JP3867848B2 - 光導波路 - Google Patents

光導波路 Download PDF

Info

Publication number
JP3867848B2
JP3867848B2 JP2002086349A JP2002086349A JP3867848B2 JP 3867848 B2 JP3867848 B2 JP 3867848B2 JP 2002086349 A JP2002086349 A JP 2002086349A JP 2002086349 A JP2002086349 A JP 2002086349A JP 3867848 B2 JP3867848 B2 JP 3867848B2
Authority
JP
Japan
Prior art keywords
lattice
line defect
waveguide
defect
photonic crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002086349A
Other languages
English (en)
Other versions
JP2003156642A (ja
Inventor
昭彦 新家
雅也 納富
浩治 山田
淳一 高橋
千春 高橋
至 横浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002086349A priority Critical patent/JP3867848B2/ja
Publication of JP2003156642A publication Critical patent/JP2003156642A/ja
Application granted granted Critical
Publication of JP3867848B2 publication Critical patent/JP3867848B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Description

【0001】
【発明の属する技術分野】
本発明は、光情報処理、光伝送等に用いられるレーザ、光集積回路等の様々な光デバイス等を構成する基本構造および光学部品に用いられる、光導波路に関する。
【0002】
【従来の技術】
現在の光デバイスは光の閉じ込めを屈折率で行っている。このため、光の閉じ込め領域を小さくできないことから、素子を小さく構成することができない。さらに、素子の集積度を上げるために急峻な曲げ導波路を構成すると、散乱損失が生じる。このため、光回路の小型・集積化が行えず、その大きさは電子デバイスに比べて非常に大きい。上述の問題を解決することができる光の新素材として、フォトニック結晶が期待されている。フォトニック結晶によれば、従来とはまったく異なる概念で、光の閉じ込めを行うことができる。
【0003】
フォトニック結晶は、屈折率の異なる2種類以上の媒質によって光の波長と同程度の周期性を形成した、人工的な多次元周期構造であり、電子のバンド構造に似た光のバンド構造を有する。このため、次のような点が理論的に指摘されている(J.D.Joannopoulos et al.,Nature386,143(1997))。つまり、特定の構造には、光の禁制帯(フォトニックバンドギャップ)が現れる。このフォトニックバンドギャップを有するフォトニック結晶に、周期性を乱す線欠陥を導入する。これによって、バンドギャップの周波数領域内に導波モードが形成され、完全に光を閉じ込める光導波路を実現できる。
【0004】
J.D.Joannopoulosらは、光の波長程度の格子定数aの四角格子上に、半導体程度の大きな屈折率を持つ、半径a/5の円柱を配置した2次元フォトニック結晶を形成した。この2次元フォトニック結晶中に、円柱を1列配置しない線欠陥を導入した。この2次元フォトニック結晶によって、急角度に曲げた場合でも原理的に散乱損失が生じない光導波路が構成可能であることを、J.D.Joannopoulosらは理論的に示した。このような導波路は、超小型光集積回路を構成する上で、非常に重要な導波路となり得る。
【0005】
超小型光集積回路を構成するための光導波路を実現するには、フォトニックバンドギャップ周波数内に、単一の導波モードを実現することが必要である。これは次のような不都合があるからである。性質の異なるモードを複数もつマルチモード導波路を用いた場合、例えば曲げ導波路を構成したとき、伝播しているモードの一部が曲げ部で異なるモードに変換されてしまう。このために、超小型光集積回路で必要な、高効率の曲げ導波路を実現できないなどの不都合がある。また、マルチモード導波路は高速通信には適さない。
【0006】
現在のところ、導波路としていくつかのタイプのものが作製されている。フルバンドギャップを有する3次元フォトニック結晶中に導波路を作りこむことは、技術的に困難である。このため、2次元フォトニック結晶を用いて、導波路を作製することが有望である。
【0007】
