WO2020075616A1 - 非水電解液二次電池用負極活物質、負極、電池及びアルミニウムクラッド金属積層体 - Google Patents
非水電解液二次電池用負極活物質、負極、電池及びアルミニウムクラッド金属積層体 Download PDFInfo
- Publication number
- WO2020075616A1 WO2020075616A1 PCT/JP2019/039065 JP2019039065W WO2020075616A1 WO 2020075616 A1 WO2020075616 A1 WO 2020075616A1 JP 2019039065 W JP2019039065 W JP 2019039065W WO 2020075616 A1 WO2020075616 A1 WO 2020075616A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum
- negative electrode
- secondary battery
- active material
- electrolyte secondary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/46—Alloys based on magnesium or aluminium
- H01M4/463—Aluminium based
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/017—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/016—Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/05—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/46—Alloys based on magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a negative electrode active material for a non-aqueous electrolyte secondary battery, a negative electrode, a battery, and an aluminum clad metal laminate.
- the present application claims priority based on Japanese Patent Application No. 2018-192026 filed in Japan on October 10, 2018, the contents of which are incorporated herein by reference.
- Rechargeable secondary batteries have already been put to practical use not only in small power sources such as mobile phone and notebook computer applications, but also in medium or large power sources such as automobile applications and power storage applications.
- Patent Document 1 a negative electrode for a lithium organic secondary battery, in which a lithium plate and a hardened aluminum plate or a hardened aluminum alloy plate are superposed and electrochemically alloyed in the presence of an electrolytic solution, is disclosed. Is listed.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a negative electrode active material for a non-aqueous electrolyte secondary battery having a high discharge capacity retention rate, a negative electrode using the same, and a battery using the same.
- the present invention includes the following [1] to [10].
- a negative electrode active material for a non-aqueous electrolyte secondary battery which is made of an aluminum-containing metal and has an average corrosion rate of less than 0.20 mm / year measured by an immersion test under the following immersion conditions.
- Immersion liquid 3.5% NaCl aqueous solution adjusted to pH 3 using acetic acid as a pH adjuster
- Immersion temperature 30 ° C
- Immersion time 72 hours
- a negative electrode active material for a non-aqueous electrolyte secondary battery made of an aluminum-containing metal having an average corrosion rate of 0.15 mm / year or less measured by an immersion test under the following immersion conditions.
- a negative electrode comprising the negative electrode active material for a non-aqueous electrolyte secondary battery according to any one of [1] to [7].
- An aluminum clad metal laminate in which a thin layer and a substrate are laminated, wherein the thin layer is the negative electrode active material for a non-aqueous electrolyte secondary battery according to any one of [1] to [4].
- the present invention it is possible to provide a negative electrode active material for a non-aqueous electrolyte secondary battery having a high discharge capacity retention rate, a negative electrode using the same, and a battery using the same.
- the negative electrode active material for a non-aqueous electrolyte secondary battery of this embodiment is made of an aluminum-containing metal. “Negative electrode active material for non-aqueous electrolyte secondary battery” may be referred to as “negative electrode active material”.
- the negative electrode active material of this embodiment is composed of a material having high resistance to corrosion.
- a material with high corrosion resistance is a material that is not easily affected by the effects of oxidation and reduction.
- the negative electrode active material composed of such a material easily maintains the initial properties even when charging and discharging are repeated. Therefore, the discharge capacity retention rate can be improved.
- the “discharge capacity retention rate” means the ratio of the discharge capacity (numerator) to the charge capacity (denominator) at each charge / discharge.
- the present embodiment is a negative electrode active material for a non-aqueous electrolyte secondary battery, which is made of an aluminum-containing metal and has an average corrosion rate of less than 0.20 mm / year measured by an immersion test under the following immersion conditions. Further, another aspect of the present embodiment is made of an aluminum-containing metal having an average corrosion rate of 0.15 mm / year or less measured by an immersion test under the following immersion conditions.
- the aluminum-containing metal is used as a test metal piece having a size of 40 mm in length, 40 mm in width, and 0.5 mm in thickness.
- the test metal piece is immersed in a 3.5% NaCl aqueous solution adjusted to pH 3 using acetic acid as a pH adjuster, and after 72 hours, the test metal piece is taken out.
- the immersion temperature is 30 ° C.
- the degree of corrosion is represented by the number of mg of corrosion loss per day per 1 mm 2 of surface area of the test metal piece. That is, the degree of corrosion can be calculated by the following formula.
- Corrosion rate (mm / year) [corrosion degree ⁇ 365] / density of test piece (g / cm 3 ).
- test metal piece may be washed with ethanol or the like before being immersed in the 3.5% NaCl aqueous solution adjusted to pH 3.
- the negative electrode active material of this embodiment is made of an aluminum-containing metal represented by the following composition formula (1).
- Al x M 1 y M 2 z (1) (In the formula (1), M 1 is at least one selected from the group consisting of Mg, Ni, Mn, Zn, Cd, and Pb. M 2 is an unavoidable impurity. 0 mass% ⁇ y ⁇ 8 mass %, [X / (x + z)] ⁇ 99.9 mass%.)
- M 1 is more preferably one or more selected from the group consisting of Mg, Ni, Mn, and Zn.
- 0.1 mass% ⁇ y ⁇ 8.0 mass% is preferable, 0.5 mass% ⁇ y ⁇ 7.0 mass% is preferable, and 0.7 mass% ⁇ y ⁇ 6.0 mass%. % Is particularly preferred.
- the range of y is at least the above lower limit value, the average corrosion rate can be controlled within the range of the present invention. Further, when the range of y is not more than the above upper limit value, rolling can be performed without causing cracks during the rolling process during casting.
- M 2 is an unavoidable impurity such as a production residue that is inevitably mixed in the refining process of high-purity aluminum, and specifically, is a metal component other than aluminum and M 1 .
- the unavoidable impurities include iron and copper.
- z is 0.1% by mass or less, preferably 0.05% by mass or less, and more preferably 0.01% by mass or less.
- [x / (x + z)] is preferably 99.95% or more, more preferably 99.99% or more, particularly preferably 99.995% or more.
- the negative electrode active material of the present embodiment contains high-purity aluminum whose [x / (x + z)] is at least the above lower limit value. A refining method for highly purifying aluminum will be described later.
- the negative electrode active material according to an aspect of the present embodiment is made of an aluminum-containing metal represented by the following composition formula (10).
- Al x M 10 y M 2 z (10) (In the composition formula (10), M 10 is at least one selected from the group consisting of Mg, Ni, Mn, Zn, Cd, Pb, Si, Sr, and Ga.
- M 2 is an unavoidable impurity.
- M 10 is more preferably one or more selected from the group consisting of Mg, Si, Sr, and Ga.
- M 2, x, y, description of z is, M 2, x in said composition formula (1) is the same as described y, about the z.
- the aluminum-containing metal represented by the composition formula (1) or the composition formula (10) is preferably the following high-purity aluminum or high-purity aluminum alloy.
- High-purity aluminum-magnesium alloy 2 An alloy of 99.9% pure aluminum and magnesium. The content of magnesium is 0.1% by mass or more and 1.0% by mass or less based on the total amount of the aluminum-containing metal.
- the average corrosion rate is 0.1 mm / year to 0.14 mm / year.
- C High-purity aluminum-nickel alloy An alloy of aluminum with a purity of 99.999% and nickel. The content of nickel is 0.1% by mass or more and 1.0% by mass or less based on the total amount of the aluminum-containing metal. The average corrosion rate is 0.1 mm / year to 0.14 mm / year.
- D High-purity aluminum-manganese-magnesium alloy An alloy of 99.99% pure aluminum, manganese, and magnesium. The total content of manganese and magnesium is 1.0% by mass or more and 2.0% by mass or less based on the total amount of the aluminum-containing metal. The average corrosion rate is 0.03 mm / year to 0.05 mm / year.
- the average corrosion rate is 0.05 mm / year to less than 0.20 mm / year.
- H High-purity aluminum-strontium alloy An alloy of aluminum having a purity of 99.999% and strontium. The content of strontium is 100 ppm or more and 1000 ppm or less in the total amount of aluminum-containing metal. The average corrosion rate is 0.03 mm / year to 0.05 mm / year.
- II High-purity aluminum-gallium alloy An alloy of aluminum with a purity of 99.999% and gallium. The content of gallium is 500 ppm or more and 1200 ppm or less based on the total amount of aluminum-containing metal. The average corrosion rate is 0.03 mm / year to 0.06 mm / year.
