム金属複合酸化物3と、水酸化リチウム粉末とを、Li/(Ni+Co+Mn+Al)=1.15(モル比)となるように秤量して混合した。
[焼成工程]
 その後、酸素雰囲気下720℃で10時間焼成し、焼成物3を得た。
[後処理工程]
 その後、下記、洗浄工程、乾燥工程、被覆工程を有する後処理工程を実施した。
・洗浄工程
 焼成物3を、焼成物3の質量に対して12質量倍の水で洗浄した。
・乾燥工程
 その後、焼成物3を150℃で12時間乾燥させ、洗浄乾燥粉3を得た。
・被覆工程
 洗浄乾燥粉3と、酸化アルミニウム(日本アエロジル株式会社製アルミナC、平均一次粒子径13nm)を混合機で乾式混合して、混合粉末を得た。洗浄乾燥粉3のNi、Co、Mn及びAlの総含有量1molに対し、酸化アルミニウムのAlは0.015molであった。即ち、洗浄乾燥粉3におけるNi、Co、Mn及びAlの原子比の和に対する酸化アルミニウムのAlの原子比の割合は、1.5モル%であった。得られた粉末を、酸素雰囲気下において760℃ で10時間の焼成を行い、リチウムニッケル複合酸化物3を得た。
2.洗浄乾燥粉3及びリチウムニッケル複合酸化物3の評価 
 洗浄乾燥粉3の組成分析を行い、一般式(1)に対応させたところ、x=0.030、y=0.094、z=0.020、w=0.009であった。
 リチウムニッケル複合酸化物3の組成分析を行い、一般式(1)に対応させたところ、x=0.019、y=0.092、z=0.020、w=0.024であった。
 リチウムニッケル複合酸化物3の4.45Vにおける3CA放電容量維持率は、78.9%であった。
(比較例1)
[混合工程]
1.リチウムニッケル複合酸化物4の製造
 ニッケル含有金属複合化合物として、微粒子状のニッケルコバルトマンガンアルミニウム金属複合水酸化物4(Ni0.875Co0.095Mn0.02Al0.01(OH))を連続式共沈殿法により作製した。得られたニッケルコバルトマンガンアルミニウム金属複合水酸化物4を、電気炉を用いて、乾燥空気雰囲気下、昇温速度100℃/時間で650℃まで昇温し、650℃で5時間保持した。その後、室温まで放冷し、ニッケルコバルトマンガンアルミニウム金属複合酸化物4を得た。
 ニッケルコバルトマンガンアルミニウム金属複合酸化物4と、水酸化リチウム粉末とを、Li/(Ni+Co+Mn+Al)=1.02(モル比)となるように秤量して混合した。
[焼成工程]
 その後、酸素雰囲気下760℃で5時間焼成し、焼成物4を得た。
[再焼成工程]
 その後、焼成物4を酸素雰囲気下において760℃で10時間焼成し、リチウムニッケル複合酸化物4を得た。
2.リチウムニッケル複合酸化物4の評価
 リチウムニッケル複合酸化物4の組成分析を行い、一般式(1)に対応させたところ、x=-0.002、y=0.095、z=0.020、w=0.010であった。
 リチウムニッケル複合酸化物4の4.45Vにおける3CA放電容量維持率は、63.9%であった。
(比較例2)
[混合工程]
1.リチウムニッケル複合酸化物5の製造
 ニッケル含有金属複合化合物として、微粒子状のニッケルコバルトマンガンアルミニウム金属複合水酸化物5(Ni0.855Co0.095Mn0.02Al0.03(OH))を連続式共沈殿法により作製した。得られたニッケルコバルトマンガンアルミニウム金属複合水酸化物5を、電気炉を用いて、乾燥空気雰囲気下、昇温速度100℃/時間で650℃まで昇温し、650℃で5時間保持した。その後、室温まで放冷し、ニッケルコバルトマンガンアルミニウム金属複合酸化物5を得た。
 ニッケルコバルトマンガンアルミニウム金属複合酸化物5と、水酸化リチウム粉末とを、Li/(Ni+Co+Mn+Al)=1.05(モル比)となるように秤量して混合した。
[焼成工程]
 その後、酸素雰囲気下770℃で5時間焼成し、焼成物5を得た。
[被覆工程]
