WO2018181530A1 - リチウム金属複合酸化物の製造方法 - Google Patents

リチウム金属複合酸化物の製造方法 Download PDF

Info

Publication number
WO2018181530A1
WO2018181530A1 PCT/JP2018/012881 JP2018012881W WO2018181530A1 WO 2018181530 A1 WO2018181530 A1 WO 2018181530A1 JP 2018012881 W JP2018012881 W JP 2018012881W WO 2018181530 A1 WO2018181530 A1 WO 2018181530A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal composite
lithium
composite oxide
lithium metal
nickel
Prior art date
Application number
PCT/JP2018/012881
Other languages
English (en)
French (fr)
Inventor
淳一 影浦
亮太 小林
京介 堂前
Original Assignee
住友化学株式会社
株式会社田中化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 株式会社田中化学研究所 filed Critical 住友化学株式会社
Priority to KR1020197027858A priority Critical patent/KR102480533B1/ko
Priority to CN201880021372.9A priority patent/CN110461770B/zh
Publication of WO2018181530A1 publication Critical patent/WO2018181530A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a lithium metal composite oxide.
  • This application claims priority on March 31, 2017 based on Japanese Patent Application No. 2017-072871 for which it applied to Japan, and uses the content here.
  • the lithium metal composite oxide is used as a positive electrode active material for a lithium secondary battery.
  • Lithium secondary batteries have already been put into practical use not only for small power sources for mobile phones and notebook computers, but also for medium and large power sources for automobiles and power storage.
  • the method for producing a lithium metal composite oxide generally includes a raw material mixing step, a firing step, a cleaning step, and a heat treatment step.
  • Patent Document 1 describes a method in which a heat treatment step after cleaning is performed at 120 ° C. to 550 ° C. and a temperature increase rate of 120 to 600 ° C./hr.
  • lithium secondary batteries are required to further improve battery characteristics such as a high power capacity (described in “Calculation of power capacity” described later) maintenance rate.
  • the heat treatment step after the cleaning step is a step necessary for removing the cleaning liquid and drying. In order to remove moisture, it is preferable to perform heat treatment at a temperature of 120 ° C. to 550 ° C. as described in the cited document 1.
  • This invention is made
  • the present invention includes the following [1] to [7].
  • [1] A method for producing a lithium metal composite oxide containing at least nickel, capable of doping and dedoping lithium ions, and mixing a metal composite compound containing at least nickel and a lithium compound to obtain a mixture;
  • mixing is performed such that the ratio (molar ratio) of the number of moles of lithium in the lithium compound to the total number of moles of the metal elements in the metal composite compound exceeds 1.
  • a method for producing a lithium metal composite oxide which is performed at a temperature rate of 100 ° C./hr or more and a holding temperature of more than 550 ° C. and 900 ° C.
  • the lithium metal composite oxide and Al 2 O 3 are mixed, and in the heat treatment step, Al is added to the surface of the lithium metal composite oxide particles.
  • the method for producing a lithium metal composite oxide comprising an Al coating layer according to any one of [1] to [4], wherein the coating layer is formed.
  • a method for producing a composite oxide. [7] The method for producing a lithium metal composite oxide according to any one of [1] to [6], wherein the lithium metal composite oxide has a specific surface area of 1.2 m 2 / g or less.
  • the present invention it is possible to provide a method for producing a lithium metal composite oxide for a lithium secondary battery that removes moisture and has a high power capacity retention rate.
  • the present invention is a method for producing a lithium metal composite oxide capable of doping and dedoping lithium ions and containing at least nickel.
  • the present invention includes a mixing step of mixing a metal composite compound containing at least nickel and a lithium compound, a firing step of firing in an oxygen-containing atmosphere, a cleaning step of cleaning the lithium metal composite oxide, and a heat treatment step.
  • a mixing step of mixing a metal composite compound containing at least nickel and a lithium compound
  • a firing step of firing in an oxygen-containing atmosphere a cleaning step of cleaning the lithium metal composite oxide
  • a heat treatment step a heat treatment step.
  • a metal other than lithium that is, an essential metal composed of Ni and Co, and optionally Mn, Mg, Ca, Sr, Ba, Zn, B, Al, Ga, Ti, Zr, Ge, Fe, Cu, Cr, V, W, Mo, Sc, Y, Nb, La, Ta, Tc, Ru, Rh, Pd, Ag, Cd, In, and Sn
  • a metal complex compound a metal complex hydroxide or a metal complex oxide is preferable.
  • the metal complex compound can be produced by a generally known batch coprecipitation method or continuous coprecipitation method.
  • the manufacturing method will be described in detail by taking, as an example, a metal composite hydroxide containing nickel, cobalt as a metal, and manganese as an optional metal.
  • the metal complex hydroxide is co-precipitation, in particular by a continuous method described in 2002-201028 JP-nickel salt solution, cobalt salt solution, is reacted manganese salt solution and a complexing agent, Ni ( 1-yz) Co y Mn z (OH) 2 (wherein 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5) is produced by precipitating a metal composite hydroxide represented by .
  • nickel salt which is the solute of the said nickel salt solution For example, any one of nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate can be used.
  • cobalt salt that is a solute of the cobalt salt solution for example, any one of cobalt sulfate, cobalt nitrate, and cobalt chloride can be used.
  • manganese salt that is a solute of the manganese salt solution for example, any one of manganese sulfate, manganese nitrate, and manganese chloride can be used.
  • the above metal salt is used in a proportion corresponding to the composition ratio of Ni (1-yz) Co y Mn z (OH) 2 . That is, each of the molar ratios of nickel, cobalt, and manganese in the mixed solution containing the metal salt corresponds to (1-yz): y: z in the composition formula (I) of the lithium metal composite compound. Define the amount of metal salt. Moreover, water is used as a solvent.
  • the complexing agent is capable of forming a complex with nickel, cobalt, and manganese ions in an aqueous solution.
  • an ammonium ion supplier ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.
  • hydrazine examples include ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, and glycine.
  • the complexing agent may not be included if desired.
  • the amount of the complexing agent contained in the mixed solution containing the nickel salt solution, the cobalt salt solution, the manganese salt solution and the complexing agent is greater than 0 and 2.0 or less.
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • Ni (1-yz) Co y. Mn z (OH) 2 is produced.
  • the temperature of the reaction vessel is controlled within a range of, for example, 20 ° C. or more and 80 ° C. or less, preferably 30 to 70 ° C.
  • the pH is preferably controlled within the range of 11 to 13, and the substance in the reaction vessel is appropriately stirred.
  • the reaction vessel is of a type that causes the formed reaction precipitate to overflow for separation.
  • the finally obtained lithium metal composite oxide is controlled to have the desired physical properties. Can do.
  • the obtained reaction precipitate is washed with water and then dried to isolate the nickel cobalt manganese metal composite hydroxide as the nickel cobalt manganese metal composite compound. Moreover, you may wash
  • nickel cobalt manganese metal composite hydroxide is manufactured, but nickel cobalt manganese metal composite oxide may be prepared.
  • This embodiment is not limited to the case where a metal composite hydroxide containing nickel and cobalt, which are essential metals, and manganese, which is an optional metal, is used as the metal, and a metal composite water containing nickel and cobalt, which are essential metals. An oxide can also be used.
  • a composite hydroxide can also be used as a metal.
  • aluminum sulfate can be used as the aluminum salt.
  • the metal composite oxide or hydroxide is dried and then mixed with a lithium salt.
  • the drying conditions are not particularly limited, but, for example, conditions in which the metal composite oxide or hydroxide is not oxidized and reduced (that is, the oxide is maintained as an oxide, the hydroxide is maintained as a hydroxide).
  • Conditions conditions under which the metal composite hydroxide is oxidized (ie, conditions under which the hydroxide is oxidized into oxide), conditions under which the metal composite oxide is reduced (ie, under which the oxide is reduced into hydroxide) Any of these conditions may be used.
  • an inert gas such as nitrogen, helium and argon may be used.
  • lithium compound examples include lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, lithium chloride, lithium fluoride, or two or more thereof. Can be used as a mixture. In these, any one or both of lithium hydroxide and lithium carbonate are preferable.
  • Classification may be appropriately performed after the metal composite oxide or hydroxide is dried.
  • the above lithium salt and metal composite hydroxide are used in consideration of the composition ratio of the final object.
  • it mixes so that the ratio (molar ratio) of the lithium in the said lithium compound with respect to the metal element in the said metal complex compound may become a ratio exceeding 1.
  • a lithium compound and the metal complex hydroxide Li [Li x (Ni ( 1-y-z) Co y Mn z) 1-x] O 2 ( wherein Among them, a ratio corresponding to a composition ratio of 0 ⁇ x ⁇ 0.2) is used.
  • a lithium-nickel cobalt manganese composite oxide is obtained by firing a mixture of a nickel cobalt manganese metal composite hydroxide and a lithium compound. For the baking, an oxygen atmosphere is used, and a plurality of heating steps are performed if necessary.
  • the firing temperature of the metal composite oxide or hydroxide and a lithium compound such as lithium hydroxide and lithium carbonate is not particularly limited, but is preferably 600 ° C. or higher and 1100 ° C. or lower, and preferably 650 ° C. or higher and 1050 ° C. More preferably, the temperature is 700 ° C. or more and 1025 ° C. or less.
  • the firing time is preferably 3 hours to 50 hours. When the firing time exceeds 50 hours, the battery performance tends to be substantially inferior due to volatilization of lithium. That is, if the firing time is within 50 hours, the volatilization of lithium can be suppressed. If the firing time is less than 3 hours, the crystal growth is poor and the battery performance tends to be poor. That is, when the firing time is 3 hours or more, the crystal development is good and the battery performance tends to be good.
  • the firing time is preferably 1 hour or more and 30 hours or less for the total time from the start of raising the temperature to the end of temperature holding. When the total time is 30 hours or less, the volatilization of Li can be prevented and the battery performance can be prevented from deteriorating.
  • the time from the start of the temperature rise to the firing temperature is preferably 0.5 hours or more and 20 hours or less. When the time from the start of temperature rise to the firing temperature is within this range, a more uniform lithium metal composite compound can be obtained. In addition, it is also effective to perform temporary baking before the above baking.
  • the temperature for such preliminary firing is preferably in the range of 300 to 850 ° C. for 1 to 10 hours.
  • the obtained fired product is washed.
  • pure water or an alkaline cleaning solution can be used.
  • the alkaline cleaning liquid include LiOH (lithium hydroxide), NaOH (sodium hydroxide), KOH (potassium hydroxide), Li 2 CO 3 (lithium carbonate), Na 2 CO 3 (sodium carbonate), and K 2 CO 3.
  • anhydrides selected from the group consisting of (potassium carbonate) and (NH 4 ) 2 CO 3 (ammonium carbonate) or an aqueous solution of the hydrate can be mentioned.
  • ammonia can also be used as an alkali component.
  • the amount of the cleaning liquid in the cleaning step is preferably 0.5 to 20 times, and more preferably 1 to 10 times the mass of the lithium metal composite oxide after firing.
  • the amount of the cleaning liquid is 0.5 to 20 times the amount of the fired lithium metal composite oxide, lithium elution from the lithium metal composite oxide can be further suppressed, and the manufactured lithium metal composite oxide It can suppress that the compound containing an alkali metal remains in a thing.
  • the particle diameter of the lithium metal composite oxide in the washing step is such that the average secondary particle diameter of the lithium metal composite oxide is preferably 1 to 30 ⁇ m, and more preferably 3 to 20 ⁇ m.
  • the average secondary particle size of the lithium metal composite oxide can be measured using a laser diffraction / scattering particle size distribution analyzer. Specifically, using a laser diffraction particle size distribution meter (manufactured by Horiba, Ltd., model number: LA-950), 0.1 g of lithium nickel composite oxide was put into 50 ml of a 0.2 mass% sodium hexametaphosphate aqueous solution, A dispersion in which the lithium nickel composite oxide material is dispersed is obtained.
  • the particle size distribution of the obtained dispersion is measured to obtain a volume-based cumulative particle size distribution curve.
  • the value of the particle diameter (D50) viewed from the fine particle side at the time of 50% accumulation is taken as the average secondary particle diameter of the lithium nickel composite oxide.
  • the cleaning solution and the lithium metal composite oxide are brought into contact with each other by introducing the lithium metal composite oxide into an aqueous solution of each cleaning solution and stirring, or by using the aqueous solution of each cleaning solution as shower water and lithium.
  • water include a method of applying to the lithium metal composite oxide after separation.
  • the temperature and method for drying the lithium nickel composite oxide in the drying step are not particularly limited, but the drying temperature is preferably 30 ° C. or more and 40 ° C. or more from the viewpoint of sufficiently removing moisture. More preferably, it is more preferably 50 ° C. or higher. Further, as described later, from the viewpoint of preventing the nickel oxide layer from being formed, it is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower. That is, the drying temperature is preferably 30 ° C. or higher and 300 ° C. or lower, more preferably 40 ° C. or higher and 250 ° C. or lower, and further preferably 50 ° C. or higher and 200 ° C. or lower.
  • the washed product After the washing step, the washed product is separated from the washing solution by filtration or the like. Thereafter, the washed product is heat-treated at a temperature rising rate of 100 ° C./hr or more and a holding temperature of over 550 ° C. and 900 ° C. or less.
  • the temperature increase rate and the holding temperature in this specification mean a set temperature increase rate and a set holding temperature of the heat treatment apparatus in the heat treatment step, respectively.
  • the heat treatment step is a step of removing moisture from the washed product after the washing step. In order to evaporate and remove the moisture, the washed product may be heat-treated at a temperature of about 400 ° C.
  • the inventors of the present invention when heat-treated at a temperature of about 400 ° C., the surface of the lithium metal composite oxide particles We discovered the phenomenon that the nickel component is oxidized and the formation of the nickel oxide layer is promoted. The generation of the nickel oxide layer is presumed to cause a decrease in the power capacity maintenance rate. Therefore, in this embodiment, it is possible to remove moisture while suppressing the generation of the nickel oxide layer by raising the temperature to a high temperature in a short time and shortening the holding time of the temperature region where the nickel oxide layer is generated. it can.
  • the rate of temperature increase is calculated from the time from the start of temperature increase to the holding temperature described later in the baking apparatus.
  • the heating rate is preferably 110 ° C./hr or more, more preferably 120 ° C./hr or more, and particularly preferably 130 ° C./hr or more.
  • the upper limit value of the temperature rising rate is not particularly limited, and can be increased to the maximum temperature rising rate of the apparatus to be used. For example, 600 ° C./hr or less is preferable, and 500 ° C./hr or less is more preferable. 400 ° C./hr or less is particularly preferable.
  • the upper limit value and the lower limit value of the heating rate can be arbitrarily combined.
  • the heating rate is preferably 110 ° C./hr or more and 600 ° C./hr or less, more preferably 120 ° C./hr or more and 500 ° C./hr or less, and particularly preferably 130 ° C./hr or more and 400 ° C./hr or less.
  • the holding temperature is a temperature that is held at a specific set temperature for 1 hour or longer in the baking apparatus, and the actual temperature may be slightly changed ( ⁇ 5 ° C.).
  • the holding temperature in the heat treatment step is preferably 570 ° C. or higher, more preferably 600 ° C. or higher, and particularly preferably 650 ° C. or higher.
  • the holding temperature is preferably 850 ° C. or lower, more preferably 800 ° C. or lower, and particularly preferably 750 ° C. or lower.
  • the upper limit value and the lower limit value of the holding temperature in the heat treatment step can be arbitrarily combined.
  • the holding temperature in the heat treatment step is preferably 570 ° C. or higher and 850 ° C.
  • the integrated intensity ratio (A / B) tends to be easily controlled within the preferred range of the present invention.
  • the holding temperature in the heat treatment step is adjusted to 680 ° C. or more and 720 ° C. or less, the integrated intensity ratio (A / B) tends to be easily controlled within the preferable range of the present invention.
