WO2013146658A1 - リチウムイオン二次電池用負極材料及びその製造方法、並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極材料及びその製造方法、並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2013146658A1
WO2013146658A1 PCT/JP2013/058534 JP2013058534W WO2013146658A1 WO 2013146658 A1 WO2013146658 A1 WO 2013146658A1 JP 2013058534 W JP2013058534 W JP 2013058534W WO 2013146658 A1 WO2013146658 A1 WO 2013146658A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
ion secondary
electrode material
secondary battery
Prior art date
Application number
PCT/JP2013/058534
Other languages
English (en)
French (fr)
Inventor
西村 健
打越 昭成
中村 健一
英郎 西久保
俊哉 樋上
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201380002559.1A priority Critical patent/CN103733393B/zh
Priority to KR1020137031004A priority patent/KR20140017646A/ko
Publication of WO2013146658A1 publication Critical patent/WO2013146658A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/18Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material for a lithium ion secondary battery, and more particularly to a negative electrode material for a high capacity and long life lithium ion secondary battery.
  • a negative electrode is formed by kneading a negative electrode active material, a conductive aid such as carbon black, and a resin binder to prepare a slurry, and applying and drying on a copper foil. Yes.
  • a negative electrode for a lithium ion secondary battery using a metal or alloy having a large theoretical capacity as a lithium compound, particularly silicon and its alloy as a negative electrode active material has been developed.
  • a negative electrode using a silicon-based alloy as a negative electrode active material repeatedly expands and contracts during a charge / discharge cycle. For this reason, the negative electrode active material is peeled off, and there is a problem that the life is extremely short as compared with the conventional graphite electrode.
  • composite particles of silicon or tin and a conductive material wherein the ratio of silicon or tin is 30% by mass or more and 80% by mass or less with respect to the total mass of the composite particles, and the composite particles Discloses an electrode material having a spherical shape or a substantially spherical shape, having voids therein, and void volume occupancy Vs of the composite particles being 35% or more and 70% or less (Patent Document 1).
  • the upper limit of the ratio of a material containing an element that can be alloyed with lithium such as silicon is set to 80% by mass, and a conductive material such as carbon fiber is used to construct an electron conduction network.
  • a problem that the charge / discharge capacity as the negative electrode material is small.
  • the present invention has been made in view of the above-mentioned problems, and its object is to obtain a negative electrode material for a lithium ion secondary battery that realizes a high capacity and good cycle characteristics.
  • the present inventor has reduced the crystal grains of silicon, and further, by making silicon porous, it is possible to relieve stress caused by silicon expansion and contraction, It has been found that charge / discharge capacity can be improved by reducing materials that do not contribute to charge / discharge of lithium.
  • the present invention has been made based on this finding.
  • Silicon, aluminum, and metal D (Cu, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, La, Ce, Nd, Y, Zr, Nb, Mo, Tc, Ru And at least one element selected from Rh and Ba), and the molten alloy of molten silicon, aluminum, and metal D is cooled at 100 K / sec or more to form an alloy.
  • a lithium ion secondary battery comprising: a step (b) of forming particles; and a step (c) of immersing the alloy particles in an alkaline aqueous solution to elute part or all of the aluminum. For producing a negative electrode material.
  • the alloy particles are formed by a gas atomization method or a water atomization method.
  • the method for producing a negative electrode material for a lithium ion secondary battery according to (1) (3)
  • the alloy particles are formed by cooling the molten alloy by any one of a single roll method, a twin roll method, and a melt spinning method, and then pulverizing the alloy particles (1).
  • step (a) silicon is mixed at a ratio of 10 to 85% by mass, aluminum is 0.2 to 80% by mass, and metal D is mixed at a rate of 1 to 40% by mass, and is melted ( The manufacturing method of the negative electrode material for lithium ion secondary batteries as described in 1).
  • step (a) The method for producing a negative electrode material for a lithium ion secondary battery according to (1), wherein in the step (a), high melting point fine particles having a melting point of 1600 ° C. or higher are further added.
  • Silicon phase, silicon and metal D (Cu, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, La, Ce, Nd, Y, Zr, Nb, Mo, Tc, And porous particles having a compound phase of at least one element selected from Ru, Rh, and Ba, and the porosity of the porous particles is 0.1 to 75% by volume Negative electrode material for lithium ion secondary batteries.
  • Negative electrode material (13) The negative electrode material for a lithium ion secondary battery according to (7), wherein the porous particles further include high melting point fine particles having a melting point of 1600 ° C. or higher.
  • a lithium ion secondary comprising: a current collector; and a negative electrode active material layer containing the negative electrode material for a lithium ion secondary battery according to (7) on at least one surface of the current collector. Battery negative electrode.
  • a lithium ion secondary battery comprising: a current collector; and a negative electrode active material layer containing the negative electrode material for a lithium ion secondary battery according to (7) on at least one surface of the current collector. Battery negative electrode.
  • an electrolyte having lithium ion conductivity including a positive electrode capable of inserting and extracting lithium ions, a negative electrode according to (15), and a separator disposed between the positive electrode and the negative electrode.
  • a lithium ion secondary battery comprising the positive electrode, the negative electrode, and the separator.
  • a negative electrode material for a lithium ion secondary battery that achieves a high capacity and good cycle characteristics can be obtained.
  • (A)-(e) The figure which shows the formation process of the porous particle 7.
  • FIG. (A)-(c) The figure which shows the porous particles 26, 27, and 30 which concern on 1st Embodiment.
  • FIG. 3 is a cross-sectional view showing a configuration of a lithium ion secondary battery 51.
  • FIG. 1 is a diagram illustrating a negative electrode material 1 according to the first embodiment.
  • the negative electrode material 1 includes porous particles 7 having a silicon phase 3 and a compound phase 5.
  • the porosity of the porous particles 7 is 0.1 to 75% by volume.
  • Compound phase 5 includes silicon and metal D (Cu, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, La, Ce, Nd, Y, Zr, Nb, Mo, Tc, Ru, And a compound of at least one element selected from Rh and Ba).
  • metal D Cu, Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, La, Ce, Nd, Y, Zr, Nb, Mo, Tc, Ru, And a compound of at least one element selected from Rh and Ba).
  • the compound phase 5 further contains aluminum and may contain a ternary compound of silicon, metal D, and aluminum. That is, the compound phase 5 may include both a binary compound phase of silicon and metal D and a ternary compound phase of silicon, metal D, and aluminum. May only be included.
  • the silicon phase 3 is a phase mainly composed of silicon, and the average crystal size is preferably 5 ⁇ m or less. When the average crystal size exceeds 5 ⁇ m, pulverization tends to occur during the insertion and release of lithium ions. In the present invention, as will be described later, since the molten metal is rapidly cooled, the crystal size is difficult to increase.
  • the porous particles 7 preferably have an average particle size of about 10 ⁇ m and an average particle size in the range of 1 to 15 ⁇ m. If it is too large, it will be difficult to disperse in the slurry, and it will be difficult to evenly apply it when the film thickness is controlled to be thin on the current collector.
  • the porous particles 7 may have an aluminum phase.
  • Aluminum can impart electron conductivity to the porous particles 7 mainly composed of the silicon phase 3 that are highly conductive and difficult to conduct electricity.
  • aluminum is an element that can be alloyed with lithium, has a theoretical capacity of 790 mAh / g as LiAl, and can participate in charge / discharge reactions of lithium ions.
  • the porous particles 7 can be roughly obtained by forming a molten metal of silicon, aluminum and metal D into a powder, and subjecting the powder to an alkali treatment to remove aluminum.
  • a method for producing the porous particles 7 will be described with reference to FIGS.
  • silicon, aluminum, and metal D are put into a crucible 13 and are heated and melted by high frequency induction heating or the like to obtain a molten alloy 9.
  • the temperature at this time is preferably about 1600 ° C., which is about 200 K higher than 1412 ° C., which is the melting point of silicon. This is because there is a possibility that the silicon is clogged by the nozzle 15 in the gas atomizing apparatus 11 described later at a temperature just below the melting point of silicon.
  • silicon When put into the crucible 13, it is preferable that silicon is 10 to 85% by mass, aluminum is 0.2 to 80% by mass, and metal D is 1 to 40% by mass. If the amount of silicon is too small, the charge / discharge capacity of the negative electrode material 1 is not sufficient, and if the amount of silicon is too large, the ratio of the compound phase 5 and the porosity of the porous particles 7 are reduced, so that it is difficult to obtain cycle characteristics. .
  • the proportion of aluminum is directly linked to the porosity of the final porous particles 7, if it is too small, the porosity is lowered and the expansion and contraction of silicon due to the voids is insufficiently relaxed, but the metal D is 15 % Or more is effective because the cycle characteristics can be secured even if the proportion of aluminum is small.
  • the ratio of silicon will reduce and the charge / discharge capacity of the negative electrode material 1 will decrease. If the ratio of the metal D is too small, the ratio of the compound phase 5 decreases, and it becomes difficult to relieve expansion / contraction during charging / discharging. If the ratio of the metal D is too large, the ratio of the silicon phase 3 decreases, and the negative electrode material 1 Charge / discharge capacity is reduced.
  • the metal D forms a compound with silicon or aluminum in accordance with the blending composition ratio, and has the role of (1) imparting electron conductivity and (2) relaxing the volume change associated with the charge / discharge reaction of silicon. (3) Depending on the type of silicon compound, it acts as an active material having a discharge capacity.
  • Co has a discharge capacity of 58 mAh / g as CoSi 2
  • Fe has a discharge capacity of 60 mAh / g as FeSi 2
  • Ni has a discharge capacity of 198 mAh / g as NiSi 2
  • Ca has a discharge capacity of 320 mAh / g as CaSi 2.
  • the volume change is negligible.
  • the fact that the silicon compound reacts with lithium means that the lithium can pass through the silicon compound, and contributes to an improvement in the utilization rate of the silicon phase.
  • alloy particles 23 are preferably formed by a gas atomizing method or a water atomizing method.
  • the alloy particles 23 are formed by cooling the molten alloy 9 by any one of the single roll method, the twin roll method, and the melt spinning method, and then pulverizing the obtained flake, ribbon, plate, or thread alloy. May be.
  • a gas atomizing apparatus 11 shown in FIG. 2 is an apparatus that can form alloy particles 23 by a gas atomizing method.
  • the molten alloy 9 is dropped from the nozzle 15, the molten alloy 9 is pulverized by blowing a gas jet stream 21 from a gas injector 19 supplied with a jet gas 17 such as an inert gas or air.
  • a jet gas 17 such as an inert gas or air.
  • the alloy particles 23 can be continuously classified to a desired particle size through a cyclone or a filter connected to the gas atomizer 11.