 焼成物5と、酸化アルミニウム(日本アエロジル株式会社製アルミナC、平均一次粒子径13nm)を混合機で乾式混合して、混合粉末を得た。焼成物5のNi、Co、Mn及びAlの総含有量1molに対し、酸化アルミニウムのAlは0.020molであった。即ち、焼成物5におけるNi、Co、Mn及びAlの原子比の和に対する酸化アルミニウムのAlの原子比の割合は、2.0モル%であった。その後、混合機雰囲気を50℃、相対湿度100%に制御し、1時間静置した。得られた粉末を、酸素雰囲気下において770℃ で5時間の焼成を行ない、リチウムニッケル複合酸化物5を得た。
2.リチウムニッケル複合酸化物5の評価
 リチウムニッケル複合酸化物5の組成分析を行い、一般式(1)に対応させたところ、x=0.003、y=0.092、z=0.020、w=0.047であった。
 リチウムニッケル複合酸化物5の4.45Vにおける3CA放電容量維持率は、65.1%であった。
(比較例3)
[混合工程]
1.リチウムニッケル複合酸化物6の製造
 ニッケル含有金属複合化合物として、微粒子状のニッケルコバルトマンガンアルミニウム金属複合水酸化物6(Ni0.875Co0.095Mn0.02Al0.01(OH))を連続式共沈殿法により作製した。得られたニッケルコバルトマンガンアルミニウム金属複合水酸化物6を、電気炉を用いて、乾燥空気雰囲気下、昇温速度100℃/時間で650℃まで昇温し、650℃で5時間保持した。その後、室温まで放冷し、ニッケルコバルトマンガンアルミニウム金属複合酸化物6を得た。
 ニッケルコバルトマンガンアルミニウム金属複合酸化物6と、水酸化リチウム粉末とを、Li/(Ni+Co+Mn+Al)=1.10(モル比)となるように秤量し、かつジェットミルで粉砕した酸化タングステンを秤量して混合した。リチウムニッケル複合酸化物6のNi、Co、Mn及びAlの総含有量1molに対し、酸化タングステンのWは0.004molであった。即ち、リチウムニッケル複合酸化物6におけるNi、Co、Mn及びAlの原子比の和に対する酸化タングステンのWの原子比の割合は、0.4モル%であった。
[焼成工程]
 その後、酸素雰囲気下760℃で5時間焼成し、焼成物6を得た。
[後処理工程]
 その後、下記、洗浄工程、乾燥工程、被覆工程を有する後処理工程を実施した。
・洗浄工程
 焼成物6を、焼成物6の質量に対して12質量倍の水で洗浄した。
・乾燥工程
 その後、焼成物6を150℃で12時間乾燥させ、洗浄乾燥粉6を得た。
・被覆工程
 洗浄乾燥粉6と、酸化アルミニウム(日本アエロジル株式会社製アルミナC、平均一次粒子径13nm)を混合機で乾式混合して、混合粉末を得た。洗浄乾燥粉6のNi、Co、Mn及びAlの総含有量1molに対し、酸化アルミニウムのAlは0.015molであった。即ち、洗浄乾燥粉6におけるNi、Co、Mn及びAlの原子比の和に対する酸化アルミニウムのAlの原子比の割合は、1.5モル%であった。得られた粉末を、酸素雰囲気下において760℃ で10時間の焼成を行ない、リチウムニッケル複合酸化物6を得た。
2.洗浄乾燥粉6及びリチウムニッケル複合酸化物6の評価
 洗浄乾燥粉6の組成分析を行い、一般式(1)に対応させたところ、x=-0.008、y=0.093、z=0.021、w=0.009であった。
 リチウムニッケル複合酸化物6の組成分析を行い、一般式(1)に対応させたところ、x=-0.016、y=0.093、z=0.021、w=0.023であった。
 リチウムニッケル複合酸化物6の4.45Vにおける3CA放電容量維持率は、64.7%であった。
(比較例4)
[混合工程]
1.リチウムニッケル複合酸化物7の製造