  • the lithium metal composite oxide and Al 2 O 3 are mixed, and in the heat treatment step, particles of the lithium metal composite oxide are mixed. It is preferable to form a coating particle or coating layer of a lithium-containing metal composite oxide containing Li and Al on the surface.
  • the water content of the lithium metal composite oxide can be reduced by forming the coated particle or coating layer of the lithium-containing metal composite oxide.
  • the drying process may be performed by air drying, vacuum drying, or the like, or may be combined.
  • the heating temperature is preferably 50 ° C to 300 ° C, more preferably 100 ° C to 200 ° C.
  • the coating material raw material and the lithium metal composite oxide are mixed, and heat treatment is performed as necessary. Coated particles or coating layers comprising the metal complex oxide can be formed.
  • the coated particles mean particles that adhere to the surface of the lithium metal composite oxide.
  • a coating layer means the layer which covers at least one part of the surface of lithium metal complex oxide. The contact area between the coating layer and the lithium metal composite oxide is larger than the contact area between one coating particle and the surface of the lithium metal composite oxide.
  • the coating layer only needs to cover at least a part of the surface of the lithium metal composite oxide, and may not cover the entire surface of the lithium metal composite oxide. For example, it is sufficient to cover at least 30% of the surface of the lithium metal composite oxide.
  • the coating material is made of an oxide, hydroxide, carbonate, nitrate, sulfate, halide, oxalate or alkoxide of one or more elements selected from the group consisting of aluminum, boron, titanium, zirconium, and tungsten Can be used and is preferably an oxide.
  • Coating material raw materials include, for example, aluminum oxide, aluminum hydroxide, aluminum sulfate, aluminum chloride, aluminum alkoxide, boron oxide, boric acid, titanium oxide, titanium chloride, titanium alkoxide, zirconium oxide, zirconium chloride, tungsten oxide, tungstic acid, etc. Is mentioned.
  • As the coating raw material aluminum oxide, aluminum hydroxide, boron oxide, boric acid, titanium oxide, zirconium oxide and tungsten oxide are preferable.
  • the coating material is preferably finer than the secondary particles of the lithium metal composite oxide.
  • the average secondary particle size of the lithium metal composite oxide is preferably 1 to 30 ⁇ m, and more preferably 3 to 20 ⁇ m.
  • the average secondary particle diameter of the covering material is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and further preferably 0.2 ⁇ m or less.
  • the lower limit of the average secondary particle diameter of the coating material raw material is preferably as small as possible, but is, for example, 0.001 ⁇ m.
  • the average secondary particle diameter of the coating material is also measured by the same procedure as the measurement of the average secondary particle diameter of the lithium metal composite oxide.
  • the mixing of the coating material raw material and the lithium metal composite oxide may be performed in the same manner as the mixing at the time of producing the lithium metal composite oxide.
  • the coating layer can be more firmly attached to the surface of the lithium metal composite compound by being held in an atmosphere containing water after mixing.
  • the ratio of the coating material raw material at the time of mixing the coating material raw material and the lithium metal composite oxide is preferably 0.01 to 10% by mass relative to the total mass of the coating material raw material and the lithium metal composite oxide. It is more preferably 1 to 5% by mass.
  • the coated particles or coating layer comprising the lithium-containing metal composite oxide is formed on the surface of the primary particles or secondary particles of the lithium metal composite oxide. Can be formed.
  • the lithium metal composite oxide provided with a coating layer on the surface of the primary particles or secondary particles of the lithium metal composite oxide is appropriately crushed and classified to be used as a positive electrode active material for a lithium secondary battery.
  • the lithium metal composite oxide preferably has an ⁇ -NaFeO 2 type crystal structure represented by the following composition formula (I).
  • Li [Li x (Ni (1-yzw) Co y Mn z M w ) 1-x ] O 2 (I) (In formula (I), 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, 0 ⁇ w ⁇ 0.1, 0 ⁇ y + z + w ⁇ 1, M is Mg, Ca , Sr, Ba, Zn, B, Al, Ga, Ti, Zr, Ge, Fe, Cu, Cr, V, W, Mo, Sc, Y, Nb, La, Ta, Tc, Ru, Rh, Pd, Ag And represents one or more metals selected from the group consisting of Cd, In, and Sn.)
  • x in the composition formula (I) is preferably more than 0, more preferably 0.01 or more, and further preferably 0.02 or more. . Further, from the viewpoint of obtaining a lithium secondary battery having higher initial Coulomb efficiency, x in the composition formula (I) is preferably 0.1 or less, more preferably 0.08 or less, and 0.06. More preferably, it is as follows. The upper limit value and the lower limit value of x can be arbitrarily combined. For example, x exceeds 0 and is preferably 0.1 or less, more preferably 0.01 or more and 0.08 or less, and further preferably 0.02 or more and 0.06 or less.
  • y in the composition formula (I) is preferably 0.005 or more, more preferably 0.01 or more, and 0.05 or more. More preferably it is. Further, from the viewpoint of obtaining a lithium secondary battery having high thermal stability, y in the composition formula (I) is more preferably 0.35 or less, and further preferably 0.33 or less.
  • the upper limit value and the lower limit value of y can be arbitrarily combined. For example, y is preferably 0.005 or more and 0.35 or less, more preferably 0.01 or more and 0.33 or less, and further preferably 0.05 or more and 0.33 or less.
  • z in the composition formula (I) is preferably 0.01 or more, more preferably 0.02 or more, and 0.1 or more. More preferably it is. Further, from the viewpoint of obtaining a lithium secondary battery having high storage characteristics at a high temperature (for example, at 60 ° C.), z in the composition formula (I) is preferably 0.4 or less, and is 0.38 or less. Is more preferable, and it is still more preferable that it is 0.35 or less.
  • the upper limit value and lower limit value of z can be arbitrarily combined. For example, z is preferably 0.01 or more and 0.4 or less, more preferably 0.02 or more and 0.38 or less, and further preferably 0.1 or more and 0.35 or less.
  • w in the composition formula (I) is preferably more than 0, more preferably 0.0005 or more, and 0.001 or more. Further preferred. Further, from the viewpoint of obtaining a lithium secondary battery having a high discharge capacity at a high current rate, w in the composition formula (I) is preferably 0.09 or less, more preferably 0.08 or less, and 0 More preferably, it is 0.07 or less. The upper limit value and the lower limit value of w can be arbitrarily combined. w exceeds 0 and is preferably 0.09 or less, more preferably 0.0005 or more and 0.08 or less, and further preferably 0.001 or more and 0.07 or less.
  • Y + z + w in the composition formula (I) is more than 0 and preferably less than 1, more preferably more than 0 and 0.3 or less. According to the method for producing a lithium metal composite oxide of the present embodiment, it is speculated that a lithium metal composite oxide having a high nickel content can be suitably produced because the production of nickel oxide can be suppressed.
  • M in the composition formula (I) is Mg, Ca, Sr, Ba, Zn, B, Al, Ga, Ti, Zr, Ge, Fe, Cu, Cr, V, W, Mo, Sc, Y, Nb, It represents one or more metals selected from the group consisting of La, Ta, Tc, Ru, Rh, Pd, Ag, Cd, In, and Sn.
  • M in the composition formula (I) is one or more metals selected from the group consisting of Ti, Mg, Al, W, B, and Zr. From the viewpoint of obtaining a lithium secondary battery with high thermal stability, it is preferably one or more metals selected from the group consisting of Al, W, B, and Zr.
  • the ratio (A / B) to the integrated intensity B at the peak in the range of ° is preferably 1.20 or more.
  • a / B is preferably 1.29 or less, more preferably 1.25 or less, and even more preferably 1.24 or less.
  • the upper limit value and lower limit value of A / B can be arbitrarily combined.
  • the ratio to B is an indicator of cation mixing of lithium and transition metal.
  • a / B is less than 1.20, cation mixing increases, and the presence of a transition metal in the lithium diffusion path inhibits lithium diffusion, resulting in a decrease in rate characteristics.
  • the BET specific surface area (m 2 / g) of the lithium metal composite oxide is 1.2 m 2 / g.
  • the following is preferable, 0.8 m 2 / g or less is more preferable, and 0.5 m 2 / g or less is particularly preferable.
  • the upper limit value and the lower limit value of the BET specific surface area (m 2 / g) of the lithium metal composite oxide can be arbitrarily combined.
  • the BET specific surface area (m 2 / g) of the lithium metal composite oxide is preferably 0.1 m 2 / g or more and 1.2 m 2 / g or less, and 0.15 m 2 / g or more and 0.8 m 2 / g or less. still more preferably, 0.20 m 2 / g or more 0.5 m 2 / g or less is particularly preferred.
  • the crystal structure of the lithium nickel composite oxide is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structures are P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, P-
  • Monoclinic crystal structures are P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, and C2. It belongs to any one space group selected from the group consisting of / c.
  • the crystal structure is a hexagonal crystal structure belonging to the space group R-3m or a monoclinic crystal belonging to C2 / m.
  • a crystal structure is preferable, a hexagonal crystal structure belonging to the space group R-3m, and an ⁇ -NaFeO 2 crystal structure is more preferable.
  • the lithium compound used in the present invention is lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, lithium chloride, lithium fluoride, or two. Two or more can be mixed and used. In these, any one or both of lithium hydroxide and lithium carbonate are preferable.
  • the lithium carbonate component contained in the lithium metal composite oxide is preferably 0.4% by mass or less based on the total mass of the lithium metal composite oxide. More preferably, it is 0.39 mass% or less, and it is especially preferable that it is 0.38 mass% or less.
  • the lithium hydroxide component contained in the lithium metal composite oxide powder is 0.35% by mass or less based on the total mass of the lithium metal composite oxide. Preferably, it is more preferably 0.25% by mass or less, and particularly preferably 0.2% by mass or less.
  • the general formula (I) does not include H and C derived from lithium carbonate and lithium hydroxide. However, since the lithium carbonate and lithium hydroxide contained in the lithium metal composite oxide are trace amounts as described above, they are derived from the lithium carbonate and lithium hydroxide contained in the lithium metal composite oxide in the general formula (I). H and C are omitted as impurities.
  • the lithium metal composite oxide of the present embodiment has Li and X (on the surface of the primary particle or secondary particle of the lithium metal composite oxide.
  • X represents one or more elements selected from the group consisting of B, Al, Ti, Zr, and W. It is preferable to include coated particles or coating layers made of a lithium-containing metal composite oxide.
  • the coated particle or the coated layer includes a lithium-containing metal composite oxide containing Li and X.
  • X is at least one selected from B, Al, Ti, Zr and W, and is preferably Al or W.
  • lithium metal complex oxide may be called a core material.
  • the coated particle or coating layer is preferably LiAlO 2 when Al is selected as X. And more preferably contains alpha-LiAlO 2 in terms of the ion conductivity improvement of the coating layer, if more is LiAlO 2.
  • Coated particles or coating layer, if you select W as X is preferably Li 2 WO 4 and Li 4 WO 5 any one or more.
  • the ratio of the atomic ratio of X in the coated particles or coating layer to the sum of the atomic ratios of Ni, Co, Mn and M in the lithium metal composite oxide Is preferably 0.05 mol% or more and 5 mol% or less.
  • the upper limit of (X / (Ni + Co + Mn + M)) is more preferably 4 mol%, and particularly preferably 3 mol%.
  • the lower limit value of (X / (Ni + Co + Mn + M)) is more preferably 0.1 mol%, and particularly preferably 1 mol%.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • (X / (Ni + Co + Mn + M)) is more preferably 0.1 mol% to 4 mol%, and particularly preferably 1 mol% to 3 mol%.
  • the composition of the coating layer can be confirmed by using STEM-EDX element line analysis, inductively coupled plasma emission analysis, electron beam microanalyzer analysis, etc. of the secondary particle cross section.
  • the crystal structure of the coating layer can be confirmed using powder X-ray diffraction or electron beam diffraction. Note that the composition and crystal structure of the lithium metal composite oxide and the composition and crystal structure of the coating layer can be independently confirmed.
  • Lithium secondary battery> a positive electrode using the lithium metal composite oxide of the present invention as a positive electrode active material of the lithium secondary battery and a lithium secondary battery having the positive electrode will be described.
  • An example of the lithium secondary battery of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution disposed between the positive electrode and the negative electrode.
  • FIG. 1A and 1B are schematic views showing an example of the lithium secondary battery of the present embodiment.
  • the cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
  • a pair of separators 1 having a strip shape, a strip-like positive electrode 2 having a positive electrode lead 21 at one end, and a strip-like negative electrode 3 having a negative electrode lead 31 at one end, a separator 1, a positive electrode 2, and a separator 1 and negative electrode 3 are laminated in this order and wound to form electrode group 4.
  • the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
  • the shape of the electrode group 4 is, for example, a columnar shape in which the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners.
  • the shape can be mentioned.
  • a shape of the lithium secondary battery having such an electrode group 4 a shape defined by IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC) can be adopted. .
  • IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC)
  • cylindrical shape, square shape, etc. can be mentioned.
  • the lithium secondary battery is not limited to the above-described wound type configuration, and may have a stacked type configuration in which a stacked structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • Examples of the stacked lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode of this embodiment can be manufactured by first adjusting a positive electrode mixture containing a positive electrode active material, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • a carbon material As the conductive material included in the positive electrode of the present embodiment, a carbon material can be used.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Since carbon black is fine and has a large surface area, by adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be improved and the charge / discharge efficiency and output characteristics can be improved. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture are reduced, which causes an increase in internal resistance.
  • the proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
  • thermoplastic resin As the binder included in the positive electrode of the present embodiment, a thermoplastic resin can be used.
  • the thermoplastic resin include polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride.
  • fluororesins such as copolymers, propylene hexafluoride / vinylidene fluoride copolymers, tetrafluoroethylene / perfluorovinyl ether copolymers; polyolefin resins such as polyethylene and polypropylene.
  • thermoplastic resins may be used as a mixture of two or more.
  • a fluororesin and a polyolefin resin as a binder, the ratio of the fluororesin to the total positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of the polyolefin resin is 0.1% by mass or more and 2% by mass or less.
  • a positive electrode mixture having both high adhesion to the current collector and high bonding strength inside the positive electrode mixture can be obtained.
  • a band-shaped member made of a metal material such as Al, Ni, and stainless steel can be used as the positive electrode current collector included in the positive electrode of the present embodiment.
  • a material that is made of Al and formed into a thin film is preferable because it is easy to process and inexpensive.
  • Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure-molding the positive electrode mixture on the positive electrode current collector. Also, the positive electrode mixture is made into a paste using an organic solvent, and the resulting positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed, whereby the positive electrode current collector is bonded to the positive electrode current collector. A mixture may be supported.
  • usable organic solvents include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate And amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine
  • ether solvents such as tetrahydrofuran
  • ketone solvents such as methyl ethyl ketone
  • amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • a positive electrode can be manufactured by the method mentioned above.
  • the negative electrode included in the lithium secondary battery of this embodiment is only required to be able to dope and dedope lithium ions at a lower potential than the positive electrode, and the negative electrode mixture containing the negative electrode active material is supported on the negative electrode current collector. And an electrode composed of the negative electrode active material alone.
