WO2019146737A1 - 深紫外led及びその製造方法 - Google Patents

深紫外led及びその製造方法 Download PDF

Info

Publication number
WO2019146737A1
WO2019146737A1 PCT/JP2019/002392 JP2019002392W WO2019146737A1 WO 2019146737 A1 WO2019146737 A1 WO 2019146737A1 JP 2019002392 W JP2019002392 W JP 2019002392W WO 2019146737 A1 WO2019146737 A1 WO 2019146737A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type algan
photonic crystal
dimensional photonic
reflective
Prior art date
Application number
PCT/JP2019/002392
Other languages
English (en)
French (fr)
Inventor
行雄 鹿嶋
恵里子 松浦
小久保 光典
田代 貴晴
秀樹 平山
哲利 前田
昌史 定
隆一郎 上村
大和 長田
寛治 古田
武 岩井
洋平 青山
祝迫 恭
丞益 長野
康弘 渡邉
Original Assignee
丸文株式会社
東芝機械株式会社
国立研究開発法人理化学研究所
株式会社アルバック
東京応化工業株式会社
日本タングステン株式会社
大日本印刷株式会社
Dowaホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸文株式会社, 東芝機械株式会社, 国立研究開発法人理化学研究所, 株式会社アルバック, 東京応化工業株式会社, 日本タングステン株式会社, 大日本印刷株式会社, Dowaホールディングス株式会社 filed Critical 丸文株式会社
Priority to JP2019567174A priority Critical patent/JP7316610B6/ja
Priority to US16/964,881 priority patent/US11309454B2/en
Publication of WO2019146737A1 publication Critical patent/WO2019146737A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures

Definitions

  • the present invention relates to AlGaN-based deep ultraviolet LED technology.
  • Deep-UV LEDs with an emission wavelength of 200 nm to 355 nm are attracting attention as an alternative technology to mercury lamp germicidal lamps in a wide range of application fields such as sterilization, water purification, air purification, and medicine.
  • the power to light conversion efficiency (WPE) of the LED is 2 to 3%, which is significantly lower than that of the mercury lamp 20%.
  • the main reason is that the light extraction efficiency (LEE) is as low as 8% or less because the emitted light is absorbed by the p-type GaN contact layer by almost 100%.
  • Patent Document 1 can increase LEE by about 2 to 3 times by bringing the position of the reflective photonic crystal structure closer to the quantum well layer in a deep ultraviolet LED in which the film thickness of the p-type AlGaN layer is reduced to 100 nm or less. It is disclosed that about 23% of LEE can be obtained in the case of the p-type AlGaN contact layer and about 18% of the pGaN contact layer. However, if the internal quantum efficiency is 50% and the voltage efficiency (electron injection efficiency ⁇ theoretical voltage / drive voltage) is 80%, WPE is still estimated to be 7 to 9%.
  • Patent No. 6156898 gazette
  • WPE Power-to-light conversion efficiency: “(internal quantum efficiency (IQE) ⁇ electron injection efficiency (EIE) ⁇ light extraction efficiency (LEE)) ⁇ ((theoretical voltage (Vt) / drive voltage (Vf))”
  • IQE internal quantum efficiency
  • EIE electron injection efficiency
  • LEE light extraction efficiency
  • Vt theoretical voltage
  • Vf drive voltage
  • the present invention provides a new technology to further improve the light extraction efficiency in deep ultraviolet LEDs.
  • a deep ultraviolet LED whose design wavelength is ⁇ , which is a reflective electrode layer (Au), a metal layer (Ni), a p-type GaN contact layer, and a p-type AlGaN layer
  • a p-block layer composed of n, an i-guide layer composed of an AlN layer, a multiple quantum well layer, an n-type AlGaN contact layer, a u-type AlGaN layer, an AlN template and a sapphire substrate;
  • the film thickness of the P-Block layer is 52 nm to 56 nm, and the thickness direction of the p-type GaN contact layer is measured from the interface between the metal layer and the p-type GaN contact layer.
  • a reflective two-dimensional photonic crystal periodic structure having a plurality of holes provided at a position not exceeding the interface between the p-type GaN contact layer and the P-block layer.
  • the vacancies the distance from the end face of the sapphire substrate direction of the holes to the interface between the i-guide layer and the multiple quantum well layer, in the vertical direction ⁇ / 2n 1Deff (where, lambda: design wavelength, n 1 D eff : the effective average refractive index of each film thickness of the laminated structure from the end face of the void to the i-guide layer), the range of the distance is 53 nm to 57 nm, and the reflective two-dimensional photonic crystal
  • each thickness of each layer formed by epitaxial growth can be measured using an optical interference type film thickness measuring device. Furthermore, each thickness of each layer can be calculated from cross-sectional observation of the grown layer by a transmission electron microscope when the compositions of adjacent layers are sufficiently different (for example, when the Al composition ratio differs by 0.01 or more). In the case where the thickness of each layer is thin as in a multiple quantum well or a superlattice structure, the thickness can be measured using TEM-EDS.
  • HAADF high angle scattering annular dark field
  • a deep ultraviolet LED having a design wavelength ⁇ , wherein the reflective electrode layer (Au), the metal layer (Ni), and the p-type AlGaN contact transparent to the wavelength ⁇ Layer, P-block layer consisting of p-type AlGaN layer, i-guide layer consisting of AlN layer, multiple quantum well layer, n-type AlGaN contact layer, u-type AlGaN layer, AlN template, sapphire substrate
  • the film thickness of the P-Block layer is 44 to 48 nm
  • the p-type AlGaN from the interface between the metal layer and the p-type AlGaN contact layer A reflective two-dimensional structure having a plurality of holes provided within the thickness direction of the contact layer and at a position not exceeding the interface between the p-type AlGaN contact layer and the P-block layer
  • the vacancies have a periodic structure in which the distance from the end face of the
  • the reflective two-dimensional photonic crystal periodic structure has a photonic band gap opened to a TE polarization component and has a distance of 61 nm, and the reflective two-dimensional photonic crystal has a wavelength of ⁇ .
  • the order m of the effective refractive index of the crystal (a: period of a two-dimensional photonic crystal) satisfies 1 ⁇ m ⁇ 4, and R / a ratio is 0.20 ⁇ R, where R is the radius of the holes.
  • a deep ultraviolet LED characterized by satisfying /a ⁇ 0.40 is provided.
  • each thickness of each layer formed by epitaxial growth can be measured using an optical interference type film thickness measuring device. Furthermore, each thickness of each layer can be calculated from cross-sectional observation of the grown layer by a transmission electron microscope when the compositions of adjacent layers are sufficiently different (for example, when the Al composition ratio differs by 0.01 or more). In the case where the thickness of each layer is thin as in a multiple quantum well or a superlattice structure, the thickness can be measured using TEM-EDS.
  • HAADF high angle scattering annular dark field
  • a deep ultraviolet LED whose design wavelength is ⁇
  • the reflective electrode layer (Rh) a p-type AlGaN contact layer transparent to the wavelength ⁇
  • a p-type AlGaN layer A p-block layer composed of n, an i-guide layer composed of an AlN layer, a multiple quantum well layer, an n-type AlGaN contact layer, a u-type AlGaN layer, an AlN template and a sapphire substrate;
  • the film thickness of the P-Block layer is 44 to 48 nm, and the thickness direction of the p-type AlGaN contact layer from the interface between the reflective electrode layer and the p-type AlGaN contact layer And a plurality of holes provided at positions not exceeding the interface between the p-type AlGaN contact layer and the P-block layer.
  • the holes have a crystal periodic structure, and the distance from the end face of the holes toward the sapphire substrate to the interface between the multiple quantum well layer and the i-guide layer is Bragg reflection condition ⁇ / in a vertical direction.
  • design wavelength
  • n 1Deff effective average refractive index of each film thickness of the laminated structure from the end face of the hole to the i-guide layer
  • the range of the distance is 53 nm to 61 nm
  • the reflective two-dimensional photonic crystal periodic structure has a photonic band gap opened to a TE polarization component, and the reflective two-dimensional photonic crystal periodic structure has light with respect to light of the design wavelength ⁇ .
  • the entire thickness of each layer formed by epitaxial growth can be measured using an optical interference type film thickness measuring device.
  • each thickness of each layer can be calculated from cross-sectional observation of the grown layer by a transmission electron microscope when the compositions of adjacent layers are sufficiently different (for example, when the Al composition ratio differs by 0.01 or more).
  • the thickness can be measured using TEM-EDS.
  • HAADF high angle scattering annular dark field
  • STEM scanning transmission electron microscope
  • a method of manufacturing a deep ultraviolet LED having a design wavelength of ⁇ which is a step of forming a laminated structure having a sapphire substrate as a growth substrate, and a reflective electrode layer, Metal layer, p-type GaN contact layer, P-Block layer consisting of p-type AlGaN layer transparent to wavelength ⁇ , i-guide layer consisting of AlN layer, multiple quantum well layer, n-type AlGaN contact layer
  • crystal growth is performed with a film thickness of the P-Block layer of 52 to 56 nm.
  • a reflective two-dimensional photonic crystal periodic structure having a plurality of holes provided at a position not exceeding the interface with the ck layer, and the holes from the end face of the holes toward the sapphire substrate
  • a step of forming the distance between the multiple quantum well layer and the interface of the i-guide layer at a position in the range of 53 nm to 57 nm, and a mold for forming the reflective two-dimensional photonic crystal periodic structure Preparing a resist layer, forming a resist layer on the p-type GaN contact layer, transferring the structure of the mold by nanoimprinting, and etching the p-type GaN contact layer using the resist layer as a mask
  • each thickness of each layer formed by epitaxial growth can be measured using an optical interference type film thickness measuring device. Furthermore, each thickness of each layer can be calculated from cross-sectional observation of the grown layer by a transmission electron microscope when the compositions of adjacent layers are sufficiently different (for example, when the Al composition ratio differs by 0.01 or more). In the case where the thickness of each layer is thin as in a multiple quantum well or a superlattice structure, the thickness can be measured using TEM-EDS.
  • HAADF high angle scattering annular dark field
  • a method of manufacturing a deep ultraviolet LED having a design wavelength of ⁇ which is a step of preparing a laminated structure having a sapphire substrate as a growth substrate, wherein the laminated structure is A reflective electrode layer, a metal layer, a p-type AlGaN contact layer transparent to the wavelength ⁇ , a p-block layer composed of the p-type AlGaN layer, an i-guide layer composed of an AlN layer, a multiple quantum well layer Forming a laminated structure including an n-type AlGaN contact layer, a u-type AlGaN layer, and an AlN template in this order from the side opposite to the sapphire substrate; Crystal growth is performed at 44 to 48 nm, and the p-type Al is formed within the range of the thickness direction of the p-type AlGaN contact layer from the interface between the metal layer and the p-type AlGaN contact layer.
  • a step of forming a distance from an end face of a hole in a growth substrate direction to an interface between the multiple quantum well layer and the i-guide layer in a range of 53 nm to 61 nm; and the reflective two-dimensional photonic crystal cycle Preparing a mold for forming a structure, forming a resist layer on the p-type AlGaN contact layer, transferring the structure of the mold by nanoimprinting, and using the resist layer as a mask Etching the p-type AlGaN contact layer to form a two-dimensional photonic crystal periodic structure; and forming the reflective two-dimensional photonic crystal structure
  • each thickness of each layer formed by epitaxial growth can be measured using an optical interference type film thickness measuring device. Furthermore, each thickness of each layer can be calculated from cross-sectional observation of the grown layer by a transmission electron microscope when the compositions of adjacent layers are sufficiently different (for example, when the Al composition ratio differs by 0.01 or more). In the case where the thickness of each layer is thin as in a multiple quantum well or a superlattice structure, the thickness can be measured using TEM-EDS.
  • HAADF high angle scattering annular dark field
  • a method of manufacturing a deep ultraviolet LED having a design wavelength of ⁇ which is a step of forming a laminated structure having a sapphire substrate as a growth substrate, wherein the laminated structure is A reflective electrode layer, a p-type AlGaN contact layer transparent to the wavelength ⁇ , a p-block layer comprising the p-type AlGaN layer, an i-guide layer comprising the AlN layer, a multiple quantum well layer, n-type AlGaN
  • the film thickness of the P-Block layer is 44 to 48 nm.
  • Crystal growth is performed, and the p-type AlGaN is formed within the range of the thickness direction of the p-type AlGaN contact layer from the interface between the reflective electrode layer and the p-type AlGaN contact layer Forming a reflective two-dimensional photonic crystal periodic structure having a plurality of holes provided at a position not exceeding the interface between the contact layer and the P-Block layer; Forming the reflective two-dimensional photonic crystal periodic structure in the step of forming the distance from the end face in the substrate direction to the interface between the multiple quantum well layer and the i-guide layer in the range of 53 nm to 61 nm; Preparing a mold for forming the resist layer, forming a resist layer on the p-type AlGaN contact layer, transferring the structure of the mold by nanoimprinting, and using the resist layer as a mask Etching the AlGaN contact layer to form a two-dimensional photonic crystal periodic structure; forming the reflective two-dimensional photonic crystal structure; Forming by oblique vapor de
  • each thickness of each layer formed by epitaxial growth can be measured using an optical interference type film thickness measuring device. Furthermore, each thickness of each layer can be calculated from cross-sectional observation of the grown layer by a transmission electron microscope when the compositions of adjacent layers are sufficiently different (for example, when the Al composition ratio differs by 0.01 or more). In the case where the thickness of each layer is thin as in a multiple quantum well or a superlattice structure, the thickness can be measured using TEM-EDS.
  • HAADF high angle scattering annular dark field
  • the present specification includes the disclosure content of Japanese Patent Application No. 2018-012073 which is the basis of the priority of the present application.
  • the present invention it is possible to dramatically improve the LEE of the deep ultraviolet LED and hence the WPE by the synergetic effect of the Bragg reflection in the vertical direction and the reflective two-dimensional photonic crystal.
  • FIG. 1A (a-1) is a cross-sectional view showing an example of the structure of the deep ultraviolet LED according to the first embodiment of the present invention
  • FIG. 1A (a-2) is a reflective two-dimensional photonic crystal periodic structure
  • FIG. 1B (b-1) is a cross-sectional view showing an example of the structure of the deep ultraviolet LED according to the second embodiment of the present invention
  • FIG. 1B (b-2) is a reflective two-dimensional photonic crystal periodic structure
  • FIG. 1C (c-1) is a cross-sectional view showing an example of the structure of a deep ultraviolet LED according to the third embodiment of the present invention
  • FIG. 1C (c-2) is a reflective two-dimensional photonic crystal periodic structure
  • FIG. 3A (a-2) is the same as TE light.
  • FIG. 3B (b-2) is the same as TE light. It is a photonic band structure figure.
  • FIG. 3B (b-2) is the same as TE light. It is a photonic band structure figure.
  • FIG. 3C (c-2) is the same as TE light.
  • It is a photonic band structure figure. It is sectional drawing of the photonic crystal vicinity in p-Block layer film thickness of 40 nm of the calculation model by FDTD method. It is a figure which shows the analysis result of the FDTD method regarding the comparison of the output value with and without a two-dimensional photonic crystal. It is a figure which shows the analysis result of the FDTD method regarding comparison with LEE increase magnification with and without a two-dimensional photonic crystal.
  • FIG. 12 (a) shows the R / a dependency of each LEE increase magnification when the P-Block layer thickness is 52 nm and 56 nm
  • FIG. 12 (b) similarly shows the R / a dependency of each output value
  • FIG. 13 (a) shows the order dependency of LEE increase magnification when the P-Block layer thickness is 52 nm and 56 nm
  • FIG. 13 (b) shows the order dependency of each output value. .
  • FIG. 14 (b) shows the R / a dependency of the output value.
  • FIG. 15 (b) is a diagram showing the order dependency of the output value.
  • FIG. 18 (b) is a photonic band structure of TE light as well.
  • FIG. It is sectional drawing of the photonic crystal vicinity in p-Block layer film thickness 44 nm of the calculation model by FDTD method.
  • FIGS. Represented in the structure (a cross-sectional view and a plan view) of an AlGaN-based deep ultraviolet LED having a design wavelength ⁇ of 275 nm is shown in FIGS. Represented in). Specifically, from the top of the cross-sectional view of FIG.
  • the multiple quantum well layer 5 has a structure in which the quantum well layer is composed of three layers (51, 53, 55) and the barrier layers (52, 54) are sandwiched between the quantum well layers), i-guide layer 6 (provided that the i-guide layer 6 is formed of an AlN layer), P-Block layer 7 (provided that the P-Block layer 7 is formed of an AlGaN layer), p-type GaN contact layer 8 and metal layer 9
  • the layer 9 comprises a Ni layer), a reflective electrode layer 10 (where the reflective electrode layer is composed of Au).
  • the film thickness of the P-Block layer 7 is 52 nm to 56 nm.
  • the reflective two-dimensional photonic crystal periodic structure 100 is located within the range of the thickness direction of the p-type GaN contact layer 8 and at a position not exceeding the interface between the p-type GaN contact layer 8 and the P-Block layer 7.
  • the photonic crystal periodic structure 100 has holes (columnar structure, holes) 101 (h), and the holes 101 are from the end face in the direction of the sapphire substrate 1 from the multiple quantum well layer 5 and the i-guide layer 6.
  • the distance G to the interface between the light emitting diode and the light emitting diode is provided at a position of 53 nm to 57 nm, and this distance G satisfies the condition of the vertical Bragg reflection.
  • the entire thickness of each layer formed by epitaxial growth can be measured using an optical interference type film thickness measuring device.
  • each thickness of each layer can be calculated from cross-sectional observation of the grown layer by a transmission electron microscope when the compositions of adjacent layers are sufficiently different (for example, when the Al composition ratio differs by 0.01 or more). In the case where the thickness of each layer is thin as in a multiple quantum well or a superlattice structure, the thickness can be measured using TEM-EDS.
  • HAADF high angle scattering annular dark field
  • FIG. 2 shows the relationship between the cumulative film thickness and the refractive index difference in the laminated structure from the multiple quantum well layer 5 to the p-type GaN contact layer 8 related to the Bragg reflection in the vertical direction.
  • the period a is derived as 53 nm.
  • the film thickness of the i-guide layer 6 is 1 nm
  • the film thickness of the P-Block layer 7 is 52 nm. That is, here, the film thickness of the P-Block layer 7 where the reflection effect in the vertical direction is obtained is 52 nm.
  • Table 1 shows the FDTD simulation analysis results regarding the Bragg reflection effect in the vertical direction.
  • Table 1 shows the case where a monitor is provided at a distance of 53 nm from the interface between the quantum well layer 55 and the i-guide layer 6 in the direction of the sapphire substrate 1 for each of the P-Block layer thickness 40 nm and 52 nm (Table 1 “-G53 nm”) and each output value in the case where the distance between the quantum well layer 55 and the i-guide layer 6 is 53 nm in the direction of the p-type GaN contact layer 8 (Table 1 “+ G 53 nm”) The output ratio of the P-Block layer film thickness 52 nm to the film thickness 40 nm is shown.
  • the distance G for obtaining the Bragg reflection effect in the vertical direction is 53 nm and the P-Blcok layer 52 nm, the reflection effect can be obtained without entering the absorption region of the p-type GaN contact layer. it can.
  • holes 101 (h) having a radius of R with a section of a circle are p-type GaN contacts It has a columnar structure (hole structure) formed in a triangular lattice with a period a along the x direction and the y direction, which is made of air having a smaller refractive index than the layer 8 or the like.
  • the holes 101 (h) do not reach the interface between the p-type GaN contact layer 8 and the P-block layer 7 in order to prevent damage to the P-block layer 7 by dry etching, and
  • the distance (G) between the end face of the void 101 (h) in the direction of the sapphire substrate 1 and the quantum well layer 55 is provided at a position in the range of 53 nm to 57 nm.
  • the deep ultraviolet light of wavelength ⁇ emitted from the multiple quantum well layer 5 propagates in the medium while TE light and TM light are emitted in all directions and elliptically polarized.
  • the reflective two-dimensional photonic crystal periodic structure 100 provided in the p-type GaN contact layer 8 at a distance G53 to 57 nm from the quantum well layer 55 comprises the p-type GaN contact layer 8 and the air having different refractive indices.
  • n 3 1.0 for air
  • n 4 2.631 p-type GaN contact layer 8
  • the wavelength range of deep ultraviolet (DUV) light is 200 nm to 355 nm, and the refractive index n and the extinction coefficient k differ depending on the wavelength. Therefore, if the wavelength ⁇ to be selected is changed, the calculation parameter of the photonic crystal is also changed, and the film thickness of the P-Block layer and the distance between the quantum well layer and the two-dimensional photonic crystal are also changed.
  • the refractive index and extinction coefficient used in this calculation are literature values, but these values slightly fluctuate depending on the film thickness, so the film thickness of the P-Block layer, the quantum well layer, and the two-dimensional photonic The distance of the crystals will also change.
  • FIG. 3C the photonic band structure diagrams of TM light and TE light are shown in FIG. 3C (c-1) and (c-2).
  • FIG. 3A (a-1), FIG. 3B (b-1) and FIG. 3C (c-1) no photonic band gap (PBG) is observed for TM light
  • FIG. 3A (a-2), FIG. 3B (b-2) and FIG. 3C (c-2) between the first photonic band (.omega.1TE) and the second photonic band (.omega.2TE) PBG is observed in
  • the drive voltage (Vf) is increased.
  • Vf the drive voltage
  • the wavelength 275 nm and the film thickness of the P-Block layer are 40 nm
  • Vf is about 6 V
  • Vf the film thickness of the P-Block layer
  • Vf increases by 1 V. Therefore, in order to suppress Vf, it is necessary to make the film thickness of the P-Block layer as thin as possible.
  • the light extraction efficiency is greatly improved by the synergetic effect of the Bragg reflection in the vertical direction and the reflective two-dimensional photonic crystal, optimization of the P-Block layer film thickness is important.
  • LEE is significantly improved by obtaining the synergetic effect of the above-described Bragg reflection in the vertical direction and the reflective two-dimensional photonic crystal, and the trade-off between Vf and the thickness of the P-Block layer is made.
  • the appropriate conditions that also take into consideration, that is, the distance between the quantum well layer 55 and the reflective two-dimensional photonic crystal structure, the P-block layer film thickness, each parameter of the two-dimensional photonic crystal periodic structure (Bragg scattering condition m ⁇ / The order m and the periods a and R / a) satisfying n 2 Deff 2a are determined by simulation analysis using the FDTD method and the ray tracing method.
  • Table 2 shows the calculation model of the deep ultraviolet LED structure of the FDTD method
  • Table 3 shows each parameter of the calculation model of the reflective two-dimensional photonic crystal structure.
  • FIG. 4 is a cross-sectional view in the vicinity of a photonic crystal periodic structure in a deep ultraviolet LED structure having a P-block layer thickness of 40 nm, which is an example of a calculation model of the FDTD method.
  • the film thickness of the P-Block layer is varied in the range of 40 nm to 60 nm in 4 nm steps, and the comparison is made with and without the reflective two-dimensional photonic crystal periodic structure (2D-PhC)
  • 2D-PhC reflective two-dimensional photonic crystal periodic structure
  • the output greatly increases when the film thickness of the P-Block layer is 52 nm to 56 nm in both cases with and without 2D-PhC.
  • the output is about twice as high as when the film thickness of the P-block layer is 40 nm. It has become. This phenomenon indicates that the laminated structure of the i-guide layer and the P-block layer in the present structure achieves Bragg reflection effect in the vertical direction when the film thickness of the P-block layer is 52 nm to 56 nm.
