WO2019179219A1 - 镍钴铝三元锂离子电池正极材料、其制备方法和用途、以及锂离子电池 - Google Patents

镍钴铝三元锂离子电池正极材料、其制备方法和用途、以及锂离子电池 Download PDF

Info

Publication number
WO2019179219A1
WO2019179219A1 PCT/CN2019/070656 CN2019070656W WO2019179219A1 WO 2019179219 A1 WO2019179219 A1 WO 2019179219A1 CN 2019070656 W CN2019070656 W CN 2019070656W WO 2019179219 A1 WO2019179219 A1 WO 2019179219A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
cobalt
nickel
lithium ion
ion battery
Prior art date
Application number
PCT/CN2019/070656
Other languages
English (en)
French (fr)
Inventor
任东
方艳
沈赟
Original Assignee
浙江林奈新能源有限公司
林奈(中国)新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810232779.8A external-priority patent/CN108321381A/zh
Priority claimed from CN201810232673.8A external-priority patent/CN108470894A/zh
Priority claimed from CN201810232790.4A external-priority patent/CN108417807A/zh
Priority claimed from CN201810232809.5A external-priority patent/CN108461738A/zh
Priority claimed from CN201810232788.7A external-priority patent/CN108428871A/zh
Priority claimed from CN201810232802.3A external-priority patent/CN108461750A/zh
Priority claimed from CN201810249188.1A external-priority patent/CN108428873A/zh
Priority claimed from CN201810232778.3A external-priority patent/CN108461737A/zh
Priority claimed from CN201810232791.9A external-priority patent/CN108493415A/zh
Priority claimed from CN201810232777.9A external-priority patent/CN108461736A/zh
Priority claimed from CN201810232801.9A external-priority patent/CN108493416A/zh
Priority to JP2020516709A priority Critical patent/JP7292265B2/ja
Application filed by 浙江林奈新能源有限公司, 林奈(中国)新能源有限公司 filed Critical 浙江林奈新能源有限公司
Priority to EP19770882.9A priority patent/EP3667780A4/en
Priority to CN201980000087.3A priority patent/CN110896674A/zh
Publication of WO2019179219A1 publication Critical patent/WO2019179219A1/zh
Priority to US16/840,472 priority patent/US20200274160A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of electrode materials, in particular to a nickel cobalt aluminum ternary lithium ion battery cathode material, a preparation method and a use thereof.
  • Nickel-cobalt-aluminum ternary cathode material has the characteristics of high energy density, good low-temperature performance, good thermal stability, low cost and low toxicity to the environment. It is one of the most positive electrode materials in the field of power lithium-ion batteries. However, since the nickel-cobalt-aluminum ternary material has a strong side reaction with the organic electrolyte in a wide voltage range, the impedance of the battery during charging and discharging is increased, and the cycle stability of the material is lowered. Therefore, how to improve the cycle stability of nickel-cobalt-aluminum ternary materials has become one of the problems to be solved in the industry.
  • the purpose of the present invention is to provide a coated nickel-cobalt-aluminum ternary lithium ion battery cathode material excellent in cycle performance and a preparation method thereof, and to provide a lithium ion battery using the cathode material and the use of the cathode material.
  • the technical solution of the present invention is: a coated nickel-cobalt-aluminum ternary lithium ion battery cathode material, comprising a nickel cobalt aluminum aluminate material and coated on the surface of the nickel-cobalt aluminate material.
  • the coating material, the chemical formula of the coated nickel-cobalt-aluminum ternary lithium ion battery cathode material is as shown in formula (I):
  • a, b, x, y are mole fractions, x>0, y>0, 1-x-y>0, 1 ⁇ a ⁇ 1.1, 0 ⁇ b ⁇ 0.02;
  • M is selected from one or more of an alkali metal element, an alkaline earth metal element, a Group 13 element, a Group 14 element, a transition metal element, and a rare earth element.
  • the coating method is one of a dry method, an aqueous phase wet method, or an organic phase wet method.
  • the present invention also provides a method for preparing the coated nickel-cobalt-aluminum ternary lithium ion battery cathode material, comprising the following steps:
  • Step (1) first sintering: sintering a ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y ;
  • Step (2) the second sintering: the obtained product of the step (1) is added to a lithium source for mixing and grinding, and after being uniformly ground, sintering is performed, and after the completion of the sintering, the temperature is lowered to room temperature;
  • Step (3) the third sintering: the sintered product of the step (2) is added to the coating material for sintering to obtain a coated nickel-cobalt-aluminum ternary lithium ion battery cathode material (Li a Ni 1-xy Co x Al y ) 1-b M b O 2 , 0.03 ⁇ x ⁇ 0.15, 0.01 ⁇ y ⁇ 0.05, 1 ⁇ a ⁇ 1.1, 0 ⁇ b ⁇ 0.02.
  • the sintering time is 6 to 20 hours, and the sintering temperature is 200 to 1000 °C.
  • the lithium source is one of lithium hydroxide, lithium acetate, lithium oxalate, lithium carbonate, lithium nitrate, lithium chloride and lithium fluoride.
  • the lithium source is lithium hydroxide monohydrate
  • the lithium hydroxide monohydrate is dried to completely lose crystal water and then mixed with the sintered product of the step (1).
  • the sintering time is 8-24 hours, and the sintering temperature is 500-1000 ° C.
  • the temperature drop rate is 0.01 to 2.5 ° C / min.
  • the cooling rate is 0.02-1 ° C / min.
  • the lithium source is added in a molar ratio of Li to the ternary positive electrode material precursor (Ni + Co + Al) of from 1 to 1.1:1.
  • the sintering in the step (2) is carried out in an air or oxygen atmosphere.
  • the step (3) coating material is one selected from the group consisting of an oxide of metal M, a fluoride of metal M, or a sulfide of metal M.
  • the sintering time in the step (3) is 1 to 12 hours, and the sintering temperature is 500 to 1000 °C.
  • the purpose of the present invention is to provide a ZrO 2 -coated nickel-cobalt-aluminum ternary lithium ion battery cathode material excellent in cycle performance and a preparation method thereof, and to provide a lithium ion battery using the cathode material.
  • the technical solution of the present invention is: a ZrO 2 -coated nickel-cobalt-aluminum ternary lithium ion battery cathode material, characterized by comprising a nickel-cobalt-aluminate lithium material and coating the nickel-cobalt ZrO 2 on the surface of the lithium aluminate material, the chemical formula of the ZrO 2 -coated nickel-cobalt-aluminum ternary lithium ion battery cathode material is as shown in the formula (I):
  • a, b, x, y are mole fractions, x>0, y>0, 1-x-y>0, 1 ⁇ a ⁇ 1.1, 0 ⁇ b ⁇ 0.02.
  • x 0.15
  • y 0.035
  • a 1.035
  • b 0.0016.
  • x 0.15
  • y 0.035
  • a 1.035
  • b 0.0008.
  • the present invention also provides a method for preparing the coated nickel-cobalt-aluminum ternary lithium ion battery cathode material, comprising the following steps:
  • Step (1) the first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y ; sintering time 6-20 hours, sintering temperature 200-1000 ° C;
  • Step (2) second sintering: the obtained product of the step (1) is added to a lithium source, mixed and ground, and after being uniformly ground, sintering is performed in an air or oxygen atmosphere, and the sintering time is 8-24 hours, and the sintering temperature is 500. -1000 ° C, after sintering is completed, the temperature is lowered to room temperature at a rate of 0.01-2.5 ° C / min;
  • Step (3) the third sintering: the step (2) sintered product is added to the coating material ZrO 2 , sintered, sintering time 1-12 hours, sintering temperature 500-1000 ° C, to obtain coated nickel cobalt Aluminum ternary lithium ion battery cathode material (Li a Ni 1-xy Co x Al y ) 1-b Zr b O 2 , 0.03 ⁇ x ⁇ 0.15, 0.01 ⁇ y ⁇ 0.05, 1 ⁇ a ⁇ 1.1, 0 ⁇ b ⁇ 0.02.
  • the purpose of the present invention is to provide an Al 2 O 3 coated nickel-cobalt aluminum ternary lithium ion battery cathode material excellent in cycle performance and a preparation method thereof, and provide a lithium ion battery using the cathode material and the cathode material. use.
  • an Al 2 O 3 coated nickel cobalt aluminum ternary lithium ion battery cathode material comprising a nickel cobalt aluminum aluminate material and coated on the nickel cobalt aluminate Al 2 O 3 on the surface of the lithium material
  • the chemical formula of the Al 2 O 3 coated nickel cobalt aluminum ternary lithium ion battery cathode material is as shown in the formula (I):
  • a, b, x, y are mole fractions, x>0, y>0, 1-x-y>0, 1 ⁇ a ⁇ 1.1, 0 ⁇ b ⁇ 0.02.
  • x 0.15
  • y 0.035
  • a 1.035
  • b 0.002.
  • x 0.15
  • y 0.035
  • a 1.035
  • b 0.0055.
  • the present invention also provides a method for preparing the above Al 2 O 3 coated nickel cobalt aluminum ternary lithium ion battery cathode material, comprising the following steps:
  • Step (1) the first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y ; sintering time 6-20 hours, sintering temperature 200-1000 ° C;
  • Step (2) second sintering: the obtained product of the step (1) is added to a lithium source, mixed and ground, and after being uniformly ground, sintering is performed in an air or oxygen atmosphere, and the sintering time is 8-24 hours, and the sintering temperature is 500. -1000 ° C, after sintering is completed, the temperature is lowered to room temperature at a rate of 0.01-2.5 ° C / min;
  • Step (3) third sintering: adding the obtained product of the step (2) to the coating material Al 2 O 3 , sintering, sintering time 1-12 hours, sintering temperature 500-1000 ° C, to obtain Al 2 O 3 coated nickel-cobalt-aluminum ternary lithium ion battery cathode material (Li a Ni 1-xy Co x Al y ) 1-b Al b O 2 , 0.03 ⁇ x ⁇ 0.15, 0.01 ⁇ y ⁇ 0.05, 1 ⁇ a ⁇ 1.1, 0 ⁇ b ⁇ 0.02.
  • the purpose of the present invention is to provide a ZnO-coated nickel-cobalt-aluminum ternary lithium ion battery cathode material excellent in cycle performance and a preparation method thereof, and to provide a lithium ion battery using the cathode material and the use of the cathode material.
  • the technical solution of the present invention is: a ZnO-coated nickel-cobalt-aluminum ternary lithium ion battery cathode material, comprising a nickel-cobalt-aluminate lithium material and coated on the surface of the nickel-cobalt aluminate material ZnO, the chemical formula of the ZnO-coated nickel-cobalt-aluminum ternary lithium ion battery cathode material is as shown in formula (I):
  • a, b, x, y are mole fractions, x>0, y>0, 1-x-y>0, 1 ⁇ a ⁇ 1.1, 0 ⁇ b ⁇ 0.02.
  • x 0.15
  • y 0.035
  • a 1.035
  • b 0.0029.
  • x 0.15
  • y 0.035
  • a 1.035
  • b 0.0007.
  • the present invention also provides a method for preparing the above ZnO-coated nickel-cobalt-aluminum ternary lithium ion battery cathode material, comprising the following steps:
  • Step (1) the first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Zn y (OH) 2+y ; sintering time 6-20 hours, sintering temperature 200-1000 ° C;
  • Step (2) second sintering: the obtained product of the step (1) is added to a lithium source, mixed and ground, and after being uniformly ground, sintering is performed in an air or oxygen atmosphere, and the sintering time is 8-24 hours, and the sintering temperature is 500. -1000 ° C, after sintering is completed, the temperature is lowered to room temperature at a rate of 0.01-2.5 ° C / min;
  • Step (3) the third sintering: the step (2) sintering is added to the coating material ZnO, sintering, sintering time 1-12 hours, sintering temperature 500-1000 ° C, to obtain ZnO coated nickel cobalt Aluminum ternary lithium ion battery cathode material (Li a Ni 1-xy Co x Zn y ) 1-b Zn b O 2 , 0.03 ⁇ x ⁇ 0.15, 0.01 ⁇ y ⁇ 0.05, 1 ⁇ a ⁇ 1.1, 0 ⁇ b ⁇ 0.02.
  • the purpose of the present invention is to provide a MgO-coated nickel-cobalt-aluminum ternary lithium ion battery cathode material excellent in cycle performance and a preparation method thereof, and to provide a lithium ion battery using the cathode material and the use of the cathode material.
  • the technical solution of the present invention is: a MgO-coated nickel-cobalt-aluminum ternary lithium ion battery cathode material, including a nickel-cobalt aluminate material and coating on the surface of the nickel-cobalt aluminate material
  • the chemical formula of the MgO-coated nickel-cobalt-aluminum ternary lithium ion battery cathode material is as shown in formula (I):
  • a, b, x, y are mole fractions, x>0, y>0, 1-x-y>0, 1 ⁇ a ⁇ 1.1, 0 ⁇ b ⁇ 0.02.
  • x 0.15
  • y 0.035
  • a 1.035
  • b 0.0078.
  • x 0.15
  • y 0.035
  • a 1.035
  • b 0.0017.
  • the present invention also provides a method for preparing the above-mentioned MgO-coated nickel-cobalt-aluminum ternary lithium ion battery cathode material, comprising the following steps:
  • Step (1) the first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Mg y (OH) 2+y ; sintering time 6-20 hours, sintering temperature 200-1000 ° C;
  • Step (2) second sintering: the obtained product of the step (1) is added to a lithium source, mixed and ground, and after being uniformly ground, sintering is performed in an air or oxygen atmosphere, and the sintering time is 8-24 hours, and the sintering temperature is 500. -1000 ° C, after sintering is completed, the temperature is lowered to room temperature at a rate of 0.01-2.5 ° C / min;
  • Step (3) the third sintering: the step (2) sintered product is added to the coating material MgO, sintering, sintering time 1-12 hours, sintering temperature 500-1000 ° C, to obtain MgO coated nickel cobalt Aluminum ternary lithium ion battery cathode material (Li a Ni 1-xy Co x Mg y ) 1-b Mg b O 2 , 0.03 ⁇ x ⁇ 0.15, 0.01 ⁇ y ⁇ 0.05, 1 ⁇ a ⁇ 1.1, 0 ⁇ b ⁇ 0.02.
  • the coated nickel-cobalt-aluminum ternary lithium ion battery cathode material does not participate in the electrochemical reaction, and effectively improves the structure of the nickel-cobalt-aluminum ternary lithium ion battery cathode material.
  • the stability improves the electrochemical performance of the nickel-cobalt-aluminum ternary lithium ion battery cathode material, and the coated nickel-cobalt-aluminum ternary lithium ion battery cathode material has higher capacity retention rate and more stable cycle performance.
  • the purpose of the present invention is to provide a doped nickel-cobalt-aluminum ternary lithium ion battery cathode material with excellent cycle performance and a preparation method thereof, and improve the cycle stability of the nickel-cobalt-aluminum ternary lithium ion battery cathode material and reduce the nickel-cobalt aluminum.
  • the amount of residual alkali on the surface of the ternary lithium ion positive electrode material improves the performance of the battery core; and provides a lithium ion battery using the positive electrode material and the use of the positive electrode material.
  • the technical solution of the present invention is: a doped nickel-cobalt-aluminum ternary lithium ion positive electrode material, and the chemical formula of the doped nickel-cobalt-aluminum ternary lithium ion positive electrode material is as shown in formula (I) Show:
  • M is selected from one or more of an alkali metal element, an alkaline earth metal element, a Group 13 element, a Group 14 element, a transitional gold group element, and a rare earth element.
  • the present invention also provides a method for preparing a doped nickel-cobalt-aluminum ternary lithium ion cathode material, comprising the following steps:
  • Step (1) first sintering: sintering a ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y ;
  • Step (2) the second sintering: the step (1) sintered product is added to a lithium source for grinding, after grinding uniformly, sintering is performed, and after the completion of sintering, the temperature is lowered to room temperature;
  • the doping material metal M' compound is added in the step (1), or the doping material metal M' compound is added to the lithium source in the step (2), or in the step (1) and the step (2) Adding a dopant metal M' compound to the middle;
  • Step (3) third sintering: sintering the obtained product of the step (2) to obtain a doped nickel-cobalt-aluminum ternary lithium ion cathode material (Li a Ni 1-xy Co x Al y ) 1- b M b O 2 , wherein 0.03 ⁇ x ⁇ 0.15, 0.01 ⁇ y ⁇ 0.05, 1 ⁇ a ⁇ 1.05, and 0 ⁇ b ⁇ 0.005.
  • the sintering time is 6-20 hours, and the sintering temperature is 200-1000 °C.
  • the lithium source is one of lithium hydroxide, lithium acetate, lithium oxalate, lithium carbonate, lithium nitrate, lithium chloride and lithium fluoride.
  • the lithium source is lithium hydroxide monohydrate
  • the lithium hydroxide monohydrate is dried to completely lose crystal water and then mixed with the sintered product of the step (1).
  • the sintering time is 8 to 24 hours, and the sintering temperature is 500 to 1000 °C.
  • the temperature drop rate is 0.01 to 2.5 ° C / min.
  • the temperature drop rate is 0.02 to 1 ° C / min.
  • the lithium source is added in a molar ratio of Li to the ternary positive electrode material precursor (Ni + Co + Al) of from 1 to 1.1:1.
  • the sintering in the step (2) is carried out in an air or oxygen atmosphere.
  • the step (2) dopant material is selected from the group consisting of an oxide of a metal M, a fluoride of a metal M, a sulfide of a metal M, a telluride of a metal M, a selenide of a metal M, a telluride of a metal M, One or more of a phosphide of the metal M or a composite oxide of the metal M.
  • the step (3) has a sintering time of 1 to 12 hours and a sintering temperature of 500 to 1000 °C.
  • the purpose of the present invention is to provide a Ti-doped nickel-cobalt-aluminum ternary lithium ion battery cathode material with excellent cycle performance and a preparation method thereof, thereby improving the cycle stability of the nickel-cobalt-aluminum ternary material and reducing the nickel-cobalt-aluminum ternary lithium
  • the amount of residual alkali on the surface of the positive electrode material of the ion battery improves the performance of the battery; and provides a lithium ion battery using the positive electrode material and the use of the positive electrode material.
  • the technical solution of the present invention is: a Ti-doped nickel-cobalt-aluminum ternary lithium ion battery cathode material, and a chemical formula of the Ti-doped nickel-cobalt-aluminum ternary lithium ion battery cathode material (I):
  • x 0.15
  • y 0.035
  • a 1.035
  • b 0.0007.
  • x 0.15
  • y 0.035
  • a 1.035
  • b 0.0019.
  • the present invention also provides a method for preparing a Ti-doped nickel-cobalt-aluminum ternary lithium ion battery cathode material, comprising the following steps:
  • Step (1) first sintering: sintering a ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y ;
  • Step (2) the second sintering: the step (1) sintered product is added to a lithium source for grinding, after grinding uniformly, sintering is performed, and after the completion of sintering, the temperature is lowered to room temperature;
  • the doping material is added in the step (1), or mixed and ground with the lithium source in the step (2), or separately added in the step (1) and the step (2);
  • Step (3) third sintering: sintering the obtained product of the step (2) to obtain a Ti-doped nickel-cobalt-aluminum ternary lithium ion battery cathode material (Li a Ni 1-xy Co x Al y ) 1-b Ti b O 2 , wherein 0.03 ⁇ x ⁇ 0.15, 0.01 ⁇ y ⁇ 0.05, 1 ⁇ a ⁇ 1.05, and 0 ⁇ b ⁇ 0.005.
  • the step (2) dopant material is selected from the group consisting of an oxide of a metal Ti, a fluoride of a metal Ti, a sulfide of a metal Ti, a telluride of a metal Ti, a selenide of a metal Ti, a telluride of a metal Ti, One or more of a phosphide of metal Ti or a composite oxide of metal Ti.
  • the purpose of the present invention is to provide an Al-doped nickel-cobalt-aluminum ternary lithium ion battery cathode material and a preparation method thereof, improve the cycle stability of a nickel-cobalt-aluminum ternary lithium ion battery cathode material, and reduce nickel-cobalt-aluminum ternary lithium The amount of residual alkali on the surface of the positive electrode material of the ion battery, and the use of the lithium ion battery using the positive electrode material and the use of the positive electrode material.
  • the technical solution of the present invention is: an Al-doped nickel-cobalt-aluminum ternary lithium ion battery cathode material, and the Al-doped nickel-cobalt-aluminum ternary lithium ion battery cathode material
  • the chemical formula is as shown in formula (I):
  • x 0.15
  • y 0.035
  • a 1.035
  • b 0.016.
  • x 0.15
  • y 0.035
  • a 1.035
  • b 0.003.
  • the present invention also provides a method for preparing an Al-doped nickel-cobalt-aluminum ternary lithium ion battery cathode material, comprising the following steps:
  • Step (1) first sintering: sintering a ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y ;
  • Step (2) the second sintering: the step (1) sintered product is added to a lithium source for grinding, after grinding uniformly, sintering is performed, and after the completion of sintering, the temperature is lowered to room temperature;
  • the doping material is added in the step (1), or mixed and ground with the lithium source in the step (2), or separately added in the step (1) and the step (2);
  • Step (3) third sintering: sintering the obtained product of the step (2) to obtain an Al-doped nickel-cobalt-aluminum ternary lithium ion battery cathode material (Li a Ni 1-xy Co x Al y ) 1-b Al b O 2 , wherein 0.03 ⁇ x ⁇ 0.15, 0.01 ⁇ y ⁇ 0.05, 1 ⁇ a ⁇ 1.05, and 0 ⁇ b ⁇ 0.005.
  • the step (2) dopant material is selected from the group consisting of an oxide of a metal Al, a fluoride of a metal Al, a sulfide of a metal Al, a telluride of a metal Al, a selenide of a metal Al, a telluride of a metal Al, One or more of a phosphide of metal Al or a composite oxide of metal Al.
  • the purpose of the present invention is to provide a Mg-doped nickel-cobalt-aluminum ternary lithium ion battery cathode material and a preparation method thereof, improve the cycle stability of the nickel-cobalt-aluminum ternary material, and reduce the surface residual alkali of the nickel-cobalt-aluminum ternary cathode material. And provide a lithium ion battery using the positive electrode material and the use of the positive electrode material.
  • the technical solution of the present invention is: a Mg-doped nickel-cobalt-aluminum ternary positive electrode material, and the chemical formula of the Mg-doped nickel-cobalt-aluminum ternary positive electrode material is as shown in formula (I):
  • x 0.15
  • y 0.035
  • a 1.035
  • b 0.0017.
  • x 0.15
  • y 0.035
  • a 1.035
  • b 0.0025.
  • the present invention also provides a method for preparing a Mg-doped nickel-cobalt-aluminum ternary positive electrode material, comprising the following steps:
  • Step (1) first sintering: ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2 + y sintering;
  • Step (2) the second sintering: the step (1) sintered product is added to a lithium source for grinding, after grinding uniformly, sintering is performed, and after the completion of sintering, the temperature is lowered to room temperature;
  • the doping material is added in the step (1), or mixed and ground with the lithium source in the step (2), or separately added in the step (1) and the step (2);
  • Step (3) third sintering: sintering the obtained product of the step (2) to obtain a Mg-doped nickel-cobalt-aluminum ternary cathode material (Li a Ni 1-xy Co x Al y ) 1-b Mg b O 2 , wherein 0.03 ⁇ x ⁇ 0.15, 0.01 ⁇ y ⁇ 0.05, 1 ⁇ a ⁇ 1.05, and 0 ⁇ b ⁇ 0.005.
  • a Mg-doped nickel-cobalt-aluminum ternary cathode material Li a Ni 1-xy Co x Al y
  • Step (3) third sintering: sintering the obtained product of the step (2) to obtain a Mg-doped nickel-cobalt-aluminum ternary cathode material (Li a Ni 1-xy Co x Al y ) 1-b Mg b O 2 , wherein 0.03 ⁇ x ⁇ 0.15, 0.01 ⁇
  • the step (2) dopant material is selected from the group consisting of an oxide of a metal Mg, a fluoride of a metal Mg, a sulfide of a metal Mg, a telluride of a metal Mg, a selenide of a metal Mg, a telluride of a metal Mg, One or more of a metal phosphide or a metal Mg composite oxide.
  • the doped nickel-cobalt-aluminum ternary lithium ion cathode material provided by the invention effectively improves the structural stability of the nickel-cobalt-aluminum ternary lithium ion cathode material, and reduces the occurrence of the cathode material and the organic electrolyte of the nickel-cobalt-aluminum ternary lithium ion battery. Strong side reaction, reducing the impedance of the battery during charge and discharge, improving the electrochemical performance of the nickel-cobalt-aluminum ternary lithium ion cathode material, and the doped nickel-cobalt-aluminum ternary lithium ion cathode material has higher capacity retention. Rate and more stable cycle performance.
  • the doped nickel-cobalt-aluminum ternary lithium ion cathode material provided by the invention is doped with a metal-nickel-cobalt-aluminum ternary lithium ion cathode material, thereby reducing the active lithium content on the surface of the nickel-cobalt-aluminum ternary lithium ion cathode material.
  • the alkaline substance on the surface of the ternary lithium ion positive electrode material attacks the binder in the positive electrode glue, avoids the formation of double bonds by the binder, produces glue, avoids causing the jelly of the slurry, improves the coating effect, and improves the performance of the battery core.
  • the purpose of the present invention is to provide a doped coated nickel-cobalt-aluminum ternary lithium ion battery cathode material and a preparation method thereof, improve the cycle stability of the nickel-cobalt-aluminum ternary lithium ion battery cathode material, and reduce the nickel-cobalt-aluminum ternary The amount of residual alkali on the surface of the positive electrode material of the lithium ion battery, and the use of the lithium ion battery using the positive electrode material and the use of the positive electrode material.
  • the technical solution of the present invention is: a doped coated nickel-cobalt-aluminum ternary lithium ion battery cathode material, and a chemical formula of the doped coated nickel-cobalt-aluminum ternary lithium ion battery cathode material As shown in formula (I):
  • M, M' is selected from one or more of an alkali metal element, an alkaline earth metal element, a Group 13 element, a Group 14 element, a transition metal element, and a rare earth element.
  • M is Ti
  • M' is Zr
  • x 0.15
  • y 0.035
  • a 1.035
  • b1 0.0007
  • b2 0.0011.
  • the coating method is one of a dry method, an aqueous phase wet method, or an organic phase wet method.
  • the present invention also provides a method for preparing the above doped coated nickel-cobalt-aluminum ternary lithium ion battery cathode material, comprising the following steps:
  • Step (1) first sintering: sintering a ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y ;
  • Step (2) the second sintering: the step (1) sintered product is added to a lithium source for grinding, after grinding uniformly, sintering is performed, and after the completion of sintering, the temperature is lowered to room temperature;
  • the doping material metal M' compound is added in the step (1), or the doping material metal M' compound is added to the lithium source in the step (2), or in the step (1) and the step (2) Adding a dopant metal M' compound to the middle;
  • the sintering time is 6 to 20 hours, and the sintering temperature is 200 to 1000 °C.
  • the lithium source is one of lithium hydroxide, lithium acetate, lithium oxalate, lithium carbonate, lithium nitrate, lithium chloride and lithium fluoride.
  • the lithium source is lithium hydroxide monohydrate
  • the lithium hydroxide monohydrate is dried to completely lose crystal water and then mixed with the sintered product of the step (1).
  • the sintering time is 8-24 hours, and the sintering temperature is 500-1000 ° C.
  • the temperature drop rate is 0.01 to 2.5 ° C / min.
  • the temperature drop rate is 0.02 to 1 ° C / min.
  • the lithium source is added in a molar ratio of Li to the ternary positive electrode material precursor (Ni + Co + Al) of from 1 to 1.1:1.
  • the sintering in the step (2) is carried out in an air or oxygen atmosphere.
  • the step (2) dopant material is selected from the group consisting of an oxide of a metal M, a fluoride of a metal M, a sulfide of a metal M, a telluride of a metal M, a selenide of a metal M, a telluride of a metal M, One or more of a phosphide of the metal M or a composite oxide of the metal M.