  • Negative electrode active material examples of the negative electrode active material possessed by the negative electrode include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals, and alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. It is done.
  • Examples of carbon materials that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies.
  • the oxide can be used as an anode active material, (wherein, x represents a positive real number) SiO 2, SiO, etc. formula SiO x oxides of silicon represented by; TiO 2, TiO, etc. formula TiO x (wherein , X is a positive real number); oxide of titanium represented by formula VO x (where x is a positive real number) such as V 2 O 5 and VO 2 ; Fe 3 O 4 , Fe 2 O 3 , FeO, etc. Iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO, etc.
  • Oxides of tin tungsten oxides represented by a composition formula WO x (where x is a positive real number) such as WO 3 and WO 2 ; lithium and titanium such as Li 4 Ti 5 O 12 and LiVO 2 Or a metal composite oxide containing vanadium. It is possible.
  • Examples of sulfides that can be used as the negative electrode active material include titanium sulfides represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS; V 3 S 4 , VS 2, VS and other vanadium sulfides represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2 , FeS and other formulas FeS x (where x is a positive real number) Iron sulfide represented; Mo 2 S 3 , MoS 2 and the like MoS x (where x is a positive real number) Molybdenum sulfide; SnS 2, SnS and other formula SnS x (where, a sulfide of tin represented by x is a positive real number; a sulfide of tungsten represented by a formula WS x (where x is a positive real number) such as WS 2
  • Examples of the nitride that can be used as the negative electrode active material include Li 3 N and Li 3-x A x N (where A is one or both of Ni and Co, and 0 ⁇ x ⁇ 3). And lithium-containing nitrides.
  • These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. These carbon materials, oxides, sulfides and nitrides may be crystalline or amorphous.
  • examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
  • Alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn, and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn, Sn -Tin alloys such as Co, Sn-Ni, Sn-Cu, Sn-La; alloys such as Cu 2 Sb, La 3 Ni 2 Sn 7 ;
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil shape, for example.
  • carbon materials containing graphite as a main component such as natural graphite and artificial graphite, are preferably used.
  • the shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
  • the negative electrode mixture may contain a binder as necessary.
  • the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
  • the negative electrode current collector of the negative electrode examples include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel. In particular, it is preferable to use Cu as a forming material and process it into a thin film from the viewpoint that it is difficult to make an alloy with lithium and it is easy to process.
  • Examples of the separator included in the lithium secondary battery of the present embodiment include a porous film, a nonwoven fabric, a woven fabric, and the like made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin, and a nitrogen-containing aromatic polymer. A material having the following can be used. Moreover, a separator may be formed by using two or more of these materials, or a separator may be formed by laminating these materials.
  • the separator allows the electrolyte to permeate well when the battery is used (during charging / discharging). Therefore, the air resistance according to the Gurley method defined in JIS P 8117 is 50 seconds / 100 cc or more, 300 seconds / 100 cc. Or less, more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
  • the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less with respect to the volume of the separator.
  • the separator may be a laminate of separators having different porosity.
  • the electrolyte solution included in the lithium secondary battery of this embodiment contains an electrolyte and an organic solvent.
  • the electrolyte contained in the electrolyte includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalato) borate LiFSI (where FSI is bis (fluorosulfonyl) imide), lower aliphatic lithium carboxylate compounds, and lithium compounds such as LiAlCl 4 , and two or more of these Mixtures may be used.
  • the electrolyte at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one kind.
  • Examples of the organic solvent contained in the electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-di- Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethyla Amides such as toamide; Carbamates such as 3-methyl-2-oxazolidone;
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
  • a mixed solvent of a cyclic carbonate and an acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable.
  • the electrolyte using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of the negative electrode. Even when a graphite material such as artificial graphite is used, it has many features that it is hardly decomposable.
  • an electrolytic solution containing a lithium compound containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is increased.
  • a mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate is capable of capacity even when charging / discharging at a high current rate. Since the maintenance rate is high, it is more preferable.
  • a solid electrolyte may be used instead of the above electrolytic solution.
  • the solid electrolyte for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used.
  • maintained the non-aqueous electrolyte in the high molecular compound can also be used.
  • Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 -Li 2 SO 4, and an inorganic solid electrolyte can be mentioned include a sulfide such as Li 2 S-GeS 2 -P 2 S 5, it may be used a mixture of two or more thereof. By using these solid electrolytes, the safety of the lithium secondary battery may be further improved.
  • the solid electrolyte when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.
  • the life of a lithium secondary battery using the positive electrode active material can be extended.
  • the positive electrode having the above-described configuration has the above-described positive electrode active material for a lithium secondary battery according to this embodiment, the life of the lithium secondary battery can be extended.
  • the lithium secondary battery having the above-described configuration has the above-described positive electrode, it becomes a lithium secondary battery having a longer life than before.
  • Another aspect of the present invention is a method for producing a lithium metal composite oxide containing at least nickel, which can be doped and dedoped with lithium ions, wherein the metal composite compound containing at least nickel and the lithium compound are mixed, and the mixture
  • mixing step is performed so that the ratio (molar ratio) of the number of moles of lithium in the lithium compound to the total number of moles of the metal elements in the metal composite compound exceeds 1.
  • a method for producing a lithium metal composite oxide, wherein the heat treatment step is performed at a temperature rising rate of 130 ° C./hr to 400 ° C./hr and a holding temperature of 570 ° C. to 850 ° C.
  • Li [Li x (Ni (1-yzw) Co y Mn z M w ) 1-x ] O 2 (I) (In formula (I), 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, 0 ⁇ w ⁇ 0.1, 0 ⁇ y + z + w ⁇ 1, M is Mg, Ca , Sr, Ba, Zn, B, Al, Ga, Ti, Zr, Ge, Fe, Cu, Cr, V, W, Mo, Sc, Y, Nb, La, Ta, Tc, Ru, Rh, Pd, Ag And represents one or more metals selected from the group consisting of Cd, In, and Sn.)
  • the metal composite compound contains nickel, cobalt, manganese, and aluminum.
  • Another aspect of the present invention provides a positive electrode for a lithium secondary battery containing a lithium metal composite oxide as a positive electrode active material, a separator on the positive electrode for the lithium secondary battery, and a negative electrode for a lithium secondary battery on the separator.
  • an R2032-type lithium secondary battery containing at least an electrolyte solution injected into the separator, and 0.2C charge / discharge test conditions at a test temperature of 25 ° C., a maximum charging voltage of 4.3 V, a charging time of 6 hours,
  • the charging current is 1.0 CA, constant current and constant voltage charging, and the discharge minimum voltage is 2.5 V, the discharge time is 5 hours, the discharge current is 0.2 CA, and the constant current is discharged.
  • the maximum charging voltage is 4.3V, the charging time is 6 hours, the charging current is 1.0CA, the constant current is constant voltage charging, and the minimum discharging voltage is 2.5V, the discharging time is 5 hours, the discharging current is 3.0CA, constant.
  • 0.2C power capacity is calculated by 0.2C discharge capacity ⁇ 0.2C average discharge voltage
  • 3.0C power capacity is calculated by 3.0C discharge capacity ⁇ 3.0C average discharge voltage.
  • a lithium metal composite oxide having a characteristic that a power capacity retention ratio calculated by (power capacity ⁇ 0.2C power capacity ⁇ 100) is 85 to 92%.
  • the power capacity retention rate is a lithium metal composite oxide having a characteristic of 86 to 92%.
  • the evaluation of the lithium metal composite oxide and the production evaluation of the positive electrode for the lithium secondary battery and the lithium secondary battery were performed as follows.
  • Macsorb registered trademark
  • Powder X-ray diffraction measurement was performed using an X-ray diffractometer (manufactured by PANalytical, X'Pert PRO).
  • composition analysis of the lithium metal composite oxide produced by the method described below is performed by dissolving the obtained lithium metal composite oxide powder in hydrochloric acid and then using an inductively coupled plasma emission spectrometer (made by SII Nanotechnology Co., Ltd.). , SPS3000).
  • N-methyl-2-pyrrolidone was used as the organic solvent.
  • the obtained positive electrode mixture was applied to an Al foil having a thickness of 40 ⁇ m serving as a current collector and vacuum-dried at 150 ° C. for 8 hours to obtain a positive electrode for a lithium secondary battery.
  • the electrode area of the positive electrode for the lithium secondary battery was 1.65 cm 2 .
  • the electrolytic solution was ethylene carbonate (hereinafter sometimes referred to as EC), dimethyl carbonate (hereinafter sometimes referred to as DMC), and ethyl methyl carbonate (hereinafter sometimes referred to as EMC) 30:35. : 35 (volume ratio) LiPF 6 dissolved in 1 mol / l (hereinafter sometimes referred to as LiPF 6 / EC + DMC + EMC) was used.
  • Lithium metal is used as the negative electrode, the negative electrode is placed on the upper side of the laminated film separator, the upper lid is covered through a gasket, and the lithium secondary battery (coin-type battery R2032, hereinafter referred to as “coin-type half-cell”) It was sometimes called).
  • Test temperature 25 ° C Charging maximum voltage 4.3V, charging time 6 hours, charging current 1.0CA, constant current constant voltage charging, discharging minimum voltage 2.5V, discharging time 5 hours, discharging current 0.2CA, constant current discharging ⁇ 3C charging / discharging test conditions > Test temperature: 25 ° C Charging maximum voltage 4.3V, charging time 6 hours, charging current 1.0CA, constant current constant voltage charging discharge minimum voltage 2.5V, discharging time 5 hours, discharging current 3.0CA, constant current discharging ⁇ Calculation of power capacity> The 0.2 C power capacity was calculated by 0.2 C discharge capacity ⁇ 0.2 C average discharge voltage.
  • the 3.0 C power capacity was calculated as 3.0 C discharge capacity ⁇ 3.0 C average discharge voltage.
  • the 0.2 C and 3.0 C average discharge voltages are average values of voltages extracted every 10 seconds or 10 mV. ⁇ Calculation of power capacity maintenance rate> It was calculated by 3C power capacity ⁇ 0.2C power capacity ⁇ 100.
  • Example 1 Production of lithium metal composite oxide 1 [Nickel cobalt manganese aluminum composite hydroxide production process] After water was put in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to keep the liquid temperature at 50 ° C.
  • An aqueous nickel sulfate solution, an aqueous cobalt sulfate solution, an aqueous manganese sulfate solution, and an aqueous aluminum sulfate solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, manganese atoms, and aluminum atoms is 75: 10: 14: 1.
  • the atomic ratio of nickel atoms, cobalt atoms, manganese atoms, and aluminum atoms is 75: 10: 14: 1.
  • the mixed raw material solution and the aqueous ammonium sulfate solution were continuously added as a complexing agent in the reaction vessel, and nitrogen gas was continuously passed through.
  • a sodium hydroxide aqueous solution was dropped in a timely manner so that the pH of the solution in the reaction vessel measured at 40 ° C. was 12.0 to obtain nickel cobalt manganese aluminum composite hydroxide particles, washed with a sodium hydroxide solution, and then centrifuged. By dehydrating and isolating with a separator and drying at 105 ° C., nickel cobalt manganese aluminum composite hydroxide 1 was obtained.
  • the lithium metal composite oxide washed dry powder 1 was heated from room temperature to 700 ° C. at a temperature increase rate of 160 ° C./hour and heat-treated for 5 hours to obtain a lithium metal composite oxide 1.
  • Example 2 Production of lithium metal composite oxide 2 [Nickel cobalt manganese composite hydroxide production process] After water was put in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to keep the liquid temperature at 50 ° C.
  • Nickel sulfate aqueous solution, cobalt sulfate aqueous solution and manganese sulfate aqueous solution were mixed so that the atomic ratio of nickel atom, cobalt atom and manganese atom was 75:10:15 to prepare a mixed raw material solution.
  • the mixed raw material solution and the aqueous ammonium sulfate solution were continuously added as a complexing agent in the reaction vessel, and nitrogen gas was continuously passed through.
  • a sodium hydroxide aqueous solution was dropped in a timely manner so that the pH of the solution in the reaction vessel measured at 40 ° C. was 12.0 to obtain nickel cobalt manganese composite hydroxide particles, which were washed with a sodium hydroxide solution, and then centrifuged.
  • the nickel cobalt manganese composite hydroxide 2 was obtained by dehydrating and isolating with a separator and drying at 105 ° C.
  • the lithium metal composite oxide washed dry powder 2 was heated from room temperature to 850 ° C. at a rate of temperature increase of 200 ° C./hour and heat-treated for 5 hours to obtain lithium metal composite oxide 2.
  • Example 3 Comparative Examples 1 to 3
  • the lithium metal composite oxide washed dry powder 2 was subjected to the same heat treatment step as in Example 2 except that the heat treatment step was carried out at the heating rate and holding temperature shown in Table 1 below. ⁇ H3 was produced.
  • Example 4 Production of lithium metal composite oxide 4 [Nickel cobalt manganese aluminum composite hydroxide production process] After water was put in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to keep the liquid temperature at 50 ° C.
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, a manganese sulfate aqueous solution, and an aluminum sulfate aqueous solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, manganese atoms, and aluminum atoms is 90: 7: 2: 1.
  • the atomic ratio of nickel atoms, cobalt atoms, manganese atoms, and aluminum atoms is 90: 7: 2: 1.
  • the mixed raw material solution and the aqueous ammonium sulfate solution were continuously added as a complexing agent in the reaction vessel, and nitrogen gas was continuously passed through.
  • a sodium hydroxide aqueous solution was added dropwise so that the pH of the solution in the reaction vessel measured at 40 ° C. was 12.0, and nickel cobalt manganese aluminum composite hydroxide particles were obtained and washed with a sodium hydroxide solution.
  • the nickel cobalt manganese aluminum composite hydroxide 4 was obtained by dehydrating and isolating with a centrifuge and drying at 105 ° C.
  • the lithium metal composite oxide washed dry powder 4 was heated from room temperature to 740 ° C. at a temperature increase rate of 170 ° C./hour and heat-treated for 5 hours to obtain lithium metal composite oxide 4.
  • the cross-sectional STEM-EDX analysis of the particles of the obtained lithium metal composite oxide 5 revealed that a coating layer was provided on the secondary particle surface of the lithium metal composite oxide (core material). Further, from the ICP composition analysis and crystal structure analysis of the lithium metal composite oxide 5, the coating layer contains LiAlO 2 and the Al in the coating layer with respect to the number of atoms of Ni + Co + Mn + Al contained in the core material of the lithium metal composite oxide 5 The atomic ratio of was 0.015.
  • Lithium metal composite oxide H4 was produced in the same manner as in Example 4, except that the lithium metal composite oxide 4 was subjected to the heat treatment step at the rate of temperature rise and the holding temperature shown in Table 1 below.
  • Table 1 summarizes the compositions, heating rates, holding temperatures, capacities after 0.2C and 3C, and capacity retention ratios of Examples 1 to 5 and Comparative Examples 1 to 4. When coated, the composition of the core material is described.
  • Table 2 summarizes the integrated intensities A and B, integrated intensity ratio (A / B), and BET specific surface area of Examples 1 to 5 and Comparative Examples 1 to 4.
  • Examples 1 to 5 to which the present invention was applied had a higher power capacity maintenance rate of 85% or more than Comparative Examples 1 to 4 to which the present invention was not applied. This is considered to mean that the formation of the nickel oxide layer on the surface of the lithium metal composite compound could be suppressed when the present invention was applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