  • FIG. 6 is a view showing the LEE increase magnification in comparison with the structure without 2D-PhC in the case of the structure with 2D-PhC. As shown in FIG. 6, it is shown that LEE increases about 2.6 times for film thickness 52 nm and about 2.3 times for film thickness 56 nm, and in the vertical direction for P-block layer film thickness 52 nm to 56 nm It can be said that the synergetic effect of the Bragg reflection and the reflection type two-dimensional photonic crystal is obtained.
  • the distance between the quantum well layer and the 2D-PhC is 53 nm, it is considered that a large reflection effect can be obtained by satisfying the Bragg reflection condition in the vertical direction. .
  • FIG. 9 shows the temporal change of the electric field intensity from the quantum well layer to the p-type GaN contact layer when the distance between the quantum well layer and 2D-PhC is 53 nm as the FDTD analysis result for verifying these. .
  • FIG. 9 shows the cross section and the electric field strength in the 2D-PhC plane in the case of without 2D-PhC and with 2D-PhC, respectively.
  • FIG. 9 (a) is a cross section of a structure without 2D-PhC, but when the electric field propagates uniformly in all directions, when 2D-PhC in FIG. 9 (b) is present, 2D- It can be seen that the electric field in the PhC is reflected without being penetrated.
  • the optimal value of the distance (G) between the quantum well layer and 2D-PhC, where the synergistic effect of 1D-PhC and 2D-PhC can be obtained is determined by simulation analysis.
  • each of the P-Block layer thicknesses 40 nm, 48 nm and 52 nm due to the difference in distance G between the quantum well layer and 2D-PhC is confirmed.
  • the analysis result by FDTD method is shown in FIG.
  • the difference between the film thickness of 40 nm and the film thickness of 48 nm is the distance G49 nm at which the output is maximum, and the P-Block film thickness of 48 nm is 40 nm It is about 1.2 times larger than that.
  • the output is maximized at a distance G of 53 nm for the P-Block film thickness of 52 nm, and at this time, the output is twice or more than the film thickness of 48 nm.
  • FIG. 11 shows the LEE increase magnification in the case of the structure with 2D-PhC with respect to the structure without 2D-PhC under the same simulation conditions as FIG. From FIG. 11, at a film thickness of 52 nm, the LEE increases 2.6 times in the structure with 2D-PhC at a distance G53. This result is consistent with the distance G between the quantum well layer and 2D-PhC being 53 nm, which is the distance satisfying the above-mentioned vertical Bragg condition.
  • the P-Block layer thickness 52 nm which satisfies the period 53 nm where the vertical Bragg reflection effect is the largest, is the synergy between the vertical Bragg reflection and the reflective two-dimensional photonic crystal in both the output and LEE increase rate It shows that the optimum conditions to be obtained are satisfied.
  • the output is about the same as the distance G53 even at a distance G49 when the P-Block film thickness is 52 nm, but at the distance G49, the holes of the reflective two-dimensional photonic crystal structure form the p-type GaN contact layer. It can not be selected because it penetrates to the P-Block layer and is etched, which may cause etching damage to the P-Block layer. Further, in the case of the distance G57, since the output is relatively large although it is lower than the distance G53, the distance G between the quantum well layer and the reflective two-dimensional PhC is selected to be 53 nm to 57 nm.
  • the film thickness of the P-Block layer is 1 nm if the i-guide layer thickness is 1 nm because the maximum distance of 57 nm is also selected for the distance G where the synergistic effect of the quantum well layer and the reflective 2D photonic crystal can be aimed. 52 nm to 56 nm is appropriate. Therefore, FDTD analysis was performed from the viewpoint of R / a dependency and order dependency of 2D-PhC at P-Block layer thicknesses of 52 nm and 56 nm. This analysis was conducted in comparison with a structure without a 2D-PhC with a standard P-Block layer thickness of 40 nm in order to confirm the comparison with a standard LED structure.
  • FIG. 12 (a) shows LEE increase magnification
  • Drawing 12 (b) shows an output value
  • FIG. 13 (a) shows the LEE increasing magnification
  • FIG. 13 (b) shows the output value.
  • FIG. 15 (b) similarly shows the order of the output value Show the dependency.
  • FIG. 16 shows a calculation model and analysis results of the ray tracing method.
  • the normal tracking method can not calculate the nanometer scale, so the LEE value calculated by the ray tracing method is first multiplied by the LEE increase ratio derived by the FDTD method, and cross simulation is performed in this embodiment.
  • the LEE value of the LED structure was calculated. Table 4 shows the results.
  • FIGS. 1B (b-1), (b-2) Represented in the structure (cross sectional view and plan view) of an AlGaN-based deep ultraviolet LED having a design wavelength ⁇ of 275 nm is shown in FIGS. 1B (b-1), (b-2) Represented in). Specifically, from the top of the cross-sectional view of FIG.
  • the multiple quantum well layer 5 has a structure in which the quantum well layer is composed of three layers (51, 53, 55) and the barrier layers (52, 54) are sandwiched between the quantum well layers), i-guide layer 6 (however, the i-guide layer 6 is made of AlN layer), P-Block layer 7 (where the P-Block layer 7 is made of AlGaN layer), p-type AlGaN contact layer 8a, metal layer 9 (where metal is The layer 9 comprises a Ni layer), a reflective electrode layer 10 (where the reflective electrode layer is composed of Au).
  • the film thickness of the P-Block layer 7 is 44 nm to 48 nm.
  • the reflective two-dimensional photonic crystal periodic structure 100 is located within the range of the thickness direction of the p-type AlGaN contact layer 8 a and not beyond the interface between the p-type AlGaN contact layer 8 a and the P-Block layer 7.
  • the photonic crystal periodic structure 100 has holes (columnar structure, holes) 101 (h), and the holes 101 are from the end face in the direction of the sapphire substrate 1 from the multiple quantum well layer 5 and the i-guide layer 6.
  • the distance G to the interface with the light source is provided at a position of 53 nm to 61 nm, and this distance G satisfies the Bragg reflection in the vertical direction.
  • each thickness of each layer formed by epitaxial growth can be measured using an optical interference type film thickness measuring device. Furthermore, each thickness of each layer can be calculated from cross-sectional observation of the grown layer by a transmission electron microscope when the compositions of adjacent layers are sufficiently different (for example, when the Al composition ratio differs by 0.01 or more). In the case where the thickness of each layer is thin as in a multiple quantum well or a superlattice structure, the thickness can be measured using TEM-EDS. To measure the periodic structure and shape of the photonic crystal and the distance between the quantum well layer and the photonic crystal, observe the HAADF (high angle scattering annular dark field) image in STEM (scanning transmission electron microscope) mode with a transmission electron microscope It can be calculated by
  • FIG. 17 shows the relationship between the cumulative film thickness and the refractive index difference in the laminated structure from the multiple quantum well layer 5 to the p-type AlGaN contact layer 8a, which is related to the Bragg reflection in the vertical direction.
  • the film thickness of the i-guide layer 6 is d and, for example, 1 nm
  • the value of d / a is 0.019
  • n 1 Deff is 2.589.
  • the period a is derived as 53 nm. That is, here, the distance at which the reflection effect in the vertical direction is obtained is 53 nm.
  • Table 5 shows the results of FDTD simulation analysis on the Bragg reflection effect in the vertical direction.
  • Table 5 shows the case where the distance between the quantum well layer 55 and the i-guide layer 6 is 53 nm in the direction of the sapphire substrate for each of the P-Block layer thickness 40 nm and 44 nm (Table 5 “-G 53 nm And the respective output values and P-blocks when provided at a distance of 53 nm from the interface between the quantum well layer 55 and the i-guide layer 6 in the direction of the p-type AlGaN contact layer 8a (Table 5 “+ G 53 nm”). The output ratio of the layer thickness 44 nm to the layer thickness 40 nm is shown.
  • the output ratio of the P-Block layer 44 nm is approximately doubled for each of the upper and lower monitors sandwiching the quantum well layer.
  • the output value of the monitor (+ G 53 nm) placed on the side of the p-type AlGaN contact layer with a P-block layer thickness of 40 nm hardly decreases as compared with the case of the p-type GaN contact layer. This is because the p-type AlGaN contact layer has no absorption like the p-type GaN contact layer.
  • the distance G at which the Bragg reflection effect in the vertical direction can be obtained is 53 nm also in the LED structure of the p-type AlGaN contact layer.
  • holes 101 (h) having a radius of R with a cross section of a circle are p-type AlGaN contacts It has a columnar structure (hole structure) formed in a triangular lattice with a period a along the x direction and the y direction, which is made of air having a smaller refractive index than the layer 8a.
  • the holes 101 (h) do not reach the interface between the p-type AlGaN contact layer 8 a and the P-block layer 7 in order to prevent damage to the P-block layer 7 by dry etching, and
  • the distance G between the end face of the void 101 (h) in the direction of the sapphire substrate 1 and the quantum well layer 55 is provided at a position in the range of 53 nm to 61 nm.
  • the deep ultraviolet light of wavelength ⁇ emitted from the multiple quantum well layer 5 propagates in the medium while TE light and TM light are emitted in all directions and elliptically polarized.
  • the reflective two-dimensional photonic crystal periodic structure 100 provided in the p-type AlGaN contact layer 8a at a distance G53 nm to 61 nm from the quantum well layer 55 comprises the p-type AlGaN contact layer 8a and air having different refractive indices.
  • the wavelength range of deep ultraviolet (DUV) light is 200 nm to 355 nm, and the refractive index n and the extinction coefficient k differ depending on the wavelength. Therefore, if the wavelength ⁇ to be selected is changed, the calculation parameter of the photonic crystal is also changed, and the film thickness of the P-Block layer and the distance between the quantum well layer and the two-dimensional photonic crystal are also changed.
  • the refractive index and extinction coefficient used in this calculation are literature values, but these values slightly fluctuate depending on the film thickness, so the film thickness of the P-Block layer, the quantum well layer, and the two-dimensional photonic The distance of the crystals will also change.
  • the film thickness of the P-Block layer 7 when the film thickness of the P-Block layer 7 is increased, the drive voltage (Vf) is increased. Therefore, the film thickness of the P-Block layer is made as thin as possible while suppressing Vf, and the light extraction efficiency (LEE) is significantly improved by the synergistic effect of the Bragg reflection in the vertical direction and the reflective two-dimensional photonic crystal. It is important to optimize the P-Block layer thickness.
  • the p-type contact layer is replaced with the p-type GaN contact layer in the first embodiment, and the vertical in the deep ultraviolet LED structure using the p-type AlGaN contact layer transparent to the wavelength ⁇ .
  • Table 6 shows the calculation model of the deep ultraviolet LED structure of the FDTD method
  • Table 7 shows respective parameters of the calculation model of the reflective two-dimensional photonic crystal structure.
  • FIG. 19 is a cross-sectional view in the vicinity of a photonic crystal periodic structure in a deep ultraviolet LED structure in which the film thickness of the P-block layer is 44 nm, which is an example of a calculation model of the FDTD method.
  • the film thickness of the P-Block layer is varied in the range of 40 nm to 60 nm in 4 nm steps, and the comparison is made with and without the reflective two-dimensional photonic crystal periodic structure (2D-PhC)
  • 2D-PhC reflective two-dimensional photonic crystal periodic structure
  • FIG. 21 is a diagram showing the LEE increase magnification in comparison with the structure without 2D-PhC in the case of the structure with 2D-PhC under the same conditions.
  • the LEE increase rate increases, and it is shown that the P-Block film thickness and the LEE increase rate have a correlation.
  • the P-Block film thickness is preferably 44 nm, and then up to 48 nm.
  • the distance between the quantum well layer and the 2D-PhC is 53 nm, it is considered that a large reflection effect can be obtained by satisfying the Bragg reflection condition most in the vertical direction. .
  • the optimum value of the distance (G) between the quantum well layer and 2D-PhC, where the synergistic effect of Bragg reflection in the vertical direction and 2D-PhC can be obtained is determined by simulation analysis.
  • the film thickness of the P-Block layer is 44 nm, and the output due to the difference in the distance G between the quantum well layer and 2D-PhC is confirmed.
  • the analysis result by FDTD method is shown in FIG.
  • the output G is maximum at a distance G between the quantum well layer and 2D-PhC of 53 nm.
  • FIG. 23 shows LEE increase magnification in the case of the structure with 2D-PhC with respect to the structure without 2D-PhC under the same simulation conditions as FIG.
  • the distance G53 nm between the quantum well layer and 2D-PhC also shows the maximum in LEE multiplication factor, which coincides with 53 nm, which is the distance satisfying the above-mentioned vertical Bragg condition. That is, the period 53 nm in which the Bragg reflection effect in the vertical direction is the largest satisfies the optimization condition that the synergetic effect of the one-dimensional photonic crystal and the reflective two-dimensional photonic crystal can be obtained in both the output and LEE increase magnification It is shown that.
  • the distance between the quantum well layer and 2D-PhC is selected from 53 nm to 61 nm showing a relatively large output.
  • FIG. 14 (b) shows the R / a dependency of the output value of the magnification.
  • FIG. 14B it can be seen that the output increases as R / a increases.
  • FIG. 15 (b) similarly shows the order of the output value Show the dependency.
  • FIG. 24 shows a calculation model and analysis results of the ray tracing method.
  • the normal tracking method can not calculate the nanometer scale, so the LEE value calculated by the ray tracing method is first multiplied by the LEE increase ratio derived by the FDTD method, and cross simulation is performed in this embodiment.
  • the LEE value of the LED structure was calculated. Table 8 shows the results.
  • the LED structure of the present embodiment is a deep ultraviolet LED according to the second embodiment of the present invention in which the p-type contact layer uses a p-type AlGaN contact layer transparent to the wavelength ⁇ . It is a modification in the case of replacing the metal layer (Ni) and the reflective emitter (Au), which are the electrode portions of the structure, with the Rh electrode.
  • the Rh electrode (reflectance 70%) has higher reflectivity than the Ni / Au electrode (reflectance 20%), and as shown in FIG. 20, the Rh electrode can obtain higher output than the Ni / Au electrode. That is shown from the simulation results.
  • the laminated structure portion of the LED structure in this embodiment is a modification similar to the structure of the second embodiment except that only the electrodes are different, and therefore, a synergistic effect of Bragg reflection in the vertical direction and 2D-PhC is obtained.
  • the optimum conditions to be evaluated were the same as those of the second embodiment, except that only the electrode was changed to Rh, and the FDTD simulation analysis was performed.
  • Table 9 shows each parameter of the calculation model of the deep ultraviolet LED structure of the FDTD method.
  • the parameters of the calculation model of the reflective two-dimensional photonic crystal structure are as shown in Table 7.
  • the FDTD method simulation analysis result is shown in FIG.
  • the film thickness of the P-Block layer is 44 nm, and the output due to the difference in distance (G) between the quantum well layer and 2D-PhC is confirmed.
  • the distance G between the quantum well layer and 2D-PhC is 53 nm and the output is maximum.
  • FIG. 23 shows LEE increase magnification in the case of the structure with 2D-PhC with respect to the structure without 2D-PhC under the same simulation conditions as FIG.
  • the distance G53 nm between the quantum well layer and 2D-PhC is shown to be maximum even in the LEE increase magnification, which corresponds to 53 nm, which is the distance satisfying the aforementioned vertical Bragg condition. That is, the periodicity 53 nm at which the reflection effect in the vertical direction is the largest satisfies the optimization condition for obtaining the synergetic effect of the one-dimensional photonic crystal and the reflective two-dimensional photonic crystal in both the output and the LEE increase rate Is shown.
  • the distance between the quantum well layer and 2D-PhC is selected from 53 nm to 61 nm showing a relatively large output.
  • FIG. 14 (b) shows the R / a dependency of the output value of the magnification.
  • FIG. 14B it can be seen that the output increases as R / a increases.
  • FIG. 15 (b) similarly shows the order of the output value Show the dependency.
  • FIG. 25 shows a calculation model and analysis results of the ray tracing method.
  • the normal tracking method can not calculate on the nanometer scale, so the LEE value calculated by the ray tracing method is first multiplied by the LEE increase rate derived by the FDTD method, and cross simulation is performed in the present embodiment.
  • the LEE value of the LED structure was calculated. Table 10 shows the results.
  • an AlN template, a u-type AlGaN layer, an n-type AlGaN contact layer, and a multiple quantum well layer are sequentially stacked by crystal growth.
  • the multiple quantum well layer is formed in such a manner that three 2-nm well layers and two barrier layers 7 nm are sandwiched between the well layers.
  • an i-guide layer of AlN and a B-Block layer of p-type AlGaN layer are stacked 52 nm to 56 nm.
  • a p-type GaN contact layer is stacked thereon.
  • the entire thickness of each layer formed by epitaxial growth can be measured using an optical interference type film thickness measuring device.
  • each thickness of each layer can be calculated from cross-sectional observation of the grown layer by a transmission electron microscope when the compositions of adjacent layers are sufficiently different (for example, when the Al composition ratio differs by 0.01 or more).
  • the thickness can be measured using TEM-EDS.
  • a reflective two-dimensional photonic crystal periodic structure is formed in the deep ultraviolet LED stack structure which is crystal-grown to the p-type GaN contact layer.
  • FIG. 26 is a diagram showing an example of a reflective two-dimensional photonic crystal periodic structure processing process.
  • Processing of a reflective two-dimensional photonic crystal utilizes the technology of nanoimprint lithography. Since the surface of the p-type GaN contact layer 208 has a warp of 100 ⁇ m or more in the convex direction, the mold corresponds to the resin mold 200. Also, a bilayer resist is used to maintain near vertical and accurate hole diameter during dry etching.
  • the lower layer resist 210 is spin-coated on the surface of the p-type GaN contact layer 208.
  • a Si-containing upper layer resist 209 is spin-coated to form a two-layer resist (see FIG. 26A).
  • the upper layer resist is pressed by a resin mold 200 having a reverse pattern of a predetermined photonic crystal periodic structure and UV cured to transfer the photonic crystal pattern 211 onto the upper layer resist 209 (see FIG. 26B).
  • the upper layer resist 209 is etched by oxygen plasma to form a mask 212. See FIG. 26 (c).
  • the mask 212 is etched by ICP plasma to a position not exceeding the P-Block layer 207 and at a distance from the end face of the photonic crystal pattern (hole) 211 to the quantum well layer 205 of 53 nm to 57 nm. See FIG. 26 (d).
  • the remaining lower layer resist 210 is cleaned to perform clean surface exposure.
  • HAADF high angle scattering annular dark field
  • ammonium sulfide treatment or annealing may be performed to repair the contact.
  • a metal layer (Ni) and a reflective electrode layer (Au) are formed on the reflective two-dimensional photonic periodic structure.
  • the metal layer (Ni) and the reflective electrode layer (Au) may be formed by oblique deposition.
  • the metal layer (Ni) is formed on the surface of the p-type GaN contact layer without embedding the metal layer (Ni) and the reflective electrode layer (Au) in the holes of the reflective two-dimensional photonic crystal periodic structure. And a reflective electrode layer (Au).
  • an AlN template, a u-type AlGaN layer, an n-type AlGaN contact layer, and a multiple quantum well layer are sequentially stacked by crystal growth.
  • the multiple quantum well layer is formed in such a manner that three 2-nm well layers and two barrier layers 7 nm are sandwiched between the well layers.
  • an i-guide layer of AlN and a B-Block layer of p-type AlGaN layer are stacked 44 nm to 48 nm.
  • a p-type AlGaN contact layer is stacked thereon.
  • each thickness of each layer formed by epitaxial growth can be measured using an optical interference type film thickness measuring device. Furthermore, each thickness of each layer can be calculated from cross-sectional observation of the grown layer by a transmission electron microscope when the compositions of adjacent layers are sufficiently different (for example, when the Al composition ratio differs by 0.01 or more). In the case where the thickness of each layer is thin as in a multiple quantum well or a superlattice structure, the thickness can be measured using TEM-EDS.
  • a reflective two-dimensional photonic crystal periodic structure is formed in a deep ultraviolet LED multilayer structure which is crystal-grown to a p-type AlGaN contact layer.
  • the processing of the reflective two-dimensional photonic crystal is formed by the same method as that described in the fourth embodiment. (See FIG. 27).
  • the lower layer resist 210 is spin-coated on the surface of the p-type AlGaN contact layer 208a.
  • a Si-containing upper layer resist 209 is spin-coated to form a two-layer resist.
  • the upper layer resist 209 is pressed with a resin mold 200 having a reverse pattern of a predetermined photonic crystal periodic structure and UV cured (see FIG. 27A), and the photonic crystal pattern 211 is transferred to the upper layer resist 209 (FIG. 27 (b)).
  • the upper layer resist 209 is etched by oxygen plasma to form a mask 212. (See FIG. 27 (c)).
  • the mask 212 is etched by ICP plasma to a position not exceeding the P-Block layer 207 and at a distance from the end face of the photonic crystal pattern (hole) 211 to the quantum well layer 205 of 53 nm to 61 nm. (See FIG. 27 (d)). Finally, the remaining lower layer resist 210 is cleaned to perform clean surface exposure.
  • HAADF high angle scattering annular dark field
  • ammonium sulfide treatment or annealing may be performed for the repair.
  • a metal layer (Ni) and a reflective electrode layer (Au) are formed on the reflective two-dimensional photonic periodic structure.
  • the metal layer (Ni) and the reflective electrode layer (Au) may be formed by oblique deposition.
  • the metal layer (Ni) is formed on the surface of the p-type GaN contact layer without embedding the metal layer (Ni) and the reflective electrode layer (Au) in the holes of the reflective two-dimensional photonic crystal periodic structure. And a reflective electrode layer (Au).
  • the electrode after forming the reflective two-dimensional photonic crystal periodic structure, it is possible to use a Rh electrode instead of the metal layer (Ni) and the reflective electrode layer (Au).
  • the Rh electrode can also be formed by oblique deposition.
  • the present invention is applicable to deep ultraviolet LEDs.
  • SYMBOLS 1 ... sapphire substrate, 2 ... AlN template, 3 ... u-type AlGaN layer, 4 ... n-type AlGaN contact layer, 5 ... multiple quantum well layer, 6 ... i-guide layer, 7 ... P-block layer, 8 ... p-type GaN contact layer, 8a: p-type AlGaN contact layer, 9: metal layer (Ni), 10: reflective electrode layer (Au), 11: reflective electrode layer (Rh), 100: reflective two-dimensional photonic crystal periodic structure, 101 (h) ... vacancies (columnar structures, holes).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