  • the step (3) coating material is selected from the group consisting of an oxide of a metal M', a fluoride of a metal M', a sulfide of a metal M', a telluride of a metal M', a selenide of a metal M', a metal One or more of a halide of M', a phosphide of metal M' or a composite oxide of metal M'.
  • the sintering time in the step (3) is 1 to 12 hours, and the sintering temperature is 500 to 1000 °C.
  • the present invention provides a doped coated nickel-cobalt aluminum ternary lithium ion battery cathode material by doping metal ions in a ternary material lattice of a nickel-cobalt-aluminum ternary lithium ion battery cathode material.
  • the coating material is easy to react on the surface of the host material
  • the higher position is preferentially generated, which can effectively eliminate the site with higher reactivity on the surface of the host material, and further stabilize the structure of the host material; the stability of the material structure helps to reduce the reactivity in the battery system of the positive electrode material.
  • the doped coated nickel-cobalt-aluminum ternary lithium ion battery cathode material provided by the invention has higher capacity retention rate and more stable cycle property can.
  • the purpose of the present invention is to provide a method for preparing a nickel-cobalt-aluminum ternary lithium ion battery cathode material, and to reduce the amount of residual alkali on the surface of the nickel-cobalt-aluminum ternary lithium ion battery cathode material.
  • the technical solution of the present invention is: a method for preparing a nickel-cobalt-aluminum ternary lithium ion battery positive electrode material, comprising the following steps:
  • Step (1) first sintering: sintering a ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y ;
  • Step (2) the second sintering: the obtained product of the step (1) is added to a lithium source for mixing and grinding, and after being uniformly ground, sintering is performed in an air or oxygen atmosphere, and after the completion of the sintering, the temperature is lowered to room temperature;
  • Step (3) the third sintering: the obtained product of the step (2) is sintered, and then the sintered product is washed;
  • Step (4), fourth sintering The obtained product is washed after the step (3) is washed to obtain a target product.
  • the sintering time is 6 to 20 hours, and the sintering temperature is 200 to 1000 °C.
  • the lithium source is one of lithium hydroxide, lithium acetate, lithium oxalate, lithium carbonate, lithium nitrate, lithium chloride and lithium fluoride.
  • the lithium source is lithium hydroxide monohydrate
  • the lithium hydroxide monohydrate is dried to completely lose crystal water and then mixed with the sintered product of the step (1).
  • the sintering time is 8-24 hours, and the sintering temperature is 500-1000 ° C.
  • the cooling rate is 0.01-2.5 ° C / min; or in the step (2), the cooling rate is 0.02-1 ° C / min.
  • the lithium source is added in a molar ratio of Li to the ternary positive electrode material precursor (Ni + Co + Al) of from 1 to 1.1:1.
  • the sintering time in the step (3) is 1 to 12 hours, and the sintering temperature is 500 to 1000 °C.
  • the step (3) is cleaned by flushing with carbon dioxide gas or washing with carbonated water.
  • the carbon dioxide gas stream is washed, and the carbonated water cleaning can improve the cleaning efficiency and effectively reduce the surface residual amount.
  • the sintering time in the step (4) is 0.5 to 12 hours, and the sintering temperature is 100 to 1000 °C.
  • the present invention cleans the nickel-cobalt-aluminum ternary lithium ion battery cathode material, and the surface residual amount of the obtained nickel-cobalt-aluminum ternary lithium ion battery cathode material is effectively reduced, and the anode material is reduced during the configuration of the cathode material.
  • the alkaline substance on the surface of the positive electrode material of the nickel-cobalt-aluminum ternary lithium ion battery attacks the binder in the positive electrode glue, avoids the formation of double bonds by the binder, improves the coating effect, and helps to improve the performance of the battery core.
  • the preparation method of the invention has simple process, controllable process and easy industrialization and mass production.
  • the present invention also provides a lithium ion battery comprising a positive electrode, a negative electrode, an electrolyte and a separator, the positive electrode comprising the above-mentioned nickel-cobalt-aluminum ternary lithium ion battery cathode material or prepared by the above method.
  • Nickel-cobalt-aluminum ternary lithium-ion battery cathode material is provided.
  • the lithium ion battery provided by the invention adopts the nickel cobalt aluminum ternary lithium ion battery cathode material provided by the invention or the nickel cobalt aluminum ternary lithium ion battery cathode material prepared by the method provided by the invention, and the lithium provided by the invention
  • the ion battery has the advantages of good cycle performance, long service life, high capacity retention rate, high tap density, small volume and light weight.
  • the present invention also provides a nickel-cobalt-aluminum ternary lithium ion battery cathode material or a nickel-cobalt-aluminum ternary lithium ion battery cathode material prepared by the above method in preparing a lithium ion battery and an electron.
  • a nickel-cobalt-aluminum ternary lithium ion battery cathode material or a nickel-cobalt-aluminum ternary lithium ion battery cathode material prepared by the above method in preparing a lithium ion battery and an electron.
  • the nickel cobalt aluminum ternary lithium ion battery cathode material provided by the invention or the nickel cobalt aluminum ternary lithium ion battery cathode material prepared by the method of the invention is used for lithium ion battery, electronic product energy storage, industrial storage and energy storage, Among electric vehicles and electric bicycle power supplies, products related to lithium ion batteries, electronic product energy storage, industrial storage and energy storage, electric vehicles and electric bicycle power supplies have long service life, long battery life, short charging time and weight. Light weight, power and other advantages.
  • Example 1 is a comparative diagram of a cycle performance test of a nickel-cobalt-aluminum ternary cathode material coated with ZrO 2 and an uncoated nickel-cobalt-aluminum ternary cathode material prepared in Comparative Example 1 according to Example 1 of the present invention;
  • FIG. 2 is a comparison chart of cycle performance tests of a nickel-cobalt-aluminum ternary cathode material coated with ZrO 2 and an uncoated nickel-cobalt-aluminum ternary cathode material prepared in Comparative Example 2;
  • Example 3 is a comparison chart of cycle performance tests of an uncoated nickel-cobalt-aluminum ternary positive electrode material prepared by using Al 2 O 3 coated with Al 2 O 3 and an uncoated nickel-cobalt aluminum ternary positive electrode material prepared in Example 1;
  • Example 4 is a comparison chart of cycle performance tests of an uncoated nickel-cobalt-aluminum ternary positive electrode material prepared by using Al 2 O 3 coated with Al 2 O 3 and an uncoated nickel-cobalt aluminum ternary positive electrode material prepared in Example 2;
  • Example 5 is a comparative diagram of a cycle performance test of a nickel-cobalt-aluminum ternary cathode material coated with ZnO and an uncoated nickel-cobalt-aluminum ternary cathode material prepared in Comparative Example 1 according to Example 5 of the present invention;
  • Example 6 is a comparative diagram of a cycle performance test of a nickel-cobalt-aluminum ternary cathode material coated with ZnO prepared in Example 6 and an uncoated nickel-cobalt-aluminum ternary cathode material prepared in Comparative Example 2;
  • Example 7 is a comparative diagram of a cycle performance test of a nickel-cobalt-aluminum ternary cathode material coated with MgO and an uncoated nickel-cobalt-aluminum ternary cathode material prepared in Comparative Example 1 according to Example 7 of the present invention;
  • Example 9 is a Ti-doped nickel-cobalt-aluminum ternary lithium ion cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9993 Ti 0.0007 O 2 prepared according to Example 9 of the present invention and an undoped nickel-cobalt prepared in Comparative Example 1. Comparison chart of cycle performance test of aluminum ternary lithium ion cathode material;
  • Example 10 is a Ti-doped nickel-cobalt-aluminum ternary lithium ion cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9981 Ti 0.0019 O 2 prepared according to Example 10 of the present invention, and undoped nickel-cobalt prepared in Comparative Example 2; Comparison chart of cycle performance test of aluminum ternary lithium ion cathode material;
  • Example 11 is an Al-doped nickel-cobalt-aluminum ternary lithium ion cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9984 Al 0.0016 O 2 prepared according to Example 11 of the present invention, and undoped nickel-cobalt prepared in Comparative Example 1. Comparison chart of cycle performance test of aluminum ternary lithium ion cathode material;
  • Example 12 is an undoped nickel-cobalt prepared by Al-doped nickel-cobalt-aluminum ternary lithium ion cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.997 Al 0.003 O 2 and Comparative Example 2 prepared in Example 12 of the present invention. Comparison chart of cycle performance test of aluminum ternary lithium ion cathode material;
  • Example 14 is an undoped nickel-cobalt prepared by the Mg-doped nickel-cobalt-aluminum ternary lithium ion cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9975 Mg 0.0025 O 2 and Comparative Example 2 prepared in Example 14 of the present invention. Comparison chart of cycle performance test of aluminum ternary lithium ion cathode material;
  • Example 15 is a Ti-doped, ZrO 2 coated nickel-cobalt-aluminum ternary lithium ion battery cathode material prepared in Example 15 of the present invention, and an undoped uncoated nickel-cobalt aluminum ternary lithium ion prepared in Comparative Example 1.
  • the preparation method of the nickel-cobalt-aluminum ternary lithium ion battery cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9984 Zr 0.0016 O 2 coated in this embodiment comprises the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 500 ° C for 10 hours;
  • Step (2) the second sintering: after the lithium hydroxide monohydrate is dried to completely lose the crystal water, and the sintered product of the step (1) is mixed in proportion, the amount of lithium hydroxide monohydrate is hydrogen monohydrate.
  • the molar ratio of Li in the lithium oxide to the ternary positive electrode material precursor (Ni+Co+Al) is 1.035:1, and the mixture is uniformly ground, and then sintered in an oxygen atmosphere, and the temperature is raised to 715 ° C for 16.5 hours, and then 0.3 ° C. /min's cooling rate is reduced to room temperature;
  • Step (3) the third sintering: the step (2) sintering the resultant was mixed with the coating material ZrO 2, ZrO 2 was added in an amount of ZrO 2 with a trihydric Zr precursor positive electrode material (Ni + The molar ratio of Co+Al) is 0.0016:0.9984, and the temperature is raised to 650 ° C for 3.5 hours, and the temperature is lowered to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9984 Zr 0.0016 O 2 .
  • the ICP elemental analysis test result indicates that Ni
  • the molar percentages of each of Co, Al, and Zr are as follows:
  • the preparation method of the nickel-cobalt-aluminum ternary lithium ion battery cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9992 Zr 0.0008 O 2 coated in this embodiment comprises the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 600 ° C for 6.5 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the crystal water, and mixing with the sintering product of the step (1), the amount of lithium hydroxide monohydrate is lithium hydroxide monohydrate.
  • the molar ratio of (Ni+Co+Al) in the precursor of Li and the ternary positive electrode material is 1.035:1, and after mixing and grinding uniformly, sintering is performed in an oxygen atmosphere, and the temperature is raised to 775 ° C for 8 hours, and then 0.3 ° C / The cooling rate of min is reduced to room temperature;
  • Step (3) the third sintering: the step (2) sintering the resultant coating material was added to ZrO 2, ZrO 2 was added in an amount of ZrO 2 with a trihydric Zr precursor positive electrode material (Ni + Co +Al) molar ratio is 0.0008:0.9992, the temperature is raised to 615 ° C for 5 hours, and the temperature is lowered to room temperature, the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9992 Zr 0.0008 O 2 is obtained , and the ICP elemental analysis test result indicates Ni,
  • the molar percentages of each of Co, Al, and Zr are as follows:
  • the preparation method of the nickel-cobalt-aluminum ternary lithium ion battery cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.998 Al 0.002 O 2 coated in this embodiment comprises the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 500 ° C for 10 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the crystal water, and mixing with the sintering product of the step (1), the amount of lithium hydroxide monohydrate is lithium hydroxide monohydrate.
  • the molar ratio of Li (Ni+Co+Al) in the precursor of Li and the ternary positive electrode material is 1.035:1, and after mixing and grinding uniformly, sintering is performed in an oxygen atmosphere, and the temperature is raised to 715 ° C for 16.5 hours, and then 0.3 ° C / The cooling rate of min is reduced to room temperature;
  • Step (3) the third sintering: the step (2) was added to the resulting sinter the coating material Al 2 O 3, Al 2 O 3 is added in an amount of Al 2 O 3 Al in the positive electrode material precursor with a trihydric
  • the molar ratio of (Ni+Co+Al) in the body is 0.002:0.998, and the temperature is raised to 650 ° C for 3.5 hours, and the temperature is lowered to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.998 Al 0.002 O 2
  • the preparation method of the nickel-cobalt-aluminum ternary lithium ion battery cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9945 Al 0.0055 O 2 coated in this embodiment comprises the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 600 ° C for 6.5 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the crystal water, and mixing with the sintering product of the step (1), the amount of lithium hydroxide monohydrate is lithium hydroxide monohydrate.
  • the molar ratio of Li to the ternary positive electrode material precursor (Ni+Co+Al) is 1.035:1, and the mixture is uniformly ground, sintered in an oxygen atmosphere, and heated to 775 ° C for 8 hours, then at 0.3 ° C / min. The cooling rate is reduced to room temperature;
  • Step (3) the third sintering: the step (2) was added to the resulting sinter the coating material Al 2 O 3, Al 2 O 3 is added in an amount of Al 2 O 3 Al in the positive electrode material precursor with a trihydric
  • the molar ratio of the body (Ni+Co+Al) is 0.0055:0.9945, and the temperature is raised to 615 ° C for 5 hours, and the temperature is lowered to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9945 Al 0.0055 O 2
  • ICP elemental analysis Tests have shown that the molar percentages of each of Ni, Co, and Al are as follows:
  • the preparation method of the nickel-cobalt-aluminum ternary lithium ion battery cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9971 Zn 0.0029 O 2 coated in this embodiment comprises the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 500 ° C for 10 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the crystal water, and mixing with the sintering product of the step (1), the amount of lithium hydroxide monohydrate is lithium hydroxide monohydrate.
  • the molar ratio of Li to the ternary positive electrode material precursor (Ni+Co+Al) is 1.035:1, and the mixture is uniformly ground, and then sintered in an oxygen atmosphere, and the temperature is raised to 715 ° C for 16.5 hours, and then 0.3 ° C / min. The cooling rate is reduced to room temperature;
  • Step (3) the third sintering: the obtained product of the step (2) is added to the coating material ZnO, and the amount of ZnO added is Zn in the ZnO and the precursor of the ternary positive electrode material (Ni+Co+Al)
  • the molar ratio is 0.0029:0.9971
  • the temperature is raised to 650 ° C for 3.5 hours, and the temperature is lowered to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9971 Zn 0.0029 O 2 .
  • the ICP elemental analysis test indicates Ni, Co, Al,
  • the molar percentage of each metal of Zn is as follows:
  • the preparation method of the nickel-cobalt-aluminum ternary lithium ion battery cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9993 Zn 0.0007 O 2 coated in this embodiment comprises the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 600 ° C for 6.5 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the crystal water, and mixing with the sintering product of the step (1), the amount of lithium hydroxide monohydrate is lithium hydroxide monohydrate.
  • the molar ratio of (Ni+Co+Al) in the precursor of Li and the ternary positive electrode material is 1.035:1, and after mixing and grinding uniformly, sintering is performed in an oxygen atmosphere, and the temperature is raised to 775 ° C for 8 hours, and then 0.3 ° C / The cooling rate of min is reduced to room temperature;
  • Step (3) the third sintering: the obtained product of the step (2) is added to the coating material ZnO, and the amount of ZnO added is Zn in the ZnO and the precursor of the ternary positive electrode material (Ni+Co+Al)
  • the molar ratio is 0.0007:0.9993, and the temperature is raised to 615 ° C for 5 hours, and the temperature is lowered to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9993 Zn 0.0007 O 2 .
  • the ICP elemental analysis test indicates Ni, Co, Al,
  • the molar percentage of each metal of Zn is as follows:
  • the preparation method of the nickel-cobalt-aluminum ternary lithium ion battery cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9922 Mg 0.0078 O 2 coated in this embodiment comprises the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 500 ° C for 10 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the crystal water, and mixing with the sintering product of the step (1), the amount of lithium hydroxide monohydrate is lithium hydroxide monohydrate.
  • the molar ratio of Li (Ni+Co+Al) in the precursor of Li and the ternary positive electrode material is 1.035:1.
  • the sintering is carried out, the temperature is raised to 715 ° C for 16.5 hours, and then the temperature is lowered by 0.3 ° C / min. To room temperature;
  • Step (3) third sintering: the obtained product of the step (2) is added to the coating material MgO, and the amount of MgO added is Mg in the MgO and the precursor of the ternary positive electrode material (Ni+Co+Al).
  • the molar ratio is 0.0078:0.9922, the temperature is raised to 650 ° C for 3.5 hours, and the temperature is lowered to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9922 Mg 0.0078 O 2 .
  • the ICP elemental analysis test indicates Ni, Co, Al,
  • the molar percentage of each metal of Mg is as follows:
  • the preparation method of the nickel-cobalt-aluminum ternary lithium ion battery cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9983 Mg 0.0017 O 2 coated in this embodiment comprises the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 600 ° C for 6.5 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the crystal water, and mixing with the sintering product of the step (1), the amount of lithium hydroxide monohydrate is lithium hydroxide monohydrate.
  • the molar ratio of (Ni+Co+Al) in the precursor of Li and the ternary positive electrode material is 1.035:1, and after mixing and grinding uniformly, sintering is performed in an oxygen atmosphere, and the temperature is raised to 775 ° C for 8 hours, and then 0.3 ° C / The cooling rate of min is reduced to room temperature;
  • Step (3) third sintering: the obtained product of the step (2) is added to the coating material MgO, and the amount of MgO added is Mg in the MgO and the precursor of the ternary positive electrode material (Ni+Co+Al).
  • the molar ratio is 0.0017:0.9983, and the temperature is raised to 615 ° C for 5 hours, and the temperature is lowered to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9983 Mg 0.0017 O 2 .
  • the ICP elemental analysis test indicates Ni, Co, Al,
  • the molar percentage of each metal of Mg is as follows:
  • a method for preparing a Ti-doped nickel-cobalt-aluminum ternary lithium ion cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9993 Ti 0.0007 O 2 includes the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 500 ° C for 10 hours;
  • Step (2) the second sintering: after the lithium hydroxide monohydrate is dried to completely lose the crystal water, and the mixture of the step (1) and the doped material TiO 2 are mixed and ground, and lithium hydroxide monohydrate is used.
  • the amount of added TiO 2 is TiO 2 and Ti cathode material precursor with a trihydric
  • the medium (Ni+Co+Al) molar ratio is 0.0007:0.9993, after being uniformly ground, sintering is performed, the temperature is raised to 715 ° C for 16.5 hours, and then the temperature is lowered to room temperature at a temperature decreasing rate of 0.3 ° C / min;
  • Step (3) the third sintering: the step (2) is sintered to obtain a product which is heated to 650 ° C for 3.5 hours, and is cooled to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9993 Ti 0.0007 O 2 , ICP elemental analysis test shows that the molar percentage of each metal of Ni, Co, Al, Ti is as follows:
  • the method for preparing a Ti-doped nickel-cobalt-aluminum ternary lithium ion cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9981 Ti 0.0019 O 2 provided in this embodiment comprises the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 600 ° C for 6.5 hours;
  • Step (2) the second sintering: after the lithium hydroxide monohydrate is dried to completely lose the crystal water, and the mixture of the step (1) and the doped material TiO 2 are mixed and ground, and lithium hydroxide monohydrate is used.
  • the amount of added TiO 2 is TiO 2 and Ti cathode material precursor with a trihydric
  • the medium (Ni+Co+Al) molar ratio is 0.0019:0.9981, after being uniformly polished, sintering is performed, the temperature is raised to 775 ° C for 8 hours, and then the temperature is lowered to room temperature at a temperature decreasing rate of 0.3 ° C / min;
  • Step (3) the third sintering: the step (2) is sintered to obtain a product which is heated to 615 ° C for 5 hours, and is cooled to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9981 Ti 0.0019 O 2 , ICP elemental analysis test shows that the molar percentage of each metal of Ni, Co, Al, Ti is as follows:
  • This embodiment provides a method for preparing an Al-doped nickel-cobalt-aluminum ternary lithium ion cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9984 Al 0.0016 O 2 , comprising the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 500 ° C for 10 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the water of crystallization, mixing with the sintered product of the step (1) and the doping material Al 2 O 3 , and oxidizing the monohydrate an amount of lithium hydroxide monohydrate lithium Li with a trihydric the positive electrode material precursor (Ni + Co + Al) molar ratio of 1.035: 1, Al 2 O 3 is added in an amount of the Al 2 O 3 and Al
  • the molar ratio of (Ni+Co+Al) in the precursor of the ternary positive electrode material is 0.0016:0.9984.
  • Step (3) the third sintering: the step (2) is sintered to obtain a product which is heated to 650 ° C for 3.5 hours, and is cooled to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9984 Al 0.0016 O 2 , ICP elemental analysis test shows that the molar percentage of each metal of Ni, Co, Al is as follows:
  • the method for preparing an Al-doped nickel-cobalt-aluminum ternary lithium ion cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.997 Al 0.003 O 2 provided in this embodiment comprises the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 600 ° C for 6.5 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the water of crystallization, mixing with the sintered product of the step (1) and the doping material Al 2 O 3 , and oxidizing the monohydrate an amount of lithium hydroxide monohydrate lithium Li with a trihydric the positive electrode material precursor (Ni + Co + Al) molar ratio of 1.035: 1, Al 2 O 3 is added in an amount of the Al 2 O 3 and Al The molar ratio of (Ni+Co+Al) in the precursor of the ternary positive electrode material is 0.003:0.997. After the grinding is uniform, sintering is performed, the temperature is raised to 775 ° C for 8 hours, and then the temperature is lowered to room temperature at a temperature decreasing rate of 0.3 ° C / min;
  • Step (3) the third sintering: the product obtained by the step (2) is sintered to a temperature of 615 ° C for 5 hours, and is cooled to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.997 Al 0.003 O 2 , ICP elemental analysis test shows that the molar percentage of each metal of Ni, Co, Al is as follows:
  • This embodiment provides a method for preparing a Mg-doped nickel-cobalt-aluminum ternary lithium ion cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9983 Mg 0.0017 O 2 , comprising the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 500 ° C for 10 hours;
  • Step (2) the second sintering: after the lithium hydroxide monohydrate is dried to completely lose the crystal water, and the mixture of the step (1) and the doping material MgO are mixed and ground, and the amount of lithium hydroxide monohydrate is used.
  • the molar ratio of Li (Ni + Co + Al) in the precursor of Li to the ternary positive electrode material in lithium hydroxide monohydrate is 1.035:1, and the amount of MgO added is Mg in the MgO and the precursor of the ternary positive electrode material (Ni +Co+Al) molar ratio is 0.0017:0.9983, after grinding uniformly, sintering is carried out, the temperature is raised to 715 ° C for 16.5 hours, and then the temperature is lowered to room temperature at a temperature decreasing rate of 0.3 ° C / min;
  • Step (3) the third sintering: the step (2) is sintered to obtain a product which is heated to 650 ° C for 3.5 hours, and is cooled to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9983 Mg 0.0017 O 2 , ICP elemental analysis test shows that the molar percentage of each metal of Ni, Co, Al, Mg is as follows:
  • the preparation method of the Mg-doped nickel-cobalt-aluminum ternary lithium ion cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9975 Mg 0.0025 O 2 provided in this embodiment comprises the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 600 ° C for 6.5 hours;
  • Step (2) the second sintering: after the lithium hydroxide monohydrate is dried to completely lose the crystal water, and the mixture of the step (1) and the doping material MgO are mixed and ground, and the amount of lithium hydroxide monohydrate is used.
  • the molar ratio of Li (Ni + Co + Al) in the precursor of Li to the ternary positive electrode material in lithium hydroxide monohydrate is 1.035:1, and the amount of MgO added is Mg in the MgO and the precursor of the ternary positive electrode material (Ni +Co+Al) molar ratio is 0.0025:0.9975, after grinding uniformly, sintering, heating to 775 ° C for 8 hours, and then to 0.3 ° C / min cooling rate to room temperature;
  • Step (3) the third sintering: the step (2) is sintered to obtain a product which is heated to 615 ° C for 5 hours, and is cooled to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9975 Mg 0.0025 O 2 , ICP elemental analysis test shows that the molar percentage of each metal of Ni, Co, Al, Mg is as follows:
  • the preparation method of the doped coated nickel-cobalt-aluminum ternary lithium ion battery cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9982 Ti 0.0007 Zr 0.0011 O 2 in the present embodiment comprises the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 500 ° C for 10 hours;