2次元フォトニック結晶を導波路として用いる場合、2次元面に垂直な方向の光閉じ込めが必要になる。このために、いくつかの方法が提案されている。その中で、低屈折率の誘電体(多くの場合、酸化物またはポリマー、屈折率1.5程度)の上に、高屈折率の半導体(屈折率3〜3.5程度)の薄膜を付けた構造に2次元フォトニック結晶を作りこんだ構造(酸化物クラッド2次元スラブ型フォトニック結晶)がある。この構造によれば、最も容易に大面積のものが作製可能であり、また、同じ構造に様々な機能素子を付加しやすい。
【0008】
近年、Silicon-On-Insulator(SOI)と呼ばれる二酸化珪素(SiO)上に珪素(Si)薄膜がついた基板が、LSIに応用されるようになり、非常に高品質のものが得られるようになっている。この基板を用いることにより、容易に高品質の酸化物クラッド型2次元スラブフォトニック結晶を作製できるという利点もある。このような利点は、他の構造、例えばフォトニック結晶の上下のクラッドを空気にしたエアブリッジ型2次元スラブフォトニック結晶では得られない。
【0009】
このように、酸化物クラッド型2次元スラブフォトニック結晶は、エアブリッジ型2次元スラブフォトニック結晶等に比べると、作製の面で有利である。しかし、この構造には次に述べるような問題があり、フォトニックバンドギャップ周波数内に単一の導波モードを実現する導波路構造は実現できていない。
【0010】
2次元スラブフォトニック結晶を用いた光導波路において、欠陥によって生じる導波モードでは、上述のように2次元面内に関してフォトニックバンドギャップの存在により、光が強く閉じ込められている。このため、面内の散乱損失は無いが、一般的に、クラッドのライトラインより高周波数領域はリーキーである。すなわち、光がクラッド層に漏れやすい。ライトラインは、その媒質中で光が伝播できる最低周波数を、伝播定数に対して表示したものである。ライトラインは次の式で定まる直線で示すことができる。
w=ck/n
w:角周波数、c:光速、n:屈折率、k:波数
【0011】
したがって、上下のクラッド層へ導波光が漏洩しないように、ライトラインより低周波数の領域を利用することが通例となっている。図11(a)、(b)は、従来例における典型的な空気孔型の1列抜き線欠陥フォトニック結晶導波路の構造模式図である。図11(a)、(b)において、符号101が基板、符号102がSiO層、符号103がSi層である。また、符号104が空気孔三角格子の空気孔、符号105が光導波路である。SiO層102はクラッド層である。空気孔三角格子の格子定数はaである。
【0012】
図11の空気孔型の1列抜き線欠陥フォトニック結晶導波路では、空気孔三角格子の空気孔104がSi層103を貫通する円柱または多角柱である。Si層103の穴直径が、この例の場合、0.275μmである。空気孔三角格子とは、空気孔104が三角格子の各格子点に配置された構造であり、三角格子とは格子点が2次元面を埋め尽くすように配置された正三角形の頂点に配置された規則格子のことである。また、図11では、1列抜き線欠陥の欠陥幅をWで表している。
【0013】
代表的なフォトニックバンドギャップを持つ2次元フォトニック結晶には、空気中に高屈折率の柱を配置した構造と、前記のように高屈折率板内に空気孔をあけた構造とがある。前者はJ.D.Joannopoulosらが使用した構造である。この構造では、高屈折率の柱が自立できないため、この柱を支えるためのクラッド層が必要になる。この層は線欠陥導波路のコアとなる空気よりも屈折率が大きくなる。導波路の上下に光が漏れないようにするためには、非常に長い柱を必要とし、作製が非常に困難となる。一方、後者の空気孔は自立できるため、クラッド層の選択が自由であり、コアの屈折率をクラッド層のそれより大きくすることが容易である。このために、作製上の制限が小さく、上下に光が漏れにくい構造を選択しやすい。
【0014】
高屈折率板を用いたフォトニック結晶の孔の二次元配列には、様々なパターンがある。図11(a)に示したような、三角格子状に孔(円柱または多角柱)を配置した構造は、広い周波数帯域のフォトニックバンドギャップを有するパターンとして知られている。これは、この構造が光に対する絶縁体として機能する周波数帯域が広いことを意味しており、導波路設計の際の周波数選択範囲を広く取れるため有利である。
【0015】
図12は、従来例における典型的な1列抜き線欠陥フォトニック結晶導波路の導波路モード分散を示す。酸化物クラッド型フォトニック結晶でこのような導波路を構成しようとした場合、形成される導波モードは図12のようなものになる。ここで、角周波数は、
格子定数/波長
で表現される無次元の規格化周波数を用いている。伝播定数は、
波数・格子定数/2π
で表現される無次元の規格化伝播定数を用いている。図12には、この場合のクラッド(SiO、屈折率1.46)のライトラインも示されている。
【0016】
【発明が解決しようとする課題】
しかし、従来例として示した構造では、クラッド層に光が漏洩しないという条件を満たす導波モードは、図12のライトラインの下部の楕円で囲まれた領域111のみである。
【0017】
ところが、この領域111では、導波モードの傾きが非常に小さく、この傾きで大きさが決まる導波モードの群速度(エネルギー伝播速度)が非常に小さい。このような極端に群速度の小さいモードでは、伝播時間が長くなる。このため、導波路として用いる場合には、問題が多く使いにくい。また、現実的な構造では、若干の構造の不均一性があるため、極端に群速度の小さいモードはわずかな不均一性の影響を受けて、伝播しなくなってしまう。また、ライトラインの上(高周波数領域側)のモードでは、フォトニック結晶による回折損が大きすぎて、光が伝播できない。つまり、フォトニック結晶導波路内の光は、結晶の周期構造から摂動を受けながら伝播しており、ライトラインの上のモードでは、回折損としてクラッド層に漏れてしまう。
