WO2022209506A1 - リチウム二次電池用負極活物質、金属負極及びリチウム二次電池 - Google Patents

リチウム二次電池用負極活物質、金属負極及びリチウム二次電池 Download PDF

Info

Publication number
WO2022209506A1
WO2022209506A1 PCT/JP2022/008136 JP2022008136W WO2022209506A1 WO 2022209506 A1 WO2022209506 A1 WO 2022209506A1 JP 2022008136 W JP2022008136 W JP 2022008136W WO 2022209506 A1 WO2022209506 A1 WO 2022209506A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
negative electrode
active material
mass
electrode active
Prior art date
Application number
PCT/JP2022/008136
Other languages
English (en)
French (fr)
Inventor
俊昭 熊谷
慎吾 松本
祥晃 本多
祥史 松尾
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to EP22779731.3A priority Critical patent/EP4317499A1/en
Priority to US18/550,579 priority patent/US20240170658A1/en
Priority to CN202280023734.4A priority patent/CN117043988A/zh
Priority to JP2023510685A priority patent/JPWO2022209506A1/ja
Publication of WO2022209506A1 publication Critical patent/WO2022209506A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/463Aluminium based
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for lithium secondary batteries, a metal negative electrode, and a lithium secondary battery.
  • Graphite is conventionally used as a negative electrode material for rechargeable secondary batteries.
  • studies have been made to improve the battery performance by using a material having a larger theoretical capacity than graphite.
  • metallic materials capable of intercalating and deintercalating lithium ions have attracted attention.
  • a negative electrode made of a metal material may be referred to as a "metal negative electrode”.
  • Patent Document 1 describes a non-aqueous electrolyte battery using a clad material as a metal negative electrode, in which a substrate layer that does not alloy with lithium and an aluminum layer that forms an alloy with lithium are joined.
  • a metal negative electrode made of aluminum has a larger theoretical capacity than a graphite negative electrode, but has the problem that cycle characteristics tend to deteriorate.
  • lithium secondary batteries are required to have further improved cycle characteristics.
  • the present invention has been made in view of such circumstances, and provides a negative electrode active material for a lithium secondary battery, a metal negative electrode, and a lithium secondary battery that can improve the cycle characteristics of the lithium secondary battery. With the goal.
  • the present invention includes the following [1] to [11].
  • a negative electrode active material for a lithium secondary battery that satisfies the following (1) and (2) in an image obtained by the method described in the image acquisition conditions below, or including both. (Image acquisition conditions)
  • the negative electrode active material for a lithium secondary battery is rolled in one direction to obtain a foil having a thickness of 50 ⁇ m.
  • the foil is cut in a plane parallel to the rolling direction and perpendicular to the rolling surface to obtain a cross section.
  • the cross section is measured by a backscattered electron diffraction method to obtain an image of crystal grains of metal crystals constituting the aluminum phase.
  • the area-weighted average grain diameter of the equivalent circle diameter of the crystal grains is 4.5 ⁇ m or less.
  • the aspect ratio of the crystal grains has an arithmetic mean value of more than 1.6 and a standard deviation of 0.9 or less.
  • An aluminum-containing metal in which a non-aluminum phase is dispersed in an aluminum phase, the non-aluminum phase contains B and Ti, and the content of the non-aluminum phase with respect to the total amount of the aluminum phase and the non-aluminum phase A negative electrode active material for a lithium secondary battery, wherein the ratio is 0.001% by mass or more and 5% by mass or less.
  • the aluminum-containing metal is composed of Al, Ti, B, element X and unavoidable impurities, and the content of Ti with respect to the total mass of the aluminum-containing metal is 10 mass ppm or more and 1000 mass ppm or less, and The content of B with respect to the total mass of the aluminum-containing metal is 2 mass ppm or more and 200 mass ppm or less, and the element X is selected from the group consisting of Si, Ge, Sn, Ag, Sb, Bi and In.
  • the lithium secondary according to any one of [1] to [3], wherein the content of the unavoidable impurity relative to the total amount of the aluminum-containing metal is 0.1% by mass or less, which is one or more elements.
  • Negative electrode active material for batteries is composed of Al, Ti, B, element X and unavoidable impurities, and the content of Ti with respect to the total mass of the aluminum-containing metal is 10 mass ppm or more and 1000 mass ppm or less, and The content of B with respect to the total mass
  • the impurity elements contained in the inevitable impurities are one or more elements selected from the group consisting of Cu, Mn, Ni and V, and the total content of the impurity elements with respect to the total mass of the aluminum-containing metal is
  • negative electrode active material A metal negative electrode comprising the negative electrode active material for a lithium secondary battery according to any one of [1] to [7] and capable of intercalating and deintercalating lithium ions.
  • a metal negative electrode for a lithium secondary battery comprising a clad material having a negative electrode active material layer made of the negative electrode active material for a lithium secondary battery described in [8] and a collector layer.
  • the metal negative electrode according to any one of [8] to [10] a positive electrode capable of intercalating and deintercalating lithium ions, and an electrolyte disposed between the metal negative electrode and the positive electrode. , a lithium secondary battery.
  • the present invention it is possible to provide a negative electrode active material for a lithium secondary battery, a metal negative electrode, and a lithium secondary battery that can improve the cycle characteristics of the lithium secondary battery.
  • FIG. 1 is a schematic diagram showing an example of a lithium secondary battery
  • FIG. 1 is a schematic diagram showing an example of an all-solid lithium secondary battery
  • the negative electrode active material of the present embodiment is an aluminum-containing metal and is a rolled material rolled in one direction.
  • Aluminum-containing metals have non-aluminum phases dispersed in an aluminum phase.
  • the aluminum-containing metal as the negative electrode active material is capable of intercalating and deintercalating lithium ions.
  • the aluminum phase is a phase containing aluminum and additional elements and impurities dissolved in aluminum crystals.
  • the aluminum forming the aluminum phase is preferably high-purity aluminum.
  • High-purity aluminum is aluminum with a purity of 99% by mass or more. High-purity aluminum will be described later.
  • non-aluminum phase The non-aluminum phase exists dispersedly in the aluminum phase.
  • a non-aluminum phase exists dispersedly in an aluminum phase means a state in which a particulate non-aluminum phase exists in an aluminum phase.
  • Elements other than aluminum are B and Ti.
  • the element X may be included as an element other than aluminum.
  • Element X is one or more elements selected from the group consisting of Si, Ge, Sn, Ag, Sb, Bi and In.
  • pill is an expression that expresses how the non-aluminum phase aggregates and looks like particles when the surface or cross section of the aluminum-containing metal is observed.
  • the content of the non-aluminum phase with respect to the total amount of the aluminum phase and the non-aluminum phase preferably satisfies 0.001% by mass or more and 5% by mass or less.
  • An aluminum-containing metal having a non-aluminum phase content of not more than the above upper limit contains few impurities other than aluminum, so that the cycle characteristics are less likely to deteriorate.
  • An aluminum-containing metal having a non-aluminum phase content of at least the above lower limit is likely to have the effect of crystal refinement, which will be described later.
  • composition analysis The composition of the negative electrode active material can be confirmed by an inductive coupled plasma (ICP) analysis method. For example, it can be measured using an ICP emission spectrometer (SII Nanotechnology Co., Ltd., SPS3000).
  • ICP inductive coupled plasma
  • the negative electrode active material absorbs lithium ions during charging and releases lithium ions during discharging.
  • the negative electrode active material expands when absorbing lithium ions, and contracts when releasing lithium ions.
  • Aluminum-containing metals have a very large lithium ion storage capacity. Therefore, the aluminum-containing metal undergoes a large volume expansion when lithium is inserted and a large volume contraction when lithium is desorbed. If the expansion and contraction cause distortion or stress concentration, the metal negative electrode develops into cracks, which shortens the cycle life.
  • the present invention relates to the technical idea that the cycle characteristics of a lithium secondary battery can be improved when the crystal grains of the metal crystals constituting the aluminum phase are small and the orientation direction of the crystal grains satisfies predetermined requirements. . This point will be explained.
  • the negative electrode active material satisfies (1) and (2) described later when grains of multiple metal crystals forming the aluminum phase are observed in an image obtained by the method described in the image acquisition conditions below.
  • a foil 40 having a thickness of 50 ⁇ m is obtained by rolling the negative electrode active material in one direction.
  • Reference R1 indicates the rolling direction.
  • the obtained foil 40 is cut along a rough surface S0 parallel to the rolling direction R1 and perpendicular to the upper surface S2 of the foil 40 to obtain a cross section S1.
  • the cross section S1 is measured by an Electron Back Scattered Diffraction Pattern (EBSD) method to obtain an image of metal crystal grains that constitute the aluminum phase.
  • EBSD Electron Back Scattered Diffraction Pattern
  • the negative electrode active material is a plate-like member.
  • Plate-like means a three-dimensional shape having at least two opposing planes (an upper surface S2 and a mask surface S3). In the plate-like negative electrode active material, the distance between two opposing planes corresponds to the thickness of the negative electrode active material.
  • the thickness of the negative electrode active material is, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the negative electrode active material to be measured is less than 50 ⁇ m
  • a plurality of sheets of the negative electrode active material are laminated to obtain a foil with a thickness of 50 ⁇ m.
  • the obtained foil 40 is cut along the rough surface S0 parallel to the rolling direction R1 and perpendicular to the upper surface S2 of the foil 40 to obtain a cross section.
  • An argon ion milling device for example, can be used for processing to obtain the cross section of the foil 40 .
  • An example of processing conditions is described below.
  • Argon ion milling device IB-19520CCP (manufactured by JEOL Ltd.) Accelerating voltage: 6 kV Atmosphere: Air Temperature: -100°C
  • the cross section S1 of the foil is measured by the EBSD method.
  • the EBSD method is widely used as a technique for analyzing the orientation distribution of crystal texture.
  • the EBSD method is typically performed using a scanning electron microscope equipped with a backscattered electron diffraction detector.
  • JSM-7900F manufactured by JEOL Ltd. can be used as a scanning electron microscope.
  • a backscattered electron diffraction detector for example, Symmetry manufactured by Oxford Instruments Co., Ltd. can be used.
  • the cross section S1 of the foil is scanned with an electron beam, and the diffraction pattern of the backscattered electrons is read with a device.
  • the diffraction pattern of backscattered electrons read into the apparatus is input into a computer, and the sample surface is scanned while performing crystal orientation analysis using analysis software AZtec attached to Symmetry.
  • the crystal is indexed at each measurement point, and the crystal orientation at each measurement point is obtained.
  • a region having the same crystal orientation is defined as one crystal grain, and a mapping image of the distribution of crystal grains, that is, a grain map is obtained.
  • a mapping image of the distribution of crystal grains that is, a grain map is obtained.
  • scanning is repeated until the number of crystal grains reaches 10000 or more and 12000 or less.
  • the pixel size of the crystal orientation map obtained by EBSD measurement is preferably 0.05 ⁇ m per side.
  • the area-weighted average grain diameter of the equivalent circle diameter of the crystal grains is 4.5 ⁇ m or less.
  • the area-weighted average particle size is preferably 4.0 ⁇ m or less, more preferably 3.5 ⁇ m or less.
  • the area-weighted average grain size is equal to or less than the above upper limit value, in other words, when the crystal grain size is small, grain boundaries tend to increase. Since stress is relieved at grain boundaries during expansion and contraction, the use of a negative electrode active material that satisfies (1) makes it difficult for cycle characteristics to deteriorate.
  • the area-weighted average particle size is, for example, 0.1 ⁇ m or more, 0.5 ⁇ m or more, or 1.0 ⁇ m or more.
  • the area-weighted average particle diameter is at least the above lower limit, lithium can be sufficiently occluded.
  • the upper limit and lower limit of the area-weighted average particle size can be combined arbitrarily. Examples of combinations include area-weighted average particle diameters of 0.1 ⁇ m to 4.5 ⁇ m, 0.5 ⁇ m to 4.0 ⁇ m, and 1.0 ⁇ m to 3.5 ⁇ m.
  • FIG. 2 shows a schematic diagram of an example of the cross section S1.
  • Crystal grains 41 can be confirmed by observing the cross section S1. Let a be the direction perpendicular to the upper surface S2 of the foil, and b be the direction parallel to it.
  • cross section S1 crystal grain 41 is observed as a flat shape having a major axis in the b direction. The major axis and minor axis of the crystal grain 41 are automatically measured by analysis software AZtec attached to Symmetry.
  • the average value of the ratio of the major axis to the minor axis (long axis/short axis) of the crystal grains exceeds 1.6, preferably 1.7 or more, and more preferably 1.85 or more.
  • the crystal grains tend to flatten in a direction parallel to the upper surface S2.
  • the directions of expansion and contraction during charging and discharging are likely to be aligned in the vertical direction with respect to the upper surface S2.
  • the directions of expansion and contraction tend to be aligned, so cracks are less likely to occur, and the cycle characteristics of the lithium secondary battery can be improved.
  • the upper limit of the aspect ratio is, for example, 2.5 or less, 2.4 or less, or 2.3 or less.
  • the above upper limit and lower limit of the aspect ratio can be combined arbitrarily. Examples of combinations include more than 1.6 and 2.5 or less, 1.7 or more and 2.4 or less, and 1.85 or more and 2.3 or less.
  • the dispersed state of the non-aluminum phase in the aluminum phase can be grasped, for example, by observing the cross section of the aluminum-containing metal foil having a thickness of 0.5 mm.
  • the aluminum-containing metal foil is cut and the cross section is etched with an aqueous sodium hydroxide solution.
  • the cross section exposes recesses corresponding to the non-aluminum phase.
  • a SEM image (magnification of 300 times) and a metal microscope image (magnification of 300 times) are acquired for the cross section after etching. Considering that one recess corresponds to one particle (one non-aluminum phase), the particle diameter and the number of particles exposed in the cross section are measured.
  • a negative electrode active material of one aspect of the present embodiment is an aluminum-containing metal in which a non-aluminum phase is dispersed in an aluminum phase.
  • the non-aluminum phase contains B and Ti.
  • the content of the non-aluminum phase is 0.001% by mass or more and 5% by mass or less with respect to the total amount of the aluminum phase and the non-aluminum phase.
  • the confirmation method of the dispersion state of the non-aluminum phase and the composition analysis method are the same as those described above.
  • the grains of the metal crystals forming the aluminum phase tend to be small. Crystal grain boundaries tend to increase in such a negative electrode active material. Since stress is relieved at grain boundaries during expansion and contraction due to charging and discharging, cycle characteristics of a lithium secondary battery using such a negative electrode active material are less likely to deteriorate.
  • the aluminum-containing metal preferably consists of Al, Ti, B, element X and inevitable impurities.
  • Element X is one or more elements selected from the group consisting of Si, Ge, Sn, Ag, Sb, Bi and In.
  • the content of Ti with respect to the total mass of the aluminum-containing metal preferably satisfies 10 mass ppm or more and 1000 mass ppm or less, and the content of B with respect to the total mass of the aluminum-containing metal is 2 mass ppm or more and 200 mass ppm. It is preferable to satisfy the following.
  • titanium boron, aluminum titanium boron, titanium alone, aluminum titanium, boron alone, or aluminum boron is added as a raw material for refining aluminum crystals. Therefore, one or both of Ti and B remain as raw material residue.
  • the Ti content is equal to or higher than the above lower limit, it becomes easier to obtain the effect of crystal refinement. Further, when the Ti content is equal to or less than the above upper limit, the proportion of the non-aluminum phase is suppressed to a certain proportion or less, and the battery characteristics are less likely to deteriorate.
  • the content of the element X with respect to the total amount of the aluminum-containing metal preferably satisfies 0.1% by mass or more and 4.0% by mass or less.
  • Element X is a material capable of intercalating and deintercalating lithium ions.
  • a lithium secondary battery using a negative electrode active material in which the content of the element X satisfies the above range is less likely to deteriorate in cycle characteristics.
  • the element X is preferably Si.
  • the Si content with respect to the total amount of the aluminum-containing metal preferably satisfies 0.1% by mass or more and 4.0% by mass or less.
  • a lithium secondary battery using a negative electrode active material having a Si content that satisfies the above range is unlikely to deteriorate in cycle characteristics.
  • Inevitable impurities can cause a decrease in electrical conductivity, a decrease in the strength of the negative electrode active material, and the like.
