JP2006276388A - フォトニック結晶スラブ及びフォトニック結晶導波路と光デバイス - Google Patents

フォトニック結晶スラブ及びフォトニック結晶導波路と光デバイス Download PDF

Info

Publication number
JP2006276388A
JP2006276388A JP2005094385A JP2005094385A JP2006276388A JP 2006276388 A JP2006276388 A JP 2006276388A JP 2005094385 A JP2005094385 A JP 2005094385A JP 2005094385 A JP2005094385 A JP 2005094385A JP 2006276388 A JP2006276388 A JP 2006276388A
Authority
JP
Japan
Prior art keywords
refractive index
slab
photonic crystal
waveguide
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005094385A
Other languages
English (en)
Inventor
Hitoshi Kitagawa
均 北川
Susumu Noda
進 野田
Taku Asano
卓 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, Kyoto University filed Critical Alps Electric Co Ltd
Priority to JP2005094385A priority Critical patent/JP2006276388A/ja
Priority to PCT/JP2006/306072 priority patent/WO2006104067A1/ja
Priority to TW095110754A priority patent/TW200641419A/zh
Publication of JP2006276388A publication Critical patent/JP2006276388A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Abstract

【課題】 本発明は、複数モードの光に対して共通のフォトニックバンドギャップを有するとともに、放射分布を良好として高いQ値を発揮することができる新規なフォトニック結晶スラブの提供を目的とする。
【解決手段】 本発明は、スラブ材に、屈折率が異なる同一形状の領域が、複数、C6V対称性で周期的に配置されてなり、異屈折率領域の平面形状がC3V対称性を有する形状であり、2次元完全フォトニックバンドギャップを有するフォトニック結晶スラブであって、
3V対称性を有する異屈折率領域の周期性が部分的に乱されて孤立欠陥領域が形成され、孤立欠陥領域において、スラブ材の厚さ方向に非対称性が付与された部分を有するものである。
【選択図】 図1