- the segregation method is a purification method that utilizes the segregation phenomenon during solidification of molten aluminum, and multiple methods have been put to practical use.
- As one form of the segregation method there is a method of pouring molten aluminum into a container, heating the molten aluminum in the upper part while rotating the container, and solidifying purified aluminum from the bottom while stirring.
- high-purity aluminum having a purity of 99.99 mass% or more can be obtained.
- the three-layer electrolysis method is an electrolysis method for highly purifying aluminum.
- aluminum or the like having a relatively low purity for example, grade 99.9% by mass of JIS-H2102 grade 1 grade
- it is a method of forming an anode in a molten state, disposing an electrolytic bath containing, for example, aluminum fluoride and barium fluoride thereon, and depositing high-purity aluminum on the cathode.
- High-purity aluminum having a purity of 99.999 mass% or more can be obtained by the three-layer electrolysis method.
- the method for highly purifying aluminum is not limited to the segregation method and the three-layer electrolysis method, and other known methods such as the zone melting refining method and the ultra-high vacuum dissolution method may be used.
- the total content of iron and copper contained in aluminum is preferably 100 ppm or less, more preferably 80 ppm or less, and further preferably 50 ppm or less.
- the aluminum highly purified by the above method can be cast, cut, or the like to obtain an aluminum ingot having a shape suitable for rolling.
- high-purity aluminum is melted at a temperature of about 680 ° C. or higher and 800 ° C. or lower, and a process of cleaning by removing gas and non-metal inclusions (for example, vacuum treatment of molten aluminum) is performed.
- the vacuum treatment is performed, for example, at a temperature of 700 ° C. or higher and 800 ° C. or lower for 1 hour or more and 10 hours or less and a degree of vacuum of 0.1 Pa or more and 100 Pa or less.
- a process for cleaning the molten aluminum a process of blowing a flux, an inert gas or chlorine gas can also be used.
- the alloy melt cleaned by vacuum treatment or the like is usually cast in a mold to obtain an ingot.
- the mold is made of iron or graphite heated to 50 ° C. or higher and 200 ° C. or lower.
- the high-purity aluminum of this embodiment can be cast by a method of pouring a molten alloy of 680 ° C. or higher and 800 ° C. or lower. Further, it is possible to obtain an ingot by continuous casting which is generally used.
- the obtained ingot of aluminum can be directly cut and used as a battery member. If the ingot is rolled, extruded, or forged into a plate material or a mold material, it can be easily used as a clad material or the like.
- hot rolling and cold rolling are performed to process the ingot into a plate material or a foil.
- the temperature condition for carrying out the hot rolling is, for example, that the temperature of the aluminum ingot or the aluminum alloy ingot is set to 350 ° C. or higher and 450 ° C. or lower.
- the material is repeatedly passed between a pair of rolling rolls to finish a target plate thickness. Passing between a pair of rolling rolls is described as “pass”.
- the processing rate r per one pass (one pass) is a reduction rate of the sheet thickness after passing through the rolling roll once, and is calculated by the following formula.
- r (T 0 ⁇ T) / T 0 ⁇ 100 (T 0 : thickness before passing through rolling roll, T: thickness after passing through rolling roll)
- the working ratio r is 2% or more and 20% or less until the target thickness is obtained.
- An intermediate annealing treatment may be performed after hot rolling and before cold rolling.
- a hot-rolled aluminum ingot or aluminum alloy ingot may be heated to 350 ° C. or higher and 450 ° C. or lower, and then allowed to cool immediately after being heated. Further, the aluminum ingot or the aluminum alloy ingot may be left standing to cool for 1 hour or more and 5 hours or less.
- the material of the ingot of aluminum or the ingot of aluminum alloy is softened, and a state in which cold rolling is easily performed is obtained.
- Cold rolling is performed, for example, at a temperature lower than the recrystallization temperature of aluminum, usually from room temperature to 80 ° C. or less, and in a one-pass die, a working rate r is 1% or more and 10% or less. Repeatedly until the desired thickness is reached.
- a heat treatment step may be performed after the cold rolling.
- the heat treatment process can be performed in an air atmosphere or an oxygen atmosphere. Alternatively, the oxygen concentration may be controlled to 0.1% or more and 3% or less in a nitrogen atmosphere. In the present embodiment, it is preferable to carry out the treatment in an air atmosphere, and it is more preferable to use dry air.
- the heat treatment temperature in the heat treatment step is preferably 200 ° C or higher and 600 ° C or lower, more preferably 250 ° C or higher and 550 ° C or lower, and particularly preferably 350 ° C or higher and 500 ° C or lower.
- the heat treatment time of the heat treatment step is preferably 60 minutes or more and 1200 minutes or less, more preferably 120 minutes or more and 600 minutes or less, and particularly preferably 180 minutes or more and 480 minutes or less.
- various physical properties may be adjusted by controlling the crystal structure.
- a casting process is performed by the same method as the above-mentioned method for producing high-purity aluminum.
- a high-purity aluminum alloy can be obtained by adding a predetermined amount of a metal element such as Mg, Ni, Mn, Zn, Cd, Pb, Si, Sr, and Ga during melting in the casting process described above.
- the added metal containing these elements preferably has a purity of 99% by mass or more.
- the rolling step is performed by the same method as the above-mentioned method for producing high-purity aluminum.
- the thickness of the metal foil of the aluminum-containing metal is preferably 5 ⁇ m or more, more preferably 6 ⁇ m or more, even more preferably 7 ⁇ m or more. Further, it is preferably 200 ⁇ m or less, more preferably 190 ⁇ m or less, still more preferably 180 ⁇ m or less. The above upper limit and lower limit can be arbitrarily combined. In the present embodiment, it is preferably 5 ⁇ m or more and 200 ⁇ m or less. In this embodiment, the thickness of the metal foil may be measured using a thickness gauge or a caliper.
- the aluminum-containing metal may be powder having an average particle size of 1 ⁇ m or more and 20 ⁇ m or less. It can be obtained by crushing the ingot obtained by the casting process.
- the pulverization method is not particularly limited, and examples thereof include a method using a ball mill and a bead mill, and a method using a jet mill.
- the powder manufacturing method is not particularly limited, and for example, it can be manufactured by an atomizing method in which molten aluminum is ejected from a nozzle.
- the aluminum-containing metal may be a non-woven fabric made of aluminum fibers.
- Non-woven fabric made of aluminum is manufactured by pressing molten high-purity aluminum melt, jetting it from a nozzle, and rapidly solidifying it to produce fibers. After obtaining the aluminum fibers by the "melt spinning method", the rolled cotton-like fibers are rolled. Is mentioned.
- the aluminum fibers include aluminum fibers having a diameter of 5 ⁇ m or more and 200 ⁇ m, aluminum short fibers, and the like.
- An example of the lithium secondary battery of the present embodiment has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution arranged between the positive electrode and the negative electrode.
- FIG. 1A and 1B are schematic views showing an example of the lithium secondary battery of the present embodiment.
- the cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
- a pair of separators 1 having a strip shape, a strip positive electrode 2 having a positive electrode lead 21 at one end, and a strip negative electrode 3 having a negative electrode lead 31 at one end are separated into a separator 1, a positive electrode 2, and a separator. 1 and the negative electrode 3 are laminated in this order and wound to form an electrode group 4.
- the can bottom is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, and the positive electrode 2 and the negative electrode 3 are formed. Place the electrolyte between. Furthermore, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing body 8, the lithium secondary battery 10 can be manufactured.
- the shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape when the electrode group 4 is cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
- a shape of the lithium secondary battery having such an electrode group 4 a shape defined by IEC60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC) can be adopted. .
- IEC60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC)
- a cylindrical shape and a rectangular shape can be mentioned.
- the lithium secondary battery is not limited to the above-mentioned wound type structure, and may have a laminated type structure in which a laminated structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
- the laminated lithium secondary battery include so-called coin type batteries, button type batteries, and paper type (or sheet type) batteries.
- the positive electrode of the present embodiment can be manufactured by first preparing a positive electrode mixture containing a positive electrode active material, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
- the positive electrode active material a material containing a lithium-containing compound or another metal compound can be used.
- the lithium-containing compound include a lithium cobalt composite oxide having a layered structure, a lithium nickel composite oxide having a layered structure, and a lithium manganese composite oxide having a spinel structure.
- other metal compounds include oxides such as titanium oxide, vanadium oxide, and manganese dioxide, and sulfides such as titanium sulfide and molybdenum sulfide.