  • Such unavoidable impurities include production residues that are inevitably mixed in the refining process, and the unavoidable impurities tend to remain in the range of 0.1% by mass or less.
  • the total amount of inevitable impurities with respect to the total amount of aluminum-containing metal is preferably 0.2% by mass or less, more preferably 0.1% by mass or less, and even more preferably 0.01% by mass or less.
  • the electrical conductivity is less likely to decrease, and the strength of the negative electrode active material is less likely to decrease.
  • the total amount of unavoidable impurities with respect to the total amount of aluminum-containing metal is preferably 0% by mass, but examples of the lower limit include 0.00001% by mass or more and 0.0001% by mass or more.
  • the total amount of inevitable impurities with respect to the total amount of aluminum-containing metals is 0% by mass or more and 0.2% by mass or less, 0.00001% by mass or more and 0.1% by mass or less, and 0.0001% by mass or more and 0.01% by mass or less. be done.
  • Impurity elements contained in the inevitable impurities are, for example, one or more elements selected from the group consisting of Cu, Mn, Ni and V.
  • the total content of impurity elements with respect to the total mass of the aluminum-containing metal is preferably 50 mass ppm or less, more preferably 40 mass ppm or less, and even more preferably 30 mass ppm or less.
  • the total content of impurity elements listed above is equal to or less than the above upper limit, the electrical conductivity is less likely to decrease.
  • the total content of impurity elements with respect to the total mass of the aluminum-containing metal is preferably 0 ppm by mass, but examples of the lower limit include 0.001 ppm by mass or more and 0.01 ppm by mass or more.
  • the above upper limit and lower limit of the total content of impurity elements can be combined arbitrarily. Examples of combinations include a total impurity element content of 0 mass ppm to 50 mass ppm, 0.001 mass ppm to 40 mass ppm, and 0.001 mass ppm to 30 mass ppm.
  • the negative electrode active material can be produced by a production method comprising, in this order, a melting step, a vacuum treatment step, a step of adding a grain refiner for aluminum, a casting step, and a foil forming step.
  • melting process for example, aluminum is melted at a temperature of about 680° C. or higher and 800° C. or lower, and cleaning is performed by removing gases and non-metallic inclusions, which are generally known.
  • an aluminum-containing molten metal By adding a predetermined amount of another metal element during melting, an aluminum-containing molten metal can be obtained.
  • the other metal element is, for example, the element X described above, and it is preferable to add high-purity silicon as the Si source.
  • high-purity aluminum It is preferable to use high-purity aluminum as aluminum.
  • the purity of high-purity aluminum is preferably 99% by mass or higher, more preferably 99.9% by mass or higher, even more preferably 99.95% by mass or higher, and particularly preferably 99.99% by mass or higher.
  • the purity of high-purity aluminum can be confirmed by solid-state emission spectroscopy. Examples of refining methods for purifying aluminum to the above purity include a segregation method and a three-layer electrolysis method.
  • the segregation method is a purification method that utilizes the segregation phenomenon during solidification of molten aluminum, and a plurality of methods have been put into practical use.
  • the segregation method there is a method of pouring molten aluminum into a container, heating the upper molten aluminum while rotating the container, and solidifying refined aluminum from the bottom while stirring. Aluminum with a purity of 99.99% by mass or more can be obtained by the segregation method.
  • Three-Layer Electrolysis Method As one form of the three-layer electrolysis method, first, aluminum or the like (for example, a grade of about 1 according to JIS-H2102 with a purity of 99% by mass) is put into the Al—Cu alloy layer. Thereafter, the molten state is used as an anode, and an electrolytic bath containing, for example, aluminum fluoride and barium fluoride is placed thereon to deposit high-purity aluminum on the cathode. High-purity aluminum with a purity of 99.999% by mass or more can be obtained by the three-layer electrolysis method.
  • aluminum or the like for example, a grade of about 1 according to JIS-H2102 with a purity of 99% by mass
  • an electrolytic bath containing, for example, aluminum fluoride and barium fluoride is placed thereon to deposit high-purity aluminum on the cathode.
  • High-purity aluminum with a purity of 99.999% by mass or more can be obtained by the three-layer electrolysis method.
  • the refining method for highly purifying aluminum is not limited to the segregation method and the three-layer electrolysis method, and other known methods such as the zone melting refining method and the ultra-high vacuum melting refining method may be used.
  • the vacuum treatment is performed, for example, at a temperature of 700° C. to 800° C., 1 hour to 10 hours, and a degree of vacuum of 0.1 Pa to 100 Pa.
  • a grain refiner for aluminum is added to the molten metal after the vacuum treatment.
  • grain refiners for aluminum include aluminum titanium boron and titanium boron.
  • Commercially available grain refiners for aluminum include, for example, KBM Affilips B.V. V. AlTiB5/1 manufactured by Co., Ltd. can be mentioned.
  • the amount of the grain refiner for aluminum added is, for example, a Ti content of 10 mass ppm or more and 1000 mass ppm or less based on the total mass of the aluminum-containing metal, and a B content of B based on the total mass of the aluminum-containing metal. It is preferable to adjust the amount to satisfy 2 mass ppm or more and 200 mass ppm or less.
  • a negative electrode active material that satisfies the above (1) can be obtained by adding a grain refiner for aluminum.
  • the amount of the grain refiner for aluminum added is increased, the area-weighted average grain diameter of the equivalent circle diameter of grains becomes smaller.
  • the refined crystals can be easily elongated in the rolling direction by rolling, and a negative electrode active material that satisfies the above (2) can be obtained.
  • the mold is made of iron or graphite heated to 50°C or higher and 200°C or lower.
  • the aluminum-containing metal is cast by a method of pouring molten metal at a temperature of 680° C. or more and 800° C. or less into a mold.
  • An ingot can also be obtained by continuous casting, which is generally used.
  • the obtained aluminum-containing ingot becomes a rolled material by rolling.
  • it may be processed into a plate-like shape in this step.
  • hot rolling and cold rolling are performed to process the aluminum-containing ingot into a foil shape.
  • the temperature conditions for hot rolling include, for example, setting the temperature of the aluminum-containing ingot at 350° C. or higher and 450° C. or lower.
  • the working rate r is 2% or more and 20% or less.
  • an intermediate annealing treatment may be performed before cold rolling.
  • a hot-rolled aluminum-containing ingot may be heated to 350° C. or higher and 450° C. or lower, and immediately allowed to cool after the temperature rise.
  • the aluminum-containing ingot may be allowed to cool after being held for about 1 to 5 hours.
  • Cold rolling is carried out, for example, at a temperature lower than the recrystallization temperature of the aluminum-containing ingot, usually from room temperature to 80 ° C. or less, and in a single-pass die, with a reduction rate r of 1% or more and 10% or less. This process is repeated until the ingot containing ingot reaches the desired thickness.
  • the metal negative electrode of this embodiment is made of the negative electrode active material of this embodiment, and is capable of intercalating and deintercalating lithium ions.
  • One aspect of the metal negative electrode of the present embodiment is a collector-combined negative electrode that functions both as a negative electrode and as a negative electrode current collector. According to the collector-combined negative electrode, a separate collector member is not required.
  • the metal negative electrode of the present embodiment includes the negative electrode active material of the present embodiment and a negative electrode current collector.
  • the negative electrode current collector can be a strip-shaped member made of a metal material.
  • the metal material one selected from the group consisting of Al, Cu, Ni, Mg, and Mn may be used alone, an alloy containing at least two of these may be used, and stainless steel may be used. good.
  • the material of the current collector it is preferable to use at least one of Cu and Al as a forming material and process it into a thin film because it is difficult to form an alloy with lithium and is easy to process. Further, when a negative electrode current collector is used, a clad material in which the negative electrode and the negative electrode current collector are laminated so as to be integrated may be used.
  • the joint surfaces of the negative electrode and the negative electrode current collector are each degreased and polished in one direction using a brush or the like. Thereby, the surface roughness Ra of the joint surface of the negative electrode and the surface roughness Ra of the joint surface of the negative electrode current collector are adjusted to 0.7 ⁇ m or more.
  • a laminate is obtained by aligning the joint surfaces of the negative electrode and the negative electrode current collector.
  • the obtained laminate is preheated at 300-500° C. and hot-rolled under the condition that the rolling reduction in the first rolling is 45-70%. After that, cold rolling is additionally performed to obtain a rolled material having a negative electrode thickness of 5 to 550 ⁇ m, that is, a clad material.
  • a lead wire is connected to the metal negative electrode.
  • a negative electrode using the negative electrode active material of the present invention as a negative electrode active material of a battery and a secondary battery having this negative electrode will be described while describing the structure of the battery.
  • a lithium secondary battery using a lithium positive electrode active material for the positive electrode will be described below as an example.
  • An example of a lithium secondary battery suitable for using the negative electrode active material of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode. have.
  • An example of a lithium secondary battery has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.
  • FIG. 3 is a schematic diagram showing an example of a lithium secondary battery.
  • the cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
  • a pair of strip-shaped separators 1, a strip-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a strip-shaped negative electrode 3 having a negative electrode lead 31 at one end are arranged as follows: 1 and the negative electrode 3 are stacked in this order and wound to form an electrode group 4 .
  • the can bottom is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, and the electrolyte is arranged between the positive electrode 2 and the negative electrode 3. . Further, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing member 8, the lithium secondary battery 10 can be manufactured.
  • the shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape of the electrode group 4 cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. can be mentioned.
  • a shape defined by IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500 can be adopted.
  • IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500
  • a shape such as a cylindrical shape or a rectangular shape can be mentioned.
  • the lithium secondary battery is not limited to the wound type configuration described above, and may have a layered configuration in which a layered structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • laminated lithium secondary batteries include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode can be manufactured by preparing a positive electrode mixture containing a positive electrode active material, a conductive material, and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • lithium-containing compound or other metal compound can be used for the positive electrode active material.
  • lithium-containing compounds include lithium-cobalt composite oxides having a layered structure, lithium-nickel composite oxides having a layered structure, lithium-manganese composite oxides having a spinel structure, and lithium iron phosphate having an olivine structure. .
  • metal compounds include, for example, oxides such as titanium oxide, vanadium oxide or manganese dioxide, or sulfides such as titanium sulfide or molybdenum sulfide.
  • a carbon material can be used as the conductive material of the positive electrode.
  • Examples of carbon materials include graphite powder, carbon black (eg, acetylene black), and fibrous carbon materials.
  • the ratio of the conductive material in the positive electrode mixture is preferably 5-20 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • thermoplastic resin can be used as the binder of the positive electrode.
  • thermoplastic resins include polyimide resins; fluorine resins such as polyvinylidene fluoride (hereinafter sometimes referred to as PVdF) and polytetrafluoroethylene; polyolefin resins such as polyethylene and polypropylene; can be mentioned.
  • a strip-shaped member made of a metal material such as Al, Ni, or stainless steel can be used as the positive electrode current collector of the positive electrode.
  • the positive electrode mixture As a method for supporting the positive electrode mixture on the positive electrode current collector, the positive electrode mixture is made into a paste using an organic solvent, the obtained positive electrode mixture paste is applied to at least one side of the positive electrode current collector and dried, A method of fixing by performing an electrode pressing process can be mentioned.
  • organic solvents examples include N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • Examples of the method for applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • a positive electrode can be manufactured by the method mentioned above.
  • a metal negative electrode made of the negative electrode active material of the present embodiment is used as the negative electrode of the lithium secondary battery.
  • the negative electrode current collector When the metal negative electrode of this embodiment also serves as a current collector, the negative electrode current collector is unnecessary.
  • a band-shaped member made of a metal material such as Cu, Ni, or stainless steel can be used.
  • separator of the lithium secondary battery for example, a material having the form of a porous film, nonwoven fabric, or woven fabric made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin, or a nitrogen-containing aromatic polymer is used. can be used. Moreover, the separator may be formed using two or more of these materials, or the separator may be formed by laminating these materials. Also, the separator described in JP-A-2000-030686 or US20090111025A1 may be used.
  • Electrode An electrolytic solution that a lithium secondary battery has contains an electrolyte and an organic solvent.
  • Electrolytes contained in the electrolytic solution include LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiN ( SO2CF3 )( COCF3 ) , Li ( C4F9SO3 ), LiC(SO2CF3)3 , Li2B10Cl10 , LiBOB ( where BOB is bis(oxalato)borate ), LiFSI (where FSI is bis(fluorosulfonyl)imide), lower aliphatic carboxylic acid lithium salts and lithium salts such as LiAlCl4 , mixtures of two or more thereof may be used.
  • the electrolyte is at least selected from the group consisting of LiPF6 , LiAsF6 , LiSbF6 , LiBF4 , LiCF3SO3 , LiN( SO2CF3 ) 2 and LiC ( SO2CF3 ) 3 containing fluorine. It is preferred to use one containing one.
  • organic solvent contained in the electrolytic solution examples include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one and 1,2-dioxolan-2-one.
  • Carbonates such as (methoxycarbonyloxy)ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropylmethyl ether, 2,2,3,3-tetrafluoropropyldifluoromethyl ether, tetrahydrofuran and 2- ethers such as methyltetrahydrofuran; esters such as methyl formate, methyl acetate, propyl propionate and ⁇ -butyrolactone; nitriles such as acetonitrile and butyronitrile; amides such as N,N-dimethylformamide and N,N-dimethylacetamide.
  • Carbamates such as 3-methyl-2-oxazolidone; Sulfur-containing compounds such as sulfolane, dimethyl sulfoxide and 1,3-propanesultone, or those obtained by further introducing a fluoro group into these organic solvents (hydrogen contained in organic solvents one or more atoms of which are substituted with fluorine atoms) can be used.
  • the electrolyte may contain additives such as tris (trimethylsilyl) phosphate and tris (trimethylsilyl) borate.
  • the organic solvent it is preferable to use a mixture of two or more of these.
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of a cyclic carbonate and a non-cyclic carbonate and a mixed solvent of a cyclic carbonate and an ether are more preferable.
  • the electrolytic solution it is preferable to use an electrolytic solution containing a fluorine-containing lithium salt such as LiPF 6 and an organic solvent having a fluorine substituent, since the safety of the obtained lithium secondary battery is increased.
  • a fluorine-containing lithium salt such as LiPF 6
  • an organic solvent having a fluorine substituent since the safety of the obtained lithium secondary battery is increased.
  • the electrolyte and organic solvent contained in the electrolytic solution the electrolyte and organic solvent described in WO2019/098384A1 or US2020/0274158A1 may be used.
  • FIG. 4 is a schematic diagram showing an example of the all-solid lithium secondary battery of this embodiment.
  • the all-solid lithium secondary battery 1000 shown in FIG. 4 has a laminate 100 having a positive electrode 110, a negative electrode 120, and a solid electrolyte layer 130, and an exterior body 200 that accommodates the laminate 100.
  • the all-solid lithium secondary battery 1000 may have a bipolar structure in which a positive electrode active material and a negative electrode active material are arranged on both sides of a current collector.
  • bipolar structures include structures described in JP-A-2004-95400. The material forming each member will be described later.
  • the laminate 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122 .
  • all-solid lithium secondary battery 1000 may have a separator between positive electrode 110 and negative electrode 120 .
  • the all-solid lithium secondary battery 1000 further has an insulator (not shown) for insulating the laminate 100 and the exterior body 200 and a sealing body (not shown) for sealing the opening 200 a of the exterior body 200 .
  • a container molded from a highly corrosion-resistant metal material such as aluminum, stainless steel, or nickel-plated steel can be used.