Description

本発明は、微小光回路素子等に用いられるフォトニック結晶スラブ及び該フォトニック結晶スラブに共振器を形成したフォトニック結晶スラブとこれを備えたフォトニック結晶導波路と光デバイスに関する。
光の波長程度の屈折率変化周期構造を持つ物質はフォトニック結晶として知られており、その中ではその周期に対応する波長の光の存在が禁止される光に対する禁止帯、いわゆるフォトニックバンドギャップが現れ、特定の波長域の光の存在と伝搬が不可能となる。
このことからフォトニック結晶は光を自由自在に制御できる可能性があるとして、次世代のエレクトロニクス、オプトエレクトロニクス材料として注目されている。
従来の2次元フォトニック結晶導波路の一種としては、図36に示すようなものが知られている(例えば、特許文献1参照)。
この2次元フォトニック結晶導波路は、空気より屈折率が高い材料からなる板状のスラブ材料81に円柱孔86を三角格子状に複数配列した2次元フォトニック結晶を有し、図36に示すように三角格子状に配列した円柱孔86を一部線状に抜き取ることによりフォトニック結晶に線状欠陥92を導入し、この線状欠陥92が導波路とされた構成のものである。
この2次元フォトニック結晶導波路では、外部から2次元フォトニック結晶にフォトニックバンドギャップ周波数内に相当する波長の光103を入射させると、線状欠陥92が形成されていないところでは、面内方向にはフォトニックバンドギャップがあるので、先の光は伝搬を禁じられ、また、面直方向には屈折率差閉じ込めによる全反射により閉じ込められるが、線状欠陥92の存在するところは導波路とみなされるので光は伝搬できる構造になっている。
ところで、この種の2次元フォトニック結晶を共振器に適用しようとする試みがなされている。(例えば、特許文献2、図1参照)
このフォトニック結晶からなる共振器は、2次元フォトニック結晶中に点状欠陥を導入し、フォトニック結晶を構成する低屈折率物質を配設するべき多数の2次元格子点において3以上の隣接する複数の格子点に低屈折率物質の配設を略しておき、点状欠陥に最近接の格子点の少なくとも1つに対応して配設するべき低屈折率物質をその格子点から所定距離だけ変位させた構成とされている。
また、2次元フォトニック結晶を共振器として利用するとともに、Q値の高い共振器を得る目的で2次元フォトニック結晶に先の特許文献2と同様の点状欠陥を導入し、点状欠陥に最近接の格子点の少なくとも1つに対応して配設されるべき低屈折率物質の位置を所定距離変えてなる構成が知られている。(例えば、特許文献3、図1参照)
特開2001−272555号公報 特開2004−245866号公報 特開2004−279800号公報
従来の2次元フォトニック結晶導波路においては、2次元フォトニック結晶は光の偏波モードのTE−like モード又はTM−like モードの一方に対してのみフォトニックバンドギャップをもっている構造であるため、TE−like モードまたはTM−like モードの光がフォトニック結晶の面内方向に漏れてしまうことになり、取り出し効率が悪くなってしまう問題がある。例えば、図36の如く平面視三角格子状に配列された円柱孔86…ではTE−likeモードに対してのみフォトニックバンドギャップを有するため、TM−like モードの光はフォトニック結晶の面内方向に漏れてしまう。
従ってTE−like モードとTM−like モードの両モードに対して共通のフォトニックバンドギャップを有する構造の2次元フォトニック結晶スラブが要望されるが、そのような2次元フォトニック結晶はこれまで見つかっていなかった。
また、この種の2次元フォトニック結晶を共振器として使用する場合、共振器としてのQ値が重要であるので、先の特許文献3においてはQ値の改善を行っているが、Q値の改善は十分ではなく、先の特許文献1〜3のいずれのフォトニック結晶においてもTE−like モード又はTM−like モードの一方に対してのみフォトニックバンドギャップをもっている構造であるため、TE−like モードまたはTM−like モードの光がフォトニック結晶の面内方向に漏れてしまう問題があり、これが原因となってこれまで以上にQ値を高めることは困難であった。
本発明は前記事情に鑑みてなされたもので、TE−like モードとTM−like モードの両モードの光に対して共通のフォトニックバンドギャップを有するとともに、放射分布を良好として高いQ値を発揮することができる新規なフォトニック結晶スラブの提供を目的とする。
本発明は、TE−like モードとTM−like モードの両モードの光に対して共通のフォトニックバンドギャップを有し、放射分布を良好として高いQ値を発揮する導波路及びそれを備えた光デバイスの提供を目的とする。
本発明は前記事情に鑑みてなされたもので、本発明においては、スラブ材に、このスラブ材とは屈折率が異なる同一形状の領域が、複数、C6V対称性(6回の回転対称性と鏡面対称性)で周期的に配置されてなり、前記異屈折率領域の平面形状がC3V対称性を有する形状(3回の回転対称形性と鏡面対称性)とされ、前記スラブ内を通過する光に対して2次元完全フォトニックバンドギャップを有するフォトニック結晶スラブであって、前記C3V対称性を有する異屈折率領域の周期性が部分的に乱されて孤立欠陥領域が形成され、該孤立欠陥領域において、スラブ材の厚さ方向に非対称性が付与された部分を有することを特徴とする。
本発明においてC3V対称の形状とは、3回の回転対称形状で、ミラー面を3有するもののことをいう。換言すると、対称軸が3つあるもののことを意味する。第1の発明の2次元フォトニック結晶スラブによれば、異なるモード(複数のモード)のギャップ周波数帯を一致させることができるので、上記異なるモード(複数のモード)の光に対して共通のフォトニックバンドギャップを有することができる。
従って例えば、TE−like モードとTM−like モードの両モードの光に対して共通のフォトニックバンドギャップを有し、いずれのモードの光に対しても漏れを生じないのでQ値の変動や低下を生じないフォトニック結晶スラブあるいは共振器を提供できる。
本発明は前記事情に鑑みてなされたもので、前記発明の孤立欠陥領域が光の共振器とされ、前記対称性は、前記光を前記共振器内に閉じ込める効果の大きい所定の位置に付与されてなることを特徴とする。
孤立欠陥領域において光を共振器内に閉じ込める効果の大きい位置に対称性を付与することで、光閉じ込め性が向上し、面内漏れ抑制がより良くできるので、複数のモードの光を閉じ込めることが効果的になされ、Q値の変化、低下の少ないフォトニック結晶スラブあるいは共振器を提供できる。
本発明は前記事情に鑑みてなされたもので、前記発明の非対称性は、非貫通の穴部と凸部の少なくとも一方が1つ以上形成されてなることを特徴とする。
非対称性を付与する手段として、非貫通の穴部と凸部を利用するならば、フォトニック結晶スラブの一部分にこれらの穴部や凸部を位置決めして形成するだけでQ値の変化、低下の少ないフォトニック結晶スラブあるいは共振器を提供することができる。
本発明の導波路は、先のいずれかに記載の孤立欠陥領域と線状欠陥からなる導波路を有し、該導波路がTE−ライクモードとTM−ライクモードの少なくとも一方のモードの光を通過可能な導波路とされたことを特徴とする。
導波路がTE−ライクモードとTM−ライクモードの少なくとも一方のモードの光を通過可能な導波路とされることで、この導波路を両モードの光を伝達する用途に供することができ、フォトニック結晶スラブの孤立欠陥領域で閉じ込めた両モードの光を導出するための導波路、あるいは、フォトニック結晶スラブの孤立欠陥領域に光を導入するための導波路としての利用が可能となる。
本発明の光デバイスは、先の種々の特徴を有する有効利用が可能な導波路を備えたことを特徴とする。
本発明のフォトニック結晶スラブによれば、TE−like モードとTM−like モードの両モードの光に対して共通のフォトニックバンドギャップを有し、スラブ材料面内方向に光が漏れるのを防止でき、低損失のフォトニック結晶スラブを提供できる。
また、本発明のフォトニック結晶導波路によれば、TE−like モードとTM−like モードの両モードの光に対して共通のフォトニックバンドギャップを有する2次元フォトニック結晶スラブを備え、スラブ材料面内方向に光が漏れるのを防止でき、低損失のフォトニック結晶導波路とそれを備えた光デバイスを提供できる。
以下、本発明の実施の形態を図面を参照して説明するが、本発明は以下に説明する実施形態に限定されるものではない。また、以下の図面においては各構成部分の縮尺について図面に表記することが容易となるように構成部分毎に縮尺を変えて記載している。
(第1の実施形態)
図1は、第1の実施形態の共振器の概略構成を示す斜視図であり、図2は図1の共振器に備えられた2次元フォトニック結晶スラブを示す概略平面図であり、図3は図2の2次元フォトニック結晶スラブに備えられた複数の低屈折率材料領域を示す部分拡大平面図である。
本実施形態の共振器は、2次元フォトニック結晶導波路ユニット10が主体として備えられたものである。
この2次元フォトニック結晶導波路ユニット10は、2次元フォトニック結晶スラブ10aに、このフォトニック結晶の周期的配列を乱す線状の欠陥(線状欠陥)22がΓ‐J方向(言い換えればΓ−K方向)に部分的に形成され、この線状欠陥22が光を通過させる導波路とされ、更にこの導波路22の側方に後に説明する共振器領域16Aが形成されたものである。なお、前記Γ‐J方向とは、本実施形態のように平面視三角状の低屈折率材料領域15が三角格子状に配列されている場合、この低屈折率材料領域15のいずれか一辺と平行な方向であり、図2に示す矢印A1、A2、A3で示される方向はいずれもΓ−J方向である。上記導波路22は矢印A1で示される方向に形成されているが、矢印A2や矢印A3で示される方向に形成されていても良い。なお、図2中、矢印Bで示される方向は、Γ‐X方向(言い換えればΓ−M方向)である。
この実施形態の2次元フォトニック結晶スラブ10aは、TE−like モードとTM−like モードの両モードの光に対して共通のフォトニックバンドギャップを有するものである。