  • Step (2) the second sintering: after the lithium hydroxide monohydrate is dried to completely lose the water of crystallization, mixed with the sintered product of the step (1) and the doped material TiO 2 , the amount of lithium hydroxide monohydrate is used.
  • the molar ratio of Li to the ternary positive electrode material precursor (Ni+Co+Al) in the lithium hydroxide monohydrate is 1.035:1, and the doping material TiO 2 is added as the Ti and ternary cathode material in the TiO 2 .
  • the molar ratio of (Ni+Co+Al) in the precursor is 0.0007:0.9982. After mixing and grinding uniformly, the mixture is sintered in an oxygen atmosphere, heated to 715 ° C for 16.5 hours, and then lowered to room temperature at a temperature decreasing rate of 0.3 ° C / min;
  • Step (3) the third sintering: the step (2) sintering the resultant coating material was added to ZrO 2, ZrO 2 was added in an amount of ZrO 2 with a trihydric Zr precursor positive electrode material (Ni + Co The molar ratio of +Al) is 0.0011:0.9982, and the temperature is raised to 650 ° C for 3.5 hours, and the temperature is lowered to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9982 Ti 0.0007 Zr 0.0011 O 2 , and the ICP elemental analysis test indicates that Ni The molar percentage of each metal of Co, Al, Zr, Ti is as follows:
  • Embodiment 16 provides a method for preparing a nickel-cobalt-aluminum ternary lithium ion battery cathode material Li 1.035 Ni 0.815 Co 0.15 Al 0.035 O 2 , comprising the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 500 ° C for 10 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the crystal water, and mixing with the sintering product of the step (1), the amount of lithium hydroxide monohydrate is lithium hydroxide monohydrate.
  • the molar ratio of Li (Ni+Co+Al) in the precursor of Li and the ternary positive electrode material is 1.035:1, and after mixing and grinding uniformly, sintering is performed in an oxygen atmosphere, and the temperature is raised to 715 ° C for 16.5 hours, and then 0.3 ° C / The cooling rate of min is reduced to room temperature;
  • Step (3) the third sintering: the step (2) sintered product is heated to 650 ° C for 3.5 hours, reduced to room temperature, and then washed with carbon dioxide gas;
  • Step (4), fourth sintering The material after the step (3) is heated to 250 ° C for 3 hours, and lowered to room temperature to obtain the target product.
  • Embodiment 17 provides a method for preparing a nickel-cobalt-aluminum ternary lithium ion battery cathode material Li 1.035 Ni 0.815 Co 0.15 Al 0.035 O 2 , comprising the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 0.815 Co 0.15 Al 0.035 (OH) 2.035 , and heating to 600 ° C for 6.5 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the crystal water, and mixing with the sintering product of the step (1), the amount of lithium hydroxide monohydrate is lithium hydroxide monohydrate.
  • the molar ratio of (Ni+Co+Al) in the precursor of Li and the ternary positive electrode material is 1.035:1, and after mixing and grinding uniformly, sintering is performed in an oxygen atmosphere, and the temperature is raised to 775 ° C for 8 hours, and then 0.3 ° C / The cooling rate of min is reduced to room temperature;
  • Step (3) the third sintering: the step (2) sintered product is heated to 615 ° C for 5 hours, reduced to room temperature, and then washed with carbonated water;
  • Step (4), fourth sintering The material after the step (3) is heated to 350 ° C for 5 hours, and lowered to room temperature to obtain the target product.
  • the preparation method of the Zr-doped nickel-cobalt-aluminum ternary lithium ion cathode material provided in this embodiment comprises the following steps:
  • Step (1) first sintering: ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2 + y and a dopant material mixed sintered ZrO 2, ZrO 2 was added in an amount of ZrO 2
  • the molar ratio of (Ni+Co+Al) in the precursor of Zr and the ternary positive electrode material is 0.0025:0.9975, and the temperature is raised to 600 ° C for 6.5 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the water of crystallization, mixing and grinding with the sintered product of the step (1), the amount of lithium hydroxide monohydrate is hydrogen peroxide monohydrate.
  • the molar ratio of Li in the lithium to the ternary positive electrode material precursor (Ni+Co+Al) is 1.035:1. After the polishing is uniform, sintering is performed, and the temperature is raised to 775 ° C for 8 hours, and then the temperature is lowered at 0.3 ° C / min. Down to room temperature;
  • Step (3) the third sintering: the step (2) is sintered to obtain a product which is heated to 615 ° C for 5 hours, and is cooled to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9975 Zr 0.0025 O 2 .
  • the preparation method of the Nb-doped nickel-cobalt-aluminum ternary lithium ion cathode material provided in this embodiment comprises the following steps:
  • Step (1) first sintering: mixing and sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y and the doping material Nb(OH) 5 , and adding Nb(OH) 5
  • the molar ratio of Nb in the amount of Nb(OH) 5 to the (Ni+Co+Al) in the ternary positive electrode material precursor is 0.0012:0.9975, and the temperature is raised to 600 ° C for 6.5 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the crystal water, mixing and grinding with the step (1) and the doping material Nb(OH) 5 , Nb (OH) 5 is added in the amount of Nb(OH) 5 in the Nb and the ternary positive electrode material precursor (Ni + Co + Al) molar ratio is 0.0013: 0.9975 lithium hydroxide monohydrate is used in lithium hydroxide monohydrate
  • the molar ratio of Li to the ternary positive electrode material (Ni+Co+Al) is 1.035:1. After grinding, it is sintered, heated to 775 ° C for 8 hours, and then cooled to room temperature at a cooling rate of 0.3 ° C / min. ;
  • Step (3) the third sintering: the product obtained by the step (2) is sintered to a temperature of 615 ° C for 5 hours, and is cooled to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9975 Nb 0.0025 O 2 ,
  • Step (1) first sintering: mixing the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y with the doping material CeO 2 , and the doping material CeO 2 is added in the amount of CeO 2
  • the molar ratio of Ce to the ternary positive electrode material precursor (Ni+Co+Al) is 0.0007:0.9982, and the temperature is raised to 500 ° C for 10 hours;
  • Step (2) the second sintering: after the lithium hydroxide monohydrate is dried to completely lose the water of crystallization, the sintered product of the step (1) is mixed and sintered, and the amount of lithium hydroxide monohydrate is hydrated by monohydrate.
  • the molar ratio of Li in the lithium to the ternary positive electrode material precursor (Ni+Co+Al) is 1.035:1, and after mixing and grinding uniformly, sintering is performed in an oxygen atmosphere, and the temperature is raised to 715 ° C for 16.5 hours, and then 0.3 ° C. /min's cooling rate is reduced to room temperature;
  • Step (3) the third sintering: the step (2) sintering the resultant coating material was added to ZrO 2, ZrO 2 was added in an amount of ZrO 2 with a trihydric Zr precursor positive electrode material (Ni + Co The molar ratio of +Al) is 0.0011:0.9982, and the temperature is raised to 650 ° C for 3.5 hours, and the temperature is lowered to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9982 Ce 0.0007 Zr 0.0011 O 2
  • This embodiment provides a nickel-cobalt-aluminum ternary lithium ion battery cathode material coated with Nb doping and coated with ZrO 2 .
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , mixed with the doping material Nb(OH) 5 , doping material Nb (OH 5 is added in a quantity of Nb(OH) 5 and a molar ratio of (Ni + Co + Al) in the ternary positive electrode material precursor is 0.0003: 0.9982, and the temperature is raised to 500 ° C for 10 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the crystal water, mixing with the sintered product of the step (1), the doping material Nb(OH) 5 , and hydrating hydroxide monohydrate
  • the amount of lithium used in the lithium hydroxide monohydrate is a molar ratio of Li to the ternary positive electrode material precursor (Ni+Co+Al) of 1.035:1, and the doping material Nb(OH) 5 is added as Nb(OH).
  • the molar ratio of (Ni+Co+Al) in the Nb and ternary positive electrode material precursors in 5 is 0.0004:0.9982.
  • Step (3) the third sintering: the step (2) sintering the resultant coating material was added to ZrO 2, ZrO 2 was added in an amount of ZrO 2 with a trihydric Zr precursor positive electrode material (Ni + Co +Al) molar ratio is 0.0011: 0.9982, and the temperature is raised to 650 ° C for 3.5 hours, and the temperature is lowered to room temperature to obtain the target product (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9982 Nb 0.0007 Zr 0.0011 O 2 ,
  • Comparative Example 1 provides an undoped uncoated nickel-cobalt-aluminum ternary lithium ion battery cathode material having a chemical formula of Li 1.035 Ni 0.815 Co 0.15 Al 0.035 O 2 , Comparative Example 1 uncoated nickel-cobalt-aluminum ternary lithium
  • the preparation method of the ion battery positive electrode material Li 1.035 Ni 0.815 Co 0.15 Al 0.035 O 2 includes the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 1-xy Co x Al y (OH) 2+y , and heating to 500 ° C for 10 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the crystal water, and mixing with the sintering product of the step (1), the amount of lithium hydroxide monohydrate is lithium hydroxide monohydrate.
  • the molar ratio of Li (Ni+Co+Al) in the precursor of Li and the ternary positive electrode material is 1.035:1, and after mixing and grinding uniformly, sintering is performed in an oxygen atmosphere, and the temperature is raised to 715 ° C for 16.5 hours, and then 0.3 ° C / The cooling rate of min is reduced to room temperature;
  • Step (3) the third sintering: the obtained product of the step (2) is heated to 650 ° C for 3.5 hours, and is cooled to room temperature to obtain a comparative material Li 1.035 Ni 0.815 Co 0.15 Al 0.035 O 2 .
  • Comparative Example 2 provides an undoped uncoated nickel-cobalt-aluminum ternary lithium ion battery cathode material having a chemical formula of Li 1.035 Ni 0.815 Co 0.15 Al 0.035 O 2 , Comparative Example 2 uncoated nickel-cobalt-aluminum ternary lithium
  • the preparation method of the ion battery positive electrode material Li 1.035 Ni 0.815 Co 0.15 Al 0.035 O 2 includes the following steps:
  • Step (1) first sintering: sintering the ternary positive electrode material precursor Ni 0.815 Co 0.15 Al 0.035 (OH) 2.035 , and heating to 600 ° C for 6.5 hours;
  • Step (2) the second sintering: after drying the lithium hydroxide monohydrate to completely lose the crystal water, and mixing with the sintering product of the step (1), the amount of lithium hydroxide monohydrate is lithium hydroxide monohydrate.
  • the molar ratio of (Ni+Co+Al) in the precursor of Li and the ternary positive electrode material is 1.035:1, and after mixing and grinding uniformly, sintering is performed in an oxygen atmosphere, and the temperature is raised to 775 ° C for 8 hours, and then 0.3 ° C / The cooling rate of min is reduced to room temperature;
  • Step (3) the third sintering: the sintered product of the step (2) is heated to 615 ° C for 5 hours, and is cooled to room temperature to obtain a comparative material Li 1.035 Ni 0.815 Co 0.15 Al 0.035 O 2 .
  • Table 1 Examples 1 to 17, the reaction conditions, raw material ratios and products of the respective steps of Comparative Examples 1 and 2.
  • the coated nickel-cobalt aluminate ternary cathode material prepared in Examples 1 to 8 and the uncoated nickel-cobalt-aluminum ternary cathode material prepared in Comparative Examples 1 to 2 were active materials of the positive electrode, and the negative electrode was made of lithium metal plate.
  • the diaphragm is made of Celgard 2500 diaphragm
  • the electrolyte is foamy LB-002 electrolyte of Suzhou Fossin New Material Co., Ltd.
  • the CR2032 type button battery is assembled according to the prior art method. The assembly sequence is: the positive cover is laid flat, the spring piece is placed, and the stainless steel is placed.
  • the sheet, the positive electrode sheet, the electrolyte solution, the separator sheet, the lithium sheet, the negative electrode cap, and the sealing are assembled.
  • the battery was assembled in a dry glove box filled with argon. After the assembly is completed, the battery is tested for performance. The test results are shown in Table 2.
  • Test method inductively coupled plasma mass spectrometry
  • Test instrument name inductively coupled plasma mass spectrometer
  • Test instrument name Xinwei battery detection system, model: BTS-5V10mA
  • Test instrument manufacturer Shenzhen Xinweier Electronics Co., Ltd.;
  • Test instrument name tap density meter
  • the amount of residual alkali on the surface of the positive electrode material ⁇ 1 + ⁇ 2 .
  • Example / Comparative Example Capacity retention rate after 100 cycles (%, 1C) Tap density (g/cm 3 ) Surface residual alkali amount (wt%)
  • Example 1 91.50 ——— —— Example 2 89.70 —— —— Example 3 83.20 2.97 0.35
  • Example 4 82 2.96 0.41
  • Example 5 87.30 ——— —— Example 6 85.90 2.80 ——— Example 7 85.80 ————— Example 8 84 ———————— Example 9 89.2 —— 0.74
  • Example 10 84.9 —— 0.75
  • Example 11 87 —— 0.66
  • Example 12 82.8 —— 0.69
  • Example 13 90.7 —— 0.56
  • Example 14 88.9 —— 0.59
  • Example 15 91. —— 0.7
  • Example 16 ——— 0.33
  • Example 17 ———— 0.21 Comparative example 1 79.70 2.79 0.83 Comparative example 2
  • Example 1 is compared with Comparative Example 1, and the nickel-cobalt-aluminum ternary cathode material coated with ZrO 2 in Example 1 (Li 1.035 Ni 0.815 Co 0.15 Al 0.035
  • the capacity retention rate of 0.9984 Zr 0.0016 O 2 after 100 cycles was 91.50%
  • the capacity retention ratio of the uncoated nickel-cobalt-aluminum ternary positive electrode material after cycling 100 times was 79.70%, and the uncoated 1 was compared with the comparative example 1.
  • the ZrO 2 -coated nickel-cobalt-aluminum ternary positive electrode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9984 Zr 0.0016 O 2 in Example 1 has more stable cycle performance.
  • Example 2 is compared with Comparative Example 2, and the nickel-cobalt-aluminum ternary cathode material coated with ZrO 2 in Example 2 (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 0.9992 Zr 0.0008 O 2
  • the capacity retention rate after 100 cycles was 91.50%, and the capacity retention ratio of the uncoated nickel-cobalt-aluminum ternary positive electrode material after cycling 100 times was 76.20%, and the uncoated 2 was compared with the comparative example 2 compared to nickel and cobalt - Al cathode material, Example ZrO 2 - Al coated nickel cobalt cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035) 0.9992 Zr 0.0008 O 2 cycle with 2 more stable in use.
  • Example 3 is compared with Comparative Example 1, and the nickel-cobalt-aluminum ternary cathode material coated with Al 2 O 3 in Example 3 (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.998 Al 0.002 O 2 tap density 2.97g/cm 3 , capacity retention after cycle 100 times 83.20%, comparative example 1 uncoated nickel-cobalt-aluminum ternary cathode material tap density 2.79g/cm 3 The capacity retention rate after the cycle of 100 times was 79.70%.
  • the nickel-cobalt-aluminum ternary positive electrode material Co coated with Al 2 O 3 in Example 3 was used. 0.15 Al 0.035 ) 0.998 Al 0.002 O 2 has more stable cycle performance and increased tap density.
  • Example 3 Compared with Comparative Example 1, the nickel-cobalt-aluminum ternary cathode material coated with Al 2 O 3 in Example 3 (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.998 Al 0.002 O 2
  • the surface LiOH weight percentage was 0.26. %, the surface Li 2 CO 3 weight percentage is 0.09%, the surface residual alkali weight percentage is 0.35%, and the comparative example 1 uncoated nickel cobalt aluminum ternary positive electrode material surface LiOH content 0.46%, surface Li 2 CO 3 content weight The percentage is 0.37%, and the weight percentage of surface residual alkali is 0.83%.
  • the nickel-cobalt-aluminum ternary coated with Al 2 O 3 in Example 3 is used.
  • the content of LiOH and Li 2 CO 3 on the surface of the positive electrode material Co 0.15 Al 0.035 ) 0.998 Al 0.002 O 2 was lowered, so that the amount of surface residual alkali was effectively reduced.
  • Example 4 is compared with Comparative Example 2, and the nickel-cobalt-aluminum ternary cathode material coated with Al 2 O 3 in Example 4 (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9945 Al 0.0055 O 2 tapping density 2.96g/cm 3 , capacity retention after looping for 100 times 82%, comparative example 2 uncoated nickel-cobalt-aluminum ternary cathode material tap density 2.75g/cm 3 The capacity retention rate after cycling 100 times was 76.20%, and compared with the uncoated nickel-cobalt-aluminum ternary positive electrode material of Comparative Example 2, Al 2 O 3 coated in Example 2 (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9945 Al 0.0055 O 2 has more stable cycle performance and increased tap density.
  • Example 4 Compared with Comparative Example 2, the nickel-cobalt-aluminum ternary cathode material coated with Al 2 O 3 in Example 4 (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9945 Al 0.0055 O 2
  • the surface LiOH content by weight is 0.26%
  • the surface Li 2 CO 3 content weight percentage is 0.15%
  • the surface residual alkali weight percentage is 0.41%
  • the comparative example 2 uncoated nickel cobalt aluminum ternary positive electrode material surface LiOH content weight percentage is 0.49%
  • surface Li 2 CO 3 content weight percentage is 0.39%
  • surface residual alkali weight percentage is 0.88%
  • the second embodiment is coated with Al 2 O 3 (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9945 Al 0.0055 O 2
  • the content of LiOH and Li 2 CO 3 on the surface of O 2 is lowered, so that the amount of surface residual alkali is effectively lowered
  • Example 5 is compared with Comparative Example 1, and the nickel-cobalt-aluminum ternary cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) coated with ZnO in Example 5 is used.
  • the capacity retention rate of 0.9971 Zn 0.0029 O 2 after 100 cycles was 87.30%, and the capacity retention ratio of the uncoated nickel-cobalt-aluminum ternary positive electrode material after 100 cycles was 79.70%, and the uncoated nickel of Comparative Example 1 Compared with the cobalt aluminum ternary positive electrode material, the ZnO-coated nickel-cobalt-aluminum ternary positive electrode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9971 Zn 0.0029 O 2 in Example 5 has more stable cycle performance.
  • Example 6 is compared with Comparative Example 2, and ZnO-coated nickel-cobalt-aluminum ternary cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) is used in Example 6.
  • the capacity retention rate of 0.9993 Zn 0.0007 O 2 after 100 cycles was 85.90%, and the capacity retention ratio of the uncoated nickel-cobalt-aluminum ternary positive electrode material after cycling 100 times was 76.20%, and the uncoated nickel of Comparative Example 2 Compared with the cobalt-aluminum ternary positive electrode material, the ZnO-coated nickel-cobalt-aluminum ternary positive electrode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9993 Zn 0.0007 O 2 in Example 2 has more stable cycle performance.
  • Example 7 is compared with Comparative Example 1, and the MgO-coated nickel-cobalt-aluminum ternary cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) is used in Example 7.
  • the capacity retention rate of 0.9922 Mg 0.0078 O 2 after 100 cycles was 85.80%, and the capacity retention ratio of the uncoated nickel-cobalt-aluminum ternary positive electrode material after 100 cycles was 79.70%, and the uncoated nickel of Comparative Example 1 Compared with the cobalt-aluminum ternary positive electrode material, the MgO-coated nickel-cobalt-aluminum ternary positive electrode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9922 Mg 0.0078 O 2 in Example 7 has more stable cycle performance.
  • Example 8 is compared with Comparative Example 2, and the MgO-coated nickel-cobalt-aluminum ternary cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) is used in Example 8.
  • the capacity retention rate of 0.9983 Mg 0.0017 O 2 after 100 cycles was 84%, and the capacity retention ratio of the uncoated nickel-cobalt-aluminum ternary positive electrode material after cycling 100 times was 76.20%, and the uncoated nickel of Comparative Example 2
  • the MgO-coated nickel-cobalt-aluminum ternary cathode material Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9983 Mg 0.0017 O 2 in Example 2 has more stable cycle performance.
  • Example 9 is compared with Comparative Example 1, the Ti-doped nickel-cobalt-aluminum ternary lithium ion cathode material of Example 9 (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 0.9993 Ti 0.0007 O 2 After 100 cycles, the capacity retention rate was 89.2%, and the total residual alkali weight percentage was 0.74%. The capacity retention of the undoped nickel-cobalt-aluminum ternary lithium ion cathode material after 100 cycles was compared.
  • the material has more stable cycle properties and the amount of surface residual alkali is effectively reduced.
  • Example 10 is a Ti-doped nickel-cobalt-aluminum ternary lithium ion cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 in Example 10 compared with Comparative Example 2). 0.9981 Ti 0.0019 O 2 After 100 cycles, the capacity retention rate is 84.9%, and the total residual alkali weight percentage is 0.75%. The capacity retention of the undoped nickel-cobalt-aluminum ternary lithium ion cathode material after 100 cycles is maintained.
  • Material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9981 Ti 0.0019 O 2 has higher capacity retention than undoped nickel-cobalt-aluminum ternary lithium ion cathode material, which has more stable cycle performance and lower residual alkali content than undoped Miscellaneous nickel-cobalt-aluminum ternary lithium ion cathode material.
  • Example 11 is compared with Comparative Example 1, the Al-doped nickel-cobalt-aluminum ternary lithium ion cathode material of Example 11 (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 0.9984 Al 0.0016 O 2 after 100 cycles of capacity retention rate of 87.0%, total residual alkali weight percentage is 0.66%; Comparative Example 1 undoped nickel-cobalt aluminum ternary lithium ion cathode material capacity retention after 100 cycles The rate of 79.70%, the surface residual alkali weight percentage is 0.83%, compared with the comparative example 1 undoped nickel cobalt aluminum ternary lithium ion positive electrode material, the Al-doped nickel-cobalt aluminum ternary lithium ion positive electrode in Example 11 Material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9984 Al 0.0016 O 2 has more stable cycle properties, and the amount of surface residual al
  • Example 12 is compared with Comparative Example 2, the Al-doped nickel-cobalt-aluminum ternary lithium ion cathode material of Example 4 (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 0.997 Al 0.003 O 2 after 100 cycles of capacity retention 82.8%, total residual alkali weight percentage is 0.69%; Comparative Example 2 undoped nickel-cobalt aluminum ternary lithium ion positive electrode material capacity retention after 100 cycles The rate of 76.2%, the surface residual alkali weight percentage is 0.88%, compared with the comparative example 2 undoped nickel-cobalt aluminum ternary lithium ion cathode material, the Al-doped nickel-cobalt-aluminum ternary lithium ion positive electrode in Example 12. Material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.997 Al 0.003 O 2 has more stable cycle properties, and the amount of surface
  • Example 13 is compared with Comparative Example 1, the Mg-doped nickel-cobalt-aluminum ternary lithium ion cathode material of Example 5 (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 0.9983 Mg 0.0017 O 2 After 100 cycles, the capacity retention rate is 90.7%, and the total residual alkali weight percentage is 0.56%. Comparative Example 1 The capacity retention of undoped nickel-cobalt-aluminum ternary lithium ion cathode material after 100 cycles The rate was 79.7%, and the surface residual alkali weight percentage was 0.83%.
  • the Mg-doped nickel-cobalt aluminum ternary lithium ion positive electrode in Example 13 Material Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9983 Mg 0.0017 O 2 has more stable cycle properties, and the amount of surface residual alkali is effectively reduced.
  • Example 14 is compared with Comparative Example 2, the Mg-doped nickel-cobalt-aluminum ternary lithium ion cathode material of Example 6 (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 0.9975 Mg 0.0025 O 2 capacity retention rate after 88 cycles of 88.9%, total residual alkali weight percentage is 0.59%; Comparative Example 2 undoped nickel-cobalt aluminum ternary lithium ion cathode material capacity retention after 100 cycles The rate of 76.2%, the surface residual alkali weight percentage is 0.88%, compared with the comparative example 2 undoped nickel-cobalt aluminum ternary lithium ion cathode material, the Mg-doped nickel-cobalt-aluminum ternary lithium ion positive electrode in Example 14. Material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9975 Mg 0.0025 O 2 has
  • Example 15 is compared with Comparative Example 1, and the Ti-doped, nickel-cobalt-aluminum ternary lithium ion battery cathode material coated with ZrO 2 is used in Example 15 ( Li 1.035 Ni 0.815 Co 0.15 Al 0.035 ) 0.9982 Ti 0.0007 Zr 0.0011 O 2 Capacity retention after 100 cycles of 91%, Comparative Example 1 Undoped uncoated nickel-cobalt-aluminum ternary lithium ion battery cathode material cycle 100 times After the capacity retention rate was 79.7%, compared with the comparative example 1 undoped uncoated nickel-cobalt-aluminum ternary lithium ion battery cathode material, Ti-doped in Example 15, nickel-cobalt-aluminum coated with ZrO 2 Ternary lithium ion battery cathode material (Li 1.035 Ni 0.815 Co 0.15 Al 0.035 )
  • Example 16 in Example 16 compared with Comparative Example 1, the cathode material of the nickel-cobalt-aluminum ternary lithium ion battery was washed by the carbon dioxide gas flow in the step (3) in the example 16 to obtain the surface residue of the final product.
  • the amount of alkali was 0.33%, and the surface residual amount of the unwashed nickel-cobalt-aluminum ternary lithium ion battery cathode material of Comparative Example 1 was 0.83%, which was compared with the unwashed nickel-cobalt-aluminum ternary lithium ion battery cathode material of Comparative Example 1.
  • the amount of residual alkali on the surface of the nickel-cobalt-aluminum ternary lithium ion battery cathode material obtained by flushing with carbon dioxide gas in Example 16 is effectively reduced.
  • Example 17 the nickel-cobalt-aluminum ternary lithium ion battery positive electrode material was washed with carbonated water using step (3), and the surface residual amount of the final product was 0.21%, and the comparative example 2 was not obtained.
  • the surface residual amount of the cleaned nickel-cobalt-aluminum ternary lithium ion battery cathode material was 0.88%, and compared with the non-cleaned nickel-cobalt-aluminum ternary lithium ion battery cathode material of Comparative Example 2, the water was washed with carbonated water in Example 17.
  • the surface residual amount of the positive electrode material of the nickel-cobalt-aluminum ternary lithium ion battery is effectively reduced.
  • the nickel-cobalt-aluminum ternary cathode material of the present application has at least the following advantages: the nickel-cobalt-aluminum ternary cathode material prepared by the method of the invention has remarkable charge-discharge cycle performance at 3.0V to 4.3V. Improvement: Comparing Examples 1 to 15 and Comparative Examples 1 to 2, it was found that the capacity retention of the nickel-cobalt-aluminum ternary positive electrode material prepared by the method of the present invention was higher than that of the undoped uncoated nickel after 100 cycles. Cobalt-aluminum ternary cathode material; this shows that the nickel-cobalt-aluminum ternary cathode material of the present application has more stable cycle performance.