  • a container in which a laminated film having at least one surface subjected to corrosion-resistant processing is processed into a bag shape can also be used.
  • Examples of the shape of the all-solid lithium secondary battery 1000 include coin-shaped, button-shaped, paper-shaped (or sheet-shaped), cylindrical, rectangular, and laminate-shaped (pouch-shaped).
  • the all-solid-state lithium secondary battery 1000 is illustrated as having one laminate 100 as an example, but the present embodiment is not limited to this.
  • the all-solid lithium secondary battery 1000 may have a configuration in which the laminate 100 is used as a unit cell and a plurality of unit cells (laminate 100 ) are sealed inside the exterior body 200 .
  • the positive electrode 110 has a positive electrode active material layer 111 and a positive electrode current collector 112 .
  • the positive electrode active material layer 111 contains a positive electrode active material and a solid electrolyte. Moreover, the positive electrode active material layer 111 may contain a conductive material and a binder.
  • solid electrolyte As the solid electrolyte contained in the positive electrode active material layer 111, a solid electrolyte having lithium ion conductivity and used in known all-solid lithium secondary batteries can be employed.
  • solid electrolytes include inorganic electrolytes and organic electrolytes.
  • inorganic electrolytes include oxide-based solid electrolytes, sulfide-based solid electrolytes, and hydride-based solid electrolytes.
  • organic electrolytes include polymer-based solid electrolytes.
  • each electrolyte include compounds described in WO2020/208872A1, US2016/0233510A1, US2012/0251871A1, and US2018/0159169A1, and examples thereof include the following compounds.
  • oxide-based solid electrolytes examples include perovskite-type oxides, NASICON-type oxides, LISICON-type oxides, and garnet-type oxides. Specific examples of each oxide include compounds described in WO2020/208872A1, US2016/0233510A1, and US2020/0259213A1, and examples thereof include the following compounds.
  • Perovskite oxides include Li—La—Ti-based oxides such as Li a La 1-a TiO 3 (0 ⁇ a ⁇ 1), Li b La 1-b TaO 3 (0 ⁇ b ⁇ 1) and the like. Examples thereof include Li—La—Ta-based oxides and Li—La—Nb-based oxides such as Li c La 1-c NbO 3 (0 ⁇ c ⁇ 1).
  • NASICON-type oxides examples include Li 1+d Al d Ti 2-d (PO 4 ) 3 (0 ⁇ d ⁇ 1).
  • the NASICON-type oxide is Li m M 1 n M 2 o P p O q (where M 1 is selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Sb and Se).
  • M 1 is selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Sb and Se).
  • M2 is one or more elements selected from the group consisting of Ti, Zr, Ge, In, Ga, Sn and Al m, n, o, p and q is an arbitrary positive number).
  • Li 4 M 3 O 4 —Li 3 M 4 O 4 (M 3 is one or more elements selected from the group consisting of Si, Ge, and Ti.
  • M 4 is P is one or more elements selected from the group consisting of , As and V).
  • Garnet-type oxides include Li—La—Zr-based oxides such as Li 7 La 3 Zr 2 O 12 (also referred to as LLZ).
  • the oxide-based solid electrolyte may be a crystalline material or an amorphous material.
  • sulfide-based solid electrolyte examples include Li 2 SP 2 S 5 based compounds, Li 2 S—SiS 2 based compounds, Li 2 S—GeS 2 based compounds, Li 2 S—B 2 S 3 based compounds, LiI- Si 2 SP 2 S 5 based compounds, LiI-Li 2 SP 2 O 5 based compounds, LiI-Li 3 PO 4 -P 2 S 5 based compounds and Li 10 GeP 2 S 12 based compounds, etc. can be done.
  • based compound that refers to a sulfide-based solid electrolyte refers to a solid electrolyte that mainly contains raw materials such as "Li 2 S" and "P 2 S 5 " described before "based compound".
  • Li 2 SP 2 S 5 based compounds include solid electrolytes that mainly contain Li 2 S and P 2 S 5 and further contain other raw materials.
  • the ratio of Li 2 S contained in the Li 2 SP 2 S 5 based compound is, for example, 50 to 90% by mass with respect to the entire Li 2 SP 2 S 5 based compound.
  • the ratio of P 2 S 5 contained in the Li 2 SP 2 S 5 based compound is, for example, 10 to 50% by mass with respect to the entire Li 2 SP 2 S 5 based compound.
  • the ratio of other raw materials contained in the Li 2 SP 2 S 5 compound is, for example, 0 to 30% by mass with respect to the entire Li 2 SP 2 S 5 compound.
  • the Li 2 SP 2 S 5 -based compound also includes solid electrolytes in which the mixing ratio of Li 2 S and P 2 S 5 is varied.
  • Li 2 SP 2 S 5 compounds include Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -LiI, Li 2 SP 2 S 5 -LiCl, Li 2 SP 2 S5 - LiBr, Li2SP2S5 - LiI - LiBr, Li2SP2S5 - Li2O , Li2SP2S5 - Li2O - LiI and Li2S- P 2 S 5 -Z m S n (m and n are positive numbers, Z is Ge, Zn or Ga).
  • Li 2 S—SiS 2 compounds include Li 2 S—SiS 2 , Li 2 S—SiS 2 —LiI, Li 2 S—SiS 2 —LiBr, Li 2 S—SiS 2 —LiCl, and Li 2 S—SiS.
  • Li 2 S—GeS 2 based compounds examples include Li 2 S—GeS 2 and Li 2 S—GeS 2 —P 2 S 5 .
  • the sulfide-based solid electrolyte may be a crystalline material or an amorphous material.
  • hydride solid electrolyte materials include LiBH 4 , LiBH 4 -3KI, LiBH 4 -PI 2 , LiBH 4 -P 2 S 5 , LiBH 4 -LiNH 2 , 3LiBH 4 -LiI, LiNH 2 , Li 2 AlH 6 , Li( NH2 )2I, Li2NH, LiGd(BH4) 3Cl , Li2(BH4) ( NH2 ) , Li3 ( NH2 ) I and Li4 ( BH4) ( NH2 ) 3 etc. can be mentioned.
  • polymer solid electrolyte examples include organic polymer electrolytes such as polyethylene oxide-based polymer compounds and polymer compounds containing one or more selected from the group consisting of polyorganosiloxane chains and polyoxyalkylene chains. .
  • organic polymer electrolytes such as polyethylene oxide-based polymer compounds and polymer compounds containing one or more selected from the group consisting of polyorganosiloxane chains and polyoxyalkylene chains.
  • a so-called gel type in which a non-aqueous electrolyte is held in a polymer compound can also be used.
  • Two or more kinds of solid electrolytes can be used together as long as the effects of the invention are not impaired.
  • (Conductive material and binder) As the conductive material included in the positive electrode active material layer 111, the materials described in (Conductive material) can be used. Also, the ratio described in the above (Conductive material) can be similarly applied to the ratio of the conductive material in the positive electrode mixture. Further, as the binder contained in the positive electrode, the materials described in the above (Binder) can be used.
  • a mixture of the positive electrode active material, the solid electrolyte, the conductive material, and the binder is pasted using an organic solvent to form a positive electrode mixture, and the obtained positive electrode mixture is applied to at least one surface of the positive electrode current collector 112 and dried.
  • the positive electrode current collector 112 may carry the positive electrode active material layer 111 by pressing and fixing.
  • a mixture of the positive electrode active material, the solid electrolyte, and the conductive material is pasted using an organic solvent to form a positive electrode mixture, and the obtained positive electrode mixture is applied to at least one surface of the positive electrode current collector 112, dried, and baked.
  • the positive electrode current collector 112 may support the positive electrode active material layer 111 .
  • the same positive electrode active material as described in the above (positive electrode active material) can be used.
  • the organic solvent that can be used for the positive electrode mixture the same organic solvent that can be used when the positive electrode mixture is made into a paste as described in (Positive electrode current collector) can be used.
  • Examples of the method of applying the positive electrode mixture to the positive electrode current collector 112 include the methods described above in (Positive electrode current collector).
  • the positive electrode 110 can be manufactured by the method described above. Specific combinations of materials used for the positive electrode 110 include positive electrode active materials and combinations listed in Table 1.
  • the negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122 .
  • a metal negative electrode made of the negative electrode active material of this embodiment is used for the negative electrode active material layer 121 .
  • the negative electrode current collector is unnecessary.
  • the negative electrode current collector 122 can be a strip-shaped member made of a metal material such as Cu, Ni, or stainless steel.
  • the solid electrolyte layer 130 has the solid electrolyte described above.
  • the solid electrolyte layer 130 As an example of a method for manufacturing the solid electrolyte layer 130, a solid electrolyte of an inorganic material is sputtered on the surface of the positive electrode active material layer 111 of the positive electrode 110 described above, or a paste mixture containing a solid electrolyte is applied and dried. method.
  • the solid electrolyte layer 130 may be formed by press-molding after drying and further pressing by cold isostatic pressing (CIP).
  • Laminate 100 is obtained by laminating negative electrode 120 on solid electrolyte layer 130 provided on positive electrode 110 as described above, using a known method, in such a manner that negative electrode active material layer 121 is in contact with the surface of solid electrolyte layer 130 . It can be manufactured by
  • composition analysis of the negative electrode active material was performed by the method described in [Composition analysis] above.
  • a negative electrode active material was manufactured by a method described later, and a negative electrode made of the negative electrode active material was manufactured.
  • lithium cobalt oxide product name: Cellseed, manufactured by Nippon Kagaku Kogyo Co., Ltd., average particle size (D50): 10 ⁇ m
  • 5 parts by mass of polyvinylidene fluoride manufactured by Kureha Co., Ltd.
  • a conductive material 5 parts by mass of acet
  • the obtained electrode mixture was applied onto an aluminum foil having a thickness of 15 ⁇ m as a current collector by a doctor blade method.
  • the coated electrode mixture was dried at 60° C. for 2 hours and then vacuum dried at 150° C. for 10 hours to volatilize N-methyl-2-pyrrolidone.
  • the coating amount of the positive electrode active material after drying was 21.5 mg/cm 2 .
  • the positive electrode mixture layer after rolling had a thickness of 60 to 65 ⁇ m and an electrode density of 3.0 to 3.5 g/cm 3 .
  • a polyethylene porous separator is placed between the negative electrode and the positive electrode, housed in a battery case (standard 2032), the above electrolytic solution is injected, and the battery case is sealed to obtain a diameter of 20 mm and a thickness of 20 mm.
  • a 3.2 mm coin-type (full cell) lithium secondary battery was produced.
  • materials that react with moisture such as electrolytes, lithium metal, and electrodes after charging, avoid contact with the inside of a glove box controlled at a moisture content of 1 mass ppm or less, or with equivalent moisture as much as possible. done in the environment.
  • Cycle/discharge evaluation charge/discharge efficiency at 20th cycle
  • charging at 1 mA (0.2C) and discharging at 1 mA (0.2C) were repeated under the same conditions as the initial charge/discharge.
  • Life evaluation was performed by 6-time and 20-time cycle tests, and the cycle maintenance rate was calculated by the following formula.
  • Cycle maintenance rate (%) discharge capacity at 20th cycle (mAh)/discharge capacity at 6th cycle (mAh) x 100
  • Example 1>> (Casting process) 4455 g of aluminum (purity: 99.99% by mass or more) and 45 g of Tokuyama silicon (purity: 99.999% by mass or more) were weighed. Next, silicon was added to the melted aluminum, and the mixture was heated and held at 780° C. to obtain an Al—Si alloy melt having a silicon content of 1.0% by mass. Next, the molten alloy was held at a temperature of 760° C. and a degree of vacuum of 50 Pa for 2 hours for cleaning. After cleaning, a commercially available Al-Ti-B alloy (Al:Ti:B 94:5:1, manufactured by KBM Affilips B.V. in the Netherlands, AlTiB5 /1) was added and immediately stirred for 1 minute to obtain a molten alloy.
  • the molten alloy was cast using a cast iron mold (22 mm x 150 mm x 200 mm) dried at 150°C to obtain an ingot.
  • the area-weighted average grain diameter of the equivalent circle diameter of the grains of the aluminum phase is 3.8 ⁇ m
  • the aspect ratio of the grains is 1.9
  • the standard deviation of the aspect ratio is 0.87. Met.
  • the obtained aluminum-containing metal foil 1 (thickness 50 ⁇ m) was cut into a disk shape of ⁇ 15 mm to manufacture a negative electrode.
  • the cycle maintenance rate calculated by the above method was 97%.
  • the non-aluminum phase was dispersed in the aluminum phase.
  • the non-aluminum phase contained 83 mass ppm of Ti and 17 mass ppm of B.
  • the area-weighted average grain diameter of the equivalent circle diameter of the grains of the aluminum phase is 2.6 ⁇ m
  • the aspect ratio of the grains is 1.9
  • the standard deviation of the aspect ratio is 0.83.
  • the non-aluminum phase was dispersed in the aluminum phase.
  • the non-aluminum phase contained 250 mass ppm of Ti and 50 mass ppm of B.
  • the area-weighted average grain diameter of the equivalent circle diameter of the grains of the aluminum phase is 2.0 ⁇ m
  • the aspect ratio of the grains is 1.7
  • the standard deviation of the aspect ratio is 0.46. Met.
  • the non-aluminum phase was dispersed in the aluminum phase.
  • the non-aluminum phase contained 830 mass ppm of Ti and 170 mass ppm of B.
  • the area-weighted average grain diameter of the equivalent circle diameter of the grains of the aluminum phase is 1.7 ⁇ m
  • the aspect ratio of the grains is 1.8
  • the standard deviation of the aspect ratio is 0.62. Met.
  • Aluminum-containing metal 5 was obtained in the same manner as in Example 1, except that no Al--Ti--B alloy was added.
  • the aluminum-containing metal foil 5 contained 1.0% by mass of Si.
  • the area-weighted average grain diameter of the equivalent circle diameter of the aluminum phase crystal grains is 4.8 ⁇ m
  • the aspect ratio of the crystal grains is 1.6
  • the standard deviation of the aspect ratio is 0.93. Met.
  • ⁇ Comparative Example 1> (Casting process) 4500 g of aluminum (purity: 99.99% by mass or more) was weighed. Next, molten aluminum was obtained by heating and holding at 780° C. to melt aluminum. Next, the molten Al was cleaned by holding it at a temperature of 760° C. and a vacuum degree of 50 Pa for 2 hours.
  • a cast iron mold (22 mm ⁇ 150 mm ⁇ 200 mm) dried at 150°C was used to cast molten Al to obtain an ingot.
  • the area-weighted average grain diameter of the equivalent circle diameter of the crystal grains of the aluminum phase was 12.1 ⁇ m. Since the average grain size of aluminum foil 1 was too large, the aspect ratio could not be measured.
  • Table 4 below shows the composition, area-weighted average particle size, aspect ratio, standard deviation of the aspect ratio, non-aluminum phase content, and Ti content for the negative electrode active materials of Examples 1 to 4, Reference Example 1, and Comparative Example 1. rate, B content, total amount of unavoidable impurities, impurity elements and their total content, and cycle characteristics.
  • a clad material obtained by laminating the negative electrode active material of Example 1-4 and a negative electrode current collector can be used as a negative electrode.
  • An example in which the clad material is used as the negative electrode will be described below.
  • Example 1 Using the aluminum-containing metal foil 1 prepared by the same procedure as in Example 1 as a negative electrode active material layer, and further using a rolled material of A5052 alloy as a current collector layer, the following surface treatment and rolling of the laminate were performed. An aluminum-containing metal laminate 1 including a negative electrode active material layer and a current collector layer is manufactured.
  • the bonding surfaces of the aluminum-containing metal foil 1, which is the negative electrode active material layer material, and the aluminum-magnesium alloy, which is the current collector layer material, are degreased and polished in one direction using a brush. Thereby, the surface roughness Ra of the joint surface of the aluminum-containing metal foil 1 is adjusted to 1.0 ⁇ m, and the surface roughness Ra of the joint surface of the aluminum-magnesium alloy is adjusted to 1.0 ⁇ m.
  • a laminate 1 was obtained by combining the joint surfaces of the aluminum-containing metal foil 1 and the aluminum-magnesium alloy.
  • the obtained laminate 1 is preheated at 350° C. and hot rolled under the condition that the rolling reduction in the first rolling is 50%. After that, additional cold rolling is performed to obtain a rolled material having a negative electrode active material layer with a thickness of 25 ⁇ m.
  • Example 2 Using the aluminum-containing metal foil 1 prepared by the same procedure as in Example 1 as a negative electrode active material layer, and further using a rolled material of A5052 alloy as a current collector layer, the following surface treatment and rolling of the laminate were performed. An aluminum-containing metal laminate 2 comprising a negative electrode active material layer and a current collector layer is manufactured.
  • the bonding surfaces of the aluminum-containing metal foil 1, which is the negative electrode active material layer material, and the aluminum-manganese alloy, which is the current collector layer material, are degreased and polished in one direction using a brush. Thereby, the surface roughness Ra of the joint surface of the aluminum-containing metal foil 1 is adjusted to 1.0 ⁇ m, and the surface roughness Ra of the joint surface of the aluminum-manganese alloy is adjusted to 1.0 ⁇ m.
  • a laminate 1 was obtained by joining the joint surfaces of the aluminum-containing metal foil 1 and the aluminum-manganese alloy.
  • the obtained laminate 1 is preheated at 350° C. and hot rolled under the condition that the rolling reduction in the first rolling is 50%. After that, additional cold rolling is performed to obtain a rolled material having a negative electrode active material layer with a thickness of 25 ⁇ m.
  • the aluminum-containing metal laminates of Production Examples 1 and 2 have the aluminum-containing metal foil 1 of Example 1 as a so-called negative electrode active material layer, and the composition, area-weighted average particle size, aspect ratio, and standard deviation of the aspect ratio , the content of the non-aluminum phase, the Ti content, the B content, the total amount of unavoidable impurities, the impurity elements and their total content are the same as in Example 1. Therefore, it can be fully inferred that the cycle characteristics of the lithium secondary batteries using the aluminum-containing metal laminates of Production Examples 1 and 2 are equivalent to or better than those of Examples 1-4.
  • the cycle maintenance rate calculated by the method described in ⁇ Evaluation of cycle characteristics of lithium secondary battery> is 97% or more and 102% or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