- a carbon material can be used as the conductive material included in the positive electrode of the present embodiment.
- the carbon material include graphite powder, carbon black (for example, acetylene black), and fibrous carbon material. Carbon black is fine and has a large surface area. Therefore, by adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be increased, and the charge / discharge efficiency and output characteristics can be improved. On the other hand, when too much carbon black is added, both the binding force between the positive electrode mixture and the positive electrode current collector due to the binder and the binding force inside the positive electrode mixture are reduced, which rather causes an increase in internal resistance.
- the proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
- a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, it is possible to reduce the proportion of the conductive material in the positive electrode mixture.
- thermoplastic resin can be used as the binder included in the positive electrode of the present embodiment.
- thermoplastic resin include polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride system.
- fluoropolymers such as copolymers, propylene hexafluoride / vinylidene fluoride copolymers, tetrafluoroethylene / perfluorovinyl ether copolymers; polyolefin resins such as polyethylene and polypropylene.
- thermoplastic resins may be used as a mixture of two or more kinds.
- a fluororesin and a polyolefin resin as a binder and setting the ratio of the fluororesin to the whole positive electrode mixture to 1% by mass to 10% by mass and the ratio of the polyolefin resin to 0.1% by mass to 2% by mass, the positive electrode It is possible to obtain a positive electrode mixture having a high adhesion with the current collector and a high binding force inside the positive electrode mixture.
- a band-shaped member made of a metal material such as Al, Ni, or stainless can be used as the positive electrode current collector included in the positive electrode of this embodiment. Above all, it is preferable that the current collector is processed into a thin film using Al as a forming material because it is easy to process and inexpensive. Moreover, you may use the same thing as the aluminum foil used for a negative electrode.
- the positive electrode mixture As a method of supporting the positive electrode mixture on the positive electrode current collector, there is a method of press-molding the positive electrode mixture on the positive electrode current collector. Further, the positive electrode mixture is made into a paste by using an organic solvent, and the paste of the obtained positive electrode mixture is applied to at least one surface side of the positive electrode current collector, dried, and pressed to fix the positive electrode current collector to the positive electrode current collector. A mixture may be supported.
- organic solvents that can be used include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate. And the like; amide-based solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP);
- Examples of the method for applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spraying method.
- the positive electrode can be manufactured by the method described above.
- the negative electrode active material of the present embodiment is used for the negative electrode of the lithium secondary battery of the present embodiment.
- Examples of the negative electrode current collector included in the negative electrode include a strip-shaped member made of a metal material such as Cu, Ni, and stainless. Among them, as the material of the current collector, it is preferable to use Cu as a forming material and process it into a thin film because it is difficult to form an alloy with lithium and is easy to process.
- the negative electrode active material is made of powder on such a negative electrode current collector
- a negative electrode mixture including a negative electrode active material and a binder is used as a method of supporting the negative electrode mixture. Examples include a method of pressure molding, a method of forming a paste using a solvent or the like, applying the paste on the negative electrode current collector, drying and pressing the resultant to press-bond it.
- a conductive material may be added to the negative electrode mixture.
- the conductive material those mentioned as the conductive material of the positive electrode material can be used.
- Examples of the separator included in the lithium secondary battery of the present embodiment include a polyolefin film such as polyethylene and polypropylene, a fluororesin, a nitrogen-containing aromatic polymer, and the like, a porous film, a nonwoven fabric, a woven fabric, or the like. Can be used. Further, the separator may be formed by using two or more kinds of these materials, or the separator may be formed by laminating these materials.
- the separator has a gas permeation resistance of not less than 50 seconds / 100 cc and not more than 300 seconds / 100 cc according to the Gurley method defined by JIS P 8117 in order to satisfactorily allow the electrolyte to permeate when the battery is used (during charging / discharging). It is preferably not more than 50 seconds / 100 cc and more preferably not more than 200 seconds / 100 cc.
- the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less.
- the separator may be a stack of separators having different porosities.
- the electrolytic solution included in the lithium secondary battery of the present embodiment contains an electrolyte and an organic solvent.
- the electrolyte contained in the electrolytic solution includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN.
- the electrolyte is at least selected from the group consisting of LiPF 6 containing fluorine, LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3. It is preferable to use one containing one kind.
- organic solvent contained in the electrolytic solution examples include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, 1,2-dicarbonate.
- Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; esters such as methyl formate, methyl acetate, ⁇ -butyrolactone; nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethylacetate Amides such as toamide; Carbamates such as 3-methyl-2-oxazolidone; Sulfur-containing compounds such as sulfolane, dimethyl sulfoxide, and 1,3-propanesultone, or those in which a fluoro group is further introduced into an organic solvent ( One in which one or more hydrogen atoms in the organic solvent are replaced by flu
- the organic solvent it is preferable to use a mixture of two or more of these.
- a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
- a mixed solvent of the cyclic carbonate and the acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethylmethyl carbonate is preferable.
- the electrolytic solution using such a mixed solvent has a wide operating temperature range, is not easily deteriorated even when charged and discharged at a high current rate, and is not easily deteriorated even when used for a long time.
- an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is enhanced.
- a mixed solvent containing ethers having a fluorine substituent such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate has a capacity even when charged and discharged at a high current rate. It is more preferable because the maintenance rate is high.
- a solid electrolyte may be used instead of the above electrolytic solution.
- the solid electrolyte for example, an organic polymer electrolyte such as a polyethylene oxide-based polymer compound, a polymer compound containing at least one or more polyorganosiloxane chains or polyoxyalkylene chains can be used. Further, a so-called gel type in which a polymer compound holds a non-aqueous electrolyte can be used.
- Li 2 S-GeS 2 -P 2 S 5 inorganic solid electrolytes containing a sulfide, and the like, may be used a mixture of two or more thereof. By using these solid electrolytes, it may be possible to further improve the safety of the lithium secondary battery.
- the solid electrolyte when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be needed.
- the present embodiment is an aluminum clad metal laminate in which thin layers and a substrate are laminated.
- the thin layer is composed of the negative electrode active material for a non-aqueous electrolyte secondary battery of the present embodiment.
- the substrate is made of a metal different from the metal forming the thin layer.
- the aluminum clad metal laminate of this embodiment includes a thin layer on one side or both sides of the substrate.
- the metal constituting the thin layer is the negative electrode active material for the non-aqueous electrolyte secondary battery made of the aluminum-containing metal of the present embodiment described above.
- a metal forming the substrate a metal that does not alloy with aluminum or lithium is used. Examples of such a metal include copper, nickel, and stainless steel. Further, as the metal constituting the substrate, a metal which is unlikely to alloy with aluminum or lithium can be used. Examples of such a metal include aluminum having low corrosion resistance.
- An example of aluminum as a metal forming the substrate is one having an aluminum purity of 99.9% or less.
- the average corrosion rate measured by the above-mentioned immersion test is 0.20 mm / year or more.
- the aluminum clad metal laminate of this embodiment can be manufactured by stacking a thin layer and a substrate, diffusion annealing while applying pressure, and rolling-bonding.
- the temperature of the diffusion annealing may be, for example, 150 ° C. or higher and 550 ° C. or lower. Cold working may be performed after the roll bonding.
- the aluminum-containing metal was used as a test metal piece having a size of 40 mm in length, 40 mm in width, and 0.5 mm in thickness.
- the surface of the test metal piece was washed with ethanol.
- the test metal piece was immersed in a 3.5% NaCl aqueous solution adjusted to pH 3 using acetic acid as a pH adjuster, and after 72 hours, the test metal piece was taken out.
- the immersion temperature was 30 ° C.
- Corrosion rate (mm / year) [corrosion degree ⁇ 365] / density of test piece (g / cm 3 ).
- Example 1 [Preparation of negative electrode] High-purity aluminum (purity: 99.999% or more) and magnesium were melted at 750 ° C. to obtain an aluminum-magnesium molten metal. Next, the aluminum-magnesium molten metal was vacuum-treated at a temperature of 720 ° C. for 2 hours under the condition of a vacuum degree of 50 Pa. The vacuum-treated aluminum-magnesium melt was cast in a cast iron mold (22 mm ⁇ 150 mm ⁇ 200 mm) at 150 ° C. to obtain an ingot.
- a cast iron mold 22 mm ⁇ 150 mm ⁇ 200 mm
- the rolling was performed under the following conditions. After both surfaces of the ingot were machined by 2 mm, cold rolling was performed from a thickness of 18 mm at a processing rate of 99.9%. The thickness of the obtained rolled material was 100 ⁇ m.