Abstract

一种镍钴铝三元锂离子电池正极材料、制备方法及用途,该材料的化学式为(Li aNi 1-x-yCo xAl y) 1-bM bO 2,x>0,y>0,1-x-y>0,1≤a≤1.1,0<b≤0.02。该材料的制备方法是先将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结;然后将烧结所得物加入锂源进行烧结;最后添加包覆材料进行烧结,得到目标产物。所述制备方法合成的镍钴铝三元锂离子电池正极材料具有优良的循环性能。所述制备方法工艺简单,过程可控,易于工业化量产。

Description

镍钴铝三元锂离子电池正极材料、其制备方法和用途、以及锂离子电池 技术领域
本发明涉及电极材料领域,具体涉及镍钴铝三元锂离子电池正极材料、制备方法及用途。
背景技术
镍钴铝三元正极材料具有高能量密度、低温性能好、热稳定性好、成本低以及对环境毒性小等特点,是动力锂离子电池领域最具市场发展前景的正极材料之一。但是由于镍钴铝三元材料在宽的电压范围内会与有机电解质发生强烈的副反应,增加电池在充放电过程中的阻抗,降低材料的循环稳定性。因此,如何得提高镍钴铝三元材料循环稳定性,成为业内亟待解决的问题之一。
发明内容
本方明的目的在于提供一种循环性能优良的包覆的镍钴铝三元锂离子电池正极材料及其制备方法,并提供使用该正极材料的锂离子电池及该正极材料的用途。
为了解决上述技术问题,本发明的技术方案是:一种包覆的镍钴铝三元锂离子电池正极材料,包括镍钴铝酸锂材料以及包覆在所述镍钴铝酸锂材料表面的包覆材料,所述包覆的镍钴铝三元锂离子电池正极材料的化学式如式(I)所示:
(Li aNi 1-x-yCo xAl y) 1-bM bO 2   (I)
a、b、x、y为摩尔分数,x>0,y>0,1-x-y>0,1≤a≤1.1,0<b≤0.02;
M选自碱金属元素、碱土金属元素、第13族元素、第14族元素、过渡金属元素及稀土元素中的一种或多种。
作为优选,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.01。
作为优选,M是Zr,x=0.15,y=0.035,a=1.035,b=0.0016。
作为优选,M是Zr,x=0.15,y=0.035,a=1.035,b=0.0008。
作为优选,M是Al,x=0.15,y=0.035,a=1.035,b=0.002。
作为优选,M是Al,x=0.15,y=0.035,a=1.035,b=0.0055。
作为优选,M是Zn,x=0.15,y=0.035,a=1.035,b=0.0029。
作为优选,M是Zn,x=0.15,y=0.035,a=1.035,b=0.0007。
作为优选,M是Mg,x=0.15,y=0.035,a=1.035,b=0.0078。
作为优选,M是Mg,x=0.15,y=0.035,a=1.035,b=0.0017。
作为优选,包覆方法是干法、水相湿法或有机相湿法中的一种。
为解决上述技术问题,本发明还提供了上述包覆的镍钴铝三元锂离子电池正极材料的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结;
步骤(2)、第二次烧结:将所述步骤(1)烧结所得物加入锂源混合研磨,研磨均匀后,进行烧结,烧结完成后降温至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料进行烧结,得到包覆的镍钴铝三元锂离子电池正极材料(Li aNi 1-x-yCo xAl y) 1-bM bO 2,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.1,0<b≤0.02。
作为优选,所述步骤(1)中,烧结时间是6-20小时,烧结温度是200-1000℃。
作为优选,所述步骤(2)中,所述锂源为氢氧化锂、乙酸锂、草酸锂、碳酸锂、硝酸锂、氯化锂和氟化锂中的一种。
作为优选,所述步骤(2)中,所述锂源为一水合氢氧化锂,将一水合氢氧化锂烘干至完全失去结晶水后与所述步骤(1)烧结所得物混合。
作为优选,所述步骤(2)中,烧结时间是8-24小时,烧结温度是500-1000℃
作为优选,所述步骤(2)中,降温速率是0.01-2.5℃/min。
作为优选,所述步骤(2)中,降温速率是0.02-1℃/min
作为优选,所述步骤(2)中,锂源的加入量为Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1~1.1:1。
作为优选,所述步骤(2)中烧结是在空气或氧气气氛中进行。
作为优选,所述步骤(3)包覆材料选自金属M的氧化物、金属M的氟化物或金属M的硫化物中的一种。
作为优选,所述步骤(3)烧结时间是1-12小时,烧结温度是500-1000℃。
本方明的目的在于提供一种循环性能优良的ZrO 2包覆的镍钴铝三元锂离子电池正极材料及其制备方法,并提供使用该正极材料的锂离子电池。
为了解决上述技术问题,本发明的技术方案是:一种ZrO 2包覆的镍钴铝三元锂离子电池正极材料,其特征在于,包括镍钴铝酸锂材料以及包覆在所述镍钴铝酸锂材料表面的ZrO 2,所述ZrO 2包覆的镍钴铝三元锂离子电池正极材料的化学式如式(I)所示:
(Li aNi 1-x-yCo xAl y) 1-bZr bO 2    (I)
a、b、x、y为摩尔分数,x>0,y>0,1-x-y>0,1≤a≤1.1,0<b≤0.02。
作为优选,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.01。
作为优选,x=0.15,y=0.035,a=1.035,b=0.0016。
作为优选,x=0.15,y=0.035,a=1.035,b=0.0008。
为解决上述技术问题,本发明还提供了上述包覆的镍钴铝三元锂离子电池正极材料的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结;烧结时间6-20小时,烧结温度200-1000℃;
步骤(2)、第二次烧结:将所述步骤(1)烧结所得物加入锂源,混合研磨,研磨均匀后,在空气或氧气气氛中进行烧结,烧结时间8-24小时,烧结温度500-1000℃,烧结完成后,以0.01-2.5℃/min降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料ZrO 2,进行烧结,烧结时间1-12小时,烧结温度500-1000℃,得到包覆的镍钴铝三 元锂离子电池正极材料(Li aNi 1-x-yCo xAl y) 1-bZr bO 2,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.1,0<b≤0.02。
本方明的目的在于提供一种循环性能优良的Al 2O 3包覆的镍钴铝三元锂离子电池正极材料及其制备方法,并提供使用该正极材料的锂离子电池及该正极材料的用途。
为了解决上述技术问题,本发明的技术方案是:一种Al 2O 3包覆的镍钴铝三元锂离子电池正极材料,包括镍钴铝酸锂材料以及包覆在所述镍钴铝酸锂材料表面的Al 2O 3,所述Al 2O 3包覆的镍钴铝三元锂离子电池正极材料的化学式如式(I)所示:
(Li aNi 1-x-yCo xAl y) 1-bAl bO 2    (I)
a、b、x、y为摩尔分数,x>0,y>0,1-x-y>0,1≤a≤1.1,0<b≤0.02。
作为优选,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.01。
作为优选,x=0.15,y=0.035,a=1.035,b=0.002。
作为优选,x=0.15,y=0.035,a=1.035,b=0.0055。
为解决上述技术问题,本发明还提供了上述Al 2O 3包覆的镍钴铝三元锂离子电池正极材料的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结;烧结时间6-20小时,烧结温度200-1000℃;
步骤(2)、第二次烧结:将所述步骤(1)烧结所得物加入锂源,混合研磨,研磨均匀后,在空气或氧气气氛中进行烧结,烧结时间8-24小时,烧结温度500-1000℃,烧结完成后,以0.01-2.5℃/min降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料Al 2O 3,进行烧结,烧结时间1-12小时,烧结温度500-1000℃,得到Al 2O 3包覆的镍钴铝三元锂离子电池正极材料(Li aNi 1-x-yCo xAl y) 1-bAl bO 2,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.1,0<b≤0.02。
本方明的目的在于提供一种循环性能优良的ZnO包覆的镍钴铝三元锂离子电池正极材料及其制备方法,并提供使用该正极材料的锂离子电池及该正极材料的用途。
为了解决上述技术问题,本发明的技术方案是:一种ZnO包覆的镍钴铝三元锂离子电池正极材料,包括镍钴铝酸锂材料以及包覆在所述镍钴铝酸锂材料表面的ZnO,所述ZnO包覆的镍钴铝三元锂离子电池正极材料的化学式如式(I)所示:
(Li aNi 1-x-yCo xZn y) 1-bZn bO 2    (I)
a、b、x、y为摩尔分数,x>0,y>0,1-x-y>0,1≤a≤1.1,0<b≤0.02。
作为优选,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.01。
作为优选,x=0.15,y=0.035,a=1.035,b=0.0029。
作为优选,x=0.15,y=0.035,a=1.035,b=0.0007。
为解决上述技术问题,本发明还提供了上述ZnO包覆的镍钴铝三元锂离子电池正极材料的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xZn y(OH) 2+y烧结;烧结时间6-20小时,烧结温度200-1000℃;
步骤(2)、第二次烧结:将所述步骤(1)烧结所得物加入锂源,混合研磨,研磨均匀后,在空气或氧气气氛中进行烧结,烧结时间8-24小时,烧结温度500-1000℃,烧结完成后,以0.01-2.5℃/min降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料ZnO,进行烧结,烧结时间1-12小时,烧结温度500-1000℃,得到ZnO包覆的镍钴铝三元锂离子电池正极材料(Li aNi 1-x-yCo xZn y) 1-bZn bO 2,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.1,0<b≤0.02。
本方明的目的在于提供一种循环性能优良的MgO包覆的镍钴铝三元锂离子电池正极材料及其制备方法,并提供使用该正极材料的锂离子电池及该正极材料的用途。
为了解决上述技术问题,本发明的技术方案是:一种MgO包覆的镍钴铝三元锂离子电池正极材料,包括镍钴铝酸锂材料以及包覆在所述镍钴铝酸锂材料表面的MgO,所述MgO包覆的镍钴铝三元锂离子电池正极材料的化学式如式(I)所示:
(Li aNi 1-x-yCo xMg y) 1-bMg bO 2    (I)
a、b、x、y为摩尔分数,x>0,y>0,1-x-y>0,1≤a≤1.1,0<b≤0.02。
作为优选,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.01。
作为优选,x=0.15,y=0.035,a=1.035,b=0.0078。
作为优选,x=0.15,y=0.035,a=1.035,b=0.0017。
为解决上述技术问题,本发明还提供了上述MgO包覆的镍钴铝三元锂离子电池正极材料的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xMg y(OH) 2+y烧结;烧结时间6-20小时,烧结温度200-1000℃;
步骤(2)、第二次烧结:将所述步骤(1)烧结所得物加入锂源,混合研磨,研磨均匀后,在空气或氧气气氛中进行烧结,烧结时间8-24小时,烧结温度500-1000℃,烧结完成后,以0.01-2.5℃/min降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料MgO,进行烧结,烧结时间1-12小时,烧结温度500-1000℃,得到MgO包覆的镍钴铝三元锂离子电池正极材料(Li aNi 1-x-yCo xMg y) 1-bMg bO 2,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.1,0<b≤0.02。
与现有技术相比,本发明提供的包覆的镍钴铝三元锂离子电池正极材料,包覆层不参与电化学反应,有效的提高了镍钴铝三元锂离子电池正极材料的结构稳定性,改进了镍钴铝三元锂离子电池正极材料的电化学性能,经过包覆的镍钴铝三元锂离子电池正极材料具有更高的容量保持率和更稳定的循环性能。
本方明的目的在于提供一种循环性能优良的掺杂的镍钴铝三元锂离子电池正极材料及其制备方法,提高镍钴铝三元锂离子电池正极材料循环稳定性,降低镍钴铝三元锂离子正极材料表面残碱量,提高电芯性能;并提供使用该正极材料的锂离子电池及该正极材料的用途。
为了解决上述技术问题,本发明的技术方案是:一种掺杂的镍钴铝三元锂离子正极材料,所述掺杂的镍钴铝三元锂离子正极材料的化学式如式(I)所示:
(Li aNi 1-x-yCo xAl y) 1-bM bO 2    (I)
其中a、b、x、y为摩尔分数,x>0,y>0,1-x-y>0,1≤a≤1.1,
0<b≤0.01;
M选自碱金属元素、碱土金属元素、第13族元素、第14族元素、过渡金族元素及稀土元素中的一种或多种。
作为优选,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.005。
作为优选,M是Ti,x=0.15,y=0.035,a=1.035,b=0.0007。
作为优选,M是Ti,x=0.15,y=0.035,a=1.035,b=0.0019。
作为优选,M是Al,x=0.15,y=0.035,a=1.035,b=0.016。
作为优选,M是Al,x=0.15,y=0.035,a=1.035,b=0.003。
作为优选,M是Mg,x=0.15,y=0.035,a=1.035,b=0.0017。
作为优选,M是Mg,x=0.15,y=0.035,a=1.035,b=0.0025。
为解决上述技术问题,本发明还提供了一种掺杂的镍钴铝三元锂离子正极材料的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结;
步骤(2)、第二次烧结:将所述步骤(1)烧结所得物加入锂源研磨,研磨均匀后,进行烧结,烧结完成后降温至室温;
其中,在步骤(1)中加入掺杂材料金属M'化合物,或在步骤(2)中加入掺杂材料金属M'化合物与锂源进行混合研磨,或在步骤(1)和步骤(2)中分别加入掺杂材料金属M'化合物;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物进行烧结,得到掺杂的镍钴铝三元锂离子正极材料(Li aNi 1-x-yCo xAl y) 1-bM bO 2,其中0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.005。
作为优选,所述步骤(1)中,烧结时间6-20小时,烧结温度200-1000℃。
作为优选,所述步骤(2)中,所述锂源为氢氧化锂、乙酸锂、草酸锂、碳酸锂、硝酸锂、氯化锂和氟化锂中的一种。
作为优选,所述步骤(2)中,所述锂源为一水合氢氧化锂,将一水合氢氧化锂烘干至完全失去结晶水后与所述步骤(1)烧结所得物混合。
作为优选,所述步骤(2)中,烧结时间8-24小时,烧结温度500-1000℃。
作为优选,所述步骤(2)中,降温速率是0.01-2.5℃/min。
作为优选,所述步骤(2)中,降温速率是0.02-1℃/min。
作为优选,所述步骤(2)中,锂源的加入量为Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1~1.1:1。
作为优选,所述步骤(2)中烧结在空气或氧气气氛中进行。
作为优选,所述步骤(2)掺杂材料选自金属M的氧化物、金属M的氟化物、金属M的硫化物、金属M的碲化物、金属M的硒化物,金属M的锑化物,金属M的磷化物或金属M的复合氧化物中的一种或多种。
作为优选,所述步骤(3)烧结时间1-12小时,烧结温度500-1000℃。
本方明的目的在于提供一种循环性能优良的Ti掺杂的镍钴铝三元锂离子电池正极材料及其制备方法,提高镍钴铝三元材料循环稳定性,降低镍钴铝三元锂离子电池正极材料表面残碱量,提高电芯性能;并提供使用该正极材料的锂离子电池及该正极材料的用途。
为了解决上述技术问题,本发明的技术方案是:一种Ti掺杂的镍钴铝三元锂离子电池正极材料,所述Ti掺杂的镍钴铝三元锂离子电池正极材料的化学式如式(I)所示:
(Li aNi 1-x-yCo xAl y) 1-bTi bO 2   (I)
其中a、b、x、y为摩尔分数,x>0,y>0,1-x-y>0,1≤a≤1.1,
0<b≤0.01。
作为优选,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.005。
作为优选,x=0.15,y=0.035,a=1.035,b=0.0007。
作为优选,x=0.15,y=0.035,a=1.035,b=0.0019。
为解决上述技术问题,本发明还提供了一种Ti掺杂的镍钴铝三元锂离子电池正极材料的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结;
步骤(2)、第二次烧结:将所述步骤(1)烧结所得物加入锂源研磨,研磨均匀后,进行烧结,烧结完成后降温至室温;
其中,掺杂材料在步骤(1)中加入,或在步骤(2)中与锂源进行混合研磨,或在步骤(1)和步骤(2)中分别加入;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物进行烧结,得到Ti掺杂的镍钴铝三元锂离子电池正极材料(Li aNi 1-x-yCo xAl y) 1-bTi bO 2,其中0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.005。
作为优选,所述步骤(2)掺杂材料选自金属Ti的氧化物、金属Ti的氟化物、金属Ti的硫化物、金属Ti的碲化物、金属Ti的硒化物,金属Ti的锑化物,金属Ti的磷化物或金属Ti的复合氧化物中的一种或多种。
本方明的目的在于提供一种Al掺杂的镍钴铝三元锂离子电池正极材料及其制备方法,提高镍钴铝三元锂离子电池正极材料循环稳定性,降低镍钴铝三元锂离子电池正极材料表面残碱量,并提供使用该正极材料的锂离子电池及该正极材料的用途。
掺杂的为了解决上述技术问题,本发明的技术方案是:一种Al掺杂的镍钴铝三元锂离子电池正极材料,所述Al掺杂的镍钴铝三元锂离子电池正极材料的化学式如式(I)所示:
(Li aNi 1-x-yCo xAl y) 1-bAl bO 2    (I)
其中a、b、x、y为摩尔分数,x>0,y>0,1-x-y>0,1≤a≤1.1,
0<b≤0.01。
作为优选,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.005。
作为优选,x=0.15,y=0.035,a=1.035,b=0.016。
作为优选,x=0.15,y=0.035,a=1.035,b=0.003。
为解决上述技术问题,本发明还提供了一种Al掺杂的镍钴铝三元锂离子电池正极材料的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结;
步骤(2)、第二次烧结:将所述步骤(1)烧结所得物加入锂源研磨,研磨均匀后,进行烧结,烧结完成后降温至室温;
其中,掺杂材料在步骤(1)中加入,或在步骤(2)中与锂源进行混合研磨,或在步骤(1)和步骤(2)中分别加入;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物进行烧结,得到Al掺杂的镍钴铝三元锂离子电池正极材料(Li aNi 1-x-yCo xAl y) 1-bAl bO 2,其中0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.005。
作为优选,所述步骤(2)掺杂材料选自金属Al的氧化物、金属Al的氟化物、金属Al的硫化物、金属Al的碲化物、金属Al的硒化物,金属Al的锑化物,金属Al的磷化物或金属Al的复合氧化物中的一种或多种。
本方明的目的在于提供一种Mg掺杂的镍钴铝三元锂离子电池正极材料及其制备方法,提高镍钴铝三元材料循环稳定性,降低镍钴铝三元正极材料表面残碱量,并提供使用该正极材料的锂离子电池及该正极材料的用途。
为了解决上述技术问题,本发明的技术方案是:一种Mg掺杂的镍钴铝三元正极材料,所述Mg掺杂的镍钴铝三元正极材料的化学式如式(I)所示:
(Li aNi 1-x-yCo xAl y) 1-bMg bO 2    (I)
其中a、b、x、y为摩尔分数,x>0,y>0,1-x-y>0,1≤a≤1.1,
0<b≤0.01。
作为优选,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.005。
作为优选,x=0.15,y=0.035,a=1.035,b=0.0017。
作为优选,x=0.15,y=0.035,a=1.035,b=0.0025。
为解决上述技术问题,本发明还提供了一种Mg掺杂的镍钴铝三元正极材料的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结;
步骤(2)、第二次烧结:将所述步骤(1)烧结所得物加入锂源研磨,研磨均匀后,进行烧结,烧结完成后降温至室温;
其中,掺杂材料在步骤(1)中加入,或在步骤(2)中与锂源进行混合研磨,或在步骤(1)和步骤(2)中分别加入;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物进行烧结,得到Mg掺杂的镍钴铝三元正极材料(Li aNi 1-x-yCo xAl y) 1-bMg bO 2,其中0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.005。
作为优选,所述步骤(2)掺杂材料选自金属Mg的氧化物、金属Mg的氟化物、金属Mg的硫化物、金属Mg的碲化物、金属Mg的硒化物,金属Mg的锑化物,金属Mg的磷化物或金属Mg的复合氧化物中的一种或多种。
本发明提供的掺杂的镍钴铝三元锂离子正极材料,有效的提高了镍钴铝三元锂离子正极材料的结构稳定性,减少镍钴铝三元锂离子电池正极材料与有机电解质发生强烈的副反应,降低电池在充放电过程中的阻抗,改进了镍钴铝三元锂离子正极材料的电化学性能,经过掺杂的镍钴铝三元锂离子正极材料具有更高的容量保持率和更稳定的循环性能。
本发明提供的掺杂的镍钴铝三元锂离子正极材料,采用金属对镍钴铝三元锂离子正极材料进行掺杂,减少了镍钴铝三元锂离子正极材料表面的活性锂含量,从而减少了镍钴铝三元锂离子正极材料表面LiOH、Li 2CO 3含量,有效降低镍钴铝三元锂离子正极材料表面残碱量,从而可减少在正极材料配置过程中,镍钴铝三元锂离子正极材料表面的碱性物质对正极胶液中粘结剂的攻击, 避免粘结剂形成双键,产生胶粘,避免引起浆料果冻,提高涂布效果,提高电芯性能。
本方明的目的在于提供一种掺杂包覆的镍钴铝三元锂离子电池正极材料及其制备方法,提高镍钴铝三元锂离子电池正极材料循环稳定性,降低镍钴铝三元锂离子电池正极材料表面残碱量,并提供使用该正极材料的锂离子电池及该正极材料的用途。
为了解决上述技术问题,本发明的技术方案是:一种掺杂包覆的镍钴铝三元锂离子电池正极材料,所述掺杂包覆的镍钴铝三元锂离子电池正极材料的化学式如式(I)所示:
(Li aNi 1-x-yCo xAl y) 1-bM b1M' b2O 2    (I)
a、b、x、y为摩尔分数,x>0,y>0,1-x-y>0,1≤a≤1.1,b=b1+b2,0<b≤0.01;
M、M'选自碱金属元素、碱土金属元素、第13族元素、第14族元素、过渡金属元素及稀土元素中的一种或多种。
作为优选,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.005。
作为优选,M是Ti,M'是Zr,x=0.15,y=0.035,a=1.035,b1=0.0007,b2=0.0011。
作为优选,包覆方法是干法、水相湿法或有机相湿法中的一种。
为解决上述技术问题,本发明还提供了一种上述的掺杂包覆的镍钴铝三元锂离子电池正极材料的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结;
步骤(2)、第二次烧结:将所述步骤(1)烧结所得物加入锂源研磨,研磨均匀后,进行烧结,烧结完成后降温至室温;
其中,在步骤(1)中加入掺杂材料金属M'化合物,或在步骤(2)中加入掺杂材料金属M'化合物与锂源进行混合研磨,或在步骤(1)和步骤(2)中分别加入掺杂材料金属M'化合物;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料金属M'化合物进行烧结,得到掺杂包覆的镍钴铝三元锂离子电池正极材料(Li aNi 1-x-yCo xAl y) 1-bM b1M' b2O 2,a、b、x、y为摩尔分数,x>0,y>0,1-x-y>0,1≤a≤1.1,b=b1+b2,0<b≤0.01。
作为优选,所述步骤(1)中,烧结时间是6-20小时,烧结温度是200-1000℃。
作为优选,所述步骤(2)中,所述锂源为氢氧化锂、乙酸锂、草酸锂、碳酸锂、硝酸锂、氯化锂和氟化锂中的一种。
作为优选,所述步骤(2)中,所述锂源为一水合氢氧化锂,将一水合氢氧化锂烘干至完全失去结晶水后与所述步骤(1)烧结所得物混合。
作为优选,所述步骤(2)中,烧结时间是8-24小时,烧结温度是500-1000℃
作为优选,所述步骤(2)中,降温速率是0.01-2.5℃/min。
作为优选,所述步骤(2)中,降温速率是0.02-1℃/min。
作为优选,所述步骤(2)中,锂源的加入量为Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1~1.1:1。
作为优选,所述步骤(2)中烧结是在空气或氧气气氛中进行。
作为优选,所述步骤(2)掺杂材料选自金属M的氧化物、金属M的氟化物、金属M的硫化物、金属M的碲化物、金属M的硒化物,金属M的锑化物,金属M的磷化物或金属M的复合氧化物中的一种或多种。
作为优选,所述步骤(3)包覆材料选自金属M'的氧化物、金属M'的氟化物、金属M'的硫化物、金属M'的碲化物、金属M'的硒化物,金属M'的锑化物,金属M'的磷化物或金属M'的复合氧化物中的一种或多种。
作为优选,所述步骤(3)烧结时间是1-12小时,烧结温度是500-1000℃。
与现有技术相比,本发明提供的掺杂包覆的镍钴铝三元锂离子电池正极材料,通过在镍钴铝三元锂离子电池正极材料的三元材料晶格中掺杂金属离子,有效的提高了镍钴铝三元锂离子电池正极材料的结构稳定性;同时采用包覆材料对镍钴铝三元锂离子电池正极材料进行包覆,包覆材料易于在主体材料表面 反应活性较高的位置择优生成,可以有效地消除主体材料表面反应活性较高的位点,对主体材料起到了进一步的稳定结构的作用;材料结构稳定有助于降低正极材料的电池体系中的反应活性,减少镍钴铝三元锂离子电池正极材料与有机电解质发生强烈的副反应,降低电池在充放电过程中的阻抗,从而改进了镍钴铝三元锂离子电池正极材料的电化学性能,本发明提供的掺杂包覆的镍钴铝三元锂离子电池正极材料具有更高的容量保持率和更稳定的循环性能。
本方明的目的在于提供一种镍钴铝三元锂离子电池正极材料的制备方法,降低镍钴铝三元锂离子电池正极材料表面残碱量。
为了解决上述技术问题,本发明的技术方案是:一种镍钴铝三元锂离子电池正极材料的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结;
步骤(2)、第二次烧结:将所述步骤(1)烧结所得物加入锂源混合研磨,研磨均匀后,在空气或氧气气氛中进行烧结,烧结完成后降温至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物进行烧结,然后将烧结所得物进行清洗;
步骤(4)、第四次烧结:将所述步骤(3)清洗后所得物进行烧结,得到目标产物。
作为优选,所述步骤(1)中,烧结时间是6-20小时,烧结温度是200-1000℃。
作为优选,所述步骤(2)中,所述锂源为氢氧化锂、乙酸锂、草酸锂、碳酸锂、硝酸锂、氯化锂和氟化锂中的一种。
作为优选,所述步骤(2)中,所述锂源为一水合氢氧化锂,将一水合氢氧化锂烘干至完全失去结晶水后与所述步骤(1)烧结所得物混合。
作为优选,所述步骤(2)中,烧结时间是8-24小时,烧结温度是500-1000℃
作为优选,所述步骤(2)中,降温速率是0.01-2.5℃/min;或所述步骤(2)中,降温速率是0.02-1℃/min。
作为优选,所述步骤(2)中,锂源的加入量为Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1~1.1:1。
作为优选,所述步骤(3)烧结时间是1-12小时,烧结温度是500-1000℃。