このリチウム二次電池用負極活物質は、アルミニウム相に非アルミニウム相が分散しているアルミニウム含有金属であり、前記アルミニウム含有金属は、一方向に圧延された圧延材であり、前記非アルミニウム相は、B及びTiのいずれか一方又は両方を含み、画像取得条件に記載の方法により取得した画像において、(1)及び(2)を満たす。

Description

リチウム二次電池用負極活物質、金属負極及びリチウム二次電池
 本発明は、リチウム二次電池用負極活物質、金属負極及びリチウム二次電池に関する。
 本願は、2021年3月31日に日本に出願された特願2021-060175号について優先権を主張し、その内容をここに援用する。
 充電が可能である二次電池を構成する負極の材料として、従来黒鉛が使用されている。近年では黒鉛よりも理論容量が大きい材料を用い、電池性能を向上させる検討が行われている。このような材料として、例えばリチウムイオンを吸蔵及び放出可能な金属材料が注目されている。
 以下の説明では、金属材料から形成された負極を「金属負極」と称することがある。
 例えば、特許文献1には、リチウムと合金化しない基材層と、リチウムと合金を形成するアルミニウム層とを接合させたクラッド材を金属負極として用いた非水電解質電池が記載されている。
特開2017-195028号公報
 アルミニウムを材料とする金属負極は、黒鉛負極よりも理論容量は大きいものの、サイクル特性が低下しやすいという課題がある。
 「サイクル特性」は、繰り返し充放電させたときの放電容量維持率により評価する。二次電池を繰り返し充放電させたときに放電容量維持率が高いことを、「サイクル特性が良い」と評価する。
 二次電池の応用分野が広がる中、リチウム二次電池にはサイクル特性のさらなる向上が求められている。
 本発明はこのような事情に鑑みてなされたものであって、リチウム二次電池のサイクル特性を向上させることができるリチウム二次電池用負極活物質、金属負極及びリチウム二次電池を提供することを目的とする。
 本発明は以下の[1]~[11]を包含する。
[1]アルミニウム相に非アルミニウム相が分散しているアルミニウム含有金属であり、前記アルミニウム含有金属は、一方向に圧延された圧延材であり、前記非アルミニウム相は、B及びTiのいずれか一方又は両方を含み、下記画像取得条件に記載の方法により取得した画像において、下記(1)及び(2)を満たす、リチウム二次電池用負極活物質。(画像取得条件)
 前記リチウム二次電池用負極活物質を一方向に圧延し、厚み50μmの箔を得る。前記箔を、圧延方向と平行、かつ、圧延面に対し垂直な面にて切断し、断面を得る。前記断面を後方散乱電子回折法により測定し、前記アルミニウム相を構成する金属結晶の結晶粒の画像を得る。
(1)前記結晶粒の円相当径の面積加重平均粒径は、4.5μm以下である。
(2)前記結晶粒のアスペクト比は、算術平均値が1.6を超え、標準偏差が0.9以下である。
[2]前記アルミニウム相と前記非アルミニウム相の総量に対する前記非アルミニウム相の含有率は、0.001質量%以上5質量%以下である、[1]に記載のリチウム二次電池用負極活物質。
[3]アルミニウム相に非アルミニウム相が分散しているアルミニウム含有金属であり、前記非アルミニウム相は、B及びTiを含み、前記アルミニウム相と前記非アルミニウム相の総量に対する、前記非アルミニウム相の含有率は、0.001質量%以上5質量%以下である、リチウム二次電池用負極活物質。
[4]前記アルミニウム含有金属は、Al、Ti、B、元素X及び不可避不純物からなり、前記アルミニウム含有金属の全体質量に対する前記Tiの含有率は、10質量ppm以上1000質量ppm以下であり、前記アルミニウム含有金属の全体質量に対する前記Bの含有率は、2質量ppm以上200質量ppm以下であり、前記元素Xは、Si、Ge、Sn、Ag、Sb、Bi及びInからなる群より選択される1種以上の元素であり、前記アルミニウム含有金属の総量に対する前記不可避不純物の含有率は、0.1質量%以下である、[1]~[3]のいずれか1つに記載のリチウム二次電池用負極活物質。
[5]前記不可避不純物が含む不純物元素はCu、Mn、Ni及びVからなる群より選択される1種以上の元素であり、前記アルミニウム含有金属の全体質量に対する前記不純物元素の合計含有率は、50質量ppm以下である、[4]に記載のリチウム二次電池用負極活物質。
[6]前記アルミニウム含有金属の総量に対する前記元素Xの含有率は、0.1質量%以上4.0質量%以下である、[4]又は[5]に記載のリチウム二次電池用負極活物質。[7]前記アルミニウム含有金属の総量に対するSiの含有率は、0.1質量%以上4.0質量%以下である、[1]~[6]のいずれか1つに記載のリチウム二次電池用負極活物質。
[8][1]~[7]のいずれか1つに記載されたリチウム二次電池用負極活物質からなり、リチウムイオンの吸蔵と放出が可能である、金属負極。
[9][8]に記載されたリチウム二次電池用負極活物質からなる負極活物質層と集電体層とを有するクラッド材を備えたリチウム二次電池用金属負極。
[10]リード線が接続されている、[8]又は[9]に記載の金属負極。
[11][8]~[10]のいずれか1項に記載の金属負極と、リチウムイオンの吸蔵と放出が可能である正極と、前記金属負極と前記正極との間に配置された電解質と、を有するリチウム二次電池。
 本発明によれば、リチウム二次電池のサイクル特性を向上させることができるリチウム二次電池用負極活物質、金属負極及びリチウム二次電池を提供することができる。
負極活物質の断面を得る方法を説明するための模式図である。 アスペクト比を算出する方法を説明するための模式図である。 リチウム二次電池の一例を示す模式図である。 全固体リチウム二次電池の一例を示す模式図である。
<リチウム二次電池用負極活物質>
 以下において「リチウム二次電池用負極活物質」は「負極活物質」と記載する場合がある。本実施形態の負極活物質は、アルミニウム含有金属であり、一方向に圧延された圧延材である。
≪アルミニウム含有金属≫
 アルミニウム含有金属は、アルミニウム相に非アルミニウム相が分散している。負極活物質としてのアルミニウム含有金属は、リチウムイオンの吸蔵と放出が可能である。
(アルミニウム相)
 アルミニウム相は、アルミニウムと、アルミニウムの結晶に固溶した添加元素や不純物を含む相である。
 アルミニウム相を形成するアルミニウムは、高純度アルミニウムであることが好ましい。高純度アルミニウムとは、純度が99質量%以上のアルミニウムである。高純度アルミニウムについては後述する。
(非アルミニウム相)
 非アルミニウム相はアルミニウム相に分散して存在する。「アルミニウム相に非アルミニウム相が分散して存在する」とは、アルミニウム相の中に、粒子状の非アルミニウム相が存在している状態を意味する。アルミニウム以外の元素としては、B及びTiである。さらにアルミニウム以外の元素として元素Xを含んでいてもよい。
 元素Xは、Si、Ge、Sn、Ag、Sb、Bi及びInからなる群より選択される1種以上の元素である。
 なお、「粒子状」とは、アルミニウム含有金属の表面又は断面を観察した際に、非アルミニウム相が凝集し粒子のように見える様子を表す表現である。
 本実施形態において、アルミニウム相と非アルミニウム相の総量に対する、非アルミニウム相の含有率は、0.001質量%以上5質量%以下を満たすことが好ましい。
 非アルミニウム相の含有率が上記上限値以下であるアルミニウム含有金属は、アルミニウム以外の不純物が少ないため、サイクル特性が低下しにくい。
 非アルミニウム相の含有率は上記下限値以上であるアルミニウム含有金属は、後述する結晶微細化の効果が得られやすくなる。
[組成分析]
 負極活物質の組成は、誘導結合プラズマ(Inductive Coupled Plasma、ICP)分析法により確認することができる。例えば、ICP発光分光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて測定することができる。
 負極活物質は、充電時にリチウムイオンを吸蔵し、放電時にリチウムイオンを放出する。リチウムイオンを吸蔵すると負極活物質は膨張し、放出すると収縮する。アルミニウム含有金属は、リチウムイオンの吸蔵量が非常に大きい。このため、アルミニウム含有金属は、リチウムの挿入時の体積膨張と、リチウムの脱離時の体積収縮が大きい。膨張と収縮により歪みが生じたり、応力が集中したりすると、金属負極の割れに発展し、サイクル寿命を短くする原因となる。
 本発明は、アルミニウム相を構成する金属結晶の結晶粒が小さく、さらに結晶粒の配向方向が所定の要件を満たす場合に、リチウム二次電池のサイクル特性を向上させることができるという技術思想に係る。
 この点について説明する。
 負極活物質は、下記画像取得条件に記載の方法により取得した画像において、アルミニウム相を構成する複数の金属結晶の結晶粒を観察したとき、後述する(1)及び(2)を満たす。
(画像取得条件)
 画像取得条件について、図1を参照して説明する。
 負極活物質を一方向に圧延し、厚み50μmの箔40を得る。符号R1は、圧延方向を示す。得られた箔40を、圧延方向R1と平行、かつ箔40の上面S2に対して垂直な粗面S0で切断し、断面S1を得る。断面S1を後方散乱電子回折(Electron Back Scattered Diffraction Pattern、EBSD)法により測定し、アルミニウム相を構成する金属結晶の結晶粒の画像を得る。
 本発明の一態様において、負極活物質は板状の部材である。「板状」とは、少なくとも対向する2つの平面(上面S2及び仮面S3)を有する三次元形状を意味する。板状の負極活物質において、対向する2つの平面の間隔は、負極活物質の厚みに該当する。
 負極活物質の厚みは、例えば5μm以上200μm以下である。
 上記(画像取得条件)において、測定対象である負極活物質の厚みが50μmである場合には、画像取得のための圧延は実施せずに、箔40を圧延方向R1と平行、かつ箔40の上面S2に対して垂直な粗面S0で切断し、断面を得る。
 上記(画像取得条件)において、測定対象である負極活物質の厚みが50μm未満である場合には、負極活物質を複数枚積層して、厚みが50μmの箔を得る。得られた箔40を圧延方向R1と平行、かつ箔40の上面S2に対して垂直な粗面S0で切断し、断面を得る。
 箔40の断面を得る加工には、例えばアルゴンイオンミリング装置が使用できる。加工条件の一例を下記に記載する。
[加工条件]
 アルゴンイオンミリング装置:IB-19520CCP(日本電子株式会社製)
 加速電圧:6kV
 雰囲気:大気
 温度:-100℃
[EBSD法による測定]
 断面加工後、箔の断面S1をEBSD法により測定する。
 EBSD法は、結晶集合組織の方位分布を解析する手法として汎用されている。通常、EBSD法は、走査型電子顕微鏡に後方散乱電子回折検出器を搭載した装置を用いて実施する。
 走査型電子顕微鏡としては、例えば、日本電子株式会社製のJSM-7900Fが使用できる。
 後方散乱電子回折検出器としては、例えば、オックスフォード・インストゥルメント株式会社製のSymmetryが使用できる。
 箔の断面S1に電子線を走査し、後方散乱電子の回折パターンを装置で読み取る。
 具体的には、まず、装置に読み込まれた後方散乱電子の回折パターンをコンピュータに取り込み、結晶方位解析をSymmetryに付属の解析ソフトAZtecで実施しながら試料表面を走査する。これによって、各測定点での結晶の指数付けが行われ、各測定点での結晶方位が求まる。この際、同じ結晶方位を有する領域を一つの結晶粒として定義し、結晶粒の分布に関するマッピング像、つまりグレインマップを取得する。なお、一つの結晶粒を定義するにあたり、隣り合う結晶の結晶方位の角度差が10°以下の場合を同じ結晶方位とする。このとき結晶粒の数が10000個以上12000個以下に達するまで繰り返し走査する。
 これによって、各測定点において算出された結晶方位をもとに結晶粒の画像がコンピュータに記録される。
 10000個以上12000個以下の結晶粒を測定するため、EBSD法の測定により得られる結晶方位マップのピクセルの大きさは、一辺0.05μmとすることが好ましい。
 上記の方法により、アルミニウム相を構成する金属結晶の結晶粒の画像を得る。
(1)
 結晶粒の円相当径の面積加重平均粒径は、4.5μm以下である。
[結晶粒の円相当径の面積加重平均粒径の算出方法]
 面積加重平均粒径Xaは下記の式により算出する。
 Xa=(N1X1+N2X2+‥‥NkXk)/a
(面積がXnである粒子の数をNnとする。nは自然数である。aは解析対象粒子の総数(N1+N2+…Nk)である。)
 面積加重平均粒径は、4.0μm以下を満たすことが好ましく、3.5μm以下を満たすことがさらに好ましい。面積加重平均粒径が上記上限値以下である、換言すれば結晶粒径が小さいと、結晶粒界が増加しやすい。結晶粒界においては膨張と収縮の際に応力が緩和されるため、(1)を満たす負極活物質を用いるとサイクル特性が低下しにくい。
 また、面積加重平均粒径は、例えば0.1μm以上、0.5μm以上、1.0μm以上である。面積加重平均粒径が上記下限値以上であると、リチウムを充分に吸蔵できる。
 面積加重平均粒径の上記上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例としては、面積加重平均粒径は、0.1μm以上4.5μm以下、0.5μm以上4.0μm以下、1.0μm以上3.5μm以下が挙げられる。
[アスペクト比及び標準偏差の算出]
 図2に断面S1の一例の模式図を示す。断面S1を観察すると、結晶粒41が確認できる。箔の上面S2に対して垂直方向をa、平行方向をbとする。断面S1において、結晶粒41はb方向に長径を有する扁平形状として観察される。結晶粒41の長径と短径は、Symmetryに付属の解析ソフトAZtecにてそれぞれ自動的に測定される。
 断面S1において、結晶粒の長径と短径との比(長径/短径)の平均値は1.6を超え、1.7以上が好ましく、1.85以上がより好ましい。
 アスペクト比の平均値が上記下限値以上であると、結晶粒は上面S2に対して平行方向に扁平する傾向にある。この場合、充放電時の膨張と収縮方向が上面S2に対して垂直方向に揃いやすくなる。このような負極活物質は充放電を繰り返した場合、膨張と収縮の方向が揃いやすいため割れが生じにくく、リチウム二次電池のサイクル特性を向上させることができる。
 アスペクト比の上限値は、例えば2.5以下、2.4以下、2.3以下である。