 ニッケル含有金属複合化合物として、微粒子状のニッケルコバルトマンガンアルミニウム金属複合水酸化物7(Ni0.875Co0.095Mn0.02Al0.01(OH))を連続式共沈殿法により作製した。得られたニッケルコバルトマンガンアルミニウム金属複合水酸化物7を、電気炉を用いて、乾燥空気雰囲気下、昇温速度100℃/時間で650℃まで昇温し、650℃で5時間保持した。その後、室温まで放冷し、ニッケルコバルトマンガンアルミニウム金属複合酸化物7を得た。
 ニッケルコバルトマンガンアルミニウム金属複合酸化物7と、水酸化リチウム粉末とを、Li/(Ni+Co+Mn+Al)=1.10(モル比)となるように秤量し、かつジェットミルで粉砕した酸化タングステンを秤量して混合した。リチウムニッケル複合酸化物7におけるNi、Co、Mn及びAlの総含有量1molに対し、酸化タングステンのWは0.004molであった。即ち、リチウムニッケル複合酸化物7におけるNi、Co、Mn及びAlの原子比の和に対する酸化タングステンのWの原子比の割合は、0.4モル%であった。
[焼成工程]
 その後、酸素雰囲気下760℃で5時間焼成し、焼成物7を得た。
[後処理工程]
 その後、下記、洗浄工程、乾燥工程、被覆工程を有する後処理工程を実施した。
・洗浄工程
 焼成物7を、焼成物7に対して22質量倍の水で洗浄した。
・乾燥工程
 その後、焼成物7を150℃で12時間乾燥させ、洗浄乾燥粉7を得た。
・被覆工程
 焼成物7と、酸化アルミニウム(日本アエロジル株式会社製アルミナC、平均一次粒子径13nm)を混合機で乾式混合して、混合粉末を得た。洗浄乾燥粉7のNi、Co、Mn及びAlの総含有量1molに対し、酸化アルミニウムのAlは0.015molであった。即ち、洗浄乾燥粉7におけるNi、Co、Mn及びAlの原子比の和に対する酸化アルミニウムのAlの原子比の割合は、1.5モル%であった。得られた粉末を、酸素雰囲気下において760℃ で10時間の焼成を行ない、リチウムニッケル複合酸化物7を得た。
2.洗浄乾燥粉7及びリチウムニッケル複合酸化物7の評価
 洗浄乾燥粉7の組成分析を行い、一般式(1)に対応させたところ、x=-0.011、y=0.094、z=0.021、w=0.009であった。
 リチウムニッケル複合酸化物7の組成分析を行い、一般式(1)に対応させたところ、x=-0.019、y=0.093、z=0.021、w=0.024であった。
 リチウムニッケル複合酸化物7の4.45Vにおける3CA放電容量維持率は、68.4%であった。
 実施例1~3、比較例1~4の結果を表1にまとめて記載する。下記表1中、「Li/Me」とは、得られたリチウムニッケル複合酸化物中のリチウムのモル比(ニッケル、コバルト、マンガン、アルミニウムの合計量に対するリチウムのモル比)である。下記表1中、「乾燥工程後」とは、上記後処理工程において乾燥工程後の洗浄乾燥粉の分析結果を意味する。
下記表1中、「再焼成又は被覆工程後」とは、上記リチウムニッケル複合酸化物1~7を分析した結果を意味する。
Figure JPOXMLDOC01-appb-T000001
 上記表1に記載の結果の通り、本発明を適用した実施例1~3によれば、高電圧での高い電流レートにおける出力の高いリチウムニッケル複合酸化物を製造することができた。
 これに対し、本発明を適用しない比較例1~4により製造したリチウムニッケル複合酸化物は、高電圧での高い電流レートにおける出力が低かった。また、洗浄工程を含む後処理工程を行わなかった比較例1~2は、不純物が多いため高電圧での高い電流レートにおける出力が低下したと推察される。比較例3~4は、洗浄工程を含む後処理工程を行ったものの、過洗浄によりリチウムが溶出したため、高電圧での高い電流レートにおける出力が低下したと推察される。
 本発明によれば、高電圧での高い電流レートにおける出力が高いリチウムニッケル複合酸化物の製造方法を提供することができる。
 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード

Claims (11)

  1.  下記一般式(I)で表されるリチウムニッケル複合酸化物の製造方法であって、
     リチウム化合物と、ニッケル含有金属複合化合物とを混合し混合物を得る混合工程と、
     前記混合物を焼成し、焼成物を得る焼成工程と、
     焼成物を洗浄する洗浄工程を含む後処理工程と、を有し、
     前記混合工程は、前記リチウム化合物に含まれるリチウムと、ニッケル含有金属複合化合物中の金属元素と、のモル比(Li/Me)が1を超える比率となるように混合し、
     前記後処理工程は、前記後処理工程後に得られるリチウムニッケル複合酸化物中の、残留硫酸根と残留炭酸リチウムとの合計量がリチウムニッケル複合酸化物の総質量に対し0.3質量%以下であり、かつナトリウムの含有量がリチウムニッケル複合酸化物の総質量に対し50ppm以下となるように処理する工程を含む、リチウムニッケル複合酸化物の製造方法。
     Li[Li(Ni(1-y-z-w)CoMn1-x]O ・・・(I)
    (式(I)中、0<x≦0.2、0<y≦0.5、0<z≦0.8、0≦w≦0.1、y+z+w<1、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属を表す。)
  2.  前記一般式(I)において、y+z+w≦0.3である、請求項1に記載のリチウムニッケル複合酸化物の製造方法。
  3.  前記焼成工程において、焼成温度が300℃以上1000℃以下である、請求項1又は2に記載のリチウムニッケル複合酸化物の製造方法。
  4.  前記後処理工程において、洗浄工程後に、得られたリチウムニッケル複合酸化物を乾燥する乾燥工程を含む、請求項1~3のいずれか1項に記載のリチウムニッケル複合酸化物の製造方法。
  5.  前記後処理工程において、洗浄工程後に、得られたリチウムニッケル複合酸化物を再焼成する再焼成工程を含む、請求項1~3のいずれか1項に記載のリチウムニッケル複合酸化物の製造方法。
  6.  前記後処理工程において、乾燥工程後に、得られたリチウムニッケル複合酸化物を再焼成する再焼成工程を含む、請求項4に記載のリチウムニッケル複合酸化物の製造方法。
  7.  前記後処理工程において、洗浄工程後に得られたリチウムニッケル複合酸化物とアルミニウム、ホウ素、チタン、ジルコニウム、及びタングステンからなる群から選ばれる1種以上の元素の化合物とを混合し、リチウムニッケル複合酸化物の表面を前記元素の化合物で被覆する被覆工程を含む請求項1~3のいずれか1項に記載のリチウムニッケル複合酸化物の製造方法。
  8.  前記後処理工程において、洗浄工程後に得られたリチウムニッケル複合酸化物とアルミニウム化合物とを混合し、リチウムニッケル複合酸化物の表面をアルミニウム化合物で被覆する被覆工程を含む請求項1~3のいずれか1項に記載のリチウムニッケル複合酸化物の製造方法。
  9.  前記後処理工程において、乾燥工程後に、得られたリチウムニッケル複合酸化物とアルミニウム、ホウ素、チタン、ジルコニウム、及びタングステンからなる群から選ばれる1種以上の元素の化合物とを混合し、リチウムニッケル複合酸化物の表面を前記元素の化合物で被覆する被覆工程を含む請求項4に記載のリチウムニッケル複合酸化物の製造方法。
  10.  前記後処理工程において、乾燥工程後に、得られたリチウムニッケル複合酸化物とアルミニウム化合物とを混合し、リチウムニッケル複合酸化物の表面にアルミニウム化合物を被覆させる被覆工程を含む請求項4に記載のリチウムニッケル複合酸化物の製造方法。
  11.  前記後処理工程において、乾燥工程後に得られるリチウムニッケル複合酸化物中の、残留硫酸根と残留炭酸リチウムの合計量がリチウムニッケル複合酸化物の総質量に対し0.6質量%以下であり、かつナトリウムの含有量がリチウムニッケル複合酸化物の総質量に対し50ppm以下となるように処理する、請求項6~10のいずれか1項に記載のリチウムニッケル複合酸化物の製造方法。
PCT/JP2018/012599 2017-03-31 2018-03-27 リチウムニッケル複合酸化物の製造方法 WO2018181402A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880014914.XA CN110366540B (zh) 2017-03-31 2018-03-27 锂镍复合氧化物的制造方法
KR1020197026884A KR102486071B1 (ko) 2017-03-31 2018-03-27 리튬니켈 복합 산화물의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072868 2017-03-31
JP2017072868A JP6929682B2 (ja) 2017-03-31 2017-03-31 リチウムニッケル複合酸化物の製造方法