- the average corrosion rate of the high-purity aluminum-magnesium alloy foil having an aluminum purity of 99.999% and a magnesium content of 3.7% by mass was 0.06 mm / year.
- Discharge capacity retention rate (%) after 3 times 3rd discharge capacity / 3rd charge capacity ⁇ 100
- Example 1 the discharge capacity retention rate calculated by the above method was 98.6%.
- the charge / discharge curve is shown in FIG.
- Comparative Example 1 A coin type (half cell) non-aqueous electrolyte secondary battery was prepared and evaluated in the same manner as in Example 1 except that the negative electrode used was an aluminum foil having a purity of 99.8% (thickness 100 ⁇ m).
- the average corrosion rate of the aluminum foil having a purity of 99.8% was 0.22 mm / year.
- Example 2 Coin type (half cell) non-aqueous solution in the same manner as in Example 1 except that the negative electrode used was an aluminum alloy foil (thickness 100 ⁇ m) having an aluminum purity of 99.999% and a magnesium content of 0.1% by mass. An electrolyte secondary battery was produced and evaluated.
- the average corrosion rate of the aluminum alloy foil having an aluminum purity of 99.999% and a magnesium content of 0.1% by mass was 0.04 mm / year.
- Example 2 the discharge capacity retention rate calculated by the above method was 98.4%.
- Example 3 In the same manner as in Example 1 except that the negative electrode used was an aluminum alloy foil (thickness 100 ⁇ m) having an aluminum purity of 99.99%, a magnesium content of 0.15% by mass, and a manganese content of 1.4% by mass. A coin type (half cell) non-aqueous electrolyte secondary battery was prepared and evaluated.
- the average corrosion rate of the aluminum alloy foil having an aluminum purity of 99.99%, a magnesium content of 0.15 mass% and a manganese content of 1.4 mass% was 0.04 mm / year.
- Example 3 the discharge capacity retention rate calculated by the above method was 98.9%.
- Example 4 A coin type (half cell) type non-electrode was used in the same manner as in Example 1 except that the negative electrode used was an aluminum alloy foil (thickness 100 ⁇ m) having an aluminum purity of 99.999% and a nickel content of 0.1% by mass. A water electrolyte secondary battery was prepared and evaluated.
- the average corrosion rate of the aluminum alloy foil having an aluminum purity of 99.999% and a nickel content of 0.1% by mass was 0.14 mm / year.
- Example 4 the discharge capacity retention rate calculated by the above method was 96.8%.
- Example 5 A coin type (half cell) type non-electrode was used in the same manner as in Example 1 except that the negative electrode used was an aluminum alloy foil (thickness 100 ⁇ m) having an aluminum purity of 99.9% and a magnesium content of 0.1% by mass. A water electrolyte secondary battery was prepared and evaluated.
- the average corrosion rate of the aluminum alloy foil having an aluminum purity of 99.9% and a magnesium content of 0.1% by mass was 0.12 mm / year.
- Example 5 the discharge capacity retention rate calculated by the above method was 99.6%.
- Example 6 In the same manner as in Example 1 except that the negative electrode used was an aluminum alloy foil (thickness 100 ⁇ m) having an aluminum purity of 99.8%, a magnesium content of 0.54% by mass, and a silicon content of 0.45% by mass. A coin type (half cell) non-aqueous electrolyte secondary battery was prepared and evaluated. The average corrosion rate of the aluminum alloy foil having an aluminum purity of 99.8%, a magnesium content of 0.54 mass% and a silicon content of 0.45 mass% was 0.154 mm / year. In Example 6, the discharge capacity retention rate calculated by the above method was 97.1%.
- Example 7 >> In the same manner as in Example 1 except that the negative electrode used was an aluminum alloy foil (thickness 100 ⁇ m) having an aluminum purity of 99.999%, a magnesium content of 0.53% by mass, and a silicon content of 0.42% by mass. A coin type (half cell) non-aqueous electrolyte secondary battery was prepared and evaluated. The average corrosion rate of the aluminum alloy foil having an aluminum purity of 99.999%, a magnesium content of 0.53 mass% and a silicon content of 0.42 mass% was 0.073 mm / year. In Example 7, the discharge capacity retention rate calculated by the above method was 96.5%.
- Example 8-1 A coin type (half cell) non-aqueous electrolyte secondary battery was used in the same manner as in Example 1 except that the negative electrode used was an aluminum alloy foil (thickness 100 ⁇ m) containing aluminum purity 99.999% and strontium 800 ppm. Was prepared and evaluated. The average corrosion rate of the aluminum alloy foil containing aluminum having a purity of 99.999% and strontium of 800 ppm was 0.040 mm / year. In Example 8-1, the discharge capacity retention rate calculated by the above method was 98.0%.
- Example 8-2 An aluminum alloy foil (thickness: 100 ⁇ m) containing 99.999% of aluminum purity and 800 ppm of strontium obtained by subjecting the negative electrode used to a heat treatment at 350 ° C.
- Example 9-1 A coin-type (half-cell) non-aqueous electrolyte secondary battery was used in the same manner as in Example 1 except that the negative electrode used was an aluminum alloy foil (thickness 100 ⁇ m) containing 99.999% aluminum purity and 1100 ppm gallium. Was prepared and evaluated.
- Example 9-2 The average corrosion rate of the aluminum alloy foil containing 99.999% aluminum purity and 1100 ppm gallium was 0.055 mm / year. In Example 9-1, the discharge capacity retention rate calculated by the above method was 96.7%.
- Example 9-2 Aluminum alloy foil (thickness 100 ⁇ m) containing 99.999% of aluminum purity and 1100 ppm of gallium obtained by performing heat treatment of the negative electrode to be used for 180 minutes at 350 ° C. in the atmosphere after cold rolling. A coin type (half cell) non-aqueous electrolyte secondary battery was prepared and evaluated in the same manner as in Example 9-1 except that the above was used. The average corrosion rate of the heat-treated aluminum alloy foil containing 99.999% aluminum purity and 1100 ppm gallium was 0.044 mm / year. In Example 9-2, the discharge capacity retention rate calculated by the above method was 95.7%.
- Example 1 the average corrosion rate, aluminum purity, negative electrode material, and discharge capacity retention rate of Examples 1 to 5 and Comparative Example 1 are collectively described.
- Table 2 the average corrosion rate, aluminum purity, negative electrode material, and discharge capacity retention rate of Examples 6 to 7, 8-1 to 8-2, and 9-1 to 9-2 are collectively described.