この2次元フォトニック結晶スラブ10aの具体的な構造としては、高屈折率材料からなるスラブ材11に、このスラブ材11よりも低屈折率材料からなる領域(低屈折率材料領域)15が三角格子状に配列されることにより、スラブ材11に低屈折率材料領域15が周期的に配列されて屈折率分布が形成されたものである。
スラブ材11として用いる材料としては、高屈折率材料が用いられ、例えば、InGaAsP、GaAs、In、Ga、Al、Sb、As、Ge、Si、P、N、Oのうちから選択される1種または2種以上を含む材料、Si等の無機材料、無機半導体材料、有機材料のうちから適宜選択して用いられる。
低屈折率材料領域15に用いる材料は、スラブ材11を構成する高屈折率材料よりも屈折率が低い低屈折率材料が用いられ、本実施形態では空気が用いられている。
本実施形態ではスラブ材11に複数の三角孔14が形成されている。この三角孔14は三角格子の格子点に相当する位置にスラブ材11をその厚さ方向に貫通させて形成されたものである。そして、複数の三角孔14のそれぞれに低屈折率材料としての空気が充填されて三角柱状の低屈折率材料領域15が複数形成されることにより、フォトニック結晶の周期的配列が形成されている。このように低屈折率材料領域の形状が三角柱状である場合は、C3V対称の1種である。C3V対称性を有する形状とは、3回の回転対称形性と鏡面対称性を有する形状である。換言すると、対称軸が3つあるもののことを意味する。
次にこのフォトニック結晶導波路ユニット10のスラブ材11には、先の線状欠陥22の近傍に線状欠館22に隣接して平行にフォトニック結晶の周期的配列を乱す形状であって、両端が閉じた形の孤立欠陥領域16が形成され、その孤立欠陥領域16の長さ方向両端部に2次元フォトニック結晶スラブ10aを貫通することがないように非貫通の平面視丸形の穴部17が形成されている。これらの穴部17はスラブ材11の厚さの半分を超えない程度の深さ、例えば数分の一程度の深さとされ、これらの穴部の存在によりスラブ材11にはその厚さに非対称性が導入され、共振器領域16Aが形成されている。また、この形態において穴部17は平面視丸形であるのでC3V対称性を有する形状の1種とされている。
ところでスラブ材11において、低屈折率材料領域15の一辺の長さLは、中心波長1.55μmとした場合、0.3μm〜0.4μm程度とされる。隣合う低屈折率材料領域15と15のピッチaは0.35μm〜0.55μm程度とされる。
本実施形態では低屈折率材料領域15は正三角柱状であるので、隣合う低屈折率材料領域15と15のピッチaは、低屈折率材料領域15が周期的に配置された低屈折率材周期構造部における最小中心距離aと同じ大きさとなっている。
本形態の2次元フォトニック結晶スラブ10aでは、Δ=(nH−nL)/2nH(式中、nHは上記高屈折率材料の屈折率、nLは上記低屈折率材料の屈折率を示す。)で定義される比屈折率差Δが0.35より大きくなるようにスラブ材11に用いる材料と低屈折率材料領域15に用いる材料を選択することが好ましく、より好ましくはΔが0.45以上になるような材料を用いるのがよい。比屈折率差Δが0.35以下であると、TE−like モード、TM−like モードの両方のフォトニックバンドギャップが開かなくなってしまうおそれがある。
さらに、0.7<L/a<1.0(式中、Lは低屈折率材料領域15の一辺の長さ、aは上記低屈折率材周期構造部における最小中心距離又は格子定数)なる関係を満たすように構成されていることが先に述べた理由により好ましい。
なお、図4に示すようにスラブ材11の少なくとも一方の面(図面では下面側)に補強層11aが設けられたものを使用すれば、隣接する低屈折率材料領域15、15の一部が重なった構造や隣接する低屈折率材料領域15、15が接触した構造もとることができるので、0.7<L/a≦1.0であってもよい。上記補強層11aには、上記低屈折率材料領域は形成しない。
スラブ材11の上面にも、図4の二点鎖線で示したように補強層11aが形成されていてもよい。このようなスラブ材11の両面に補強層11aが設けられた材料としては、例えば、シリコン基板のようにSi層の両面にそれぞれSiO2層を有するものを挙げることができる。
また、低屈折率材料領域が占める割合(低屈折率材料領域が空気からなるときは開口率)は、2次元フォトニック結晶スラブの体積100%(ここでは線状欠陥22が形成されている部分は除く)に対して25%より多くされていることが好ましく、35%より多くされているのがさらに好ましい。低屈折率材料領域が占める割合(体積%)が25%以下であると、TE−like モードとTM−like モードの両モードの光に対して共通のフォトニックバンドギャップを有することができない。
また、複数の低屈折率材料領域15は、図3に示すように一群の平行線Mの方向に対して±30°の奇数倍を除いた範囲の一定の傾斜角度で配置されていることが好ましい。複数の低屈折率材料領域15は一群の平行線の方向に対して±30°の奇数倍であると、フォトニックバンドギャップが現れない。
なお、図3は、複数の正三角柱状低屈折率材料領域15が一群の平行線Mの方向に対して0度の傾斜角度で配置されている場合である。
また、上記複数の低屈折率材料領域15は図2に示すように導波路22を中心とした左右非対称になるように配置されている。
また、実施形態の2次元フォトニック結晶導波路10では、導波路幅Wを調整することにより、ドナー型導波路とされている。本発明において導波路幅とは、線状欠陥22を中心とした左右(両側)の低屈折率材周期構造部中心間の距離のことをいい、本実施形態では各低屈折率材料領域15は正三角柱状であるので線状欠陥22を中心とした左右の低屈折率材料領域15、15の中心間の距離ということもできる。
(導波路の作用)
上記構成の2次元フォトニック結晶スラブ10aの導波路22を光の導波路として使用する場合は、TE−like モードとTM−likeモードの両モードのギャップ周波数帯を一致させることができるので、上記両モードの光に対して共通のフォトニックバンドギャップを有することができ、しかも高次スラブモードが立たないため、スラブ材料面内方向に光が漏れるのを防止できる。
この上記の2次元フォトニック結晶スラブ10aに外部からTE−like モード又はTM−like モードの光R1を入射させると、フォトニック結晶内では、面内方向にはフォトニックバンドギャップにより伝搬を禁じられ、面直方向には上下の低屈折率材料による全反射により閉じこめられる。
また、本実施形態では、2次元フォトニック結晶スラブ10aに三角格子状に配列された複数の低屈折率材料領域15の一部が線状に抜き取られることにより、フォトニック結晶スラブに線状欠陥22が導入され、この線状欠陥22中には導波モードが存在し、導波路22とされている。この導波路22は、2次元フォトニック結晶スラブ10aに入射させた光R1がTE−like モードとTM−like モードのいずれであっても伝搬できる。なお、導波路22は光を低損失で伝搬できる波長域は比較的大きく、従って、導波路22は数チャンネルの波長を含む波長帯域の光を伝搬させることができる。
本実施形態の2次元フォトニック結晶導波路10では、導波路22がドナー型である場合について説明したが、導波路幅Wを変更することによりアクセプタ型であってもよい。
また、導波路幅Wを変更することにより、モードの分散関係とモードの周波数の領域のうち少なくとも一方を制御することができる。このようにすることにより、ドナー型導波路からアクセプタ型導波路にわたり所望のモードの分散関係とモードの周波数の領域を有した2次元フォトニック結晶導波路を実現できる。
また、シングルモードの光の伝搬帯域を確保できる点では、(√3)a×(2/16)≦W≦(√3)a×(18/16)(式中、Wは導波路幅、aは上記低屈折率材周期構造部における最小中心距離又は格子定数)なる関係を満たすことが好ましい。Wが(√3)a×(2/16)未満であると、導波路モードが消失し、(√3)a×(18/16)を超えると、シングルモードを確保できなくなる。
本実施形態の2次元フォトニック結晶導波路によれば、線状欠陥22がΓ‐J方向に形成されたことにより、偏波無依存で、かつ、スラブ材料の面内方向への光損失を防止でき、線状の欠陥がΓ‐X(あるいはΓ‐M)方向に形成されている場合と比べて導波路に入射させた光がTE−like モードとTM−like モードのいずれであっても低損失で伝搬させることができる。
なお、スラブ材11に低屈折率材料領域15が三角格子状に配列された場合は、60度曲げ導波路を容易に形成することも可能である。
また、上記実施形態においては、複数の低屈折率材料領域15が導波路22を中心とした左右非対称になるように配置されている場合について説明したが、複数の低屈折率材料領域15が導波路22を中心とした左右対称になるように配置された2次元フォトニック結晶導波路であってもよい。このような2次元フォトニック結晶導波路では、導波路幅を変更するとモードが交差する。また、導波路中心に対し波形が左右対称な光を上記導波路内に入れ易く、伝搬させ易い。
また、上記実施形態においては、C3V対称の1種である正三角柱状の低屈折率材料領域15がスラブ材11に三角格子状に配列されて屈折率分布が形成された場合について説明したが、図5に示すように三角柱の各側面に凸部を設けた形状(横断面三角形の各角部が凹状にカットされた形状、或いは三角柱の各角部が凹状にカットにされた形状)の低屈折率材料領域25がスラブ材11に三角格子状に配列されて屈折率分布が形成されたものであってもよく、或いは図6に示すように横断面の形状がY字状(プロペラ状)の低屈折率材料領域35(三角柱の各角部に凸部を設けた形状の低屈折率材料領域)がスラブ材11に三角格子状に配列されて屈折率分布が形成されたものであってもよく、あるいは図7に示すように中心を結ぶ線が正三角形になるように配置された3つの円柱状領域45a、45a、45aを一単位とした形状の低屈折率材料領域45が配列されて屈折率分布が形成されたものであってもよい。
(共振器の動作)