Publications (1)

Publication Number Publication Date
WO2018181402A1 true WO2018181402A1 (ja) 2018-10-04

Family

ID=63676349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012599 WO2018181402A1 (ja) 2017-03-31 2018-03-27 リチウムニッケル複合酸化物の製造方法

Country Status (4)

Country Link
JP (1) JP6929682B2 (ja)
KR (1) KR102486071B1 (ja)
CN (1) CN110366540B (ja)
WO (1) WO2018181402A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020087822A (ja) * 2018-11-29 2020-06-04 住友金属鉱山株式会社 リチウムニッケル含有複合酸化物とその製造方法、および、該リチウムニッケル含有複合酸化物を母材として用いたリチウムイオン二次電池用正極活物質とその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909238B (zh) 2018-12-29 2022-04-22 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及电化学储能装置
JP2020158341A (ja) * 2019-03-26 2020-10-01 株式会社豊田自動織機 リチウム金属複合酸化物粉末の製造方法
JP6659894B1 (ja) * 2019-04-12 2020-03-04 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、及びリチウム金属複合酸化物粉末の製造方法
EP4040537B1 (en) * 2019-12-03 2023-10-18 LG Energy Solution, Ltd. Method for preparing positive electrode active material for lithium secondary battery, and positive electrode active material prepared thereby
KR20210087716A (ko) * 2020-01-03 2021-07-13 주식회사 엘지화학 안전성 향상을 위해 경화도가 증가된 양극, 이의 제조방법, 및 이를 포함하는 이차전지
KR20220087953A (ko) * 2020-12-18 2022-06-27 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR102504254B1 (ko) * 2021-03-11 2023-02-24 순천대학교 산학협력단 습도센서용 물질과 습도센서

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056844A (ja) * 2000-08-08 2002-02-22 Sanyo Electric Co Ltd アルカリ蓄電池用正極活物質の製造方法およびこの正極活物質を用いたニッケル電極ならびにこのニッケル電極を用いたアルカリ蓄電池
WO2013015007A1 (ja) * 2011-07-26 2013-01-31 住友金属鉱山株式会社 非水電解質二次電池用正極活物質、その製造方法及びそれを用いた非水電解質二次電池
WO2014115380A1 (ja) * 2013-01-28 2014-07-31 住友金属鉱山株式会社 ニッケル複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2014189108A1 (ja) * 2013-05-22 2014-11-27 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法
WO2015018266A1 (en) * 2013-08-07 2015-02-12 Tencent Technology (Shenzhen) Company Limited Method and apparatus for determining health state of information system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5780059B2 (ja) * 2010-09-02 2015-09-16 住友化学株式会社 正極活物質、正極および非水電解質二次電池
US9128679B2 (en) * 2011-09-01 2015-09-08 Mercury Computer Systems, Inc. Slot and memory module for a slot standing interconnect
JP6249270B2 (ja) * 2013-08-23 2017-12-20 日本電気株式会社 リチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056844A (ja) * 2000-08-08 2002-02-22 Sanyo Electric Co Ltd アルカリ蓄電池用正極活物質の製造方法およびこの正極活物質を用いたニッケル電極ならびにこのニッケル電極を用いたアルカリ蓄電池
WO2013015007A1 (ja) * 2011-07-26 2013-01-31 住友金属鉱山株式会社 非水電解質二次電池用正極活物質、その製造方法及びそれを用いた非水電解質二次電池
WO2014115380A1 (ja) * 2013-01-28 2014-07-31 住友金属鉱山株式会社 ニッケル複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2014189108A1 (ja) * 2013-05-22 2014-11-27 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法
WO2015018266A1 (en) * 2013-08-07 2015-02-12 Tencent Technology (Shenzhen) Company Limited Method and apparatus for determining health state of information system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020087822A (ja) * 2018-11-29 2020-06-04 住友金属鉱山株式会社 リチウムニッケル含有複合酸化物とその製造方法、および、該リチウムニッケル含有複合酸化物を母材として用いたリチウムイオン二次電池用正極活物質とその製造方法
JP7271920B2 (ja) 2018-11-29 2023-05-12 住友金属鉱山株式会社 リチウムニッケル含有複合酸化物とその製造方法、および、該リチウムニッケル含有複合酸化物を母材として用いたリチウムイオン二次電池用正極活物質とその製造方法

Also Published As

Publication number Publication date
JP6929682B2 (ja) 2021-09-01
JP2018172255A (ja) 2018-11-08
KR102486071B1 (ko) 2023-01-06
CN110366540B (zh) 2023-04-04
KR20190132633A (ko) 2019-11-28
CN110366540A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
JP6412094B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6026679B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
JP6108141B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
JP6836369B2 (ja) リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質の製造方法
WO2015182665A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6343753B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2016060105A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6337360B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018110256A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018181402A1 (ja) リチウムニッケル複合酸化物の製造方法
CN110461770B (zh) 锂金属复合氧化物的制造方法
JP2019003955A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6500001B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2017078136A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池
WO2018070517A1 (ja) リチウム二次電池用正極活物質の製造方法
WO2018221442A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018021453A1 (ja) リチウムニッケル複合酸化物の製造方法
WO2018181465A1 (ja) リチウム複合金属酸化物の製造方法
WO2018105481A1 (ja) リチウム二次電池用正極活物質の製造方法
JP2018081937A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6360374B2 (ja) リチウム含有複合金属酸化物の製造方法
JP2018098217A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197026884

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777294

Country of ref document: EP

Kind code of ref document: A1