- the example to which the present invention was applied had a higher discharge capacity retention rate than the comparative example.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
本願は、2018年10月10日に、日本に出願された特願2018-192026号に基づき優先権を主張し、その内容をここに援用する。
本発明は上記事情に鑑みてなされたものであって、放電容量維持率が高い非水電解液二次電池用負極活物質、これを用いた負極及びこれを用いた電池を提供することを課題とする。
[1]下記の浸漬条件の浸漬試験により測定される平均腐食速度が0.20mm/年未満である、アルミニウム含有金属からなる非水電解液二次電池用負極活物質。
[浸漬条件]
浸漬液:酢酸をpH調整剤として用い、pH3に調整した3.5%NaCl水溶液浸漬温度:30℃
浸漬時間:72時間
[2]下記の浸漬条件の浸漬試験により測定される平均腐食速度が0.15mm/年以下である、アルミニウム含有金属からなる非水電解液二次電池用負極活物質。
[浸漬条件]
浸漬液:酢酸をpH調整剤として用い、pH3に調整した3.5%NaCl水溶液浸漬温度:30℃
浸漬時間:72時間
[3]前記アルミニウム含有金属が下記組成式(10)で表される、[1]又は[2]に記載の非水電解液二次電池用負極活物質。
AlxM10 yM2 z ・・・(10)
(式(10)中、M10はMg、Ni、Mn、Zn、Cd、Pb、Si、Sr、Gaからなる群より選択される1種以上である。M2は不可避不純物である。0質量%≦y≦8質量%、[x/(x+z)]≧99質量%である。)
[4]前記アルミニウム含有金属が下記組成式(1)で表される、[1]又は[2]に記載の非水電解液二次電池用負極活物質。
AlxM1 yM2 z ・・・(1)
(式(1)中、M1はMg、Ni、Mn、Zn、Cd、Pbからなる群より選択される1種以上である。M2は不可避不純物である。0質量%≦y≦8質量%、[x/(x+z)]≧99.9質量%である。)
[5]前記アルミニウム含有金属は、厚みが5μm以上200μm以下の金属箔である、[1]~[4]のいずれか1つに記載の非水電解液二次電池用負極活物質。
[6]前記アルミニウム含有金属は、平均粒径が1μm以上20μm以下の粉体である、[1]~[4]のいずれか1つに記載の非水電解液二次電池用負極活物質。
[7]前記アルミニウム含有金属は、アルミニウム繊維からなる不織布である、[1]~[4]のいずれか1つに記載の非水電解液二次電池用負極活物質。
[8][1]~[7]のいずれか1つに記載の非水電解液二次電池用負極活物質を有する負極。
[9][8]に記載の負極を有する電池。
[10]薄層と基板とを積層したアルミニウムクラッド金属積層体であって、 前記薄層は、[1]~[4]のいずれか1つに記載の非水電解液二次電池用負極活物質から構成され、 前記基板は、非水電解液二次電池用負極活物質とは異なる金属からなる、アルミニウムクラッド金属積層体。
本実施形態の非水電解液二次電池用負極活物質は、アルミニウム含有金属からなる。「非水電解液二次電池用負極活物質」を「負極活物質」と記載する場合がある。
本明細書において、「放電容量維持率」とは、各回充放電時の充電容量(分母)に対する放電容量(分子)の比を意味する。
また、本実施形態の他の態様は、下記の浸漬条件の浸漬試験により測定される平均腐食速度が0.15mm/年以下である、アルミニウム含有金属からなる。
アルミニウム含有金属を、縦40mm、横40mm、厚さ0.5mmのサイズの試験用金属片とする。
試験用金属片を、酢酸をpH調整剤として用い、pH3に調整した3.5%NaCl水溶液に浸漬させ、72時間後に試験用金属片を取り出す。浸漬温度は30℃とする。
腐食度は、試験用金属片の表面積1mm2に対する1日当たりの腐食減量をmg数で表す。つまり、腐食度は下記の式により算出できる。質量の測定には、精密天秤を用いる。
腐食度=(試験用金属片の浸漬前の質量(mg)-試験用金属片の浸漬後の質量(mg))/(試験用金属片の表面積(mm2)×試験日数(day))
腐食速度(mm/年)=[腐食度×365]/試験片の密度(g/cm3)
AlxM1 yM2 z ・・・(1)
(式(1)中、M1はMg、Ni、Mn、Zn、Cd、Pbからなる群より選択される1種以上である。M2は不可避不純物である。0質量%≦y≦8質量%、[x/(x+z)]≧99.9質量%である。)
式(1)中、M1はMg、Ni、Mn、Znからなる群より選択される1種以上がより好ましい。
式(1)中、0.1質量%≦y≦8.0質量%が好ましく、0.5質量%≦y≦7.0質量%が好ましく、0.7質量%≦y≦6.0質量%が特に好ましい。
yの範囲が上記下限値以上であると、平均腐食速度を本発明の範囲内に制御できる。また、yの範囲が上記上限値以下であると、鋳造時の圧延工程の際に割れが生じることなく圧延できる。
式(1)中、M2は高純度アルミニウムの精錬工程において不可避的に混入する製造残渣等の不可避不純物であり、具体的にはアルミニウム及びM1以外の金属成分である。不可避不純物としては、鉄や銅が挙げられる。
本実施形態のある態様の負極活物質は、下記組成式(10)で表されるアルミニウム含有金属からなる。
AlxM10 yM2 z ・・・(10)
(組成式(10)中、M10はMg、Ni、Mn、Zn、Cd、Pb、Si、Sr、Gaからなる群より選択される1種以上である。M2は不可避不純物である。0質量%≦y≦8質量%、[x/(x+z)]≧99質量%である。)
・M10
組成式(10)中、M10はMg、Si、Sr、Gaからなる群より選択される1種以上がより好ましい。
組成式(10)中、M2、x、y、zに関する説明は、前記組成式(1)中のM2、x、y、zに関する説明と同様である。
(A)高純度アルミニウム-マグネシウム合金1
純度99.999%のアルミニウムと、マグネシウムとの合金。マグネシウムの含有量は、アルミニウム含有金属全量中に0.1質量%以上4.0質量%以下。平均腐食速度は0.04mm/年~0.06mm/年。
(B)高純度アルミニウム-マグネシウム合金2
純度99.9%のアルミニウムと、マグネシウムとの合金。マグネシウムの含有量は、アルミニウム含有金属全量中に0.1質量%以上1.0質量%以下。平均腐食速度は0.1mm/年~0.14mm/年。
(C)高純度アルミニウム-ニッケル合金
純度99.999%のアルミニウムと、ニッケルとの合金。ニッケルの含有量は、アルミニウム含有金属全量中に0.1質量%以上1.0質量%以下。平均腐食速度は0.1mm/年~0.14mm/年。
(D)高純度アルミニウム-マンガン-マグネシウム合金
純度99.99%のアルミニウムと、マンガンと、マグネシウムとの合金。マンガンとマグネシウムの合計含有量は、アルミニウム含有金属全量中に1.0質量%以上2.0質量%以下。平均腐食速度は0.03mm/年~0.05mm/年。
(E)高純度アルミニウム
純度99.999%のアルミニウム。平均腐食速度は0.05mm/年。
(F)高純度アルミニウム-マグネシウム-ケイ素合金1
純度99.8%のアルミニウムと、マグネシウムと、ケイ素との合金。マグネシウムとケイ素の合計含有量は、アルミニウム含有金属全量中に0.1質量%以上1.0質量%以下。平均腐食速度は0.05mm/年~0.20mm/年未満。
(G)高純度アルミニウム-マグネシウム-ケイ素合金2
純度99.999%のアルミニウムと、マグネシウムと、ケイ素との合金。マグネシウムとケイ素の合計含有量は、アルミニウム含有金属全量中に0.1質量%以上1.0質量%以下。平均腐食速度は0.05mm/年~0.20mm/年未満。
(H)高純度アルミニウム-ストロンチウム合金
純度99.999%のアルミニウムと、ストロンチウムとの合金。ストロンチウムの含有量は、アルミニウム含有金属全量中に100ppm以上1000ppm以下。平均腐食速度は0.03mm/年~0.05mm/年。
(I)高純度アルミニウム-ガリウム合金
純度99.999%のアルミニウムと、ガリウムとの合金。ガリウムの含有量は、アルミニウム含有金属全量中に500ppm以上1200ppm以下。平均腐食速度は0.03mm/年~0.06mm/年。
本実施形態に用いるアルミニウムを高純度化する精錬方法として、例えば偏析法および三層電解法を例示できる。
三層電解法では純度99.999質量%以上の高純度アルミニウムを得ることができる。
・・高純度アルミニウムの製造方法
(鋳造工程)
上述の方法により高純度化したアルミニウムは、鋳造、切削加工などを行うことで、圧延に好適な形状のアルミニウム鋳塊を得ることができる。
鋳造を行う場合には、例えば高純度アルミニウムを約680℃以上800℃以下で溶融し、ガスや非金属介在物を除去して清浄にする処理(例えば、アルミニウム溶湯の真空処理)を行う。
真空処理は、例えば700℃以上800℃以下で、1時間以上10時間以下、真空度0.1Pa以上100Pa以下の条件で行われる。
鋳型は50℃以上200℃以下に加熱した鉄や黒鉛製を用いる。本実施形態の高純度アルミニウムは、680℃以上800℃以下の合金溶湯を流し込む方法で鋳造できる。また、一般的に利用されている連続鋳造により鋳塊を得ることもできる。
得られたアルミニウムの鋳塊は、そのまま切削加工して電池部材に利用できる。鋳塊を圧延加工や押出加工、鍛造加工などを施して板材や型材にすると、クラッド材等に利用しやすくなる。
圧延加工では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げてゆく。一対の圧延ロール間に通過させることを「パス」と記載する。
1回のパス(1パス)当たりの加工率rは、圧延ロールを1回通過したときの板厚減少率であり、下記の式で算出される。
r=(T0-T)/T0×100
(T0:圧延ロール通過前の厚み、T:圧延ロール通過後の厚み)
本実施形態においては、加工率rが2%以上20%以下の条件で、アルミニウム鋳塊又はアルミニウム合金鋳塊を目的の厚さとなるまで繰り返し行うことが好ましい。
中間焼鈍処理は、例えば、熱間圧延したアルミニウム鋳塊又はアルミニウム合金鋳塊を、350℃以上450℃以下に加熱、昇温後直ちに放冷してもよい。
また、アルミニウム鋳塊又はアルミニウム合金鋳塊を1時間以上5時間以下程度保持後に放冷してもよい。
この処理にて、アルミニウム鋳塊又はアルミニウム合金鋳塊の材料が軟質化して、冷間圧延しやすい状態が得られる。