先に説明した構造の2次元フォトニック結晶導波路ユニット10にあっては、導波路22の一列隣側に共振器領域16Aが設けられているので、この共振器領域16Aにスラブ材11の外部から、例えばスラブ材11の上面側からレーザ発光器などの光源を用いてTE−like モード又はTM−like モードの光を入射すると共振器領域16Aにおいて光の共振が励起され、この共振領域16Aにおいて共振された光を共振領域16Aから取り出して利用することができる。この取り出しを行う場合、共振器領域16Aからそれに隣接する導波路22側に光を導いて導波路22に沿って光を導いて取り出しても良いし、共振領域16Aから上方に照射される光を取り出して利用しても良い。
ここで共振領域16Aから外部に放射される光として共振光を取り出す場合、先の穴部17が存在しないと放射パターンが直上側と斜め上方側に分かれて発生してしまい、扱いが困難となるが、穴部17を設けることで放射パターンを単峰ピークを有する良好な放射パターンとすることができる。
また、本構造により共振器として見た場合のQ値の低下も防止することができる。ここで本願で用いた構造は、TE−like モードとTM−like モードのいずれであっても伝搬できる2次元完全フォトニック結晶であり、いずれのモードの光であっても漏れ光を殆ど無くすることができる完全フォトニックバンドギャップを実現できるので、Q値の低下を防止できる。
次に、図5〜図7に示した低屈折率材料領域の形状は、いずれもC3V対称のものの例である。図5中、Lは凸部の長さ、Mは凸部の高さ、aは低屈折率材周期構造部における最小中心距離又は格子定数である。図6中、Lは凸部の長さ、Mは凸部の高さ、aは低屈折率材周期構造部における最小中心距離又は格子定数である。図7中、Lは円柱状領域の中心間距離、rは円柱状領域45aの半径、aは低屈折率材周期構造部における最小中心距離又は格子定数である。
(第2の実施形態)
図8は、第2の実施形態の共振器の概略構成を示す斜視図である。
第2の実施形態の共振器が第1の実施形態の共振器と異なるところは、2次元フォトニック結晶導波路50が備えられている点であり、詳しくは、この2次元フォトニック結晶導波路50に備えられる2次元フォトニック結晶スラブ50aを構成するスラブ材11に形成された低屈折率材料領域65の形状と配列状態が異なることと、線状欠陥(導波路)22の形成方向が異なる点などである。
この形態の2次元フォトニック結晶スラブ50aの具体的な構造としては、スラブ材11に低屈折率材料領域65が正方格子状に配列されることにより屈折率分布が形成されたものである。
本実施形態ではスラブ材11に複数の円形孔64が形成されている。この円形孔64は正方格子の格子点に相当する位置に形成されたものである。そして、複数の円形孔64のそれぞれに低屈折率材料としての空気が充填されて円柱状の低屈折率材料領域65が複数形成されることにより、フォトニック結晶の周期的配列が形成されている。
また、0.4≦r/a<0.50(式中、rは上記低屈折率材料領域65の半径の長さ、aは上記低屈折率材周期構造部における最小中心距離又は格子定数)なる関係を満たすことが先に述べた理由により好ましい。
また、低屈折率材料領域65が占める割合は、2次元フォトニック結晶スラブの体積100%(ここでは線状欠陥22が形成されている部分は除く)に対して25%より多くされている。
この2次元フォトニック結晶スラブ50aにおいても、TE−like モードとTM−like モードの両モードのギャップ周波数帯を一致させることができるので、上記両モードの光に対して共通のフォトニックバンドギャップを有することができ、しかも高次スラブモードが立たないため、スラブ材料面内方向に光が漏れるのを防止でき、低損失とすることができる。
この2次元フォトニック結晶スラブ50aに、上記フォトニック結晶の周期的配列を乱す線状欠陥22がΓ‐X方向に形成され、この線状欠陥22が光を通過させる導波路とされたものである。ここでのΓ‐X方向とは、本実施形態のように平面視円形状の低屈折率材料領域65が正方格子状に配列されている場合、図8に示す矢印B1、B2で示される方向はいずれもΓ−X方向である。上記導波路22は矢印B1で示される方向に形成されているが、矢印B2で示される方向に形成されていてもよい。なお、図5中、矢印Cで示される方向は、Γ−M方向である。
また、本実施形態では上記の複数の低屈折率材料領域65は図8に示すように導波路22の中心に対して左右対称になるように配置されている。
次に本実施形態において線状欠陥(導波路)22の形成されている列から一列横側の位置する低屈折率材料領域65を複数略して孤立欠陥領域66を形成し、その孤立欠陥領域66の両端部側にスラブ材11を非貫通の穴部67が形成されている。これらの穴部67はスラブ材11の厚さの半分を超えない程度の深さ、例えば数分の一程度の深さとされ、これらの穴部の存在によりスラブ材11にはその厚さに非対称性が導入され、共振器領域66Aが形成されている。
本実施形態の2次元フォトニック結晶導波路50は、2次元フォトニック結晶スラブ50aに、フォトニック結晶の周期的配列を乱す線状欠陥22がΓ‐X方向に形成されたことにより、偏波無依存で、かつ、スラブ材料の面内方向への光損失を防止でき、導波路に入射させた光がTE−like モードとTM−like モードのいずれであっても低損失で伝搬させることができる。
また、スラブ材11に低屈折率材料領域65が正方格子状に配置された場合は、直角曲げ導波路を容易に形成することも可能である。
なお、本実施形態では低屈折率材料領域65が円柱状である場合について説明したが、三角柱状、四角柱状、五角柱状、六角柱状等の多角柱状、楕円柱状のいずれかの形状であってもよい。
また、上記の第1〜第2の実施形態においては、線状欠陥が一づつ形成された2次元フォトニック結晶導波路について説明したが、線状欠陥は1以上設けられていてもよい。
(共振器の動作)
先に説明した構造の2次元フォトニック結晶スラブ50aにあっては、導波路22の一列隣側に共振器領域66Aが設けられているので、この共振器領域66Aにスラブ材11の外部から、例えばスラブ材11の上面側からレーザ発光器などの光源を用いてTE−like モード又はTM−like モードの光を入射すると共振器領域66Aにおいて光の共振が励起され、この共振領域66Aにおいて共振された光を共振領域66Aから取り出して利用することができる。この取り出しを行う場合、共振器領域66Aからそれに隣接する導波路22側に光を導いて導波路22に沿って光を導いて取り出しても良いし、共振領域66Aから上方に照射される光を取り出して利用しても良い。
ここで共振領域66Aから外部に放射される光として共振光を取り出す場合、先の穴部67が存在しないと放射パターンが直上側と斜め上方側に分かれて発生してしまい、扱いが困難となるが、穴部67を設けることで放射パターンを単峰ピークを有する良好な放射パターンとすることができる。
また、本構造により共振器として見た場合のQ値の低下も防止することができる。ここで本願で用いた構造は、TE−like モードとTM−like モードのいずれであっても伝搬できる2次元完全フォトニック結晶であり、いずれのモードの光であっても漏れ光を殆ど無くすることができる完全フォトニックバンドギャップを実現できるので、Q値の低下を防止できる。
(第3実施形態)
図9は、第3の実施形態の共振器の概略構成を示す斜視図である。
第3の実施形態の共振器が第1、第2の実施形態の共振器と異なるところは、2次元フォトニック結晶スラブ70aを構成するスラブ材11に形成された低屈折率材料領域75の形状と配列状態が異なることと、線状欠陥(導波路)72の形成方向が異なる点などである。その他スラブ材11の材質や低屈折材料領域の大きさと間隔、導波路72の幅や方向は先の実施形態の場合と同様である。
この形態の2次元フォトニック結晶スラブ70aの具体的な構造としては、スラブ材11に低屈折率材料領域75が三角格子状に配列されることにより屈折率分布が形成されたものである。
本実施形態ではスラブ材11に複数の貫通型の複合孔74が形成されて低屈折材料領域75とされている。この複合孔74はスラブ材11の上面における三角格子の格子点に相当する位置に形成されたものである。そして、複数の複合孔74のそれぞれに低屈折率材料としての空気が充填されて円柱状の低屈折率材料領域75が複数形成されることによりフォトニック結晶の周期的配列が形成されている。この形態の複合孔74の形状は、図9に示す如く3つの円75a、75b、75cをそれぞれの半径a、b、cを原点O1を中心として円周方向に60度交差するように配置して複合させた輪郭を有する形状とされ、各円の半径a、b、cが3つの対称軸となるので、C3V対称の1種の例とされてなる。
この第3実施形態の構造においても複合孔74の一列を略する形でフォトニック結晶の周期的配列を乱す線状欠陥が導入されてこの線状欠陥部分が導波路72とされ、その導波路72に隣接する形で1列離れた位置に複合孔74を2つ略してフォトニック結晶の周期的配列を乱す短い線状の孤立欠陥領域76が導入され、この欠陥領域76において本来複合孔74が位置するべき位置に平面視丸形の凹部状の穴部77、77が形成されて共振器領域76Aが形成されている。
これらの穴部76は先の実施形態の穴部14と同じ程度の大きさで同じ程度の深さにスラブ材11に形成されたものであり、この穴部76が形成された短い線状欠陥部分が共振器領域76Aとされている。
この形態のスラブ材11に形成されている複合孔74は内部に空気層を有し、先の実施形態の低屈折率材料領域15と同じ作用効果を奏する。
即ち、本実施形態の構造により共振器として見た場合のQ値の低下も防止することができる。ここで本願で用いた構造は、TE−like モードとTM−like モードのいずれであっても伝搬できる2次元完全フォトニック結晶であり、いずれのモードの光であっても漏れ光を殆ど無くすることができる完全フォトニックバンドギャップを実現できるので、Q値の低下を防止できる。