  • water is supplied instead of the jet gas 17 and high pressure water is sprayed instead of the gas jet stream 21, the water atomization method is performed.
  • the single roll quenching device 71 injects the molten alloy 9 containing silicon, aluminum, and metal D in the crucible 73 toward the single roll 75 that rotates at high speed, and rapidly cools the molten alloy 9 so that the silicon phase A ribbon-like or flake-like alloy 77 containing 3, the compound phase 5 and the aluminum phase 25 can be obtained.
  • the single roll quenching device 71 can control the quenching rate by setting the injection amount of the molten alloy 9 and the number of revolutions of the single roll 75, and can control the desired silicon phase 3 and compound phase 7 within a certain range. The size can be controlled.
  • the obtained alloy particles 23 having a desired primary particle size can be obtained by pulverizing the obtained ribbon-like or flake-like alloy 77 as necessary.
  • the single roll 75 instantaneously cools, so that the rapid cooling rate is faster than the gas atomization method, and a finer silicon phase 3 and compound phase 5 are obtained. be able to.
  • the twin-roll quenching device 81 can obtain a ribbon-like or plate-like alloy 89 by sandwiching the molten alloy 9 containing silicon, aluminum, and metal D in the crucible 83 between a pair of casting rolls 85. Furthermore, a quenching device 87 for blowing water or air to the ribbon-like or plate-like alloy 89 may be provided at the outlet of the casting roll 85. Also in the twin roll method, when the molten alloy 9 is injected from the crucible 83, it is cooled instantaneously by the pair of casting rolls 85, so that the fine silicon phase 3 and the compound phase 5 can be obtained.
  • a melt spinning apparatus 91 shown in FIG. 5 is an apparatus used for manufacturing a thread-like or ribbon-like alloy 101 by a melt spinning method.
  • the melt spinning device 91 can rapidly cool the molten alloy 9 in the crucible 93 with a large amount of cooling liquid 97 in the container 95 and obtain the yarn-like or ribbon-like alloy 101 while being guided by the guide roll 99. it can. Also in the melt spinning method, since the molten alloy 9 can be rapidly cooled, the fine silicon phase 3 and the compound phase 5 can be obtained.
  • FIGS. 7A to 7D are schematic cross-sectional views showing how the porous particles 7 are formed from the molten alloy 9 formed into droplets.
  • FIG. 7 illustrates the case where the melting point of the compound of silicon and metal D is lower than the melting point of silicon, 1412 ° C.
  • substance having low melting point of the compound of silicon and metal D than the melting point of silicon 1120 ° C. in NiSi 2, 1326 ° C. in CoSi 2, 1220 ° C. in FeSi 2, 1033 ° C., such as at CaSi 2 is of interest.
  • the molten alloy 9 ejected from the nozzle 15 becomes droplets. Thereafter, when the cooling proceeds, as shown in FIG.
  • Examples of materials having a melting point of a compound of silicon and metal D higher than that of silicon include TiSi 2 at 1540 ° C., CrSi 2 at 1475 ° C., ZrSi 2 at 1520 ° C., YSi 2 at 1520 ° C., LaSi 2 at 1520 ° C.
  • the compound phase 5 is formed before the silicon phase 3.
  • the compound to be generated may be different depending on the alloy composition, and the precipitation temperature of the compound to be generated may vary. Moreover, it becomes possible to control the precipitation amount of aluminum by controlling the alloy composition.
  • the obtained alloy particles 23 are collected and immersed in an alkaline aqueous solution 33 in a container 31 as shown in FIG.
  • the porous particles 7 are obtained by dissolving the aluminum phase 25 with the alkaline aqueous solution 33.
  • the ternary compound phase of silicon, metal D, and aluminum of the compound phase 5 is also dissolved by the alkaline aqueous solution 33.
  • FIG. 7 (e) you may remove all the aluminum phases 25, and you may leave some aluminum phases 25.
  • a substantially circular recess 29 can be formed in a part of the aluminum phase 25 deposited on the surface layer portion.
  • the compound phase 28 containing aluminum is formed around the silicon phase 3 and the compound phase 5 and is present on the surface of the alloy particle, it exists in the surface layer portion.
  • a part of the aluminum to be eluted can be eluted with alkali to form a substantially circular depression 29 in the compound phase 28.
  • the compound phase 5 when the compound phase 5 also contains aluminum, as the porous particles 30 shown in FIG.
  • aluminum is also eluted from the compound phase 5 exposed on the surface of the particles, and a substantially circular recess 29 is formed on the surface of the compound phase 5.
  • the substantially circular depression 29 formed on the surface of the compound phase 5 has a lower concentration of aluminum contained in the compound phase 5 than the compound phase 28, so that the substantially circular depression 29 formed on the surface of the compound phase 28 Smaller than that.
  • Aluminum is also an element that participates in the insertion and extraction of lithium ions, functions as a negative electrode active material, and can also function as a conductive aid because of its high conductivity. Even if the silicon phase 3 is surrounded by the aluminum phase 25, the compound phase 5 and the compound phase 28, it can occlude and release lithium ions, and can exhibit good charge / discharge characteristics.
  • a groove-like aluminum phase 25 is formed in the gap between the compound phase 5 of the silicon phase 3 and silicon and metal D.
  • porous particles 37 having groove-like depressions 39 by removing the aluminum phase 25.
  • the size of the voids depends on the size of the aluminum phase 25 or the compound phase 5 containing aluminum. The preferred size is in the range of 20 nm to 500 nm.
  • the ability to relieve the volume strain is not sufficient, and if it is larger than 500 nm, the size of the silicon phase that exists in almost the same size as the aluminum phase is excessively large, and pulverization is likely to occur with charge and discharge. .
  • the shape and porosity of the air gap it is possible to control the degree of relaxation of the volume change corresponding to the magnitude of the discharge capacity.
  • the alkaline aqueous solution 33 is not particularly limited as long as it is an alkaline aqueous solution capable of eluting aluminum, such as a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution, but an aqueous alkali solution of sodium or potassium is inexpensive and industrially useful. .
  • FIG. 7 shows an example in which the compound phase 5 is one type, it is possible to form a plurality of compound phases by selecting a plurality of elements from the metal D. In particular, by selecting a combination of metals having different mechanical properties typified by elasticity, it is possible to avoid pulverization of the alloy particles 23 and more effectively reduce the volume change of silicon.
  • the negative electrode material 1 includes the porous particles 7, even if the silicon phase 3 expands and contracts, there is a void, so that the volume distortion of the silicon phase 3 is alleviated and cracks are not easily generated in the negative electrode using the negative electrode material 1. . Therefore, cycle characteristics are improved.
  • the compound phase 5 becomes a conductive path to the silicon phase 3, it is possible to reduce a conductive auxiliary agent to be added separately, and to fill a large amount of the negative electrode material 1 in the negative electrode. growing. Further, since the compound phase 5 is 10 to 100 times more conductive than graphite, the rate characteristics are improved.
  • FIG. 10 is a diagram illustrating a negative electrode material 41 according to the second embodiment.
  • the same number is attached
  • the negative electrode material 41 includes porous particles 43 having a silicon phase 3, a compound phase 5, and high melting point fine particles 45.
  • composition of the silicon phase 3 and the compound phase 5 is the same as that of the first embodiment, but since the high melting point fine particles 45 are included, the crystal size of the silicon phase 3 and the compound phase 5 is small and average is 2 ⁇ m or less.
  • the high melting point fine particles 45 are not particularly limited as long as they are fine particles of a material having a melting point of 1600 ° C. or higher, but are not particularly limited, but may be alumina (melting point 2054 ° C.), zinc oxide (melting point 1975 ° C.), Fine particles of silica (melting point 1650 ° C.) and tungsten (melting point 3422 ° C.) are preferable.
  • oxide-based fine particles such as alumina, zinc oxide and silica are preferable in order to obtain fine particles having a small particle size at low cost.
  • the average particle diameter of the high melting point fine particles 45 is preferably 1 ⁇ m or less, more preferably 5 to 400 nm. Even if the same weight is added when the particle diameter is small, the number of particles increases, and the volume change of silicon accompanying charge / discharge can be effectively mitigated.
  • the porous particles 43 can be obtained by making a molten metal containing silicon, aluminum and metal D containing the high melting point fine particles 45 and subjecting the powder to an alkali treatment.
  • a method for producing the porous particles 43 will be described with reference to FIGS.
  • silicon, aluminum, high melting point fine particles 45 and metal D are put into a crucible 13 and heated to melt by induction heating or the like to obtain a molten alloy 47.
  • the temperature at this time is preferably about 1600 ° C., which is about 200 K higher than 1412 ° C., which is the melting point of silicon.
  • the high melting point fine particles 45 are not melted even in the molten alloy 47 and keep the shape of the fine particles.
  • the amount of the high melting point fine particles is preferably 2 to 35 wt%. If it is 2 wt% or less, the effect is poor, and if it is 35 wt% or more, the amount of silicon decreases and the capacity is reduced. Since the high-melting-point fine particles are present, the high-dielectric fine particles do not react with lithium and can be designed to suppress the initial discharge capacity. Further, the high dielectric fine particles inhibit the formation of a continuous silicon phase and promote the miniaturization of the silicon phase, thereby contributing to the improvement of cycle characteristics.
  • the molten alloy 47 is cooled at 100 K / sec or more to form alloy particles 49.
  • the alloy particles 49 are preferably formed by a gas atomization method or a water atomization method.
  • the alloy particles 49 are formed by cooling the molten alloy 47 by any one of a single roll method, a twin roll method, and a melt spinning method, and then pulverizing the obtained flake, ribbon, plate, or thread alloy. May be.
  • a gas atomizing apparatus 11 shown in FIG. 11 is an apparatus that can form alloy particles 49 by a gas atomizing method.
  • FIG. 13 is a schematic cross-sectional view showing how the porous particles 7 are formed from the molten alloy molten into droplets.
  • the molten alloy 47 ejected from the nozzle 15 becomes a droplet containing the high melting point fine particles 45.
  • silicon having the highest melting point is deposited, and the silicon phase 3 is formed.
  • the silicon crystal does not grow large, and the crystal size of the silicon phase 3 becomes small.
  • a compound of silicon and metal D (silicide) having the next highest melting point is deposited, and a compound phase 5 is formed.
  • the silicon compound is deposited so as to fill the gaps between the already deposited silicon phase 3. Further, when a compound of silicon, aluminum, and metal D is precipitated and further cooling is performed, aluminum having a melting point of 660 ° C. is precipitated as shown in FIG. 13D, and an aluminum phase 25 is formed.