作为优选,所述步骤(3)清洗方式为用二氧化碳气流冲洗或碳酸水清洗。二氧化碳气流冲洗,碳酸水清洗可以提高清洗效率,有效降低表面残碱量。
作为优选,所述步骤(4)烧结时间是0.5-12小时,烧结温度是100-1000℃。
与现有技术相比,本发明对镍钴铝三元锂离子电池正极材料进行清洗,得到的镍钴铝三元锂离子电池正极材料的表面残碱量有效降低,减少在正极材料配置过程中,镍钴铝三元锂离子电池正极材料表面的碱性物质对正极胶液中粘结剂的攻击,避免粘结剂形成双键,提高涂布效果,有助于提高电芯性能。
本发明的制备方法工艺简单,过程可控,易于工业化量产。
为解决上述技术问题,本发明还提供了一种锂离子电池,包括正极、负极、电解液和隔膜,所述正极包括上述的镍钴铝三元锂离子电池正极材料或通过上述的方法制备得到的镍钴铝三元锂离子电池正极材料。
本发明提供的锂离子电池,正极采用本发明提供的镍钴铝三元锂离子电池正极材料或通过本发明提供的方法制备得到的镍钴铝三元锂离子电池正极材料,本发明提供的锂离子电池具有循环性能好,使用寿命长,容量保持率高,振实密度高,体积小,重量轻等优点。
为解决上述技术问题,本发明还提供了一种上述的镍钴铝三元锂离子电池正极材料或通过上述的方法制备得到的镍钴铝三元锂离子电池正极材料在制备锂离子电池、电子产品储能、工业蓄电储能、电动汽车及电动自行车电源中的应用。
本发明提供的镍钴铝三元锂离子电池正极材料或通过本发明的方法制备得到的镍钴铝三元锂离子电池正极材料用于锂离子电池、电子产品储能、工业蓄电储能、电动汽车及电动自行车电源中,制备的与锂离子电池、电子产 品储能、工业蓄电储能、电动汽车及电动自行车电源等相关的产品具有使用寿命长,续航时间长,充电时间短,重量身轻、动力足等优点。
附图说明
图1为本发明实施例1制备的采用ZrO 2包覆的镍钴铝三元正极材料与对比例1制备的未包覆的镍钴铝三元正极材料的循环性能测试对比图;
图2为本发明实施例2制备的采用ZrO 2包覆的镍钴铝三元正极材料与对比例2制备的未包覆的镍钴铝三元正极材料的循环性能测试对比图;
图3为本发明实施例3制备的采用Al 2O 3包覆的镍钴铝三元正极材料与对比例1制备的未包覆的镍钴铝三元正极材料的循环性能测试对比图;
图4为本发明实施例4制备的采用Al 2O 3包覆的镍钴铝三元正极材料与对比例2制备的未包覆的镍钴铝三元正极材料的循环性能测试对比图;
图5为本发明实施例5制备的采用ZnO包覆的镍钴铝三元正极材料与对比例1制备的未包覆的镍钴铝三元正极材料的循环性能测试对比图;
图6为本发明实施例6制备的采用ZnO包覆的镍钴铝三元正极材料与对比例2制备的未包覆的镍钴铝三元正极材料的循环性能测试对比图;
图7为本发明实施例7制备的采用MgO包覆的镍钴铝三元正极材料与对比例1制备的未包覆的镍钴铝三元正极材料的循环性能测试对比图;
图8为本发明实施例8制备的采用MgO包覆的镍钴铝三元正极材料与对比例2制备的未包覆的镍钴铝三元正极材料的循环性能测试对比图;
图9为本发明实施例9制备的Ti掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9993Ti 0.0007O 2与对比例1制备的未掺杂的镍钴铝三元锂离子正极材料的循环性能测试比较图;
图10为本发明实施例10制备的Ti掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9981Ti 0.0019O 2与对比例2制备的未掺杂的镍钴铝三元锂离子正极材料的循环性能测试比较图;
图11为本发明实施例11制备的Al掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9984Al 0.0016O 2与对比例1制备的未掺杂的镍钴铝三元锂离子正极材料的循环性能测试比较图;
图12为本发明实施例12制备的Al掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.997Al 0.003O 2与对比例2制备的未掺杂的镍钴铝三元锂离子正极材料的循环性能测试比较图;
图13为本发明实施例13制备的Mg掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9983Mg 0.0017O 2与对比例1制备的未掺杂的镍钴铝三元锂离子正极材料的循环性能测试比较图;
图14为本发明实施例14制备的Mg掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9975Mg 0.0025O 2与对比例2制备的未掺杂的镍钴铝三元锂离子正极材料的循环性能测试比较图;
图15为本发明实施例15制备的Ti掺杂、采用ZrO 2包覆的镍钴铝三元锂离子电池正极材料与对比例1制备的未掺杂未包覆的镍钴铝三元锂离子电池正极材料的循环性能测试对比图。
具体实施方式
为了使本发明的发明目的、技术方案和有益效果更加清晰,以下结合实施例进一步详细描述本发明。但是,应当理解的是,本发明的实施例仅仅是为了解释本发明,并非为了限制本发明,且本发明的实施例并不局限于说明书中给出的实施例。
下面结合具体实施例对本发明作进一步描述。
实施例1
本实施例提供的是采用包覆材料ZrO 2包覆的镍钴铝三元锂离子电池正极材料,化学式是(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9984Zr 0.0016O 2,M是Zr,x=0.15,y=0.035,a=1.035,b=0.0016。
本实施例包覆的镍钴铝三元锂离子电池正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9984Zr 0.0016O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至500℃反应10小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物按比例混合,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1混合研磨均匀后,在氧气气氛中进行烧结,升温至715℃反应16.5小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物与包覆材料ZrO 2混合,ZrO 2的加入量为ZrO 2中的Zr与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0016:0.9984,升温至650℃烧结3.5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9984Zr 0.0016O 2,ICP元素分析测试结果表明Ni、Co、Al、Zr每种金属摩尔百分比如下:
Figure PCTCN2019070656-appb-000001
实施例2
本实施例提供的是采用包覆材料ZrO 2包覆的镍钴铝三元锂离子电池正极材料,化学式是(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9992Zr 0.0008O 2,M是Zr,x=0.15,y=0.035,a=1.035,b=0.0008。
本实施例包覆的镍钴铝三元锂离子电池正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9992Zr 0.0008O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至600℃反应6.5小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物混合,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,混合研磨均匀后,在氧气气氛中进行烧结,升温至775℃反应8小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料ZrO 2,ZrO 2的加入量为ZrO 2中的Zr与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0008:0.9992,升温至615℃烧结5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9992Zr 0.0008O 2,ICP元素分析测试结果表明Ni、Co、Al、Zr每种金属摩尔百分比如下:
Figure PCTCN2019070656-appb-000002
实施例3
本实施例提供的是采用Al 2O 3包覆的镍钴铝三元锂离子电池正极材料,化学式是(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.998Al 0.002O 2,M是Al,x=0.15,y=0.035,a=1.035,b=0.002。
本实施例包覆的镍钴铝三元锂离子电池正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.998Al 0.002O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至500℃反应10小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物混合,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,混合研磨均匀后,在氧气气氛中进行烧结,升温至715℃反应16.5小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料Al 2O 3,Al 2O 3的加入量为Al 2O 3中的Al与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.002:0.998,升温至650℃烧结3.5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.998Al 0.002O 2,ICP元素分析测试Ni、Co、Al每种金属摩尔百分比如下:
Figure PCTCN2019070656-appb-000003
实施例4
本实施例提供的是采用Al 2O 3包覆的镍钴铝三元锂离子电池正极材料,化学式是(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9945Al 0.0055O 2,M是Al,x=0.15,y=0.035,a=1.035,b=0.0055。
本实施例包覆的镍钴铝三元锂离子电池正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9945Al 0.0055O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至600℃反应6.5小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物混合,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1混合研磨均匀后,在氧气气氛中进行烧结,升温至775℃反应8小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料Al 2O 3,Al 2O 3的加入量为Al 2O 3中的Al与三元正极材料前驱体(Ni+Co+Al)摩尔比是0.0055:0.9945,升温至615℃烧结5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9945Al 0.0055O 2,ICP元素分析测试表明Ni、Co、Al每种金属的摩尔百分比如下:
Figure PCTCN2019070656-appb-000004
实施例5
本实施例提供的是采用ZnO包覆的镍钴铝三元锂离子电池正极材料,化学式是(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9971Zn 0.0029O 2,M是Zn,x=0.15,y=0.035,a=1.035,b=0.0029。
本实施例包覆的镍钴铝三元锂离子电池正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9971Zn 0.0029O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至500℃反应10小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物混合,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1混合研磨均匀后, 在氧气气氛中进行烧结,升温至715℃反应16.5小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料ZnO,ZnO的加入量为ZnO中的Zn与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0029:0.9971,升温至650℃烧结3.5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9971Zn 0.0029O 2,ICP元素分析测试表明Ni、Co、Al、Zn每种金属摩尔百分比如下:
Figure PCTCN2019070656-appb-000005
实施例6
本实施例提供的是采用ZnO包覆的镍钴铝三元锂离子电池正极材料,化学式是(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9993Zn 0.0007O 2,M是Zn,x=0.15,y=0.035,a=1.035,b=0.0007。
本实施例包覆的镍钴铝三元锂离子电池正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9993Zn 0.0007O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至600℃反应6.5小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物混合,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,混合研磨均匀后,在氧气气氛中进行烧结,升温至775℃反应8小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料ZnO,ZnO的加入量为ZnO中的Zn与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0007:0.9993,升温至615℃烧结5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9993Zn 0.0007O 2,ICP元素分析测试表明Ni、Co、Al、Zn每种金属摩尔百分比如下:
Figure PCTCN2019070656-appb-000006
实施例7
本实施例提供的是采用MgO包覆的镍钴铝三元锂离子电池正极材料,化学式是(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9922Mg 0.0078O 2,M是Mg,x=0.15,y=0.035,a=1.035,b=0.0078
本实施例包覆的镍钴铝三元锂离子电池正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9922Mg 0.0078O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至500℃反应10小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物混合,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,研磨均匀后,进行烧结,升温至715℃反应16.5小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料MgO,MgO的加入量为MgO中的Mg与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0078:0.9922,升温至650℃烧结3.5小时,降至室温,即得到目标产物 (Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9922Mg 0.0078O 2,ICP元素分析测试表明Ni、Co、Al、Mg每种金属的摩尔百分比如下:
Figure PCTCN2019070656-appb-000007
实施例8
本实施例提供的是采用MgO包覆的镍钴铝三元锂离子电池正极材料,化学式是(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9983Mg 0.0017O 2,M是Mg,x=0.15,y=0.035,a=1.035,b=0.0017。
本实施例包覆的镍钴铝三元锂离子电池正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9983Mg 0.0017O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至600℃反应6.5小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物混合,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,混合研磨均匀后,在氧气气氛中进行烧结,升温至775℃反应8小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料MgO,MgO的加入量为MgO中的Mg与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0017:0.9983,升温至615℃烧结5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9983Mg 0.0017O 2,ICP元素分析测试表明Ni、Co、Al、Mg每种金属的摩尔百分比如下:
Figure PCTCN2019070656-appb-000008
实施例9
实施例9提供的是Ti掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9993Ti 0.0007O 2,M是Ti,x=0.15,y=0.035,a=1.035,b=0.0007。本实施例Ti掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9993Ti 0.0007O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至500℃反应10小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物及掺杂材料TiO 2混合研磨,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,TiO 2的加入量为TiO 2中的Ti与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0007:0.9993,研磨均匀后,进行烧结,升温至715℃烧结16.5小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结得到产物升温至650℃烧结3.5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9993Ti 0.0007O 2,ICP元素分析测试表明Ni、Co、Al、Ti每种金属的摩尔百分比如下:
Figure PCTCN2019070656-appb-000009
实施例10
实施例10提供的是Ti掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9981Ti 0.0019O 2,M是Ti,x=0.15,y=0.035,a=1.035,b=0.0019。本实施例提供的Ti掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9981Ti 0.0019O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至600℃反应6.5小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物及掺杂材料TiO 2混合研磨,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,TiO 2的加入量为TiO 2中的Ti与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0019:0.9981,研磨均匀后,进行烧结,升温至775℃反应8小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结得到产物升温至615℃烧结5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9981Ti 0.0019O 2,ICP元素分析测试表明Ni、Co、Al、Ti每种金属的摩尔百分比如下:
Figure PCTCN2019070656-appb-000010
实施例11
实施例11提供的是Al掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9984Al 0.0016O 2,M是Al,x=0.15,y=0.035,a=1.035, b=0.016。本实施例提供Al掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9984Al 0.0016O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至500℃反应10小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物及掺杂材料Al 2O 3混合研磨,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,Al 2O 3的加入量为Al 2O 3中的Al与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0016:0.9984,研磨均匀后,进行烧结,升温至715℃反应16.5小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结得到产物升温至650℃烧结3.5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9984Al 0.0016O 2,ICP元素分析测试表明Ni、Co、Al每种金属的摩尔百分比如下:
Figure PCTCN2019070656-appb-000011
实施例12
实施例12提供的是Al掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.997Al 0.003O 2,M是Al,x=0.15,y=0.035,a=1.035,b=0.003。本实施例提供的Al掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.997Al 0.003O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至600℃反应6.5小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物及掺杂材料Al 2O 3混合研磨,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,Al 2O 3的加入量为Al 2O 3中的Al与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.003:0.997,研磨均匀后,进行烧结,升温至775℃烧结8小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结得到产物升温至615℃烧结5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.997Al 0.003O 2,ICP元素分析测试表明Ni、Co、Al每种金属的摩尔百分比如下:
Figure PCTCN2019070656-appb-000012
实施例13
实施例13提供的是Mg掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9983Mg 0.0017O 2,M是Mg,x=0.15,y=0.035,a=1.035,b=0.0017。本实施例提供Mg掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9983Mg 0.0017O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至500℃反应10小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物及掺杂材料MgO混合研磨,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是 1.035:1,MgO的加入量为MgO中的Mg与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0017:0.9983,研磨均匀后,进行烧结,升温至715℃反应16.5小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结得到产物升温至650℃烧结3.5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9983Mg 0.0017O 2,ICP元素分析测试表明Ni、Co、Al、Mg每种金属的摩尔百分比如下:
Figure PCTCN2019070656-appb-000013
实施例14
实施例14提供的是Mg掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9975Mg 0.0025O 2,M是Mg,x=0.15,y=0.035,a=1.035,b=0.0025。本实施例提供的Mg掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9975Mg 0.0025O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至600℃反应6.5小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物及掺杂材料MgO混合研磨,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,MgO的加入量为MgO中的Mg与三元正极材料前驱体中(Ni+Co+Al) 摩尔比是0.0025:0.9975,研磨均匀后,进行烧结,升温至775℃烧结8小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结得到产物升温至615℃烧结5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9975Mg 0.0025O 2,ICP元素分析测试表明Ni、Co、Al、Mg每种金属的摩尔百分比如下:
Figure PCTCN2019070656-appb-000014
实施例15
本实施例提供的是Ti掺杂、采用包覆材料ZrO 2包覆的镍钴铝三元锂离子电池正极材料,化学式是(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9982Ti 0.0007Zr 0.0011O 2,M是Ti,M'是Zr,x=0.15,y=0.035,a=1.035,b1=0.0007,b2=0.0011。