このリチウム金属複合酸化物の製造方法は、リチウムイオンをドープ及び脱ドープ可能な、少なくともニッケルを含むリチウム金属複合酸化物の製造方法であって、少なくともニッケルを含む金属複合化合物とリチウム化合物とを混合し、混合物を得る混合工程と、前記混合物を酸素含有雰囲気で焼成し、焼成物を得る焼成工程と、前記焼成物を洗浄し、洗浄物を得る洗浄工程と、前記洗浄物を熱処理する熱処理工程と、を有し、前記混合工程において、前記金属複合化合物中の金属元素の総モル数に対する、前記リチウム化合物中のリチウムのモル数の比(モル比)が1を超える比率となるように混合し、前記熱処理工程を、昇温速度100℃/hr以上、かつ、保持温度が550℃を超え、900℃以下で行う。

Description

リチウム金属複合酸化物の製造方法
 本発明は、リチウム金属複合酸化物の製造方法に関する。
 本願は、2017年3月31日に、日本に出願された特願2017-072871号に基づき優先権を主張し、その内容をここに援用する。
 リチウム金属複合酸化物は、リチウム二次電池用正極活物質として用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型及び大型電源においても、実用化が進んでいる。
 リチウム金属複合酸化物の製造方法は、一般的に、原料の混合工程、焼成工程、洗浄工程及び熱処理工程を有している。例えば特許文献1には、洗浄後の熱処理工程を、120℃~550℃、昇温速度120~600℃/hrで行う方法が記載されている。
再公表WO2014/189108号公報
 リチウム二次電池の応用分野の拡大が進む中、リチウム二次電池には、高い電力容量(後述「電力容量の算出」で記載する。)維持率等のさらなる電池特性の向上が求められる。
 リチウム金属複合酸化物の製造工程において、洗浄工程後の熱処理工程は、洗浄液を除去し、乾燥するために必要な工程である。水分を除去するためには、引用文献1にも記載のように、120℃~550℃の温度で熱処理することが好ましい。しかしながら、熱処理温度によっては、このリチウム金属複合酸化物を正極活物質として利用したリチウム二次電池において電力容量維持率が低下するという課題がある。
 本発明は上記事情に鑑みてなされたものであって、水分を除去し、かつ、高い電力容量維持率を有するリチウム二次電池用リチウム金属複合酸化物の製造方法を提供することを目的とする。
 すなわち、本発明は、下記[1]~[7]の発明を包含する。
[1]リチウムイオンをドープ及び脱ドープ可能な、少なくともニッケルを含むリチウム金属複合酸化物の製造方法であって、少なくともニッケルを含む金属複合化合物とリチウム化合物とを混合し、混合物を得る混合工程と、前記混合物を酸素含有雰囲気で焼成し、焼成物を得る焼成工程と、前記焼成物を洗浄し、洗浄物を得る洗浄工程と、前記洗浄物を熱処理する熱処理工程と、を有し、前記混合工程において、前記金属複合化合物中の金属元素の総モル数に対する、前記リチウム化合物中のリチウムのモル数の比(モル比)が1を超える比率となるように混合し、前記熱処理工程を、昇温速度100℃/hr以上、かつ、保持温度が550℃を超え、900℃以下で行う、リチウム金属複合酸化物の製造方法。
[2]前記熱処理工程を、昇温速度600℃/hr以下で行う、[1]に記載のリチウム金属複合酸化物の製造方法。
[3]前記リチウム金属複合酸化物が下記組成式(I)で表されるα-NaFeO型の結晶構造を有する、[1]又は[2]に記載のリチウム金属複合酸化物の製造方法。
 Li[Li(Ni(1-y-z-w)CoMn1-x]O2 ・・・(I)
(式(I)中、0<x≦0.2、0<y≦0.5、0≦z≦0.5、0≦w≦0.1、0<y+z+w<1、MはMg、Ca、Sr、Ba、Zn、B、Al、Ga、Ti、Zr、Ge、Fe、Cu、Cr、V、W、Mo、Sc、Y、Nb、La、Ta、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選択される1種以上の金属を表す。)
[4]前記組成式(I)において、0<y+z+w≦0.3となる、[3]に記載のリチウム金属複合酸化物の製造方法。
[5]前記洗浄工程後であって、前記熱処理工程の前に、前記リチウム金属複合酸化物とAlとを混合し、前記熱処理工程において、前記リチウム金属複合酸化物の粒子表面にAl被覆層を形成する、[1]~[4]のいずれか1つに記載のAl被覆層を含むリチウム金属複合酸化物の製造方法。
[6]前記リチウム金属複合酸化物を、CuKα線を使用した粉末X線回折測定を行った場合において、2θ=18.7±1°の範囲内のピークにおける積分強度Aと、2θ=44.6±1°の範囲内のピークにおける積分強度Bとの比(A/B)が1.20以上1.29以下となる、[1]~[5]のいずれか1つに記載のリチウム金属複合酸化物の製造方法。
[7]前記リチウム金属複合酸化物の比表面積が1.2m/g以下である、[1]~[6]のいずれか1つに記載のリチウム金属複合酸化物の製造方法。
 本発明によれば、水分を除去し、かつ、高い電力容量維持率を有するリチウム二次電池用リチウム金属複合酸化物の製造方法を提供することができる。
リチウムイオン二次電池の一例を示す概略構成図である。 リチウムイオン二次電池の一例を示す概略構成図である。
<リチウム金属複合酸化物の製造方法>
 本発明は、リチウムイオンをドープ及び脱ドープ可能な、少なくともニッケルを含むリチウム金属複合酸化物の製造方法である。
 本発明は、少なくともニッケルを含む金属複合化合物とリチウム化合物とを混合する混合工程と、酸素含有雰囲気で焼成する焼成工程と、リチウム金属複合酸化物を洗浄する洗浄工程と、熱処理工程とを有する。
 以下、各工程について説明する。
 本発明のリチウム金属複合酸化物の製造方法において、まず、リチウム以外の金属、すなわち、Ni及びCoから構成される必須金属を含み、並びに、所望によりMn、Mg、Ca、Sr、Ba、Zn、B、Al、Ga、Ti、Zr、Ge、Fe、Cu、Cr、V、W、Mo、Sc、Y、Nb、La、Ta、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnのうち1種以上の任意金属を含む金属複合化合物を調製し、当該金属複合化合物を適当なリチウム塩と焼成することが好ましい。金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。以下に、リチウム金属複合酸化物の製造方法の一例を、金属複合化合物の製造工程と、金属複合化合物とリチウム化合物との混合工程とに分けて説明する。
(金属複合化合物の製造工程)
 金属複合化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及び任意金属としてマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
 前記金属複合水酸化物は、共沈殿法、特に特開2002-201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、Ni(1-y-z)CoMn(OH)(式中、0<y≦0.5、0<z≦0.5)で表される金属複合水酸化物を沈殿させることにより製造する。
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れかを使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、及び塩化コバルトのうちの何れかを使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、及び塩化マンガンのうちの何れかを使用することができる。以上の金属塩は、上記Ni(1-y-z)CoMn(OH)の組成比に対応する割合で用いられる。すなわち、上記金属塩を含む混合溶液中におけるニッケル、コバルト、マンガンのモル比が、リチウム金属複合化合物の組成式(I)中の(1-y-z):y:zと対応するように各金属塩の量を規定する。
また、溶媒として水が使用される。
 錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。錯化剤は、所望により含まれていなくてもよく、錯化剤が含まれる場合、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩のモル数の合計に対するモル比が0より大きく2.0以下である。
 沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム及び水酸化カリウム)を添加する。
 上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、Ni(1-y-z)CoMn(OH)が製造される。反応に際しては、反応槽の温度が例えば20℃以上80℃以下、好ましくは30~70℃の範囲内で制御され、反応槽内のpH値は、例えば40℃測定時において、pH9以上pH13以下、好ましくはpH11~13の範囲内で制御され、反応槽内の物質が適宜撹拌される。反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプのものである。
 反応槽に供給する金属塩の濃度、攪拌速度、反応温度、反応pH、及び後述する焼成条件等を適宜制御することにより、最終的に得られるリチウム金属複合酸化物を所望の物性に制御することができる。
 以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケルコバルトマンガン金属複合化合物としてのニッケルコバルトマンガン金属複合水酸化物を単離する。また、必要に応じて弱酸水や水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄してもよい。
 なお、上記の例では、ニッケルコバルトマンガン金属複合水酸化物を製造しているが、ニッケルコバルトマンガン金属複合酸化物を調製してもよい。
 本実施形態は、金属として、必須金属であるニッケル及びコバルトと、任意金属であるマンガンを含む金属複合水酸化物を用いた場合に限定されず、必須金属であるニッケル及びコバルトを含む金属複合水酸化物を用いることもできる。また、金属として、必須金属であるニッケル及びコバルトと、任意金属であるアルミニウムを含む金属複合水酸化物を用いることや、必須金属であるニッケル及びコバルトと、任意金属であるマンガン及びアルミニウムを含む金属複合水酸化物を用いることもできる。この場合には、アルミニウム塩として、例えば硫酸アルミニウムが使用できる。
(混合工程)
 上記金属複合酸化物又は水酸化物を乾燥した後、リチウム塩と混合する。乾燥条件は、特に制限されないが、例えば、金属複合酸化物又は水酸化物が酸化及び還元されない条件(すなわち酸化物が酸化物のまま維持される、水酸化物が水酸化物のまま維持される条件)、金属複合水酸化物が酸化される条件(すなわち水酸化物が酸化物に酸化される条件)、金属複合酸化物が還元される条件(すなわち酸化物が水酸化物に還元される)のいずれの条件でもよい。酸化及び還元がされない条件のためには、窒素、ヘリウム及びアルゴン等の希ガス等の不活性ガスを使用すればよく、水酸化物が酸化される条件では、酸素又は空気を雰囲気下として行えばよい。また、金属複合酸化物が還元される条件としては、不活性ガス雰囲気下、ヒドラジン、及び亜硫酸ナトリウム等の還元剤を使用すればよい。リチウム化合物としては、炭酸リチウム、硝酸リチウム、硫酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウム、塩化リチウム、フッ化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。これらの中では、水酸化リチウム及び炭酸リチウムのいずれか一方又は両方が好ましい。
 金属複合酸化物又は水酸化物の乾燥後に、適宜分級を行ってもよい。以上のリチウム塩と金属複合水酸化物とは、最終目的物の組成比を勘案して用いられる。
 本実施形態においては、前記金属複合化合物中の金属元素に対する、前記リチウム化合物中のリチウムの比(モル比)が1を超える比率となるように混合する。
 例えば、ニッケルコバルトマンガン複合水酸化物を用いる場合、リチウム化合物と当該金属複合水酸化物は、Li[Li(Ni(1-y-z)CoMn1-x]O(式中、0<x≦0.2)の組成比に対応する割合で用いられる。
 (焼成工程)
 ニッケルコバルトマンガン金属複合水酸化物及びリチウム化合物の混合物を焼成することによって、リチウム-ニッケルコバルトマンガン複合酸化物が得られる。焼成には、酸素雰囲気が用いられ、必要ならば複数の加熱工程が実施される。
 上記金属複合酸化物又は水酸化物と、水酸化リチウム、炭酸リチウム等のリチウム化合物との焼成温度としては、特に制限はないが、600℃以上1100℃以下であることが好ましく、650℃以上1050℃以下であることがより好ましく、700℃以上1025℃以下がさらに好ましい。
 焼成時間は、3時間~50時間が好ましい。焼成時間が50時間を超えると、リチウムの揮発によって実質的に電池性能に劣る傾向となる。つまり焼成時間が50時間以内であると、リチウムの揮発を抑制することができる。焼成時間が3時間より少ないと、結晶の発達が悪く、電池性能が悪くなる傾向となる。つまり焼成時間が3時間以上であると、結晶の発達が良好となり、電池性能が良好となる傾向となる。
 焼成時間は、昇温開始から達温して温度保持が終了するまでの合計時間を1時間以上30時間以下とすることが好ましい。合計時間が30時間以下であると、Liの揮発を防止でき、電池性能の劣化を防止できる。合計時間が1時間以上であると、結晶の発達が良好に進行し、電池性能を向上させることができる。
 昇温開始から焼成温度に達するまでの時間は、0.5時間以上20時間以下であることが好ましい。昇温開始から焼成温度に達するまでの時間がこの範囲であると、より均一なリチウム金属複合化合物を得ることができる。
 なお、上記の焼成の前に、仮焼成を行うことも有効である。この様な仮焼成の温度は、300~850℃の範囲で、1~10時間行うことが好ましい。
(洗浄工程)
 焼成後に、得られた焼成物を洗浄する。洗浄には、純水やアルカリ性洗浄液を用いることができる。
 アルカリ性洗浄液としては、例えば、LiOH(水酸化リチウム)、NaOH(水酸化ナトリウム)、KOH(水酸化カリウム)、LiCO(炭酸リチウム)、NaCO(炭酸ナトリウム)、KCO(炭酸カリウム)及び(NHCO(炭酸アンモニウム)からなる群より選ばれる1種以上の無水物又はにその水和物の水溶液を挙げることができる。また、アルカリ成分として、アンモニアを使用することもできる。
 洗浄工程における洗浄液の量は、焼成後のリチウム金属複合酸化物の質量に対して0.5~20倍量であることが好ましく、1~10倍量であることがより好ましい。洗浄液の量が、焼成後のリチウム金属複合酸化物に対して0.5~20倍量であると、リチウム金属複合酸化物からのリチウムの溶出をより抑制でき、かつ製造されるリチウム金属複合酸化物中に、アルカリ金属を含有する化合物が残留することを抑制できる。