冷間圧延後には、熱処理工程を実施してもよい。熱処理工程は、大気雰囲気下、酸素雰囲気下で実施できる。また、窒素雰囲気下において酸素濃度を0.1%以上3%以下に制御して実施してもよい。本実施形態においては、大気雰囲気下で実施することが好ましく、乾燥大気であることがより好ましい。
熱処理工程の熱処理温度は、200℃以上600℃以下が好ましく、250℃以上550℃以下がより好ましく、350℃以上500℃以下が特に好ましい。
熱処理工程の熱処理時間は、60分間以上1200分間以下が好ましく、120分間以上600分間以下がより好ましく、180分間以上480分間以下が特に好ましい。
熱処理工程により加工硬化した板材を軟質化することができるほか、結晶組織を制御することで各種物性を調整する場合もある。
(鋳造工程)
上述の高純度アルミニウムの製造方法と同様の方法により、鋳造工程を行う。
上述の鋳造工程での溶融の際に、Mg、Ni、Mn、Zn、Cd、Pb、Si、Sr、Ga等の金属元素を所定量添加することで、高純度アルミニウム合金を得ることができる。添加するこれらの元素を含む金属は、純度が99質量%以上であることが好ましい。
上述の高純度アルミニウムの製造方法と同様の方法により、圧延工程を行う。
本実施形態において、金属箔の厚みは、シックネスゲージ又はノギスを用いて測定すればよい。
粉体製造方法は特に限定されず、例えば、アルミニウム溶湯をノズルから噴出させるアトマイズ法等により製造できる。
次いで、電池の構成を説明しながら、本発明の負極活物質を、電池の負極活物質として用いた負極、およびこの負極を有する二次電池について説明する。
以下、正極にリチウム正極活物質を用いたリチウム二次電池を例に説明する。
(正極)
本実施形態の正極は、まず正極活物質、導電材およびバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
正極活物質には、リチウム含有化合物又は他の金属化合物よりなるものを用いることができる。リチウム含有化合物としては、例えば、層状構造を有するリチウムコバルト複合酸化物、層状構造を有するリチウムニッケル複合酸化物、スピネル構造を有するリチウムマンガン複合酸化物が挙げられる。
また他の金属化合物としては、例えば、酸化チタン、酸化バナジウム若しくは二酸化マンガンなどの酸化物、または硫化チタン若しくは硫化モリブデンなどの硫化物が挙げられる。
本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きい。このため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率および出力特性を向上させることができる。一方、カーボンブラックを多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、および正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。
この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、集電体としては、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
また負極に用いるアルミニウム箔と同じものも使ってもよい。
本実施形態のリチウム二次電池が有する負極は、本実施形態の負極活物質を用いる。
負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、集電体の材料としては、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
また、負極合材にさらに導電材を加えてもよい。導電材としては、正極材の導電材として挙げたものが使用可能である。
本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
本実施形態のリチウム二次電池が有する電解液は、電解質および有機溶媒を含有する。
本実施形態は、薄層と基板とを積層したアルミニウムクラッド金属積層体である。薄層は、前記本実施形態の非水電解液二次電池用負極活物質から構成されている。基板は、薄層を構成する金属とは異なる金属からなる。
基板を構成する金属としては、アルミニウム又はリチウムと合金化しない金属を用いる。このような金属としては、例えば銅、ニッケル、ステンレスが挙げられる。
また、基板を構成する金属としては、アルミニウム又はリチウムと合金化しにくい金属を用いることもできる。このような金属としては、耐食性の低いアルミニウムが挙げられる。基板を構成する金属としてのアルミニウムの例としては、アルミニウム純度が99.9%以下のものが挙げられる。このようなアルミニウムの耐食性は、例えば上述の浸漬試験により測定される平均腐食速度が0.20mm/年以上である。
[浸漬条件]
アルミニウム含有金属を、縦40mm、横40mm、厚さ0.5mmのサイズの試験用金属片とした。試験用金属片の表面を、エタノールで洗浄した。試験用金属片を、酢酸をpH調整剤として用い、pH3に調整した3.5%NaCl水溶液に浸漬させ、72時間後に試験用金属片を取り出した。浸漬温度は30℃とした。
腐食度は、試験用金属片の表面積1mm2に対する1日当たりの腐食減量のmg数とした。つまり、腐食度は下記の式により算出した。質量の測定には、精密天秤等を用いた。
腐食度=(試験用金属片の浸漬前の質量(mg)-試験用金属片の浸漬後の質量(mg))/(試験用金属片の表面積×試験日数)
腐食速度(mm/年)=[腐食度×365]/試験片の密度(g/cm3)
[負極の作製]
高純度アルミニウム(純度:99.999%以上)と、マグネシウムを750℃で溶融し、アルミニウム-マグネシウム溶湯を得た。次に、アルミニウム-マグネシウム溶湯を温度720℃で、2時間、真空度50Paの条件で保持して真空処理を行った。真空処理後のアルミニウム-マグネシウム溶湯を150℃の鋳鉄鋳型(22mm×150mm×200mm)にて鋳造し、鋳塊を得た。
アルミニウム純度99.999%、マグネシウム含有量3.7質量%の高純度アルミニウム-マグネシウム合金箔(厚さ100μm)を、φ14mmの円盤状に切り出し、負極を製造した。
純度99.9%リチウム箔(厚さ300μm:本荘ケミカル)を、φ16mmの円盤状に切り出し、対極を製造した。
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=30:70(体積比)で混合させてなる混合溶媒に、LiPF6を1モル/リットルとなるように溶解した電解液を作製した。
上記の負極と対極との間にポリエチレン製多孔質セパレータを配置して、電池ケース(規格2032)に収納し、上記の電解液を注液し、電池ケースを密閉することにより、直径20mm、厚み3.2mmのコイン型(ハーフセル)の非水電解質二次電池を作製した。
コイン型の非水電解質二次電池を室温で10時間静置することでセパレータに充分電解液を含浸させた。
次に室温において0.5mAで0.005Vまで定電流充電(AlにLi吸蔵)してから0.005Vで定電圧充電する定電流定電圧充電を5時間行った後、0.5mAで2.0Vまで放電(AlからLi放出)する定電流放電を行うことで初期充放電を行った。
初期充放電後、初期充放電の条件と同様に0.5mAで充電、0.5mAで放電を2回(初期充放電から合計3回)繰り返した。
3回のサイクル試験にて寿命評価を実施し、3回後の放電容量維持率を以下の式にて算出した。
使用する負極を、純度99.8%のアルミニウム箔(厚さ100μm)にしたこと以外は、実施例1と同様にしてコイン型(ハーフセル)の非水電解質二次電池を作製し、評価した。
使用する負極を、アルミニウム純度99.999%、マグネシウム含有量0.1質量%のアルミニウム合金箔(厚さ100μm)にしたこと以外は、実施例1と同様にしてコイン型(ハーフセル)の非水電解質二次電池を作製し、評価した。
使用する負極を、アルミニウム純度99.99%、マグネシウム含有量0.15質量%、マンガン含有量1.4質量%のアルミニウム合金箔(厚さ100μm)にしたこと以外は、実施例1と同様にしてコイン型(ハーフセル)の非水電解質二次電池を作製し、評価した。
使用する負極を、アルミニウム純度99.999%、ニッケル含有量0.1質量%、のアルミニウム合金箔(厚さ100μm)にしたこと以外は、実施例1と同様にしてコイン型(ハーフセル)の非水電解質二次電池を作製し、評価した。
使用する負極を、アルミニウム純度99.9%、マグネシウム含有量0.1質量%、のアルミニウム合金箔(厚さ100μm)にしたこと以外は、実施例1と同様にしてコイン型(ハーフセル)の非水電解質二次電池を作製し、評価した。
≪実施例6≫
使用する負極を、アルミニウム純度99.8%、マグネシウム含有量0.54質量%、ケイ素含有量0.45質量%のアルミニウム合金箔(厚さ100μm)にしたこと以外は、実施例1と同様にしてコイン型(ハーフセル)の非水電解質二次電池を作製し、評価した。
アルミニウム純度99.8%、マグネシウム含有量0.54質量%、ケイ素含有量0.45質量%のアルミニウム合金箔の平均腐食速度は、0.154mm/年であった。
実施例6において、上記の方法により算出した放電容量維持率は、97.1%であった。
≪実施例7≫
使用する負極を、アルミニウム純度99.999%、マグネシウム含有量0.53質量%、ケイ素含有量0.42質量%のアルミニウム合金箔(厚さ100μm)にしたこと以外は、実施例1と同様にしてコイン型(ハーフセル)の非水電解質二次電池を作製し、評価した。
アルミニウム純度99.999%、マグネシウム含有量0.53質量%、ケイ素含有量0.42質量%のアルミニウム合金箔の平均腐食速度は、0.073mm/年であった。
実施例7において、上記の方法により算出した放電容量維持率は、96.5%であった。
≪実施例8-1≫
使用する負極を、アルミニウム純度99.999%、ストロンチウムを800ppm含む、アルミニウム合金箔(厚さ100μm)にしたこと以外は、実施例1と同様にしてコイン型(ハーフセル)の非水電解質二次電池を作製し、評価した。
アルミニウム純度99.999%、ストロンチウムを800ppm含む、アルミニウム合金箔の平均腐食速度は、0.040mm/年であった。
実施例8-1において、上記の方法により算出した放電容量維持率は、98.0%であった。
≪実施例8-2≫
使用する負極を、冷間圧延工程の後、大気雰囲気下、350℃で180分間の熱処理を実施して得られたアルミニウム純度99.999%、ストロンチウムを800ppm含む、アルミニウム合金箔(厚さ100μm)にしたこと以外は、実施例8-1と同様にしてコイン型(ハーフセル)の非水電解質二次電池を作製し、評価した。
アルミニウム純度99.999%、ストロンチウムを800ppm含む、熱処理を実施したアルミニウム合金箔の平均腐食速度は、0.041mm/年であった。
実施例8-2において、上記の方法により算出した放電容量維持率は、97.7%であった。
≪実施例9-1≫
使用する負極を、アルミニウム純度99.999%、ガリウムを1100ppm含む、アルミニウム合金箔(厚さ100μm)にしたこと以外は、実施例1と同様にしてコイン型(ハーフセル)の非水電解質二次電池を作製し、評価した。
アルミニウム純度99.999%、ガリウムを1100ppm含む、アルミニウム合金箔の平均腐食速度は、0.055mm/年であった。
実施例9-1において、上記の方法により算出した放電容量維持率は、96.7%であった。
≪実施例9-2≫
使用する負極を、冷間圧延工程の後、大気雰囲気下、350℃で180分間の熱処理を実施して得られたアルミニウム純度99.999%、ガリウムを1100ppm含む、アルミニウム合金箔(厚さ100μm)にしたこと以外は、実施例9-1と同様にしてコイン型(ハーフセル)の非水電解質二次電池を作製し、評価した。
アルミニウム純度99.999%、ガリウムを1100ppm含む、熱処理を実施したアルミニウム合金箔の平均腐食速度は、0.044mm/年であった。
実施例9-2において、上記の方法により算出した放電容量維持率は、95.7%であった。
下記表2に、実施例6~7、8-1~8-2、9-1~9-2の平均腐食速度、アルミニウム純度、負極材料、放電容量維持率をまとめて記載する。
Claims (10)
- 下記の浸漬条件の浸漬試験により測定される平均腐食速度が0.20mm/年未満である、アルミニウム含有金属からなる非水電解液二次電池用負極活物質。
[浸漬条件]
浸漬液:酢酸をpH調整剤として用い、pH3に調整した3.5%NaCl水溶液浸漬温度:30℃
浸漬時間:72時間 - 下記の浸漬条件の浸漬試験により測定される平均腐食速度が0.15mm/年以下である、アルミニウム含有金属からなる非水電解液二次電池用負極活物質。
[浸漬条件]
浸漬液:酢酸をpH調整剤として用い、pH3に調整した3.5%NaCl水溶液浸漬温度:30℃
浸漬時間:72時間 - 前記アルミニウム含有金属が下記組成式(10)で表される、請求項1又は2に記載の非水電解液二次電池用負極活物質。
AlxM10 yM2 z ・・・(10)
(式(10)中、M10はMg、Ni、Mn、Zn、Cd、Pb、Si、Sr、Gaからなる群より選択される1種以上である。M2は不可避不純物である。0質量%≦y≦8質量%、[x/(x+z)]≧99質量%である。) - 前記アルミニウム含有金属が下記組成式(1)で表される、請求項1又は2に記載の非水電解液二次電池用負極活物質。
AlxM1 yM2 z ・・・(1)
(式(1)中、M1はMg、Ni、Mn、Zn、Cd、Pbからなる群より選択される1種以上である。M2は不可避不純物である。0質量%≦y≦8質量%、[x/(x+z)]≧99.9質量%である。) - 前記アルミニウム含有金属は、厚みが5μm以上200μm以下の金属箔である、請求項1~4のいずれか1項に記載の非水電解液二次電池用負極活物質。
- 前記アルミニウム含有金属は、平均粒径が1μm以上20μm以下の粉体である、請求項1~4のいずれか1項に記載の非水電解液二次電池用負極活物質。
- 前記アルミニウム含有金属は、アルミニウム繊維からなる不織布である、請求項1~4のいずれか1項に記載の非水電解液二次電池用負極活物質。
- 請求項1~7のいずれか1項に記載の非水電解液二次電池用負極活物質を有する負極。
- 請求項8に記載の負極を有する電池。
- 薄層と基板とを積層したアルミニウムクラッド金属積層体であって、 前記薄層は、請求項1~4のいずれか1項に記載の非水電解液二次電池用負極活物質から構成され、 前記基板は、非水電解液二次電池用負極活物質とは異なる金属からなる、アルミニウムクラッド金属積層体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217009802A KR20210062025A (ko) | 2018-10-10 | 2019-10-03 | 비수 전해액 이차 전지용 부극 활물질, 부극, 전지 및 알루미늄 클래드 금속 적층체 |
CN201980065998.4A CN112805854B (zh) | 2018-10-10 | 2019-10-03 | 非水电解液二次电池用负极活性物质、负极、电池以及覆铝金属层叠体 |
EP19871880.1A EP3866231A4 (en) | 2018-10-10 | 2019-10-03 | NON-AQUEOUS ELECTROLYTE BATTERY NEGATIVE ELECTRODE ACTIVE MATERIAL, NEGATIVE ELECTRODE, BATTERY AND ALUMINUM PLATED METAL LAMINATE |
US17/283,152 US20210391573A1 (en) | 2018-10-10 | 2019-10-03 | Anode active material for nonaqueous electrolyte secondary battery, anode, battery, and aluminum clad metal laminate |
JP2020506276A JP6792741B2 (ja) | 2018-10-10 | 2019-10-03 | 非水電解液二次電池用負極活物質、負極、電池及びアルミニウムクラッド金属積層体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018192026 | 2018-10-10 | ||
JP2018-192026 | 2018-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020075616A1 true WO2020075616A1 (ja) | 2020-04-16 |
Family
ID=70163826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039065 WO2020075616A1 (ja) | 2018-10-10 | 2019-10-03 | 非水電解液二次電池用負極活物質、負極、電池及びアルミニウムクラッド金属積層体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210391573A1 (ja) |
EP (1) | EP3866231A4 (ja) |
JP (1) | JP6792741B2 (ja) |
KR (1) | KR20210062025A (ja) |
CN (1) | CN112805854B (ja) |
WO (1) | WO2020075616A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022118912A1 (ja) * | 2020-12-02 | 2022-06-09 | 住友化学株式会社 | 金属負極、リチウム二次電池、バッテリーシステム及び金属負極の製造方法 |
WO2022210393A1 (ja) * | 2021-03-31 | 2022-10-06 | 住友化学株式会社 | リチウム二次電池及びリチウム二次電池の製造方法 |
WO2022210443A1 (ja) * | 2021-03-31 | 2022-10-06 | 住友化学株式会社 | リチウム二次電池 |
WO2023106229A1 (ja) * | 2021-12-10 | 2023-06-15 | 住友化学株式会社 | リチウム二次電池用負極及びリチウム二次電池 |
WO2023190198A1 (ja) * | 2022-03-31 | 2023-10-05 | 住友化学株式会社 | アルミニウム負極及び非水電解液二次電池 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114976037A (zh) * | 2022-06-23 | 2022-08-30 | 华星先进科学技术应用研究(天津)有限公司 | 一种锂离子电池用铝基负极极片及锂离子二次电池 |
WO2024186888A1 (en) * | 2023-03-07 | 2024-09-12 | Novelis Inc. | Solid-state batteries with aluminum-based composite foil anodes exhibiting multiphase microstructure |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0630246B2 (ja) | 1985-03-12 | 1994-04-20 | 日立マクセル株式会社 | ボタン形リチウム有機二次電池 |
JP2003017058A (ja) * | 2001-07-03 | 2003-01-17 | Toshiba Corp | 非水系電解液電池 |
JP2003338291A (ja) * | 2002-03-15 | 2003-11-28 | Toshiba Corp | アルミニウム負極電池 |
JP2005347187A (ja) * | 2004-06-07 | 2005-12-15 | Sanyo Electric Co Ltd | リチウム二次電池 |
WO2007055172A1 (ja) * | 2005-11-10 | 2007-05-18 | Matsushita Electric Industrial Co., Ltd. | 非水電解液及びそれを含む二次電池 |
WO2014069200A1 (ja) * | 2012-10-30 | 2014-05-08 | ソニー株式会社 | アルミニウム二次電池及び電子機器 |
JP2014165001A (ja) * | 2013-02-25 | 2014-09-08 | Honda Motor Co Ltd | 二次電池用の負極活物質及びその製造方法 |