なお、本実施形態では低屈折率材料領域が三角柱、円柱状、あるいは複合円柱状である場合について説明したが、その他の四角柱状、五角柱状、六角柱状等の多角柱状、楕円柱状のいずれかの形状であってもよい。
また、上記の第1〜第3の実施形態においては、線状欠陥が一づつ形成された2次元フォトニック結晶導波路について説明したが、線状欠陥は1以上設けられていてもよい。
また、上記実施形態においては、C3V対称の1種である正三角柱状の低屈折率材料領域15がスラブ材11に三角格子状に配列されて屈折率分布が形成された場合について説明したが、図22に示すように三角柱の各側面に凸部を設けた形状(横断面三角形の各角部が凹状にカットされた形状、或いは三角柱の各角部が凹状にカットにされた形状)の低屈折率材料領域25がスラブ材11に三角格子状に配列されて屈折率分布が形成されたものであってもよく、或いは図23に示すように横断面の形状がY字状(プロペラ状)の低屈折率材料領域35(三角柱の各角部に凸部を設けた形状の低屈折率材料領域)がスラブ材11に三角格子状に配列されて屈折率分布が形成されたものであってもよく、あるいは図24に示すように中心を結ぶ線が正三角形になるように配置された3つの円柱状領域45a、45a、45aを一単位とした形状の低屈折率材料領域45が配列されて屈折率分布が形成されたものであってもよい。
図22〜図25に示した低屈折率材料領域の形状は、いずれもC3V対称のものである。図22中、Lは凸部の長さ、Mは凸部の高さ、aは低屈折率材周期構造部における最小中心距離又は格子定数である。図23中、Lは凸部の長さ、Mは凸部の高さ、aは低屈折率材周期構造部における最小中心距離又は格子定数である。図24中、Lは円柱状領域の中心間距離、rは円柱状領域45aの半径、aは低屈折率材周期構造部における最小中心距離又は格子定数である。
(実験例1)
スラブ材11に形成する複数の三角柱状低屈折率材料領域15の一群の平行線Mに対する傾斜角度θを−30度〜+30度の範囲で変更した以外は図1〜図3に示したものと同様の各種の2次元フォトニック結晶スラブ作製した。なお、ここで作製した2次元フォトニック結晶スラブは、Δ=0.46、L/a=0.85、t/a=0.80なる条件とした。
作製した各種の2次元フォトニック結晶スラブに外部からλ=1.55μmの光を入射し、バンドギャップの低屈折率材料領域傾斜角依存性についで調べた。その結果を図10に示す。なお、図11Aは傾斜角度θが30度の場合の三角柱状低屈折率材料領域の配列状態を示しており、図11Bは傾斜角度θが15度の場合の三角柱状低屈折率材料領域の配列状態を示しており、図11Cは傾斜角度θが0度の場合の三角柱状低屈折率材料領域の配列状態を示している。
図10のグラフにおいて、横軸は傾斜角度θ、縦軸はバンドギャップ周波数の中心値ωgに対するバンドギャップ周波数幅Δωgの割合である。
図10に示す結果から複数の三角柱状低屈折率材料領域は一群の平行線Mに対する傾斜角度θが−30度と+30度のときはΔωg/ωgが0であり、フォトニックバンドギャップが現れていない。−30度<θ<+30度の範囲のときに、フォトニックバンドギャップが存在し、特に、傾斜角度θが0度のときは、Δωg/ωgが最大値を示しており、フォトニックバンドギャップを示す周波数幅が非常に広いことがわかる。
(実験例2)
スラブ材11の厚みtと、三角柱状低屈折率材料領域15の割合(開口率)を変更した以外は図1〜図3に示したものと同様の各種の2次元フォトニック結晶スラブ作製した。なお、ここで作製した2次元フォトニック結晶スラブは、Δ=0.46なる条件とした。
作製した各種の2次元フォトニック結晶スラブに外部からTE−like モードとTM−like モードの光をそれぞれ入射したときの2次元完全フォトニックバンドギャップ(2次元完全PBG)のスラブ材厚さ依存性についで調べた。その結果を図12〜図17に示す。なお、図12〜図17に作製した2次元フォトニック結晶スラブのt/aの値とt/λの値も合わせて示した。
図12〜図17のグラフにおいて、横軸は空気からなる三角柱状低屈折率材料領域の開口率、縦軸は規格化周波数である。図12〜図17のグラフ中、点線に囲まれた領域はTM−like modeのときの開口率とバンドギャップの関係を示しており、実線に囲まれた領域はTE−like modeのときの開口率とバンドギャップの関係を示している。また、図12〜図17のグラフにおいて、点線に囲まれた領域と実線に囲まれた領域が重なっている部分(斜線で示される領域)が、TM−like modeとTE−like modeの両モードの光に対して共通のフォトニックバンドギャップを示している。
図12に示すt/a=0.60の場合と図17のt/a=∞の場合は、低屈折率材料領域の開口率がいずれであってもTE−like modeとTM−like modeの両モードの光に対して共通のフォトニックバンドギャップを有していないことがわかる。
これに対して図13〜図16のt/a=0.65〜1.50の場合は、TM−like modeとTE−like modeの両モードの光に対して共通のフォトニックバンドギャップを有することができ、2次元完全フォトニックバンドギャップが存在していることがわかる。2次元完全フォトニックバンドギャップとはTE−like modeとTM−like modeの両モードの光に対して共通のフォトニックバンドギャップを有することをいう。
図14のt/a=0.80の場合は2次元完全フォトニックバンドギャップを示す周波数幅が広いことがわかる。
(実験例3)
スラブ材11の厚みtと、L/aを変更した以外は図1〜図3に示したものと同様の各種の2次元フォトニック結晶スラブ作製した。ここではλ=1550nm付近がバンドギャップの中心波長になるようにaの値を変更することにより、L/aの値を変更した。
作製した各種の2次元フォトニック結晶スラブに外部からλ=1550nmの光を入射し、スラブ材11の厚みtと完全バンドギャップの有無との関係を調べた。
これまで説明した如く図1から図3に示す三角柱形状の低屈折材料領域を形成したスラブ材に代えて図9に示す複合円状の複合孔を有するフォトニック結晶スラブを用いて共振器に供した場合の試験を行った。
図9に示す形状の複合孔を有するSiからなるスラブ材であって、1つの複合円の半径0.24μmのものを3つ、個々の半径を60度で交差させて複合した形状の複合孔を三角格子位置に多数形成したスラブ材を用意した。このスラブ材の複数の複合孔のうち、1列を略して導波路とすると共に、導波路から1列(2列、3列、あるいはそれ以上でも良い)の複合孔をあけた位置の複合孔を導波路と平行に2つ(1つ、3つでも良い。また、それ以上でも良い)略し、2つの複合孔の代わりに深さ0.3μm以下、半径0.19μmの非貫通の穴部を形成し、穴部を形成した部分を共振器として図9に示す導波路と共振器を備えた光デバイスを作製した。また、この光デバイスのtslab/a=0.95、L/a=0.2、r/a=0.38としている。
この構造の光デバイスのωa/2πcの値を全方向について測定したところ、図18に示す結果が得られ、TE、TM−like mode共通フォトニックバンドギャップが存在することを確認できたとともに、図19に示す如くTE、TM−like mode共通フォトニックバンドギャップ中に共振器モードが存在することを確認でき、2次元完全フォトニックバンドギャップを有すると同時に共振器として機能することを確認することができた。
このような2次元完全フォトニックバンドギャップを有するスラブ材を用いてスラブ材の厚さと穴部の深さ(トリミング深さ)の割合とQ値(トリミング深さ0の場合を規格化した相対値)の関係を求めた結果を図20に示す。
また、先の例と同等のスラブ材に三角格子位置に丸孔を形成したTE−like modeに対してのみフォトニックバンドギャップを有するスラブ材を用意し、先の例と同等の試験に供した。この例のスラブ材は先の第2の実施形態の構造において低屈折材料領域の形成位置を三角格子位置とし、その他の基本構造は第2の実施形態に準じる構造のものである。
図20に示す結果から、2次元完全フォトニックバンドギャップを有しない試料では穴部を形成してその深さを増加することでQ値が大幅に低下してしまう傾向となる。
これは、TE−like modeに対してのみフォトニックバンドギャップを有するが、TM−like modeに対してフォトニックバンドギャップを有していないフォトニック結晶に穴部を形成して共振器を製造すると、面内光漏れによりQ値が低下することを意味する。
図21は先の例の両モードに対応した2次元完全フォトニックバンドギャップを有するフォトニック結晶スラブと、一方のモードのみ対応したフォトニックバンドギャップを有するフォトニック結晶スラブのそれぞれの点欠陥(共振器領域)から共振後の光が放出される場合の放射パターンを測定した結果を示す。
図21Aはスラブ材22の中心の点欠陥(共振器領域)から放射状に角度を規定し、放射パターンの広がりを測定した際の受光器の角度位置を示す。
図21Bに一方のモードのみ対応したフォトニックバンドギャップを有するフォトニック結晶スラブの角度毎の受光器の測定結果を示し、図21Cに両モードに対応した2次元完全フォトニックバンドギャップを有するフォトニック結晶スラブの角度毎の受光器の測定結果を示す。
図21Bと図21Cに示す試験結果から明らかなように、一方のモードのみ対応したフォトニックバンドギャップを有するフォトニック結晶スラブでは放射パターンが3つの別れ、明らかに斜め方向への放射も存在していた。これに対して両モードに対応した2次元完全フォトニックバンドギャップを有するフォトニック結晶スラブでは放射パターンが1つの山に集中した単峰型の放射パターンが得られた。
次に、L/aを変更した以外は図1〜図3に示したものと同様の各種の2次元フォトニック結晶スラブ作製した。ここではλ=1550nm付近がバンドギャップの中心波長になるようにaの値、Lの値を変更することにより、L/aの値を変更した。
図25は、L/a=0.85、Δ=0.15a、f=0.36(fは2次元フォトニック結晶スラブ全体に対する低屈折率材料領域が占める割合、即ち、本実験例では開口割合である)とした場合の三角柱状低屈折率材料領域の配列状態を示している。