  • the obtained alloy particles 49 are collected and part or all of the aluminum phase 25 is removed as in the first embodiment, whereby porous particles 43 are obtained as shown in FIG. Even when the alloy particle 49 includes the high melting point particle 45, the porous particle having the substantially circular depression 29 as shown in FIG. 8 or the groove-like depression 39 as shown in FIG. The porous particle which has can be formed.
  • the shape and porosity of the voids of the porous particles can be obtained as desired by adjusting the composition of the alloy and the pH of the aqueous alkali solution.
  • the quenching rate can be controlled relatively easily by setting the injection amount of the molten alloy 47 and the rotational speed of the single roll 75.
  • the size of the silicon phase or alloy phase can be controlled to a finer size, and the addition of the high melting point fine particles 45 can further reduce the size.
  • miniaturizing the silicon phase and the alloy phase pulverization is suppressed with respect to the volume change accompanying charging and discharging, and the cycle characteristics are further improved. Similar effects can be expected when using a twin roll quenching device or a melt spinning device.
  • the negative electrode material 41 Since the negative electrode material 41 includes the high melting point fine particles 45 in addition to the effects obtained in the first embodiment, the crystal size of the silicon phase 3 is reduced. Therefore, even if charging / discharging is repeated, the silicon phase 3 becomes difficult to be pulverized, and the cycle characteristics are excellent. Moreover, since the negative electrode material 41 has a compound of silicon and metal D or aluminum, it has excellent electric conductivity and excellent rate characteristics.
  • the slurry raw material is charged into a mixer and kneaded to form a slurry.
  • the slurry raw material is a negative electrode material, a conductive additive, a binder, a thickener, a solvent, and the like.
  • the solid content in the slurry contains 25 to 90% by weight of the negative electrode material, 5 to 70% by weight of the conductive aid, 1 to 30% by weight of the binder, and 0 to 25% by weight of the thickener.
  • a general kneader used for slurry preparation can be used, and a device called a kneader, a stirrer, a disperser, a mixer, or the like that can prepare a slurry may be used.
  • a kneader a device called a kneader, a stirrer, a disperser, a mixer, or the like that can prepare a slurry
  • latex disersion of rubber fine particles
  • SBR styrene / butadiene / rubber
  • carboxymethylcellulose, methylcellulose and the like can be used as a thickener. It is suitable to use polysaccharides and the like as one kind or a mixture of two or more kinds.
  • polyimide PI
  • polybenzimidazole PBI
  • PVdF polyvinylidene fluoride
  • the conductive assistant is a powder made of at least one conductive material selected from the group consisting of carbon, copper, tin, zinc, nickel, silver and the like.
  • a single powder of carbon, copper, tin, zinc, nickel, or silver may be used, or a powder of each alloy may be used.
  • general carbon black such as furnace black and acetylene black can be used.
  • carbon nanohorn having good conductivity as a conductive auxiliary.
  • the carbon nanohorn (CNH) has a structure in which a graphene sheet is rounded into a conical shape, and the actual form is an aggregate of a shape like a radial sea urchin with many CNHs facing the apex to the outside. Exists as.
  • the outer diameter of the sea urchin-like aggregate of CNH is about 50 nm to 250 nm.
  • CNH having an average particle size of about 80 nm is preferable.
  • the average particle size of the conductive aid refers to the average particle size of the primary particles. Even when the structure shape is highly developed such as acetylene black (AB), the average particle diameter can be defined by the primary particle diameter here, and the average particle diameter can be obtained by image analysis of the SEM photograph.
  • AB acetylene black
  • both a particulate conductive aid and a wire-shaped conductive aid may be used.
  • the wire-shaped conductive aid is a wire made of a conductive material, and the conductive materials listed in the particulate conductive aid can be used.
  • As the wire-shaped conductive assistant a linear body having an outer diameter of 300 nm or less, such as carbon fiber, carbon nanotube, copper nanowire, or nickel nanowire, can be used.
  • AB or copper powder as the particulate conductive aid
  • VGCF vapor grown carbon fiber
  • the length of the wire-shaped conductive assistant is preferably 0.1 ⁇ m to 2 mm.
  • the outer diameter of the conductive assistant is preferably 2 nm to 500 nm, more preferably 10 nm to 200 nm. If the length of the conductive auxiliary agent is 0.1 ⁇ m or more, the length is sufficient to increase the productivity of the conductive auxiliary agent, and if the length is 2 mm or less, application of the slurry is easy. Further, when the outer diameter of the conductive auxiliary agent is larger than 2 nm, the synthesis is easy, and when the outer diameter is smaller than 500 nm, the slurry is easily kneaded.
  • the measuring method of the outer diameter and length of the conductive material was performed by image analysis using SEM.
  • the binder is a resin binder, and a fluororesin such as polyvinylidene fluoride (PVdF) and styrene butadiene rubber (SBR) or a rubber system, and an organic material such as polyimide (PI) or acrylic is used. Can do.
  • a fluororesin such as polyvinylidene fluoride (PVdF) and styrene butadiene rubber (SBR) or a rubber system
  • an organic material such as polyimide (PI) or acrylic is used.
  • cycle characteristics are further improved by using a high-strength polybenzimidazole binder or polyimide binder.
  • a slurry is applied to the surface of the current collector to form a negative electrode active material layer.
  • a general coating apparatus capable of applying the slurry to the current collector can be used.
  • a coater using a roll coater or a doctor blade, a comma coater, or a die coater for example, a coater using a roll coater or a doctor blade, a comma coater, or a die coater.
  • the current collector is a foil made of at least one metal selected from the group consisting of copper, nickel, and stainless steel. Each may be used alone or may be an alloy of each.
  • the thickness is preferably 4 ⁇ m to 35 ⁇ m, more preferably 8 ⁇ m to 18 ⁇ m.
  • the prepared slurry is uniformly applied to the current collector, then dried at about 50 to 150 ° C., and a negative electrode for a lithium ion secondary battery is obtained through a roll press in order to adjust the thickness.
  • a positive electrode active material a positive electrode active material, a conductive additive, a binder, and a solvent are mixed to prepare a positive electrode active material composition.
  • the composition of the positive electrode active material is directly applied on a metal current collector such as an aluminum foil and dried to prepare a positive electrode.
  • Any positive electrode active material can be used as long as it is generally used.
  • Compounds such as O 2 and LiFePO 4 .
  • carbon black is used as the conductive assistant
  • PVdF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the contents of the positive electrode active material, the conductive additive, the binder, and the solvent are at levels that are normally used in lithium ion secondary batteries.
  • Separator Any separator can be used as long as it has a function of insulating electronic conduction between the positive electrode and the negative electrode and is usually used in a lithium ion secondary battery.
  • a microporous polyolefin film can be used.
  • An organic electrolyte non-aqueous electrolyte
  • an inorganic solid electrolyte inorganic solid electrolyte
  • a polymer solid electrolyte inorganic solid electrolyte
  • electrolyte and electrolyte in a lithium ion secondary battery inorganic solid electrolyte
  • Li polymer battery or the like
  • the solvent for the organic electrolyte include carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, and methyl ethyl carbonate; diethyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di Ethers such as butyl ether and diethylene glycol dimethyl ether; aprotic such as benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, ⁇ -butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethylchlorobenzene, nitrobenzene Solvent, or two or more of these solvents Mixed solvent of thereof.
  • carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbon
  • the electrolyte of the organic electrolyte includes LiPF 6 , LiClO 4 , LiBF 4 , LiAlO 4 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 )
  • a mixture of one or more electrolytes made of a lithium salt such as 2 can be used.
  • a compound capable of forming an effective solid electrolyte interface coating on the surface of the negative electrode active material is added.
  • a substance having an unsaturated bond in the molecule and capable of reductive polymerization during charging such as vinylene carbonate (VC) is added.
  • a solid lithium ion conductor can be used in place of the organic electrolyte.
  • a solid polymer electrolyte in which the lithium salt is mixed with a polymer made of polyethylene oxide, polypropylene oxide, polyethyleneimine, or the like, or a polymer gel electrolyte in which a polymer material is impregnated with an electrolytic solution and processed into a gel shape can be used.
  • An inorganic material such as 2 S—SiS 2 or a phosphorus sulfide compound may be used as the inorganic solid electrolyte.
  • a battery element is formed by disposing a separator between the positive electrode and the negative electrode as described above. After winding or stacking such battery elements into a cylindrical battery case or a rectangular battery case, an electrolytic solution is injected to obtain a lithium ion secondary battery.
  • FIG. 14 shows an example (cross-sectional view) of the lithium ion secondary battery of the present invention.
  • a positive electrode 53 and a negative electrode 55 are stacked in the order of separator-negative electrode-separator-positive electrode through a separator 57, and wound so that the positive electrode 53 is on the inner side to form an electrode plate group. This is inserted into the battery can 59.
  • the positive electrode 53 is connected to the positive electrode terminal 63 via the positive electrode lead 61, and the negative electrode 55 is connected to the battery can 59 via the negative electrode lead 65.
  • Chemical energy generated inside the lithium ion secondary battery 51 is externally output as electric energy. It can be taken out.
  • the upper end (opening portion) of the battery can 59 is composed of a circular lid plate and a positive electrode terminal 63 on the upper portion thereof.
  • the lithium ion secondary battery 51 of the present invention can be manufactured by attaching the sealing body 69 incorporating the safety valve mechanism via an annular insulating gasket.
  • the negative electrode material according to the present invention is a lithium ion secondary battery, since the negative electrode material according to the present invention has silicon having a higher capacity per unit volume than carbon, the capacity is larger than that of a conventional lithium ion secondary battery, and Since the negative electrode material according to the present invention has a compound phase and voids, the cycle characteristics are good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の課題は、高容量と良好なサイクル特性を実現するリチウムイオン二次電池用の負極材料を得ることである。その解決手段として、本発明では、シリコン相と、シリコンと金属Dの化合物相とを有する多孔質粒子を含み、前記多孔質粒子の空隙率が0.1~75体積%であることを特徴とするリチウムイオン二次電池用負極材料を使用する。このリチウムイオン二次電池用負極材料は、シリコンとアルミニウムと、金属Dとを溶融する工程(a)と、溶融した前記シリコン、前記アルミニウム、前記金属Dの合金溶湯を、100K/sec以上で冷却して合金粒子を形成する工程(b)と、前記合金粒子を、アルカリ水溶液に浸漬して前記アルミニウムの一部または全部を溶出する工程(c)と、を具備する製造方法により製造される。

Description

リチウムイオン二次電池用負極材料及びその製造方法、並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用の負極材料などに関するものであり、特に、高容量かつ長寿命のリチウムイオン二次電池用の負極材料などに関する。
 従来、負極活物質としてグラファイトを用いたリチウムイオン二次電池が実用化されている。また、負極活物質と、カーボンブラック等の導電助剤と、樹脂の結着剤とを混練してスラリーを調製し、銅箔上に塗布・乾燥して、負極を形成することが行われている。
 一方、高容量化を目指し、リチウム化合物として理論容量の大きな金属や合金、特にシリコンおよびその合金を負極活物質として用いるリチウムイオン二次電池用の負極が開発されている。しかし、リチウムイオンを吸蔵したシリコンは、吸蔵前のシリコンに対して約4倍まで体積が膨張するため、シリコン系合金を負極活物質として用いた負極は、充放電サイクル時に膨張と収縮を繰り返す。そのため、負極活物質の剥離などが発生し、従来のグラファイト電極と比較して、寿命が極めて短いという問題があった。
 例えば、シリコンまたはスズと、導電性材料の複合体粒子であって、シリコンまたはスズの割合が、前記複合体粒子の全質量に対して30質量%以上80質量%以下であり、前記複合体粒子の形状が、球状または略球状で、内部に空隙を有し、前記複合体粒子の空隙体積占有率Vsが35%以上70%以下である電極材料が開示されている(特許文献1)。
特許第3987853号公報
 しかしながら、特許文献1に記載の発明は、シリコンなどのリチウムと合金化可能な元素を含む材料の割合の上限を80質量%として、電子伝導ネットワークの構築のため、炭素繊維などの導電性材料を加えており、負極材料としての充放電容量が小さいという問題点があった。
 本発明は、前述した問題点に鑑みてなされたもので、その目的とすることは、高容量と良好なサイクル特性を実現するリチウムイオン二次電池用の負極材料を得ることである。
 本発明者は、上記目的を達成するために鋭意検討した結果、シリコンの結晶粒を小さくし、さらに、シリコンを多孔質粒子とすることで、シリコンの膨張収縮により生じる応力を緩和でき、さらに、リチウムの充放電に寄与しない材料を減らすことで、充放電容量を向上できることを見出した。本発明は、この知見に基づきなされたものである。
 前述した目的を達成するために、以下の発明を提供する。
(1)シリコンとアルミニウムと、金属D(Cu、Fe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、La、Ce、Nd、Y、Zr、Nb、Mo、Tc、Ru、Rh、およびBaより選ばれた少なくとも1種の元素)とを溶融する工程(a)と、溶融した前記シリコン、前記アルミニウム、前記金属Dの合金溶湯を、100K/sec以上で冷却して合金粒子を形成する工程(b)と、前記合金粒子を、アルカリ水溶液に浸漬して前記アルミニウムの一部または全部を溶出する工程(c)と、を具備することを特徴とするリチウムイオン二次電池用負極材料の製造方法。
(2)前記工程(b)において、ガスアトマイズ法または水アトマイズ法により前記合金粒子を形成することを特徴とする(1)に記載のリチウムイオン二次電池用負極材料の製造方法。
(3)前記工程(b)において、単ロール法、双ロール法、溶融紡糸法のいずれかにより前記合金溶湯を冷却した後、粉砕することで前記合金粒子を形成することを特徴とする(1)に記載のリチウムイオン二次電池用負極材料の製造方法。
(4)前記工程(a)において、シリコンを10~85質量%、アルミニウムを0.2~80質量%、金属Dを1~40質量%の割合で配合して溶融することを特徴とする(1)に記載のリチウムイオン二次電池用負極材料の製造方法。
(5)前記工程(a)において、さらに、融点1600℃以上の高融点微粒子を加えることを特徴とする(1)に記載のリチウムイオン二次電池用負極材料の製造方法。
(6)前記高融点微粒子が、アルミナ、酸化亜鉛、シリカ、タングステンより選ばれた少なくとも1種の材料の微粒子であることを特徴とする(5)に記載のリチウムイオン二次電池用負極材料の製造方法。
(7)シリコン相と、シリコンと金属D(Cu、Fe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、La、Ce、Nd、Y、Zr、Nb、Mo、Tc、Ru、Rh、およびBaより選ばれたすくなくとも1種の元素)の化合物相とを有する多孔質粒子を含み、前記多孔質粒子の空隙率が0.1~75体積%であることを特徴とするリチウムイオン二次電池用負極材料。
(8)さらに、前記多孔質粒子中に、アルミニウム相を有することを特徴とする(7)に記載のリチウムイオン二次電池用負極材料。
(9)前記アルミニウム相が、略円形のくぼみを有することを特徴とする(8)に記載のリチウムイオン二次電池用負極材料。
(10)前記化合物相がアルミニウムを含み、前記化合物相が、略円形のくぼみを有することを特徴とする(7)に記載のリチウムイオン二次電池用負極材料。
(11)前記多孔質粒子が、溝状のくぼみを有することを特徴とする(7)に記載のリチウムイオン二次電池用負極材料。
(12)前記略円形のくぼみや前記溝状のくぼみが、アルミニウムがアルカリで溶出して形成されたことを特徴とする(9)~(11)のいずれかに記載のリチウムイオン二次電池用負極材料。
(13)さらに、前記多孔質粒子中に、融点1600℃以上の高融点微粒子を有することを特徴とする(7)に記載のリチウムイオン二次電池用負極材料。
(14)前記高融点微粒子が、アルミナ、酸化亜鉛、シリカ、タングステンより選ばれた少なくとも1種の材料の微粒子であることを特徴とする(13)に記載のリチウムイオン二次電池用負極材料。
(15)集電体と、前記集電体の少なくとも片面に、(7)に記載のリチウムイオン二次電池用負極材料を含む負極活物質層と、を有することを特徴とするリチウムイオン二次電池用負極。
(16)リチウムイオンを吸蔵および放出可能な正極と、(15)に記載の負極と、前記正極と前記負極との間に配置されたセパレータとを有し、リチウムイオン伝導性を有する電解質中に、前記正極と前記負極と前記セパレータとを設けたことを特徴とするリチウムイオン二次電池。
 本発明により、高容量と良好なサイクル特性を実現するリチウムイオン二次電池用の負極材料を得ることができる。
第1の実施の形態に係る負極材料1を示す図。 第1の実施形態に係るガスアトマイズ装置11を示す図。 第1の実施形態に係る単ロール急冷装置71を示す図。 第1の実施形態に係る双ロール急冷装置81を示す図。 第1の実施形態に係る溶融紡糸装置91を示す図。 アルカリ処理工程を示す図。 (a)~(e)多孔質粒子7の形成過程を示す図。 (a)~(c)第1の実施の形態に係る多孔質粒子26、27、30を示す図。 (a)~(b)第1の実施の形態に係る多孔質粒子37の形成過程を示す図。 第2の実施の形態に係る負極材料41を示す図。 第2の実施形態に係るガスアトマイズ装置11を示す図。 第2の実施形態に係る単ロール急冷装置71を示す図。 (a)~(e)多孔質粒子43の形成過程を示す図。 リチウムイオン二次電池51の構成を示す断面図。
〔第1の実施形態〕
(負極材料1の構成)
 以下図面に基づいて、本発明の実施形態を詳細に説明する。図1は、第1の実施形態に係る負極材料1を示す図である。負極材料1は、シリコン相3と化合物相5とを有する多孔質粒子7を含む。また、多孔質粒子7の空隙率は、0.1~75体積%である。
 化合物相5は、シリコンと金属D(Cu、Fe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、La、Ce、Nd、Y、Zr、Nb、Mo、Tc、Ru、Rh、およびBaより選ばれたすくなくとも1種の元素)の化合物を含む。
 化合物相5は、さらにアルミニウムを含み、シリコン、金属D、アルミニウムの三元系の化合物を含む場合がある。すなわち、化合物相5には、シリコンと金属Dの二元系の化合物の相と、シリコン、金属D、アルミニウムの三元系の化合物の相の両方が含まれていても良いし、どちらか一方だけ含まれていても良い。
 シリコン相3は、主にシリコンからなる相であり、平均結晶サイズは5μm以下であることが好ましい。平均結晶サイズが5μmを超えると、リチウムイオンの吸蔵と放出の際に、微粉化が生じやすくなる。本発明においては、後述するように、溶湯を急冷しているため、結晶サイズが大きくなりにくい。
 多孔質粒子7は、平均粒径が10μm程度であり、平均粒径が1~15μmの範囲にあることが好ましい。大きすぎると、スラリー中に分散しにくいうえに、集電体上に膜厚を薄く制御して塗布する際に、均一に塗布しにくくなる。
 また、多孔質粒子7中に、アルミニウム相を有しても良い。アルミニウムは、導電性が高く電気の通りにくいシリコン相3主体の多孔質粒子7に電子伝導性を付与することができる。さらに、アルミニウムはリチウムと合金化可能な元素であり、LiAlとして790mAh/gの理論容量を持ち、リチウムイオンの充放電反応に参加することができる。
(多孔質粒子7の製造方法)
 多孔質粒子7は、概略的には、シリコンとアルミニウムと金属Dの溶湯を粉末にし、その粉末をアルカリ処理してアルミニウムを除去することで得ることができる。以下、図2~7を用いて、多孔質粒子7の製造方法を説明する。
 まず、図2に示すように、シリコン、アルミニウム、金属Dを、るつぼ13に投入して、高周波誘導加熱などにより加熱して溶融させ、合金溶湯9とする。このときの温度は、シリコンの融点である1412℃より、200K程度高い、1600℃程度で溶融することが好ましい。シリコンの融点ぎりぎりの温度では、後述するガスアトマイズ装置11でのノズル15で、シリコンが詰まってしまう可能性があるからである。
 るつぼ13に投入する際は、シリコンを10~85質量%、アルミニウムを0.2~80質量%、金属Dを1~40質量%の割合であることが好ましい。シリコンが少なすぎては、負極材料1の充放電容量が十分でなく、シリコンが多すぎては、化合物相5の割合や多孔質粒子7の空隙率が低下するため、サイクル特性が得られにくい。また、アルミニウムの割合は、最終的な多孔質粒子7の空隙率に直結するため、少なすぎると空隙率が低くなり、空隙によるシリコンの膨張収縮の緩和が不十分となるが、金属Dが15%以上であれば、アルミニウムの割合が少なくても、サイクル特性が確保できるため有効である。また、アルミニウムの割合が多すぎるとシリコンの割合が減り、負極材料1の充放電容量が減少する。金属Dの割合が少なすぎると、化合物相5の割合が減り、充放電時の膨張収縮の緩和が難しくなり、金属Dの割合が多すぎると、シリコン相3の割合が減り、負極材料1の充放電容量が減少する。