JP2018192026A (ja) | 2017-05-18 | 2018-12-06 | 和宏 各務 | 履物用中敷およびそれを備えた履物 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1437782A (fr) * | 1964-04-21 | 1966-05-06 | Olin Mathieson | Alliage à base d'aluminium et anodes constituées par cet alliage |
US3240688A (en) * | 1964-04-21 | 1966-03-15 | Olin Mathieson | Aluminum alloy electrode |
NO144777C (no) * | 1976-06-24 | 1981-11-04 | Alusuisse | Korrosjonsbestandig aluminiumslegering. |
US5512241A (en) * | 1988-08-18 | 1996-04-30 | Martin Marietta Corporation | Al-Cu-Li weld filler alloy, process for the preparation thereof and process for welding therewith |
JPH0630246A (ja) | 1992-07-13 | 1994-02-04 | Nec Eng Ltd | サマリ画像作成方式 |
JPH09259892A (ja) * | 1996-03-23 | 1997-10-03 | Sony Corp | アルミニウム非水電解液二次電池 |
JPH1092424A (ja) * | 1996-09-11 | 1998-04-10 | Mitsubishi Cable Ind Ltd | リチウム二次電池用負極およびそれを用いたリチウム二次電池 |
JP5701627B2 (ja) * | 2010-02-25 | 2015-04-15 | 住友化学株式会社 | アルミニウム空気電池用負極及びアルミニウム空気電池 |
US9466853B2 (en) * | 2010-09-30 | 2016-10-11 | Ut-Battelle, Llc | High energy density aluminum battery |
JP5952558B2 (ja) * | 2010-12-28 | 2016-07-13 | 花王株式会社 | 非重合体カテキン類含有ビール風味飲料 |
US20120193001A1 (en) * | 2011-01-27 | 2012-08-02 | Ernst Khasin | Aluminum based anodes and process for preparing the same |
JP5883288B2 (ja) * | 2011-02-18 | 2016-03-09 | 住友電気工業株式会社 | 集電体用三次元網状アルミニウム多孔体、該アルミニウム多孔体を用いた集電体、電極、非水電解質電池、キャパシタ及びリチウムイオンキャパシタ |
US20140045055A1 (en) * | 2011-04-26 | 2014-02-13 | Hiroshi Nakano | Lithium-aluminum battery |
CN105261784B (zh) * | 2014-07-15 | 2019-05-10 | 北京理工大学 | 一种铝二次电池 |
CN105845919A (zh) * | 2016-06-06 | 2016-08-10 | 乳山市海源电子科技有限公司 | 四元合金铝空气电池 |
JP6695614B2 (ja) * | 2017-03-10 | 2020-05-20 | ineova株式会社 | 金属負極電池 |
CN108172754A (zh) * | 2018-01-09 | 2018-06-15 | 山西沃特海默新材料科技股份有限公司 | 一种锂离子电池用铝箔、微孔铝箔及微孔铝箔的制备方法 |
-
2019
- 2019-10-03 KR KR1020217009802A patent/KR20210062025A/ko not_active Application Discontinuation
- 2019-10-03 US US17/283,152 patent/US20210391573A1/en active Pending
- 2019-10-03 CN CN201980065998.4A patent/CN112805854B/zh active Active
- 2019-10-03 EP EP19871880.1A patent/EP3866231A4/en active Pending
- 2019-10-03 JP JP2020506276A patent/JP6792741B2/ja active Active
- 2019-10-03 WO PCT/JP2019/039065 patent/WO2020075616A1/ja unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0630246B2 (ja) | 1985-03-12 | 1994-04-20 | 日立マクセル株式会社 | ボタン形リチウム有機二次電池 |
JP2003017058A (ja) * | 2001-07-03 | 2003-01-17 | Toshiba Corp | 非水系電解液電池 |
JP2003338291A (ja) * | 2002-03-15 | 2003-11-28 | Toshiba Corp | アルミニウム負極電池 |
JP2005347187A (ja) * | 2004-06-07 | 2005-12-15 | Sanyo Electric Co Ltd | リチウム二次電池 |
WO2007055172A1 (ja) * | 2005-11-10 | 2007-05-18 | Matsushita Electric Industrial Co., Ltd. | 非水電解液及びそれを含む二次電池 |
WO2014069200A1 (ja) * | 2012-10-30 | 2014-05-08 | ソニー株式会社 | アルミニウム二次電池及び電子機器 |
JP2014165001A (ja) * | 2013-02-25 | 2014-09-08 | Honda Motor Co Ltd | 二次電池用の負極活物質及びその製造方法 |
JP2018192026A (ja) | 2017-05-18 | 2018-12-06 | 和宏 各務 | 履物用中敷およびそれを備えた履物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3866231A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022118912A1 (ja) * | 2020-12-02 | 2022-06-09 | 住友化学株式会社 | 金属負極、リチウム二次電池、バッテリーシステム及び金属負極の製造方法 |
WO2022210393A1 (ja) * | 2021-03-31 | 2022-10-06 | 住友化学株式会社 | リチウム二次電池及びリチウム二次電池の製造方法 |
WO2022210443A1 (ja) * | 2021-03-31 | 2022-10-06 | 住友化学株式会社 | リチウム二次電池 |
WO2023106229A1 (ja) * | 2021-12-10 | 2023-06-15 | 住友化学株式会社 | リチウム二次電池用負極及びリチウム二次電池 |
WO2023190198A1 (ja) * | 2022-03-31 | 2023-10-05 | 住友化学株式会社 | アルミニウム負極及び非水電解液二次電池 |
Also Published As
Publication number | Publication date |
---|---|
KR20210062025A (ko) | 2021-05-28 |
US20210391573A1 (en) | 2021-12-16 |
CN112805854B (zh) | 2024-06-04 |
JP6792741B2 (ja) | 2020-11-25 |
EP3866231A4 (en) | 2022-07-27 |
JPWO2020075616A1 (ja) | 2021-02-15 |
EP3866231A1 (en) | 2021-08-18 |
CN112805854A (zh) | 2021-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020075616A1 (ja) | 非水電解液二次電池用負極活物質、負極、電池及びアルミニウムクラッド金属積層体 | |
JP6442630B1 (ja) | 非水電解液二次電池用負極活物質、負極及び電池 | |
JP6731130B1 (ja) | 非水電解液二次電池用負極活物質、負極、電池及び積層体 | |
WO2021206120A1 (ja) | リチウム二次電池及びリチウム二次電池用電解液 | |
WO2021125225A1 (ja) | 集電体一体型二次電池用負極及びリチウム二次電池 | |
WO2021206121A1 (ja) | リチウム二次電池の製造方法及びリチウム二次電池の充電方法 | |
WO2022209507A1 (ja) | リチウム二次電池用負極及びリチウム二次電池 | |
WO2020218002A1 (ja) | 非水電解質二次電池 | |
WO2022210393A1 (ja) | リチウム二次電池及びリチウム二次電池の製造方法 | |
JP7535214B2 (ja) | バッテリーシステム | |
WO2021206119A1 (ja) | リチウム二次電池 | |
JP2019129144A (ja) | 非水電解液二次電池用負極活物質、負極及び電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020506276 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19871880 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217009802 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019871880 Country of ref document: EP Effective date: 20210510 |