図26は、L/a=1、Δ=0a、f=0.5とした場合の三角柱状低屈折率材料領域の配列状態を示している。
作製した各種の2次元フォトニック結晶スラブに外部からλ=1550nmの光を入射し、二次元完全バンドギャップ幅を調べた。結果を図25〜図26に合わせて示す。
図25〜図26中、ΔλTMは、TM−like modeのフォトニックバンドギャップの波長帯幅(単位はnm)であり、ΔλTEは、TE−like modeのフォトニックバンドギャップの波長帯幅(単位はnm)である。
図25〜図26に示した結果から、L/a=0.85の場合のTE、TM−like mode共通フォトニックバンドギャップの波長帯幅Δλは59nmであったが、L/a=1の場合のΔλは176nmであり、L/a=1の場合の方が二次元完全バンドギャップ幅が広いことがわかる。
低屈折率材料領域の形状を三角柱の各側面に凸部を設けた形状(三角柱の各角部が凹状にカットにされた形状)になるようにしたことと、L/aを変更した以外は先の実験例と同様の各種の2次元フォトニック結晶スラブ作製した。ここではλ=1550nm付近がバンドギャップの中心波長になるようにaの値、Lの値を変更することにより、L/aの値を変更した。
図27は、L/a=0.6、M=0.1a(Lは凸部の長さ、Mは凸部の高さ、aは低屈折率材周期構造部における最小中心距離である。)、f=0.39とした場合の低屈折率材料領域の配列状態を示している。
図28は、L/a=0.7、M=0.1a、f=0.49とした場合の低屈折率材料領域の配列状態を示している。
図29は、L/a=0.8、M=0.1a、f=0.6とした場合の低屈折率材料領域の配列状態を示している。
作製した各種の2次元フォトニック結晶スラブに外部からλ=1550nmの光を入射し、二次元完全バンドギャップ幅を調べた。結果を図27〜図29に合わせて示す。
図27〜図29に示した結果から、低屈折率材料領域の形状を三角柱の各角部が凹状にカットにされた形状になるように形成した場合においては、L/a=0.6の場合のTE、TM−like mode共通フォトニックバンドギャップの波長帯幅Δλは53nm、L/a=0.7の場合のΔλは116nmであったが、L/a=0.8の場合のΔλは225nmであり、L/a=0.8とした場合が二次元完全バンドギャップ幅が広いことがわかる。
低屈折率材料領域の形状を、横断面の形状がY字状(プロペラ状)になるようにした(三角柱の各角部に凸部を設けるようにした)ことと、L/aを変更した以外は先の実験例と同様の各種の2次元フォトニック結晶スラブ作製した。ここではλ=1550nm付近がバンドギャップの中心波長になるようにaの値、Lの値を変更することにより、L/aの値を変更した。
図30は、L/a=0.3、M=0.3a、Δ=0.156a、f=0.39とした場合の低屈折率材料領域の配列状態を示している。
図31は、L/a=0.34、M=0.34a、Δ=0.006a、f=0.46とした場合の低屈折率材料領域の配列状態を示している。
図32は、L/a=0.366、M=0.366a、Δ=0a、f=0.53とした場合の低屈折率材料領域の配列状態を示している。
作製した各種の2次元フォトニック結晶スラブに外部からλ=1550nmの光を入射し、二次元完全バンドギャップ幅を調べた。結果を図30〜図32に合わせて示す。
図30〜図32に示した結果から、低屈折率材料領域の形状を横断面の形状がY字状になるように形成した場合においては、L/a=0.3の場合のTE、TM−like mode共通フォトニックバンドギャップの波長帯幅Δλは50nm、L/a=0.366の場合のΔλは89nmであったが、L/a=0.34の場合のΔλは136nmであり、L/a=0.34とした場合が二次元完全バンドギャップ幅が広いことがわかる。
中心を結ぶ線が正三角形になるように配置された3つの円柱状領域を一単位とした形状の低屈折率材料領域を三角格子状に配列して屈折率分布を形成したことと、L/aを変更した以外は先の実験例と同様の各種の2次元フォトニック結晶スラブ作製した。ここではλ=1550nm付近がバンドギャップの中心波長になるようにaの値、Lの値を変更することにより、L/aの値を変更した。
図33は、L/a=0.425、r=L/2(Lは円柱状領域の中心間距離、rは円柱状領域の半径である。)、Δ=0.15a、f=0.49とした場合の低屈折率材料領域の配列状態を示している。
図34は、L/a=0.45、r=L/2、Δ=0.1a、f=0.55とした場合の低屈折率材料領域の配列状態を示している。
図35は、L/a=0.5、r=L/2、Δ=0a、f=0.68とした場合の低屈折率材料領域の配列状態を示している。
作製した各種の2次元フォトニック結晶スラブに外部からλ=1550nmの光を入射し、二次元完全バンドギャップ幅を調べた。結果を図33〜図35に合わせて示す。
図33〜図35に示した結果から中心を結ぶ線が正三角形になるように配置された3つの円柱状領域を一単位とした形状の低屈折率材料領域を配列して屈折率分布を形成した場合においては、L/a=0.5の場合のTE、TM−like mode共通フォトニックバンドギャップの波長帯幅Δλは無し、L/a=0.425の場合のΔλは140nmであったが、L/a=0.45の場合のΔλは202nmであり、L/a=0.45とした場合が二次元完全バンドギャップ幅が広いことがわかる。
本発明の2次元フォトニック結晶導波路が備えられた光デバイスは光アドドロップフォトニックデバイス(光アドドロップ多重装置)等のアドドロップ素子あるいは共振器デバイス等に好適に用いることができる。
第1の実施形態の導波路を備えた共振器の概略構成を示す斜視図。 図1の共振器に備えられた2次元フォトニック結晶導波路を示す概略平面図。 図2の2次元フォトニック結晶導波路に備えられた2次元フォトニック結晶スラブに形成された複数の低屈折率材料領域を示す拡大平面図。 本発明で使用可能な補強層付きスラブ材を示す断面図。 図2の2次元フォトニック結晶導波路に備えられた2次元フォトニック結晶スラブに形成されたC3V対称の低屈折率材料領域のその他の例を示す拡大平面図。 図2の2次元フォトニック結晶導波路に備えられた2次元フォトニック結晶スラブに形成されたC3V対称の低屈折率材料領域のその他の例を示す拡大平面図。 図2の2次元フォトニック結晶導波路に備えられた2次元フォトニック結晶スラブに形成されたC3V対称の低屈折率材料領域のその他の例を示す拡大平面図。 第2の実施形態の波長分波器の概略構成を示す斜視図。 第3の実施形態の波長分波器の概略構成を示す斜視図。 バンドギャップの低屈折率材料領域傾斜角依存性を示す図。 図11Aはθ=30度の場合の低屈折率材料領域の配列状態を示す図、図11Bはθ=15度の場合の低屈折率材料領域の配列状態を示す図、図11Cはθ=0度の場合の低屈折率材料領域の配列状態を示す図。 t/a=0.60の場合の2次元完全PBG幅と開口率の関係を示す図。 t/a=0.65の場合の2次元完全PBG幅と開口率との関係を示す図。 t/a=0.80の場合の2次元完全PBG幅と開口率の関係を示す図。 t/a=0.90の場合の2次元完全PBG幅と開口率の関係を示す図。 t/a=1.50の場合の2次元完全PBG幅と開口率の関係を示す図。 t/a=∞の場合の2次元完全PBG幅と開口率との関係を示す図。 実施例の光デバイスの2次元完全フォトニックバンドギャップの測定結果を示す図。 実施例の光デバイスの2次元完全フォトニックバンドギャップを有する共振器モード生成の測定結果を示す図。 実施例の光デバイスのQ値の変化を示す図。 実施例の光デバイスの放射パターンを示すためのもので、図21Aは測定角度分布図、図21Bは比較例の放射パターンを示す図である。 図2の2次元フォトニック結晶導波路に備えられた2次元フォトニック結晶スラブに形成されたC3V対称の低屈折率材料領域のその他の例を示す拡大平面図。 図2の2次元フォトニック結晶導波路に備えられた2次元フォトニック結晶スラブに形成されたC3V対称の低屈折率材料領域のその他の例を示す拡大平面図。 図2の2次元フォトニック結晶導波路に備えられた2次元フォトニック結晶スラブに形成されたC3V対称の低屈折率材料領域のその他の例を示す拡大平面図。 L/a=0.85とした場合の低屈折率材料領域の配列状態と、ΔλTM 、ΔλTEを調べた結果を示す図。 L/a=1とした場合の三角柱状の低屈折率材料領域の配列状態と、ΔλTM、ΔλTEを調べた結果を示す図。 L/a=0.6とした場合の低屈折率材料領域の配列状態と、ΔλTM、ΔλTEを調べた結果を示す図。 L/a=0.7とした場合の低屈折率材料領域の配列状態と、ΔλTM、ΔλTEを調べた結果を示す図。 L/a=0.8とした場合の低屈折率材料領域の配列状態と、ΔλTM、ΔλTEを調べた結果を示す図。 L/a=0.3とした場合の低屈折率材料領域の配列状態と、ΔλTM、ΔλTEを調べた結果を示す図。 L/a=0.34とした場合の低屈折率材料領域の配列状態と、ΔλTM、ΔλTEを調べた結果を示す図。 L/a=0.366とした場合の低屈折率材料領域の配列状態と、ΔλTM、ΔλTEを調べた結果を示す図。 L/a=0.425とした場合の低屈折率材料領域の配列状態と、ΔλTM、ΔλTEを調べた結果を示す図。 L/a=0.45とした場合の低屈折率材料領域の配列状態と、ΔλTM、ΔλTEを調べた結果を示す図。 L/a=0.5とした場合の低屈折率材料領域の配列状態と、ΔλTM、ΔλTEを調べた結果を示す図。 従来の2次元フォトニック結晶導波路を示す概略斜視図。
符号の説明
10、10A、50…フォトニック結晶導波路、10a,10b,50a・・・2次元フォトニック結晶スラブ、11…スラブ材、11a…補強層、14…三角孔、15、25、35、45、65…空気(低屈折率材料領域)、16…孤立欠陥領域、16A…共振器領域、17…穴部、22…線状欠陥(導波路)、66…孤立欠陥領域、66A…共振器領域、67…穴部、76…孤立欠陥領域、76A…共振器領域、77…穴部、a…ピッチ、L…長さ、M…平行線、r…低屈折率材料領域の半径、t…スラブ材の厚さ。