 金属Dは、配合組成比に応じてシリコンあるいはアルミニウムと化合物を形成し、(1)電子伝導性を付与する役割、(2)シリコンの充放電反応に伴う体積変化を緩和する役割がある。また、(3)シリコン化合物の種類によっては放電容量を有する活物質として作用する。
 例えば、CoはCoSiとして58mAh/g、FeはFeSiとして60mAh/g、NiはNiSiとして198mAh/g、CaはCaSiとして320mAh/g等の放電容量を有するが、容量が少ないために体積変化は無視できる程度である。シリコン化合物はリチウムと反応することは、リチウムがシリコン化合物をすり抜け可能であることを意味しており、シリコン相の利用率向上に寄与する。
 次に、溶融したシリコン、アルミニウム、金属Dの合金溶湯9を、100K/sec以上で冷却して合金粒子23を形成する。合金粒子23は、ガスアトマイズ法または水アトマイズ法により形成されることが好ましい。あるいは、単ロール法、双ロール法、溶融紡糸法のいずれかにより合金溶湯9を冷却した後、得られたフレーク状、リボン状、板状または糸状の合金を粉砕することで合金粒子23を形成してもよい。
 図2に示すガスアトマイズ装置11は、ガスアトマイズ法により合金粒子23を形成できる装置である。この合金溶湯9をノズル15から滴下すると同時に、不活性ガスや空気などの噴出ガス17が供給されたガス噴射機19からのガスジェット流21を吹き付けて、合金溶湯9を粉砕して、液滴として凝固させて粉末状の合金粒子23を形成する。合金粒子23は、ガスアトマイズ装置11に接続したサイクロンやフィルターを通して、連続して所望の粒子サイズに分級することが可能である。噴出ガス17の代わりに水を供給し、ガスジェット流21の代わりに高圧の水を吹き付けると水アトマイズ法となる。
 図3に示す単ロール急冷装置71は、単ロール法によるリボン状又はフレーク状の合金77の製造に用いられる装置である。単ロール急冷装置71は、るつぼ73内のシリコンとアルミニウムと金属Dとを含む合金溶湯9を、高速回転する単ロール75に向かって射出し、合金溶湯9を急速に冷却することで、シリコン相3と化合物相5とアルミニウム相25とを含むリボン状またはフレーク状の合金77を得ることができる。単ロール急冷装置71は、合金溶湯9の射出量や単ロール75の回転数を設定することで、急冷速度を制御することができ、一定の範囲内で所望のシリコン相3や化合物相7のサイズを制御することができる。また、得られたリボン状又はフレーク状の合金77を必要に応じて粉砕することで、所望の一次粒子の粒径の合金粒子23を得ることができる。単ロール法は、合金溶湯9がるつぼ73から射出されると単ロール75で瞬時に冷却されるため、ガスアトマイズ法に比べて急冷速度が早くなり、より微細なシリコン相3や化合物相5を得ることができる。
 図4に示す双ロール急冷装置81は、双ロール法によるリボン状又は板状の合金89の製造に用いられる装置である。双ロール急冷装置81は、るつぼ83内のシリコンとアルミニウムと金属Dを含む合金溶湯9を一対の鋳造ロール85で挟んで、リボン状又は板状の合金89を得ることができる。さらに、鋳造ロール85の出口に、リボン状又は板状の合金89に水や空気などを吹き付ける急冷装置87を有しても良い。双ロール法も、合金溶湯9がるつぼ83から射出されると一対の鋳造ロール85で瞬時に冷却されるため、微細なシリコン相3や化合物相5を得ることができる。
 図5に示す溶融紡糸装置91は、溶融紡糸法による糸状又はリボン状の合金101の製造に用いられる装置である。溶融紡糸装置91は、るつぼ93内の合金溶湯9を、容器95内の大量の冷却液97で急速に冷却して、ガイドロール99で誘導しながら、糸状又はリボン状の合金101を得ることができる。溶融紡糸法においても合金溶湯9を急速に冷却できるため、微細なシリコン相3や化合物相5を得ることができる。
 図7(a)~(d)は、液滴化した合金溶湯9からどのようにして多孔質粒子7が形成されるかを示す概略断面図である。図7では、シリコンと金属Dとの化合物の融点が、シリコンの融点1412℃より低い場合を例示する。シリコンの融点よりシリコンと金属Dとの化合物の融点が低い物質として、NiSiで1120℃、CoSiで1326℃、FeSiで1220℃、CaSiで1033℃等が対象となる。まず、図7(a)に示すように、ノズル15から噴出された合金溶湯9は、液滴となる。その後、冷却が進むと、図7(b)に示すように、融点が最も高いシリコンが析出し、シリコン相3が形成される。さらに冷却が進むと、図7(c)に示すように、次に融点が高い、シリコンと金属Dの化合物(シリサイド)が析出し、化合物相5が形成される。このとき、化合物相5は、シリコン相3の隙間を埋めるように析出すると考えられる。化合物相5はシリコンと金属Dの化合物の他に、シリコンと前出とは異なる金属Dとの化合物が存在してもよい。また、シリコンとアルミニウムと金属Dの化合物が析出し、さらに冷却が進むと、図7(d)に示すように、融点が660℃のアルミニウムが析出し、アルミニウム相25が形成される。
 シリコンの融点よりシリコンと金属Dとの化合物の融点が高い物質として、TiSiの1540℃、CrSiの1475℃、ZrSiの1520℃、YSiの1520℃、LaSiの1520℃等が存在し、これらの金属Dを添加する場合は、シリコン相3よりも化合物相5が先に形成される。なお、シリコン、アルミニウム、金属D、さらに複数の金属Dを含む合金では、合金組成に応じて、生成する化合物が異なることがあり、生成する化合物の析出温度が変動することがある。また、合金組成を制御することで、アルミニウムの析出量を制御することが可能となる。
 その後、得られた合金粒子23を回収し、図6に示すように、容器31にてアルカリ水溶液33に浸漬する。このとき、図7(e)に示すように、アルカリ水溶液33によりアルミニウム相25を溶解することで多孔質粒子7が得られる。また、化合物相5のシリコンと金属Dとアルミニウムの三元系化合物の相も、アルカリ水溶液33により溶解する。なお、図7(e)に示すようにアルミニウム相25を全部除去しても良いし、アルミニウム相25を一部残しても良い。アルカリ水溶液のpHを調整することで、アルミニウムの溶出量を抑制することも可能となり、アルミニウム相25の表面の一部のみを溶出することで、図8(a)に示す多孔質粒子26のように、表層部に析出したアルミニウム相25の一部に略円形のくぼみ29を形成することが出来る。さらに、図8(b)に示す多孔質粒子27のように、アルミニウムを含む化合物相28がシリコン相3と化合物相5の周囲に形成され、合金粒子の表面に存在する場合、表層部に存在するアルミニウムの一部をアルカリで溶出させ、化合物相28に略円形のくぼみ29を形成させることができる。なお、化合物相28に比べて低濃度ではあるが、化合物相5もアルミニウムを含む場合、図8(c)に示す多孔質粒子30のように、化合物相28からのアルミニウムの溶出に伴い、合金粒子の表面に露出した化合物相5からもアルミニウムが溶出し、化合物相5の表面に略円形のくぼみ29が形成される場合がある。化合物相5の表面に形成される略円形のくぼみ29は、化合物相5に含まれるアルミニウムの濃度が化合物相28に比べて少ないため、化合物相28の表面に形成される略円形のくぼみ29に比べて小さくなる。アルミニウムもリチウムイオンの吸蔵・放出に参加する元素であり、負極活物質として働くとともに、導電性が高いので導電助剤としての機能も果たすことができる。シリコン相3は、アルミニウム相25や化合物相5および化合物相28に取り囲まれていても、リチウムイオンを吸蔵・放出することが可能であり、良好な充電・放電特性を示すことができる。
 また、図9(a)に示すように、アルミニウムの析出量を抑制した合金粒子35では、シリコン相3とシリコンと金属Dとの化合物相5の隙間に溝状のアルミニウム相25が形成され、図9(b)に示すように、アルミニウム相25を除去することで溝状のくぼみ39を有する多孔質粒子37形成することが可能となる。このように、空隙の形成はアルミニウムのアルカリ溶出により形成するため、空隙のサイズはアルミニウム相25あるいは、アルミニウムを含む化合物相5のサイズに依存する。好適なサイズは20nmから500nmの範囲である。20nmより小さい場合は体積歪を緩和する能力が十分ではなく、また、500nmより大きい場合はアルミニウム相とともにほぼ同じサイズで存在するシリコン相のサイズが過大となり、充放電に伴い微粉化が生じやすくなる。このように、空隙の形状や空隙率を制御することで、放電容量の大きさに対応した体積変化の緩和の程度を制御することが可能となる。
 アルカリ水溶液33としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液など、アルミニウムを溶出可能なアルカリ水溶液であれば特に限定されないが、ナトリウムやカリウムのアルカリ水溶液は安価であり、工業的には有用である。
 アルミニウム相25を溶出すると、アルミニウム相25があった場所が空隙となり、合金粒子23が多孔質粒子7となる。図7では、化合物相5が1種類の事例を示したが、金属Dの中から複数の元素を選ぶことで、複数の化合物相を形成することも可能である。特に、弾性に代表される機械的性質の異なる金属の組合せを選ぶことで、合金粒子23の微粉化を回避し、シリコンの体積変化をより効果的に緩和することが可能である。
 (負極材料1の効果)
 負極材料1は、シリコンを含むため、従来のグラファイトなどの負極材料に比べて、充放電容量が大きい。
 負極材料1は、多孔質粒子7を含むため、シリコン相3が膨張収縮しても空隙があることにより、シリコン相3の体積歪みが緩和され、負極材料1を用いた負極にクラックが生じにくい。そのため、サイクル特性が向上する。
 負極材料1は、化合物相5がシリコン相3への導電パスとなるため、別途加える導電助剤を少なくすることができ、負極内に負極材料1を多く充填できるため、負極の充放電容量が大きくなる。また、化合物相5は黒鉛より導電性が10~100倍高いため、レート特性が向上する。
〔第2の実施形態〕
(負極材料41の構成)
 図10は、第2の実施形態に係る負極材料41を示す図である。以下の実施形態で第1の実施形態と同一の様態を果たす要素には同一の番号を付し、重複した説明は避ける。
 負極材料41は、シリコン相3と化合物相5と高融点微粒子45とを有する多孔質粒子43を含む。
 シリコン相3、化合物相5の組成は、第1の実施形態と同様であるが、高融点微粒子45を含むため、シリコン相3、化合物相5の結晶サイズは小さく、平均2μm以下である。
 高融点微粒子45としては、融点1600℃以上の材料の微粒子であれば、酸化物系の微粒子でも金属系の微粒子でも特に限定されないが、アルミナ(融点2054℃)、酸化亜鉛(融点1975℃)、シリカ(融点1650℃)、タングステン(融点3422℃)の微粒子であることが好ましい。特に、低コストで粒径の小さい微粒子を得るため、アルミナ、酸化亜鉛、シリカなどの酸化物系の微粒子が好ましい。
 高融点微粒子45の平均粒径は、1μm以下であることが好ましく、5~400nmであることがより好ましい。粒子径が小さいと同じ重量を添加しても、粒子の個数が多くなり、充放電に伴うシリコンの体積変化を効果的に緩和することができる。
(多孔質粒子43の製造方法)
 多孔質粒子43は、高融点微粒子45を含む、シリコンとアルミニウムと金属Dとの溶湯を粉末にし、その粉末をアルカリ処理することで得ることができる。以下、図11~13を用いて、多孔質粒子43の製造方法を説明する。
 まず、図11に示すように、シリコン、アルミニウム、高融点微粒子45、金属Dを、るつぼ13に投入して、誘導加熱などにより加熱して溶融させ、合金溶湯47とする。このときの温度は、シリコンの融点である1412℃より、200K程度高い、1600℃程度で溶融することが好ましい。高融点微粒子45は、合金溶湯47中でも溶融せず、微粒子の形状を保つ。
 るつぼ13に投入する際は、高融点微粒子の量は2~35wt%であることが好ましい。2wt%以下だと効果に乏しく、35wt%以上だとシリコンの量が少なくなり容量低下を招く。高融点微粒子が存在することにより、高誘電微粒子はリチウムと反応しないため初期での放電容量を抑制するように設計できる。また、高誘電微粒子は、連続したシリコン相の形成を阻害し、シリコン相の微細化を促進するため、サイクル特性の向上に寄与する。