設計波長をλとする深紫外LEDであって、反射電極層(Au)と、金属層(Ni)と、p型GaNコンタクト層と、p型AlGaN層で成るP-Block層と、AlN層で成るi-guide層と、多重量子井戸層と、n型AlGaNコンタクト層と、u型AlGaN層と、AlNテンプレートと、サファイア基板とを、前記サファイア基板とは反対側からこの順で有し、前記P-Block層の膜厚は52nm~56nmであり、前記金属層と前記p型GaNコンタクト層の界面から、前記p型GaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型GaNコンタクト層と前記P-Block層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶周期構造を有し、前記空孔は、前記空孔の前記サファイア基板方向の端面から前記多重量子井戸層と前記i-guide層との界面までの距離が、垂直方向にλ/2n1Dneffを満たし、その距離の範囲は53nm~57nmであり、前記反射型2次元フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記反射型2次元フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式mλ/n2Deff=2a(但し、m:次数、λ:設計波長、n2Deff:2次元フォトニック結晶の実効屈折率、a:2次元フォトニック結晶の周期)にある次数mは2≦m≦4を満たし、前記空孔の半径をRとした時、R/a比は0.30≦R/a≦0.40を満たすことを特徴とする深紫外LED。

Description

深紫外LED及びその製造方法
 本発明は、AlGaN系深紫外LED技術に関する。
 発光波長が200nm~355nmの深紫外LEDは、殺菌、浄水・空気浄化、医療などの幅広い応用分野で、水銀ランプ殺菌灯の代替技術として注目されている。しかし、LEDの電力光変換効率(WPE)は2~3%と水銀ランプの20%と比較して著しく低い。その主な理由は、発光した光がp型GaNコンタクト層でほぼ100%吸収されるため光取出し効率(LEE)が、8%以下と低いことに起因する。
 特許文献1は、p型AlGaN層の膜厚を100nm以下に薄くした深紫外LEDにおいて、反射型フォトニック結晶構造の位置を量子井戸層に近づけることで、LEEを2倍~3倍程度増加できるとし、p型AlGaNコンタクト層の場合で約23%、pGaNコンタクト層で約18%のLEEが得られることを開示している。しかし、内部量子効率を50%、電圧効率(電子注入効率×理論電圧/駆動電圧)を80%とするとWPEは依然として7~9%と見積もられる。
特許第6156898号公報
 電力光変換効率(WPEは)「(内部量子効率(IQE)×電子注入効率(EIE)×光取出し効率(LEE))×((理論電圧(Vt)/駆動電圧(Vf))」の式で求められる通り、水銀ランプのWPE20%を超えるためには、駆動電圧(Vf)をできる限り抑えつつ、同時に特許文献1に示されている値よりもさらにLEEを上げることが要求される。
 本発明は、深紫外LEDにおいて、光取出し効率をさらに向上させる新たな技術を提供する。
 本発明の第一の観点によれば、設計波長をλとする深紫外LEDであって、反射電極層(Au)と、金属層(Ni)と、p型GaNコンタクト層と、p型AlGaN層で成るP-Block層と、AlN層で成るi-guide層と、多重量子井戸層と、n型AlGaNコンタクト層と、u型AlGaN層と、AlNテンプレートと、サファイア基板とを、前記サファイア基板とは反対側からこの順で有し、前記P-Block層の膜厚は52nm~56nmであり、前記金属層と前記p型GaNコンタクト層の界面から、前記p型GaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型GaNコンタクト層と前記P-Block層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶周期構造を有し、前記空孔は、前記空孔の前記サファイア基板方向の端面から前記多重量子井戸層と前記i-guide層との界面までの距離が、垂直方向にλ/2n1Deff(但し、λ:設計波長、n1Deff:前記空孔の端面から前記i-guide層までの積層構造の各膜厚の実効平均屈折率)を満たし、その距離の範囲は53nm~57nmであり、前記反射型2次元フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記反射型2次元フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式mλ/n2Deff=2a(但し、m:次数、λ:設計波長、n2Deff:2次元フォトニック結晶の実効屈折率、a:2次元フォトニック結晶の周期)にある次数mは2≦m≦4を満たし、前記空孔の半径をRとした時、R/a比は0.30≦R/a≦0.40を満たすことを特徴とする深紫外LEDを提供する。
 前記深紫外LEDのパラメータの測定方法に関しては、エピタキシャル成長により形成される各層の厚み全体は、光干渉式膜厚測定器を用いて測定することができる。さらに、各層の厚みのそれぞれは、隣接する各層の組成が十分異なる場合(例えばAl組成比が、0.01以上異なる場合)、透過型電子顕微鏡による成長層の断面観察から算出できる。また、多重量子井戸や超格子構造のように各層の厚みが薄い場合にはTEM-EDSを用いて厚みを測定することができる。フォトニック結晶の周期構造や形状および量子井戸層とフォトニック結晶との距離の測定には透過電子顕微鏡によるSTEM(走査透過電子顕微鏡)モードでのHAADF(高角散乱環状暗視野)像を観察することにより算出できる。
 本発明の第二の観点によれば、設計波長をλとする深紫外LEDであって、反射電極層(Au)と、金属層(Ni)と、波長λに対し透明な、p型AlGaNコンタクト層と、p型AlGaN層で成るP-Block層と、AlN層で成るi-guide層と、多重量子井戸層と、n型AlGaNコンタクト層と、u型AlGaN層と、AlNテンプレートと、サファイア基板とを、前記サファイア基板とは反対側からこの順で有し、前記P-Block層の膜厚は44~48nmであり、前記金属層と前記p型AlGaNコンタクト層の界面から、前記p型AlGaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型AlGaNコンタクト層と前記P-Block層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶周期構造を有し、前記空孔は、前記空孔の前記サファイア基板方向の端面から前記多重量子井戸層と前記i-guide層との界面までの距離が、垂直方向にブラッグ反射条件λ/2n1Deff(但し、λ:設計波長、n1Deff:前記空孔の端面から前記i-guide層までの積層構造の各膜厚の実効平均屈折率)を満たし、その距離の範囲は53nm~61nm距離であり、前記反射型2次元フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記反射型2次元フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式mλ/n2Deff=2a(但し、m:次数、λ:設計波長、n2Deff:2次元フォトニック結晶の実効屈折率、a:2次元フォトニック結晶の周期)にある次数mは1≦m≦4を満たし、前記空孔の半径をRとした時、R/a比は0.20≦R/a≦0.40を満たすことを特徴とする深紫外LEDを提供する。
 前記深紫外LEDのパラメータの測定方法に関しては、エピタキシャル成長により形成される各層の厚み全体は、光干渉式膜厚測定器を用いて測定することができる。さらに、各層の厚みのそれぞれは、隣接する各層の組成が十分異なる場合(例えばAl組成比が、0.01以上異なる場合)、透過型電子顕微鏡による成長層の断面観察から算出できる。また、多重量子井戸や超格子構造のように各層の厚みが薄い場合にはTEM-EDSを用いて厚みを測定することができる。フォトニック結晶の周期構造や形状および量子井戸層とフォトニック結晶との距離の測定には透過電子顕微鏡によるSTEM(走査透過電子顕微鏡)モードでのHAADF(高角散乱環状暗視野)像を観察することにより算出できる。
 本発明の第三の観点によれば、設計波長をλとする深紫外LEDであって、反射電極層(Rh)と、波長λに対し透明な、p型AlGaNコンタクト層と、p型AlGaN層で成るP-Block層と、AlN層で成るi-guide層と、多重量子井戸層と、n型AlGaNコンタクト層と、u型AlGaN層と、AlNテンプレートと、サファイア基板とを、前記サファイア基板とは反対側からこの順で有し、前記P-Block層の膜厚は44~48nmであり、前記反射電極層と前記p型AlGaNコンタクト層の界面から、前記p型AlGaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型AlGaNコンタクト層と前記P-Block層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶周期構造を有し、前記空孔は、前記空孔の前記サファイア基板方向の端面から前記多重量子井戸層と前記i-guide層との界面までの距離が、垂直方向にブラッグ反射条件λ/2n1Deff(但し、λ:設計波長、n1Deff:前記空孔の端面から前記i-guide層までの積層構造の各膜厚の実効平均屈折率)を満たし、その距離の範囲は53nm~61nmであり、前記反射型2次元フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記反射型2次元フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式mλ/n2Deff=2a(但し、m:次数、λ:設計波長、n2Deff:2次元フォトニック結晶の実効屈折率、a:2次元フォトニック結晶の周期)にある次数mは1≦m≦4を満たし、前記空孔の半径をRとした時、R/a比は0.20≦R/a≦0.40を満たすことを特徴とする深紫外LEDを提供する。前記深紫外LEDのパラメータの測定方法に関しては、エピタキシャル成長により形成される各層の厚み全体は、光干渉式膜厚測定器を用いて測定することができる。さらに、各層の厚みのそれぞれは、隣接する各層の組成が十分異なる場合(例えばAl組成比が、0.01以上異なる場合)、透過型電子顕微鏡による成長層の断面観察から算出できる。また、多重量子井戸や超格子構造のように各層の厚みが薄い場合にはTEM-EDSを用いて厚みを測定することができる。フォトニック結晶の周期構造や形状および量子井戸層とフォトニック結晶との距離の測定には透過電子顕微鏡によるSTEM(走査透過電子顕微鏡)モードでのHAADF(高角散乱環状暗視野)像を観察することにより算出できる。
 本発明の第四の観点によれば、設計波長をλとする深紫外LEDの製造方法であって、サファイア基板を成長基板とする積層構造体を形成する工程であって、反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明なp型AlGaN層で成るP-Block層と、AlN層で成るi-guide層と、多重量子井戸層と、n型AlGaNコンタクト層と、u型AlGaN層と、AlNテンプレートとを、前記サファイア基板とは反対側からこの順で含有する積層構造体を形成する工程において、前記P-Block層の膜厚を52~56nmで結晶成長を行い、前記金属層と前記p型GaNコンタクト層の界面から、前記p型GaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型GaNコンタクト層と前記P-Block層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶周期構造を形成する工程と、前記空孔を、前記空孔の前記サファイア基板方向の端面から前記多重量子井戸層と前記i-guide層との界面までの距離が、53nm~57nmの範囲の位置に形成される工程と、前記反射型2次元フォトニック結晶周期構造を形成するための金型を準備する工程と、前記p型GaNコンタクト層の上にレジスト層を形成し、前記金型の構造をナノインプリント法にて転写する工程と、前記レジスト層をマスクとして前記p型GaNコンタクト層をエッチングして2次元フォトニック結晶周期構造を形成する工程と、前記反射型2次元フォトニック結晶構造を形成した上に、前記金属層と反射電極層をこの順で斜め蒸着法にて形成する工程と、前記金属層の上に反射電極層を形成する工程を有する深紫外LEDの製造方法を提供する。
 前記深紫外LEDの製造方法におけるパラメータの測定方法は、エピタキシャル成長により形成される各層の厚み全体は、光干渉式膜厚測定器を用いて測定することができる。さらに、各層の厚みのそれぞれは、隣接する各層の組成が十分異なる場合(例えばAl組成比が、0.01以上異なる場合)、透過型電子顕微鏡による成長層の断面観察から算出できる。また、多重量子井戸や超格子構造のように各層の厚みが薄い場合にはTEM-EDSを用いて厚みを測定することができる。フォトニック結晶の周期構造や形状および量子井戸層とフォトニック結晶との距離の測定には透過電子顕微鏡によるSTEM(走査透過電子顕微鏡)モードでのHAADF(高角散乱環状暗視野)像を観察することにより算出できる。
 本発明の第五の観点によれば、設計波長をλとする深紫外LEDの製造方法であって、サファイア基板を成長基板とする積層構造体を準備する工程であって、前記積層構造体は、反射電極層と、金属層と、波長λに対し透明なp型AlGaNコンタクト層と、p型AlGaN層で成るP-Block層と、AlN層で成るi-guide層と、多重量子井戸層と、n型AlGaNコンタクト層と、u型AlGaN層と、AlNテンプレートとを、前記サファイア基板とは反対側からこの順で含有する積層構造体を形成する工程において、前記P-Block層の膜厚を44~48nmで結晶成長を行い、前記金属層と前記p型AlGaNコンタクト層の界面から、前記p型AlGaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型AlGaNコンタクト層と前記P-Block層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶周期構造を形成する工程であって、前記空孔は、前記空孔の成長基板方向の端面から前記多重量子井戸層と前記i-guide層との界面までの距離が、53nm~61nmの範囲の位置に形成される工程と、前記反射型2次元フォトニック結晶周期構造を形成するための金型を準備する工程と、前記p型AlGaNコンタクト層の上にレジスト層を形成し、前記金型の構造をナノインプリント法にて転写する工程と、前記レジスト層をマスクとして前記p型AlGaNコンタクト層をエッチングして2次元フォトニック結晶周期構造を形成する工程と、前記反射型2次元フォトニック結晶構造を形成した上に、前記金属層をNiで斜め蒸着法にて形成する工程と、前記金属層の上に反射電極層をAuで形成する工程を有する深紫外LEDの製造方法を提供する。
 前記深紫外LEDの製造方法におけるパラメータの測定方法は、エピタキシャル成長により形成される各層の厚み全体は、光干渉式膜厚測定器を用いて測定することができる。さらに、各層の厚みのそれぞれは、隣接する各層の組成が十分異なる場合(例えばAl組成比が、0.01以上異なる場合)、透過型電子顕微鏡による成長層の断面観察から算出できる。また、多重量子井戸や超格子構造のように各層の厚みが薄い場合にはTEM-EDSを用いて厚みを測定することができる。フォトニック結晶の周期構造や形状および量子井戸層とフォトニック結晶との距離の測定には透過電子顕微鏡によるSTEM(走査透過電子顕微鏡)モードでのHAADF(高角散乱環状暗視野)像を観察することにより算出できる。
 本発明の第六の観点によれば、設計波長をλとする深紫外LEDの製造方法であって、サファイア基板を成長基板とする積層構造体を形成する工程であって、前記積層構造体は、反射電極層と、波長λに対し透明なp型AlGaNコンタクト層と、p型AlGaN層で成るP-Block層と、AlN層で成るi-guide層と、多重量子井戸層と、n型AlGaNコンタクト層と、u型AlGaN層と、AlNテンプレートとを、前記サファイア基板とは反対側からこの順で含有する積層構造体を形成する工程において、前記P-Block層の膜厚を44~48nmで結晶成長を行い、前記反射電極層と前記p型AlGaNコンタクト層の界面から、前記p型AlGaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型AlGaNコンタクト層と前記P-Block層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶周期構造を形成する工程と、前記空孔は、前記空孔の成長基板方向の端面から前記多重量子井戸層と前記i-guide層との界面までの距離が、53nm~61nmの範囲の位置に形成される工程と、前記反射型2次元フォトニック結晶周期構造を形成するための金型を準備する工程と、前記p型AlGaNコンタクト層の上にレジスト層を形成し、前記金型の構造をナノインプリント法にて転写する工程と、前記レジスト層をマスクとして前記p型AlGaNコンタクト層をエッチングして2次元フォトニック結晶周期構造を形成する工程と、前記反射型2次元フォトニック結晶構造を形成した上に、前記反射電極層をRhで斜め蒸着法にて形成する工程と、を有する深紫外LEDの製造方法を提供する。
 前記深紫外LEDの製造方法におけるパラメータの測定方法は、エピタキシャル成長により形成される各層の厚み全体は、光干渉式膜厚測定器を用いて測定することができる。さらに、各層の厚みのそれぞれは、隣接する各層の組成が十分異なる場合(例えばAl組成比が、0.01以上異なる場合)、透過型電子顕微鏡による成長層の断面観察から算出できる。また、多重量子井戸や超格子構造のように各層の厚みが薄い場合にはTEM-EDSを用いて厚みを測定することができる。フォトニック結晶の周期構造や形状および量子井戸層とフォトニック結晶との距離の測定には透過電子顕微鏡によるSTEM(走査透過電子顕微鏡)モードでのHAADF(高角散乱環状暗視野)像を観察することにより算出できる。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2018-012073号の開示内容を包含する。
 本発明によれば、垂直方向のブラッグ反射と反射型2次元フォトニック結晶との相乗効果により深紫外LEDのLEE、ひいてはWPEを飛躍的に向上させることができる。
図1A(a-1)は、本発明の第1の実施の形態による深紫外LEDの構造の一例を示す断面図であり、図1A(a-2)は反射型2次元フォトニック結晶周期構造を示す平面図である。 図1B(b-1)は、本発明の第2の実施の形態による深紫外LEDの構造の一例を示す断面図であり、図1B(b-2)は反射型2次元フォトニック結晶周期構造を示す平面図である。 図1C(c-1)は、本発明の第3の実施の形態による深紫外LEDの構造の一例を示す断面図であり、図1C(c-2)は反射型2次元フォトニック結晶周期構造を示す平面図である。 図2は、垂直方向のブラッグ反射に関わる、多重量子井戸層からの累積膜厚と屈折率差の関係を表す。 図3A(a-1)は2次元フォトニック結晶の平面波展開法によるR/a=0.40における、TM光のフォトニックバンド構造図であり、図3A(a-2)は同じくTE光のフォトニックバンド構造図である。 図3B(b-1)は2次元フォトニック結晶の平面波展開法によるR/a=0.30における、TM光のフォトニックバンド構造図であり、図3B(b-2)は同じくTE光のフォトニックバンド構造図である。 図3C(c-1)は2次元フォトニック結晶の平面波展開法によるR/a=0.20における、TM光のフォトニックバンド構造図であり、図3C(c-2)は同じくTE光のフォトニックバンド構造図である。 FDTD法による計算モデルの、p-Block層膜厚40nmにおけるフォトニック結晶近傍の断面図である。 2次元フォトニック結晶有りと無しの出力値の比較に関するFDTD法の解析結果を示す図である。 2次元フォトニック結晶有りと無しのLEE増加倍率の比較に関するFDTD法の解析結果を示す図である。 2次元フォトニック結晶のフォトンの状態密度を表す図である。 垂直方向のブラッグ反射条件を満たす、反射型2次元フォトニック結晶構造による高反射原理を示す図である。 量子井戸層からp型GaNコンタクト層近傍における電界強度の経時変化を示す図である。 p型GaNコンタクト層における、P-Block層膜厚及び、量子井戸層と2次元フォトニック結晶間の距離を可変とした出力値の比較に関するFDTD法の解析結果を示す図である。 p型GaNコンタクト層における、P-Block層膜厚及び、量子井戸層と2次元フォトニック結晶間の距離を可変としたLEE増加倍率の比較に関するFDTD法の解析結果を示す図である。 図12(a)は、P-Block層膜厚が52nmと56nmの時の、各LEE増加倍率のR/a依存性示し、図12(b)は同じく各出力値のR/a依存性を示す図である。 図13(a)は、P-Block層膜厚が52nmと56nmの時の、各LEE増加倍率の次数依存性示し、図13(b)は同じく各出力値の次数依存性を示す図である。 図14(a)は、p型GaNコンタクト層/P-Block層膜厚53nm、及びp型AlGaNコンタクト層/P-Block層膜厚44nm、次数m=4の時の、LEE増加倍率のR/a依存性示し、図14(b)は同じく出力値のR/a依存性を示す図である。 図15(a)は、p型GaNコンタクト層/P-Block層膜厚53nm、及びp型AlGaNコンタクト層/P-Block層膜厚44nm、R/a=0.40の時の、LEE増加倍率の次数依存性示し、図15(b)は同じく出力値の次数依存性を示す図である。 p型GaNコンタクト層の構造における光線追跡法によるLEE解析モデルを示す図である。 垂直方向のブラッグ反射に関わる、多重量子井戸層からの累積膜厚と屈折率差の関係を表す図である。 図18(a)は2次元フォトニック結晶の平面波展開法によるR/a=0.40における、TM光のフォトニックバンド構造図であり、図18(b)は同じくTE光のフォトニックバンド構造図である。 FDTD法による計算モデルの、p-Block層膜厚44nmにおけるフォトニック結晶近傍の断面図である。 2次元フォトニック結晶有りと無しの出力値の比較に関するFDTD法の解析結果を示す図である。 2次元フォトニック結晶有りと無しのLEE増加倍率の比較に関するFDTD法の解析結果を示す図である。 p型AlGaNコンタクト層における、量子井戸層と2次元フォトニック結晶間の距離を可変とした出力値の比較に関するFDTD法の解析結果を示す図である。 p型AlGaNコンタクト層における、量子井戸層と2次元フォトニック結晶間の距離を可変としたLEE増加倍率の比較に関するFDTD法の解析結果を示す図である。 p型AlGaNコンタクト層の構造で、電極をNiAu電極とした場合の光線追跡法によるLEE解析モデルを示す図である。 p型AlGaNコンタクト層の構造で、電極をRh電極とした場合の光線追跡法によるLEE解析モデルを示す図である。 p型GaNコンタクト層を用いた深紫外LED構造における、反射型2次元フォトニック結晶周期構造の加工プロセスを示す一例を示す図である。 p型AlGaNコンタクト層を用いた深紫外LED構造における、反射型2次元フォトニック結晶周期構造の加工プロセスを示す一例を示す図である。
 以下に、本発明の実施の形態による深紫外LEDについて、図面を参照しながら詳細に説明する。
(第1の実施の形態)