 洗浄工程におけるリチウム金属複合酸化物の粒子径は、リチウム金属複合酸化物の平均二次粒子径は、1~30μmであることが好ましく、3~20μmであることがより好ましい。リチウム金属複合酸化物の平均二次粒子径は、レーザー回折散乱粒度分布測定装置を用いて測定できる。具体的には、レーザー回折粒度分布計(株式会社堀場製作所製、型番:LA-950)を用い、リチウムニッケル複合酸化物0.1gを、0.2質量%ヘキサメタリン酸ナトリウム水溶液50mlに投入し、リチウムニッケル複合酸化物料を分散させた分散液を得る。得られた分散液について粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、50%累積時の微小粒子側から見た粒子径(D50)の値を、リチウムニッケル複合酸化物の平均二次粒子径とする。
 洗浄工程において、洗浄液とリチウム金属複合酸化物とを接触させる方法としては、各洗浄液の水溶液中に、リチウム金属複合酸化物を投入して撹拌する方法や、各洗浄液の水溶液をシャワー水として、リチウム金属複合化合物にかける方法や、前記洗浄液の水溶液中に、リチウム金属複合酸化物を投入して撹拌した後、各洗浄液の水溶液からリチウム金属複合酸化物を分離し、次いで、各洗浄液の水溶液をシャワー水として、分離後のリチウム金属複合酸化物にかける方法が挙げられる。
 また、前記洗浄工程後、前記熱処理工程の前に乾燥工程を有することが好ましい。
 乾燥工程のリチウムニッケル複合酸化物を乾燥する温度やその方法は特に限定されないが、乾燥温度は、充分に水分を除去する観点から、30℃以上であることが好ましく、40℃以上であることがより好ましく、50℃以上であることがさらに好ましい。また、後述するように、酸化ニッケルの層が形成するのを防止する観点から、300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましい。つまり、乾燥温度は、30℃以上300℃以下であることが好ましく、40℃以上250℃以下であることがより好ましく、50℃以上200℃以下であることがさらに好ましい。
(熱処理工程)
 上記洗浄工程後、ろ過等により洗浄液から洗浄物を分離する。その後昇温速度100℃/hr以上、かつ、保持温度が550℃を超え、900℃以下で洗浄物を熱処理する。
 本明細書における昇温速度及び保持温度は、それぞれ、熱処理工程における熱処理装置の設定昇温速度及び設定保持温度を意味する。
 熱処理工程は、前記洗浄工程後の洗浄物の水分を除去する工程である。水分を蒸発させ、除去するためには、洗浄物を400℃付近の温度で熱処理すればよいが、本発明者らは、400℃付近の温度で熱処理すると、リチウム金属複合酸化物の粒子表面のニッケル成分が酸化され、酸化ニッケル層の生成が促進されるという現象を発見した。酸化ニッケル層の生成は、電力容量維持率の低下の原因となると推察される。
 そこで、本実施形態においては、短時間で高温に昇温させ、酸化ニッケル層が生成する温度領域の保持時間を短くすることで、酸化ニッケル層の生成を抑制しつつ、水分を除去することができる。
 本実施形態において昇温速度は、焼成装置において、昇温を開始した時間から後述の保持温度に到達するまでの時間から算出される。昇温速度は、110℃/hr以上が好ましく、120℃/hr以上がより好ましく、130℃/hr以上が特に好ましい。
 また、昇温速度の上限値は特に限定されず、使用する装置の最高昇温速度まで上げることができるが、一例を挙げると、600℃/hr以下が好ましく、500℃/hr以下がより好ましく、400℃/hr以下が特に好ましい。
 昇温速度の上限値と下限値は、任意に組み合わせることができる。例えば、昇温速度は、110℃/hr以上600℃/hr以下が好ましく、120℃/hr以上500℃/hr以下がより好ましく、130℃/hr以上400℃/hr以下が特に好ましい。
 昇温速度を上記特定の範囲とすることにより、酸化ニッケル層が生成する温度領域の保持時間を短くすることができ、リチウム金属複合酸化物の粒子表面に酸化ニッケル層が生成することを抑制できると推察される。
 本実施形態において保持温度は、焼成装置において、1時間以上、特定の設定温度で保持する温度であり、実際の温度は、多少変化(±5℃)しても構わない。熱処理工程の保持温度は、570℃以上が好ましく、600℃以上がより好ましく、650℃以上が特に好ましい。また、保持温度は850℃以下が好ましく、800℃以下がより好ましく、750℃以下が特に好ましい。
 熱処理工程の保持温度の上限値と下限値は、任意に組み合わせることができる。例えば、熱処理工程の保持温度は、570℃以上850℃以下が好ましく、600℃以上800℃以下がより好ましく、650℃以上750℃以下が特に好ましい。
 熱処理工程を上記の下限値以上の温度で行うことにより、酸化ニッケル層の生成を抑制しつつ水分を十分に除去できる。また、熱処理工程を上記上限値以下の温度で行うことにより、リチウム金属複合酸化物の層構造の崩れを抑制できる。言い換えれば、熱処理工程を上記上限値以下の温度で行うことにより、リチウム金属複合酸化物を、CuKα線を使用した粉末X線回折測定を行った場合において、2θ=18.7±1°の範囲内のピークにおける積分強度Aと、2θ=44.6±1°の範囲内のピークにおける積分強度Bとの比(A/B)が1.20以上1.29以下となるよう制御することができる。
 本実施形態においては、金属として、特にニッケル、コバルト、マンガン及びアルミニウムを含む金属複合水酸化物を用いた場合に、積分強度比(A/B)を本発明の好ましい範囲に制御しやすい傾向にあり、また、熱処理工程の保持温度を680℃以上720℃以下に調整すると、積分強度比(A/B)を本発明の好ましい範囲に制御しやすい傾向にある。
 上記熱処理工程の後、粉砕後に適宜分級され、リチウム二次電池に適用可能な正極活物質とされる。
(被覆層の形成)
 本実施形態においては、前記洗浄工程後であって、前記熱処理工程の前に、前記リチウム金属複合酸化物とAlとを混合し、前記熱処理工程において、前記リチウム金属複合酸化物の粒子表面にLiとAlとを含むリチウム含有金属複合酸化物の被覆粒子又は被覆層を形成することが好ましい。リチウム含有金属複合酸化物の被覆粒子又は被覆層を形成することで前記リチウム金属複合酸化物の水分量を低減することができる。
 また、前記洗浄工程後、前記熱処理工程の前に乾燥工程を有することが好ましい。乾燥工程は、送風乾燥、真空乾燥などによってもよく、さらにこれらを組み合わせてもよい。
 熱処理によって行う場合、加熱温度は50℃~300℃が好ましく、100℃~200℃がより好ましい。
 被覆粒子又は被覆層を形成する場合には、被覆材原料及びリチウム金属複合酸化物を混合して、必要に応じて熱処理することによりリチウム金属複合酸化物の一次粒子又は二次粒子の表面にリチウム含有金属複合酸化物からなる被覆粒子又は被覆層を形成できる。
 本明細書において、被覆粒子とは、リチウム金属複合酸化物の表面に付着する粒子を意味する。被覆層とは、リチウム金属複合酸化物の表面の少なくとも一部を覆う層を意味する。被覆層とリチウム金属複合酸化物との接触面積は、1つの被覆粒子とリチウム金属複合酸化物の表面との接触面積より大きい。
 上述のように、被覆層は、リチウム金属複合酸化物の表面の少なくとも一部を覆っていればよく、リチウム金属複合酸化物の表面全てを覆っていなくてもよい。例えば、リチウム金属複合酸化物の表面の少なくとも30%を覆っていればよい。
 被覆材原料は、アルミニウム、ホウ素、チタン、ジルコニウム、及びタングステンからなる群から選ばれる1種以上の元素の酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、ハロゲン化物、シュウ酸塩又はアルコキシドを用いることができ、酸化物であることが好ましい。被覆材原料は、例えば、酸化アルミニウム、水酸化アルミニウム、硫酸アルミニウム、塩化アルミニウム、アルミニウムアルコキシド、酸化ホウ素、ホウ酸、酸化チタン、塩化チタン、チタンアルコキシド、酸化ジルコニウム、塩化ジルコニウム、酸化タングステン、タングステン酸等が挙げられる。被覆原材料としては、酸化アルミニウム、水酸化アルミニウム、酸化ホウ素、ホウ酸、酸化チタン、酸化ジルコニウム及び酸化タングステンが好ましい。
 リチウム金属複合酸化物の表面に被覆材原料をより効率的に被覆するため、被覆材原料はリチウム金属複合酸化物の二次粒子に比べて微粒であることが好ましい。具体的には、リチウム金属複合酸化物の平均二次粒子径は、1~30μmであることが好ましく、3~20μmであることがより好ましい。被覆材原料の平均二次粒子径は、1μm以下であることが好ましく、0.5μm以下であることがより好ましく、0.2μm以下であることがさらに好ましい。被覆材原料の平均二次粒子径の下限は小さいほど好ましいが、例えば0.001μmである。
 被覆材料の平均二次粒子径もリチウム金属複合酸化物の平均二次粒子径の測定と同じ手順で測定される。
 被覆材原料及びリチウム金属複合酸化物の混合は、リチウム金属複合酸化物製造時における混合と同様にして行えばよい。攪拌翼を内部に備えた粉体混合機を用いて混合する方法など、ボールなどの混合メディアを備えず、強い粉砕を伴わない混合装置を用いて混合する方法が好ましい。また、混合後に水を含有する雰囲気中において、保持させることによって被覆層をリチウム金属複合化合物の表面により強固に付着させることができる。
 被覆材原料及びリチウム金属複合酸化物の混合時における被覆材原料の割合は、被覆材原料及びリチウム金属複合酸化物の総質量に対し、0.01~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。
 被覆材原料及びリチウム金属複合酸化物の混合後に、前記熱処理工程を行うことにより、リチウム金属複合酸化物の一次粒子又は二次粒子の表面にリチウム含有金属複合酸化物からなる被覆粒子又は被覆層を形成できる。
 リチウム金属複合酸化物の一次粒子又は二次粒子の表面に、被覆層を備えたリチウム金属複合酸化物は、適宜解砕、分級され、リチウム二次電池用正極活物質とされる。
 本実施形態において、リチウム金属複合酸化物は下記組成式(I)で表されるα-NaFeO型の結晶構造を有するものが好ましい。
 Li[Li(Ni(1-y-z-w)CoMn1-x]O2 ・・・(I)
(式(I)中、0<x≦0.2、0<y≦0.5、0≦z≦0.5、0≦w≦0.1、0<y+z+w<1、MはMg、Ca、Sr、Ba、Zn、B、Al、Ga、Ti、Zr、Ge、Fe、Cu、Cr、V、W、Mo、Sc、Y、Nb、La、Ta、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選択される1種以上の金属を表す。)
 サイクル特性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるxは0を超えることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、前記組成式(I)におけるxは0.1以下であることが好ましく、0.08以下であることがより好ましく、0.06以下であることがさらに好ましい。
 xの上限値と下限値は任意に組み合わせることができる。例えば、xは0を超え、0.1以下であることが好ましく、0.01以上0.08以下であることがより好ましく、0.02以上0.06以下であることがさらに好ましい。
 また、電池抵抗が低いリチウム二次電池を得る観点から、前記組成式(I)におけるyは0.005以上であることが好ましく、0.01以上であることがより好ましく、0.05以上であることがさらに好ましい。また、熱的安定性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるyは0.35以下であることがより好ましく、0.33以下であることがさらに好ましい。
 yの上限値と下限値は任意に組み合わせることができる。例えば、yは0.005以上0.35以下であることが好ましく、0.01以上0.33以下であることがより好ましく、0.05以上0.33以下であることがさらに好ましい。
 また、サイクル特性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるzは0.01以上であることが好ましく、0.02以上であることがより好ましく、0.1以上であることがさらに好ましい。また、高温(例えば60℃環境下)での保存特性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるzは0.4以下であることが好ましく、0.38以下であることがより好ましく、0.35以下であることがさらに好ましい。
  zの上限値と下限値は任意に組み合わせることができる。例えば、zは0.01以上0.4以下であることが好ましく、0.02以上0.38以下であることがより好ましく、0.1以上0.35以下であることがさらに好ましい。
 また、電池抵抗が低いリチウム二次電池を得る観点から、前記組成式(I)におけるwは0を超えることが好ましく、0.0005以上であることがより好ましく、0.001以上であることがさらに好ましい。また、高い電流レートにおいて放電容量が高いリチウム二次電池を得る観点から、前記組成式(I)におけるwは0.09以下であることが好ましく、0.08以下であることがより好ましく、0.07以下であることがさらに好ましい。
  wの上限値と下限値は任意に組み合わせることができる。wは0を超え、0.09以下であることが好ましく、0.0005以上0.08以下であることがより好ましく、0.001以上0.07以下であることがさらに好ましい。
 前記組成式(I)におけるy+z+wは0を超え、1未満が好ましく、0を超え、0.3以下がより好ましい。本実施形態のリチウム金属複合酸化物の製造方法によれば、酸化ニッケルの生成を抑制できるため、ニッケルの含有量が高いリチウム金属複合酸化物を好適に製造できると推察される。
 前記組成式(I)におけるMは、Mg、Ca、Sr、Ba、Zn、B、Al、Ga、Ti、Zr、Ge、Fe、Cu、Cr、V、W、Mo、Sc、Y、Nb、La、Ta、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選択される1種以上の金属を表す。
 また、サイクル特性が高いリチウム二次電池を得る観点から、組成式(I)におけるMは、Ti、Mg、Al、W、B、及びZrからなる群より選択される1種以上の金属であることが好ましく、熱的安定性が高いリチウム二次電池を得る観点から、Al、W、B、及びZrからなる群より選択される1種以上の金属であることが好ましい。
 本実施形態のリチウム金属複合酸化物は、CuKα線を使用した粉末X線回折測定したとき、2θ=18.7±1°の範囲内のピークにおける積分強度Aと、2θ=44.4±1°の範囲内のピークにおける積分強度Bとの比(A/B)は1.20以上であることが好ましい。また、A/Bは1.29以下が好ましく、1.25以下がより好ましく、1.24以下がさらにより好ましい。
 A/Bの上限値と下限値は任意に組み合わせることができる。例えば、2θ=18.7±1°の範囲内のピークにおける積分強度Aと、2θ=44.4±1°の範囲内のピークにおける積分強度Bとの比(A/B)は1.20以上1.29以下が好ましく、1.20以上1.25以下がより好ましく、1.20以上1.24以下がさらにより好ましい。
 なお、CuKα線を使用した粉末X線回折測定したとき、2θ=18.7±1°の範囲内のピークにおける積分強度Aと、2θ=44.4±1°の範囲内のピークにおける積分強度Bとの比(A/B)は、リチウムと遷移金属のカチオンミキシングの指標である。A/Bが1.20を下回ると、カチオンミキシングが増大し、リチウムの拡散経路に遷移金属が存在するためリチウム拡散が阻害され、結果、レート特性が下がる。
 本実施形態のリチウム金属複合酸化物の積分強度Aと積分強度Bは、以下のようにして確認することが出来る。
 まず、CuKα線を使用した粉末X線回折測定により、リチウム金属複合酸化物の2θ=18.7±1°の範囲内の回折ピーク(以下、ピークA’と呼ぶこともある)、及び2θ=44.4±1°の範囲内の回折ピーク(以下、ピークB’と呼ぶこともある)を決定する。
 さらに、決定したピークA’の積分強度A及びピークB’の積分強度Bを算出し、積分強度Aと積分強度Bの比(A/B)を算出する。
(BET比表面積)
 本実施形態において、高い電流レートでの放電容量が高いリチウム二次電池用正極活物質を得る観点から、リチウム金属複合酸化物のBET比表面積(m/g)は、1.2m/g以下が好ましく、0.8m/g以下がより好ましく、0.5m/g以下が特に好ましい。下限値は特に限定されないが、一例を挙げると、0.1m/g以上であることが好ましく、0.15m/g以上であることがより好ましく、0.20m/g以上であることがさらに好ましい。
 リチウム金属複合酸化物のBET比表面積(m/g)の上限値と下限値は任意に組み合わせることができる。例えば、リチウム金属複合酸化物のBET比表面積(m/g)は、0.1m/g以上1.2m/g以下が好ましく、0.15m/g以上0.8m/g以下がより好ましく、0.20m/g以上0.5m/g以下が特に好ましい。
(層状構造)
 リチウムニッケル複合酸化物の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、及びP6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。
 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、及びC2/cからなる群から選ばれるいずれか一つの空間群に帰属される。
 これらのうち、放電容量が高いリチウム二次電池を得る観点から、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが好ましく、空間群R-3mに帰属される六方晶型の結晶構造で、且つ、α―NaFeO型の結晶構造であることがより好ましい。
 本発明に用いるリチウム化合物は、炭酸リチウム、硝酸リチウム、硫酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウム、塩化リチウム、フッ化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。これらの中では、水酸化リチウム及び炭酸リチウムのいずれか一方又は両方が好ましい。
 リチウム二次電池用正極活物質のハンドリング性を高める観点から、リチウム金属複合酸化物に含まれる炭酸リチウム成分は、リチウム金属複合酸化物の総質量に対し0.4質量%以下であることが好ましく、0.39質量%以下であることがより好ましく、0.38質量%以下であることが特に好ましい。
 また、リチウム二次電池用正極活物質のハンドリング性を高める観点から、リチウム金属複合酸化物粉末に含まれる水酸化リチウム成分は、リチウム金属複合酸化物の総質量に対し0.35質量%以下であることが好ましく、0.25質量%以下であることがより好ましく、0.2質量%以下であることが特に好ましい。
 なお、一般式(I)には、炭酸リチウム及び水酸化リチウムに由来するH及びCを含んでいない。しかしながら、リチウム金属複合酸化物に含まれる炭酸
リチウム及び水酸化リチウムは、上述のように微量であるため、一般式(I)においてリチウム金属複合酸化物に含まれる炭酸リチウム及び水酸化リチウムに由来するH及びCは、不純物として省略している。
 熱的安定性が高いリチウム二次電池用正極活物質を得る観点から、本実施形態のリチウム金属複合酸化物は、リチウム金属複合酸化物の一次粒子又は二次粒子の表面に、LiとX(XはB、Al、Ti、Zr及びWからなる群より選ばれる1種以上の元素を表す。)とを含むリチウム含有金属複合酸化物からなる被覆粒子又は被覆層を備えることが好ましい。
 (被覆粒子又は被覆層)
 被覆粒子又は被覆層は、LiとXとを含むリチウム含有金属複合酸化物を含む。XはB、Al、Ti、Zr及びWから選ばれる1種以上であり、Al又はWであることが好ましい。
 なお、リチウム金属複合酸化物の粒子表面に被覆層を形成する場合、リチウム金属複合酸化物をコア材と呼ぶことがある。
 被覆粒子又は被覆層は、XとしてAlを選択した場合には、LiAlOであることが好ましい。さらにLiAlOである場合には被覆層のイオン伝導性向上の観点でα-LiAlOを含むことがより好ましい。
 被覆粒子又は被覆層は、XとしてWを選択した場合には、LiWO及びLiWOのいずれか1種以上であることが好ましい。
 本発明の効果を高める観点から、前記リチウム金属複合酸化物中の、NiとCoとMnとMの原子比の和に対する、前記被覆粒子又は被覆層におけるXの原子比の割合(X/(Ni+Co+Mn+M))が、0.05モル%以上5モル%以下が好ましい。(X/(Ni+Co+Mn+M))の上限値は、4モル%がより好ましく、3モル%が特に好ましい。
 (X/(Ni+Co+Mn+M))の下限値は、0.1モル%がより好ましく、1モル%が特に好ましい。上記上限値と下限値は任意に組み合わせることができる。例えば、(X/(Ni+Co+Mn+M))は、0.1モル%以上4モル%以下がより好ましく、1モル%以上3モル%以下が特に好ましい。
 本実施形態において、被覆層の組成の確認は、二次粒子断面のSTEM-EDX元素ライン分析、誘導結合プラズマ発光分析、電子線マイクロアナライザ分析などを用いることで行うことができる。被覆層の結晶構造の確認は、粉末X線回折や、電子線回折を用いて行うことができる。
 なお、リチウム金属複合酸化物の組成及び結晶構造と、被覆層の組成及び結晶構造は、それぞれ独立して確認することができる。
<リチウム二次電池>
 次いで、リチウム二次電池の構成を説明しながら、本発明のリチウム金属複合酸化物を、リチウム二次電池の正極活物質として用いた正極、及びこの正極を有するリチウム二次電池について説明する。
 本実施形態のリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図1A及び図1Bは、本実施形態のリチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
 次いで、図1Bに示すように、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、又は角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、又はペーパー型(又はシート型)電池を例示することができる。
 以下、各構成について順に説明する。
(正極)
 本実施形態の正極は、まず正極活物質、導電材及びバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
(導電材)
 本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率及び出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、及び正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
 正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
(バインダー)
 本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。
 この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂及びポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力及び正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
 本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができる。
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
 負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維及び有機高分子化合物焼成体を挙げることができる。
 負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど組成式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタン又はバナジウムとを含有する金属複合酸化物;を挙げることができる。
 負極活物質として使用可能な硫化物としては、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。
 負極活物質として使用可能な窒化物としては、LiN、Li3-xN(ここで、AはNi及びCoのいずれか一方又は両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。
 これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質又は非晶質のいずれでもよい。
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。
 負極活物質として使用可能な合金としては、Li-Al、Li-Ni、Li-Si、Li-Sn、Li-Sn-Niなどのリチウム合金;Si-Znなどのシリコン合金;Sn-Mn、Sn-Co、Sn-Ni、Sn-Cu、Sn-Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレン及びポリプロピレンを挙げることができる。
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
 このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
 本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
 本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。
 また、セパレータの空孔率は、セパレータの体積に対して好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。
(電解液)
 本実施形態のリチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム化合物、及びLiAlClなどのリチウム化合物が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF及びLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム化合物及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。
 上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS-SiS、LiS-GeS、LiS-P、LiS-B、LiS-SiS-LiPO、LiS-SiS-LiSO、及びLiS-GeS-Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。
 また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。
 以上のような構成の正極活物質は、上述した本実施形態のリチウム含有金属複合酸化物を用いているため、正極活物質を用いたリチウム二次電池の寿命を延ばすことができる。
 また、以上のような構成の正極は、上述した本実施形態のリチウム二次電池用正極活物質を有するため、リチウム二次電池の寿命を延ばすことができる。
 さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、従来よりも寿命の長いリチウム二次電池となる。
 本発明の別の側面は、リチウムイオンをドープ及び脱ドープ可能な、少なくともニッケルを含むリチウム金属複合酸化物の製造方法であって、少なくともニッケルを含む金属複合化合物とリチウム化合物とを混合し、混合物を得る混合工程と、前記混合物を酸素含有雰囲気で焼成し、焼成物を得る焼成工程と、前記焼成物を洗浄し、洗浄物を得る洗浄工程と、前記洗浄物を熱処理する熱処理工程と、
 を有し、前記混合工程において、前記金属複合化合物中の金属元素の総モル数に対する、前記リチウム化合物中のリチウムのモル数の比(モル比)が1を超える比率となるように混合し、前記熱処理工程を、昇温速度130℃/hr以上400℃/hr以下、かつ、保持温度が570℃以上850℃以下で行うことを特徴とするリチウム金属複合酸化物の製造方法。
 前記リチウム金属複合酸化物が下記組成式(I)で表されるα-NaFeO型の結晶構造を有する、リチウム金属複合酸化物の製造方法。
 Li[Li(Ni(1-y-z-w)CoMn1-x]O2 ・・・(I)
(式(I)中、0<x≦0.2、0<y≦0.5、0≦z≦0.5、0≦w≦0.1、0<y+z+w<1、MはMg、Ca、Sr、Ba、Zn、B、Al、Ga、Ti、Zr、Ge、Fe、Cu、Cr、V、W、Mo、Sc、Y、Nb、La、Ta、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選択される1種以上の金属を表す。)
 前記金属複合化合物は、ニッケル、コバルト、マンガン及びアルミニウムを含む。
 本発明の別の側面は、正極活物質としてリチウム金属複合酸化物を含むリチウム二次電池用正極と、前記リチウム二次電池用正極上のセパレータと、前記セパレータ上のリチウム二次電池用負極と、セパレータに注入されている電解液とを少なくとも含むR2032型リチウム二次電池を作製し、0.2C充放電試験条件を、試験温度25℃において、充電最大電圧4.3V、充電時間6時間、充電電流1.0CA、定電流定電圧充電とし、かつ放電最小電圧2.5V、放電時間5時間、放電電流0.2CA、定電流放電とし、3C充放電試験条件を、試験温度25℃において、充電最大電圧4.3V、充電時間6時間、充電電流1.0CA、定電流定電圧充電とし、かつ放電最小電圧2.5V、放電時間5時間、放電電流3.0CA、定電流放電とし、0.2C電力容量を0.2C放電容量×0.2C平均放電電圧で算出し、3.0C電力容量を3.0C放電容量×3.0C平均放電電圧で算出する場合、3C電力容量÷0.2C電力容量×100により算出された電力容量維持率が85~92%を示す特性を有する、リチウム金属複合酸化物を提供する。
 前記電力容量維持率は、86~92%を示す特性を有する、リチウム金属複合酸化物である。
 次に、本発明を実施例によりさらに詳細に説明する。
 本実施例においては、リチウム金属複合酸化物の評価、リチウム二次電池用正極及びリチウム二次電池の作製評価を、次のようにして行った。
<BET比表面積測定>
 リチウム金属複合酸化物粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、BET比表面積計(マウンテック社製、Macsorb(登録商標))を用いて測定した。
<粉末X線回折測定>
 粉末X線回折測定は、X線回折装置(PANalytical社製、X‘Pert PRO)を用いて行った。リチウム金属複合酸化物の粉末を専用の基板に充填し、Cu-Kα線源を用いて、回折角2θ=10°~90°の範囲にて測定を行うことで、粉末X線回折図形を得た。粉末X線回折パターン総合解析ソフトウェアJADE5を用い、前記粉末X線回折図形から2θ=18.7±1°の範囲内の回折ピークの半値幅A及び、2θ=44.4±1°の範囲内の回折ピークの半値幅Bを求め、A/Bを算出した。
    半値幅Aの回折ピーク: 2θ=18.7±1°
    半値幅Bの回折ピーク: 2θ=44.4±1°
<組成分析>
 後述の方法で製造されるリチウム金属複合酸化物の組成分析は、得られたリチウム金属複合酸化物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
<リチウム二次電池用正極の作製>
 後述する製造方法で得られるリチウム金属複合酸化物を正極活物質とし、前記正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いた。
 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得た。このリチウム二次電池用正極の電極面積は1.65cmとした。
<リチウム二次電池(コイン型ハーフセル)の作製>
 以下の操作を、アルゴン雰囲気のグローブボックス内で行った。
 「リチウム二次電池用正極の作製」で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置いた。ここに電解液を300μl注入した。電解液は、エチレンカーボネート(以下、ECと称することがある。)とジメチルカーボネート(以下、DMCと称することがある。)とエチルメチルカーボネート(以下、EMCと称することがある。)の30:35:35(体積比)混合液にLiPF6を1mol/lとなるように溶解したもの(以下、LiPF6/EC+DMC+EMCと表すことがある。)を用いた。
 負極としてリチウム金属を用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型電池R2032。以下、「コイン型ハーフセル」と称することがある。)を作製した。
<レート試験>
 <リチウム二次電池(コイン型ハーフセル)の作製>で作製したコイン型ハーフセルを用いて、以下に示す条件でレート試験を実施した。
<0.2C充放電試験条件>
 試験温度:25℃
 充電最大電圧4.3V、充電時間6時間、充電電流1.0CA、定電流定電圧充電
 放電最小電圧2.5V、放電時間5時間、放電電流0.2CA、定電流放電
<3C充放電試験条件>
試験温度:25℃
 充電最大電圧4.3V、充電時間6時間、充電電流1.0CA、定電流定電圧充電
 放電最小電圧2.5V、放電時間5時間、放電電流3.0CA、定電流放電
<電力容量の算出>
 0.2C電力容量を0.2C放電容量×0.2C平均放電電圧で算出した。
 3.0C電力容量を3.0C放電容量×3.0C平均放電電圧で算出した。
 0.2C、3.0C平均放電電圧は10秒又は10mVごとに抽出した電圧の平均値である。
<電力容量維持率の算出>
 3C電力容量÷0.2C電力容量×100で算出した。
<水分量の測定>
 水分量の測定は、電量法カールフィッシャー水分計(831 Coulometer、Metrohm社製)を用いて実施した。
(実施例1)
リチウム金属複合酸化物1の製造
[ニッケルコバルトマンガンアルミニウム複合水酸化物製造工程]
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液と硫酸アルミニウム水溶液を、ニッケル原子とコバルト原子とマンガン原子とアルミニウム原子の原子比が75:10:14:1となるように混合して、混合原料液を調製した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、窒素ガスを連続通気させた。反応槽内の溶液の40℃測定時におけるpHが12.0なるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガンアルミニウム複合水酸化物粒子を得て、水酸化ナトリウム溶液で洗浄した後、遠心分離機で脱水、単離し、105℃で乾燥することにより、ニッケルコバルトマンガンアルミニウム複合水酸化物1を得た。
[混合工程]
 以上のようにして得られたニッケルコバルトマンガンアルミニウム複合水酸化物1と水酸化リチウム粉末とをLi/(Ni+Co+Mn+Al)=1.07(モル比)となるように秤量して混合した。
[焼成工程]
 その後、上記混合工程で得られた混合物を、酸素雰囲気下820℃で6時間焼成し、焼成物1を得た。
[洗浄工程]
 その後、得られた焼成物1を3000gとり、3Lの水で洗浄した。洗浄工程は、焼成物1を、純水に加えて得られるスラリー状の液を10分間撹拌し、脱水することにより行った。
[乾燥工程]
 その後、上記洗浄工程で得られたウエットケーキを105℃で20時間乾燥させ、リチウム金属複合酸化物洗浄乾燥粉1を得た。
[熱処理工程]
 上記乾燥工程後、リチウム金属複合酸化物洗浄乾燥粉1を、室温から、昇温速度160℃/時間で700℃まで昇温し、5時間熱処理し、リチウム金属複合酸化物1を得た。
 リチウム金属複合酸化物1の評価
 得られたリチウム金属複合酸化物1の組成分析を行い、組成式(I)に対応させたところ、x=0.03、y=0.10、z=0.14、w=0.01であった。
(実施例2)
 リチウム金属複合酸化物2の製造
[ニッケルコバルトマンガン複合水酸化物製造工程]
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液を、ニッケル原子とコバルト原子とマンガン原子の原子比が75:10:15となるように混合して、混合原料液を調製した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、窒素ガスを連続通気させた。反応槽内の溶液の40℃測定時におけるpHが12.0になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、水酸化ナトリウム溶液で洗浄した後、遠心分離機で脱水、単離し、105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物2を得た。
[混合工程]
 以上のようにして得られたニッケルコバルトマンガン複合水酸化物2と水酸化リチウム粉末とをLi/(Ni+Co+Mn)=1.07(モル比)となるように秤量して混合した。
[焼成工程]
 その後、上記混合工程で得た混合物を酸素雰囲気下820℃で6時間焼成し、焼成物2を得た。
[洗浄工程]
 その後、得られた焼成物2を3000gとり、3Lの水で洗浄した。洗浄工程は、焼成物2を、純水に加えて得られるスラリー状の液を10分間撹拌し、脱水することにより行った。
[乾燥工程]
 その後、洗浄工程で得られたウエットケーキを105℃で20時間乾燥させ、リチウム金属複合酸化物洗浄乾燥粉2を得た。
[熱処理工程]
 乾燥工程後、リチウム金属複合酸化物洗浄乾燥粉2を、室温から、昇温速度200℃/時間で850℃まで昇温し、5時間熱処理し、リチウム金属複合酸化物2を得た。
 リチウム金属複合酸化物2の評価
 得られたリチウム金属複合酸化物2の組成分析を行い、組成式(I)に対応させたところ、x=0.04、y=0.10、z=0.15、w=0.00であった。
(実施例3、比較例1~3)
 上記リチウム金属複合酸化物洗浄乾燥粉2を、熱処理工程を下記表1に示す昇温速度、保持温度で行ったこと以外は実施例2と同様の方法により、それぞれリチウム金属複合酸化物3、H1~H3を製造した。
リチウム金属複合酸化物3の評価
 得られたリチウム金属複合酸化物3の組成分析を行い、組成式(I)に対応させたところ、x=0.04、y=0.10、z=0.15、w=0.00であった。
 リチウム金属複合酸化物H1の評価
 得られたリチウム金属複合酸化物H1の組成分析を行い、組成式(I)に対応させたところ、x=0.05、y=0.10、z=0.15、w=0.00であった。
 リチウム金属複合酸化物H2の評価
 得られたリチウム金属複合酸化物H2の組成分析を行い、組成式(I)に対応させたところ、x=0.01、y=0.10、z=0.15、w=0.00であった。
 リチウム金属複合酸化物H3の評価
 得られたリチウム金属複合酸化物H3の組成分析を行い、組成式(I)に対応させたところ、x=0.04、y=0.10、z=0.15、w=0.00であった。
(実施例4)
 リチウム金属複合酸化物4の製造
[ニッケルコバルトマンガンアルミニウム複合水酸化物製造工程]
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液と硫酸アルミニウム水溶液を、ニッケル原子とコバルト原子とマンガン原子とアルミニウム原子の原子比が90:7:2:1となるように混合して、混合原料液を調製した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、窒素ガスを連続通気させた。反応槽内の溶液の40℃測定時におけるpHが12.0になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガンアルミニウム複合水酸化物粒子を得て、水酸化ナトリウム溶液で洗浄した後、遠心分離機で脱水、単離し、105℃で乾燥することにより、ニッケルコバルトマンガンアルミニウム複合水酸化物4を得た。
[混合工程]
 以上のようにして得られたニッケルコバルトマンガンアルミニウム複合水酸化物4と水酸化リチウム粉末とをLi/(Ni+Co+Mn+Al)=1.07(モル比)となるように秤量して混合した。
[焼成工程]
 その後、上記混合工程で得られた混合物を酸素雰囲気下820℃で6時間焼成し、焼成物4を得た。
[洗浄工程]
 その後、得られた焼成物4を3000gとり、7Lの水で洗浄した。洗浄工程は、焼成物4を、純水に加えて得られるスラリー状の液を10分間撹拌し、脱水することにより行った。
[乾燥工程]
 その後、乾燥工程で得られたウエットケーキを105℃で20時間乾燥させ、リチウム金属複合酸化物洗浄乾燥粉4を得た。
[熱処理工程]
 上記乾燥工程後、リチウム金属複合酸化物洗浄乾燥粉4を、室温から、昇温速度170℃/時間で740℃まで昇温し、5時間熱処理し、リチウム金属複合酸化物4を得た。
 リチウム金属複合酸化物4の評価
 得られたリチウム金属複合酸化物4の組成分析を行い、組成式(I)に対応させたところ、x=0.04、y=0.07、z=0.02、w=0.01であった。
(実施例5)
 上記リチウム金属複合酸化物洗浄乾燥粉4のICP組成分析の結果、Ni:Co:Mn:Al=90:7:2:1の原子比であった。リチウム金属複合酸化物洗浄乾燥粉4を熱処理工程前にリチウム金属複合酸化物洗浄乾燥粉4に含まれるNi+Co+Mn+Alの原子数に対してAlに含まれるAlの原子数比が0.015となるように秤量し、混合する以外は実施例4と同様の方法により、リチウム金属複合酸化物5を製造した。
 得られたリチウム金属複合酸化物5の粒子の断面STEM-EDX分析により、リチウム金属複合酸化物(コア材)の二次粒子表面に被覆層を備えることが分かった。また、リチウム金属複合酸化物5のICP組成分析及び結晶構造分析から、被覆層は、LiAlOを含有し、リチウム金属複合酸化物5のコア材に含まれるNi+Co+Mn+Alの原子数に対する、被覆層におけるAlの原子数比は0.015であった。
 得られたリチウム金属複合酸化物5に含まれるリチウム金属複合酸化物(コア材)粒子の断面STEM-EDX分析及びICP組成分析を行い、組成式(I)に対応させたところ、x=0.01、y=0.07、z=0.02、w=0.01であった。
(比較例4)
 上記リチウム金属複合酸化物4を、熱処理工程を下記表1に示す昇温速度、保持温度で行ったこと以外は実施例4と同様の方法により、リチウム金属複合酸化物H4を製造した。
 得られたリチウム金属複合酸化物H4の組成分析を行い、組成式(I)に対応させたところ、x=0.01、y=0.07、z=0.02、w=0.01であった。
 表1に、実施例1~5、比較例1~4の組成、昇温速度、保持温度、0.2C後と3C後の容量及び容量維持率をまとめて記載する。被覆した場合はコア材の組成を記載する。
Figure JPOXMLDOC01-appb-T000001
 表2に、実施例1~5、比較例1~4の積分強度A、B、積分強度比(A/B)、BET比表面積をまとめて記載する。
Figure JPOXMLDOC01-appb-T000002
 上記表1に示した通り、本発明を適用した実施例1~5は、本発明を適用しない比較例1~4に比べて、電力容量維持率が85%以上と高かった。これは、本発明を適用した場合には、リチウム金属複合化合物の表面の酸化ニッケル層の形成が抑制できたことを意味すると考えられる。
 本発明によれば水分を除去し、かつ、酸化ニッケルの生成を抑制できるリチウム金属複合酸化物の製造方法を提供することができる。
 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード

Claims (7)

  1.  リチウムイオンをドープ及び脱ドープ可能な、少なくともニッケルを含むリチウム金属複合酸化物の製造方法であって、
     少なくともニッケルを含む金属複合化合物とリチウム化合物とを混合し、混合物を得る混合工程と、
     前記混合物を酸素含有雰囲気で焼成し、焼成物を得る焼成工程と、
     前記焼成物を洗浄し、洗浄物を得る洗浄工程と、
     前記洗浄物を熱処理する熱処理工程と、
     を有し、
     前記混合工程において、前記金属複合化合物中の金属元素の総モル数に対する、前記リチウム化合物中のリチウムのモル数の比(モル比)が1を超える比率となるように混合し、
     前記熱処理工程を、昇温速度100℃/hr以上、かつ、保持温度が550℃を超え、900℃以下で行うことを特徴とするリチウム金属複合酸化物の製造方法。
  2.  前記熱処理工程を、昇温速度600℃/hr以下で行う、請求項1に記載のリチウム金属複合酸化物の製造方法。
  3.  前記リチウム金属複合酸化物が下記組成式(I)で表されるα-NaFeO型の結晶構造を有する、請求項1又は2に記載のリチウム金属複合酸化物の製造方法。
      Li[Li(Ni(1-y-z-w)CoMn1-x]O2 ・・・(I)
    (式(I)中、0<x≦0.2、0<y≦0.5、0≦z≦0.5、0≦w≦0.1、0<y+z+w<1、MはMg、Ca、Sr、Ba、Zn、B、Al、Ga、Ti、Zr、Ge、Fe、Cu、Cr、V、W、Mo、Sc、Y、Nb、La、Ta、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選択される1種以上の金属を表す。)
  4.  前記組成式(I)において、0<y+z+w≦0.3となる、請求項3に記載のリチウム金属複合酸化物の製造方法。
  5.  前記洗浄工程後であって、前記熱処理工程の前に、前記リチウム金属複合酸化物とAlとを混合し、前記熱処理工程において、前記リチウム金属複合酸化物の粒子表面にAl被覆層を形成する、請求項1~4のいずれか1項に記載のAl被覆層を含むリチウム金属複合酸化物の製造方法。
  6.  前記リチウム金属複合酸化物を、CuKα線を使用した粉末X線回折測定を行った場合において、2θ=18.7±1°の範囲内のピークにおける積分強度Aと、2θ=44.6±1°の範囲内のピークにおける積分強度Bとの比(A/B)が1.20以上1.29以下となる、請求項1~5のいずれか1項に記載のリチウム金属複合酸化物の製造方法。
  7.  前記リチウム金属複合酸化物の比表面積が1.2m/g以下である、請求項1~6のいずれか1項に記載のリチウム金属複合酸化物の製造方法。
PCT/JP2018/012881 2017-03-31 2018-03-28 リチウム金属複合酸化物の製造方法 WO2018181530A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197027858A KR102480533B1 (ko) 2017-03-31 2018-03-28 리튬 금속 복합 산화물의 제조 방법
CN201880021372.9A CN110461770B (zh) 2017-03-31 2018-03-28 锂金属复合氧化物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072871 2017-03-31
JP2017072871A JP6879803B2 (ja) 2017-03-31 2017-03-31 リチウム金属複合酸化物の製造方法

Publications (1)

Publication Number Publication Date
WO2018181530A1 true WO2018181530A1 (ja) 2018-10-04

Family

ID=63675970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012881 WO2018181530A1 (ja) 2017-03-31 2018-03-28 リチウム金属複合酸化物の製造方法

Country Status (4)

Country Link
JP (1) JP6879803B2 (ja)
KR (1) KR102480533B1 (ja)
CN (1) CN110461770B (ja)
WO (1) WO2018181530A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113661146A (zh) * 2019-04-12 2021-11-16 住友化学株式会社 锂金属复合氧化物粉末以及锂二次电池用正极活性物质
CN113677628A (zh) * 2019-04-12 2021-11-19 住友化学株式会社 锂金属复合氧化物粉末、锂二次电池用正极活性物质以及锂金属复合氧化物粉末的制造方法
JP7454642B1 (ja) 2022-12-22 2024-03-22 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6630865B1 (ja) * 2019-04-12 2020-01-15 住友化学株式会社 リチウム複合金属酸化物粉末及びリチウム二次電池用正極活物質
KR102618005B1 (ko) * 2020-08-18 2023-12-27 주식회사 엘지화학 양극 활물질의 제조 방법
EP4201888A1 (en) * 2020-08-19 2023-06-28 Sumitomo Chemical Company, Limited Method for producing lithium metal composite oxide
KR102461125B1 (ko) * 2020-10-27 2022-11-01 주식회사 에코프로비엠 리튬 이차전지용 양극 활물질의 제조 방법
CN113328210B (zh) * 2021-05-27 2022-09-27 贵州梅岭电源有限公司 一种锂电池锂金属负极板及其制备方法
CN113328211B (zh) * 2021-05-27 2022-09-27 贵州梅岭电源有限公司 一种高能量密度锂一次电池负极板及其制备方法
KR20240058235A (ko) * 2022-10-25 2024-05-03 주식회사 에코프로비엠 리튬 복합 산화물 및 이를 포함하는 이차전지용 양극활물질

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216472A (ja) * 2010-03-18 2011-10-27 Sumitomo Chemical Co Ltd 正極用粉末
JP2013033698A (ja) * 2010-09-02 2013-02-14 Sumitomo Chemical Co Ltd 正極活物質の製造方法および正極活物質
JP2013095603A (ja) * 2011-10-28 2013-05-20 Sumitomo Chemical Co Ltd リチウム複合金属酸化物の製造方法、リチウム複合金属酸化物および非水電解質二次電池用二次電池
WO2014007357A1 (ja) * 2012-07-06 2014-01-09 住友化学株式会社 リチウム複合金属酸化物、正極活物質、正極および非水電解質二次電池
JP2015041583A (ja) * 2013-08-23 2015-03-02 日本電気株式会社 リチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4427351B2 (ja) * 2003-02-21 2010-03-03 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質および非水系電解質二次電池
JP2011057518A (ja) * 2009-09-11 2011-03-24 Kansai Shokubai Kagaku Kk 高密度ニッケル・コバルト・マンガン共沈水酸化物及びその製造方法
JP6088513B2 (ja) * 2012-07-06 2017-03-01 住友化学株式会社 正極活物質、正極および非水電解質二次電池
KR102325781B1 (ko) 2013-05-22 2021-11-15 스미토모 긴조쿠 고잔 가부시키가이샤 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법
JP6319632B2 (ja) * 2014-07-23 2018-05-09 株式会社豊田自動織機 リチウムイオン二次電池用正極とその製造方法及びリチウムイオン二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216472A (ja) * 2010-03-18 2011-10-27 Sumitomo Chemical Co Ltd 正極用粉末
JP2013033698A (ja) * 2010-09-02 2013-02-14 Sumitomo Chemical Co Ltd 正極活物質の製造方法および正極活物質
JP2013095603A (ja) * 2011-10-28 2013-05-20 Sumitomo Chemical Co Ltd リチウム複合金属酸化物の製造方法、リチウム複合金属酸化物および非水電解質二次電池用二次電池
WO2014007357A1 (ja) * 2012-07-06 2014-01-09 住友化学株式会社 リチウム複合金属酸化物、正極活物質、正極および非水電解質二次電池
JP2015041583A (ja) * 2013-08-23 2015-03-02 日本電気株式会社 リチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113661146A (zh) * 2019-04-12 2021-11-16 住友化学株式会社 锂金属复合氧化物粉末以及锂二次电池用正极活性物质
CN113677628A (zh) * 2019-04-12 2021-11-19 住友化学株式会社 锂金属复合氧化物粉末、锂二次电池用正极活性物质以及锂金属复合氧化物粉末的制造方法
CN113677628B (zh) * 2019-04-12 2024-02-20 住友化学株式会社 锂金属复合氧化物粉末、锂二次电池用正极活性物质以及锂金属复合氧化物粉末的制造方法
JP7454642B1 (ja) 2022-12-22 2024-03-22 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2024135203A1 (ja) * 2022-12-22 2024-06-27 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Also Published As

Publication number Publication date
KR20190127756A (ko) 2019-11-13
CN110461770A (zh) 2019-11-15
KR102480533B1 (ko) 2022-12-22
JP2018172257A (ja) 2018-11-08
JP6879803B2 (ja) 2021-06-02
CN110461770B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
JP6412094B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6026679B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
JP6108141B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
US11365130B2 (en) Positive electrode active material precursor for lithium secondary battery, and method for manufacturing positive electrode active material for lithium secondary battery
JP6871888B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2015182665A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018181530A1 (ja) リチウム金属複合酸化物の製造方法
WO2016060105A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018110256A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
KR102437198B1 (ko) 리튬 2 차 전지용 정극 활물질, 리튬 2 차 전지용 정극 및 리튬 2 차 전지
WO2018105490A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US11283073B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2017078136A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池
WO2018181402A1 (ja) リチウムニッケル複合酸化物の製造方法
US20240047663A1 (en) Lithium-containing transition metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for manufacturing lithium-containing transition metal composite oxide
WO2018181465A1 (ja) リチウム複合金属酸化物の製造方法
JP6470380B1 (ja) リチウム複合金属化合物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6360374B2 (ja) リチウム含有複合金属酸化物の製造方法
KR20210100108A (ko) 리튬 천이 금속 복합 산화물 분말, 니켈 함유 천이 금속 복합 수산화물 분말, 리튬 이차 전지용 정극 활물질, 리튬 이차 전지용 정극 및 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197027858

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775095

Country of ref document: EP

Kind code of ref document: A1