 次に、合金溶湯47を、100K/sec以上で冷却して合金粒子49を形成する。合金粒子49は、ガスアトマイズ法または水アトマイズ法により形成されることが好ましい。あるいは、単ロール法、双ロール法、溶融紡糸法のいずれかにより合金溶湯47を冷却した後、得られたフレーク状、リボン状、板状または糸状の合金を粉砕することで合金粒子49を形成してもよい。
 図11に示すガスアトマイズ装置11は、ガスアトマイズ法により合金粒子49を形成できる装置である。
 図13は、液滴化した合金溶湯からどのようにして多孔質粒子7が形成されるかを示す概略断面図である。まず、図13(a)に示すように、ノズル15から噴出された合金溶湯47は、高融点微粒子45を含む液滴となる。その後、冷却が進むと、図13(b)に示すように、融点が最も高いシリコンが析出し、シリコン相3が形成される。このとき、高融点微粒子45があるため、シリコンの結晶が大きく成長せず、シリコン相3の結晶サイズは小さくなる。さらに冷却が進むと、図13(c)に示すように、次に融点が高い、シリコンと金属Dの化合物(シリサイド)が析出し、化合物相5が形成される。このとき、シリコン化合物は、既に析出しているシリコン相3の隙間を埋めるように析出する。また、シリコンとアルミニウムと金属Dの化合物が析出し、さらに冷却が進むと、図13(d)に示すように、融点が660℃のアルミニウムが析出し、アルミニウム相25が形成される。
 その後、得られた合金粒子49を回収し、第1の実施形態と同様にアルミニウム相25の一部または全部を除去すると、図13(e)に示すように多孔質粒子43が得られる。また、合金粒子49に高融点粒子45を含む場合でも、図8に示したような略円形のくぼみ29を有する多孔質粒子や、図9(b)に示したような溝状のくぼみ39を有する多孔質粒子を形成することができる。このように、多孔質粒子の空隙の形状や空隙率は、合金の組成やアルカリ水溶液のpHを調整することで、所望の形状を得ることができる。
 図12に示すように、単ロール急冷装置71を用いると、合金溶湯47の射出量や単ロール75の回転数を設定することで、急冷速度を比較的に容易に制御することができる。単ロール急冷装置を用いると、シリコン相や合金相のサイズをより微細なサイズに制御することができ、高融点微粒子45の添加によって、さらに微細化を図ることができる。シリコン相や合金相を微細化することにより、充放電に伴う体積変化に対して微粉化が抑制され、サイクル特性がさらに向上する。双ロール急冷装置や溶融紡糸装置を用いる場合も同様の効果が期待される。
 (負極材料41の効果)
 負極材料41は、第1の実施形態で得られる効果に加え、高融点微粒子45を含むため、シリコン相3の結晶サイズが小さくなる。そのため、充放電を繰り返してもシリコン相3が微粉化し難くなり、サイクル特性に優れる。また、負極材料41は、シリコンと金属Dあるいはアルミニウムとの化合物を有するため、電気伝導性に優れ、レート特性に優れる。
 (リチウムイオン二次電池の作製)
 (リチウムイオン二次電池用負極の作製)
 まず、リチウムイオン二次電池用負極の製造方法を説明する。ミキサーに、スラリー原料を投入し、混練してスラリーを形成する。スラリー原料は、負極材料、導電助剤、結着剤、増粘剤、溶媒などである。
 スラリー中の固形分において、負極材料25~90重量%、導電助剤5~70重量%、結着剤1~30重量%、増粘剤0~25重量%を含む。
 ミキサーは、スラリーの調製に用いられる一般的な混練機を用いることができ、ニーダー、撹拌機、分散機、混合機などと呼ばれるスラリーを調製可能な装置を用いてもよい。また、水系スラリーを調製するときは、結着剤としてスチレン・ブタジエン・ラバー(SBR)等のラテックス(ゴム微粒子の分散体)を使用することができ、増粘剤としてはカルボキシメチルセルロース、メチルセルロース等の多糖類等を1種または2種以上の混合物として用いることが適している。また、有機系スラリーを調製するときは、結着剤としてポリイミド(PI)、ポリベンゾイミダゾール(PBI)、ポリフッ化ビニリデン(PVdF)等を使用することができ、溶媒としてN-メチル-2-ピロリドンを用いることができる。
 導電助剤は、炭素、銅、スズ、亜鉛、ニッケル、銀などからなる群より選ばれた少なくとも1種の導電性物質からなる粉末である。炭素、銅、スズ、亜鉛、ニッケル、銀の単体の粉末でもよいし、それぞれの合金の粉末でもよい。例えば、ファーネスブラックやアセチレンブラックなどの一般的なカーボンブラックを使用できる。特に、導電性が良好なカーボンナノホーンを導電助剤として加えることが好ましい。ここで、カーボンナノホーン(CNH)とは、グラフェンシートを円錐形に丸めた構造をしており、実際の形態は多数のCNHが頂点を外側に向けて、放射状のウニの様な形態の集合体として存在する。CNHのウニ様集合体の外径は50nm~250nm程度である。特に、平均粒径80nm程度のCNHが好ましい。
 導電助剤の平均粒径は一次粒子の平均粒径を指す。アセチレンブラック(AB)のような高度にストラクチャー形状が発達している場合にも、ここでは一次粒径で平均粒径を定義し、SEM写真の画像解析で平均粒径を求めることができる。
 また、粒子状の導電助剤とワイヤー形状の導電助剤の両方を用いても良い。ワイヤー形状の導電助剤は導電性物質のワイヤーであり、粒子状の導電助剤に挙げられた導電性物質を用いることができる。ワイヤー形状の導電助剤は、カーボンファイバー、カーボンナノチューブ、銅ナノワイヤー、ニッケルナノワイヤーなどの外径が300nm以下の線状体を用いることができる。ワイヤー形状の導電助剤を用いることで、負極活物質や集電体などと電気的接続が保持しやすくなり集電性能が向上するとともに、ポーラス膜状の負極に繊維状物質が増え、負極にクラックが生じにくくなる。例えば粒子状の導電助剤としてABや銅粉末を用い、ワイヤー形状の導電助剤として気相成長炭素繊維(VGCF:Vapor Grown Carbon Fiber)を用いることが考えられる。なお、粒子状の導電助剤を加えずに、ワイヤー形状の導電助剤のみを用いても良い。
 ワイヤー形状の導電助剤の長さは、好ましくは0.1μm~2mmである。導電助剤の外径は、好ましくは2nm~500nmであり、より好ましくは10nm~200nmである。導電助剤の長さが0.1μm以上であれば、導電助剤の生産性を上げるのには十分な長さであり、長さが2mm以下であれば、スラリーの塗布が容易である。また、導電助剤の外径が2nmより太い場合、合成が容易であり、外径が500nmより細い場合、スラリーの混練が容易である。導電物質の外径と長さの測定方法は、SEMによる画像解析により行った。
 結着剤は、樹脂の結着剤であり、ポリフッ化ビニリデン(PVdF)、スチレンブタジエンゴム(SBR)などのフッ素樹脂やゴム系、さらには、ポリイミド(PI)やアクリルなどの有機材料を用いることができる。本発明では、強度の高い、ポリベンゾイミダゾール系バインダやポリイミド系バインダを用いることで、サイクル特性がさらに向上する。
 次に、例えばコーターを用いて、集電体の表面に、スラリーを塗布して負極活物質層を形成する。コーターは、スラリーを集電体に塗布可能な一般的な塗工装置を用いることができ、例えばロールコーターやドクターブレードによるコーター、コンマコーター、ダイコーターである。
 集電体は、銅、ニッケル、ステンレスからなる群より選ばれた少なくとも1種の金属からなる箔である。それぞれを単独で用いてもよいし、それぞれの合金でもよい。厚さは4μm~35μmが好ましく、さらに8μm~18μmがより好ましい。
 調製したスラリーを集電体に均一に塗布し、その後、50~150℃程度で乾燥し、厚みを調整するため、ロールプレスを通して、リチウムイオン二次電池用負極を得る。
 (リチウムイオン二次電池用正極の作製)
 まず、正極活物質、導電助剤、結着剤および溶媒を混合して正極活物質の組成物を準備する。前記正極活物質の組成物をアルミ箔などの金属集電体上に直接塗布・乾燥し、正極を準備する。
 前記正極活物質としては、一般的に使われるものであればいずれも使用可能であり、例えばLiCoO、LiMn、LiMnO、LiNiO、LiCo1/3Ni1/3Mn1/3、LiFePOなどの化合物である。
 導電助剤としては、例えばカーボンブラックを使用し、結着剤としては、例えばポリフッ化ビニリデン(PVdF)、水溶性アクリル系バインダを使用し、溶媒としては、N-メチル-2-ピロリドン(NMP)、水などを使用する。このとき、正極活物質、導電助剤、結着剤および溶媒の含量は、リチウムイオン二次電池で通常的に使用するレベルである。
 (セパレータ)
 セパレータとしては、正極と負極の電子伝導を絶縁する機能を有し、リチウムイオン二次電池で通常的に使われるものであればいずれも使用可能である。例えば、微多孔性のポリオレフィンフィルムを使用できる。
 (電解液・電解質)
 リチウムイオン二次電池、Liポリマー電池などにおける電解液および電解質には、有機電解液(非水系電解液)、無機固体電解質、高分子固体電解質等が使用できる。
 有機電解液の溶媒の具体例として、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等のカーボネート;ジエチルエーテル、ジブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル;ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、γ―ブチロラクトン、ジオキソラン、4-メチルジオキソラン、N,N-ジメチルホルムアミド、ジメチルアセトアミド、ジメチルクロロベンゼン、ニトロベンゼン等の非プロトン性溶媒、あるいはこれらの溶媒のうちの2種以上を混合した混合溶媒が挙げられる。
 有機電解液の電解質には、LiPF、LiClO、LiBF、LiAlO、LiAlCl、LiSbF、LiSCN、LiCl、LiCFSO、LiCFCO、LiCSO、LiN(CFSO等のリチウム塩からなる電解質の1種または2種以上を混合させたものを用いることができる。
 有機電解液の添加剤として、負極活物質の表面に有効な固体電解質界面被膜を形成できる化合物を添加することが望ましい。例えば、分子内に不飽和結合を有し、充電時に還元重合できる物質、例えばビニレンカーボネート(VC)などを添加する。
 また、上記の有機電解液に代えて固体状のリチウムイオン伝導体を用いることができる。たとえばポリエチレンオキサイド、ポリプロピレンオキサイド、ポリエチレンイミン等からなるポリマーに前記リチウム塩を混合した固体高分子電解質や、高分子材料に電解液を含浸させゲル状に加工した高分子ゲル電解質を用いることができる。
 さらに、リチウム窒化物、リチウムハロゲン化物、リチウム酸素酸塩、LiSiO、LiSiO-LiI-LiOH、LiPO-LiSiO、LiSiS、LiPO-LiS-SiS、硫化リン化合物などの無機材料を無機固体電解質として用いてもよい。
 (リチウムイオン二次電池の組立て)
 前述したような正極と負極との間にセパレータを配置して、電池素子を形成する。このような電池素子を巻回、または積層して円筒形の電池ケースや角形の電池ケースに入れた後、電解液を注入して、リチウムイオン二次電池とする。
 本発明のリチウムイオン二次電池の一例(断面図)を図14に示す。リチウムイオン二次電池51は、正極53、負極55を、セパレータ57を介して、セパレータ-負極-セパレータ-正極の順に積層配置し、正極53が内側になるように巻回して極板群を構成し、これを電池缶59内に挿入する。そして正極53は正極リード61を介して正極端子63に、負極55は負極リード65を介して電池缶59にそれぞれ接続し、リチウムイオン二次電池51内部で生じた化学エネルギーを電気エネルギーとして外部に取り出し得るようにする。次いで、電池缶59内に非水系電解質67を極板群を覆うように充填した後、電池缶59の上端(開口部)に、円形蓋板とその上部の正極端子63からなり、その内部に安全弁機構を内蔵した封口体69を、環状の絶縁ガスケットを介して取り付けて、本発明のリチウムイオン二次電池51を製造することができる。
 (本発明に係るリチウムイオン二次電池の効果)
 本発明に係る負極材料をリチウムイオン二次電池は、本発明に係る負極材料が炭素よりも単位体積あたりの容量の高いシリコンを有するため、従来のリチウムイオン二次電池よりも容量が大きく、かつ本発明に係る負極材料が化合物相と空隙を有するためサイクル特性が良い。
 以上、添付図面を参照しながら、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到しえることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 1………負極材料
 3………シリコン相
 5………化合物相
 7………多孔質粒子
 9………合金溶湯
 11………ガスアトマイズ装置
 13………るつぼ
 15………ノズル
 17………噴出ガス
 19………ガス噴射機
 21………ガスジェット流
 23………合金粒子
 25………アルミニウム相
 26………多孔質粒子
 27………多孔質粒子
 28………化合物相
 29………略円形のくぼみ
 30………多孔質粒子
 31………容器
 33………アルカリ水溶液
 35………合金粒子
 37………多孔質粒子
 39………溝状のくぼみ
 41………負極材料
 43………多孔質粒子
 45………高融点微粒子
 47………合金溶湯
 49………合金粒子
 50………合金
 51………リチウムイオン二次電池
 53………正極
 55………負極
 57………セパレータ
 59………電池缶
 61………正極リード
 63………正極端子
 65………負極リード
 67………非水系電解質
 69………封口体
 71………単ロール急冷装置
 73………るつぼ
 75………単ロール
 77………合金
 81………双ロール急冷装置
 83………るつぼ
 85………鋳造ロール
 87………急冷装置
 89………合金
 91………溶融紡糸装置
 93………るつぼ
 95………容器
 97………冷却液
 99………ガイドロール
 101………合金
 

Claims (16)

  1.  シリコンとアルミニウムと、金属D(Cu、Fe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、La、Ce、Nd、Y、Zr、Nb、Mo、Tc、Ru、Rh、およびBaより選ばれた少なくとも1種の元素)とを溶融する工程(a)と、
     溶融した前記シリコン、前記アルミニウム、前記金属Dの合金溶湯を、100K/sec以上で冷却して合金粒子を形成する工程(b)と、
     前記合金粒子を、アルカリ水溶液に浸漬して前記アルミニウムの一部または全部を溶出する工程(c)と、
     を具備することを特徴とするリチウムイオン二次電池用負極材料の製造方法。
  2.  前記工程(b)において、ガスアトマイズ法または水アトマイズ法により前記合金粒子を形成することを特徴とする請求項1に記載のリチウムイオン二次電池用負極材料の製造方法。
  3.  前記工程(b)において、単ロール法、双ロール法、溶融紡糸法のいずれかにより前記合金溶湯を冷却した後、粉砕することで前記合金粒子を形成することを特徴とする請求項1に記載のリチウムイオン二次電池用負極材料の製造方法。
  4.  前記工程(a)において、シリコンを10~85質量%、アルミニウムを0.2~80質量%、金属Dを1~40質量%の割合で配合して溶融することを特徴とする請求項1に記載のリチウムイオン二次電池用負極材料の製造方法。
  5.  前記工程(a)において、さらに、融点1600℃以上の高融点微粒子を加えることを特徴とする請求項1に記載のリチウムイオン二次電池用負極材料の製造方法。
  6.  前記高融点微粒子が、アルミナ、酸化亜鉛、シリカ、タングステンより選ばれた少なくとも1種の材料の微粒子であることを特徴とする請求項5に記載のリチウムイオン二次電池用負極材料の製造方法。
  7.  シリコン相と、シリコンと金属D(Cu、Fe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、La、Ce、Nd、Y、Zr、Nb、Mo、Tc、Ru、Rh、およびBaより選ばれたすくなくとも1種の元素)の化合物相とを有する多孔質粒子を含み、
     前記多孔質粒子の空隙率が0.1~75体積%であることを特徴とするリチウムイオン二次電池用負極材料。
  8.  さらに、前記多孔質粒子中に、アルミニウム相を有することを特徴とする請求項7に記載のリチウムイオン二次電池用負極材料。
  9.  前記アルミニウム相が、略円形のくぼみを有することを特徴とする請求項8に記載のリチウムイオン二次電池用負極材料。
  10.  前記化合物相がアルミニウムを含み、
     前記化合物相が、略円形のくぼみを有することを特徴とする請求項7に記載のリチウムイオン二次電池用負極材料。
  11.  前記多孔質粒子が、溝状のくぼみを有することを特徴とする請求項7に記載のリチウムイオン二次電池用負極材料。
  12.  前記略円形のくぼみや前記溝状のくぼみが、アルミニウムがアルカリで溶出して形成されたことを特徴とする請求項9~11のいずれか1項に記載のリチウムイオン二次電池用負極材料。
  13.  さらに、前記多孔質粒子中に、融点1600℃以上の高融点微粒子を有することを特徴とする請求項7に記載のリチウムイオン二次電池用負極材料。
  14.  前記高融点微粒子が、アルミナ、酸化亜鉛、シリカ、タングステンより選ばれた少なくとも1種の材料の微粒子であることを特徴とする請求項13に記載のリチウムイオン二次電池用負極材料。
  15.  集電体と、
     前記集電体の少なくとも片面に、請求項7に記載のリチウムイオン二次電池用負極材料を含む負極活物質層と、
     を有することを特徴とするリチウムイオン二次電池用負極。
  16.  リチウムイオンを吸蔵および放出可能な正極と、
     請求項15に記載の負極と、
     前記正極と前記負極との間に配置されたセパレータとを有し、
     リチウムイオン伝導性を有する電解質中に、前記正極と前記負極と前記セパレータとを設けたことを特徴とするリチウムイオン二次電池。
PCT/JP2013/058534 2012-03-26 2013-03-25 リチウムイオン二次電池用負極材料及びその製造方法、並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池 WO2013146658A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380002559.1A CN103733393B (zh) 2012-03-26 2013-03-25 锂离子二次电池用负极材料及其制造方法、以及使用该负极材料的锂离子二次电池用负极及锂离子二次电池
KR1020137031004A KR20140017646A (ko) 2012-03-26 2013-03-25 리튬 이온 이차전지용 부극 재료 및 그 제조방법, 그리고 그것을 이용한 리튬 이온 이차전지용 부극 및 리튬 이온 이차전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-069840 2012-03-26
JP2012069840 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013146658A1 true WO2013146658A1 (ja) 2013-10-03

Family

ID=49259910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058534 WO2013146658A1 (ja) 2012-03-26 2013-03-25 リチウムイオン二次電池用負極材料及びその製造方法、並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池

Country Status (4)

Country Link
JP (1) JPWO2013146658A1 (ja)
KR (1) KR20140017646A (ja)
CN (1) CN103733393B (ja)
WO (1) WO2013146658A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131746A (ja) * 2014-01-14 2015-07-23 国立大学法人 東京大学 複合粒子、その製造方法、及び複合粒子を用いたリチウムイオン2次電池用負極材料
GB2529410A (en) * 2014-08-18 2016-02-24 Nexeon Ltd Electroactive materials for metal-ion batteries
GB2529411A (en) * 2014-08-18 2016-02-24 Nexeon Ltd Electroactive materials for metal-ion batteries
EP3038193A1 (en) * 2014-12-23 2016-06-29 Samsung SDI Co., Ltd. Negative active material and lithium battery including negative active material
JP2018512699A (ja) * 2015-03-02 2018-05-17 イーオーセル リミテッド ケイ素:ケイ酸リチウムの複合材母材中にナノケイ素粒子を埋込んだケイ素−酸化ケイ素−リチウムの複合材料、及びその製造工程
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
US10388948B2 (en) 2012-01-30 2019-08-20 Nexeon Limited Composition of SI/C electro active material
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10522824B2 (en) 2014-07-23 2019-12-31 Nexeon Ltd Method for preparing silicon-based active material particles for secondary battery and silicon-based active material particles
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
JP2021123517A (ja) * 2020-02-05 2021-08-30 株式会社豊田中央研究所 多孔質シリコン粒子の製造方法、蓄電デバイス用電極の製造方法、全固体リチウムイオン二次電池の製造方法、多孔質シリコン粒子、蓄電デバイス用電極及び全固体リチウムイオン二次電池
US11127945B2 (en) 2016-06-14 2021-09-21 Nexeon Limited Electrodes for metal-ion batteries
WO2022209506A1 (ja) * 2021-03-31 2022-10-06 住友化学株式会社 リチウム二次電池用負極活物質、金属負極及びリチウム二次電池
WO2022209507A1 (ja) * 2021-03-31 2022-10-06 住友化学株式会社 リチウム二次電池用負極及びリチウム二次電池
JP7528548B2 (ja) 2020-06-05 2024-08-06 トヨタ自動車株式会社 活物質、電池およびこれらの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9281514B2 (en) * 2014-07-29 2016-03-08 Ford Global Technologies, Llc Batteries prepared by spinning
JP6711237B2 (ja) * 2016-10-31 2020-06-17 Jnc株式会社 リチウム吸蔵放出材料、電極、リチウムイオン二次電池およびリチウム吸蔵放出材料の製造方法
CN106602001B (zh) * 2016-12-16 2019-05-17 天津理工大学 一种锂离子电池用多孔负极材料的制备方法及应用
CN106784766B (zh) * 2016-12-16 2019-05-24 天津理工大学 一种用于锂离子电池的多孔负极材料的制备方法及应用
CN107623121B (zh) * 2017-10-18 2019-12-27 山东大学 一种金属包覆多孔硅复合物电极材料及其制备方法
KR20210069049A (ko) * 2018-10-05 2021-06-10 수미토모 케미칼 컴퍼니 리미티드 금속 입자 조성물의 제조 방법 및 금속 입자 조성물
CN116144956A (zh) * 2023-01-09 2023-05-23 山东重山光电材料股份有限公司 一种锂硼合金带的生产工艺及熔炼设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214054A (ja) * 2003-01-06 2004-07-29 Samsung Sdi Co Ltd リチウム二次電池用負極活物質及びその製造方法並びにリチウム二次電池
JP2005071771A (ja) * 2003-08-22 2005-03-17 Samsung Sdi Co Ltd リチウム二次電池用負極活物質及びその製造方法並びにリチウム二次電池
JP2006049266A (ja) * 2004-07-09 2006-02-16 Samsung Sdi Co Ltd リチウム二次電池
WO2010128310A1 (en) * 2009-05-07 2010-11-11 Nexeon Limited A method of making silicon anode material for rechargeable cells
WO2012036265A1 (ja) * 2010-09-17 2012-03-22 古河電気工業株式会社 多孔質シリコン粒子及び多孔質シリコン複合体粒子、並びにこれらの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452493C (zh) * 2003-01-06 2009-01-14 三星Sdi株式会社 再充电锂电池用的负极活性材料、其制法和再充电锂电池
WO2004086539A1 (en) * 2003-03-26 2004-10-07 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure having the electrode material
GB201014706D0 (en) * 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214054A (ja) * 2003-01-06 2004-07-29 Samsung Sdi Co Ltd リチウム二次電池用負極活物質及びその製造方法並びにリチウム二次電池
JP2005071771A (ja) * 2003-08-22 2005-03-17 Samsung Sdi Co Ltd リチウム二次電池用負極活物質及びその製造方法並びにリチウム二次電池
JP2006049266A (ja) * 2004-07-09 2006-02-16 Samsung Sdi Co Ltd リチウム二次電池
WO2010128310A1 (en) * 2009-05-07 2010-11-11 Nexeon Limited A method of making silicon anode material for rechargeable cells
WO2012036265A1 (ja) * 2010-09-17 2012-03-22 古河電気工業株式会社 多孔質シリコン粒子及び多孔質シリコン複合体粒子、並びにこれらの製造方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US10822713B2 (en) 2011-06-24 2020-11-03 Nexeon Limited Structured particles
US10388948B2 (en) 2012-01-30 2019-08-20 Nexeon Limited Composition of SI/C electro active material
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
JP2015131746A (ja) * 2014-01-14 2015-07-23 国立大学法人 東京大学 複合粒子、その製造方法、及び複合粒子を用いたリチウムイオン2次電池用負極材料
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10693134B2 (en) 2014-04-09 2020-06-23 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US11196042B2 (en) 2014-07-23 2021-12-07 Nexeon Ltd Method for preparing silicon-based active material particles for secondary battery and silicon-based active material particles
US10522824B2 (en) 2014-07-23 2019-12-31 Nexeon Ltd Method for preparing silicon-based active material particles for secondary battery and silicon-based active material particles
GB2529410A (en) * 2014-08-18 2016-02-24 Nexeon Ltd Electroactive materials for metal-ion batteries
GB2529411A (en) * 2014-08-18 2016-02-24 Nexeon Ltd Electroactive materials for metal-ion batteries
EP3183765A1 (en) * 2014-08-18 2017-06-28 Nexeon Limited Electroactive materials for metal-ion batteries
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10164251B2 (en) 2014-12-23 2018-12-25 Samsung Sdi Co., Ltd. Negative active material and lithium battery including negative active material
EP3038193A1 (en) * 2014-12-23 2016-06-29 Samsung SDI Co., Ltd. Negative active material and lithium battery including negative active material
JP2018512699A (ja) * 2015-03-02 2018-05-17 イーオーセル リミテッド ケイ素:ケイ酸リチウムの複合材母材中にナノケイ素粒子を埋込んだケイ素−酸化ケイ素−リチウムの複合材料、及びその製造工程
US11127945B2 (en) 2016-06-14 2021-09-21 Nexeon Limited Electrodes for metal-ion batteries
JP2021123517A (ja) * 2020-02-05 2021-08-30 株式会社豊田中央研究所 多孔質シリコン粒子の製造方法、蓄電デバイス用電極の製造方法、全固体リチウムイオン二次電池の製造方法、多孔質シリコン粒子、蓄電デバイス用電極及び全固体リチウムイオン二次電池
JP7233389B2 (ja) 2020-02-05 2023-03-06 株式会社豊田中央研究所 多孔質シリコン粒子の製造方法、蓄電デバイス用電極の製造方法、全固体リチウムイオン二次電池の製造方法、多孔質シリコン粒子、蓄電デバイス用電極及び全固体リチウムイオン二次電池
JP7528548B2 (ja) 2020-06-05 2024-08-06 トヨタ自動車株式会社 活物質、電池およびこれらの製造方法
WO2022209506A1 (ja) * 2021-03-31 2022-10-06 住友化学株式会社 リチウム二次電池用負極活物質、金属負極及びリチウム二次電池
WO2022209507A1 (ja) * 2021-03-31 2022-10-06 住友化学株式会社 リチウム二次電池用負極及びリチウム二次電池

Also Published As

Publication number Publication date
KR20140017646A (ko) 2014-02-11
JPWO2013146658A1 (ja) 2015-12-14
CN103733393A (zh) 2014-04-16
CN103733393B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
WO2013146658A1 (ja) リチウムイオン二次電池用負極材料及びその製造方法、並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP5809897B2 (ja) 多孔質シリコン粒子及びその製造方法、並びにリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP5535158B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池、およびリチウムイオン二次電池用負極の製造方法
WO2015064633A1 (ja) 負極活物質及びその製造方法並びにそれを用いた負極及び非水電解質二次電池
KR100366978B1 (ko) 비수전해질 이차전지용 음극재료와 그 제조방법
JP5884573B2 (ja) リチウムイオン電池用負極活物質及びこれを用いたリチウムイオン電池用負極
CN105720259B (zh) 负极活性物质和包含负极活性物质的锂电池
JP5790282B2 (ja) リチウム二次電池用負極活物質およびリチウム二次電池用負極
JP2004214054A (ja) リチウム二次電池用負極活物質及びその製造方法並びにリチウム二次電池
JP5448555B2 (ja) リチウムイオン二次電池用負極、それを用いたリチウムイオン二次電池、リチウムイオン二次電池用の負極作製用のスラリー、リチウムイオン二次電池用負極の製造方法
WO2013168605A1 (ja) 非水電解質二次電池用負極及びそれを用いた非水電解質二次電池
JP2013253012A (ja) シリサイドを複合化したシリコン材料及びそれを用いた非水電解質二次電池
JP6601937B2 (ja) 負極活物質、それを採用した負極及び該リチウム電池、並びに該負極活物質の製造方法
JP2014107132A (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、リチウムイオン二次電池、およびリチウムイオン二次電池用負極材料の製造方法
JP2015095301A (ja) 二次電池用負極活物質材料、二次電池用負極及び非水電解質二次電池
JP2012014866A (ja) リチウム二次電池用負極活物質およびその製造方法
JP2017224499A (ja) リチウムイオン電池用負極活物質およびリチウムイオン電池
KR20150022266A (ko) 음극 활물질, 이를 채용한 음극과 리튬 전지, 및 상기 음극 활물질의 제조방법
KR20080031223A (ko) 리튬 2차전지용 음극과 음극 조성물의 제조방법, 및 리튬2차전지
JP6460400B2 (ja) 安定化リチウム粉、及びそれを用いたリチウムイオン二次電池
JP5668381B2 (ja) 複合粒子、複合粒子の製造方法、リチウムイオン二次電池用負極、リチウムイオン二次電池用負極の製造方法、及びリチウムイオン二次電池
JP2012101958A (ja) ナノサイズ粒子、ナノサイズ粒子を含むリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、リチウムイオン二次電池、ナノサイズ粒子の製造方法
JP2018063755A (ja) 安定化リチウム粉、及びそれを用いたリチウムイオン二次電池
JP2013235683A (ja) 非水電解質二次電池用負極及びそれを用いた非水電解質二次電池
JP2015056313A (ja) 二次電池用負極活物質材料、負極及び二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013542700

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137031004

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13770382

Country of ref document: EP

Kind code of ref document: A1