 アスペクト比の上記上限値及び下限値は任意に組み合わせることができる。
 組み合わせの例としては、1.6超え2.5以下、1.7以上2.4以下、1.85以上2.3以下が挙げられる。
[分散状態の確認方法]
 アルミニウム相における非アルミニウム相の分散状態は、例えば、厚さ0.5mmの箔状のアルミニウム含有金属の断面を観察することで把握できる。
 上述の「加工条件」と同様に、アルミニウム含有金属の箔を切断し、断面を水酸化ナトリウム水溶液でエッチングする。断面には、非アルミニウム相に相当する凹部が露出する。エッチング後の断面について、SEM像(拡大倍率300倍)及び金属顕微鏡画像(拡大倍率300倍)を取得する。1つの凹部が1個の粒子(1つの非アルミニウム相)に該当すると考え、断面に露出する粒子の粒子径、及び粒子の個数を測定する。
 本実施形態の一態様の負極活物質は、アルミニウム相に非アルミニウム相が分散しているアルミニウム含有金属である。本実施形態の負極活物質において、非アルミニウム相は、B及びTiを含む。また本実施形態の負極活物質において、アルミニウム相と非アルミニウム相の総量に対する、非アルミニウム相の含有率は、0.001質量%以上5質量%以下である。
 本実施形態において、非アルミニウム相の分散状態の確認方法及び組成分析方法は上記同様である。
 非アルミニウム相の含有率が上記範囲を満たす負極活物質は、アルミニウム相を構成する金属結晶の結晶粒が小さくなりやすい。このような負極活物質は結晶粒界が増加しやすい。結晶粒界においては充放電による膨張と収縮の際に応力が緩和されるため、このような負極活物質を用いたリチウム二次電池はサイクル特性が低下しにくい。
 アルミニウム含有金属は、Al、Ti、B、元素X及び不可避不純物からなることが好ましい。元素Xは、Si、Ge、Sn、Ag、Sb、Bi及びInからなる群より選択される1種以上の元素である。
 この場合、アルミニウム含有金属の全体質量に対するTiの含有率は、10質量ppm以上1000質量ppm以下を満たすことが好ましく、アルミニウム含有金属の全体質量に対するBの含有率は、2質量ppm以上200質量ppm以下を満たすことが好ましい。
 本実施形態の負極活物質を製造するにあたり、アルミニウムの結晶を微細化させるための原料としてチタンホウ素、アルミニウムチタンホウ素、チタン単品、アルミニウムチタン、ホウ素単品、又はアルミニウムホウ素を添加する。このため、原料残渣としてTi及びBのいずれか一方又は両方が残留する。
 Tiの含有率が上記下限値以上であると、結晶微細化の効果が得られやすくなる。また、Tiの含有率が上記上限値以下であると、非アルミニウム相の割合が一定割合以下に抑えられ、電池特性が低下しにくい。
 Bの含有率が上記下限値以上であると、結晶微細化の効果が得られやすくなる。また、Bの含有率が上記上限値以下であると、非アルミニウム相の割合が一定割合以下に抑えられ、電池特性が低下しにくい。
 アルミニウム含有金属の総量に対する元素Xの含有率は、0.1質量%以上4.0質量%以下を満たすことが好ましい。元素Xは、リチウムイオンを吸蔵及び放出可能な材料である。元素Xの含有率が上記範囲を満たす負極活物質を用いたリチウム二次電池は、サイクル特性が低下しにくい。
 元素XはSiであることが好ましい。この場合、アルミニウム含有金属の総量に対するSiの含有率は、0.1質量%以上4.0質量%以下を満たすことが好ましい。Siの含有率が上記範囲を満たす負極活物質を用いたリチウム二次電池は、サイクル特性が低下しにくい。
 不可避不純物は、導電率の低下、負極活物質の強度の低下等の原因となりうる。このような不可避不純物は、精錬工程において不可避的に混入する製造残渣等が挙げられ、0.1質量%以下の範囲で不可避不純物が残留しやすい。
 アルミニウム含有金属の総量に対する不可避不純物の総量は、0.2質量%以下を満たすこと好ましく、0.1質量%以下を満たすことがより好ましく、0.01質量%以下を満たすことがさらに好ましい。不可避不純物の総量が上記上限値以下であると、導電率が低下しにくく、さらに負極活物質の強度が低下しにくい。
 アルミニウム含有金属の総量に対する不可避不純物の総量は、0質量%であることが好ましいが、下限値の例を挙げると、0.00001質量%以上、0.0001質量%以上が挙げられる。
 アルミニウム含有金属の総量に対する不可避不純物の総量は、0質量%以上0.2質量%以下、0.00001質量%以上0.1質量%以下、0.0001質量%以上0.01質量%以下が挙げられる。
 不可避不純物が含む不純物元素は例えばCu、Mn、Ni及びVからなる群より選択される1種以上の元素である。アルミニウム含有金属の全体質量に対する不純物元素の合計含有率は、50質量ppm以下を満たすことが好ましく、40質量ppm以下を満たすことがより好ましく、30質量ppm以下を満たすことがさらに好ましい。
 上記に列挙した不純物元素の合計含有率が上記上限値以下である場合、導電率が低下しにくい。
 アルミニウム含有金属の全体質量に対する不純物元素の合計含有率は、0質量ppmであることが好ましいが、下限値の例を挙げると、0.001質量ppm以上、0.01質量ppm以上が挙げられる。
 不純物元素の合計含有率の上記上限値及び下限値は任意に組み合わせることができる。組み合わせの例としては、不純物元素の合計含有率は、0質量ppm以上50質量ppm以下、0.001質量ppm以上40質量ppm以下、0.001質量ppm以上30質量ppm以下が挙げられる。
<リチウム二次電池用負極活物質の製造方法>
 負極活物質は、溶融工程、真空処理工程、アルミニウム用結晶粒微細化剤添加工程、鋳造工程、箔状加工工程をこの順で備える製造方法により製造できる。
[溶融工程]
 溶融工程は、例えばアルミニウムを約680℃以上800℃以下で溶融し、通常知られたガスや非金属介在物を除去して清浄にする処理を行う。
 溶融の際に、他の金属元素を所定量添加することで、アルミニウム含有溶湯を得ることができる。他の金属元素としては、例えば上記元素Xであり、Si源として高純度シリコンを添加することが好ましい。
(高純度アルミニウム)
 アルミニウムは高純度アルミニウムを用いることが好ましい。
 高純度アルミニウムは、純度が99質量%以上であることが好ましく、99.9質量%以上がより好ましく、99.95質量%以上がさらに好ましく、99.99質量%以上が特に好ましい。高純度アルミニウムの純度は、固体発光分光分析法により確認することができる。
 アルミニウムを上記の純度まで高純度化する精製方法として、例えば偏析法及び三層電解法を例示できる。
・・偏析法
 偏析法は、アルミニウム溶湯の凝固の際の偏析現象を利用した純化法であり、複数の手法が実用化されている。偏析法の一つの形態としては、容器の中に溶湯アルミニウムを注ぎ、容器を回転させながら上部の溶湯アルミニウムを加熱、撹拌しつつ底部より精製アルミニウムを凝固させる方法がある。偏析法により、純度99.99質量%以上のアルミニウムを得ることができる。
・・三層電解法
 三層電解法の一つの形態としては、まず、Al-Cu合金層に、アルミニウム等(例えば純度99質量%のJIS-H2102の時1種程度のグレード)を投入する。その後、溶融状態で陽極とし、その上に例えばフッ化アルミニウム及びフッ化バリウム等を含む電解浴を配置し、陰極に高純度のアルミニウムを析出させる方法である。
 三層電解法では純度99.999質量%以上の高純度アルミニウムを得ることができる。
 アルミニウムを高純度化する精製方法は、偏析法、三層電解法に限定されるものではなく、帯溶融精製法、超高真空溶解精製法等、既に知られている他の方法でもよい。
[真空処理工程]
 真空処理は、例えば700℃以上800℃以下で、1時間以上10時間以下、真空度0.1Pa以上100Pa以下の条件で行われる。
 溶湯を清浄にする処理としては、フラックス、不活性ガスや塩素ガスを溶湯アルミニウムに吹き込む処理も利用できる。
[アルミニウム用結晶粒微細化剤添加工程]
 真空処理後の溶湯にアルミニウム用結晶粒微細化剤を添加する。アルミニウム用結晶粒微細化剤としては、アルミニウムチタンホウ素、チタンホウ素が挙げられる。アルミニウム用結晶粒微細化剤の市販品としては、例えばオランダKBM Affilips B.V.社製のAlTiB5/1が挙げられる。
 アルミニウム用結晶粒微細化剤の添加量は、例えばTiの含有率がアルミニウム含有金属の全体質量を基準として10質量ppm以上1000質量ppm以下、Bの含有率がアルミニウム含有金属の全体質量を基準として2質量ppm以上200質量ppm以下を満たす量に調整することが好ましい。
 アルミニウム用結晶粒微細化剤を添加することにより、上記(1)を満たす負極活物質を得ることができる。アルミニウム用結晶粒微細化剤の添加量を増やすと、結晶粒の円相当径の面積加重平均粒径は小さくなる。
 また、アルミニウム用結晶粒微細化剤を添加することにより、微細化した結晶が圧延により圧延方向に伸びやすくなり、上記(2)を満たす負極活物質を得ることができる。
[鋳造工程]
 アルミニウム用結晶粒微細化剤を添加した溶湯を直ちに攪拌し、アルミニウム用結晶粒微細化剤を溶湯中に均一に分散させる。その後、鋳型にて鋳造し、アルミニウム含有鋳塊を得る。
 鋳型は50℃以上200℃以下に加熱した鉄や黒鉛製を用いる。アルミニウム含有金属は、680℃以上800℃以下の溶湯を鋳型に流し込む方法で鋳造する。また、一般的に利用されている連続鋳造により鋳塊を得ることもできる。
[箔状加工工程]
 得られたアルミニウム含有鋳塊は、圧延加工を施すことで圧延材となる。板状の金属負極とする場合には、本工程において板状に加工すればよい。
 鋳塊の圧延加工においては、例えば、熱間圧延と冷間圧延とを行い、アルミニウム含有鋳塊を箔状に加工する。
 熱間圧延を実施する温度条件は、例えば、アルミニウム含有鋳塊を温度350℃以上450℃以下とすることが挙げられる。
 圧延加工では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げてゆく。一対の圧延ロール間に通過させることを「パス」と記載する。
 1回のパス(1パス)当たりの加工率rは、圧延ロールを1回通過したときの板厚減少率であり、下記の式で算出される。
  r=(T-T)/T×100
 (T:圧延ロール通過前の厚み、T:圧延ロール通過後の厚み)
 加工率rが2%以上20%以下の条件で、アルミニウム含有鋳塊を目的の厚さとなるまで繰り返し行うことが好ましい。
 熱間圧延後、必要に応じ、冷間圧延の前に中間焼鈍処理を行ってもよい。
 中間焼鈍処理は、例えば、熱間圧延したアルミニウム含有鋳塊を、350℃以上450℃以下に加熱、昇温後直ちに放冷してもよい。
 また、アルミニウム含有鋳塊を1時間以上5時間以下程度保持後に放冷してもよい。
 冷間圧延は、例えば、アルミニウム含有鋳塊の再結晶温度未満の温度、通常、室温から80℃以下で、1パスのダイスにおいては、加工率rが1%以上10%以下の条件で、アルミニウム含有鋳塊を目的の厚さとなるまで繰り返し行われる。
<金属負極>
 本実施形態の金属負極は、前記本実施形態の負極活物質からなり、リチウムイオンの吸蔵と放出が可能である。
 本実施形態の金属負極の一態様は、負極の役割と負極集電体の役割とをともに果たす集電体併用型負極である。集電体併用型負極によれば別途の集電体部材は不要となる。
 本実施形態の金属負極の一態様は、前記本実施形態の負極活物質と、負極集電体とを備える。
 集電体を使う場合には、負極集電体としては、金属材料を形成材料とする帯状の部材を挙げることができる。金属材料としては、Al、Cu、Ni、Mg、Mnからなる群より選択される1種を単体で用いてもよく、これらの少なくとも2種を含む合金を用いてもよく、ステンレスを用いてもよい。
 なかでも、集電体の材料としては、リチウムと合金を作り難く、加工しやすいという点で、Cu及びAlの少なくとも一方を形成材料とし、薄膜状に加工したものが好ましい。また、負極集電体を用いる場合、負極と負極集電体を一体となるよう積層させた、クラッド材としてもよい。
 クラッド材を製造する方法としては、以下の方法が挙げられる。負極と負極集電体の接合面をそれぞれ脱脂し、ブラシ等を用いて一方向にそれぞれ研磨する。これにより、負極の接合面の表面粗さRa及び負極集電体の接合面の表面粗さRaを0.7μm以上となるよう調整する。
 負極と、負極集電体との接合面同士をあわせて、積層体を得る。得られた積層体を300-500℃で予備加熱し、初回の圧延での圧下率が45-70%となる条件で熱間圧延する。その後、追加で冷間圧延を行い、負極の厚みが5-550μmである圧延材、すなわちクラッド材が得られる。
 集電体併用型負極や上記のクラッド材として負極を使用する場合、金属負極にはリード線が接続されている。
<リチウム二次電池>
 次いで、電池の構成を説明しながら、本発明の負極活物質を、電池の負極活物質として用いた負極、およびこの負極を有する二次電池について説明する。
 以下、正極にリチウム正極活物質を用いたリチウム二次電池を例に説明する。
 本実施形態の負極活物質を用いる場合の好適なリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 リチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図3は、リチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図3に示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
 次いで、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形又は角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型又は角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、又はペーパー型(又はシート型)電池を例示することができる。
 以下、各構成について順に説明する。
(正極)
 正極は、正極活物質、導電材及びバインダーを含む正極合剤を調製し、正極合剤を正極集電体に担持させることで製造することができる。
(正極活物質)
 正極活物質には、リチウム含有化合物又は他の金属化合物を用いることができる。リチウム含有化合物としては、例えば、層状構造を有するリチウムコバルト複合酸化物、層状構造を有するリチウムニッケル複合酸化物、スピネル構造を有するリチウムマンガン複合酸化物及びオリビン型構造を有するリン酸鉄リチウムが挙げられる。