 本発明の第1の実施の形態に係る深紫外LEDとして、設計波長λを275nmとするAlGaN系深紫外LEDの構造(断面図と平面図)を図1A(a-1)、(a-2)に表す。
 具体的には、図1A(a-1)の断面図の上から順番に、サファイア基板1、AlNテンプレート2、u型AlGaN層3、n型AlGaNコンタクト層4、多重量子井戸層5(但し、多重量子井戸層5は、量子井戸層が3層(51、53,55)で構成され、各量子井戸層の間にバリア層(52、54)を挟んだ構造である)、i-guide層6(但し、i-guide層6はAlN層で成る)、P-Block層7(但し、P-Block層7はAlGaN層で成る)、p型GaNコンタクト層8、金属層9(但し、金属層9はNi層で成る)、反射電極層10(但し、反射電極層はAuで成る)を有する。そして、P-Block層7の膜厚は52nm~56nmである。また、p型GaNコンタクト層8の厚さ方向の範囲内で、かつ、p型GaNコンタクト層8とP-Block層7との界面を超えない位置に反射型2次元フォトニック結晶周期構造100を設けており、フォトニック結晶周期構造100は、空孔(柱状構造、ホール)101(h)を有し、空孔101はサファイア基板1方向の端面から多重量子井戸層5とi-guide層6との界面までの距離Gが53nm~57nmの位置に設けられており、この距離Gは垂直方向のブラッグ反射条件を満たす。エピタキシャル成長により形成される各層の厚み全体は、光干渉式膜厚測定器を用いて測定することができる。さらに、各層の厚みのそれぞれは、隣接する各層の組成が十分異なる場合(例えばAl組成比が、0.01以上異なる場合)、透過型電子顕微鏡による成長層の断面観察から算出できる。また、多重量子井戸や超格子構造のように各層の厚みが薄い場合にはTEM-EDSを用いて厚みを測定することができる。フォトニック結晶の周期構造や形状および量子井戸層とフォトニック結晶との距離の測定には透過電子顕微鏡によるSTEM(走査透過電子顕微鏡)モードでのHAADF(高角散乱環状暗視野)像を観察することにより算出できる。
 図2に、垂直方向のブラッグ反射に関わる、多重量子井戸層5からp型GaNコンタクト層8に至る積層構造における累積膜厚と屈折率差の関係を示す。
 垂直方向のブラッグ反射の効果が得られる距離G(周期)及びP-Block層7の膜厚を、ブラッグ散乱条件の式(mλ/n1Deff=2a、m:次数、n1Deff:空孔101(h)の端面からi-guide層6までの積層構造の各膜厚の実効屈折率、λ:設計波長、a:周期)より算出する。
 設計波長275nmでのi-guide層6とP-Block層7のそれぞれの屈折率(n)は、i-guide層6(n=2.300)、P-Block層7(n=2.594)である。実効屈折率n1Deffは、n1Deff=[n +(n -n )(d/a)]0.5の式で求められる。i-guide層6の膜厚をdとし例えば1nmとするとd/aの値は0.019であるため、n1Deffは2.589となる。m=1とし、これらを前記ブラッグ散乱条件の式に代入すると、周期aは53nmと導き出される。ここではi-guide層6の膜厚は1nmのため、P-Block層7の膜厚は52nmとなる。すなわち、ここでは、垂直方向の反射効果が得られるP-Block層7の膜厚は52nmとなる。
 表1に、垂直方向のブラッグ反射効果に関する、FDTD法シミュレーション解析結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1は、P-Block層膜厚40nmと52nmのそれぞれについて、モニターを、量子井戸層55とi-guide層6の界面からサファイア基板1方向に53nmの距離の位置に設けた場合(表1「-G53nm」)と、量子井戸層55とi-guide層6の界面からp型GaNコンタクト層8方向に53nmの距離の位置に設けた場合(表1「+G53nm」)の、各出力値とP-Block層膜厚52nmと膜厚40nmとの出力比を示している。
 表1より、量子井戸層を挟んだ上側のモニター(「-G53nm」)では、P-Block層膜厚52nmの出力は膜厚40nmに対し1.8倍となっているが、下側のモニター(「+G53nm」)では2.6倍の出力比の違いが得らえている。これは、下側(「+G53nm」)では、P-Blcok層40nmの場合の距離53nmはp型GaNコンタクト層での吸収領域に入りこむ位置であるために、P-Block膜40nmの出力が大きく減少してしまうためである。
 これらの結果から、垂直方向のブラッグ反射効果の得られる距離Gが53nmで、P-Blcok層52nmとすれば、p型GaNコンタクト層の吸収領域に入り込まずに、反射効果が得られることが確認できる。
 次に、反射型2次元フォトニック結晶周期構造100は、図1A(a-2)にxy平面図として示す通り、半径がRの円を断面とする空孔101(h)がp型GaNコンタクト層8よりも屈折率の小さい空気などで成る、x方向及びy方向に沿って周期aで三角格子状に形成された柱状構造体(ホール構造)を有する。また、空孔101(h)は、ドライエッチングによるP-Block層7の損傷を防止するために、p型GaNコンタクト層8とP-Block層7の界面に到達していない構造であり、かつ、空孔101(h)のサファイア基板1の方向の端面と量子井戸層55までの距離(G)が53nm~57nmの範囲の位置に設けられる。
 反射型2次元フォトニック結晶周期構造100においては、多重量子井戸層5で発光した波長λの深紫外光はTE光とTM光が全方向に放射されて楕円偏光しながら媒質中を伝搬する。
 量子井戸層55からの距離G53nm~57nmの位置の、p型GaNコンタクト層8内に設けられた反射型2次元フォトニック結晶周期構造100は、異なる屈折率をもつp型GaNコンタクト層8と空気の二つの構造体として形成される。空孔101(h)の半径Rと周期aの比であるR/a比を、例えば0.40とした時、上記フォトニック結晶100の充填率fは、f=2π/30.5×(R/a)の式で計算され、f=0.58となる。そして、空気の屈折率n3=1.0、p型GaNコンタクト層8の屈折率n=2.631、f=0.58より実効屈折率n2Deffは次式で計算されn2Deff=(n +(n -n )×f)0.5=1.867が得られる。
 尚、深紫外(DUV)光の波長領域は200nm~355nmで、波長により屈折率n及び消衰係数kが異なる。従って、選択する波長λが変われば、上記フォトニック結晶に係る計算パラメータも変わるので、P-Block層の膜厚及び量子井戸層と2次元フォトニック結晶の距離も変わることになる。尚、今回計算に使用した屈折率及び消衰係数は文献値であるが、これらの値はその膜厚により若干変動するので、前記P-Block層の膜厚及び量子井戸層と2次元フォトニック結晶の距離も変わることになる。
 そして、発光波長λ=275nmの場合の、この反射型2次元フォトニック結晶周期構造100がブラッグ散乱条件(mλ/n2Deff=2a、但しn2Deff:2次元フォトニック結晶の実効屈折率、a:2D-PhCの周期、m:次数)を満たす場合のTM光及びTE光のフォトニックバンド構造が平面波展開法で求められる。図3A(a-1)及び(a-2)にR/a=0.40の場合のTM光とTE光の各々のフォトニックバンド構造図を示す
 同様にR/a=0.30の場合のTM光とTE光の各々のフォトニックバンド構造図を図3B(b-1)及び(b-2)に、R/a=0.20の場合のTM光とTE光のフォトニックバンド構造図を図3C(c-1)及び(c-2)に示す。
 2次元反射型フォトニック結晶においては、図3A(a-1)、図3B(b-1)及び図3C(c-1)に示すようにTM光はフォトニックバンドギャップ(PBG)が観測されないが、TE光では図3A(a-2)、図3B(b-2)及び図3C(c-2)に示すように第1フォトニックバンド(ω1TE)と第2フォトニックバンド(ω2TE)間にPBGが観測される。そして、図3A(a-2)、図3B(b-2)及び図3C(c-2)に示すように、TE光におけるPBGの大きさはR/a=0.40が最も大きく、R/aが大きくなるに従って、PBGも大きくなる。
 ところで、P-Block層7の膜厚が厚くなると駆動電圧(Vf)は高くなる。例えば波長275nm、P-Block層膜厚が40nmの場合、Vfは6V程度であるが、P-Block層膜厚が10nm増加すると、Vfは1V上昇する。そのため、Vfを抑えるためにはP-Block層の膜厚をできだけ薄くしなければならない。しかしながら、垂直方向のブラッグ反射と反射型2次元フォトニック結晶の相乗効果により大幅に光取出し効率が向上するので、P-Block層膜厚の最適化は重要である。そこで、本実施の形態では、前述した垂直方向のブラッグ反射と反射型2次元フォトニック結晶の相乗効果を得て著しくLEEが向上し、かつ、VfとP-Block層膜厚とのトレードオフをも考慮された適切な条件、すなわち、量子井戸層55と反射型2次元フォトニック結晶構造間の距離、P-Block層膜厚、2次元フォトニック結晶周期構造の各パラメータ(ブラッグ散乱条件mλ/n2Deff=2aを満たす次数mと周期a及びR/a)を、FDTD法並びに光線追跡法によるシミュレーション解析により求めていく。
 表2にFDTD法の深紫外LED構造の計算モデル、表3には反射型2次元フォトニック結晶構造の計算モデルの各パラメータを示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図4はFDTD法の計算モデルの一例となる、P-Block層の膜厚が40nmの深紫外LED構造におけるフォトニック結晶周期構造近傍の断面図である。計算モデルの構造は、P-Block層の膜厚を40nmから60nmの範囲で、4nmステップで可変し、反射型2次元フォトニック結晶周期構造(2D-PhC)の無い場合と有る場合での比較で解析を行った。2D-PhCの形成位置は、図4に示すようにP-Block層とp型GaNコンタクト層の界面から金属層(Ni)とp型GaNコンタクト層の界面までとした。
 上記計算モデルによるシミュレーション解析結果を図5及び図6に示す。図5は、P-Block層を膜厚40nm~60nmの範囲で4nmステップで可変し、2D-PhCは次数m=4、R/a=0.40の場合の2D-PhC有りの場合と2D-PhC無しの場合で、それぞれの出力(w)の変化を示したものである。図5に示すように、2D-PhC有りと2D-PhC無しの場合のいずれもP-Block層の膜厚が52nm~56nmで出力が大きく増加している。
 また、同じく図5より、2D-PhC無しの構造において、P-Block層膜厚が52nm~56nmの時、P-Block層膜厚40nmの時と比較した場合の出力がいずれも約2倍になっている。この現象は、本構造におけるi-guide層とP-Block層の積層構造が、P-Block層膜厚52nm~56nmのときに垂直方向のブラッグ反射効果が得られていることを示している。
 また、図6は2D-PhC有りの構造の場合の2D-PhC無しの構造との比較によるLEE増加倍率を示した図である。図6に示すように、膜厚52nmで約2.6倍、膜厚56nmで約2.3倍LEEが増加することが示されており、P-Block層膜厚52nm~56nmにおいて、垂直方向のブラッグ反射と反射型2次元フォトニック結晶の相乗効果が得られているものと言える。
 反射型2次元フォトニック結晶(2D-PhC)の設計は、2D-PhC面内において、ブラッグ散乱条件の式mλ/n2Deff=2asinθ(但し、m:次数、n2Deff:2D-PhC周期構造体の実効屈折率、λ:設計波長、a:2D-PhCの周期)から算出される。図7は、2D-PhCにおけるR/a=0.20とR/a=0.40のそれぞれのフォトンの状態密度を表した図である。フォトニック結晶による反射強度はフォトンの状態密度に相関性を持つ。図7に示すように、R/aが大きいほど、フォトンの状態密度変化が大きい。そして、量子井戸層(発光層)に近接して形成された2D-PhCに入射したDUV光は、2D-PhC面内で定在波を発生する。そして、量子井戸層と2D-PhCとの距離がλ/2n1Deffを満たすとき、2D-PhC面内に入射したDUV光は、垂直方向にブラッグ反射が起こってサファイア基板方向に反射される。(図8参照)。
 本実施の形態における深紫外LED構造においては、量子井戸層と2D-PhCとの距離が53nmのとき、垂直方向において最もブラッグ反射件を満たしていることで大きな反射効果が得られるものと考えられる。
 図9に、これらを検証するFDTD法解析結果として、量子井戸層と2D-PhC間の距離53nmとした時の、量子井戸層からp型GaNコンタクト層近傍における、電界強度の経時変化を示した。図9は、2D-PhC無しと2D-PhC有りの場合の、断面及び2D-PhC面内の電界強度をそれぞれ表している。図9(a)は、2D-PhCが無い構造の断面であるが、電界が全方向に均一に伝搬しているのに対し、図9(b)の2D-PhCが有る場合は、2D-PhCに電界が侵入して行かずに反射していることがわかる。また、2D-PhC面内の電界分布をみると、2D-PhCが無い構造の図9(c)と比較して、2D-PhCが有る構造の図9(d)では定在波の出現していることが確認できる。
 これらの前提を踏まえ、1D-PhCと2D-PhCの相乗効果が得られる、量子井戸層と2D-PhC間の距離(G)の最適値を、シミュレーション解析により求めていく。
 まず、P-Block層の膜厚40nm、48nm、52nmのそれぞれの、量子井戸層と2D-PhC間の距離Gの違いによる出力を確認する。量子井戸層と2D-PhC間の距離Gは、1nm~57nmの間で4nmステップの可変とし、2D-PhCはR/a=0.30及びR/a=0.40で、次数mはいずれもm=4とした。FDTD法による解析結果を図10に示す。
 図10に示すように、P-Block層膜厚の比較では、膜厚40nmと膜厚48nmの違いはそれぞれ出力が最大となる距離G49nmで、P-Block膜厚48nmの方が膜厚40nmに比べて約1.2倍の大きい。一方、P-Block膜厚52nmは距離G53nmで出力が最大となり、その時、膜厚48nmに対して2倍以上の出力となることが確認できる。
 また、図11は、図10と同じシミュレーション条件で、2D-PhC無しの構造に対する2D-PhC有りの構造の場合のLEE増加倍率を示している。図11より、膜厚52nmでは、距離G53の時は2D-PhC有りの構造では2.6倍LEEが増加している。この結果は、量子井戸層と2D-PhC間の距離Gが、前述の垂直方向のブラッグ条件を満たす距離である53nmと一致する。すなわち、垂直方向のブラッグ反射効果が最も大きい周期53nmを満たす、P-Block層膜厚52nmは、出力及びLEE増加率の両方において垂直方向のブラッグ反射と反射型2次元フォトニック結晶の相乗効果が得らえる最適条件を満たしていることを示している。
 尚、図10において、P-Block膜厚52nmの時の距離G49でも出力は距離G53と同程度であるが、距離G49では反射型2次元フォトニック結晶構造の空孔がp型GaNコンタクト層を超えてP-Block層まで侵入してエッチングされてしまい、P-Block層にエッチング損傷を与える可能性があるため、選択することができない。また、距離G57の場合は、距離G53よりは下がるものの比較的大きな出力を示しているため、量子井戸層と反射型2次元PhC間距離Gは53nm~57nmを選択する。
 また、量子井戸層と反射型2次元フォトニック結晶の相乗効果が狙える距離Gについて、最大57nmをも選択するため、i-guide層膜厚が1nmであれば、P-Block層の膜厚は52nm~56nmが適切となる。そこで、P-Block層膜厚52nmと56nmの場合で、2D-PhCのR/a依存性及び次数依存性の観点からFDTD法解析を行った。尚、この解析は、標準的なLED構造との比較を確認するため、標準的なP-Block層膜厚40nmで、2D-PhC無しの構造との比較で行った。R/a依存性については、次数をm=4とし、R/a=0.20~0.40で可変とした。また、次数依存性については、R/aをR/a=0.40とし、m=1~4で可変とした。これらの結果として、LEE増加倍率と出力値の比較を図12及び図13に示す。
 R/a依存性について、図12(a)はLEE増加倍率、図12(b)は出力値を示している。また、次数依存性について、図13(a)はLEE増加倍率を、図13(b)は出力値を示す。図12(a)、(b)、図13(a)、(b)に示す通り、いずれの結果においても、P-Block膜厚52nmと56nmでは、ほぼ同程度の出力値とLEE増加率が得られていることが確認できる。尚、この解析結果からは、2D-PhCの最適パラメータとして、R/a=0.30またはR/a=0.40が良く、次数はm=3またはm=4が良いことが確認できる。
 さらに、2D-PhCの適切なR/a、次数の条件について、同じくFDTD法シミュレーション解析により示す。図11及び図12より、R/a=0.30とR/a=0.40の比較では、フォトンの状態密度変化が大きいR/a=0.40(図7参照)の方が、P-Block層膜厚40nm、48nm、52nmのいずれにおいても反射効果が高い事が示されている。そこで、量子井戸層と2D-PhC間の距離Gを、前述した垂直方向のブラッグ条件を満たす距離であるG53nmに固定させて、R/a=0.40における次数依存性を確認した(図15)。また、同時に、次数m=4におけるR/a依存性も確認した(図14)。尚、この解析も、標準的なLED構造との比較を確認するため、標準的なP-Block層膜厚40nmで、2D-PhC無しの構造との比較で行った。
 図14(a)は、G53nmで次数m=4として、R/aをR/a=0.20、R/a=0.30、R/a=0.40の各R/aにおけるLEE増加倍率のR/a依存性を、図14(b)はその出力値のR/a依存性を示す。図14(a)に示す通り「pGaN_Pblock52nm_m4」は、R/a=0.20でLEEが約2.5倍となるが、R/a=0.40では5倍以上になることが確認できる。また、図14(b)においても、R/aが大きくなるにつれ、出力が大きくなっていることがわかる。
 図15(a)は、G53nmでR/a=0.40として、次数をm=1~4の各次数におけるLEE増加倍率の次数依存性を、図15(b)は、同じく出力値の次数依存性を示す。図15(a)より、「pGaN_Pblock52nm_R/a0.40」は、次数m=1~2においてはLEE増加倍率が約3~4倍となるが、次数m=3~4では約5~6倍となる。また、図15(b)においても、次数m=3~4が、次数m=1~2と比較し、大きな出力が得られることが確認できる。
 これらの検証として、LEE値を光線追跡法とのクロスシミュレーションにより求め、確認した。図16に光線追跡法の計算モデルと解析結果を示す。法線追跡法では、ナノメートル・スケールの計算はできないため、まず光線追跡法にて計算したLEE値に、FDTD法により導出したLEE増加倍率を掛け合わせた、クロスシミュレーションにより、本実施の形態におけるLED構造のLEE値を算出した。表4にその結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示す通り、P-Block層膜厚52nm、量子井戸層と2D-PhC間の距離G53nm、R/a=0.40、次数m=3のときLEEは27.5%、同じく次数m=4で25.5%のLEE値が示されており、本実施の形態に基づけば、よりLEEを向上させることができる。
(第2の実施の形態)
 本発明の第2の実施の形態に係る深紫外LEDとして、設計波長λを275nmとするAlGaN系深紫外LEDの構造(断面図と平面図)を図1B(b-1)、(b-2)に表す。
 具体的には、図1B(b-1)の断面図の上から順番に、サファイア基板1、AlNテンプレート2、u型AlGaN層3、n型AlGaNコンタクト層4、多重量子井戸層5(但し、多重量子井戸層5は、量子井戸層が3層(51、53,55)で構成され、各量子井戸層の間にバリア層(52、54)を挟んだ構造である)、i-guide層6(但し、i-guide層6はAlN層で成る)、P-Block層7(但し、P-Block層7はAlGaN層で成る)、p型AlGaNコンタクト層8a、金属層9(但し、金属層9はNi層で成る)、反射電極層10(但し、反射電極層はAuで成る)を有する。そして、P-Block層7の膜厚は44nm~48nmである。また、p型AlGaNコンタクト層8aの厚さ方向の範囲内で、かつ、p型AlGaNコンタクト層8aとP-Block層7との界面を超えない位置に反射型2次元フォトニック結晶周期構造100を設けており、フォトニック結晶周期構造100は、空孔(柱状構造、ホール)101(h)を有し、空孔101はサファイア基板1方向の端面から多重量子井戸層5とi-guide層6との界面までの距離Gが53nm~61nmの位置に設けられており、この距離Gは垂直方向にブラッグ反射を満たす。
 エピタキシャル成長により形成される各層の厚み全体は、光干渉式膜厚測定器を用いて測定することができる。さらに、各層の厚みのそれぞれは、隣接する各層の組成が十分異なる場合(例えばAl組成比が、0.01以上異なる場合)、透過型電子顕微鏡による成長層の断面観察から算出できる。また、多重量子井戸や超格子構造のように各層の厚みが薄い場合にはTEM-EDSを用いて厚みを測定することができる。フォトニック結晶の周期構造や形状および量子井戸層とフォトニック結晶との距離の測定には透過電子顕微鏡によるSTEM(走査透過電子顕微鏡)モードでのHAADF(高角散乱環状暗視野)像を観察することにより算出できる。
 図17に、垂直方向のブラッグ反射に関わる、多重量子井戸層5からp型AlGaNコンタクト層8aに至る積層構造における累積膜厚と屈折率差の関係を示す。
 垂直方向のブラッグ反射の効果が得られる距離G(周期)及びP-Block層7の膜厚を、ブラッグ散乱条件の式(mλ/n1Deff=2a、m:次数、n1Deffav:空孔101(h)の端面からi-guide層6までの積層構造の各膜厚の実効屈折率、λ:設計波長、a:周期)より算出する。
 設計波長275nmでのi-guide層6とP-Block層7のそれぞれの屈折率(n)は、i-guide層6(n=2.300)、P-Block層7(n=2.594)である。実効屈折率n1Deffは、nav=[n +(n -n )(d/a)]0.5の式で求められる。i-guide層6の膜厚をdとし例えば1nmとするとd/aの値は0.019であるため、n1Deffは2.589となる。m=1とし、これらを前記ブラッグ散乱条件の式に代入すると、周期aは53nmと導き出される。すなわち、ここでは、垂直方向の反射効果が得られる距離は53nmとなる。
 表5に、垂直方向のブラッグ反射効果に関する、FDTD法シミュレーション解析結果を示す。
Figure JPOXMLDOC01-appb-T000005
 表5は、P-Block層膜厚40nmと44nmのそれぞれについて、量子井戸層55とi-guide層6の界面からサファイア基板1方向に53nmの距離の位置に設けた場合(表5「-G53nm」)と、量子井戸層55とi-guide層6の界面からp型AlGaNコンタクト層8a方向に53nmの距離の位置に設けた場合(表5「+G53nm」)の、各出力値とP-Block層膜厚44nmと膜厚40nmとの出力比を示している。
 表5より、量子井戸層を挟んだ上下のモニターそれぞれで、P-Block層44nmの出力比が2倍程度得られていることが確認できる。また、P-Block層膜厚40nmのp型AlGaNコンタクト層側に設置されたモニター(+G53nm)の出力値はp型GaNコンタクト層の場合と比較してほとんど減少していない。これは、p型AlGaNコンタクト層がp型GaNコンタクト層のような吸収が無いためである。