本实施例掺杂包覆的镍钴铝三元锂离子电池正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9982Ti 0.0007Zr 0.0011O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至500℃反应10小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物、掺杂材料TiO 2混合,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,掺杂材料TiO 2的加入量为TiO 2中的Ti与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0007:0.9982,混合研磨均匀后,在氧气气氛中进行烧结,升温至715℃反应16.5小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料ZrO 2,ZrO 2的加入量为ZrO 2中的Zr与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0011:0.9982,升温至650℃烧结3.5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9982Ti 0.0007Zr 0.0011O 2,ICP元素分析测试表明Ni、Co、Al、Zr、Ti每种金属的摩尔百分比如下:
Figure PCTCN2019070656-appb-000015
实施例16
实施例16提供的是镍钴铝三元锂离子电池正极材Li 1.035Ni 0.815Co 0.15Al 0.035O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至500℃反应10小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物混合,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,混合研磨均匀后,在氧气气氛中进行烧结,升温至715℃反应16.5小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物升温至650℃烧结3.5小时,降至室温,然后二氧化碳气流冲洗;
步骤(4)、第四次烧结:将所述步骤(3)清洗后的物质升温至250℃烧结3小时,降至室温,得到目标产物。
实施例17
实施例17提供的是镍钴铝三元锂离子电池正极材Li 1.035Ni 0.815Co 0.15Al 0.035O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 0.815Co 0.15Al 0.035(OH) 2.035烧结,升温至600℃反应6.5小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物混合,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,混合研磨均匀后,在氧气气氛中进行烧结,升温至775℃反应8小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物升温至615℃烧结5小时,降至室温,然后碳酸水冲洗;
步骤(4)、第四次烧结:将所述步骤(3)清洗后的物质升温至350℃烧结5小时,降至室温,得到目标产物。
实施例18
实施例18提供的是Zr掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9975Zr 0.0025O 2,M是Zr,x=0.15,y=0.035,a=1.035,b=0.0025。本实施例提供的Zr掺杂的镍钴铝三元锂离子正极材料的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y及掺杂材料ZrO 2混合烧结,ZrO 2的加入量为ZrO 2中的Zr与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0025:0.9975,升温至600℃反应6.5小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物混合研磨,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,研磨均匀后,进行烧结,升温至775℃烧结8小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结得到产物升温至615℃烧结5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9975Zr 0.0025O 2.
实施例19
实施例19提供的Nb掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9975Nb 0.0025O 2,M是Nb,x=0.15,y=0.035,a=1.035,b=0.0025。本实施例提供的Nb掺杂的镍钴铝三元锂离子正极材料的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y及掺杂材料Nb(OH) 5混合烧结,Nb(OH) 5的加入量为Nb(OH) 5中的Nb与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0012:0.9975,升温至600℃反应6.5小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物及掺杂材料Nb(OH) 5混合研磨,Nb(OH) 5的加入量为Nb(OH) 5中的Nb与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0013:0.9975一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,研磨均匀后,进行烧结,升温至775℃烧结8小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结得到产物升温至615℃烧结5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9975Nb 0.0025O 2
实施例20
本实施例提供的是Ce掺杂、采用包覆材料ZrO 2包覆的镍钴铝三元锂离子电池正极材料,化学式是(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9982Ce 0.0007Zr 0.0011O 2,M是Ce,M'是Zr,x=0.15,y=0.035,a=1.035,b1=0.0007,b2=0.0011。
本实施例掺杂包覆的镍钴铝三元锂离子电池正极材料的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y与掺杂材料CeO 2混合,掺杂材料CeO 2的加入量为CeO 2中的Ce与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0007:0.9982,升温至500℃反应10小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物混合烧结、一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,混合研磨均匀后,在氧气气氛中进行烧结,升温至715℃反应16.5小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料ZrO 2,ZrO 2的加入量为ZrO 2中的Zr与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0011:0.9982,升温至650℃烧结3.5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9982Ce 0.0007Zr 0.0011O 2
实施例21
本实施例提供的是Nb掺杂、采用包覆材料ZrO 2包覆的镍钴铝三元锂离子电池正极材料,化学式是(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9982Nb 0.0007Zr 0.0011O 2,M是Nb,M'是Zr,x=0.15,y=0.035,a=1.035,b1=0.0007,b2=0.0011。
本实施例掺杂包覆的镍钴铝三元锂离子电池正极材料的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,与掺杂材料Nb(OH) 5混合,掺杂材料Nb(OH) 5的加入量为Nb(OH) 5中的Nb与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0003:0.9982,升温至500℃反应10小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物、掺杂材料Nb(OH) 5混合,一水合氢氧化锂的用量 为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,掺杂材料Nb(OH) 5的加入量为Nb(OH) 5中的Nb与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0004:0.9982,混合研磨均匀后,在氧气气氛中进行烧结,升温至715℃反应16.5小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料ZrO 2,ZrO 2的加入量为ZrO 2中的Zr与三元正极材料前驱体中(Ni+Co+Al)摩尔比是0.0011:0.9982,升温至650℃烧结3.5小时,降至室温,即得到目标产物(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9982Nb 0.0007Zr 0.0011O 2
对比例1
对比例1提供的是未掺杂未包覆的镍钴铝三元锂离子电池正极材料,化学式是Li 1.035Ni 0.815Co 0.15Al 0.035O 2,对比例1未包覆的镍钴铝三元锂离子电池正极材料Li 1.035Ni 0.815Co 0.15Al 0.035O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结,升温至500℃反应10小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物混合,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,混合研磨均匀后,在氧气气氛中进行烧结,升温至715℃反应16.5小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物升温至650℃烧结3.5小时,降至室温,即得到对比材料Li 1.035Ni 0.815Co 0.15Al 0.035O 2
对比例2
对比例2提供的是未掺杂未包覆的镍钴铝三元锂离子电池正极材料,化学式是Li 1.035Ni 0.815Co 0.15Al 0.035O 2,对比例2未包覆的镍钴铝三元锂离子电池正极材料Li 1.035Ni 0.815Co 0.15Al 0.035O 2的制备方法,包括以下步骤:
步骤(1)、第一次烧结:将三元正极材料前驱体Ni 0.815Co 0.15Al 0.035(OH) 2.035烧结,升温至600℃反应6.5小时;
步骤(2)、第二次烧结:将一水合氢氧化锂烘干至完全失去结晶水后,与所述步骤(1)烧结所得物混合,一水合氢氧化锂的用量为一水合氢氧化锂中的Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1.035:1,混合研磨均匀后,在氧气气氛中进行烧结,升温至775℃反应8小时,然后以0.3℃/min的降温速率降至室温;
步骤(3)、第三次烧结:将所述步骤(2)烧结所得物升温至615℃烧结5小时,降至室温,即得到对比材料Li 1.035Ni 0.815Co 0.15Al 0.035O 2
表1:实施例1~17,对比例1~2各个步骤反应条件、原料比例及产物。
Figure PCTCN2019070656-appb-000016
纽扣电池组装
CR2032型号纽扣电池组装:
以实施例1~8制备的包覆的镍钴铝酸锂三元正极材料、对比例1~2制备的未包覆的镍钴铝三元正极材料为正极的活性物,负极采用金属锂片,隔膜采用Celgard 2500隔膜,电解液为苏州佛赛新材料有限公司fosai LB-002电解液,按现有技术方法组装CR2032型号纽扣电池,组装顺序为:正极盖平放、放置弹簧片、放置不锈钢片、放置正极片、注电解液、放置隔膜片、放置锂片、盖上负极帽,封口,组装完成。电池在充满氩气的干燥手套箱中进行装配。组装完成后,对电池进行性能测试,测试结果见表2。
1、ICP元素检测
测试方法:电感耦合等离子体质谱测试法
测试仪器名称:电感耦合等离子体质谱仪
型号:Prodigy DC Arc
测试仪器厂家:美国利曼—徕伯斯公司
2、循环性能
测试仪器名称:新威电池检测系统,型号:BTS-5V10mA
测试仪器厂家:深圳市新威尔电子有限公司;
测试方法:在25℃下,以1C恒流充电至4.3V,4.3V恒压至0.05C,然后1C放电至3V,反复进行100次上述充放电循环,测定第一次循环时的放电容量和第100次循环时的放电容量,计算循环100次后的容量保持率,公式为:循环后的容量保持率=(第100次循环时的放电容量)/(第一次循环时的放电容量)*100%。
3、振实密度
测试仪器名称:振实密度仪
仪器型号:JZ-1
仪器厂家:成都精新粉体测试设备有限公司
测试方法:以0.0001g的精度称量约10至20g的正极材料。将正极材料放入量筒,然后将量筒固定在支架上。将正极材料重复3000次振实(即,自动提升和下落量筒),然后测量相应的体积。振实密度=振实后的质量/振实后的体积。进行三次平行实验,表2中列出的结果代表三次实验的平均值。
4、表面残碱量测试方法:酸碱滴定法。
(1)制备正极材料清夜:以0.0001g的精度称量W 1(30.0000±0.0040g)的正极材料,以0.01g的精度称量W 2(100±0.1g)去离子水,将正极材料与去离子水混合,氩气置换混合液中的空气,搅拌,过滤,得到滤液,移取50mL滤液,放入100mL烧杯中,准备滴定;
(2)测量LiOH含量:以酚酞为指示剂,以0.05mol/L盐酸标准溶液滴定,滴定终点时所消耗的盐酸标液体积V 1
(3)测量Li 2CO 3含量:氩气置换步骤(2)滴定后的清液中CO 2,然后以甲基红指示剂,以0.05mol/L盐酸标准溶液滴定,滴定终点时所消耗的盐酸标液体积V 2
正极材料表面LiOH含量(wt%)计算公式:ω 1=(2V 1-V 2)*0.05*2.395*W 2/W 1/50;
正极材料表面Li 2CO 3含量(wt%)计算公式:ω 2=(V 2-V 1)*0.05*7.389*W 2/W 1/50;
2.395:与盐酸标液(1.000mol/L)相当的以g表示的LiOH的质量;
7.389:与盐酸标液(2.000mol/L)相当的以g表示的Li 2CO 3的质量;
正极材料表面残碱量=ω 12
表2、实施例1~17和对比例1~2的性能测试结果。
实施例/对比例 循环100次后的容量保持率(%,1C) 振实密度(g/cm 3) 表面残碱量(wt%)
实施例1 91.50 —— ——
实施例2 89.70 —— ——
实施例3 83.20 2.97 0.35
实施例4 82 2.96 0.41
实施例5 87.30 —— ——
实施例6 85.90 2.80 ——
实施例7 85.80 —— ——
实施例8 84 —— ——
实施例9 89.2 —— 0.74
实施例10 84.9 —— 0.75
实施例11 87 —— 0.66
实施例12 82.8 —— 0.69
实施例13 90.7 —— 0.56
实施例14 88.9 —— 0.59
实施例15 91. —— 0.7
实施例16 —— —— 0.33
实施例17 —— —— 0.21
对比例1 79.70 2.79 0.83
对比例2 76.20 2.75 0.88
请参考图1,结合表2数据,可以看出:实施例1与对比例1相比,实施例1中采用ZrO 2包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9984Zr 0.0016O 2循环100次后的容量保持率91.50%,对比例1未包覆的镍钴铝三元正极材料循环100次后的容量保持率79.70%,与对比例1未包覆的镍钴铝三元正极材料相比,实施例1中采用ZrO 2包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9984Zr 0.0016O 2具有更稳定的循环性能。
请参考图2,结合表2数据,可以看出:实施例2与对比例2相比,实施例2中采用ZrO 2包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9992Zr 0.0008O 2循环100次后的容量保持率91.50%,对比例2未包覆的镍钴铝三元正极材料循环100次后的容量保持率76.20%,与对比例2未包覆的镍钴铝三元正极材料相比,实施例2中采用ZrO 2包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9992Zr 0.0008O 2具有更稳定的循环性能。
请参考图3,结合表2数据,可以看出:实施例3与对比例1相比,实施例3中采用Al 2O 3包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.998Al 0.002O 2振实密度2.97g/cm 3,循环100次后的容量保持率83.20%,对比例1未包覆的镍钴铝三元正极材料振实密度2.79g/cm 3,循环100次后的容量保持率79.70%,与对比例1未包覆的镍钴铝三元正极材料相比,实施例3中采用Al 2O 3包覆的镍钴铝三元正极材料Co 0.15Al 0.035) 0.998Al 0.002O 2具有更稳定的循环性能,振实密度增加。
实施例3与对比例1相比,实施例3中采用Al 2O 3包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.998Al 0.002O 2表面LiOH重量百分比是0.26%,表面Li 2CO 3重量百分比是0.09%,表面残碱量重量百分比是0.35%,对比例1未包覆的镍钴铝三元正极材料表面LiOH含量0.46%,表面Li 2CO 3含量重量百分比是0.37%,表面残碱量重量百分比是0.83%,与对比例1未包覆的镍钴铝三元正极材料相比,实施例3中采用Al 2O 3包覆的镍钴铝三元正极材料Co 0.15Al 0.035) 0.998Al 0.002O 2表面LiOH、Li 2CO 3含量降低,从而表面残碱量有效降低。
请参考图4,结合表2数据,可以看出:实施例4与对比例2相比,实施例4中采用Al 2O 3包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9945Al 0.0055O 2振实密度2.96g/cm 3,循环100次后的容 量保持率82%,对比例2未包覆的镍钴铝三元正极材料振实密度2.75g/cm 3,循环100次后的容量保持率76.20%,与对比例2未包覆的镍钴铝三元正极材料相比,实施例2中采用Al 2O 3包覆的(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9945Al 0.0055O 2具有更稳定的循环性能,振实密度增加。
实施例4与对比例2相比,实施例4中采用Al 2O 3包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9945Al 0.0055O 2表面LiOH含量重量百分比是0.26%,表面Li 2CO 3含量重量百分比是0.15%,表面残碱量重量百分比是0.41%,对比例2未包覆的镍钴铝三元正极材料表面LiOH含量重量百分比是0.49%,表面Li 2CO 3含量重量百分比是0.39%,表面残碱量重量百分比是0.88%,与对比例2未包覆的镍钴铝三元正极材料相比,实施例2中采用Al 2O 3包覆的(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9945Al 0.0055O 2表面LiOH、Li 2CO 3含量降低,从而表面残碱量有效降低。
请参考图5,结合表2数据,可以看出:实施例5与对比例1相比,实施例5中采用ZnO包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9971Zn 0.0029O 2循环100次后的容量保持率87.30%,对比例1未包覆的镍钴铝三元正极材料循环100次后的容量保持率79.70%,与对比例1未包覆的镍钴铝三元正极材料相比,实施例5中采用ZnO包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9971Zn 0.0029O 2具有更稳定的循环性能。
请参考图6,结合表2数据,可以看出:实施例6与对比例2相比,实施例6中采用ZnO包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9993Zn 0.0007O 2循环100次后的容量保持率85.90%,对比例2未包覆的镍钴铝三元正极材料循环100次后的容量保持率76.20%,与对比例2未包覆的镍钴铝三元正极材料相比,实施例2中采用ZnO包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9993Zn 0.0007O 2具有更稳定的循环性能。
请参考图7,结合表2数据,可以看出:实施例7与对比例1相比,实施例7中采用MgO包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9922Mg 0.0078O 2循环100次后的容量保持率85.80%,对比例1未包覆的镍钴铝三元正极材料循环100次后的容量保持率79.70%,与对比例1未包覆的镍钴铝三元正极材料相比,实施例7中采用MgO包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9922Mg 0.0078O 2具有更稳定的循环性能。
请参考图8,结合表2数据,可以看出:实施例8与对比例2相比,实施例8中采用MgO包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9983Mg 0.0017O 2循环100次后的容量保持率84%,对比例2未包覆的镍钴铝三元正极材料循环100次后的容量保持率76.20%,与对比例2未包覆的镍钴铝三元正极材料相比,实施例2中采用MgO包覆的镍钴铝三元正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9983Mg 0.0017O 2具有更稳定的循环性能。
请参考图9,结合表2数据,可以看出:实施例9与对比例1相比,实施例9中Ti掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9993Ti 0.0007O 2循环100次后的容量保持率89.2%,总残碱量重量百分比是0.74%,对比例1未掺杂的镍钴铝三元锂离子正极材料循环100次后的容量保持率79.7%,表面残碱量重量百分比是0.83%,与对比例1未掺杂的镍钴铝三元锂离子正极材料相比,实施例9中Ti掺杂的镍钴铝三元锂离子正极材料具有更稳定的循环性能,并且表面残碱量有效降低。
请参考图10,结合表2数据,可以看出:实施例10与对比例2相比,实施例10中Ti掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9981Ti 0.0019O 2循环100次后的容量保持率84.9%,总残 碱量重量百分比是0.75%,对比例2未掺杂的镍钴铝三元锂离子正极材料循环100次后的容量保持率76.2%,表面残碱量重量百分比是0.88%,与对比例2未掺杂的镍钴铝三元锂离子正极材料相比,实施例10中Ti掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9981Ti 0.0019O 2容量保持率高于未掺杂的镍钴铝三元锂离子正极材料,具有更稳定的循环性能,表面残碱量低于未掺杂的镍钴铝三元锂离子正极材料。
请参考图11,结合表2数据,可以看出:实施例11与对比例1相比,实施例11中Al掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9984Al 0.0016O 2循环100次后的容量保持率87.0%,总残碱量重量百分比是0.66%;对比例1未掺杂的镍钴铝三元锂离子正极材料循环100次后的容量保持率79.70%,表面残碱量重量百分比是0.83%,与对比例1未掺杂的镍钴铝三元锂离子正极材料相比,实施例11中Al掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9984Al 0.0016O 2具有更稳定的循环性能,并且表面残碱量有效降低。
请参考图12,结合表2数据,可以看出:实施例12与对比例2相比,实施例4中Al掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.997Al 0.003O 2循环100次后的容量保持率82.8%,总残碱量重量百分比是0.69%;对比例2未掺杂的镍钴铝三元锂离子正极材料循环100次后的容量保持率76.2%,表面残碱量重量百分比是0.88%,与对比例2未掺杂的镍钴铝三元锂离子正极材料相比,实施例12中Al掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.997Al 0.003O 2具有更稳定的循环性能,并且表面残碱量有效降低。
请参考图13,结合表2数据,可以看出:实施例13与对比例1相比,实施例5中Mg掺杂的镍钴铝三元锂离子正极材料 (Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9983Mg 0.0017O 2循环100次后的容量保持率90.7%,总残碱量重量百分比是0.56%;对比例1未掺杂的镍钴铝三元锂离子正极材料循环100次后的容量保持率79.7%,表面残碱量重量百分比是0.83%,与对比例1未掺杂的镍钴铝三元锂离子正极材料相比,实施例13中Mg掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9983Mg 0.0017O 2具有更稳定的循环性能,并且表面残碱量有效降低。
请参考图14,结合表2数据,可以看出:实施例14与对比例2相比,实施例6中Mg掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9975Mg 0.0025O 2循环100次后的容量保持率88.9%,总残碱量重量百分比是0.59%;对比例2未掺杂的镍钴铝三元锂离子正极材料循环100次后的容量保持率76.2%,表面残碱量重量百分比是0.88%,与对比例2未掺杂的镍钴铝三元锂离子正极材料相比,实施例14中Mg掺杂的镍钴铝三元锂离子正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9975Mg 0.0025O 2具有更稳定的循环性能,并且表面残碱量有效降低。
请参考图15,结合表2数据,可以看出:实施例15与对比例1相比,实施例15中采用Ti掺杂,采用ZrO 2包覆的镍钴铝三元锂离子电池正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9982Ti 0.0007Zr 0.0011O 2循环100次后的容量保持率91%,对比例1未掺杂未包覆的镍钴铝三元锂离子电池正极材料循环100次后的容量保持率79.7%,与对比例1未掺杂未包覆的镍钴铝三元锂离子电池正极材料相比,实施例15中采用Ti掺杂,采用ZrO 2包覆的镍钴铝三元锂离子电池正极材料(Li 1.035Ni 0.815Co 0.15Al 0.035) 0.9982Ti 0.0007Zr 0.0011O 2具有更稳定的循环性能。
请参考表2数据,可以看出:实施例16与对比例1相比,实施例16中采用步骤(3)采用二氧化碳气流冲洗镍钴铝三元锂离子电池正极材料,得到最 终产物的表面残碱量为0.33%,对比例1未清洗的镍钴铝三元锂离子电池正极材料的表面残碱量为0.83%,与对比例1未清洗的镍钴铝三元锂离子电池正极材料相比,实施例16中采用二氧化碳气流冲洗得到的镍钴铝三元锂离子电池正极材料表面残碱量有效降低。
实施例17与对比例2相比,实施例17中采用步骤(3)采用碳酸水清洗镍钴铝三元锂离子电池正极材料,得到最终产物的表面残碱量为0.21%,对比例2未清洗的镍钴铝三元锂离子电池正极材料的表面残碱量为0.88%,与对比例2未清洗的镍钴铝三元锂离子电池正极材料相比,实施例17中采用碳酸水清洗得到的镍钴铝三元锂离子电池正极材料表面残碱量有效降低。
综上所述,本申请镍钴铝三元正极材料至少具有以下优点:通过本发明的方法制备的镍钴铝三元正极材料,在3.0V~4.3V下的充放电循环性能得到了显著的提高:对比实施例1~15和对比例1~2的可以发现,经过100次循环后,本发明方法制备的镍钴铝三元正极材料的容量保持率高于未掺杂未包覆的镍钴铝三元正极材料;这说明本申请的镍钴铝三元正极材料具有更稳定的循环性能。
本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包括这些改动和变型在内。

Claims (31)

  1. 一种包覆的镍钴铝三元锂离子电池正极材料,其特征在于,包括镍钴铝酸锂材料以及包覆在所述镍钴铝酸锂材料表面的包覆材料,所述包覆的镍钴铝三元锂离子电池正极材料的化学式如式(I)所示:
    (Li aNi 1-x-yCo xAl y) 1-bM bO 2  (I)
    a、b、x、y为摩尔分数,x>0,y>0,1-x-y>0,1≤a≤1.1,0<b≤0.02;
    M选自碱金属元素、碱土金属元素、第13族元素、第14族元素、过渡金属元素及稀土元素中的一种或多种。
  2. 如权利要求1所述的包覆的镍钴铝三元锂离子电池正极材料,其特征在于,
    0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.01。
  3. 如权利要求1所述的包覆的镍钴铝三元锂离子电池正极材料,其特征在于,M是Zr,x=0.15,y=0.035,a=1.035,b=0.0016;或M是Zr,x=0.15,y=0.035,a=1.035,b=0.0008;或M是Al,x=0.15,y=0.035,a=1.035,b=0.002;或M是Al,x=0.15,y=0.035,a=1.035,b=0.0055;或M是Zn,x=0.15,y=0.035,a=1.035,b=0.0029;或M是Zn,x=0.15,y=0.035,a=1.035,b=0.0007;或M是Mg,x=0.15,y=0.035,a=1.035,b=0.0078;或M是Mg,x=0.15,y=0.035,a=1.035,b=0.0078;或M是Mg,x=0.15,y=0.035,a=1.035,b=0.0017。
  4. 如权利要求1所述的包覆的镍钴铝三元锂离子电池正极材料,其特征在于,包覆方法是干法、水相湿法或有机相湿法中的一种。
  5. 一种掺杂的镍钴铝三元锂离子正极材料,其特征在于,所述掺杂的镍钴铝三元锂离子正极材料的化学式如式(I)所示:
    (Li aNi 1-x-yCo xAl y) 1-bM' bO 2  (I);
    其中a、b、x、y为摩尔分数,x>0,y>0,1-x-y>0,1≤a≤1.1,0<b≤0.01;
    M'选自碱金属元素、碱土金属元素、第13族元素、第14族元素、过渡金族元素及稀土元素中的一种或多种。
  6. 如权利要求5所述的掺杂的镍钴铝三元锂离子正极材料,其特征在于,
    0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.005。
  7. 如权利要求5所述的掺杂的镍钴铝三元锂离子正极材料,其特征在于,M'是Ti,x=0.15,y=0.035,a=1.035,b=0.0007;或M'是Ti,x=0.15,y=0.035,a=1.035,b=0.0019;或M'是Al,x=0.15,y=0.035,a=1.035,b=0.016;或M'是Al,x=0.15,y=0.035,a=1.035,b=0.003;或M'是Mg,x=0.15,y=0.035,a=1.035,b=0.0017;或M'是Mg,x=0.15,y=0.035,a=1.035,b=0.0025。
  8. 一种掺杂包覆的镍钴铝三元锂离子电池正极材料,其特征在于,所述掺杂包覆的镍钴铝三元锂离子电池正极材料的化学式如式(I)所示:
    (Li aNi 1-x-yCo xAl y) 1-bM' b1M b2O 2  (I)
    a、b、x、y为摩尔分数,x>0,y>0,1-x-y>0,1≤a≤1.1,b=b1+b2,
    0<b≤0.01;
    M'、M选自碱金属元素、碱土金属元素、第13族元素、第14族元素、过渡金属元素及稀土元素中的一种或多种。
  9. 如权利要求8所述的掺杂包覆的镍钴铝三元锂离子电池正极材料,其特征在于,
    0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.05,0<b≤0.01。
  10. 如权利要求8所述的掺杂包覆的镍钴铝三元锂离子电池正极材料,其特征在于,M'是Ti,M是Zr,x=0.15,y=0.035,a=1.035,b1=0.0007,b2=0.0011。
  11. 如权利要求8所述的掺杂包覆的镍钴铝三元锂离子电池正极材料,其特征在于,包覆方法是干法、水相湿法或有机相湿法中的一种。
  12. 一种权利要求1~4任意一项所述的包覆的镍钴铝三元锂离子电池正极材料的制备方法,其特征在于,包括以下步骤:
    步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结;
    步骤(2)、第二次烧结:将所述步骤(1)烧结所得物加入锂源混合研磨,研磨均匀后,进行烧结,烧结完成后降温至室温;
    步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料进行烧结,得到包覆的镍钴铝三元锂离子电池正极材料(Li aNi 1-x-yCo xAl y) 1-bM bO 2,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.1,0<b≤0.02。
  13. 一种权利要求5至7任意一项所述的掺杂的镍钴铝三元锂离子正极材料的制备方法,其特征在于,包括以下步骤:
    步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结;
    步骤(2)、第二次烧结:将所述步骤(1)烧结所得物加入锂源研磨,研磨均匀后,进行烧结,烧结完成后降温至室温;
    其中,在步骤(1)中加入掺杂材料金属M'化合物,或在步骤(2)中加入掺杂材料金属M'化合物与锂源进行混合研磨,或在步骤(1)和步骤(2)中分别加入掺杂材料金属M'化合物;
    步骤(3)、第三次烧结:将所述步骤(2)烧结所得物进行烧结,得到掺杂的镍钴铝三元锂离子正极材料(Li aNi 1-x-yCo xAl y) 1-bM' bO 2,0.03≤x≤0.15,0.01≤y≤0.05,1≤a≤1.1,0<b≤0.01。
  14. 一种权利要求8至11任意一项所述的掺杂包覆的镍钴铝三元锂离子电池正极材料的制备方法,其特征在于,包括以下步骤:
    步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结;
    步骤(2)、第二次烧结:将所述步骤(1)烧结所得物加入锂源研磨,研磨均匀后,进行烧结,烧结完成后降温至室温;
    其中,在步骤(1)中加入掺杂材料金属M'化合物,或在步骤(2)中加入掺杂材料金属M'化合物与锂源进行混合研磨,或在步骤(1)和步骤(2)中分别加入掺杂材料金属M'化合物;
    步骤(3)、第三次烧结:将所述步骤(2)烧结所得物加入包覆材料金属M化合物进行烧结,得到掺杂包覆的镍钴铝三元锂离子电池正极材料(Li aNi 1-x-yCo xAl y) 1-bM' b1M b2O 2,a、b、x、y为摩尔分数,x>0,y>0,1-x-y>0,1≤a≤1.1,b=b1+b2,0<b≤0.01。
  15. 一种权利要求12至14任意一项所述的制备方法,其特征在于,还包括以下步骤:步骤(4):将步骤(3)烧结所得物进行清洗;将所述步骤(3)清洗后所得物进行烧结,得到目标产物。
  16. 一种镍钴铝三元锂离子电池正极材料的制备方法,其特征在于,包括以下步骤:
    步骤(1)、第一次烧结:将三元正极材料前驱体Ni 1-x-yCo xAl y(OH) 2+y烧结;
    步骤(2)、第二次烧结:将所述步骤(1)烧结所得物加入锂源混合研磨,研磨均匀后,在空气或氧气气氛中进行烧结,烧结完成后降温至室温;
    步骤(3)、第三次烧结:将所述步骤(2)烧结所得物进行烧结,然后将烧结所得物进行清洗;
    步骤(4)、第四次烧结:将所述步骤(3)清洗后所得物进行烧结,得到目标产物。
  17. 如权利要求12至16任意一项所述的制备方法,其特征在于,所述步骤(1)中,烧结时间是6-20小时,烧结温度是200-1000℃。
  18. 如权利要求12至16任意一项所述的制备方法,其特征在于,所述步骤(2)中,所述锂源为氢氧化锂、乙酸锂、草酸锂、碳酸锂、硝酸锂、氯化锂和氟化锂中的一种。
  19. 如权利要求12至16任意一项所述的制备方法,其特征在于,所述步骤(2)中,所述锂源为一水合氢氧化锂,将一水合氢氧化锂烘干至完全失去结晶水后与所述步骤(1)烧结所得物混合。
  20. 如权利要求12至16任意一项所述的制备方法,其特征在于,所述步骤(2)中,烧结时间是8-24小时,烧结温度是500-1000℃。
  21. 如权利要求12至16任意一项所述的制备方法,其特征在于,所述步骤(2)中,降温速率是0.01-2.5℃/min。
  22. 如权利要求12至16任意一项所述的制备方法,其特征在于,所述步骤(2)中,降温速率是0.02-1℃/min。
  23. 如权利要求12至16任意一项所述的制备方法,其特征在于,所述步骤(2)中,锂源的加入量为Li与三元正极材料前驱体中(Ni+Co+Al)摩尔比是1~1.1:1。
  24. 如权利要求12至16任意一项所述的制备方法,其特征在于,所述步骤(2)中烧结是在空气或氧气气氛中进行。
  25. 如权利要求12或14所述的制备方法,其特征在于,所述步骤(3)包覆材料选自金属M的氧化物、金属M的氟化物、金属M的硫化物、金属M的碲化物、金属M的硒化物,金属M的锑化物,金属M的磷化物或金属M的复合氧化物中的一种或多种。
  26. 如权利要求13或14所述的制备方法,其特征在于,所述步骤(2)掺杂材料选自金属M'的氧化物、金属M'的氟化物、金属M'的硫化物、金属M'的碲化物、金属M'的硒化物,金属M'的锑化物,金属M'的磷化物或金属M'的复合氧化物中的一种或多种。
  27. 如权利要求12至16任意一项所述的制备方法,其特征在于,所述步骤(3)烧结时间是1-12小时,烧结温度是500-1000℃。
  28. 如权利要求15或16所述的制备方法,其特征在于,所述步骤(3)清洗方式为用二氧化碳气流冲洗或碳酸水清洗。
  29. 如权利要求15或16所述的制备方法,其特征在于,所述步骤(4)烧结时间是0.5-12小时,烧结温度是100-1000℃。
  30. 一种锂离子电池,包括正极、负极、电解液和隔膜,其特征在于,所述正极包括权利要求1至11任意一项所述的镍钴铝三元锂离子电池正极材料 或通过权利要求12至29任意一项所述的方法制备得到的镍钴铝三元锂离子电池正极材料。
  31. 一种权利要求1至11任意一项所述的镍钴铝三元锂离子电池正极材料或通过权利要求12至29任意一项所述的方法制备得到的镍钴铝三元锂离子电池正极材料在制备锂离子电池、电子产品储能、工业蓄电储能、电动汽车及电动自行车电源中的应用。
PCT/CN2019/070656 2018-03-21 2019-01-07 镍钴铝三元锂离子电池正极材料、其制备方法和用途、以及锂离子电池 WO2019179219A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19770882.9A EP3667780A4 (en) 2018-03-21 2019-01-07 TERNARY NICKEL-COBALT-ALUMINUM MATERIAL FOR ANODE OF LITHIUM-ION BATTERY, MANUFACTURING METHOD FOR THEREOF, AND APPLICATION OF IT, AND LITHIUM-ION BATTERY
JP2020516709A JP7292265B2 (ja) 2018-03-21 2019-01-07 ニッケルコバルトアルミニウム三元系リチウムイオン電池の正極材料、その製法、ならびにリチウムイオン電池
CN201980000087.3A CN110896674A (zh) 2018-03-21 2019-01-07 镍钴铝三元锂离子电池正极材料、其制备方法和用途、以及锂离子电池
US16/840,472 US20200274160A1 (en) 2018-03-21 2020-04-06 Nickel-cobalt-aluminium ternary lithium ion battery cathode material, preparation method and application thereof, and lithium ion battery