 また他の金属化合物としては、例えば、酸化チタン、酸化バナジウム若しくは二酸化マンガンなどの酸化物、又は硫化チタン若しくは硫化モリブデンなどの硫化物が挙げられる。
(導電材)
 正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)及び繊維状炭素材料などを挙げることができる。
 正極合剤中の導電材の割合は、正極活物質100質量部に対して5-20質量部であると好ましい。
(バインダー)
 正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリイミド樹脂;ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレンなどのフッ素樹脂;ポリエチレン及びポリプロピレンなどのポリオレフィン樹脂、WO2019/098384A1またはUS2020/0274158A1に記載の樹脂を挙げることができる。
(正極集電体)
 正極が有する正極集電体としては、Al、Ni又はステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。
 正極集電体に正極合剤を担持させる方法としては、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、電極プレス工程を行って固着する方法が挙げられる。
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N-メチル-2-ピロリドン(以下、NMPということがある。)が挙げられる。
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 リチウム二次電池が有する負極は、本実施形態の負極活物質からなる金属負極を用いる。
(負極集電体)
 本実施形態の金属負極が集電体の役割も兼ねる場合には、負極集電体は不要である。 負極集電体を別途使用する場合には、Cu、Ni又はステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。
(セパレータ)
 リチウム二次電池が有するセパレータとしては、例えば、ポリエチレン及びポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂又は含窒素芳香族重合体などの材質からなる、多孔質膜、不織布又は織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。また、JP-A-2000-030686又はUS20090111025A1に記載のセパレータを用いてもよい。
(電解液)
 リチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩及びLiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF及びLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン及び1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン及び2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、プロピオン酸プロピル及びγ-ブチロラクトンなどのエステル類;アセトニトリル及びブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド及びN,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド及び1,3-プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。
 電解液は、リン酸トリス(トリメチルシリル)及びホウ酸トリス(トリメチルシリル)等の添加物を含んでいてもよい。
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。電解液に含まれる電解質および有機溶媒として、WO2019/098384A1またはUS2020/0274158A1に記載の電解質および有機溶媒を用いてもよい。
 <全固体リチウム二次電池>
 次いで、全固体リチウム二次電池の構成を説明しながら、本発明の一態様に係るリチウム二次電池用負極活物質を全固体リチウム二次電池の負極活物質として用いた負極、及びこの負極を有する全固体リチウム二次電池について説明する。
 図4は、本実施形態の全固体リチウム二次電池の一例を示す模式図である。図4に示す全固体リチウム二次電池1000は、正極110と、負極120と、固体電解質層130とを有する積層体100と、積層体100を収容する外装体200と、を有する。また、全固体リチウム二次電池1000は、集電体の両側に正極活物質と負極活物質とを配置したバイポーラ構造であってもよい。バイポーラ構造の具体例として、例えば、JP-A-2004-95400に記載される構造が挙げられる。各部材を構成する材料については、後述する。
 積層体100は、正極集電体112に接続される外部端子113と、負極集電体122に接続される外部端子123と、を有していてもよい。その他、全固体リチウム二次電池1000は、正極110と負極120との間にセパレータを有していてもよい。
 全固体リチウム二次電池1000は、さらに積層体100と外装体200とを絶縁する不図示のインシュレーター及び外装体200の開口部200aを封止する不図示の封止体を有する。
 外装体200は、アルミニウム、ステンレス鋼又はニッケルメッキ鋼などの耐食性の高い金属材料を成形した容器を用いることができる。また、外装体200として、少なくとも一方の面に耐食加工を施したラミネートフィルムを袋状に加工した容器を用いることもできる。
 全固体リチウム二次電池1000の形状としては、例えば、コイン型、ボタン型、ペーパー型(またはシート型)、円筒型、角型、又はラミネート型(パウチ型)などの形状を挙げることができる。
 全固体リチウム二次電池1000は、一例として積層体100を1つ有する形態が図示されているが、本実施形態はこれに限らない。全固体リチウム二次電池1000は、積層体100を単位セルとし、外装体200の内部に複数の単位セル(積層体100)を封じた構成であってもよい。
 以下、各構成について順に説明する。
 (正極)
 正極110は、正極活物質層111と正極集電体112とを有している。
 正極活物質層111は、正極活物質及び固体電解質を含む。また、正極活物質層111は、導電材及びバインダーを含んでいてもよい。
 (固体電解質)
 正極活物質層111に含まれる固体電解質としては、リチウムイオン伝導性を有し、公知の全固体リチウム二次電池に用いられる固体電解質を採用することができる。このような固体電解質としては、無機電解質及び有機電解質を挙げることができる。無機電解質としては、酸化物系固体電解質、硫化物系固体電解質及び水素化物系固体電解質を挙げることができる。有機電解質としては、ポリマー系固体電解質を挙げることができる。各電解質としては、WO2020/208872A1、US2016/0233510A1、US2012/0251871A1、US2018/0159169A1に記載の化合物が挙げられ、例えば、以下の化合物が挙げられる。
 (酸化物系固体電解質)
 酸化物系固体電解質としては、例えば、ペロブスカイト型酸化物、NASICON型酸化物、LISICON型酸化物及びガーネット型酸化物などが挙げられる。各酸化物の具体例は、WO2020/208872A1、US2016/0233510A1、US2020/0259213A1に記載の化合物が挙げられ、例えば、以下の化合物が挙げられる。
 ペロブスカイト型酸化物としては、LiLa1-aTiO(0<a<1)などのLi-La-Ti系酸化物、LiLa1-bTaO(0<b<1)などのLi-La-Ta系酸化物及びLiLa1-cNbO(0<c<1)などのLi-La-Nb系酸化物などが挙げられる。
 NASICON型酸化物としては、Li1+dAlTi2-d(PO(0≦d≦1)などが挙げられる。NASICON型酸化物とは、Li (式中、Mは、B、Al、Ga、In、C、Si、Ge、Sn、Sb及びSeからなる群から選ばれる1種以上の元素である。Mは、Ti、Zr、Ge、In、Ga、Sn及びAlからなる群から選ばれる1種以上の元素である。m、n、o、p及びqは、任意の正数である。)で表される酸化物である。
 LISICON型酸化物としては、Li-Li(Mは、Si、Ge、及びTiからなる群から選ばれる1種以上の元素である。Mは、P、As及びVからなる群から選ばれる1種以上の元素である。)で表される酸化物などが挙げられる。
 ガーネット型酸化物としては、LiLaZr12(LLZともいう)などのLi-La-Zr系酸化物などが挙げられる。
 酸化物系固体電解質は、結晶性材料であってもよく、非晶質材料であってもよい。
 (硫化物系固体電解質)
 硫化物系固体電解質としては、LiS-P系化合物、LiS-SiS系化合物、LiS-GeS系化合物、LiS-B系化合物、LiI-SiS-P系化合物、LiI-LiS-P系化合物、LiI-LiPO-P系化合物及びLi10GeP12系化合物などを挙げることができる。
 なお、本明細書において、硫化物系固体電解質を指す「系化合物」という表現は、「系化合物」の前に記載した「LiS」「P」などの原料を主として含む固体電解質の総称として用いる。例えば、LiS-P系化合物には、LiSとPとを主として含み、さらに他の原料を含む固体電解質が含まれる。LiS-P系化合物に含まれるLiSの割合は、例えばLiS-P系化合物全体に対して50~90質量%である。LiS-P系化合物に含まれるPの割合は、例えばLiS-P系化合物全体に対して10~50質量%である。また、LiS-P系化合物に含まれる他の原料の割合は、例えばLiS-P系化合物全体に対して0~30質量%である。また、LiS-P系化合物には、LiSとPとの混合比を異ならせた固体電解質も含まれる。
 LiS-P系化合物としては、LiS-P、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P-LiI-LiBr、LiS-P-LiO、LiS-P-LiO-LiI及びLiS-P-Z(m、nは正の数である。Zは、Ge、ZnまたはGaである。)などを挙げることができる。
 LiS-SiS系化合物としては、LiS-SiS、LiS-SiS-LiI、LiS-SiS-LiBr、LiS-SiS-LiCl、LiS-SiS-B-LiI、LiS-SiS-P-LiI、LiS-SiS-P-LiCl、LiS-SiS-LiPO、LiS-SiS-LiSO及びLiS-SiS-LiMO(x、yは正の数である。Mは、P、Si、Ge、B、Al、Ga又はInである。)などを挙げることができる。
 LiS-GeS系化合物としては、LiS-GeS及びLiS-GeS-Pなどを挙げることができる。
 硫化物系固体電解質は、結晶性材料であってもよく、非晶質材料であってもよい。
 (水素化物系固体電解質)
 水素化物系固体電解質材料としては、LiBH、LiBH-3KI、LiBH-PI、LiBH-P、LiBH-LiNH、3LiBH-LiI、LiNH、LiAlH、Li(NHI、LiNH、LiGd(BHCl、Li(BH)(NH)、Li(NH)I及びLi(BH)(NHなどを挙げることができる。
 (ポリマー系固体電解質)
 ポリマー系固体電解質として、例えばポリエチレンオキサイド系の高分子化合物及びポリオルガノシロキサン鎖及びポリオキシアルキレン鎖からなる群から選ばれる1種以上を含む高分子化合物などの有機系高分子電解質を挙げることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。
 固体電解質は、発明の効果を損なわない範囲において、2種以上を併用することができる。
 (導電材及びバインダー)
 正極活物質層111が有する導電材としては、上述の(導電材)で説明した材料を用いることができる。また、正極合剤中の導電材の割合についても同様に上述の(導電材)で説明した割合を適用することができる。また、正極が有するバインダーとしては、上述の(バインダー)で説明した材料を用いることができる。
(正極集電体)
 正極110が有する正極集電体112としては、上述の(正極集電体)で説明した材料を用いることができる。
 正極集電体112に正極活物質層111を担持させる方法としては、正極集電体112上で正極活物質層111を加圧成型する方法が挙げられる。加圧成型には、冷間プレスや熱間プレスを用いることができる。
 また、有機溶媒を用いて正極活物質、固体電解質、導電材及びバインダーの混合物をペースト化して正極合剤とし、得られる正極合剤を正極集電体112の少なくとも一面上に塗布して乾燥させ、プレスし固着することで、正極集電体112に正極活物質層111を担持させてもよい。
 また、有機溶媒を用いて正極活物質、固体電解質及び導電材の混合物をペースト化して正極合剤とし、得られる正極合剤を正極集電体112の少なくとも一面上に塗布して乾燥させ、焼結することで、正極集電体112に正極活物質層111を担持させてもよい。
 正極合剤に用いることができる正極活物質としては、上述の(正極活物質)で説明した正極活物質と同じものを用いることができる。
 正極合剤に用いることができる有機溶媒としては、上述の(正極集電体)で説明した正極合剤をペースト化する場合に用いることができる有機溶媒と同じものを用いることができる。
 正極合剤を正極集電体112へ塗布する方法としては、上述の(正極集電体)で説明した方法が挙げられる。
 以上に挙げられた方法により、正極110を製造することができる。正極110に用いる具体的な材料の組み合わせとしては、正極活物質と表1に記載する組み合わせが挙げられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(負極)
 負極120は、負極活物質層121と負極集電体122とを有している。負極活物質層121は、本実施形態の負極活物質からなる金属負極を用いる。
 本実施形態の金属負極が集電体の役割も兼ねる場合には、負極集電体は不要である。 負極集電体を別途使用する場合には、負極集電体122は、Cu、Ni又はステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。