Claims (5)

  1. スラブ材に、このスラブ材とは屈折率が異なる同一形状の領域が、複数、C6V対称性(6回の回転対称性と鏡面対称性)で周期的に配置されてなり、前記異屈折率領域の平面形状がC3V対称性を有する形状(3回の回転対称形性と鏡面対称性)とされ、前記スラブ内を通過する光に対して2次元完全フォトニックバンドギャップを有するフォトニック結晶スラブであって、
    前記C3V対称性を有する異屈折率領域の周期性が部分的に乱されて孤立欠陥領域が形成され、該孤立欠陥領域において、スラブ材の厚さ方向に非対称性が付与された部分を有することを特徴とするフォトニック結晶スラブ。
  2. 前記孤立欠陥領域が光の共振器とされ、前記対称性は、前記光を前記共振器内に閉じ込める効果の大きい所定の位置に付与されてなることを特徴とする請求項1に記載のフォトニック結晶スラブ。
  3. 前記非対称性は、非貫通の穴部と凸部の少なくとも一方が1つ以上形成されてなることを特徴とする請求項1に記載のフォトニック結晶スラブ。
  4. 請求項1〜3のいずれかに記載の孤立欠陥領域と線状欠陥からなる導波路を有し、該導波路がTE−ライクモードとTM−ライクモードの少なくとも一方のモードの光を通過可能な導波路とされたことを特徴とするフォトニック結晶導波路。
  5. 請求項4に記載のフォトニック結晶導波路を備えたことを特徴とする光デバイス。