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
CN201810232779.8 2018-03-21
CN201810232790.4 2018-03-21
CN201810232673.8 2018-03-21
CN201810249188.1A CN108428873A (zh) 2018-03-21 2018-03-21 一种Al2O3包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN201810232801.9A CN108493416A (zh) 2018-03-21 2018-03-21 一种ZrO2包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN201810232809.5 2018-03-21
CN201810232790.4A CN108417807A (zh) 2018-03-21 2018-03-21 一种Mg掺杂的镍钴铝三元正极材料、制备方法及用途
CN201810232788.7A CN108428871A (zh) 2018-03-21 2018-03-21 一种镍钴铝三元锂离子电池正极材料制备方法
CN201810232673.8A CN108470894A (zh) 2018-03-21 2018-03-21 一种ZnO包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN201810232788.7 2018-03-21
CN201810249188.1 2018-03-21
CN201810232791.9 2018-03-21
CN201810232791.9A CN108493415A (zh) 2018-03-21 2018-03-21 一种MgO包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN201810232779.8A CN108321381A (zh) 2018-03-21 2018-03-21 一种Ti掺杂的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN201810232801.9 2018-03-21
CN201810232802.3A CN108461750A (zh) 2018-03-21 2018-03-21 一种掺杂的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN201810232809.5A CN108461738A (zh) 2018-03-21 2018-03-21 一种Al掺杂的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN201810232778.3 2018-03-21
CN201810232777.9 2018-03-21
CN201810232778.3A CN108461737A (zh) 2018-03-21 2018-03-21 一种包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN201810232777.9A CN108461736A (zh) 2018-03-21 2018-03-21 一种掺杂包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN201810232802.3 2018-03-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/840,472 Continuation US20200274160A1 (en) 2018-03-21 2020-04-06 Nickel-cobalt-aluminium ternary lithium ion battery cathode material, preparation method and application thereof, and lithium ion battery

Publications (1)

Publication Number Publication Date
WO2019179219A1 true WO2019179219A1 (zh) 2019-09-26

Family

ID=67988076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070656 WO2019179219A1 (zh) 2018-03-21 2019-01-07 镍钴铝三元锂离子电池正极材料、其制备方法和用途、以及锂离子电池

Country Status (5)

Country Link
US (1) US20200274160A1 (zh)
EP (1) EP3667780A4 (zh)
JP (1) JP7292265B2 (zh)
CN (1) CN110896674A (zh)
WO (1) WO2019179219A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7031150B2 (ja) * 2017-07-05 2022-03-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質の製造方法、および該正極活物質を用いた非水系電解質二次電池
CN112447951B (zh) * 2019-09-02 2022-11-08 宁德时代新能源科技股份有限公司 正极活性材料、其制备方法、正极极片及锂离子二次电池
CN112466673B (zh) * 2020-08-06 2022-02-22 天津国安盟固利新材料科技股份有限公司 超级电容用锂锰氧阴极材料及其制备方法
CN112194197A (zh) * 2020-08-27 2021-01-08 浙江美都海创锂电科技有限公司 一种低内阻、低胀气率的高镍三元正极材料及其制备方法、应用
CN112079399B (zh) * 2020-09-07 2023-08-22 隆能科技(南通)有限公司 一种低成本高性能镍钴铝酸锂复合正极材料的制备方法
CN112151798B (zh) * 2020-09-16 2022-03-15 天目湖先进储能技术研究院有限公司 一种氟化物/氧化物共包覆正极材料及其制备方法
CN112103504A (zh) * 2020-09-22 2020-12-18 广东工业大学 一种三元材料负载少层/棒状MXene复合材料及其制备方法
WO2022090844A1 (ja) * 2020-10-26 2022-05-05 株式会社半導体エネルギー研究所 正極活物質の作製方法、正極、二次電池、電子機器、蓄電システムおよび車両
EP4174027A4 (en) * 2020-12-01 2024-03-06 Lg Chemical Ltd POSITIVE ELECTRODE ACTIVE MATERIAL PRECURSOR, METHOD FOR PRODUCING THE SAME AND METHOD FOR PRODUCING A POSITIVE ELECTRODE ACTIVE MATERIAL THEREFROM
GB202019122D0 (en) * 2020-12-03 2021-01-20 Johnson Matthey Plc Cathode materials
CN114695845A (zh) * 2020-12-28 2022-07-01 天津国安盟固利新材料科技股份有限公司 一种改善高镍正极材料初始循环快速衰减的方法
CN112831838A (zh) * 2020-12-31 2021-05-25 南通瑞翔新材料有限公司 一种单晶型镍钴铝酸锂正极材料的制备方法
CN115506021B (zh) * 2021-06-22 2024-01-23 宁夏中化锂电池材料有限公司 单晶三元正极材料及其制备方法、锂离子电池正极及锂离子电池
CN113526570A (zh) * 2021-06-29 2021-10-22 格林美(无锡)能源材料有限公司 一种高镍正极材料的制备方法
CN114628649B (zh) * 2021-07-20 2023-10-03 万向一二三股份公司 一种补钴型高镍低钴三元正极材料的制备方法及应用
CN113851622A (zh) * 2021-09-14 2021-12-28 厦门大学 一种电池体系的保护层及电化学装置
CN113903884B (zh) * 2021-09-30 2022-07-22 清华大学深圳国际研究生院 正极活性材料及其制备方法、正极、锂离子电池
CN114373902A (zh) * 2021-11-25 2022-04-19 西安交通大学 制备表面包覆氟化物的三元ncm的方法、ncm及电极
CN114388783A (zh) * 2022-01-04 2022-04-22 万华化学集团股份有限公司 一种高镍正极材料、其制备方法及其应用
CN114388781B (zh) * 2022-01-17 2023-09-15 中国科学院化学研究所 一种锂电池用颗粒致密化正极材料及其制备方法
CN114613991A (zh) * 2022-03-21 2022-06-10 厦门厦钨新能源材料股份有限公司 一种定向协同掺杂的钴酸锂材料及其制备方法
CN114937762B (zh) * 2022-05-09 2024-02-09 北京理工大学 一种表面包覆ZnO、Li2ZnO2和Li3PO4的高镍NCM三元正极材料及其应用
CN114853088A (zh) * 2022-05-20 2022-08-05 宁夏汉尧石墨烯储能材料科技有限公司 铝包覆锂离子电池无钴正极材料的制备方法及正极材料
CN115043443B (zh) * 2022-07-29 2024-03-01 宁波容百新能源科技股份有限公司 一种低成本高镍三元正极材料及其制备方法和应用
CN115594228A (zh) * 2022-10-09 2023-01-13 陕西红马科技有限公司(Cn) 一种WSe2包覆型3D网络状单晶三元正极材料的制备方法
CN116199278B (zh) * 2023-05-05 2023-08-04 四川新能源汽车创新中心有限公司 锂电池三元正极材料制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633308A (zh) * 2013-11-28 2014-03-12 宁波金和新材料股份有限公司 一种富锂镍钴铝氧正极材料及其制备方法
CN103825016A (zh) * 2014-02-13 2014-05-28 宁波金和新材料股份有限公司 一种富锂高镍正极材料及其制备方法
CN103972499A (zh) * 2014-05-16 2014-08-06 海宁美达瑞新材料科技有限公司 一种改性的镍钴铝酸锂正极材料及其制备方法
CN108321381A (zh) * 2018-03-21 2018-07-24 苏州林奈新能源有限公司 一种Ti掺杂的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108417807A (zh) * 2018-03-21 2018-08-17 苏州林奈新能源有限公司 一种Mg掺杂的镍钴铝三元正极材料、制备方法及用途
CN108428873A (zh) * 2018-03-21 2018-08-21 苏州林奈新能源有限公司 一种Al2O3包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108428871A (zh) * 2018-03-21 2018-08-21 苏州林奈新能源有限公司 一种镍钴铝三元锂离子电池正极材料制备方法
CN108461738A (zh) * 2018-03-21 2018-08-28 苏州林奈新能源有限公司 一种Al掺杂的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108461737A (zh) * 2018-03-21 2018-08-28 苏州林奈新能源有限公司 一种包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108461750A (zh) * 2018-03-21 2018-08-28 苏州林奈新能源有限公司 一种掺杂的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108461736A (zh) * 2018-03-21 2018-08-28 苏州林奈新能源有限公司 一种掺杂包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108470894A (zh) * 2018-03-21 2018-08-31 苏州林奈新能源有限公司 一种ZnO包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108493415A (zh) * 2018-03-21 2018-09-04 苏州林奈新能源有限公司 一种MgO包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108493416A (zh) * 2018-03-21 2018-09-04 苏州林奈新能源有限公司 一种ZrO2包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222648A (ja) * 2001-01-24 2002-08-09 Toshiba Corp 正極活物質,その製造方法およびリチウムイオン二次電池
JP5153060B2 (ja) * 2005-06-16 2013-02-27 パナソニック株式会社 リチウムイオン二次電池
EP2477270B1 (en) * 2009-09-18 2014-01-29 Panasonic Corporation Method for charging/discharging positive electrode active material in a lithium secondary battery, charging/discharging system provided with lithium secondary battery and vehicle, electronic device, battery module, battery pack
CN102120624B (zh) * 2011-01-14 2013-01-23 哈尔滨工业大学 一种制备高压锂离子电池正极材料LiXyNi0.5-yMn1.5O4的方法
JP5828282B2 (ja) * 2012-01-06 2015-12-02 株式会社豊田自動織機 非水電解質二次電池用活物質の製造方法およびそれを用いた二次電池
CN104584281B (zh) * 2012-08-28 2017-06-16 住友金属矿山株式会社 非水系电解质二次电池用正极活性物质的制造方法,非水系电解质二次电池用正极活性物质,和使用所述物质的非水系电解质二次电池
KR102007411B1 (ko) * 2013-01-07 2019-10-01 삼성에스디아이 주식회사 양극 활물질, 이를 포함하는 양극과 리튬 전지, 및 상기 양극 활물질의 제조방법
CN103500827B (zh) * 2013-10-11 2017-05-24 宁德新能源科技有限公司 锂离子电池及其多元正极材料、制备方法
US10522830B2 (en) * 2013-11-22 2019-12-31 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery
CN104300135B (zh) * 2014-09-18 2018-05-15 秦皇岛中科远达电池材料有限公司 一种富镍浓度梯度型镍钴铝酸锂正极材料、其制备方法及锂离子电池
CN104393285B (zh) * 2014-10-14 2017-01-11 鸿源控股有限公司 镍钴铝三元正极材料及其制备方法
CN104409716A (zh) * 2014-10-30 2015-03-11 中国科学院过程工程研究所 一种具有浓度梯度的镍锂离子电池正极材料及其制备方法
CN104409700B (zh) * 2014-11-20 2018-07-24 深圳市贝特瑞新能源材料股份有限公司 一种镍基锂离子电池正极材料及其制备方法
JP6627241B2 (ja) * 2014-12-15 2020-01-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
KR102380022B1 (ko) * 2014-12-29 2022-03-29 삼성에스디아이 주식회사 양극 활물질 및 그 제조방법, 상기 양극 활물질을 채용한 양극과 리튬 전지
CN105810937A (zh) * 2014-12-30 2016-07-27 河南科隆新能源有限公司 一种高比能量锂电正极材料nca的制备方法
JP2017130409A (ja) * 2016-01-22 2017-07-27 Csエナジーマテリアルズ株式会社 ドープ及びコートされた複合型リチウムイオン電池用正極活物質及びこれを用いたリチウムイオン電池
KR101892612B1 (ko) * 2016-03-25 2018-08-28 주식회사 에코프로비엠 리튬이차전지 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지 양극활물질
CN106450216A (zh) * 2016-11-07 2017-02-22 珠海格力电器股份有限公司 一种改性镍钴铝正极材料及其制备方法
CN106910881A (zh) * 2017-03-29 2017-06-30 山东玉皇新能源科技有限公司 偏钛酸锂包覆镍钴铝酸锂正极材料的制备方法
WO2018190675A1 (ko) * 2017-04-13 2018-10-18 한양대학교 산학협력단 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
CN107403930B (zh) * 2017-07-20 2019-03-15 湖南金富力新能源股份有限公司 镍钴铝酸锂正极材料及其制备方法和应用
CN109428076B (zh) * 2017-09-04 2023-04-11 三星电子株式会社 正极活性材料前体、正极活性材料、制备正极活性材料的方法、正极和锂电池
JP7207323B2 (ja) * 2017-11-28 2023-01-18 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633308A (zh) * 2013-11-28 2014-03-12 宁波金和新材料股份有限公司 一种富锂镍钴铝氧正极材料及其制备方法
CN103825016A (zh) * 2014-02-13 2014-05-28 宁波金和新材料股份有限公司 一种富锂高镍正极材料及其制备方法
CN103972499A (zh) * 2014-05-16 2014-08-06 海宁美达瑞新材料科技有限公司 一种改性的镍钴铝酸锂正极材料及其制备方法
CN108321381A (zh) * 2018-03-21 2018-07-24 苏州林奈新能源有限公司 一种Ti掺杂的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108417807A (zh) * 2018-03-21 2018-08-17 苏州林奈新能源有限公司 一种Mg掺杂的镍钴铝三元正极材料、制备方法及用途
CN108428873A (zh) * 2018-03-21 2018-08-21 苏州林奈新能源有限公司 一种Al2O3包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108428871A (zh) * 2018-03-21 2018-08-21 苏州林奈新能源有限公司 一种镍钴铝三元锂离子电池正极材料制备方法
CN108461738A (zh) * 2018-03-21 2018-08-28 苏州林奈新能源有限公司 一种Al掺杂的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108461737A (zh) * 2018-03-21 2018-08-28 苏州林奈新能源有限公司 一种包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108461750A (zh) * 2018-03-21 2018-08-28 苏州林奈新能源有限公司 一种掺杂的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108461736A (zh) * 2018-03-21 2018-08-28 苏州林奈新能源有限公司 一种掺杂包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108470894A (zh) * 2018-03-21 2018-08-31 苏州林奈新能源有限公司 一种ZnO包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108493415A (zh) * 2018-03-21 2018-09-04 苏州林奈新能源有限公司 一种MgO包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途
CN108493416A (zh) * 2018-03-21 2018-09-04 苏州林奈新能源有限公司 一种ZrO2包覆的镍钴铝三元锂离子电池正极材料、制备方法及用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3667780A4 *

Also Published As

Publication number Publication date
JP7292265B2 (ja) 2023-06-16
JP2021516844A (ja) 2021-07-08
EP3667780A4 (en) 2021-06-02
US20200274160A1 (en) 2020-08-27
CN110896674A (zh) 2020-03-20
EP3667780A1 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2019179219A1 (zh) 镍钴铝三元锂离子电池正极材料、其制备方法和用途、以及锂离子电池
KR101922698B1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조 방법 및 이를 이용한 리튬 이차전지
KR101567039B1 (ko) 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질
JP2021516844A5 (zh)
CN109659542B (zh) 一种核壳结构的高电压钴酸锂正极材料及其制备方法
KR101746187B1 (ko) 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
CN102683669B (zh) 锂离子电池正极材料及其制备方法
WO2017025007A1 (zh) 锂离子二次电池的正极活性材料及其制备方法和应用
Yi et al. Enhanced electrochemical performance of Li-rich low-Co Li1. 2Mn0. 56Ni0. 16Co0. 08− xAlxO2 (0≤ x≤ 0.08) as cathode materials
JP7093588B2 (ja) 複合固体電解質膜の製造方法、及び前記複合固体電解質膜を使用した全固体リチウム電池
KR102016788B1 (ko) 소듐 이차전지용 양극활물질, 및 이의 제조 방법
KR20130052500A (ko) 복합체, 그 제조방법, 이를 포함하는 음극 활물질, 이를 포함하는 음극 및 이를 채용한 리튬 이차 전지
US10483539B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, production process therefor, and non-aqueous electrolyte secondary battery
CN101475221A (zh) 用于锂离子电池的尖晶石锰酸锂材料及其制备方法
KR20170008164A (ko) 리튬전지용 복합 양극 활물질, 이를 포함하는 리튬전지용 양극 및 리튬전지
WO2023103700A1 (zh) 一种高镍正极材料及其制备方法、锂离子电池
CN109428115B (zh) 一种固态电解质及其制备方法和锂离子电池
CN114094067A (zh) 三元正极材料、其制备方法及其用途
JP2018014208A (ja) 非水系電解質二次電池用正極活物質とその製造方法
WO2022237110A1 (zh) 氟掺杂锂正极材料及其制备方法和应用
He et al. Na and Nb co-doped LiNi0. 85Co0. 15Al0. 05O2 cathode materials for enhanced electrochemical performance upon 4.5 V application
Yang et al. Li 4 SiO 4-coated LiNi 0.5 Mn 1.5 O 4 as the high performance cathode materials for lithium-ion batteries
CN111600014A (zh) 一种改性的高比容量高镍三元正极材料及其制备方法
CN110620234A (zh) 一种高电位锂离子电池nca三元正极材料及其制备方法
CN111453779A (zh) 降低正极材料表面残留碱含量的方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516709

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019770882

Country of ref document: EP

Effective date: 20200310

NENP Non-entry into the national phase

Ref country code: DE