(固体電解質層)
 固体電解質層130は、上述の固体電解質を有している。
 固体電解質層130の製法の一例としては、上述の正極110が有する正極活物質層111の表面に、無機物の固体電解質をスパッタリング法や、固体電解質を含むペースト状の合剤を塗布し、乾燥させる方法が挙げられる。後者については、乾燥後、プレス成型し、さらに冷間等方圧加圧法(CIP)により加圧して固体電解質層130を形成してもよい。
 積層体100は、上述のように正極110上に設けられた固体電解質層130に対し、公知の方法を用いて、固体電解質層130の表面に負極活物質層121が接する態様で負極120を積層させることで製造することができる。
 次に、本発明を実施例によりさらに詳細に説明する。
<組成分析>
 負極活物質の組成分析は、上記[組成分析]に記載の方法により実施した。
<画像取得条件>
 負極活物質の断面画像は、上記[加工条件]及び(画像取得条件)に記載の方法により取得した。
<EBSD法による測定>
 EBSD法による測定は、上記[EBSD法による測定]に記載の方法により実施した。
<面積加重平均粒径の算出>
 結晶粒の円相当径の面積加重平均粒径は、上記[結晶粒の円相当径の面積加重平均粒径の算出方法]に記載の方法により算出した。
<アスペクト比及び標準偏差の算出>
 結晶粒のアスペクト比及び標準偏差は、上記[アスペクト比及び標準偏差の算出]に記載の方法により算出した。
<分散状態の確認方法>
 アルミニウム相及び非アルミニウム相の分散状態は、上記[分散状態の確認方法]に記載の方法により確認した。
<リチウム二次電池のサイクル特性の評価>
[負極の作製]
 後述する方法により負極活物質を製造し、負極活物質からなる負極を製造した。
[正極の作製]
 正極活物質としてコバルト酸リチウム(製品名セルシード。日本化学工業株式会社製。平均粒径(D50)10μm)90質量部と、バインダーとしてポリフッ化ビニリデン(株式会社クレハ製)5質量部と、導電材としてアセチレンブラック(製品名デンカブラック。デンカ株式会社製)5質量部と、を混合し、更にN-メチル-2-ピロリドン70質量部を混合して正極の電極合剤とした。
 得られた電極合剤を、ドクターブレード法により、集電体である厚み15μmのアルミニウム箔上に塗工した。塗工した電極合剤を、60℃で2時間乾燥させた後、更に150℃で10時間真空乾燥させて、N-メチル-2-ピロリドンを揮発させた。乾燥後の正極活物質の塗工量は21.5mg/cmであった。
 得られた電極合剤層と集電体との積層体を圧延した後、φ14mmの円盤状に切り出し、コバルト酸リチウムを形成材料とする正極合剤層と、集電体との積層体である正極を製造した。
 圧延後の正極合材層の厚さは、60~65μm、電極密度は3.0~3.5g/cmであった。
[電解液の作製]
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=30:70(体積比)で混合させてなる混合溶媒に、LiPFを1モル/リットルとなる割合で溶解した電解液を作製した。
[リチウム二次電池の作製]
 上記の負極と正極との間にポリエチレン製多孔質セパレータを配置して、電池ケース(規格2032)に収納し、上記の電解液を注液し、電池ケースを密閉することにより、直径20mm、厚み3.2mmのコイン型(フルセル)のリチウム二次電池を作製した。 なお、電解液、リチウム金属および充電後の電極等、水分と反応性する材料を使用する作業については、水分値1質量ppm以下で管理したグローブボックスの内部もしくは、それと同等の極力水分と接触しない環境で行った。
[充放電評価:初回放電容量]
 コイン型のリチウム二次電池を室温で10時間静置することでセパレータ及び正極合剤層に充分電解液を含浸させた。
 次に、室温において4.2Vまで1mA(0.2C)で定電流充電(AlにLi吸蔵)してから4.2Vで定電圧充電する定電流定電圧充電を5時間行った後、3.4Vまで1mA(0.2C)で放電(AlからLi放出)する定電流放電を行うことで初期充放電を行った。なお1Cは、1時間でフル充電(100%充電された状態)又はフル放電(100%放電された状態)となる電流量を意味する。
[充放電評価:20サイクル目の充放電効率]
 初期充放電後、初期充放電の条件と同様に1mA(0.2C)で充電、1mA(0.2C)で放電を繰り返した。
 6回と20回のサイクル試験にて寿命評価を実施し、サイクル維持率を以下の式にて算出した。
サイクル維持率(%)
   =20サイクル目の放電容量(mAh)/6サイクル目の放電容量(mAh)×100
 上記の方法により算出されるサイクル維持率が97%以上102%以下であると、サイクル維持率が高く、サイクル特性に優れると評価する。
≪実施例1≫
(鋳造工程)
 4455gのアルミニウム(純度:99.99質量%以上)と、45gのトクヤマ製シリコン(純度:99.999質量%以上)とそれぞれ秤量した。
 次に、アルミニウムを溶解させたところにシリコンを添加し、780℃に加熱・保持することで、シリコン含有率が1.0質量%であるAl-Si合金溶湯を得た。
 次に、合金溶湯を温度760℃で、2時間、真空度50Paの条件で保持して清浄化した。
 清浄化後、Al-Si合金溶湯に、微細化用合金として、市販のAl-Ti-B系合金(Al:Ti:B=94:5:1、オランダKBM Affilips B.V.社製、AlTiB5/1)を2.2g投入し、直ちに1分間攪拌し、合金溶湯を得た。
 合金溶湯を150℃にて乾燥した鋳鉄鋳型(22mm×150mm×200mm)を用いて鋳造し、鋳塊を得た。
(箔状加工工程)
 圧延は以下の条件で行った。鋳塊の両面を2mm面削加工した後、厚さ20mmから加工率rが99.6%で冷間圧延を行った。得られた金属箔原料の厚みは50μmであった。
 これにより、アルミニウム含有金属箔1を得た。アルミニウム含有金属箔1は、アルミニウム相に非アルミニウム相が分散していた。非アルミニウム相は、Tiを25質量ppm、Bを5質量ppm含んでいた。
 アルミニウム含有金属箔1は、アルミニウム相の結晶粒の円相当径の面積加重平均粒径は3.8μmであり、結晶粒のアスペクト比は1.9であり、アスペクト比の標準偏差は0.87であった。
 得られたアルミニウム含有金属箔1(厚さ50μm)を、φ15mmの円盤状に切り出し、負極を製造した。
 アルミニウム含有金属箔1を負極活物質として用いたリチウム二次電池において、上記の方法により算出したサイクル維持率は97%であった。
<実施例2>
 市販のAl-Ti-B系合金(Al:Ti:B=94:5:1、オランダKBM Affilips B.V.社製、AlTiB5/1)の投入量を7.4gに変更した以外は実施例1と同様の方法により、アルミニウム含有金属2を得た。
 アルミニウム含有金属箔2は、アルミニウム相に非アルミニウム相が分散していた。非アルミニウム相は、Tiを83質量ppm、Bを17質量ppm含んでいた。
 アルミニウム含有金属箔2は、アルミニウム相の結晶粒の円相当径の面積加重平均粒径は2.6μmであり、結晶粒のアスペクト比は1.9であり、アスペクト比の標準偏差は0.83であった。
 アルミニウム含有金属箔2を負極活物質として用いた以外は実施例1と同様の方法によりサイクル維持率を算出したところ、99%であった。
<実施例3>
 市販のAl-Ti-B系合金(Al:Ti:B=94:5:1、オランダKBM Affilips B.V.社製、AlTiB5/1)の投入量を22.3gに変更した以外は実施例1と同様の方法により、アルミニウム含有金属3を得た。
 アルミニウム含有金属箔3は、アルミニウム相に非アルミニウム相が分散していた。非アルミニウム相は、Tiを250質量ppm、Bを50質量ppm含んでいた。
 アルミニウム含有金属箔3は、アルミニウム相の結晶粒の円相当径の面積加重平均粒径は2.0μmであり、結晶粒のアスペクト比は1.7であり、アスペクト比の標準偏差は0.46であった。
 アルミニウム含有金属箔3を負極活物質として用いた以外は実施例1と同様の方法によりサイクル維持率を算出したところ、98%であった。
<実施例4>
 市販のAl-Ti-B系合金(Al:Ti:B=94:5:1、オランダKBM Affilips B.V.社製、AlTiB5/1)の投入量を76gに変更した以外は実施例1と同様の方法により、アルミニウム含有金属4を得た。
 アルミニウム含有金属箔4は、アルミニウム相に非アルミニウム相が分散していた。非アルミニウム相は、Tiを830質量ppm、Bを170質量ppm含んでいた。
 アルミニウム含有金属箔4は、アルミニウム相の結晶粒の円相当径の面積加重平均粒径は1.7μmであり、結晶粒のアスペクト比は1.8であり、アスペクト比の標準偏差は0.62であった。
 アルミニウム含有金属箔4を負極活物質として用いた以外は実施例1と同様の方法によりサイクル維持率を算出したところ、101%であった。
<参考例1>
 Al-Ti-B系合金を添加しない以外は実施例1と同様の方法により、アルミニウム含有金属5を得た。
 アルミニウム含有金属箔5は、1.0質量%のSiを含んでいた。
 アルミニウム含有金属箔5は、アルミニウム相の結晶粒の円相当径の面積加重平均粒径は4.8μmであり、結晶粒のアスペクト比は1.6であり、アスペクト比の標準偏差は0.93であった。
 アルミニウム含有金属箔5を負極活物質として用いた以外は実施例1と同様の方法によりサイクル維持率を算出したところ、95%であった。
<比較例1>
(鋳造工程)
 4500gのアルミニウム(純度:99.99質量%以上)を秤量した。
 次に、アルミニウムを溶解させ、780℃に加熱・保持することで、Al溶湯を得た。 次に、Al溶湯を温度760℃で、2時間、真空度50Paの条件で保持して清浄化した。
 Al溶湯を150℃にて乾燥した鋳鉄鋳型(22mm×150mm×200mm)を用いて鋳造し、鋳塊を得た。
(箔状加工工程)
 圧延は以下の条件で行った。鋳塊の両面を2mm面削加工した後、厚さ20mmから加工率rが99.6%で冷間圧延を行った。得られた金属箔原料の厚みは50μmであった。これにより、アルミニウム箔1を得た。
 アルミニウム箔1は、アルミニウム相の結晶粒の円相当径の面積加重平均粒径は12.1μmであった。アルミニウム箔1は平均粒径が大きすぎたため、アスペクト比を測定することができなかった。
 アルミニウム箔1を負極活物質として用いた以外は実施例1と同様の方法によりサイクル維持率を算出したところ、95%であった。
 下記表4に、実施例1~4、参考例1及び比較例1の負極活物質について、組成、面積加重平均粒径、アスペクト比、アスペクト比の標準偏差、非アルミニウム相の含有率、Ti含有率、B含有率、不可避不純物の総量、不純物元素とその合計含有率及びサイクル特性の結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表4に記載の通り、実施例1~4の負極活物質を用いた場合には、参考例1及び比較例1に比べてサイクル維持率が高いことが確認できた。
 また、本発明の別の側面として、実施例1-4の負極活物質と負極集電体とを積層したクラッド材を負極とすることもできる。クラッド材を負極とする例を以下に説明する。
<製造例1>
 実施例1と同じ手順で作成したアルミニウム含有金属箔1を負極活物質層として、さらにA5052合金の圧延材を集電体層としてそれぞれ使用し、以下に記す表面処理や積層体の圧延を経て、負極活物質層と集電体層を備えるアルミニウム含有金属積層体1を製造する。
・表面処理
 負極活物質層材料であるアルミニウム含有金属箔1と、集電体層材料であるアルミニウム-マグネシウム合金の接合面をそれぞれ脱脂し、ブラシを用いて一方向にそれぞれ研磨する。これにより、アルミニウム含有金属箔1の接合面の表面粗さRaは1.0μmに、アルミニウム-マグネシウム合金の接合面の表面粗さRaは1.0μmとなるよう調整する。
・積層体の圧延
 アルミニウム含有金属箔1と、アルミニウム-マグネシウム合金との接合面同士をあわせて、積層体1を得た。得られた積層体1を350℃で予備加熱し、初回の圧延での圧下率が50%となる条件で熱間圧延する。その後も追加で冷間圧延を行い負極活物質層の厚みが25μmである圧延材を得る。
<製造例2>
 実施例1と同じ手順で作成したアルミニウム含有金属箔1を負極活物質層として、さらにA5052合金の圧延材を集電体層としてそれぞれ使用し、以下に記す表面処理や積層体の圧延を経て、負極活物質層と集電体層を備えるアルミニウム含有金属積層体2を製造する。
・表面処理
 負極活物質層材料であるアルミニウム含有金属箔1と、集電体層材料であるアルミニウム-マンガン合金の接合面をそれぞれ脱脂し、ブラシを用いて一方向にそれぞれ研磨する。これにより、アルミニウム含有金属箔1の接合面の表面粗さRaは1.0μmに、アルミニウム-マンガン合金の接合面の表面粗さRaは1.0μmとなるよう調整する。
・積層体の圧延
 アルミニウム含有金属箔1と、アルミニウム-マンガン合金との接合面同士をあわせて、積層体1を得た。得られた積層体1を350℃で予備加熱し、初回の圧延での圧下率が50%となる条件で熱間圧延する。その後も追加で冷間圧延を行い負極活物質層の厚みが25μmである圧延材を得る。
 製造例1、2のアルミニウム含有金属積層体は、実施例1のアルミニウム含有金属箔1を所謂負極活物質層として有しており、組成、面積加重平均粒径、アスペクト比、アスペクト比の標準偏差、非アルミニウム相の含有率、Ti含有率、B含有率、不可避不純物の総量、不純物元素とその合計含有率は、実施例1と同じとなる。よって、製造例1、2のアルミニウム含有金属積層体を用いたリチウム二次電池のサイクル特性は、実施例1~4と同等又はそれ以上となることが十分推察できる。
 具体的には、上記<リチウム二次電池のサイクル特性の評価>に記載の方法により算出されるサイクル維持率が97%以上102%以下となることが十分推察できる。
1…セパレータ、2…正極、3…アルミニウム負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード、100…積層体、110…正極、111…正極活物質層、112…正極集電体、113…外部端子、120…負極、121…負極活物質層、122…負極集電体、123…外部端子、130…固体電解質層、200…外装体、200a…開口部、1000…全固体リチウム二次電池