JP2005094385A 2005-03-29 2005-03-29 フォトニック結晶スラブ及びフォトニック結晶導波路と光デバイス Pending JP2006276388A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005094385A JP2006276388A (ja) 2005-03-29 2005-03-29 フォトニック結晶スラブ及びフォトニック結晶導波路と光デバイス
PCT/JP2006/306072 WO2006104067A1 (ja) 2005-03-29 2006-03-27 フォトニック結晶スラブ及びフォトニック結晶導波路と光デバイス
TW095110754A TW200641419A (en) 2005-03-29 2006-03-28 Photonic crystal slab, photonic crystal waveguide, and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094385A JP2006276388A (ja) 2005-03-29 2005-03-29 フォトニック結晶スラブ及びフォトニック結晶導波路と光デバイス

Publications (1)

Publication Number Publication Date
JP2006276388A true JP2006276388A (ja) 2006-10-12

Family

ID=37053325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094385A Pending JP2006276388A (ja) 2005-03-29 2005-03-29 フォトニック結晶スラブ及びフォトニック結晶導波路と光デバイス

Country Status (3)

Country Link
JP (1) JP2006276388A (ja)
TW (1) TW200641419A (ja)
WO (1) WO2006104067A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008776A1 (ja) 2013-07-17 2015-01-22 丸文株式会社 半導体発光素子及び製造方法
US9349918B2 (en) 2011-07-12 2016-05-24 Marubun Corporation Light emitting element and method for manufacturing same
US9806229B2 (en) 2014-03-06 2017-10-31 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US9929317B2 (en) 2015-01-16 2018-03-27 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US10056526B2 (en) 2016-03-30 2018-08-21 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US10680134B2 (en) 2015-09-03 2020-06-09 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US11309454B2 (en) 2018-01-26 2022-04-19 Marubun Corporation Deep ultraviolet LED and method for producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI449255B (zh) 2010-11-08 2014-08-11 Ind Tech Res Inst 具光子能隙結構之矽基懸浮天線及其製造方法
CN111061008B (zh) * 2019-12-17 2021-09-24 西北工业大学 一种结构缺陷为“d”形空气孔的平板光子晶体微腔

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279764A (ja) * 2002-03-26 2003-10-02 Japan Science & Technology Corp 2次元フォトニック結晶光分合波器
JP2004191408A (ja) * 2002-12-06 2004-07-08 Japan Science & Technology Agency 局所的3次元構造を有する2次元フォトニック結晶スラブ
JP2004294517A (ja) * 2003-03-25 2004-10-21 Alps Electric Co Ltd 2次元フォトニック結晶スラブ及びこれを用いた光デバイス

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3925769B2 (ja) * 2000-03-24 2007-06-06 関西ティー・エル・オー株式会社 2次元フォトニック結晶及び合分波器
JP4538718B2 (ja) * 2003-08-28 2010-09-08 アルプス電気株式会社 2次元フォトニック結晶スラブ及び2次元フォトニック結晶導波路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279764A (ja) * 2002-03-26 2003-10-02 Japan Science & Technology Corp 2次元フォトニック結晶光分合波器
JP2004191408A (ja) * 2002-12-06 2004-07-08 Japan Science & Technology Agency 局所的3次元構造を有する2次元フォトニック結晶スラブ
JP2004294517A (ja) * 2003-03-25 2004-10-21 Alps Electric Co Ltd 2次元フォトニック結晶スラブ及びこれを用いた光デバイス

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9349918B2 (en) 2011-07-12 2016-05-24 Marubun Corporation Light emitting element and method for manufacturing same
WO2015008776A1 (ja) 2013-07-17 2015-01-22 丸文株式会社 半導体発光素子及び製造方法
KR20150099869A (ko) 2013-07-17 2015-09-01 마루분 가부시키가이샤 반도체 발광 소자 및 제조 방법
US9929311B2 (en) 2013-07-17 2018-03-27 Marubun Corporation Semiconductor light emitting element and method for producing the same
US9806229B2 (en) 2014-03-06 2017-10-31 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US9929317B2 (en) 2015-01-16 2018-03-27 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US10680134B2 (en) 2015-09-03 2020-06-09 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US10950751B2 (en) 2015-09-03 2021-03-16 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US10056526B2 (en) 2016-03-30 2018-08-21 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US11309454B2 (en) 2018-01-26 2022-04-19 Marubun Corporation Deep ultraviolet LED and method for producing the same

Also Published As

Publication number Publication date
WO2006104067A1 (ja) 2006-10-05
TW200641419A (en) 2006-12-01
TWI292496B (ja) 2008-01-11

Similar Documents

Publication Publication Date Title
JP2006276388A (ja) フォトニック結晶スラブ及びフォトニック結晶導波路と光デバイス
JP3847261B2 (ja) 2次元フォトニック結晶中の共振器と波長分合波器
JP6083703B2 (ja) 2次元フォトニック結晶面発光レーザ
US6574383B1 (en) Input light coupler using a pattern of dielectric contrast distributed in at least two dimensions
US7269310B2 (en) Optical connector, optical coupling method and optical element
JP3459827B2 (ja) 2次元フォトニック結晶光分合波器
JP5272173B2 (ja) 2次元フォトニック結晶
US8287642B2 (en) Devices and methods for providing stimulated raman lasing
JP5138898B2 (ja) 2次元フォトニック結晶面発光レーザ光源
US20160202414A1 (en) Systems And Methods For Suspended Polymer Photonic Crystal Cavities And Waveguides
JP3721142B2 (ja) 2次元フォトニック結晶点欠陥干渉光共振器及び光反射器
JP4538718B2 (ja) 2次元フォトニック結晶スラブ及び2次元フォトニック結晶導波路
US20080273832A1 (en) Photonic crystal optical device
JP4684861B2 (ja) 導波路及びそれを有するデバイス
WO2007108219A1 (ja) 2次元フォトニック結晶
US7313307B2 (en) Waveguide and device including the same
Olivier et al. Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design
JP3999152B2 (ja) 2次元フォトニック結晶スラブ及びこれを用いた光デバイス
JP3867848B2 (ja) 光導波路
Viktorovitch et al. Surface addressable photonic crystal membrane resonators: generic enablers for 3D harnessing of light
JP7134443B2 (ja) 光偏向デバイス
Chang‐Hasnain et al. Integrated optics using high contrast gratings
US20220066068A1 (en) Photonic Crystal Optical Resonator and Method for Fabricating Same
Shinya et al. Single-mode transmission in commensurate width-varied line-defect SOI photonic crystal waveguides
JP4146201B2 (ja) 細線導波路付2次元フォトニック結晶

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208