 これらの結果から、p型AlGaNコンタクト層のLED構造においても、垂直方向のブラッグ反射効果が得られる距離Gが53nmであることが確認できる。
 次に、反射型2次元フォトニック結晶周期構造100は、図1B(b-2)にxy平面図として示す通り、半径がRの円を断面とする空孔101(h)がp型AlGaNコンタクト層8aよりも屈折率の小さい空気などで成る、x方向及びy方向に沿って周期aで三角格子状に形成された柱状構造体(ホール構造)を有する。また、空孔101(h)は、ドライエッチングによるP-Block層7の損傷を防止するために、p型AlGaNコンタクト層8aとP-Block層7の界面に到達していない構造であり、かつ、空孔101(h)のサファイア基板1の方向の端面と量子井戸層55までの距離Gが53nm~61nmの範囲の位置に設けられる。
 反射型2次元フォトニック結晶周期構造100においては、多重量子井戸層5で発光した波長λの深紫外光はTE光とTM光が全方向に放射されて楕円偏光しながら媒質中を伝搬する。
 量子井戸層55からの距離G53nm~61nmの位置の、p型AlGaNコンタクト層8a内に設けられた反射型2次元フォトニック結晶周期構造100は、異なる屈折率をもつp型AlGaNコンタクト層8aと空気の二つの構造体として形成される。空孔101(h)の半径Rと周期aの比であるR/a比を、例えば0.40とした時、上記フォトニック結晶100の充填率fは、f=2π/30.5×(R/a)の式で計算され、f=0.58となる。そして、空気の屈折率n3=1.0、p型AlGaNコンタクト層8の屈折率n=2.723、f=0.58より実効屈折率n2Deffは次式で計算されn2Deff=(n +(n -n )×f)0.5=1.921が得られる。
 尚、深紫外(DUV)光の波長領域は200nm~355nmで、波長により屈折率n及び消衰係数kが異なる。従って、選択する波長λが変われば、上記フォトニック結晶に係る計算パラメータも変わるので、P-Block層の膜厚及び量子井戸層と2次元フォトニック結晶の距離も変わることになる。尚、今回計算に使用した屈折率及び消衰係数は文献値であるが、これらの値はその膜厚により若干変動するので、前記P-Block層の膜厚及び量子井戸層と2次元フォトニック結晶の距離も変わることになる。
 そして、発光波長λ=275nmの場合の、この反射型2次元フォトニック結晶周期構造100がブラッグ散乱条件(mλ/n2Deff=2a、但しn2Deff:2次元フォトニック結晶の実効屈折率、a:2D-PhCの周期、m:次数)を満たす場合のTM光及びTE光のフォトニックバンド構造が平面波展開法で求められる。図18(a)及び(b)にR/a=0.40の場合のTM光とTE光の各々のフォトニックバンド構造図を示す。
 2次元反射型フォトニック結晶においては、図18(a)に示すようにTM光はフォトニックバンドギャップ(PBG)が観測されないが、TE光では図18(b)に示すように第1フォトニックバンド(ω1TE)と第2フォトニックバンド(ω2TE)間に大きなPBGが観測される。そして、TE光におけるPBGの大きさはR/a=0.40が最も大きく、R/aが大きくなるに従って、PBGの大きくなる。
 ところで、本発明の第1の実施の形態で示したように、P-Block層7の膜厚が厚くなると駆動電圧(Vf)は高くなる。そのため、Vfを抑えつつ、P-Block層の膜厚をできだけ薄くして、垂直方向のブラッグ反射と反射型2次元フォトニック結晶の相乗効果により大幅に光取出し効率(LEE)が向上するような、P-Block層膜厚の最適化が重要である。本実施の形態では、p型コンタクト層を、第1の実施の形態におけるp型GaNコンタクト層に代えて、波長λに対して透明なp型AlGaNコンタクト層を用いた深紫外LED構造における、垂直方向のブラッグ反射と反射型2次元フォトニック結晶の相乗効果を得て著しくLEEが向上し、かつ、VfとP-Block層膜厚とのトレードオフをも考慮された適切な条件、すなわち、量子井戸層55と反射型2次元フォトニック結晶構造間の距離、P-Block層膜厚、2次元フォトニック結晶周期構造の各パラメータ(ブラッグ散乱条件mλ/n2Deff=2aを満たす次数mと周期a及びR/a)を、FDTD法並びに光線追跡法によるシミュレーション解析により求めていく。
 表6にFDTD法の深紫外LED構造の計算モデル、表7には反射型2次元フォトニック結晶構造の計算モデルの各パラメータを示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 図19はFDTD法の計算モデルの一例となる、P-Block層の膜厚が44nmの深紫外LED構造におけるフォトニック結晶周期構造近傍の断面図である。計算モデルの構造は、P-Block層の膜厚を40nmから60nmの範囲で、4nmステップで可変し、反射型2次元フォトニック結晶周期構造(2D-PhC)の無い場合と有る場合での比較で解析を行った。2D-PhCの形成位置は、図19に示すようにP-Block層とp型AlGaNコンタクト層の界面から金属層(Ni)とp型AlGaNコンタクト層の界面までとした。
 上記計算モデルによるシミュレーション解析結果を図20及び図21に示す。図20は、P-Block層を膜厚40nm~60nmの範囲で4nmステップで可変し、2D-PhCは次数m=4、R/a=0.40の場合の2D-PhC無しの場合と2D-PhC有りの場合のそれぞれの出力(w)の変化を示したものである。図20に示すように、2D-PhC無しと2D-PhC有りの場合のいずれもP-Block層の膜厚が44nm~52nmで出力が大きく増加している。
 また、同じく図20より、2D-PhC無しの構造において、P-Block層膜厚が44nm~52nmの場合、膜厚40nmの場合と比較しての出力が約2倍になっている。この現象は、本構造におけるi-guide層とP-Block層の積層構造が、P-Block層膜厚44nm~52nmのときに垂直方向のブラッグ反射効果が得られていることを示している。
 また、図21は、同じ条件で、2D-PhC有りの構造の場合の2D-PhC無しの構造との比較によるLEE増加倍率を示した図である。図21に示すように、P-Block層の膜厚が増えるに従い、LEE増加率も上がっており、P-Block膜厚とLEE増加率は相関性があることが示されている。しかしながら、前述したように、P-Block層膜厚が増加するとVfも増加するため、P-Block膜厚は44nmが良く、次いで48nmまでを選択する。
 反射型2次元フォトニック結晶(2D-PhC)の設計は、2D-PhC面内において、ブラッグ散乱条件の式mλ/n2Deff=2asinθ(但し、m:次数、n2Deff:2D-PhC周期構造体の実効屈折率、λ:設計波長、a:2D-PhCの周期)から算出される。第1の実施の形態において図7に示したように、R/aが大きいほど、フォトンの状態密度変化が大きい。そして、図8に示したように、量子井戸層(発光層)に近接して形成された2D-PhCに入射したDUV光は、2D-PhC面内で定在波を発生する。そして、量子井戸層とフォトニック結晶との距離がλ/2n1Deffを満たすとき、2D-PhC面内に入射したDUV光は、垂直方向のブラッグ反射が起こってサファイア基板方向に反射される。
 本実施の形態の深紫外LED構造においては、量子井戸層と2D-PhCとの距離が53nmのとき、垂直方向において最もブラッグ反射条件を満たしていることで大きな反射効果が得られるものと考えられる。
 これらの前提を踏まえ、垂直方向のブラッグ反射と2D-PhCの相乗効果が得られる、量子井戸層と2D-PhC間の距離(G)の最適値を、シミュレーション解析により求めていく。
 P-Block層膜厚を44nmとし、量子井戸層と2D-PhC間の距離Gの違いによる出力を確認する。ここでは、量子井戸層と2D-PhC間の距離Gは、1nm~61nmの間で4nmステップの可変とし、2D-PhCはR/a=0.4、次数m=4とした。FDTD法による解析結果を図22に示す。
 図22に示すように、量子井戸層と2D-PhC間の距離Gは53nmで出力が最大となることが確認できる。
 また、図23は、図22と同じシミュレーション条件で、2D-PhC無しの構造に対する2D-PhC有りの構造の場合のLEE増加倍率を示している。量子井戸層と2D-PhC間の距離G53nmはLEE増加倍率においても最大を示しており、これは、前述の垂直方向のブラッグ条件を満たす距離である53nmと一致する。すなわち、垂直方向のブラッグ反射効果が最も大きい周期53nmが、出力及びLEE増加倍率の両方において1次元フォトニック結晶と反射型2次元フォトニック結晶の相乗効果が得らえる最適化条件を満たしていることを示している。
 量子井戸層と2D-PhC間の距離は、53nmから、比較的大きな出力を示している61nmを選択する。
 次に、2D-PhCのR/a及び次数mの選択をどことするかを、FDTD法解析により確認した。P-Block層膜厚44nmとして、2D-PhC無しの構造と有りの構造での比較を行った。まず、R/a依存性については、次数をm=4とし、R/a=0.20~0.40で可変とした。また、次数依存性については、R/aをR/a=0.40とし、m=1~4で可変とした。これらの結果として、LEE増加倍率と出力値の比較を図14及び図15に示す。
 図14(a)は、G53nmで次数m=4として、R/aをR/a=0.20、R/a=0.30、R/a=0.40の各R/aにおけるLEE増加倍率のR/a依存性を、図14(b)はその出力値のR/a依存性を示す。図14(a)に示す通り「pAlGaN_NiAu_Pblock44nm_m4」は、R/a=0.20でLEEが約2倍となるが、R/a=0.40では約4倍になることが確認できる。また、図14(b)においても、R/aが大きくなるにつれ、出力が大きくなっていることがわかる。
 図15(a)は、G53nmでR/a=0.40として、次数をm=1~4の各次数におけるLEE増加倍率の次数依存性を、図15(b)は、同じく出力値の次数依存性を示す。図15(a)より、「pAlGaN_NiAu_Pblock44nm_R/a0.40」は、次数m=1~2においてはLEE増加倍率は約2~2.5倍となるが、次数m=3~4では約4倍となる。また、図15(b)においても、次数m=3~4が、次数m=1~2と比較し、大きな出力が得られることが確認できる。
 これらの検証として、LEE値を光線追跡法とのクロスシミュレーションにより求め、確認した。図24に光線追跡法の計算モデルと解析結果を示す。法線追跡法では、ナノメートル・スケールの計算はできないため、まず光線追跡法にて計算したLEE値に、FDTD法により導出したLEE増加倍率を掛け合わせた、クロスシミュレーションにより、本実施の形態におけるLED構造のLEE値を算出した。表8にその結果を示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示す通り、P-Block層膜厚44nm、量子井戸層と2D-PhC間の距離G53nm、R/a=0.40、次数m=3のときLEEは63.5%、同じく次数m=4で62.2%のLEE値が示されており、本実施の形態に基づけば、さらにLEEを向上させることができる。
(第3の実施の形態)
 本発明の第3の実施の形態に係る深紫外LEDとして、設計波長λを275nmとするAlGaN系深紫外LEDの構造(断面図と平面図)を図1C(c-1)、(c-2)に表す。
 図1Cに示すように、本実施の形態のLED構造は、本発明の第2の実施の形態おける、p型コンタクト層が波長λに対して透明なp型AlGaNコンタクト層を用いた深紫外LED構造の電極部分である、金属層(Ni)と反射射電極(Au)を、Rh電極に代えた場合の変形例である。
 Rh電極(反射率70%)は、Ni/Au電極(反射率20%)と比較し反射率が高く、図20に示すように、Rh電極がNi/Au電極よりも高い出力が得らえることがシミュレーション結果から示されている。R/a=0.40の2D-PhCの反射効果は、TE光でほぼ100%に対して、TM光は劣る。波長275nmのDUV光は偏光しており、本発明において示すFDTD法シミュレーション解析では偏光度0.35で計算しており、強度比はTE:TM=7:3である。従って、2D-PhCを透過して電極に到達したTM光の反射がRh電極においては、Ni/Au電極と比較して高い出力として影響するものと考えられる。
 本実施の形態におけるLED構造の積層構造体部は、第2の実施の形態の構造と同じで電極のみが異なる変形例であり、従って、垂直方向のブラッグ反射と2D-PhCの相乗効果が得らえる最適条件は、第2実施の形態と同じ条件で、電極のみをRhに変えて、FDTD法シミュレーション解析を行った。表9にFDTD法の深紫外LED構造の計算モデルの各パラメータを示す。反射型2次元フォトニック結晶構造の計算モデルのパラメータは表7の通り。FDTD法シミュレーション解析結果を図22に示す。
Figure JPOXMLDOC01-appb-T000009
 図22では、P-Block層膜厚を44nmとし、量子井戸層と2D-PhC間の距離(G)の違いによる出力を確認する。ここでは、量子井戸層と2D-PhC間の距離Gは、1nm~61nmの間で4nmステップの可変とし、2D-PhCはR/a=0.40、次数m=4とした。
 図22に示すように、Rh電極においても、量子井戸層と2D-PhC間の距離Gは53nmで出力が最大となることが確認できる。
 また、図23は、図22と同じシミュレーション条件で、2D-PhC無しの構造に対する2D-PhC有りの構造の場合のLEE増加倍率を示している。量子井戸層と2D-PhC間の距離G53nmはLEE増加倍率においても最大と示しており、これは、前述の垂直方向のブラッグ条件を満たす距離である53nmと一致する。すなわち、垂直方向の反射効果が最も大きい周期53nmが、出力及びLEE増加率の両方において1次元フォトニック結と反射型2次元フォトニック結晶の相乗効果が得らえる最適化条件を満たしていることを示している。
 量子井戸層と2D-PhC間の距離は、53nmから、比較的大きな出力を示している61nmを選択する。
 次に、2D-PhCのR/a及び次数mの選択をどことするかを、FDTD法解析により確認した。P-Block層膜厚44nmとして、2D-PhC無しの構造と有りの構造での比較を行った。まず、R/a依存性については、次数をm=4とし、R/a=0.20~0.40で可変とした。また、次数依存性については、R/aをR/a=0.40とし、m=1~4で可変とした。これらの結果として、LEE増加倍率と出力値の比較を図14及び図15に示す。
 図14(a)は、G53nmで次数m=4として、R/aをR/a=0.20、R/a=0.30、R/a=0.40の各R/aにおけるLEE増加倍率のR/a依存性を、図14(b)はその出力値のR/a依存性を示す。図14(a)に示す通り「pAlGaN_Rh_Pblock44nm_m4」は、R/a=0.20でLEEが約2倍となるが、R/a=0.40では3倍強になることが確認できる。また、図14(b)においても、R/aが大きくなるにつれ、出力が大きくなっていることがわかる。
 図15(a)は、G53nmでR/a=0.40として、次数をm=1~4の各次数におけるLEE増加倍率の次数依存性を、図15(b)は、同じく出力値の次数依存性を示す。図15(a)より、「pAlGaN_Rh_Pblock44nm_R/a0.40」は、次数m=1~2においてはLEE増加倍率が約2倍となるが、次数m=3~4では約3倍となる。また、図15(b)においても、次数m=3~4が、次数m=1~2と比較し、大きな出力が得られることが確認できる。
 これらの検証として、LEE値を光線追跡法とのクロスシミュレーションにより求め、確認した。図25に光線追跡法の計算モデルと解析結果を示す。法線追跡法では、ナノメートル・スケールの計算はできないため、まず光線追跡法にて計算したLEE値に、FDTD法により導出したLEE増加率を掛け合わせた、クロスシミュレーションにより、本実施の形態におけるLED構造のLEE値を算出した。表10にその結果を示す。
Figure JPOXMLDOC01-appb-T000010
 表10に示す通り、P-Block層膜厚44nm、量子井戸層と2D-PhC間の距離G53nm、R/a=0.40、次数m=3のときLEEは58.7%、同じく次数m=4で55.2%のLEE値が示されており、本実施の形態に基づけば、よりLEEを向上させることができる。
(第4の実施の形態)
 本発明の第4の実施の形態として、p型コンタクト層にp型GaNコンタクト層を用いた深紫外LEDの製造方法について説明する。
 まず、サファイア基板を成長基板として、AlNテンプレート、u型AlGaN層、n型AlGaNコンタクト層、多重量子井戸層を順次、結晶成長により積層する。多重量子井戸層は、井戸層2nmを3層で井戸層の間にバリア層7nmを2層挟む形で成膜を行う。その上にAlNによるi-guide層とp型AlGaN層によるB-Block層を52nm~56nm積層する。その上にp型GaNコンタクト層を積層させる。エピタキシャル成長により形成される各層の厚み全体は、光干渉式膜厚測定器を用いて測定することができる。さらに、各層の厚みのそれぞれは、隣接する各層の組成が十分異なる場合(例えばAl組成比が、0.01以上異なる場合)、透過型電子顕微鏡による成長層の断面観察から算出できる。また、多重量子井戸や超格子構造のように各層の厚みが薄い場合にはTEM-EDSを用いて厚みを測定することができる。
 そして、p型GaNコンタクト層まで結晶成長された深紫外LED積層構造体に、反射型2次元フォトニック結晶周期構造を形成する。
 図26は、反射型2次元フォトニック結晶周期構造加工プロセスの一例を示す図である。
 反射型2次元フォトニック結晶の加工には、ナノインプリントリソグラフィーの技術を利用する。p型GaNコンタクト層208の表面は凸方向に100μm以上の反りがあるので、金型は樹脂モールド200で対応する。また、ドライエッチング時に垂直に近くかつホールの直径を正確に保持するために、二層レジストを使用する。
 具体的には、p型GaNコンタクト層208まで積層された深紫外LED積層構造体を有するウエハーにおいて、p型GaNコンタクト層208の表面に下層レジスト210をスピンコートする。次に、Si含有の上層レジスト209をスピンコートして二層レジストを形成する(図26(a)参照)。
 上層レジストに対し、所定のフォトニック結晶周期構造の反転パターンを有する樹脂モールド200で押してUV硬化させてフォトニック結晶パターン211を上層レジスト209に転写する(図26(b)参照)。次に酸素プラズマで上層レジスト209をエッチングしてマスク212を形成する。図26(c)参照。そしてこのマスク212をICPプラズマでP-Block層207を超えない、フォトニック結晶パターン(ホール)211の端面から量子井戸層205までの距離が、53nm~57nmまでとなる位置までエッチングする。図26(d)参照。最後に残存した下層レジスト210を洗浄して清浄な面出しを行う。フォトニック結晶の周期構造や形状および量子井戸層とフォトニック結晶との距離の測定には透過電子顕微鏡によるSTEM(走査透過電子顕微鏡)モードでのHAADF(高角散乱環状暗視野)像を観察することにより算出できる。
 さらに、エッチングよるp型GaNコンタクト層への損傷を考慮して、その修復のため、硫化アンモニウム処理またはアニール処理を行ってもよい。
 そののち、反射型2次元フォトニック周期構造の上に、金属層(Ni)及び反射電極層(Au)を形成する。これら金属層(Ni)と反射電極層(Au)は、斜め蒸着法にて形成してもよい。
 斜め蒸着法によれば、金属層(Ni)及び反射電極層(Au)を反射型2次元フォトニック結晶周期構造の空孔内に埋め込むことなく、p型GaNコンタクト層の表面に金属層(Ni)及び反射電極層(Au)を形成することが可能である。
(第5の実施の形態)
 本発明の第5の実施の形態として、p型コンタクト層にp型AlGaNコンタクト層を用いた深紫外LEDの製造方法について説明する。
 サファイア基板を成長基板として、AlNテンプレート、u型AlGaN層、n型AlGaNコンタクト層、多重量子井戸層を順次、結晶成長により積層する。多重量子井戸層は、井戸層2nmを3層で井戸層の間にバリア層7nmを2層挟む形で成膜を行う。その上にAlNによるi-guide層とp型AlGaN層によるB-Block層を44nm~48nm積層する。その上にp型AlGaNコンタクト層を積層する。
 エピタキシャル成長により形成される各層の厚み全体は、光干渉式膜厚測定器を用いて測定することができる。さらに、各層の厚みのそれぞれは、隣接する各層の組成が十分異なる場合(例えばAl組成比が、0.01以上異なる場合)、透過型電子顕微鏡による成長層の断面観察から算出できる。また、多重量子井戸や超格子構造のように各層の厚みが薄い場合にはTEM-EDSを用いて厚みを測定することができる。
 p型AlGaNコンタクト層まで結晶成長された深紫外LED積層構造体に、反射型2次元フォトニック結晶周期構造を形成する。反射型2次元フォトニック結晶の加工には、第4の実施の形態に述べた方法と同様の方法により形成する。(図27参照)。
 すなわち、p型AlGaNコンタクト層208aまで積層された深紫外LED積層構造体を有するウエハーにおいて、p型AlGaNコンタクト層208aの表面に下層レジスト210をスピンコートする。次に、Si含有の上層レジスト209をスピンコートして二層レジストを形成する。上層レジスト209に対し、所定のフォトニック結晶周期構造の反転パターンを有する樹脂モールド200で押してUV硬化させて(図27(a)参照)、フォトニック結晶パターン211を上層レジスト209に転写する(図27(b)参照)。次に酸素プラズマで上層レジスト209をエッチングしてマスク212を形成する。(図27(c)参照)。そして、このマスク212をICPプラズマでP-Block層207を超えない、フォトニック結晶パターン(ホール)211の端面から量子井戸層205までの距離が、53nm~61nmまでとなる位置までエッチングする。(図27(d)参照)。最後に残存した下層レジスト210を洗浄して清浄な面出しを行う。フォトニック結晶の周期構造や形状および量子井戸層とフォトニック結晶との距離の測定には透過電子顕微鏡によるSTEM(走査透過電子顕微鏡)モードでのHAADF(高角散乱環状暗視野)像を観察することにより算出できる。
 さらに、エッチングよるp型AlGaNコンタクト層への損傷を考慮して、その修復のため、硫化アンモニウム処理またはアニール処理を行ってもよい。
 そののち、反射型2次元フォトニック周期構造上、金属層(Ni)及び反射電極層(Au)を形成する。これら金属層(Ni)と反射電極層(Au)は、斜め蒸着法により形成してもよい。
 斜め蒸着法によれば、金属層(Ni)及び反射電極層(Au)を反射型2次元フォトニック結晶周期構造の空孔内に埋め込むことなく、p型GaNコンタクト層の表面に金属層(Ni)及び反射電極層(Au)を形成することが可能である。
 また、電極形成においては、反射型2次元フォトニック結晶周期構造形成後、金属層(Ni)及び反射電極層(Au)に代わり、Rh電極を用いることもできる。そして、Rh電極においても斜め蒸着法により形成することもできる。
 本発明は、深紫外LEDに利用可能である。
1…サファイア基板、2…AlNテンプレート、3…u型AlGaN層、4…n型AlGaNコンタクト層、5…多重量子井戸層、6…i-guide層、7…P-Block層、8…p型GaNコンタクト層、8a…p型AlGaNコンタクト層、9…金属層(Ni)、10…反射電極層(Au)、11…反射電極層(Rh)、100…反射型2次元フォトニック結晶周期構造、101(h)…空孔(柱状構造体、ホール)。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (6)

  1.  設計波長をλとする深紫外LEDであって、反射電極層(Au)と、金属層(Ni)と、p型GaNコンタクト層と、p型AlGaN層で成るP-Block層と、AlN層で成るi-guide層と、多重量子井戸層と、n型AlGaNコンタクト層と、u型AlGaN層と、AlNテンプレートと、サファイア基板とを、前記サファイア基板とは反対側からこの順で有し、
     前記P-Block層の膜厚は52nm~56nmであり、
     前記金属層と前記p型GaNコンタクト層の界面から、前記p型GaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型GaNコンタクト層と前記P-Block層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶周期構造を有し、
     前記空孔は、前記空孔の前記サファイア基板方向の端面から前記多重量子井戸層と前記i-guide層との界面までの距離が、垂直方向にλ/2n1Dneffを満たし、その距離の範囲は53nm~57nmであり、
     前記反射型2次元フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記反射型2次元フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式mλ/n2Deff=2a(但し、m:次数、λ:設計波長、n2Deff:2次元フォトニック結晶の実効屈折率、a:2次元フォトニック結晶の周期)にある次数mは2≦m≦4を満たし、前記空孔の半径をRとした時、R/a比は0.30≦R/a≦0.40を満たすことを特徴とする深紫外LED。
  2.  設計波長をλとする深紫外LEDであって、反射電極層(Au)と、金属層(Ni)と、波長λに対し透明なp型AlGaNコンタクト層と、p型AlGaN層で成るP-Block層と、AlN層で成るi-guide層と、多重量子井戸層と、n型AlGaNコンタクト層と、u型AlGaN層と、AlNテンプレートと、サファイア基板とを、前記サファイア基板とは反対側からこの順で有し、
     前記P-Block層の膜厚は44nm~48nmであり、
     前記金属層と前記p型AlGaNコンタクト層の界面から、前記p型AlGaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型AlGaNコンタクト層と前記P-Block層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶周期構造を有し、
     前記空孔は、前記空孔の前記サファイア基板方向の端面から前記多重量子井戸層と前記i-guide層との界面までの距離が、垂直方向にλ/2n1Dneffを満たし、その距離の範囲は53nm~61nmであり、
     前記反射型2次元フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記反射型2次元フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式mλ/n2Deff=2a(但し、m:次数、λ:設計波長、n2Deff:2次元フォトニック結晶の実効屈折率、a:2次元フォトニック結晶の周期)にある次数mは1≦m≦4を満たし、前記空孔の半径をRとした時、R/a比は0.20≦R/a≦0.40を満たすことを特徴とする深紫外LED。
  3.  設計波長をλとする深紫外LEDであって、反射電極層(Rh)と、波長λに対し透明な、p型AlGaNコンタクト層と、p型AlGaN層で成るP-Block層と、AlN層で成るi-guide層と、多重量子井戸層と、n型AlGaNコンタクト層と、u型AlGaN層と、AlNテンプレートと、サファイア基板とを、前記サファイア基板とは反対側からこの順で有し、
     前記P-Block層の膜厚は44nm~48nmであり、
     前記反射電極層と前記p型AlGaNコンタクト層の界面から、前記p型AlGaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型AlGaNコンタクト層と前記P-Block層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶周期構造を有し、
     前記空孔は、前記空孔の前記サファイア基板方向の端面から前記多重量子井戸層と前記i-guide層との界面までの距離が、垂直方向にλ/2n1Dneffを満たし、その距離の範囲は53nm~61nm距離であり、
     前記反射型2次元フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記反射型2次元フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式mλ/n2Deff=2a(但し、m:次数、λ:設計波長、n2Deff:2次元フォトニック結晶の実効屈折率、a:2次元フォトニック結晶の周期)にある次数mは1≦m≦4を満たし、前記空孔の半径をRとした時、R/a比は0.20≦R/a≦0.40を満たすことを特徴とする深紫外LED。
  4.  設計波長をλとする深紫外LEDの製造方法であって、
     サファイア基板を成長基板とする積層構造体を準備する工程であって、反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明なp型AlGaN層で成るP-Block層と、AlN層で成るi-guide層と、多重量子井戸層と、n型AlGaNコンタクト層と、u型AlGaN層と、AlNテンプレートとを、前記サファイア基板とは反対側からこの順で含有する積層構造体を形成する工程において、前記P-Block層の膜厚を52nm~56nmで結晶成長を行い、
     前記金属層と前記p型GaNコンタクト層の界面から、前記p型GaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型GaNコンタクト層と前記P-Block層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶周期構造を形成する工程であって、前記空孔は、前記空孔の前記サファイア基板方向の端面から前記多重量子井戸層と前記i-guide層との界面までの距離が、53nm~57nmの位置に形成される工程と、
     前記反射型2次元フォトニック結晶周期構造を形成するための金型を準備する工程と、 前記p型GaNコンタクト層の上にレジスト層を形成し、前記金型の構造をナノインプリント法にて転写する工程と、
     前記レジスト層をマスクとして前記p型GaNコンタクト層をエッチングして2次元フォトニック結晶周期構造を形成する工程と、
     前記反射型2次元フォトニック結晶構造を形成した上に、前記金属層をこの順で斜め蒸着法にて形成する工程と、
     前記金属層の上に反射電極層を形成する工程と
     を有する深紫外LEDの製造方法。
  5.  設計波長をλとする深紫外LEDの製造方法であって、
     サファイア基板を成長基板とする積層構造体を形成する工程であって、反射電極層と、金属層と、波長λに対し透明なp型AlGaNコンタクト層と、p型AlGaN層で成るP-Block層と、AlN層で成るi-guide層と、多重量子井戸層と、n型AlGaNコンタクト層と、u型AlGaN層と、AlNテンプレートとを、前記サファイア基板とは反対側からこの順で含有する積層構造体を形成する工程において、前記P-Block層の膜厚を44nm~48nmで結晶成長を行い、
     前記金属層と前記p型AlGaNコンタクト層の界面から、前記p型AlGaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型AlGaNコンタクト層と前記P-Block層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶周期構造を形成する工程であって、前記空孔は、前記空孔の成長基板方向の端面から前記多重量子井戸層と前記i-guide層との界面までの距離が、53nm~61nmの位置に形成される工程と、
     前記反射型2次元フォトニック結晶周期構造を形成するための金型を準備する工程と、 前記p型AlGaNコンタクト層の上にレジスト層を形成し、前記金型の構造をナノインプリント法にて転写する工程と、
     前記レジスト層をマスクとして前記p型AlGaNコンタクト層をエッチングして2次元フォトニック結晶周期構造を形成する工程と、
     前記反射型2次元フォトニック結晶構造を形成した上に、前記金属層を斜め蒸着法にて形成する工程と、
     前記金属層の上に反射電極層を形成する工程と
    を有する深紫外LEDの製造方法。
  6.  設計波長をλとする深紫外LEDの製造方法であって、
     サファイア基板を成長基板とする積層構造体を形成する工程であって、反射電極層と、波長λに対し透明なp型AlGaNコンタクト層と、p型AlGaN層で成るP-Block層と、AlN層で成るi-guide層と、多重量子井戸層と、n型AlGaNコンタクト層と、u型AlGaN層と、AlNテンプレートとを、前記サファイア基板とは反対側からこの順で含有する積層構造体を形成する工程において、前記P-Block層の膜厚を44nm~48nmで結晶成長を行い、
     前記反射電極層と前記p型AlGaNコンタクト層の界面から、前記p型AlGaNコンタクト層の厚さ方向の範囲内で、かつ、前記p型AlGaNコンタクト層と前記P-Block層との界面を超えない位置に設けられた複数の空孔を有する反射型2次元フォトニック結晶周期構造を形成する工程と、
     前記空孔を、前記空孔の成長基板方向の端面から前記多重量子井戸層と前記i-guide層との界面までの距離が、53nm~61nmの位置に形成する工程と、
     前記反射型2次元フォトニック結晶周期構造を形成するための金型を準備する工程と、 前記p型AlGaNコンタクト層の上にレジスト層を形成し、前記金型の構造をナノインプリント法にて転写する工程と、
     前記レジスト層をマスクとして前記p型AlGaNコンタクト層をエッチングして2次元フォトニック結晶周期構造を形成する工程と
     前記反射型2次元フォトニック結晶構造を形成した上に、前記反射電極層を斜め蒸着法にて形成する工程と
    を有する深紫外LEDの製造方法。
PCT/JP2019/002392 2018-01-26 2019-01-25 深紫外led及びその製造方法 WO2019146737A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019567174A JP7316610B6 (ja) 2018-01-26 2019-01-25 深紫外led及びその製造方法
US16/964,881 US11309454B2 (en) 2018-01-26 2019-01-25 Deep ultraviolet LED and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018012073 2018-01-26
JP2018-012073 2018-01-26

Publications (1)

Publication Number Publication Date
WO2019146737A1 true WO2019146737A1 (ja) 2019-08-01

Family

ID=67396109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002392 WO2019146737A1 (ja) 2018-01-26 2019-01-25 深紫外led及びその製造方法

Country Status (4)

Country Link
US (1) US11309454B2 (ja)
JP (1) JP7316610B6 (ja)
TW (1) TWI804567B (ja)
WO (1) WO2019146737A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828622A (zh) * 2019-11-11 2020-02-21 李丹丹 医疗杀菌消毒用外延结构制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310255A (zh) * 2020-11-04 2021-02-02 山西中科潞安紫外光电科技有限公司 一种垂直结构深紫外发光二极管及其制备方法
CN116014043B (zh) * 2023-03-24 2023-06-02 江西兆驰半导体有限公司 深紫外发光二极管外延片及其制备方法、led

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179428A (ja) * 2002-11-27 2004-06-24 Rohm Co Ltd 半導体発光素子
WO2011077748A1 (ja) * 2009-12-24 2011-06-30 Dowaエレクトロニクス株式会社 バーチカル型iii族窒化物半導体発光素子およびその製造方法
WO2013008556A1 (ja) * 2011-07-12 2013-01-17 丸文株式会社 発光素子及びその製造方法
CN103219443A (zh) * 2013-03-28 2013-07-24 西安交通大学 一种led三维光子晶体结构及制备方法
JP2014103240A (ja) * 2012-11-20 2014-06-05 Stanley Electric Co Ltd 半導体発光素子
WO2016113935A1 (ja) * 2015-01-16 2016-07-21 丸文株式会社 深紫外led及びその製造方法
WO2017017891A1 (ja) * 2015-07-30 2017-02-02 Dowaエレクトロニクス株式会社 Iii族窒化物半導体発光素子およびその製造方法
WO2017038961A1 (ja) * 2015-09-03 2017-03-09 丸文株式会社 深紫外led及びその製造方法
WO2017168811A1 (ja) * 2016-03-30 2017-10-05 丸文株式会社 深紫外led及びその製造方法

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4610863Y1 (ja) 1967-04-28 1971-04-15
JPS4839687B1 (ja) 1970-07-21 1973-11-26
JPS5156473A (ja) 1974-11-11 1976-05-18 Otsuka Pharma Co Ltd Karubosuchirirujudotaino seizoho
JPS5776078A (en) 1980-10-29 1982-05-12 Agency Of Ind Science & Technol Heat accumulator utilizing latent heat
US5337328A (en) 1992-05-08 1994-08-09 Sdl, Inc. Semiconductor laser with broad-area intra-cavity angled grating
US5955749A (en) 1996-12-02 1999-09-21 Massachusetts Institute Of Technology Light emitting device utilizing a periodic dielectric structure
EP1378949A4 (en) 2001-03-21 2006-03-22 Mitsubishi Cable Ind Ltd LIGHT-EMITTING SEMICONDUCTOR ELEMENT
JP3991612B2 (ja) 2001-04-09 2007-10-17 日亜化学工業株式会社 発光素子
US6936854B2 (en) 2001-05-10 2005-08-30 Canon Kabushiki Kaisha Optoelectronic substrate
US7194174B2 (en) 2001-10-19 2007-03-20 Ignis Technologies As Integrated photonic crystal structure and method of producing same
US6878969B2 (en) 2002-07-29 2005-04-12 Matsushita Electric Works, Ltd. Light emitting device
JP4329374B2 (ja) 2002-07-29 2009-09-09 パナソニック電工株式会社 発光素子およびその製造方法
JP2004200209A (ja) 2002-12-16 2004-07-15 Fuji Xerox Co Ltd 電極等の導電パターンの形成方法およびこれを用いた面発光型半導体レーザ並びにその製造方法
JP4610863B2 (ja) 2003-03-19 2011-01-12 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー フォトニック結晶構造を使用するled効率の改良
JP4317375B2 (ja) 2003-03-20 2009-08-19 株式会社日立製作所 ナノプリント装置、及び微細構造転写方法
US7083993B2 (en) 2003-04-15 2006-08-01 Luminus Devices, Inc. Methods of making multi-layer light emitting devices
US7367691B2 (en) 2003-06-16 2008-05-06 Industrial Technology Research Institute Omnidirectional one-dimensional photonic crystal and light emitting device made from the same
JP2007529105A (ja) 2003-07-16 2007-10-18 松下電器産業株式会社 半導体発光装置とその製造方法、照明装置および表示装置
US7012279B2 (en) 2003-10-21 2006-03-14 Lumileds Lighting U.S., Llc Photonic crystal light emitting device
JP4776175B2 (ja) 2004-04-27 2011-09-21 京セラ株式会社 発光素子収納用パッケージおよびその製造方法および発光装置および照明装置
WO2005106973A1 (ja) 2004-04-27 2005-11-10 Kyocera Corporation 発光素子用配線基板
US7768024B2 (en) 2005-12-02 2010-08-03 The Regents Of The University Of California Horizontal emitting, vertical emitting, beam shaped, distributed feedback (DFB) lasers fabricated by growth over a patterned substrate with multiple overgrowth
US20070267646A1 (en) 2004-06-03 2007-11-22 Philips Lumileds Lighting Company, Llc Light Emitting Device Including a Photonic Crystal and a Luminescent Ceramic
JP2008521211A (ja) 2004-07-24 2008-06-19 ヨン ラグ ト 二次元ナノ周期構造体を有する薄膜蛍光体を備えるled装置
US20060043400A1 (en) 2004-08-31 2006-03-02 Erchak Alexei A Polarized light emitting device
JP2006196658A (ja) 2005-01-13 2006-07-27 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法
JP2006276388A (ja) 2005-03-29 2006-10-12 Alps Electric Co Ltd フォトニック結晶スラブ及びフォトニック結晶導波路と光デバイス
US8101498B2 (en) 2005-04-21 2012-01-24 Pinnington Thomas Henry Bonded intermediate substrate and method of making same
JP4027393B2 (ja) 2005-04-28 2007-12-26 キヤノン株式会社 面発光レーザ
WO2006138465A2 (en) 2005-06-17 2006-12-28 Goldeneye, Inc. Light emitting diodes with reflective electrode and side electrode
US8163575B2 (en) 2005-06-17 2012-04-24 Philips Lumileds Lighting Company Llc Grown photonic crystals in semiconductor light emitting devices
TWI253771B (en) 2005-07-25 2006-04-21 Formosa Epitaxy Inc Light emitting diode structure
JP2007109689A (ja) 2005-10-11 2007-04-26 Seiko Epson Corp 発光素子、発光素子の製造方法及び画像表示装置
US7679098B2 (en) 2006-01-30 2010-03-16 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Highly directional light emitting diode using photonic bandgap waveguides
US7687811B2 (en) 2006-03-21 2010-03-30 Lg Electronics Inc. Vertical light emitting device having a photonic crystal structure
JP2007294789A (ja) 2006-04-27 2007-11-08 Sony Corp 半導体レーザ素子
KR100736623B1 (ko) 2006-05-08 2007-07-09 엘지전자 주식회사 수직형 발광 소자 및 그 제조방법
JP4231880B2 (ja) 2006-07-26 2009-03-04 株式会社東芝 3次元構造体およびそれを有する発光素子ならびにその製造方法
JP2008053425A (ja) 2006-08-24 2008-03-06 Matsushita Electric Ind Co Ltd 半導体発光装置
US7829905B2 (en) 2006-09-07 2010-11-09 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Semiconductor light emitting device
US7697584B2 (en) 2006-10-02 2010-04-13 Philips Lumileds Lighting Company, Llc Light emitting device including arrayed emitters defined by a photonic crystal
JP2008098526A (ja) 2006-10-13 2008-04-24 Toyoda Gosei Co Ltd 発光素子
JP2008117922A (ja) 2006-11-02 2008-05-22 Yamaguchi Univ 半導体発光素子及びその製造方法
KR100886821B1 (ko) 2007-05-29 2009-03-04 한국광기술원 전기적 특성을 향상한 광자결정 발광 소자 및 제조방법
JP2008311317A (ja) 2007-06-12 2008-12-25 Eudyna Devices Inc 半導体発光素子
KR101341374B1 (ko) 2007-07-30 2013-12-16 삼성전자주식회사 광자결정 발광소자 및 그 제조방법
KR101459764B1 (ko) * 2008-01-21 2014-11-12 엘지이노텍 주식회사 질화물계 발광 소자
JP2009267263A (ja) 2008-04-28 2009-11-12 Kyocera Corp 発光装置およびその製造方法
KR100933529B1 (ko) 2008-05-28 2009-12-23 재단법인서울대학교산학협력재단 광자결정 구조체를 구비한 발광소자
JP2009289983A (ja) * 2008-05-29 2009-12-10 Sharp Corp 窒化物半導体発光ダイオード
JPWO2009148138A1 (ja) 2008-06-05 2011-11-04 旭硝子株式会社 ナノインプリント用モールド、その製造方法および表面に微細凹凸構造を有する樹脂成形体ならびにワイヤグリッド型偏光子の製造方法
JP5282503B2 (ja) 2008-09-19 2013-09-04 日亜化学工業株式会社 半導体発光素子
JP5379434B2 (ja) 2008-09-22 2013-12-25 学校法人 名城大学 発光素子用サファイア基板の製造方法
JP4892025B2 (ja) 2008-09-26 2012-03-07 株式会社東芝 インプリント方法
KR101040462B1 (ko) 2008-12-04 2011-06-09 엘지이노텍 주식회사 발광 소자 및 그 제조방법
JP5594147B2 (ja) 2008-12-05 2014-09-24 旭硝子株式会社 光硬化性組成物および表面に微細パターンを有する成形体の製造方法
GB0902569D0 (en) 2009-02-16 2009-04-01 Univ Southampton An optical device
JP5641173B2 (ja) * 2009-02-27 2014-12-17 独立行政法人理化学研究所 光半導体素子及びその製造方法
KR100999713B1 (ko) 2009-03-17 2010-12-08 엘지이노텍 주식회사 발광소자 및 그 제조방법
CN102484125A (zh) 2009-08-28 2012-05-30 加利福尼亚大学董事会 通过在活性装置上结合结构化材料而具有嵌入式空隙结构的发光装置
US20110062469A1 (en) 2009-09-17 2011-03-17 Koninklijke Philips Electronics N.V. Molded lens incorporating a window element
JP5300078B2 (ja) 2009-10-19 2013-09-25 国立大学法人京都大学 フォトニック結晶発光ダイオード
WO2011049018A1 (ja) 2009-10-23 2011-04-28 日本電気株式会社 発光素子、およびそれを備えた投写型表示装置
DE102009057780A1 (de) 2009-12-10 2011-06-16 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und photonischer Kristall
US8759813B2 (en) 2010-02-24 2014-06-24 Riken Light-emitting element having nitride semiconductor multiquantum barrier, and process for production thereof
JP5549338B2 (ja) 2010-04-09 2014-07-16 ウシオ電機株式会社 紫外光放射用窒素化合物半導体ledおよびその製造方法
JP5331051B2 (ja) 2010-04-21 2013-10-30 パナソニック株式会社 発光素子
US8907322B2 (en) 2010-06-18 2014-12-09 Sensor Electronic Technology, Inc. Deep ultraviolet light emitting diode
KR101701510B1 (ko) * 2010-07-09 2017-02-01 엘지이노텍 주식회사 발광소자
US9130348B2 (en) 2010-07-30 2015-09-08 Kyoto University Two-dimensional photonic crystal laser
US9103527B2 (en) 2010-11-18 2015-08-11 Nec Corporation Light source unit and projection display device with the same
JP5620827B2 (ja) 2011-01-06 2014-11-05 富士フイルム株式会社 ナノインプリントモールドの洗浄方法
KR20120092325A (ko) 2011-02-11 2012-08-21 서울옵토디바이스주식회사 광 결정 구조를 갖는 발광 다이오드 및 그것을 제조하는 방법
KR20120092326A (ko) 2011-02-11 2012-08-21 서울옵토디바이스주식회사 광 결정 구조를 갖는 비극성 발광 다이오드 및 그것을 제조하는 방법
JP5678728B2 (ja) 2011-03-03 2015-03-04 大日本印刷株式会社 モールドおよびその製造方法
JP2012186414A (ja) 2011-03-08 2012-09-27 Toshiba Corp 発光装置
JP5715686B2 (ja) 2011-03-23 2015-05-13 創光科学株式会社 窒化物半導体紫外線発光素子
JP5968674B2 (ja) 2011-05-13 2016-08-10 エルジー イノテック カンパニー リミテッド 発光素子パッケージ及びこれを備える紫外線ランプ
WO2012176728A1 (ja) 2011-06-23 2012-12-27 旭化成株式会社 微細パタン形成用積層体及び微細パタン形成用積層体の製造方法
US20130009167A1 (en) 2011-07-06 2013-01-10 Sharp Kabushiki Kaisha Light emitting diode with patterned structures and method of making the same
KR101824884B1 (ko) * 2011-07-07 2018-02-02 엘지이노텍 주식회사 백라이트 유닛
JP2013042079A (ja) 2011-08-19 2013-02-28 Sharp Corp 半導体発光装置
JP2013120829A (ja) 2011-12-07 2013-06-17 Sharp Corp 窒化物半導体紫外発光素子
CN103597619B (zh) 2012-03-07 2015-10-14 株式会社爱发科 制造装置的方法
TWI489522B (zh) 2012-03-12 2015-06-21 Asahi Kasei E Materials Corp Mold, resist layer and its manufacturing method and concave and convex structure
WO2013152231A1 (en) 2012-04-04 2013-10-10 The Regents Of The University Of California Light emitting devices with embedded void-gap structures through techniques of closure of voids
JP5983125B2 (ja) 2012-07-18 2016-08-31 日亜化学工業株式会社 半導体発光素子の製造方法
KR102059030B1 (ko) 2012-09-24 2019-12-24 엘지이노텍 주식회사 자외선 발광 소자
KR102141815B1 (ko) 2012-11-02 2020-08-06 리켄 자외선 발광 다이오드 및 그 제조 방법
JP6190585B2 (ja) * 2012-12-12 2017-08-30 スタンレー電気株式会社 多重量子井戸半導体発光素子
CN103165771B (zh) 2013-03-28 2015-07-15 天津三安光电有限公司 一种具有埋入式孔洞结构的氮化物底层及其制备方法
US9929311B2 (en) * 2013-07-17 2018-03-27 Marubun Corporation Semiconductor light emitting element and method for producing the same
JP2015041763A (ja) 2013-08-20 2015-03-02 正幸 安部 光半導体装置及びその製造方法
KR101521081B1 (ko) * 2013-10-01 2015-05-18 경희대학교 산학협력단 발광 다이오드 패키지
JP6251883B2 (ja) 2014-01-07 2017-12-27 パナソニックIpマネジメント株式会社 紫外線発光素子
WO2015133000A1 (ja) 2014-03-06 2015-09-11 丸文株式会社 深紫外led及びその製造方法
JP2015216352A (ja) * 2014-04-24 2015-12-03 国立研究開発法人理化学研究所 紫外発光ダイオードおよびそれを備える電気機器
WO2016093257A1 (ja) * 2014-12-09 2016-06-16 丸文株式会社 発光素子及びその製造方法
JP6627495B2 (ja) 2015-12-25 2020-01-08 Agc株式会社 深紫外発光素子用基板、深紫外発光素子用連結基板、および深紫外発光装置
US10290771B2 (en) * 2016-04-20 2019-05-14 Dowa Electronics Materials Co., Ltd. Group III nitride semiconductor light emitting device and method for manufacture the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179428A (ja) * 2002-11-27 2004-06-24 Rohm Co Ltd 半導体発光素子
WO2011077748A1 (ja) * 2009-12-24 2011-06-30 Dowaエレクトロニクス株式会社 バーチカル型iii族窒化物半導体発光素子およびその製造方法
WO2013008556A1 (ja) * 2011-07-12 2013-01-17 丸文株式会社 発光素子及びその製造方法
JP2014103240A (ja) * 2012-11-20 2014-06-05 Stanley Electric Co Ltd 半導体発光素子
CN103219443A (zh) * 2013-03-28 2013-07-24 西安交通大学 一种led三维光子晶体结构及制备方法
WO2016113935A1 (ja) * 2015-01-16 2016-07-21 丸文株式会社 深紫外led及びその製造方法
WO2017017891A1 (ja) * 2015-07-30 2017-02-02 Dowaエレクトロニクス株式会社 Iii族窒化物半導体発光素子およびその製造方法
WO2017038961A1 (ja) * 2015-09-03 2017-03-09 丸文株式会社 深紫外led及びその製造方法
WO2017168811A1 (ja) * 2016-03-30 2017-10-05 丸文株式会社 深紫外led及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828622A (zh) * 2019-11-11 2020-02-21 李丹丹 医疗杀菌消毒用外延结构制备方法

Also Published As

Publication number Publication date
US20210036186A1 (en) 2021-02-04
TW201935715A (zh) 2019-09-01
JP7316610B2 (ja) 2023-07-28
US11309454B2 (en) 2022-04-19
TWI804567B (zh) 2023-06-11
JP7316610B6 (ja) 2024-02-19
JPWO2019146737A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
EP2733752B1 (en) Light emitting element and method for manufacturing the same
US7755097B2 (en) Light emitting device having light extraction structure and method for manufacturing the same
EP3249701B1 (en) Deep ultraviolet led and production method therefor
WO2019146737A1 (ja) 深紫外led及びその製造方法
TWI523268B (zh) Deep ultraviolet LED and its manufacturing method
TWI608631B (zh) Deep ultraviolet LED and its manufacturing method
TW201023388A (en) Light emitting device
TW201523918A (zh) Led元件
TWI611595B (zh) Led元件
Shin et al. Effects of nanometer-scale photonic crystal structures on the light extraction from GaN light-emitting diodes
US10950751B2 (en) Deep ultraviolet LED and method for manufacturing the same
Wang et al. Interactions of diffraction modes contributed from surface photonic crystals and nanoholes in a GaN-based light-emitting diode
KR100639683B1 (ko) 광자 결정 구조를 이용한 led 발광소자 및 그의 제조방법
JP6156898B1 (ja) 深紫外led及びその製造方法
WO2018025805A1 (ja) 半導体発光素子及びその製造方法
TW201530810A (zh) 發光元件
WO2023095573A1 (ja) 発光ダイオード素子
TW201013993A (en) Optoelectronic semiconductor chip and method for its manufacture
Tsai et al. Mode interactions in a GaN-based light emitting diode with surface photonic crystals and nanoholes
WO2015194382A1 (ja) 発光素子の製造方法及び発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567174

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743216

Country of ref document: EP

Kind code of ref document: A1