Claims (11)

  1.  アルミニウム相に非アルミニウム相が分散しているアルミニウム含有金属であり、前記アルミニウム含有金属は、一方向に圧延された圧延材であり、前記非アルミニウム相は、B及びTiのいずれか一方又は両方を含み、下記画像取得条件に記載の方法により取得した画像において、下記(1)及び(2)を満たす、リチウム二次電池用負極活物質。
    (画像取得条件)
     前記リチウム二次電池用負極活物質を一方向に圧延し、厚み50μmの箔を得る。前記箔を、圧延方向と平行、かつ、圧延面に対し垂直な面にて切断し、断面を得る。前記断面を後方散乱電子回折法により測定し、前記アルミニウム相を構成する金属結晶の結晶粒の画像を得る。
    (1)前記結晶粒の円相当径の面積加重平均粒径は、4.5μm以下である。
    (2)前記結晶粒のアスペクト比は、算術平均値が1.6を超え、標準偏差が0.9以下である。
  2.  前記アルミニウム相と前記非アルミニウム相の総量に対する前記非アルミニウム相の含有率は、0.001質量%以上5質量%以下である、請求項1に記載のリチウム二次電池用負極活物質。
  3.  アルミニウム相に非アルミニウム相が分散しているアルミニウム含有金属であり、前記非アルミニウム相は、B及びTiを含み、前記アルミニウム相と前記非アルミニウム相の総量に対する、前記非アルミニウム相の含有率は、0.001質量%以上5質量%以下である、リチウム二次電池用負極活物質。
  4.  前記アルミニウム含有金属は、Al、Ti、B、元素X及び不可避不純物からなり、前記アルミニウム含有金属の全体質量に対する前記Tiの含有率は、10質量ppm以上1000質量ppm以下であり、前記アルミニウム含有金属の全体質量に対する前記Bの含有率は、2質量ppm以上200質量ppm以下であり、前記元素Xは、Si、Ge、Sn、Ag、Sb、Bi及びInからなる群より選択される1種以上の元素であり、前記アルミニウム含有金属の総量に対する前記不可避不純物の含有率は、0.1質量%以下である、請求項1~3のいずれか1項に記載のリチウム二次電池用負極活物質。
  5.  前記不可避不純物が含む不純物元素はCu、Mn、Ni及びVからなる群より選択される1種以上の元素であり、前記アルミニウム含有金属の全体質量に対する前記不純物元素の合計含有率は、50質量ppm以下である、請求項4に記載のリチウム二次電池用負極活物質。
  6.  前記アルミニウム含有金属の総量に対する前記元素Xの含有率は、0.1質量%以上4.0質量%以下である、請求項4又は5に記載のリチウム二次電池用負極活物質。
  7.  前記アルミニウム含有金属の総量に対するSiの含有率は、0.1質量%以上4.0質量%以下である、請求項1~6のいずれか1項に記載のリチウム二次電池用負極活物質。
  8.  請求項1~7のいずれか1項に記載されたリチウム二次電池用負極活物質からなり、リチウムイオンの吸蔵と放出が可能である、金属負極。
  9.  請求項1~7のいずれか1項に記載されたリチウム二次電池用負極活物質からなる負極活物質層と集電体層とを有するクラッド材を備えたリチウム二次電池用金属負極。
  10.  リード線が接続されている、請求項8又は9に記載の金属負極。
  11.  請求項8~10のいずれか1項に記載の金属負極と、リチウムイオンの吸蔵と放出が可能である正極と、前記金属負極と前記正極との間に配置された電解質と、を有するリチウム二次電池。
PCT/JP2022/008136 2021-03-31 2022-02-28 リチウム二次電池用負極活物質、金属負極及びリチウム二次電池 WO2022209506A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22779731.3A EP4317499A1 (en) 2021-03-31 2022-02-28 Negative electrode active material for lithium secondary battery, metal negative electrode, and lithium secondary battery
US18/550,579 US20240170658A1 (en) 2021-03-31 2022-02-28 Anode active material for lithium secondary battery, metal anode, and lithium secondary battery
CN202280023734.4A CN117043988A (zh) 2021-03-31 2022-02-28 锂二次电池用负极活性物质、金属负极及锂二次电池
JP2023510685A JPWO2022209506A1 (ja) 2021-03-31 2022-02-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060175 2021-03-31
JP2021-060175 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209506A1 true WO2022209506A1 (ja) 2022-10-06

Family

ID=83458430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008136 WO2022209506A1 (ja) 2021-03-31 2022-02-28 リチウム二次電池用負極活物質、金属負極及びリチウム二次電池

Country Status (5)

Country Link
US (1) US20240170658A1 (ja)
EP (1) EP4317499A1 (ja)
JP (1) JPWO2022209506A1 (ja)
CN (1) CN117043988A (ja)
WO (1) WO2022209506A1 (ja)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754016A (ja) * 1993-08-17 1995-02-28 Matsushita Electric Ind Co Ltd 水素吸蔵合金粉末の製造方法およびニッケルー水素電池
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2001118574A (ja) * 1999-10-15 2001-04-27 Sanyo Electric Co Ltd リチウム二次電池
JP2001297757A (ja) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd 非水電解質二次電池用負極材料およびその製造方法
JP2002520783A (ja) * 1998-07-10 2002-07-09 ミネソタ マイニング アンド マニュファクチャリング カンパニー 電極材料およびそれを含む組成物
JP2004095400A (ja) 2002-08-30 2004-03-25 Nissan Motor Co Ltd バイポーラ電池とその制御方法
US20090111025A1 (en) 2004-12-22 2009-04-30 Lg Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
US20120251871A1 (en) 2011-03-29 2012-10-04 Tohoku University All-solid-state battery
JP2013105655A (ja) * 2011-11-15 2013-05-30 Shin Etsu Chem Co Ltd リチウムイオン電池用負極材
WO2013146658A1 (ja) * 2012-03-26 2013-10-03 古河電気工業株式会社 リチウムイオン二次電池用負極材料及びその製造方法、並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
US20160233510A1 (en) 2013-11-08 2016-08-11 Hitachi, Ltd. All-solid state battery, electrode for all-solid state battery, and method of manufacturing the same
JP2017195028A (ja) 2016-04-18 2017-10-26 日立マクセル株式会社 非水電解液電池およびその製造方法
US20180159169A1 (en) 2015-10-30 2018-06-07 Lg Chem, Ltd. Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
WO2019098384A1 (ja) 2017-11-20 2019-05-23 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US20200259213A1 (en) 2017-11-13 2020-08-13 Murata Manufacturing Co., Ltd. All-solid-state battery
WO2020208872A1 (ja) 2019-04-12 2020-10-15 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
JP2021060175A (ja) 2019-10-09 2021-04-15 パナソニックIpマネジメント株式会社 冷蔵庫
WO2021206120A1 (ja) * 2020-04-09 2021-10-14 住友化学株式会社 リチウム二次電池及びリチウム二次電池用電解液

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754016A (ja) * 1993-08-17 1995-02-28 Matsushita Electric Ind Co Ltd 水素吸蔵合金粉末の製造方法およびニッケルー水素電池
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2002520783A (ja) * 1998-07-10 2002-07-09 ミネソタ マイニング アンド マニュファクチャリング カンパニー 電極材料およびそれを含む組成物
JP2001118574A (ja) * 1999-10-15 2001-04-27 Sanyo Electric Co Ltd リチウム二次電池
JP2001297757A (ja) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd 非水電解質二次電池用負極材料およびその製造方法
JP2004095400A (ja) 2002-08-30 2004-03-25 Nissan Motor Co Ltd バイポーラ電池とその制御方法
US20090111025A1 (en) 2004-12-22 2009-04-30 Lg Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
US20120251871A1 (en) 2011-03-29 2012-10-04 Tohoku University All-solid-state battery
JP2013105655A (ja) * 2011-11-15 2013-05-30 Shin Etsu Chem Co Ltd リチウムイオン電池用負極材
WO2013146658A1 (ja) * 2012-03-26 2013-10-03 古河電気工業株式会社 リチウムイオン二次電池用負極材料及びその製造方法、並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
US20160233510A1 (en) 2013-11-08 2016-08-11 Hitachi, Ltd. All-solid state battery, electrode for all-solid state battery, and method of manufacturing the same
US20180159169A1 (en) 2015-10-30 2018-06-07 Lg Chem, Ltd. Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
JP2017195028A (ja) 2016-04-18 2017-10-26 日立マクセル株式会社 非水電解液電池およびその製造方法
US20200259213A1 (en) 2017-11-13 2020-08-13 Murata Manufacturing Co., Ltd. All-solid-state battery
WO2019098384A1 (ja) 2017-11-20 2019-05-23 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US20200274158A1 (en) 2017-11-20 2020-08-27 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2020208872A1 (ja) 2019-04-12 2020-10-15 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
JP2021060175A (ja) 2019-10-09 2021-04-15 パナソニックIpマネジメント株式会社 冷蔵庫
WO2021206120A1 (ja) * 2020-04-09 2021-10-14 住友化学株式会社 リチウム二次電池及びリチウム二次電池用電解液

Also Published As

Publication number Publication date
CN117043988A (zh) 2023-11-10
US20240170658A1 (en) 2024-05-23
JPWO2022209506A1 (ja) 2022-10-06
EP4317499A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
WO2020075616A1 (ja) 非水電解液二次電池用負極活物質、負極、電池及びアルミニウムクラッド金属積層体
CN111630694A (zh) 非水电解液二次电池用负极活性物质、负极以及电池
JP6731130B1 (ja) 非水電解液二次電池用負極活物質、負極、電池及び積層体
US20240014376A1 (en) Metal anode, lithium secondary cell, battery system, and production method for metal anode
WO2021206120A1 (ja) リチウム二次電池及びリチウム二次電池用電解液
WO2021125225A1 (ja) 集電体一体型二次電池用負極及びリチウム二次電池
WO2022209507A1 (ja) リチウム二次電池用負極及びリチウム二次電池
WO2021206121A1 (ja) リチウム二次電池の製造方法及びリチウム二次電池の充電方法
WO2022209506A1 (ja) リチウム二次電池用負極活物質、金属負極及びリチウム二次電池
JP5077532B2 (ja) リチウム二次電池用電極及びその製造方法
WO2024084937A1 (ja) リチウム二次電池用負極、リチウム二次電池用負極前駆体、リチウム二次電池及びリチウム二次電池用負極の製造方法
WO2022210393A1 (ja) リチウム二次電池及びリチウム二次電池の製造方法
WO2022210443A1 (ja) リチウム二次電池
WO2023106227A1 (ja) リチウム二次電池用負極及びリチウム二次電池
WO2021206118A1 (ja) リチウム二次電池用積層体
JP7289713B2 (ja) 非水電解質二次電池
WO2023106229A1 (ja) リチウム二次電池用負極及びリチウム二次電池
WO2021206119A1 (ja) リチウム二次電池
US20230011930A1 (en) Lithium secondary battery and battery system
JP2024013574A (ja) 電極活物質Si粒子、電極合材、リチウムイオン電池、及び電極活物質Si粒子の製造方法
JP2024008702A (ja) 電極体、リチウムイオン電池、及びリチウムイオン電池用の活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779731

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510685

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18550579

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280023734.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022779731

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022779731

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE