WO2024084937A1 - リチウム二次電池用負極、リチウム二次電池用負極前駆体、リチウム二次電池及びリチウム二次電池用負極の製造方法 - Google Patents

リチウム二次電池用負極、リチウム二次電池用負極前駆体、リチウム二次電池及びリチウム二次電池用負極の製造方法 Download PDF

Info

Publication number
WO2024084937A1
WO2024084937A1 PCT/JP2023/035887 JP2023035887W WO2024084937A1 WO 2024084937 A1 WO2024084937 A1 WO 2024084937A1 JP 2023035887 W JP2023035887 W JP 2023035887W WO 2024084937 A1 WO2024084937 A1 WO 2024084937A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
negative electrode
secondary battery
aluminum
rolled material
Prior art date
Application number
PCT/JP2023/035887
Other languages
English (en)
French (fr)
Inventor
優樹 中田
滝太郎 山口
俊昭 熊谷
祥史 松尾
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2024084937A1 publication Critical patent/WO2024084937A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a lithium secondary battery, a negative electrode precursor for a lithium secondary battery, a lithium secondary battery, and a method for producing a negative electrode for a lithium secondary battery.
  • Rechargeable lithium secondary batteries are already being put to practical use not only as small power sources for mobile phones and laptops, but also as medium- and large-sized power sources for automobiles and power storage.
  • Metal anodes are manufactured by rolling an ingot of metal or alloy into a thin film.
  • Patent Document 1 discloses manufacturing an anode by cold rolling an alloy of aluminum and manganese into a thin film.
  • the ingot In order to reduce a metal or alloy ingot to a thin film sufficient for use as a lithium secondary battery negative electrode, the ingot is rolled using multiple rolling rolls. As a result, crystal distortion accumulates in the lithium secondary battery negative electrode after rolling, and the irreversible capacity of the lithium secondary battery tends to be large. This crystal distortion is removed by heating after rolling, but lithium secondary batteries using negative electrodes heated after rolling tend to have a low cycle retention rate. There is room for further improvement of lithium secondary battery negative electrodes in order to achieve lithium secondary batteries with small irreversible capacity and high cycle retention rate.
  • the present invention has been made in consideration of the above circumstances, and aims to provide a negative electrode for a lithium secondary battery that can realize a lithium secondary battery with a small irreversible capacity and a high cycle retention rate, a negative electrode precursor for a lithium secondary battery, and a method for manufacturing a lithium secondary battery and a negative electrode for a lithium secondary battery that use these.
  • a negative electrode for a lithium secondary battery which is a rolled material of aluminum or an aluminum alloy capable of absorbing and releasing lithium ions
  • two cycles of measurement are performed at 30 to 500° C. and a heating rate of 10° C./min
  • a ⁇ DSC is a value obtained by subtracting the amount of heat generated in the measurement of the second cycle from the amount of heat generated in the measurement of the first cycle
  • an integrated value of the ⁇ DSC in the range of 100° C. to 300° C. is 0.5-8 mW/g or less.
  • the cumulative frequency distribution curve is a curve obtained by measuring a surface of the rolled material by electron backscatter diffraction, determining absolute values of angles between the surface of the rolled material and normals to ⁇ 111 ⁇ planes of metal crystals exposed on the surface of the rolled material, and plotting the absolute values of each of a plurality of metal crystals exposed on the surface of the rolled material, with the horizontal axis representing the absolute values and the vertical axis representing measurement points of the metal crystals.
  • the rolled material is the aluminum alloy
  • the aluminum alloy comprises one or more non-aluminum metal compounds selected from the group consisting of Si, Ge, Sn, Ag, Sb, Bi, In, and Mg;
  • the rolled material is the aluminum alloy,
  • the aluminum alloy comprises one or more non-aluminum metal compounds selected from the group consisting of Si, Ge, Sn, Ag, Sb, Bi, In, and Mg;
  • a negative electrode for a lithium secondary battery obtained by heating the negative electrode precursor for a lithium secondary battery according to [4] or [5] at 100° C. or higher but lower than 200° C.
  • a lithium secondary battery comprising the negative electrode for lithium secondary batteries according to any one of [1] to [3] and [6].
  • a method for producing a negative electrode for a lithium secondary battery comprising heating a rolled material of aluminum or an aluminum alloy at 100° C. or higher and lower than 200° C.
  • the present invention provides a negative electrode for a lithium secondary battery that can realize a lithium secondary battery with a small irreversible capacity and a high cycle retention rate, a negative electrode precursor for a lithium secondary battery, and a method for manufacturing a lithium secondary battery and a negative electrode for a lithium secondary battery that use these.
  • FIG. 1 is a diffraction spectrum of a negative electrode precursor for a lithium secondary battery according to one embodiment of the present invention measured by an XRD method.
  • 1 is a graph showing the change in discharge capacity retention rate with respect to the charge-discharge cycle of a lithium secondary battery using, as a negative electrode, a rolled Al-Si alloy material that has been subjected to a heating process at 150° C., and a lithium secondary battery using, as a negative electrode, a rolled Al-Si alloy material that has been heated at 150° C.
  • FIG. 1 is a schematic diagram illustrating an example of a lithium secondary battery.
  • FIG. 1 is a schematic diagram illustrating an example of a lithium secondary battery. 1 shows the results of XRD analysis of the negative electrodes of Examples 1 and 2 and Comparative Examples 1 and 2.
  • 1 is a graph showing ⁇ DSC at 30-350° C. of the negative electrodes of Examples 1 and 2 and Comparative Examples 1 and 2.
  • a numerical range is stated as “1-10 ⁇ m” or “1 to 10 ⁇ m,” it means a range from 1 ⁇ m to 10 ⁇ m, and it means a numerical range including a lower limit of 1 ⁇ m and an upper limit of 10 ⁇ m.
  • composition of the negative electrode for a lithium secondary battery is measured, for example, using a solid-state optical emission spectrometer (e.g., ARL-4460, manufactured by Thermo) or an ICP (inductively coupled plasma) optical emission spectrometer (e.g., SPS5000, manufactured by Seiko Instruments Inc.).
  • a solid-state optical emission spectrometer e.g., ARL-4460, manufactured by Thermo
  • ICP inductively coupled plasma optical emission spectrometer
  • charge/discharge efficiency refers to the ratio of the capacity after discharge to the capacity after charging when a lithium secondary battery is charged and discharged under specific conditions.
  • the charge/discharge efficiency is a value measured by performing charge/discharge under the conditions shown below.
  • the coin-type lithium secondary battery is left at room temperature for 10 hours to allow the separator to be sufficiently impregnated with the electrolyte.
  • the battery is charged at a constant current of 0.8 mA to 4.2 V (i.e., Li is absorbed into Al) at room temperature, and then charged at a constant voltage of 4.2 V for 5 hours.
  • the battery is then discharged at a constant current of 0.8 mA to 3.0 V (i.e., Li is released from Al) (also called initial charge/discharge).
  • the charge/discharge efficiency is calculated from the ratio of the capacity after discharge to the capacity after charging.
  • discharge capacity retention rate refers to the ratio of the discharge capacity to the charge capacity of a lithium secondary battery when a cycle test is carried out in which the lithium secondary battery is repeatedly charged and discharged a predetermined number of times under specific conditions.
  • the discharge capacity retention rate is a value measured by conducting a test in which charge and discharge cycles are repeated under the conditions shown below.
  • the discharge capacity retention rate (%) is the ratio of the discharge capacity at the 20th cycle to the maximum discharge capacity up to the 20th cycle.
  • high cycle retention rate means that the discharge capacity retention rate at the 20th cycle is 90% or more.
  • the negative electrode for a lithium secondary battery of this embodiment is a rolled material of aluminum or an aluminum alloy capable of absorbing and releasing lithium ions, and in differential scanning calorimetry of the negative electrode for a lithium secondary battery, two cycles of measurement are performed at 30 to 500° C. and a heating rate of 10° C./min, and the ⁇ DSC is the value obtained by subtracting the amount of heat generated in the measurement of the second cycle from the amount of heat generated in the measurement of the first cycle, and the integral value of the ⁇ DSC in the range of 100° C. to 300° C. is 0.5-8 mW/g.
  • the negative electrode for a lithium secondary battery of this embodiment may be simply referred to as a negative electrode.
  • the negative electrode is a rolled material of aluminum or an aluminum alloy.
  • a non-aluminum metal phase is present dispersed in the aluminum metal phase.
  • the non-aluminum metal phase is preferably composed of one or more non-aluminum metal compounds selected from the group consisting of Si, Ge, Sn, Ag, Sb, Bi, In, and Mg.
  • the non-aluminum metal phase is composed of a non-aluminum metal compound containing one or more elements selected from the group consisting of Si, Ge, Sn, Ag, Sb, Bi, and In.
  • the content of the non-aluminum metal compounds is preferably 0.01-8 mass% relative to the total mass of the aluminum metal phase and the non-aluminum metal phase, i.e., the total mass of the aluminum alloy.
  • the lower limit of the content of the non-aluminum metal compounds is preferably 0.02 mass%, more preferably 0.05 mass%, and particularly preferably 0.1 mass%, relative to the total mass of the aluminum alloy.
  • the upper limit of the content of the non-aluminum metal compounds is preferably 7 mass%, more preferably 6 mass%, and particularly preferably 5 mass%, relative to the total mass of the aluminum alloy.
  • non-aluminum metal compound contents 0.02-7 mass%, 0.05-6 mass%, and 0.1-5 mass% relative to the total mass of the aluminum alloy.
  • non-aluminum metal compounds when the content of non-aluminum metal compounds is equal to or greater than the above lower limit, metals or metal compounds other than aluminum that can contribute to lithium absorption can be sufficiently secured. Furthermore, when the content of non-aluminum metal compounds is equal to or less than the above upper limit, the dispersion state of the non-aluminum metal phase in the aluminum phase tends to be good. Furthermore, when the content is equal to or less than the above upper limit, rolling tends to be easy.
  • the non-aluminum metal compound may also contain any metal other than Si, Ge, Sn, Ag, Sb, Bi, In, and Mg.
  • examples of the optional metal include Mn, Fe, Zn, and Ni.
  • the negative electrode is preferably an Al-Si binary alloy or an Al-Si-Mn ternary alloy. In the case of a ternary alloy, it is preferable that each metal is uniformly dissolved in a solid solution.
  • the non-aluminum metal compound when the non-aluminum metal compound is Si, it may further contain Sr to promote solid solution.
  • Sr to promote solid solution of Si.
  • the method of adding Sr to promote solid solution of Si can be described in Light Metals, Vol. 37, No. 2, 1987, pp. 146-152.
  • the negative electrode of this embodiment is a rolled material that has been subjected to a heating process, which will be described later. Before the heating process, the rolled material has accumulated crystal distortion due to repeated rolling during the manufacturing process. If the rolled material is used as a negative electrode without being subjected to a heating process, it is believed that the crystal distortion will cause a decrease in the charge and discharge efficiency of the lithium secondary battery, in other words, the irreversible capacity will increase. By annealing such a rolled material negative electrode, the crystal distortion is alleviated.
  • the presence or absence of distortion in the crystals of the rolled material can be evaluated by a differential scanning calorimeter as follows.
  • ⁇ DSC Measurement The measurement conditions are as follows: the container is Al-pan (15 mg, unsealed), the temperature is 30 to 500°C, and the atmosphere is nitrogen flow. This measurement is performed for two cycles. The ⁇ DSC is the value obtained by subtracting the amount of heat generated in the measurement of the second cycle from the amount of heat generated in the measurement of the first cycle. The larger the ⁇ DSC in the range of 200°C to 300°C, the greater the distortion of the crystals of the rolled material.
  • the differential scanning calorimeter for example, a high-sensitivity differential scanning calorimeter device, DSC7020, manufactured by SII NanoTechnology, Inc. can be used.
  • the rolled material of this embodiment has an integral ⁇ DSC of 0.5-8 mW/g in the range of 100°C to 300°C measured by the above method.
  • the upper limit of the integral ⁇ DSC is preferably 7.8 mW/g, and more preferably 7.5 mW/g.
  • the upper and lower limits of the integral ⁇ DSC can be combined in any way.
  • Figure 1 shows the diffraction spectrum measured by X-ray diffraction (hereinafter sometimes referred to as XRD) of the rolled Al-Si alloy material before heating, the diffraction spectrum measured by XRD of the rolled Al-Si alloy material that underwent a heating process at 150°C, and the diffraction spectrum measured by XRD of the rolled Al-Si alloy material that was heated at 200°C.
  • the proportion of Si contained in the Al-Si alloy is 1.0 mass% relative to the total mass of the Al-Si alloy.
  • Each diffraction spectrum is obtained by performing X-ray diffraction measurement using an X-ray diffraction device (e.g., X'Pert PRO MPD manufactured by PANalytical).
  • an X-ray diffraction device e.g., X'Pert PRO MPD manufactured by PANalytical.
  • analysis software e.g., X-ray analysis software PDXL
  • Figure 2 is a graph showing the change in discharge capacity retention rate with respect to charge-discharge cycles for a lithium secondary battery using as its negative electrode a rolled Al-Si alloy material that has been heated at 150°C, and a lithium secondary battery using as its negative electrode a rolled Al-Si alloy material that has been heated at 200°C.
  • the discharge capacity retention rate is a value measured under the measurement conditions of the above-mentioned "discharge capacity retention rate".
  • the discharge capacity retention rate is roughly 100% up to the 30th cycle, whereas in a lithium secondary battery using a rolled Al-Si alloy material heated at 200°C as the negative electrode, the discharge capacity retention rate decreases after the 20th cycle.
  • the crystal peak intensity ratio of the ⁇ 200 ⁇ plane obtained by measuring the negative electrode of this embodiment by the XRD method is preferably 80-200%, more preferably 90-120%, relative to the crystal peak intensity of the ⁇ 200 ⁇ plane obtained by measuring the negative electrode before the heat treatment by the XRD method.
  • the crystal peak intensity of the ⁇ 200 ⁇ plane obtained by measuring the negative electrode by the XRD method may be referred to as I 1
  • the crystal peak intensity of the ⁇ 200 ⁇ plane obtained by measuring the negative electrode before the heat treatment by the XRD method may be referred to as I 2
  • the intensity ratio may be referred to as I 1 /I 2.
  • I 1 /I 2 is 80-200%, it is considered that the crystal growth on the ⁇ 200 ⁇ plane is suppressed, and the cycle retention rate can be improved.
  • the angle at which the cumulative frequency from the low angle side is 50% or more is 20° or less.
  • the cumulative frequency distribution curve is a curve in which the surface of the rolled material, which is the negative electrode, is measured by electron backscatter diffraction (hereinafter, sometimes referred to as EBSD), the absolute value of the angle between the surface of the rolled material and the normal to the ⁇ 111 ⁇ plane of the metal crystal exposed on the surface of the rolled material is calculated, and the absolute value of each of the multiple metal crystals exposed on the surface is plotted on the horizontal axis as the absolute value and on the vertical axis as the measurement points of the metal crystals.
  • EBSD electron backscatter diffraction
  • the " ⁇ 111 ⁇ plane of the metal crystal exposed on the surface of the rolled material" may be simply referred to as the " ⁇ 111 ⁇ plane.”
  • the angle between the surface of the rolled material and the normal to the ⁇ 111 ⁇ plane of the metal crystal exposed on the surface of the rolled material refers to the angle between the projection of the normal to the ⁇ 111 ⁇ plane on the surface of the rolled material and the normal to the ⁇ 111 ⁇ plane, and is an angle of 90° or less.
  • the angle is 0°.
  • the EBSD method is widely used as a method for analyzing the orientation distribution of crystal texture.
  • the EBSD method is used in a form in which a scanning electron microscope equipped with an electron backscatter diffraction detector is mounted.
  • a JSM-7900F manufactured by JEOL Ltd. can be used as the scanning electron microscope.
  • a Symmetry manufactured by Oxford Instruments Ltd. can be used as the electron backscatter diffraction detector.
  • Measurements using the EBSD method are performed on the surface of the rolled material, which is the negative electrode.
  • Methods for removing the surface coating include, for example, chemical etching using an acid or ion etching using argon ions.
  • the surface coating may also be removed by mechanical polishing such as buffing.
  • Planar argon ion milling is a method for processing a wide area by irradiating the surface of the rolled material with an argon ion beam at an angle and decentering the center of the argon ion beam and the center of the sample rotation.
  • the IB-19520CCP manufactured by JEOL Ltd. can be used.
  • the surface of the rolled material is irradiated with an electron beam.
  • the diffraction pattern of the backscattered electrons is then read by a device.
  • the resulting diffraction pattern is input into a computer, and the surface of the rolled material is scanned while simultaneously performing crystal orientation analysis. This allows the crystals at each measurement point to be indexed, and the crystal orientation can be determined.
  • the crystal orientation calculated at each measurement point is recorded in the computer.
  • the size of the pixels of the crystal orientation map obtained by the EBSD method is preferably measured to be 3 ⁇ m or less on a side, more preferably 1 ⁇ m or less on a side, in accordance with the size of the crystals constituting the rolled material.
  • the recorded crystal orientation information at each measurement point indicates the crystal orientation of the aluminum or aluminum alloy crystals exposed on the surface of the rolled material at each measurement point relative to the surface of the rolled material.
  • a cumulative frequency distribution curve can be obtained for the absolute value of the angle between the surface of the rolled material and the normal to the ⁇ 111 ⁇ plane.
  • the cumulative frequency distribution curve is a curve that shows the absolute value of the angle between the surface of the rolled material and the normal to the ⁇ 111 ⁇ plane at each measurement point, with the horizontal axis representing the absolute value and the vertical axis representing the measurement point of the metal crystal. When accumulated for all measurement points, the frequency is 100%.
  • the angle at which the cumulative frequency is 50% or more is preferably 20° or less, more preferably 15° or less, and even more preferably 12° or less.
  • lithium ions When lithium ions enter the rolled material, they enter the crystal parallel to the ⁇ 111 ⁇ plane of the rolled material. Similarly, when lithium ions desorb from the rolled material, they desorb in a direction parallel to the ⁇ 111 ⁇ plane.
  • the ⁇ 111 ⁇ plane is perpendicular to the surface of the rolled material so as not to inhibit the insertion and desorption of lithium ions.
  • the ⁇ 111 ⁇ plane is perpendicular to the surface of the rolled material so as not to inhibit the insertion and desorption of lithium ions.
  • the angle at which the cumulative frequency from the low angle side is 50% or more is 20° or less, it is considered that the ⁇ 111 ⁇ plane is oriented perpendicular to the surface of the rolled material.
  • the thickness of the negative electrode is preferably 5 ⁇ m or more, more preferably 6 ⁇ m or more, and even more preferably 7 ⁇ m or more.
  • the thickness of the negative electrode is preferably 200 ⁇ m or less, more preferably 190 ⁇ m or less, and even more preferably 180 ⁇ m or less.
  • the above upper and lower limit values can be combined in any manner.
  • the thickness of the negative electrode is preferably 5 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the negative electrode may be measured at any point using a thickness gauge or vernier calipers.
  • the negative electrode for a lithium secondary battery in this embodiment preferably has a charge/discharge efficiency of 55% or more, and more preferably 58% or more, when used as the negative electrode of a lithium secondary battery having the following configuration.
  • the polyethylene porous separator is disposed between the negative electrode and the counter electrode, and the battery case (standard 2032) is used.
  • the charge/discharge efficiency is a value measured under the measurement conditions for the "charge/discharge efficiency" described above.
  • the negative electrode precursor for a lithium secondary battery of this embodiment is a rolled material of aluminum or an aluminum alloy, and the ratio of the crystal peak intensity of the ⁇ 200 ⁇ plane obtained by measuring the negative electrode precursor for a lithium secondary battery after heat treatment at 150° C. by XRD to the crystal peak intensity of the ⁇ 200 ⁇ plane obtained by measuring the negative electrode precursor for a lithium secondary battery by XRD method is 80-200%.
  • the negative electrode precursor for a lithium secondary battery of this embodiment is a rolled material before being heated at 100°C or more and less than 200°C.
  • the negative electrode precursor for a lithium secondary battery is heated at 100°C or more and less than 200°C, the negative electrode for a lithium secondary battery of this embodiment is obtained.
  • a method for producing a negative electrode for a lithium secondary battery from the negative electrode precursor for a lithium secondary battery will be described in detail later.
  • the negative electrode precursor for lithium secondary batteries is a rolled material made of aluminum or an aluminum alloy, similar to the negative electrode for lithium secondary batteries.
  • the rolled material is made of an aluminum alloy
  • the aluminum alloy is the same as the aluminum alloy described for the negative electrode for lithium secondary batteries.
  • the ratio of the crystal peak intensity of the ⁇ 200 ⁇ plane obtained by measuring the negative electrode precursor for lithium secondary batteries by the XRD method after heating at 150°C is 80-200%, and preferably 90-120%, of the crystal peak intensity of the ⁇ 200 ⁇ plane obtained by measuring the negative electrode precursor for lithium secondary batteries by the XRD method before heating.
  • a negative electrode precursor for lithium secondary batteries is used and heated at 100-300°C to produce a negative electrode, a lithium secondary battery with small irreversible capacity and high cycle retention can be realized.
  • ⁇ Method of manufacturing a negative electrode for a lithium secondary battery> An example of a method for producing a negative electrode for a lithium secondary battery according to the present embodiment will be described below. A method for producing a negative electrode using a rolled Si-Al alloy will be described below, but the present invention is not limited thereto.
  • the method for producing a negative electrode according to the present embodiment preferably includes a casting step, a rolling step, and a heating step of an aluminum alloy.
  • the molten alloy is preferably subjected to a purification process (e.g., vacuum treatment of molten aluminum) to remove gas and non-metallic inclusions.
  • a purification process e.g., vacuum treatment of molten aluminum
  • Vacuum treatment is performed, for example, at 700°C to 800°C, for 1 hour to 10 hours, and at a vacuum level of 0.1 Pa to 100 Pa.
  • the cleaned molten alloy is usually cast in a mold to obtain an ingot.
  • the mold used is made of iron or graphite heated to 50°C or higher and 200°C or lower.
  • the negative electrode active material of this embodiment can be cast by pouring molten alloy at 680°C or higher and 800°C or lower into the mold. Alternatively, an ingot can be obtained by commonly used semi-continuous casting.
  • the obtained alloy ingot is rolled.
  • hot rolling and cold rolling are performed to process the ingot into a plate material.
  • Hot rolling is performed, for example, at a temperature of 350° C. to 550° C., and at a rolling rate of 2% to 30% per rolling, repeatedly until the aluminum ingot reaches a target thickness.
  • intermediate annealing may be performed before cold rolling.
  • the hot rolled sheet material may be heated to 350°C to 550°C and cooled immediately after the temperature increase, or may be cooled after holding for about 1 hour to 5 hours. If the cooling process is performed by rapidly cooling, the Si phase tends to become small. On the other hand, if the material is cooled at a slow cooling rate, Si particles tend to grow.
  • the cooling process may be adjusted appropriately depending on the desired size of the non-aluminum metal phase. The material is softened by the cooling process, resulting in a state that is favorable for cold rolling.
  • Cold rolling is performed repeatedly at a temperature below the recrystallization temperature of aluminum, with a processing rate per rolling of 1% to 20%, until the aluminum ingot becomes a rolled material of the desired thickness.
  • the cold rolling temperature may be from room temperature to 80°C or lower.
  • the above steps produce the rolled material before heat treatment, that is, the negative electrode precursor for lithium secondary batteries.
  • the rolled material is heated after rolling.
  • the heating after rolling may be performed in air, a nitrogen atmosphere, or a vacuum atmosphere, and is preferably performed in a vacuum atmosphere.
  • the heating temperature is 100°C or higher and lower than 200°C, preferably 100-175°C, and more preferably 120-170°C.
  • the heating temperature is 100°C or higher, it is considered that the crystal distortion caused by rolling is relaxed, and the irreversible capacity of the lithium secondary battery is reduced.
  • the heating temperature is lower than 200°C, the crystal growth of the ⁇ 200 ⁇ plane is suppressed, and the decrease in the cycle maintenance rate of the lithium secondary battery can be suppressed.
  • the heating temperature means the temperature of the atmosphere inside the heating device.
  • the heating time is preferably 30-360 minutes, more preferably 60-360 minutes, and even more preferably 60-180 minutes. When the heating time is 60-180 minutes, the crystal distortion caused by rolling is sufficiently alleviated.
  • the heating time means the time during which the inside of the heating device is maintained at the desired heating temperature.
  • heating devices include vacuum ovens, but for example, EYELA's VOS-301SD model can be used.
  • the heating temperature is preferably set appropriately depending on the type and content of the non-aluminum metal phase contained in the aluminum alloy. For example, if the non-aluminum metal phase is Si, the heating temperature can be lowered when the Si content is low.
  • the negative electrode By heating as described above, a negative electrode is obtained. After heating, the negative electrode may be cooled by air cooling.
  • examples of a method for refining aluminum to a high purity include a segregation method and a three-layer electrolysis method.
  • the segregation method is a purification technique that utilizes the segregation phenomenon that occurs when molten aluminum solidifies, and several techniques have been put to practical use.
  • molten aluminum is poured into a container, and the container is rotated while the molten aluminum at the top is heated and stirred, while the refined aluminum solidifies from the bottom.
  • high-purity aluminum with a purity of 99.99% by mass or more can be obtained.
  • the three-layer electrolysis method is an electrolysis method for purifying aluminum.
  • relatively low-purity aluminum for example, grade 1 according to JIS-H2102 with a purity of 99.9% by mass or less
  • an electrolytic bath containing, for example, aluminum fluoride and barium fluoride is placed on top of it, and high-purity aluminum is deposited on the cathode.
  • high-purity aluminum with a purity of 99.999% by mass or more can be obtained.
  • the method for purifying aluminum is not limited to the segregation method and the three-layer electrolysis method, but may be other known methods such as the zone melting refining method and the ultra-high vacuum melting method.
  • Lithium secondary battery Next, a secondary battery having the negative electrode of this embodiment will be described. As an example, a lithium secondary battery using a lithium positive electrode active material in the positive electrode will be described.
  • the lithium secondary battery of this embodiment has a positive electrode, a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolyte disposed between the positive electrode and the negative electrode.
  • FIGS. 3A and 3B are schematic diagrams showing an example of a lithium secondary battery of this embodiment.
  • the cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
  • a pair of strip-shaped separators 1, a strip-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a strip-shaped negative electrode 3 having a negative electrode lead 31 at one end are stacked in the order of separator 1, positive electrode 2, separator 1, negative electrode 3, and then wound to form an electrode group 4.
  • the electrode group 4 and an insulator are placed in the battery can 5, the bottom of the can is sealed, the electrode group 4 is impregnated with an electrolyte solution 6, and the electrolyte is disposed between the positive electrode 2 and the negative electrode 3. Furthermore, the top of the battery can 5 is sealed with a top insulator 7 and a sealing body 8, thereby manufacturing a lithium secondary battery 10.
  • the shape of the electrode group 4 can be, for example, a columnar shape such that the cross-sectional shape when the electrode group 4 is cut perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners.
  • the shape of a lithium secondary battery having such an electrode group 4 can be any shape specified by IEC 60086, a standard for batteries established by the International Electrotechnical Commission (IEC), or JIS C 8500. Examples of shapes include a cylindrical shape or a rectangular shape.
  • the lithium secondary battery is not limited to the above-mentioned wound type configuration, but may be a laminated type configuration in which a laminated structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • laminated lithium secondary batteries include so-called coin type batteries, button type batteries, and paper type (or sheet type) batteries.
  • the positive electrode of this embodiment can be manufactured by first preparing a positive electrode mixture containing a positive electrode active material, a conductive material, and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • the positive electrode active material may be made of a lithium-containing compound or other metal compounds.
  • the lithium-containing compound include lithium cobalt composite oxide having a layered structure, lithium nickel composite oxide having a layered structure, lithium manganese composite oxide having a spinel structure, and lithium iron phosphate having an olivine structure.
  • other metal compounds include oxides such as titanium oxide, vanadium oxide, and manganese dioxide, and sulfides such as titanium sulfide and molybdenum sulfide.
  • a carbon material can be used as the conductive material of the positive electrode of this embodiment.
  • Examples of carbon materials include graphite powder, carbon black (e.g., acetylene black), and fibrous carbon materials. Carbon black is fine and has a large surface area. Therefore, by adding a small amount of carbon black to the positive electrode mixture, the conductivity inside the positive electrode can be increased, and the charge/discharge efficiency and output characteristics can be improved. On the other hand, if too much carbon black is added, the binding force between the positive electrode mixture and the positive electrode current collector by the binder and the binding force inside the positive electrode mixture are both reduced, which causes an increase in internal resistance.
  • the proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less per 100 parts by mass of the positive electrode active material.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotubes
  • the binder of the positive electrode of this embodiment may be a thermoplastic resin.
  • the thermoplastic resin include fluororesins such as polyvinylidene fluoride, polytetrafluoroethylene, ethylene tetrafluoride-propylene hexafluoride-vinylidene fluoride copolymers, propylene hexafluoride-vinylidene fluoride copolymers, and ethylene tetrafluoride-perfluorovinyl ether copolymers; and polyolefin resins such as polyethylene and polypropylene.
  • thermoplastic resins may be used in a mixture of two or more kinds.
  • a fluororesin and a polyolefin resin as a binder and setting the ratio of the fluororesin to the entire positive electrode mixture to be between 1% and 10% by mass and the ratio of the polyolefin resin to be between 0.1% and 2% by mass, it is possible to obtain a positive electrode mixture that has both high adhesion to the positive electrode current collector and high bonding strength within the positive electrode mixture.
  • the positive electrode current collector of the positive electrode of this embodiment can be a strip-shaped member made of a metal material such as Al, Ni, or stainless steel. Among them, the current collector is preferably made of Al, which is easy to process and inexpensive, and processed into a thin film.
  • the positive electrode current collector may be an alloy of the same composition as the Al of the negative electrode.
  • a method for supporting the positive electrode mixture on the positive electrode current collector includes a method of pressure molding the positive electrode mixture on the positive electrode current collector.
  • the positive electrode mixture may be made into a paste using an organic solvent, and the resulting paste of the positive electrode mixture may be applied to at least one side of the positive electrode current collector, dried, and pressed to adhere the positive electrode mixture to the positive electrode current collector.
  • organic solvents examples include amine-based solvents such as N,N-dimethylaminopropylamine and diethylenetriamine; ether-based solvents such as tetrahydrofuran; ketone-based solvents such as methyl ethyl ketone; ester-based solvents such as methyl acetate; and amide-based solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • amine-based solvents such as N,N-dimethylaminopropylamine and diethylenetriamine
  • ether-based solvents such as tetrahydrofuran
  • ketone-based solvents such as methyl ethyl ketone
  • ester-based solvents such as methyl acetate
  • amide-based solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • Methods for applying the positive electrode mixture paste to the positive electrode current collector include, for example, slit die coating, screen coating, curtain coating, knife coating, gravure coating, and electrostatic spraying.
  • the positive electrode can be manufactured using the methods described above.
  • the negative electrode of the lithium secondary battery of the present embodiment is used as the negative electrode of the present embodiment.
  • the negative electrode current collector When the negative electrode is a metal foil, excess aluminum that is not involved in charge and discharge may serve as the current collector of the negative electrode, in which case a separate current collector may not be required.
  • the negative electrode current collector When a current collector is used, the negative electrode current collector may be a strip-shaped member made of a metal material such as Cu, Ni, stainless steel, etc. Among them, the current collector is preferably made of Cu and processed into a thin film, because Cu is less likely to form an alloy with lithium and is easy to process.
  • examples of a method for supporting the negative electrode mixture on such a negative electrode current collector include, as in the case of the positive electrode, a method of pressure molding a negative electrode mixture consisting of the negative electrode active material and a binder, and a method of making the mixture into a paste using a solvent or the like, applying it to the negative electrode current collector, drying it, and then pressing and bonding it to the negative electrode current collector.
  • a conductive material may be further added to the negative electrode mixture.
  • the conductive material those listed as the conductive materials for the positive electrode material can be used.
  • the separator of the lithium secondary battery of this embodiment may be, for example, a material having a form such as a porous film, a nonwoven fabric, or a woven fabric, which is made of a material such as a polyolefin resin such as polyethylene or polypropylene, a fluororesin, or a nitrogen-containing aromatic polymer.
  • the separator may be formed by using two or more of these materials, or the separator may be formed by laminating these materials.
  • the separator in order to allow good electrolyte permeation during battery use (charging and discharging), the separator preferably has an air permeability resistance according to the Gurley method defined in JIS P 8117 of 50 sec/100 cc or more and 300 sec/100 cc or less, and more preferably 50 sec/100 cc or more and 200 sec/100 cc or less.
  • the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less, based on the total volume of the separator.
  • the separator may be a laminate of separators with different porosities.
  • the electrolyte solution in the lithium secondary battery of this embodiment contains an electrolyte and an organic solvent.
  • the electrolytes contained in the electrolytic solution are LiClO4 , LiPF6 , LiAsF6 , LiSbF6 , LiBF4 , LiCF3SO3 , LiN( SO2CF3 ) 2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 )( COCF3 ), Li ( C4F9SO3 ), LiC ( SO2CF3 ) 3 , Li2B10Cl10 .
  • LiBOB (here, BOB is bis(oxalato)borate)
  • LiFSI (here, FSI is bis(fluorosulfonyl)imide)
  • lithium salts of lower aliphatic carboxylic acids and lithium salts such as LiAlCl4 , and mixtures of two or more of these may be used.
  • an electrolyte containing at least one selected from the group consisting of fluorine-containing LiPF6 , LiAsF6 , LiSbF6 , LiBF4 , LiCF3SO3 , LiN( SO2CF3 ) 2 , and LiC( SO2CF3 ) 3 .
  • the organic solvent contained in the electrolyte solution may be, for example, carbonates such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-di(methoxycarbonyloxy)ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, and 2-methyltetrahydrofuran.
  • carbonates such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-di(methoxycarbonyloxy)ethane
  • Ethers such as toluene, ethyl acetate, and ⁇ -butyrolactone; nitriles such as acetonitrile and butyronitrile; amides such as N,N-dimethylformamide and N,N-dimethylacetamide; carbamates such as 3-methyl-2-oxazolidone; sulfur-containing compounds such as sulfolane, dimethyl sulfoxide, and 1,3-propane sultone, or organic solvents having fluoro groups introduced therein (organic solvents in which one or more hydrogen atoms have been replaced with fluorine atoms) can be used.
  • the organic solvent it is preferable to use a mixture of two or more of these.
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of a cyclic carbonate and an acyclic carbonate and a mixed solvent of a cyclic carbonate and an ether are more preferable.
  • a mixed solvent of a cyclic carbonate and an acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate is preferable.
  • An electrolyte using such a mixed solvent has a wide operating temperature range, is resistant to deterioration even when charged and discharged at a high current rate, and is resistant to deterioration even when used for a long time.
  • an electrolyte solution containing a fluorine-containing lithium salt such as LiPF6 and an organic solvent having a fluorine substituent it is preferable to use an electrolyte solution containing a fluorine-containing lithium salt such as LiPF6 and an organic solvent having a fluorine substituent.
  • a mixed solvent containing an ether having a fluorine substituent such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate is more preferable because it has a high capacity retention rate even when charging and discharging at a high current rate.
  • the electrolyte may contain additives such as tris(trimethylsilyl) phosphate and tris(trimethylsilyl) borate.
  • a solid electrolyte may be used instead of the above-mentioned electrolytic solution.
  • the solid electrolyte for example, an organic polymer electrolyte such as a polyethylene oxide-based polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used.
  • a so-called gel type in which a non-aqueous electrolyte is held in a polymer compound can also be used.
  • inorganic solid electrolytes containing sulfides such as Li 2 S-SiS 2 , Li 2 S-GeS 2 , Li 2 S-P 2 S 5 , Li 2 S-B 2 S 3 , Li 2 S-SiS 2 -Li 3 PO 4 , Li 2 S-SiS 2 -Li 2 SO 4 and Li 2 S-GeS 2 -P 2 S 5 can be mentioned, and a mixture of two or more of these may be used.
  • solid electrolytes the safety of the lithium secondary battery can be further improved.
  • the solid electrolyte when a solid electrolyte is used in the lithium secondary battery of this embodiment, the solid electrolyte may also function as a separator, in which case a separator may not be necessary.
  • the lithium secondary battery of this embodiment has a high cycle retention rate because it has the above-mentioned negative electrode.
  • the present invention includes the following embodiments.
  • a negative electrode for a lithium secondary battery which is a rolled material of aluminum or an aluminum alloy capable of absorbing and releasing lithium ions
  • two cycles of measurement are performed at 30 to 500° C. and a heating rate of 10° C./min
  • ⁇ DSC is a value obtained by subtracting the amount of heat generated in the measurement of the second cycle from the amount of heat generated in the measurement of the first cycle
  • an integrated value of the ⁇ DSC in the range of 100° C. to 300° C. is 2.0 to 7.5 mW/g or less.
  • the cumulative frequency distribution curve is a curve obtained by measuring a surface of the rolled material by electron backscatter diffraction, determining absolute values of angles between the surface of the rolled material and normals to ⁇ 111 ⁇ planes of metal crystals exposed on the surface of the rolled material, and plotting the absolute values of each of a plurality of metal crystals exposed on the surface of the rolled material, with the horizontal axis representing the absolute values and the vertical axis representing measurement points of the metal crystals.
  • the rolled material is the aluminum alloy
  • the aluminum alloy comprises one or more non-aluminum metal compounds selected from the group consisting of Si, Ge, Sn, Ag, Sb, Bi, In, and Mg;
  • the rolled material is the aluminum alloy,
  • the aluminum alloy comprises one or more non-aluminum metal compounds selected from the group consisting of Si, Ge, Sn, Ag, Sb, Bi, In, and Mg;
  • a negative electrode for a lithium secondary battery obtained by heating the negative electrode precursor for a lithium secondary battery according to [4] or [5] at 100° C. or higher and lower than 160° C.
  • a lithium secondary battery comprising the negative electrode for lithium secondary batteries according to any one of [1] to [3] and [6].
  • a method for producing a negative electrode for a lithium secondary battery comprising heating a rolled material of aluminum or an aluminum alloy at 100° C. or higher and lower than 160° C.
  • ⁇ DSC The ⁇ DSC was measured by the method described above in (Measurement of ⁇ DSC) for the negative electrodes obtained in Examples 1 and 2 and Comparative Examples 1 and 2.
  • the coating on the surface of the rolled material was removed by etching using a planar argon ion milling method.
  • a LiCoO2 foil (thickness 82 ⁇ m: manufactured by Nippon Chemical Industry Co., Ltd.) was cut into a disk shape with a diameter of 13 mm to prepare a counter electrode.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • a polyethylene porous separator was placed between the negative electrode and the counter electrode obtained in Examples 1 to 4 and Comparative Examples 1 and 2, and the resultant was housed in a battery case (standard 2032).
  • the above-mentioned electrolyte solution was poured into the battery case, and the battery case was sealed to prepare a coin-type (full cell) lithium secondary battery having a diameter of 20 mm and a thickness of 3.2 mm.
  • Example 1 Preparation of negative electrode precursor
  • the aluminum alloy was produced by the following method: High purity aluminum (purity: 99.99% by mass or more) and high purity chemically produced silicon (purity: 99.999% by mass or more) were heated to and held at 760° C. to obtain a molten Al—Si alloy. At this time, the ratio of Si to the total mass of the molten Al—Si alloy was 1.0% by mass.
  • the molten Al-Si alloy was purified by holding it at 740°C for 2 hours under a vacuum of 50 Pa.
  • the molten alloy was cast into a cast iron mold (22 mm x 150 mm x 200 mm) that had been dried at 150°C to obtain an ingot.
  • the negative electrode precursor was cut into a rectangle with a dimension of 50 mm in the rolling direction and a dimension of 100 mm in the direction perpendicular to the rolling direction.
  • the cut negative electrode precursor was sandwiched between iron plates and vacuum heated at 100° C. for 120 minutes in an oven (EYELA, product number: VOS-301SD). After that, the heating was stopped and the material was allowed to cool naturally in a vacuum for 8 hours.
  • the heated negative electrode precursor was removed from the oven and cut into a disk shape with a diameter of 15 mm to obtain a negative electrode.
  • Example 2 In the [Preparation of the Negative Electrode], a negative electrode was prepared in the same manner as in Example 1, except that heating was performed at 150° C. for 120 minutes, and a coin-type lithium secondary battery of Example 2 was obtained.
  • Comparative Example 2 A coin-type lithium secondary battery of Comparative Example 1 was produced in the same manner as in Example 1, except that the negative electrode precursor was used as it was as the negative electrode.
  • ⁇ DSC integral value of ⁇ DSC ( ⁇ DSC) in the range of 200° C. to 300° C., EBSD analysis (angle at which the cumulative frequency is 50% or more), XRD analysis results (I 1 /I 2 ) of the negative electrodes of Examples 1 and 2 and Comparative Examples 1 and 2, as well as the charge/discharge efficiency of the lithium secondary battery, the maximum discharge capacity up to the 20th cycle (simply referred to as maximum discharge capacity), and the discharge capacity retention rate are shown in Table 1.
  • the XRD analysis results of the negative electrodes of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in FIG. 4.
  • the ⁇ DSC at 30-350° C. of the negative electrodes of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in FIG. 5.
  • the lithium secondary batteries using the negative electrodes of Examples 1 and 2 had a charge/discharge efficiency of 60% or more and a discharge capacity retention rate of 96% or more.
  • the present invention provides a negative electrode for a lithium secondary battery that can realize a lithium secondary battery with a small irreversible capacity and a high cycle retention rate, a negative electrode precursor for a lithium secondary battery, and a method for manufacturing a lithium secondary battery and a negative electrode for a lithium secondary battery that use these.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

このリチウム二次電池用負極は、リチウムイオンを吸蔵及び放出可能なアルミニウム又はアルミニウム合金の圧延材であるリチウム二次電池用負極であって、前記リチウム二次電池用負極の示差操作熱量測定において、30~500℃の範囲を昇温速度10℃/分の測定を2サイクル行い、1サイクル目の発熱量から2サイクル目の発熱量を差し引いた値がΔDSCであり、100℃から300℃の範囲の前記ΔDSCの積分値が0.5-8mW/g以下である。

Description

リチウム二次電池用負極、リチウム二次電池用負極前駆体、リチウム二次電池及びリチウム二次電池用負極の製造方法
 本発明は、リチウム二次電池用負極、リチウム二次電池用負極前駆体、リチウム二次電池及びリチウム二次電池用負極の製造方法に関する。
 本願は、2022年10月20日に日本に出願された特願2022-168531号について優先権を主張し、その内容をここに援用する。
 充電が可能なリチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型又は大型電源においても、実用化が進んでいる。
 リチウム二次電池の負極について、従来の負極材料である黒鉛よりも理論容量が大きい材料を用い、電池性能を向上させる検討が行われている。このような材料として、リチウムイオンを吸蔵及び放出可能な金属材料が注目されている。以下の説明では、金属材料から形成された負極を「金属負極」と称することがある。
 金属負極は、金属又は合金のインゴットを圧延することで薄膜化して製造される。例えば、特許文献1は、アルミニウムとマンガンの合金を冷間圧延により薄膜化して負極を製造することを開示している。
特開平9-320634号公報
 金属又は合金のインゴットからリチウム二次電池用負極として使用できる程度に薄膜化するために、複数の圧延ロールを用いて圧延を行う。そのため、圧延後のリチウム二次電池用負極には結晶の歪みが蓄積しており、リチウム二次電池の不可逆容量が大きい傾向にある。このような結晶の歪みは、圧延後の加熱により除去されるが、圧延後に加熱した負極を用いたリチウム二次電池では、サイクル維持率が低下する傾向がある。不可逆容量が小さく、サイクル維持率が高いリチウム二次電池を達成するために、リチウム二次電池用負極をさらに改善する余地がある。
 本発明は上記事情に鑑みてなされたものであって、不可逆容量が小さく、サイクル維持率が高いリチウム二次電池を実現できるリチウム二次電池用負極、リチウム二次電池用負極前駆体、これらを用いたリチウム二次電池及びリチウム二次電池用負極の製造方法を提供することを課題とする。
 本発明は、以下の態様を有する。
[1]リチウムイオンを吸蔵及び放出可能なアルミニウム又はアルミニウム合金の圧延材であるリチウム二次電池用負極であって、
 前記リチウム二次電池用負極の示差走査熱量測定において、30~500℃、昇温速度10℃/分での測定を2サイクル行い、1サイクル目の測定における発熱量から2サイクル目の測定における発熱量を差し引いた値がΔDSCであり、100℃~300℃の範囲の前記ΔDSCの積分値が0.5-8mW/g以下である、リチウム二次電池用負極。
[2]以下に定義する累積頻度分布曲線において全体を100%としたとき、低角度側からの累積頻度が50%以下となる角度が、20°以下であり、
 前記累積頻度分布曲線は、前記圧延材の表面を後方散乱電子回折法により測定し、前記圧延材の表面と、前記圧延材の表面に露出している金属結晶の{111}面の法線とが成す角度の絶対値を求め、前記圧延材の表面に露出する複数の金属結晶のそれぞれの前記絶対値について、横軸を前記絶対値、縦軸を前記金属結晶の測定点として表した曲線である、[1]に記載のリチウム二次電池用負極。
[3]前記圧延材が前記アルミニウム合金であって、
 前記アルミニウム合金がSi、Ge、Sn、Ag、Sb、Bi、In及びMgからなる群より選択される1種以上の非アルミニウム金属化合物を含み、
 前記非アルミニウム金属化合物の含有率は、前記アルミニウム合金の総質量に対して0.01-8質量%である、[1]又は[2]に記載のリチウム二次電池用負極。
[4]アルミニウム又はアルミニウム合金の圧延材であるリチウム二次電池用負極前駆体であって、
 前記リチウム二次電池用負極前駆体をX線回折法で測定して得られる{200}面の結晶ピーク強度に対する、150℃で加熱処理した後の前記リチウム二次電池用負極前駆体をX線回折法で測定して得られる2θ=45°の位置における{200}面の結晶ピーク強度の割合は、80-200%である、リチウム二次電池用負極前駆体。
[5]前記圧延材が前記アルミニウム合金であって、
 前記アルミニウム合金がSi、Ge、Sn、Ag、Sb、Bi、In及びMgからなる群より選択される1種以上の非アルミニウム金属化合物を含み、
 前記非アルミニウム金属化合物の含有率は、前記アルミニウム合金の総質量に対して0.01-8質量%である、[4]に記載のリチウム二次電池用負極前駆体。
[6][4]又は[5]に記載のリチウム二次電池用負極前駆体を100℃以上200℃未満で加熱して得られる、リチウム二次電池用負極。
[7][1]~[3]及び[6]の何れか1つに記載のリチウム二次電池用負極を有するリチウム二次電池。
[8]アルミニウム又はアルミニウム合金の圧延材を100℃以上200℃未満で加熱することを含む、リチウム二次電池用負極の製造方法。
 本発明によれば、不可逆容量が小さく、サイクル維持率が高いリチウム二次電池を実現できるリチウム二次電池用負極、リチウム二次電池用負極前駆体、これらを用いたリチウム二次電池及びリチウム二次電池用負極の製造方法を提供できる。
XRD法で測定された本発明の一実施形態におけるリチウム二次電池用負極前駆体の回折スペクトルである。 150℃で加熱工程を行ったAl-Si合金の圧延材を負極として用いたリチウム二次電池と、150℃で加熱したAl-Si合金の圧延材を負極として用いたリチウム二次電池の充放電サイクルに対する放電容量維持率の変化を示すグラフである。 リチウム二次電池の一例を示す概略構成図である。 リチウム二次電池の一例を示す概略構成図である。 実施例1~2及び比較例1~2の負極のXRD分析結果である。 実施例1~2及び比較例1~2の負極の30-350℃のΔDSCのグラフである。
 以下、本発明の一態様におけるリチウム二次電池用負極について説明する。以下の複数の実施形態では、好ましい例や条件を共有してもよい。また、本明細書において、各用語を以下に定義する。
 数値範囲を例えば「1-10μm」又は「1~10μm」と記載した場合、1μmから10μmまでの範囲を意味し、下限値である1μmと上限値である10μmを含む数値範囲を意味する。
 リチウム二次電池用負極の組成は、例えば、固体発光分光分析装置(例えば、Thermo社製、ARL-4460)もしくはICP(高周波誘導結合プラズマ)発光分光分析装置(例えば、セイコーインスツル株式会社製、SPS5000)を用いて測定される。
 「充放電効率」とは、特定の条件下でリチウム二次電池の充放電を行った際の充電後の容量に対する放電後の容量の割合を意味する。
 本明細書においては、以下に示す条件で充放電を行って測定した値を充放電効率とする。
 コイン型のリチウム二次電池を室温で10時間静置することでセパレータに充分電解液を含浸させる。次に室温において0.8mAで4.2Vまで定電流充電(つまり、AlにLiを吸蔵させる)してから4.2Vで定電圧充電する定電流定電圧充電を5時間行った後、0.8mAで3.0Vまで放電(つまり、AlからLiを放出する)する定電流放電(初期充放電ともいう)を行う。充電後の容量に対する放電後の容量の割合から、充放電効率を算出する。
 「放電容量維持率」とは、特定の条件下でリチウム二次電池の充放電を所定の回数繰り返すサイクル試験を行った際の、リチウム二次電池の充電容量に対する放電容量の割合を意味する。
 本明細書においては、以下に示す条件で充放電サイクルを繰り返す試験を行って測定した値を放電容量維持率とする。
 上述の初期充放電後、初期充放電の条件と同様に0.8mAで充電、0.8mAで放電を20サイクル繰り返す。放電容量維持率(%)は、20サイクル目までの最大放電容量に対する20サイクル目の放電容量の割合とする。
 本明細書において「サイクル維持率が高い」とは、20サイクル目の放電容量維持率が90%以上であることを意味する。
 <リチウム二次電池用負極>
 本実施形態のリチウム二次電池用負極は、リチウムイオンを吸蔵及び放出可能なアルミニウム又はアルミニウム合金の圧延材であるリチウム二次電池用負極であって、前記リチウム二次電池用負極の示差走査熱量測定において、30~500℃、昇温速度10℃/分での測定を2サイクル行い、1サイクル目の測定における発熱量から2サイクル目の測定における発熱量を差し引いた値がΔDSCであり、100℃~300℃の範囲の前記ΔDSCの積分値が0.5-8mW/gである。以降、本実施形態のリチウム二次電池用負極を、単に負極と記載することがある。
 負極は、アルミニウム又はアルミニウム合金の圧延材である。負極がアルミニウム合金である場合、アルミニウム金属相に非アルミニウム金属相が分散して存在する。非アルミニウム金属相は、Si、Ge、Sn、Ag、Sb、Bi、In及びMgからなる群より選択される1種以上の非アルミニウム金属化合物から構成されるものが好ましい。
 本実施形態において非アルミニウム金属相は、Si、Ge、Sn、Ag、Sb、Bi及びInからなる群より選択される1種以上を含む非アルミニウム金属化合物から構成されるものがさらに好ましい。
 非アルミニウム金属化合物の含有率は、アルミニウム金属相と非アルミニウム金属相の総質量、つまりアルミニウム合金の総質量に対して0.01-8質量%であることが好ましい。非アルミニウム金属化合物の含有率の下限値は、アルミニウム合金の総質量に対して0.02質量%が好ましく、0.05質量%がより好ましく、0.1質量%が特に好ましい。非アルミニウム金属化合物の含有量の上限値は、アルミニウム合金の総質量に対して7質量%が好ましく、6質量%がより好ましく、5質量%が特に好ましい。
 上記上限値及び下限値は、任意に組み合わせることができる。組み合わせの例としては、非アルミニウム金属化合物の含有率は、アルミニウム合金の総質量に対して0.02-7質量%、0.05-6質量%、0.1-5質量%が挙げられる。
 本実施形態において、非アルミニウム金属化合物の含有率が上記下限値以上であると、リチウムの吸蔵に寄与できる、アルミニウム以外の金属または金属化合物を十分確保できる。また、非アルミニウム金属化合物の含有量が上記上限値以下であると、アルミニウム相中の非アルミニウム金属相の分散状態が良好となりやすい。また、上記上限値以下であると、圧延が容易となりやすい。
 また、非アルミニウム金属化合物は、Si、Ge、Sn、Ag、Sb、Bi、In及びMg以外の任意金属を含んでいてもよい。任意金属の例としては、Mn、Fe、Zn及びNi等が挙げられる。
 負極は、Al-Siの二元系合金、Al-Si-Mnの三元系合金であることが好ましい。三元系合金である場合、それぞれの金属が均一に固溶していることが好ましい。
 また、非アルミニウム金属化合物がSiの場合、固溶を促すためにSrをさらに含んでいてもよい。Siの固溶を促進するためにSrを添加する方法としては、軽金属37巻2号1987年、頁146-152に記載の方法が使用できる。
 本実施形態の負極は、後述する加熱工程を行った圧延材である。加熱工程前の圧延材は、その製造過程で圧延を繰り返すことにより結晶の歪みが蓄積されている。加熱工程をせずに圧延材を負極として用いると、結晶の歪みが原因となってリチウム二次電池の充放電効率が低くなる、つまり不可逆容量が大きくなると考えられる。このような圧延材負極アニールを行うと、結晶の歪みが緩和される。
 圧延材の結晶の歪みの有無は、示差走査熱量計により以下のように評価できる。
(ΔDSCの測定)
 測定条件としては、容器をAl-pan(15mg、非密封)とし、温度30~500℃、窒素フロー雰囲気とする。この測定を2サイクル行う。1サイクル目の測定における発熱量から2サイクル目の測定における発熱量を差し引いた値がΔDSCである。200℃~300℃の範囲のΔDSCが大きいほど、圧延材の結晶の歪みが大きい。示差走査熱量計としては、例えばエスアイアイ・ナノテクノロジー社製 高感度示差走査熱量計装置、DSC7020を用いることができる。
 本実施形態の圧延材は、上記の方法で測定された100℃~300℃の範囲のΔDSCの積分値が0.5-8mW/gである。ΔDSCの積分値の上限値は、7.8mW/gであることが好ましく、7.5mW/gであることがより好ましい。ΔDSCの積分値の上限値と下限値は、任意に組み合わせることができる。100℃~300℃の範囲のΔDSCの積分値が0.5-8mW/gであると、結晶の歪みが緩和されている圧延材であり、これを負極として用いたリチウム二次電池の不可逆容量が小さくなる。
 圧延により生じる結晶の歪みは、350℃以上での加熱、いわゆる焼きなましにより除去されることが知られている。しかし、このような高い温度で加熱した圧延材を負極として用いると、リチウム二次電池のサイクル維持率が低下する。この原因について以下に説明する。
 図1は、加熱前のAl-Si合金の圧延材のX線回折法(以下、XRDと記載することがある)で測定された回折スペクトル、150℃の加熱工程を行ったAl-Si合金の圧延材のXRD法で測定された回折スペクトル、及び200℃で加熱したAl-Si合金の圧延材のXRD法で測定された回折スペクトルを示す。なお、Al-Si合金に含まれるSiの割合は、Al-Si合金の総質量に対し1.0質量%である。
 各回折スペクトルは、X線回折装置(例えば、PANalytical社製X‘Pert PRO MPD)を用いてX線回折測定を行うことで得られる。本実施形態では、2θ=45°に該当する回折ピークを解析ソフトウェア(例えば、X線解析ソフトウェアPDXL)により解析し、回折ピーク強度を得る。
 図1から、加熱前の圧延材の結晶構造と、150℃で加熱工程を行った圧延材の結晶構造とでは、大きな変化がないことがわかる。一方で、圧延材を200℃で加熱した場合、2θ=45°に相当する{200}面の結晶ピーク(図1中の破線で囲まれたピーク)が大きくなっていることが分かる。つまり、圧延材を200℃で加熱すると、{200}面での結晶成長が進むと考えられる。{200}面での結晶成長により、{111}面でのリチウムイオンの挿入及び脱離反応が阻害されると考えられる。その結果、リチウム二次電池のサイクル維持率が低下すると考えられる。
 図2は、150℃で加熱工程を行ったAl-Si合金の圧延材を負極として用いたリチウム二次電池と、200℃で加熱したAl-Si合金の圧延材を負極として用いたリチウム二次電池の充放電サイクルに対する放電容量維持率の変化を示すグラフである。
 リチウム二次電池は、本実施形態の負極と、φ13mmの円盤状のLiCoO箔(厚さ82μm:日本化学工業株式会社製)である対極と、エチレンカーボネート(以下、ECと記載することがある)とジメチルカーボネート(以下、DMCと記載することがある)とをEC:DMC=50:50(体積比)で混合させてなる混合溶媒に、LiBFを1.0mol/Lとなるように溶解した電解液と、ポリエチレン製多孔質セパレータとを含み、負極と対極との間にポリエチレン製多孔質セパレータを配置して、電池ケース(規格2032)に収納したものである。放電容量維持率は、上述の「放電容量維持率」の測定条件で測定した値である。
 図2に示す通り、150℃で加熱工程を行ったAl-Si合金の圧延材を負極として用いたリチウム二次電池では、30サイクル目までの放電容量維持率が概ね100%であるのに対し、200℃で加熱したAl-Si合金の圧延材を負極として用いたリチウム二次電池では20サイクル以降で放電容量維持率が低下している。
 本実施形態の負極をXRD法で測定して得られる{200}面の結晶ピーク強度比は、加熱処理前の負極をXRD法で測定して得られる{200}面の結晶ピーク強度に対して、80-200%であることが好ましく、90-120%であることがより好ましい。以下、負極をXRD法で測定して得られる{200}面の結晶ピーク強度をI1、加熱処理前の負極をXRD法で測定して得られる{200}面の結晶ピーク強度をI、前記強度比をI/Iと記載することがある。I/Iが80-200%であると、{200}面での結晶成長が抑えられていると考えられ、サイクル維持率を向上することができる。
 本実施形態のリチウム二次電池用負極は、以下に定義する累積頻度分布曲線において全体を100%としたとき、低角度側からの累積頻度が50%以上となる角度が、20°以下である。
 (累積頻度分布曲線)
 累積頻度分布曲線は、負極である圧延材の表面を後方散乱電子回折法(以降、EBSD法と記載することがある)により測定し、圧延材の表面と、圧延材表面に露出している金属結晶の{111}面の法線とが成す角度の絶対値を求め、前記表面に露出する複数の金属結晶のそれぞれの前記絶対値について、横軸を前記絶対値、縦軸を前記金属結晶の測定点として表した曲線である。
 以下の説明では、「圧延材表面に露出している金属結晶の{111}面」を単に「{111}面」と称することがある。
 本明細書において、「圧延材の表面と、圧延材表面に露出している金属結晶の{111}面の法線とが成す角度」は、圧延材表面における{111}面の法線の射影と、{111}面の法線との間の角度であって、90°以下の角度とする。圧延材表面と{111}面の法線とが平行である場合、上記成す角は生じない。この場合、成す角は0°である。
(EBSD法による測定)
 EBSD法は、結晶集合組織の方位分布を解析する手法として汎用されている。通常、EBSD法は、走査型電子顕微鏡に後方散乱電子回折検出器を搭載した形で用いられる。本実施形態において、走査型電子顕微鏡としては、例えば、日本電子株式会社製のJSM-7900Fが使用できる。後方散乱電子回折検出器としては、例えば、オックスフォード・インストゥルメント株式会社製のSymmetryが使用できる。
 EBSD法による測定は、負極である圧延材の表面において行う。圧延材の表面での明瞭な後方散乱電子回折像を取得するため、圧延材の表面に形成された被膜を除去することが好ましい。
 表面の被膜を除去する方法としては、例えば、酸等を用いたケミカルエッチングやアルゴンイオン等を用いたイオンエッチングが使用できる。また、バフ研磨等の機械研磨により表面の被膜を除去してもよい。
 圧延材の表面の被膜を除去することによる結晶集合組織の変質を防ぐため、圧延材の表面の被膜は、平面アルゴンイオンミリング法により除去することが好ましい。平面アルゴンイオンミリング法は、アルゴンイオンビームを圧延材の表面に対して斜めに照射し、アルゴンイオンビームの中心と試料回転の中心を偏心させることによって広範囲を加工する方法である。
 平面アルゴンイオンミリング法により圧延材の表面の被膜を除去する場合には、例えば、日本電子株式会社製のIB-19520CCPが使用できる。
 表面の被膜を除去した後、圧延材の表面に電子線を照射する。その後、後方散乱電子の回折パターンを装置で読み取る。得られた回折パターンをコンピュータに取り込み、結晶方位解析を同時に実施しながら圧延材の表面を走査する。これによって、各測定点での結晶の指数付けが行われ、結晶方位を求めることができる。各測定点において算出された結晶方位は、コンピュータに記録される。
 本実施形態においては、圧延材を構成する結晶の大きさに合わせ、EBSD法の測定により得られる結晶方位マップのピクセルの大きさは、一辺3μm以下で測定することが好ましく、一辺1μm以下で測定することがより好ましい。また、解析領域については、結晶集合組織の場所によるバラツキを考慮し、10mm以上100mm以下の領域にて解析を行うことが好ましい。
 記録された各測定点での結晶方位情報は、各測定点において圧延材の表面に露出しているアルミニウム又はアルミニウム合金の結晶の、圧延材表面に対する結晶方位を示す。結晶方位の角度が小さいほど、{111}面の法線と圧延材表面とは平行に近づく。
 各測定点での結晶方位情報を集約することで、圧延材の表面と、{111}面の法線とが成す角度の絶対値について累積頻度分布曲線を得ることができる。累積頻度分布曲線は、各測定点における圧延材の表面と、{111}面の法線とが成す角度の絶対値について、横軸を前記絶対値、縦軸を前記金属結晶の測定点として表した曲線である。全測定点について累積した場合、頻度は100%である。
 圧延材は、累積頻度分布曲線において、累積頻度が50%以上となる角度が、20°以下であることが好ましく、15°以下がより好ましく、12°以下がさらに好ましい。
 リチウムイオンが圧延材に侵入する際、リチウムイオンは、圧延材の結晶に対し、{111}面と平行に結晶内に侵入する。同様に、リチウムイオンが圧延材から脱離する際にもリチウムイオンは、{111}面と平行な方向に脱離する。
 そのため、圧延材の表面において、リチウムイオンの挿入及び脱離を阻害しないように、{111}面が圧延材の表面と直交することが好ましい。{111}面の法線との関係では、{111}面の法線と圧延材の表面とのなす角が小さいほど好ましいといえる。
 低角度側からの累積頻度が50%以上となる角度が20°以下であると、{111}面が、圧延材の表面に垂直となる形態で配向していると考えられる。
 このような配向であると、リチウムの脱離と挿入に適した結晶面の配向となる。また、リチウムの脱離と挿入の際に生じる体積変化に順応しやすい結晶集合組織になると推察される。このため、累積頻度分布曲線における累積頻度が上述の関係を満たす圧延材であれば、リチウム二次電池の放電容量維持率を向上させることができる。
 本実施形態において、負極の厚みは、5μm以上が好ましく、6μm以上がより好ましく、7μm以上がさらに好ましい。負極の厚みは、200μm以下が好ましく、190μm以下がより好ましく、180μm以下がさらに好ましい。上記上限値及び下限値は、任意に組み合わせることができる。負極の厚みは、5μm以上200μm以下が好ましい。負極の厚みは、任意の点においてシックネスゲージ又はノギスを用いて測定すればよい。
 本実施形態におけるリチウム二次電池用負極は、以下の構成のリチウム二次電池の負極として用いたときの充放電効率が55%以上であることが好ましく、58%以上であることがよりに好ましい。
 リチウム二次電池は、本実施形態の負極と、φ13mmの円盤状のLiCoO箔(厚さ82μm:日本化学工業株式会社製)である対極と、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とをEC:DMC=50:50(体積比)で混合させてなる混合溶媒に、LiBFを1.0モル/リットルとなるように溶解した電解液と、ポリエチレン製多孔質セパレータとを含み、負極と対極との間にポリエチレン製多孔質セパレータを配置して、電池ケース(規格2032)に収納したものである。
 充放電効率は、上述の「充放電効率」の測定条件で測定した値である。
<リチウム二次電池用負極前駆体>
 本実施形態のリチウム二次電池用負極前駆体は、アルミニウム又はアルミニウム合金の圧延材であるリチウム二次電池用負極前駆体であって、リチウム二次電池用負極前駆体をXRD法で測定して得られる{200}面の結晶ピーク強度に対する、150℃で加熱処理した後のリチウム二次電池用負極前駆体をXRDで測定して得られる{200}面の結晶ピーク強度の割合は、80-200%である。
 本実施形態のリチウム二次電池用負極前駆体は、100℃以上200℃未満で加熱する前の圧延材である。リチウム二次電池用負極前駆体を100℃以上200℃未満で加熱すると、本実施形態のリチウム二次電池用負極が得られる。リチウム二次電池用負極前駆体からリチウム二次電池用負極を製造する方法は、後に詳述する。
 リチウム二次電池用負極前駆体は、リチウム二次電池用負極と同様に、アルミニウム又はアルミニウム合金からなる圧延材である。圧延材アルミニウム合金からなる場合のアルミニウム合金は、リチウム二次電池用負極で記載したアルミニウム合金と同じものである。
 リチウム二次電池用負極前駆体は、150℃で加熱処理した後のリチウム二次電池用負極前駆体をXRD法で測定して得られる{200}面の結晶ピーク強度の割合が、加熱処理前のリチウム二次電池用負極前駆体をXRD法で測定して得られる{200}面の結晶ピーク強度に対して、80-200%であり、90-120%であることが好ましい。このようなリチウム二次電池用負極前駆体を用い、100-300℃で加熱して負極を作製すると、不可逆容量が小さく、サイクル維持率の高いリチウム二次電池を実現できる。
 <リチウム二次電池用負極の製造方法>
 本実施形態のリチウム二次電池用負極の製造方法の一例について説明する。以下に、Si-Al合金の圧延材を用いる場合の製造方法について説明するが、本発明はこれに限定されない。本実施形態の負極の製造方法は、アルミニウム合金の鋳造工程と、圧延工程と、加熱工程を備えることが好ましい。
(鋳造工程)
 鋳造を行う場合には、例えば高純度アルミニウムにSiを所定量添加し、約680℃以上800℃以下で溶融し、アルミニウムとSiの合金溶湯を得る。高純度アルミニウムについては、後述する精製方法を用いて精製した高純度アルミニウムを用いることができる。Siとしては、純度99.999質量%以上の高純度シリコン等が挙げられる。
 合金溶湯は、ガスや非金属介在物を除去して清浄にする処理(例えば、アルミニウム溶湯の真空処理)を行うことが好ましい。真空処理は、例えば700℃以上800℃以下で、1時間以上10時間以下、真空度0.1Pa以上100Pa以下の条件で行われる。
 合金溶湯を清浄にする処理としては、フラックスによる処理又は不活性ガスや塩素ガスを吹き込む処理も利用できる。
 清浄にされた合金溶湯は、通常、鋳型にて鋳造され、鋳塊が得られる。鋳型としては、50℃以上200℃以下に加熱した鉄や黒鉛製の鋳型を用いる。本実施形態の負極活物質は、鋳型に680℃以上800℃以下の合金溶湯を流し込む方法で鋳造できる。また、一般的に利用されている半連続鋳造により鋳塊を得ることもできる。
(圧延工程)
 得られた合金の鋳塊は、圧延加工される。鋳塊の圧延加工においては、例えば、熱間圧延と冷間圧延とを行い、鋳塊を板材に加工する。熱間圧延は、例えば、鋳塊を温度350℃以上550℃以下、1回の圧延当たりの加工率を2%以上30%以下の条件で、アルミニウム鋳塊を目的の厚さとなるまで繰り返し行われる。
 熱間圧延後には、冷間圧延の前に中間焼鈍処理を行ってもよい。中間焼鈍処理は、例えば、熱間圧延した板材を、350℃以上550℃以下に加熱、昇温後直ちに放冷してもよく、1時間以上5時間以下程度保持後に放冷してもよい。放冷工程を急速に放冷することにより実施すると、Si相は小さくなる傾向にある。一方、緩やかな冷却速度で放冷すると、Si粒子が成長しやすい。放冷工程は、所望の非アルミニウム金属相の大きさに応じて適宜調整すればよい。放冷処理により材料が軟質化し、冷間圧延に好ましい状態が得られる。
 冷間圧延は、例えば、アルミニウムの再結晶温度未満の温度で、1回の圧延当たりの加工率を1%以上20%以下の条件で、アルミニウム鋳塊が目的の厚さの圧延材となるまで繰り返し行われる。冷間圧延の温度は、室温から80℃以下とすればよい。
 以上の工程により、加熱処理前の圧延材、つまりリチウム二次電池用負極前駆体が得られる。
(加熱工程)
 圧延材は、圧延後に加熱される。圧延後の加熱は、大気中、窒素雰囲気あるいは真空雰囲気などで行ってもよく、真空雰囲気であることが好ましい。加熱温度は、100℃以上200℃未満であり、100-175℃であることが好ましく、120-170℃であることがより好ましい。加熱温度が100℃以上であると、圧延により生じた結晶の歪みが緩和されると考えられ、リチウム二次電池の不可逆容量が小さくなる。加熱温度が200℃未満であると、{200}面の結晶成長が抑えられ、リチウム二次電池のサイクル維持率の低下を抑制することができる。なお、加熱温度とは、加熱装置の装置内雰囲気の温度を意味する。
 加熱時間は、30-360分間であることが好ましく、60-360分間であることがより好ましく、60-180分間であることがさらに好ましい。加熱時間が60-180分間であると、圧延により生じた結晶の歪みが十分に緩和される。なお、加熱時間は、加熱装置の内部が所望の加熱温度に保持されている時間を意味する。
 加熱装置としては、バキュームオーブン等が挙げられるが、例えばEYELA社製、品番:VOS-301SDを用いて行うことができる。
 加熱温度は、アルミニウム合金に含まれる非アルミニウム金属相の種類及び含有量によって適切に設定することが好ましい。例えば、非アルミニウム金属相がSiである場合、Siの含有割合が低いときは、加熱温度を低くすることができる。
 以上のように加熱し、負極が得られる。加熱後の負極は、空冷によって冷却されてもよい。
・アルミニウムの高純度化方法
 本実施形態において高純度アルミニウムを用いる場合、アルミニウムを高純度化する精製方法として、例えば偏析法及び三層電解法を例示できる。
 偏析法は、アルミニウム溶湯の凝固の際の偏析現象を利用した純化法であり、複数の手法が実用化されている。偏析法の一つの形態としては、容器の中に溶湯アルミニウムを注ぎ、容器を回転させながら上部の溶湯アルミニウムを加熱、撹拌しつつ底部より精製アルミニウムを凝固させる方法がある。偏析法により、純度99.99質量%以上の高純度アルミニウムを得ることができる。
 三層電解法は、アルミニウムを高純度化する電解法である。三層電解法の一つの形態としては、まず、Al-Cu合金層に、比較的純度の低いアルミニウム等(例えば純度99.9質量%以下のJIS-H2102の時1種程度のグレード)を投入する。その後、溶融状態で陽極とし、その上に例えばフッ化アルミニウム及びフッ化バリウム等を含む電解浴を配置し、陰極に高純度のアルミニウムを析出させる方法である。三層電解法では純度99.999質量%以上の高純度アルミニウムを得ることができる。
 アルミニウムを高純度化する方法は、偏析法及び三層電解法に限定されるものではなく、帯溶融精製法及び超高真空溶解性製法等の既に知られている他の方法でもよい。
<リチウム二次電池>
 次いで、本本実施形態の負極を有する二次電池について説明する。一例として、正極にリチウム正極活物質を用いたリチウム二次電池について説明する。
 一つの態様として、本実施形態のリチウム二次電池は、正極、負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図3A及び図3Bは、本実施形態のリチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図3Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
 次いで、図3Bに示すように、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形又は角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型又は角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極及びセパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池及びペーパー型(又はシート型)電池を例示することができる。
 以下、各構成について順に説明する。
(正極)
 本実施形態の正極は、まず正極活物質、導電材及びバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
(正極活物質)
 正極活物質には、リチウム含有化合物又は他の金属化合物よりなるものを用いることができる。リチウム含有化合物としては、例えば、層状構造を有するリチウムコバルト複合酸化物、層状構造を有するリチウムニッケル複合酸化物及びスピネル構造を有するリチウムマンガン複合酸化物及びオリビン型構造を有するリン酸鉄リチウムが挙げられる。また他の金属化合物としては、例えば、酸化チタン、酸化バナジウム及び二酸化マンガンなどの酸化物、及び硫化チタン及び硫化モリブデンなどの硫化物が挙げられる。
(導電材)
 本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)及び繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きい。このため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率及び出力特性を向上させることができる。一方、カーボンブラックを多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、及び正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
 正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、正極合剤中の導電材の割合を下げることも可能である。
(バインダー)
 本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、及び四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン及びポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂及びポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、且つポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力及び正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
 本実施形態の正極が有する正極集電体としては、Al、Ni及びステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、集電体としては、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。正極集電体として、負極のAlと同じ成分の合金であってもよい。
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N-ジメチルアミノプロピルアミン及びジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;及びジメチルアセトアミド及びN-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 本実施形態のリチウム二次電池が有する負極として、本実施形態の負極を用いる。
(負極集電体)
 負極が有する集電体としては、負極が金属箔である場合、充放電に関与しない余剰のアルミニウムが集電体の役割を果たす場合もあり、その場合には、集電体を別途必要としないこともある。
 集電体を使う場合には、負極集電体としては、Cu、Ni及びステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、集電体の材料としては、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
 このような負極集電体に、負極活物質が、粉末からなる場合、負極合剤を担持させる方法としては、正極の場合と同様に、負極活物質と、バインダーと、からなる負極合剤を加圧成型による方法、さらに溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
 また、負極合材にさらに導電材を加えても良い。導電材としては、正極材の導電材として挙げたものが使用可能である。
(セパレータ)
 本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン及びポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂又は含窒素芳香族重合体などの材質からなる、多孔質膜、不織布又は織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
 本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。
 また、セパレータの空孔率は、セパレータの総体積に対し好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。
(電解液)
 本実施形態のリチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩及びLiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF及びLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン及び1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン及び2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル及びγ-ブチロラクトンなどのエステル類;アセトニトリル及びブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド及びN,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド及び1,3-プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難い。
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル及び2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。
 電解液は、リン酸トリス(トリメチルシリル)及びホウ酸トリス(トリメチルシリル)等の添加物を含んでいてもよい。
 上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS-SiS、LiS-GeS、LiS-P、LiS-B、LiS-SiS-LiPO、LiS-SiS-LiSO及びLiS-GeS-Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。
 また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。
 本実施形態のリチウム二次電池は、上述の負極を有しているためサイクル維持率が高い。
 もう一つの側面として、本発明は以下の態様を包含する。
[1]リチウムイオンを吸蔵及び放出可能なアルミニウム又はアルミニウム合金の圧延材であるリチウム二次電池用負極であって、
 前記リチウム二次電池用負極の示差走査熱量測定において、30~500℃、昇温速度10℃/分での測定を2サイクル行い、1サイクル目の測定における発熱量から2サイクル目の測定における発熱量を差し引いた値がΔDSCであり、100℃~300℃の範囲の前記ΔDSCの積分値が2.0-7.5mW/g以下である、リチウム二次電池用負極。
[2]以下に定義する累積頻度分布曲線において全体を100%としたとき、低角度側からの累積頻度が50%以下となる角度が、10°以下であり、
 前記累積頻度分布曲線は、前記圧延材の表面を後方散乱電子回折法により測定し、前記圧延材の表面と、前記圧延材の表面に露出している金属結晶の{111}面の法線とが成す角度の絶対値を求め、前記圧延材の表面に露出する複数の金属結晶のそれぞれの前記絶対値について、横軸を前記絶対値、縦軸を前記金属結晶の測定点として表した曲線である、[1]に記載のリチウム二次電池用負極。
[3]前記圧延材が前記アルミニウム合金であって、
 前記アルミニウム合金がSi、Ge、Sn、Ag、Sb、Bi、In及びMgからなる群より選択される1種以上の非アルミニウム金属化合物を含み、
 前記非アルミニウム金属化合物の含有率は、前記アルミニウム合金の総質量に対して0.1-3質量%である、[1]又は[2]に記載のリチウム二次電池用負極。
[4]アルミニウム又はアルミニウム合金の圧延材であるリチウム二次電池用負極前駆体であって、
 前記リチウム二次電池用負極前駆体をX線回折法で測定して得られる{200}面の結晶ピーク強度に対する、150℃で加熱処理した後の前記リチウム二次電池用負極前駆体をX線回折法で測定して得られる2θ=45°の位置における{200}面の結晶ピーク強度の割合は、80-150%である、リチウム二次電池用負極前駆体。
[5]前記圧延材が前記アルミニウム合金であって、
 前記アルミニウム合金がSi、Ge、Sn、Ag、Sb、Bi、In及びMgからなる群より選択される1種以上の非アルミニウム金属化合物を含み、
 前記非アルミニウム金属化合物の含有率は、前記アルミニウム合金の総質量に対して0.1-3質量%である、[4]に記載のリチウム二次電池用負極前駆体。
[6][4]又は[5]に記載のリチウム二次電池用負極前駆体を100℃以上160℃未満で加熱して得られる、リチウム二次電池用負極。
[7][1]~[3]及び[6]の何れか1つに記載のリチウム二次電池用負極を有するリチウム二次電池。
[8]アルミニウム又はアルミニウム合金の圧延材を100℃以上160℃未満で加熱することを含む、リチウム二次電池用負極の製造方法。
 以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によって限定されるものではない。
[ΔDSC]
 実施例1~2及び比較例1~2で得られた負極について、上述の(ΔDSCの測定)に記載の方法でΔDSCの測定を行った。示差走査熱量計としてエスアイアイ・ナノテクノロジー社製、品番:DSC7020を使用した。
[EBSD分析]
 実施例1~4及び比較例1~2で得られた負極について、上述の(EBSD法による測定)に記載の方法でEBSD分析を行った。走査型電子顕微鏡として、日本電子株式会社製のJSM-7900Fを使用した。後方散乱電子回折検出器として、オックスフォード・インストゥルメント株式会社製のSymmetryを使用した。上述の測定方法により、負極の圧延方向とアルミニウム又はアルミニウム合金の結晶の{111}面の法線とが成す角度の絶対値の累積頻度分布曲線を得た。累積頻度分布曲線において、全体を100%としたとき、低角度側からの累積頻度が50%となる角度を得た。
 なお、EBSD法による測定の前に、圧延材の表面の被膜を平面アルゴンイオンミリング法を用いてエッチングして除去した。
[XRD法による分析]
 実施例1~2及び比較例1~2で得られた負極前駆体及び負極のそれぞれの表面を、X線回折装置(PANalytical社製、品番:X‘Pert PRO MPD)によりX線回折測定を行った。2θ=45°に該当する回折ピークを解析ソフトウェア(X線解析ソフトウェアPDXL)により解析することで、回折ピーク強度を得た。
[対極の作製]
 LiCoO箔(厚さ82μm:日本化学工業株式会社製)を、φ13mmの円盤状に切り出し、対極を製造した。
[電解液の作製]
 エチレンカーボネート(EC)とジメチルカーボネート(DMC)とをEC:DMC=50:50(体積比)で混合させてなる混合溶媒に、LiBFを1.0モル/リットルとなるように溶解した電解液を作製した。
[リチウム二次電池の作製]
 実施例1~4及び比較例1~2で得られた負極と対極との間にポリエチレン製多孔質セパレータを配置して、電池ケース(規格2032)に収納した。電池ケースに上記の電解液を注液し、電池ケースを密閉することにより、直径20mm、厚み3.2mmのコイン型(フルセル)のリチウム二次電池を作製した。
[充放電評価:充放電効率]
 コイン型のリチウム二次電池を室温で10時間静置することでセパレータに充分電解液を含浸させた。次に室温において0.8mAで4.2Vまで定電流充電してから4.2Vで定電圧充電する定電流定電圧充電を5時間行った後、0.8mAで3.0Vまで放電する定電流放電(つまり初期充放電)を行った。充電後の容量に対する放電後の容量の割合から、充放電効率を算出した。
[充放電評価:放電容量維持率]
 上述の初期充放電後、初期充放電の条件と同様に0.8mAで充電、0.8mAで放電を20サイクル繰り返した。放電容量維持率(%)は、20サイクル目までの最大放電容量に対する20サイクル目の放電容量の割合とした。
 (実施例1)
[負極前駆体の作製]
 アルミニウム合金は、下記の方法により製造した。高純度アルミニウム(純度:99.99質量%以上)、高純度化学製シリコン(純度:99.999質量%以上)を、760℃に加熱・保持することで、Al-Si合金溶湯を得た。このとき、Al-Si合金溶湯の総質量に対するSiの割合は、1.0質量%であった。
 次に、Al-Si合金溶湯を740℃で、2時間、真空度50Paの条件で保持して清浄化した。合金溶湯を150℃にて乾燥した鋳鉄鋳型(22mm×150mm×200mm)にて鋳造し、鋳塊を得た。
 鋳塊の両面を2mm面削加工した後、厚さ18mmから加工率99.8%で冷間圧延を行って厚さ35μmの圧延材である負極前駆体を製造した。
[負極の作製]
 負極前駆体を圧延方向の寸法が50mm、圧延方向と垂直方向の寸法が100mmである長方形となるよう切り出した。切り出した負極前駆体を鉄板に挟んだ状態でオーブン(EYELA社製、品番:VOS-301SD)内で100℃で120分間真空加熱した。その後加熱を止め、8時間真空状態で自然放冷し、オーブンから加熱した負極前駆体を取出し、φ15mmの円盤状に切り出して負極を得た。
 (実施例2)
 [負極の作製]において、150℃で120分間加熱した以外は、実施例1と同じ手順で負極を作製し、実施例2のコイン型のリチウム二次電池を得た。
 (比較例1)
 [負極の作製]において、200℃で120分間加熱した以外は、実施例1と同じ手順で負極を作製し、比較例1のコイン型のリチウム二次電池を得た。
 (比較例2)
 負極前駆体をそのまま負極として用いた以外は、実施例1と同じ手順で比較例1のコイン型のリチウム二次電池を作製した。
 実施例1~2及び比較例1~2の負極の200℃~300℃の範囲のΔDSCの積分値(ΔDSC)、EBSD分析(累積頻度が50%以上となる角度)、負極のXRD分析結果(I/I)、及びリチウム二次電池の充放電効率、20サイクル目までの最大放電容量(単に最大放電容量と示す)及び放電容量維持率を表1に示す。また、実施例1~2及び比較例1~2の負極のXRD分析結果を図4に示す。実施例1~2及び比較例1~2の負極の30-350℃のΔDSCを図5に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~2の負極を用いたリチウム二次電池は、充放電効率が60%以上であり、放電容量維持率が96%以上だった。
 本発明によれば、不可逆容量が小さく、サイクル維持率が高いリチウム二次電池を実現できるリチウム二次電池用負極、リチウム二次電池用負極前駆体、これらを用いたリチウム二次電池及びリチウム二次電池用負極の製造方法を提供できる。
 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード

Claims (8)

  1.  リチウムイオンを吸蔵及び放出可能なアルミニウム又はアルミニウム合金の圧延材であるリチウム二次電池用負極であって、
     前記リチウム二次電池用負極の示差走査熱量測定において、30~500℃、昇温速度10℃/分での測定を2サイクル行い、1サイクル目の測定における発熱量から2サイクル目の測定における発熱量を差し引いた値がΔDSCであり、100℃~300℃の範囲の前記ΔDSCの積分値が0.5-8mW/g以下である、リチウム二次電池用負極。
  2.  以下に定義する累積頻度分布曲線において全体を100%としたとき、低角度側からの累積頻度が50%以下となる角度が、20°以下であり、
     前記累積頻度分布曲線は、前記圧延材の表面を後方散乱電子回折法により測定し、前記圧延材の表面と、前記圧延材の表面に露出している金属結晶の{111}面の法線とが成す角度の絶対値を求め、前記圧延材の表面に露出する複数の金属結晶のそれぞれの前記絶対値について、横軸を前記絶対値、縦軸を前記金属結晶の測定点として表した曲線である、請求項1に記載のリチウム二次電池用負極。
  3.  前記圧延材が前記アルミニウム合金であって、
     前記アルミニウム合金がSi、Ge、Sn、Ag、Sb、Bi、In及びMgからなる群より選択される1種以上の非アルミニウム金属化合物を含み、
     前記非アルミニウム金属化合物の含有率は、前記アルミニウム合金の総質量に対して0.01-8質量%である、請求項1又は2に記載のリチウム二次電池用負極。
  4.  アルミニウム又はアルミニウム合金の圧延材であるリチウム二次電池用負極前駆体であって、
     前記リチウム二次電池用負極前駆体をX線回折法で測定して得られる{200}面の結晶ピーク強度に対する、150℃で加熱処理した後の前記リチウム二次電池用負極前駆体をX線回折法で測定して得られる{200}面の結晶ピーク強度の割合は、80-200%である、リチウム二次電池用負極前駆体。
  5.  前記圧延材が前記アルミニウム合金であって、
     前記アルミニウム合金がSi、Ge、Sn、Ag、Sb、Bi、In及びMgからなる群より選択される1種以上の非アルミニウム金属化合物を含み、
     前記非アルミニウム金属化合物の含有率は、前記アルミニウム合金の総質量に対して0.01-8質量%である、請求項4に記載のリチウム二次電池用負極前駆体。
  6.  請求項4又は5に記載のリチウム二次電池用負極前駆体を100℃以上200℃未満で加熱して得られる、リチウム二次電池用負極。
  7.   請求項1又は2に記載のリチウム二次電池用負極を有するリチウム二次電池。
  8.  アルミニウム又はアルミニウム合金の圧延材を100℃以上200℃未満で加熱することを含む、リチウム二次電池用負極の製造方法。
PCT/JP2023/035887 2022-10-20 2023-10-02 リチウム二次電池用負極、リチウム二次電池用負極前駆体、リチウム二次電池及びリチウム二次電池用負極の製造方法 WO2024084937A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-168531 2022-10-20
JP2022168531A JP2024060936A (ja) 2022-10-20 2022-10-20 リチウム二次電池用負極、リチウム二次電池用負極前駆体、リチウム二次電池及びリチウム二次電池用負極の製造方法

Publications (1)

Publication Number Publication Date
WO2024084937A1 true WO2024084937A1 (ja) 2024-04-25

Family

ID=90737368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035887 WO2024084937A1 (ja) 2022-10-20 2023-10-02 リチウム二次電池用負極、リチウム二次電池用負極前駆体、リチウム二次電池及びリチウム二次電池用負極の製造方法

Country Status (2)

Country Link
JP (1) JP2024060936A (ja)
WO (1) WO2024084937A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105330A1 (ja) * 2018-11-22 2020-05-28 住友化学株式会社 非水電解液二次電池用負極活物質、負極、電池及び積層体
WO2021125225A1 (ja) * 2019-12-19 2021-06-24 住友化学株式会社 集電体一体型二次電池用負極及びリチウム二次電池
WO2022118912A1 (ja) * 2020-12-02 2022-06-09 住友化学株式会社 金属負極、リチウム二次電池、バッテリーシステム及び金属負極の製造方法
CN115632129A (zh) * 2022-10-13 2023-01-20 三峡大学 一种高容量锂离子电池Al负极及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105330A1 (ja) * 2018-11-22 2020-05-28 住友化学株式会社 非水電解液二次電池用負極活物質、負極、電池及び積層体
WO2021125225A1 (ja) * 2019-12-19 2021-06-24 住友化学株式会社 集電体一体型二次電池用負極及びリチウム二次電池
WO2022118912A1 (ja) * 2020-12-02 2022-06-09 住友化学株式会社 金属負極、リチウム二次電池、バッテリーシステム及び金属負極の製造方法
CN115632129A (zh) * 2022-10-13 2023-01-20 三峡大学 一种高容量锂离子电池Al负极及其制备方法

Also Published As

Publication number Publication date
JP2024060936A (ja) 2024-05-07

Similar Documents

Publication Publication Date Title
KR101009625B1 (ko) 리튬 이차 전지용 음극 재료 및 이를 포함하는 리튬 이차전지
CN111630694B (zh) 非水电解液二次电池用负极活性物质、负极以及电池
WO2020075616A1 (ja) 非水電解液二次電池用負極活物質、負極、電池及びアルミニウムクラッド金属積層体
JP6731130B1 (ja) 非水電解液二次電池用負極活物質、負極、電池及び積層体
US20230024005A1 (en) Anode for current collector-integrated secondary battery and lithium secondary battery
US7556887B2 (en) Nonaqueous electrolyte secondary battery with negative electrode having a La3Co2Sn7 type crystal structure
CN115336065A (zh) 锂二次电池以及锂二次电池用电解液
WO2019189801A1 (ja) 正極活物質、それを用いた正極及び二次電池、並びに正極活物質の製造方法
WO2022209507A1 (ja) リチウム二次電池用負極及びリチウム二次電池
WO2024084937A1 (ja) リチウム二次電池用負極、リチウム二次電池用負極前駆体、リチウム二次電池及びリチウム二次電池用負極の製造方法
WO2021206121A1 (ja) リチウム二次電池の製造方法及びリチウム二次電池の充電方法
EP4205884A1 (en) Negative-electrode active material for secondary batteries, and secondary battery
KR101224618B1 (ko) 리튬 이차전지용 양극 활물질, 리튬 이차전지용 양극, 리튬 이차전지 및 이들의 제조방법
WO2022209506A1 (ja) リチウム二次電池用負極活物質、金属負極及びリチウム二次電池
JP7535214B2 (ja) バッテリーシステム
WO2024214619A1 (ja) 負極材、非水電解液電池用負極及び非水電解液二次電池
US20240030421A1 (en) Negative electrode active material particles, lithium ion battery, and method of producing negative electrode active material particles
JP3984184B2 (ja) 非水電解質二次電池
WO2022210393A1 (ja) リチウム二次電池及びリチウム二次電池の製造方法
US20240030422A1 (en) ELECTRODE ACTIVE MATERIAL Si PARTICLES, ELECTRODE COMPOUND MATERIAL, LITHIUM-ION BATTERY AND METHOD FOR PRODUCING ELECTRODE ACTIVE MATERIAL Si PARTICLES
EP4205885A1 (en) Negative electrode active material for secondary batteries, and secondary battery
JP7289713B2 (ja) 非水電解質二次電池
WO2023106227A1 (ja) リチウム二次電池用負極及びリチウム二次電池
CN115398693A (zh) 锂二次电池
JP2024008702A (ja) 電極体、リチウムイオン電池、及びリチウムイオン電池用の活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879584

Country of ref document: EP

Kind code of ref document: A1