【0018】
実際に本願発明者によって1列抜き線欠陥導波路を作製したところ、この導波路では、伝播が全く観測されなかった。この問題の原因は、クラッドが決めるライトラインよりも下に、現実的に使いやすい、ある程度の大きさの群速度を持った導波モードが存在しないことと、ライトラインよりも上では、回折損が非常に大きいことにある。
【0019】
ライトラインよりも下のモードを利用するためには、図12のグラフにおいて、ライトラインを上げるか、または、導波モードを動かす必要がある。しかし、酸化物クラッド構造をとる限り、ライトラインの位置がクラッドの屈折率で制限されるため、大きく変えることができない。
【0020】
また、導波モードに関して、バンドギャップ内で単一の導波モードを得るという条件を課す限り、図11の構造では、ライトラインの下に、ある程度大きな群速度を持たせることが困難である。ここでは、三角格子の場合について説明したが、正方格子など他の結晶構造の場合には、状況がさらに困難になり、要請を満たす導波モードはやはり存在しない。このように、ライトラインの下のモードを利用することは非常に難しい。
【0021】
この問題を解決する最も有効な構造として、幅変化型のフォトニック結晶導波路がある。この構造では、線欠陥を挟んだ両側の格子の配列全体を平行移動させて、線欠陥幅を調節する方法がとられている。これより、低損失で長距離伝播が可能なモードが利用可能となっている(M.Notomi et al.Electron.Lett.37,293(2001))。
【0022】
しかし、この方法では、直線導波路のみが構成され、光集積回路に必要な曲げ導波路の実現が不可能となる。さらに、フォトニック結晶の周期性がずれているため、同一フォトニック結晶内に配置されたフォトニック結晶デバイスとの整合が取れなくなる可能性がある。
【0023】
この発明は、幅変化型2次元スラブフォトニック結晶導波路のこのような問題点を解決し、フォトニック結晶全体に渡る周期性のずれを生じさせることなく、また、帯域の広い曲げ導波路を構成できる、光導波路を提供することを目的とする。
【0024】
【課題を解決するための手段】
本発明は、直線導波路のみが構成されることやフォトニック結晶全体に渡る周期性のずれを生じさせることなく、幅変化型と同等の光導波路を提供することを目的とし、この目的を達成するために、請求項1の発明は、スラブ型三角格子2次元フォトニック結晶の格子点に配列された構造体の一部を除くことによって形成された格子点1列分の線欠陥構造を有し、格子点1列分の線欠陥を挟む最近接格子の中心間隔以下となるように線欠陥に最近接する格子点列を移動させ、線欠陥に最近接する格子点列を移動される方向にその外側の格子点列上の構造体を引き伸ばすように変形させることで、単一モード条件を満足することを特徴とする。
【0025】
請求項2の発明は、スラブ型三角格子2次元フォトニック結晶の格子点に配列された構造体の一部を除くことによって形成された格子点1列分の線欠陥構造を有し、格子点1列分の線欠陥を挟む最近接格子の中心間距離以上となるように線欠陥に最近接する格子点上の構造体を変形させ、線欠陥を挟んで向かい合う構造体を、前記線欠陥中心側の前記構造体の側壁の間隔が、線欠陥を挟んで向かい合う格子点の距離の1.1倍とすることにより、クラッドのライトラインより高周波数側で単一モード条件を満足することを特徴とする。
【0026】
請求項3の発明は、請求項2に記載の光導波路において、前記変形された構造体は、円筒の線欠陥側を削り取った形状であることを特徴とする
【0027】
請求項4の発明は、スラブ型三角格子2次元フォトニック結晶の格子点に配列された構造体の一部を除くことによって形成された格子点1列分の線欠陥構造を有した構造において、前記線欠陥を挟む両側の格子状に配置された構造体を、格子点1列分の線欠陥を挟む最近接格子の線欠陥間隔幅以下となるように、欠陥の中央に向かって引き伸ばし、両端を大小二つの円形で近似できる変形構造体とし、前記線欠陥の中央に近くかつ小さな円形を第1の円形、遠くかつ大きな円形を第2の円形とし、前記線欠陥を挟んで互いに向かい合う前記変形構造体の第1の円形の中心間距離でなる導波路幅を第1の幅とし、スラブ型2次元フォトニック結晶の格子の1列を除いただけの通常の線欠陥構造における欠陥部分の、両側の格子間の幅を第2の幅とした時、第1の幅を第2の幅の0.7倍よりも狭くすることにより、単一モード条件を満足することを特徴とする。
【0028】
請求項5の発明は、請求項4に記載の光導波路の前記線欠陥構造において、前記線欠陥構造において、前記第2の円形の半径を格子定数の0.45倍より小さい値で、かつ、前期第1の幅を前期第2の幅の0.4倍より小さい値とすることにより、0.01[c/a]より大きな単一モード周波数帯域を有することを特徴とする。
【0029】
請求項6の発明は、前記スラブ型三角格子2次元フォトニック結晶が酸化物クラッドまたはポリマークラッドを有することを特徴とする
【0030】
請求項7の発明は、請求項1〜6のいずれかに記載の光導波路において、前記スラブ型三角格子2次元フォトニック結晶がSOI基板を用いて製造したことを特徴とする。
【0031】
【発明の実施の形態】
つぎに、本発明の実施の形態について説明する。
【0032】
[実施の形態1]
本実施の形態による光導波路は、スラブ型2次元フォトニック結晶の格子点に配置された構造体の一部を除き欠陥構造とした光導波路において、格子点1列分の線欠陥と、その線欠陥が単一モード条件を満足するようにそれに近接する複数の格子点列を移動させ、または、格子点上に配置された構造体を変形させた構造とを有するものである。
【0033】
スラブ型2次元フォトニック結晶とは、誘電体薄膜スラブに誘電体薄膜スラブよりも低い屈折率の円柱状または多角柱状の低屈折率柱を、適当な2次元周期間隔で設け、さらに、誘電体薄膜スラブの上下を誘電体薄膜スラブよりも小さい屈折率を持つ上部クラッド層と下部クラッド層とで挟んだフォトニック結晶のことである。
【0034】
図1は、本実施の形態による線欠陥フォトニック結晶導波路からなる光導波路の模式図である。図1において、符号1が基板、符号2がSiO層、符号3がSi層である。また、空気孔三角格子の格子定数がaである。本実施の形態では、空気三角格子上に円形の空気孔3Aが構造体として配列されている。
【0035】
本実施の形態では、酸化物クラッド型2次元スラブフォトニック結晶に線欠陥を形成する場合に、線欠陥に最近接の格子点列4をお互いに近づくように移動させる。さらに、格子点列4の外側の格子点列5上の空気孔5Aの大きさを、格子点列4の移動距離分伸ばす。本実施の形態では、空気孔5Aが変形構造体である。これによって、クラッドのライトラインよりも下に大きな群速度をもった単一導波モードを形成する。
【0036】
図1に示すように、導波路の幅を、線欠陥に最近接の格子点列の中心距離として定義し、中心距離Wの定数倍で表現する。中心距離Wは、単純に格子を1列抜いた線欠陥を挟む最近接格子の中心間隔である。
【0037】
3μm厚のSiO層2、0.2μm厚のSi層3のSOI基板上に、電子線露光とドライエッチングとによって、格子定数a=0.39μmよりなる三角格子を空気孔で構成したフォトニック結晶を作製する。さらに、格子点1列分の空気孔がない線欠陥領域を光導波路として導入する。その際、お互いが近づくように線欠陥を挟む最近接の格子点列を移動させ、さらに、その外側の格子点列上の空気孔を、線欠陥に最近接の格子点列の移動距離方向に、移動距離分だけ引き伸ばした形に変形する。こうして、空気孔5Aが形成される。
【0038】
線欠陥に最近接の空気孔5Aの中心距離を様々に変化させた導波路の透過率測定を行った結果、単純な格子1列抜きでは、バンドギャップの波長領域内で観測ができなかった光の透過が、幅を0.7Wにしたものでは、ギャップ内のある波長域で明確な透過光が観測された。
【0039】
図2は、幅0.7Wの光導波路の導波モード分散である。本計算は、3μm厚のSiO層2上の0.2μm厚のSi層3の等価屈折率を2.8とみなし、2次元で行われている。ここで、角周波数は、
格子定数/波長
で表現される無次元の規格化周波数を用いており、伝播定数は、
波数・格子定数/2π
で表現される無次元の規格化伝播定数を用いている。図2中には、クラッド(屈折率1.46)のライトラインを重ねて示してある。
【0040】
図2内の楕円部9で示されるように、ライトラインよりも下側に大きな群速度を持った導波モードが存在している。また、その周波数領域では、単一モード条件を満たしていることも明らかである。
【0041】
これらの結果は、本実施の形態の導波路が欠陥を挟んだ両側の格子全体をずらした幅変調型光導波路と同等の特徴を有することを示している。本実施の形態の導波路構造を用いることで、フォトニック結晶全体に渡る周期性のずれを生じさせることなく、導波路を構成することが可能となり、曲げ導波路の実現が可能となる。
【0042】
[実施の形態2]
図3は、本実施例における線欠陥フォトニック結晶導波路からなる光導波路の模式図であり、(a)はその上面図、(b)は(a)のII−II´断面を示す断面図である。図2において、符号11が基板、符号12がSiO層、符号13がSi層である。また、空気孔三角格子の格子定数がaである。
【0043】
本実施の形態では、酸化物クラッド型2次元スラブフォトニック結晶に線欠陥を形成する場合に、単一線欠陥に最近接の格子点列14の大きさを小さくすることで導波路幅を調整し、クラッドのライトラインよりも上に大きな群速度をもった単一導波モードを形成する。欠陥導波路の幅調整は、単一線欠陥に最近接の格子点列14の位置を固定したまま、円筒の線欠陥側を削りとった半月型とすることで行っている。図3に示すように、導波路の幅を、半月の直線部の間隔として定義し、中心距離Wの定数倍で表現する。中心距離Wは、単純に格子を1列抜いた線欠陥を挟む最近接格子の中心間隔である。
【0044】
3μm厚のSiO層12、0.2μm厚のSi層13のSOI基板上に、電子線露光とドライエッチングとによって、格子定数a=0.39μmよりなる三角格子を空気孔で構成したフォトニック結晶を作製する。さらに、格子点1列分の空気孔がない線欠陥領域を光導波路として導入する。その際、線欠陥を挟む最近接の格子点列の位置を固定したまま、空気孔の線欠陥側をエッチングしないことにより、半月型をした空気孔14Aを作製する。
【0045】
エッチングしない領域を調整することにより、半月の直線部分の間隔を様々に変化させた導波路を作製する。それぞれの透過率測定を行った結果、単純な格子1列抜きでは、バンドギャップの波長領域内で観測ができなかった光の透過が、幅を1.1Wにしたものでは、ギャップ内のある波長域で明確な透過光が観測された。
【0046】
図4は、幅1.1Wの光導波路の導波モード分散である。本計算は、SiO層12の屈折率を1.46とみなし、Si層13の屈折率を3.4とみなして、3次元で行われている。
【0047】
図4では、クラッドのライトラインを重ねて示してある。図4中の楕円部19に示されるように、本発明ではライトラインよりも上側に大きな群速度を持った導波モードが存在している。また、その周波数領域では、単一モード条件を満たしていることも図4より明らかである。通常の単純な格子1列抜きによる導波路では、この周波数領域の伝播損失が100dB/mm以上と非常に大きく、利用することが不可能であった。しかし、本実施の形態の構造を用いることにより、伝播損失を15dB/mmにまで改善でき、十分利用に耐える導波路を構成できる。
【0048】
実施の形態2によれば、実施の形態1と同様に、本発明の導波路が欠陥を挟んだ両側の格子全体をずらした幅変調型光導波路と同等の特徴を有することを示しており、本発明の導波路構造を用いることで、フォトニック結晶全体に渡る周期性のずれを生じさせることなく、導波路を構成することが可能となり、曲げ導波路の実現が可能となる。
【0049】
[実施の形態3]
本実施の形態による光導波路は、スラブ型2次元フォトニック結晶の格子の一列を直線状に除き欠陥構造とした光導波路において、欠陥に最近接の格子線上に配置された構造体を移動・変形することにより、欠陥中の屈折率の大きな領域の面積を狭くした構造である。
【0050】
このような構造とすることにより、クラッドのライトラインより低周波数側に群速度の大きなモードを励起し、従来技術で説明したようなフォトニックバンドギャップおよび屈折率差による光閉じ込め方法を用いながら、低損失で群速度の大きな構造を実現する。さらに、欠陥に最近接の格子線上に配置された構造体を、欠陥の中央に向かって先細りになるように引き伸ばした形状に変形し、導波路幅を格子の配列の1列分の幅より狭くした構造とすることにより、単一モード条件を満足する。このような構造には、フォトニック結晶全体に渡る周期性のずれを生じないので、直線だけでなく、曲げ導波路も提供することができる。
【0051】
スラブ型2次元フォトニック結晶とは、誘電体薄膜スラブに、誘電体薄膜スラブよりも低い屈折率の円柱状または多角柱状の低屈折率柱を適当な2次元周期間隔で設け、さらに、誘電体薄膜スラブの上下を誘電体薄膜スラブよりも小さい屈折率を持つ上部クラッド層と下部クラッド層とで挟んだフォトニック結晶のことである。
【0052】
また、前記の格子の配列の1列分の幅とは、スラブ型2次元フォトニック結晶の格子の1列を除いただけの通常の構造における欠陥部分の両側の格子間の幅である。
【0053】
図5は、本実施の形態による1列抜き線欠陥フォトニック結晶導波路からなる光導波路の模式図である。図5において、符号21が基板、符号22がSiO層、符号23がSi層、符号24が空気孔である。
【0054】
本実施の形態では、酸化物クラッド型2次元フォトニック結晶に単一線欠陥を形成する場合に、その欠陥を挟む両側の格子上に配置された構造体を欠陥の中央に向かって引き伸ばした形状に変形し、導波路幅を狭く調整する。これによって、クラッドのライトラインよりも下に大きな群速度を持った単一導波モードを形成する。
【0055】
すなわち、3μm厚のSiO層22、0.2μm厚のSi層2のSOI基板上に、電子線露光とドライエッチングとによって、格子定数a=0.39μmの空気孔三角格子フォトニック結晶を作製する。その際に、様々な幅の1列抜き欠陥を導入した。
【0056】
欠陥導波路の幅調整法は、1列分の孔を除いた後の構造において、その欠陥を挟む両側の格子上に配置された空気孔を、導波路の中心方向に先細りになるように、引き伸ばした形状に変形することによって行っている。こうして、空気孔25が形成される。ここで、空気孔25の形状は、図5(c)に示される円25A、25Bの半径R1、R2で定義する。導波路の幅Wは半径R2の中心間距離として定義する。
【0057】
通常の1列抜き線欠陥フォトニック結晶導波路における欠陥の幅は、単純に格子を1列抜いた場合の欠陥を挟んだ両側の最近接格子4の中心間の距離として定義される。本実施の形態による欠陥の幅は、通常の場合の欠陥幅をWとし、その定数倍で表現される。このフォトニック結晶自体は、波長1.35μmから1.57μmの間にフォトニックバンドギャップを持ち、この波長範囲内で無欠陥部分の結晶に、光透過は観測されなかった。つぎに、各欠陥導波路の透過スペクトルを測定した。単純な格子1列抜き(幅1.0Wのもの)では、バンドギャップの波長領域内で光の透過が全く観測されなかった。一方、図5(c)に示される空気孔25を導波路の両脇に配置し、幅Wを0.25Wにしたものでは、バンドギャップ内のある波長領域で明確な光透過が観測された。
【0058】
図6は、本実施の形態における1列抜き線欠陥フォトニック結晶導波路からなる光導波路の導波モード分散である。本計算はSiO層22の屈折率を1.46とみなし、Si層23の屈折率を3.4とみなして、3次元で行われている。図12に示す従来のものでは、ライトラインより下側の伝播モードの傾きが小さいのに対し、本実施の形態では、図6内の楕円部29に示すように、ライトラインよりも下側に大きな傾きを持った、つまり、大きな群速度を持った導波モード(偶モード)が存在している。また、その領域では、単一モード条件を満たしていることも、図6より明らかである。
【0059】
幅を狭くすることにより、前記の効果が得られる理由は次の通りである。問題を簡単にするため、以降の導波モード計算は2次元(コアとなるSi層の膜厚が無限大)で行われている。
【0060】
図12に対応する2次元の計算を図7に示す。従来の技術で説明したように、図12に示される典型的な1列抜き線欠陥の状態では、フォトニックバンドギャップ内でかつライトラインより低周波数領域(以下、この領域をα領域という)のモード(図中丸部)は、群速度が非常に小さなものであり、実用的ではない。そこで、図7のバンドギャップの外にある一番下の群速度の大きなモード31に注目する。導波路幅を狭くすると、等価的に屈折率が下がり、この一番下のモード31を高周波数側にシフトさせることができる。したがって、α領域で群速度の大きなモードを実現することが可能となる。
【0061】
なお、導波路の屈折率を下げる方法として、導波路部に屈折率の小さな媒質を利用する方法や、導波路部の厚さを薄くして、等価的に屈折率を下げる方法などがある。ここでは、導波路部に近接する孔を大きくすることで、等価的に屈折率を下げる方法を使用する。
【0062】
図8(a)は、線欠陥に最近接の空気孔41を導波路の中心方向に向かい引き伸ばしたときのモード曲線である。図8は空気孔41を大きくすることで、図7の一番下のモード31をバンドギャップ領域にシフトさせ、図6のように群速度の大きな右肩下がりの分散曲線を持つモード42をα領域で実現できることを示している。これにより、低損失の直線導波路を実現できる。ただし、このモード42は左肩下がりの特性も有し、これらの特性がほぼ同じ周波数領域に現れるため、単一モード領域が非常に狭く、曲げ導波路に適さないことは明白である。
【0063】
次に、このモードの左肩下がりと右肩下がりの領域におけるモード特性の違いを利用し、お互いが現れる周波数領域をずらしたものを図8(b)に示す。図8(a)で注目したモード42は、左肩下がりの領域でフォトニックバンドギャップの効果でコアに光を閉じ込められたモードの特性を示し、一方、右肩下がりの領域でフォトニック結晶部の平均的な屈折率がコア部よりも小さいことにより、光をコア閉じ込めたモードの特性を示す。これらのモードフィールドは分布形状が異なり、前者は後者に比べ、導波路幅方向の分布が広い。このため、導波路の中央付近の屈折率を大きく、中央から少し離れた場所の屈折率を小さくすることで、前者に対する導波路の有効屈折率を後者のそれより小さくし、前者を高周波数側にシフトさせることが可能である。屈折率の調整には、直接媒質の屈折率を変える方法や、Si層の厚さを調節することで有効屈折率を調節する方法などがあるが、ここでは、図8(b)に示すように、導波路に最近接の空気孔42の幅を、導波路の中央に向かい狭くなるように形状を変化させ、有効屈折率を調節する方法を採用した。
【0064】
このように、導波路の中央付近とすこし離れたところの屈折率に差をつけるために、空気孔の形状を調節することが、本発明の目的達成のための重要なポイントであることがわかる。
【0065】
つぎに、空気孔の形状と単一モード帯域幅との関係について示す。図9(a)は、空気孔をR1=0.275aで固定し、空気孔のR2を小さくしていったときの、導波路幅Wと単一モード帯域幅の関係とを示している。さらに、図9(b)は、図9(a)において単一モード帯域が最大になる導波路幅と帯域との関係を、それぞれのR2について抜き出し、1つにまとめたものである。図9(a)、(b)より、R2が小さくWが狭くなるに伴い、単一モード領域が広くなることがわかる。
【0066】
つぎに、単一モード帯域が最大になるW、R1、R2(R1>R2)の組み合わせを考察する。図10は図9(b)を様々なR1について計算したときの導波路幅と最大単一モード帯域幅との関係を示している。実線はR1=0.275a、0.30a、0.35a、0.40aの場合を示し、一点鎖線はR1=0.45aの場合を示している。これらの曲線は、円51で示すように、W>0.4Wでほぼ同じ直線状(点線)に収束しており、この直線がW=0.7W付近でW軸と交差する。このことから、単一モード領域を得るためには、導波路の幅をW<0.7Wにする必要があることがわかる。
【0067】
また、R1=0.45aの単一モード領域がW<0.4Wで減少していることがわかる。これは、導波路の有効屈折率を小さくしすぎたため、バンドギャップの下に隠れていたモードがギャップ中に現れ、単一モード領域が減少したために起こった現象である。これより、広い単一モード帯域幅(>0.01[c/a])を得るためには、W<0.4W、かつ、R1<0.45aとする必要があることがわかる。
【0068】
以上、本発明の実施の形態を詳述してきたが、前記各実施の形態に限定されることなく、特許請求の範囲内で種々変更・応用が可能である。また、具体的な構成は前記各実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。
【0069】
たとえば、前記の実施の形態では、媒質としてSiおよびSiOを用いたが、本発明の効果はこの材料に限定されないことは明らかである。一般に、高屈折率の媒質の薄膜の下に低屈折率の誘電体を配置したスラブ型のフォトニック結晶を用いて欠陥導波路を構成する際に、実施の形態1、2と同様に導波路幅を調整することにより、ライトラインより下に単一モード条件を満たす導波路や、ライトラインより上に単一モード条件を満たす導波路を形成することが一般的に可能である。
【0070】
たとえば、Siの代わりにGaAs、InGaAs、InGaAsP、InP等の半導体を用いた構造、または、SiOの代わりにポリマー、アルミナ等の物質を用いた構造でも、全く同じ効果が期待されることは明らかである。また、ここでは、下部クラッドに誘電体を配置した場合についてのみ述べたが、上下共に誘電体クラッドを配置した構造でも、同様の効果が期待できることは明らかである。
【0071】
【発明の効果】
以上、説明したように、本発明における光導波路は、フォトニック結晶全体に渡る周期性のずれを生じさせることなく、欠陥を挟んだ両側の格子全体をずらした幅変調型光導波路と同等の特徴を提供することができる。
【0072】
スラブ型2次元フォトニック結晶の格子の一部を直線状に除き線欠陥構造とした光導波路において、格子点1列分の線欠陥幅よりも狭くなるように、線欠陥に近接する格子点列を移動または格子点上に配置された構造体を変形させることにより、クラッドのライトラインより低周波数側で単一モードが形成可能な構造の光導波路を提供することができる。
【0073】
スラブ型2次元フォトニック結晶の格子の一部を直線状に除き線欠陥構造とした光導波路において、格子点1列分の線欠陥幅よりも広くなるように、線欠陥に近接する格子点列を移動または格子点上に配置された構造体を変形させることにより、クラッドのライトラインより高周波数側で単一モードが形成可能な構造の光導波路を提供することができる。
【0074】
また、本発明の光導波路は、スラブ型2次元フォトニック結晶の格子の一部を直線状に除き線欠陥構造とした光導波路において、その欠陥を挟む両側の穴形状を欠陥の中心に向かい先細りとなるように引き伸ばすことにより導波路幅を狭くしたので、ライトラインよりも下に大きな群速度を持った単一モードが形成可能な構造の光導波路を提供することができる。
【0075】
したがって、本発明によれば、群速度が向上し、曲げ導波路が構成でき、損失の少ない超小型光導波路を提供することができる。
【図面の簡単な説明】
【図1】 実施の形態1による線欠陥フォトニック結晶導波路からなる光導波路の模式図であり、(a)は上面図、(b)は(a)のI−I´断面を示す断面図である。
【図2】 実施の形態1よる線欠陥フォトニック結晶導波路からなる光導波路の導波モード分散を説明する図である。
【図3】 実施の形態2による線欠陥フォトニック結晶導波路からなる光導波路の模式図であり、(a)は上面図、(b)は(a)のII−II´断面を示す断面図である。
【図4】 実施の形態2による線欠陥フォトニック結晶導波路からなる光導波路の導波モード分散を説明する図である。
【図5】 実施の形態3による1列抜き線欠陥フォトニック結晶導波路からなる光導波路の模式図であり、(a)は上面図、(b)は(a)のIII−III´断面を示す断面図である。
【図6】 実施の形態3による1列抜き線欠陥フォトニック結晶導波路からなる光導波路の導波モード分散を説明する図である。
【図7】 従来例における典型的な1列抜き線欠陥フォトニック結晶導波路の導波モード分散を説明する図である。
【図8】 導波路に最近接する空気孔の形状とモード分散曲線の関係とを説明する図である。
【図9】 穴形状と導波路幅と単一モード帯域幅の関係とを説明する図である。
【図10】 穴形状と導波路幅と単一モード帯域幅との関係を説明する図である。
【図11】 従来例における典型的な1列抜き線欠陥フォトニック結晶導波路の構造模式図であり、(a)は上面図、(b)は(a)のIV−IV´断面図断面を示す断面図である。
【図12】 従来例における典型的な1列抜き線欠陥フォトニック結晶導波路の導波モード分散を説明する図である。
【符号の説明】
1、11、21 基板
2、12、22 SiO
3、13、23 Si層
3A、5A、14A、24、25、41 空気孔
25A、25B、51 円
4、5、14 格子点列
31、42 モード

Claims (7)

  1. スラブ型三角格子2次元フォトニック結晶の格子点に配列された構造体の一部を除くことによって形成された格子点1列分の線欠陥構造を有し、
    格子点1列分の線欠陥を挟む最近接格子の中心間隔以下となるように線欠陥に最近接する格子点列を移動させ、
    線欠陥に最近接する格子点列を移動される方向にその外側の格子点列上の構造体を引き伸ばすように変形させることで、単一モード条件を満足することを特徴とする光導波路。
  2. スラブ型三角格子2次元フォトニック結晶の格子点に配列された構造体の一部を除くことによって形成された格子点1列分の線欠陥構造を有し、
    格子点1列分の線欠陥を挟む最近接格子の中心間距離以上となるように線欠陥に最近接する格子点上の構造体を変形させ、
    線欠陥を挟んで向かい合う構造体を、前記線欠陥中心側の前記構造体の側壁の間隔が、線欠陥を挟んで向かい合う格子点の距離の1.1倍とすることにより、
    クラッドのライトラインより高周波数側で単一モード条件を満足することを特徴とする光導波路。
  3. 前記変形された構造体は、円筒の線欠陥側を削り取った形状であることを特徴とする請求項2に記載の光導波路。
  4. スラブ型三角格子2次元フォトニック結晶の格子点に配列された構造体の一部を除くことによって形成された格子点1列分の線欠陥構造を有した構造において、
    前記線欠陥を挟む両側の格子状に配置された構造体を、格子点1列分の線欠陥を挟む最近接格子の線欠陥間隔幅以下となるように、欠陥の中央に向かって引き伸ばし、両端を大小二つの円形で近似できる変形構造体とし、
    前記線欠陥の中央に近くかつ小さな円形を第1の円形、遠くかつ大きな円形を第2の円形とし、
    前記線欠陥を挟んで互いに向かい合う前記変形構造体の第1の円形の中心間距離でなる導波路幅を第1の幅とし、スラブ型2次元フォトニック結晶の格子の1列を除いただけの通常の線欠陥構造における欠陥部分の、両側の格子間の幅を第2の幅とした時、第1の幅を第2の幅の0.7倍よりも狭くすることにより、単一モード条件を満足することを特徴とする光導波路。
  5. 前記線欠陥構造において、前記第2の円形の半径を格子定数の0.45倍より小さい値で、かつ、前期第1の幅を前期第2の幅の0.4倍より小さい値とすることにより、0.01[c/a]より大きな単一モード周波数帯域を有することを特徴とする請求項4に記載の光導波路。
  6. 前記スラブ型三角格子2次元フォトニック結晶が酸化物クラッドまたはポリマークラッドを有することを特徴とする請求項1−5のいずれかに記載の光導波路。
  7. 前記スラブ型三角格子2次元フォトニック結晶がSOI基板を用いて製造したことを特徴とする請求項1−6のいずれかに記載の光導波路。
JP2002086349A 2001-09-07 2002-03-26 光導波路 Expired - Fee Related JP3867848B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002086349A JP3867848B2 (ja) 2001-09-07 2002-03-26 光導波路

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001271333 2001-09-07
JP2001-271333 2001-09-07
JP2002086349A JP3867848B2 (ja) 2001-09-07 2002-03-26 光導波路

Publications (2)

Publication Number Publication Date
JP2003156642A JP2003156642A (ja) 2003-05-30
JP3867848B2 true JP3867848B2 (ja) 2007-01-17

Family

ID=26621808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002086349A Expired - Fee Related JP3867848B2 (ja) 2001-09-07 2002-03-26 光導波路

Country Status (1)

Country Link
JP (1) JP3867848B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911646A (zh) * 2016-06-13 2016-08-31 南京邮电大学 一种基于光子晶体的波分模分混合复用解复用器及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538718B2 (ja) * 2003-08-28 2010-09-08 アルプス電気株式会社 2次元フォトニック結晶スラブ及び2次元フォトニック結晶導波路
JP4093281B2 (ja) 2004-03-03 2008-06-04 独立行政法人科学技術振興機構 フォトニック結晶結合欠陥導波路
JP4208754B2 (ja) 2004-03-24 2009-01-14 株式会社リコー 光遅延素子
JP4878210B2 (ja) 2006-05-19 2012-02-15 日本碍子株式会社 光導波路構造
JP4785194B2 (ja) 2006-08-25 2011-10-05 日本碍子株式会社 スラブ型2次元フォトニック結晶構造の製造方法
JP4936313B2 (ja) 2006-08-25 2012-05-23 日本碍子株式会社 光変調素子
US9939581B2 (en) 2013-12-18 2018-04-10 Nec Corporation Semiconductor optical waveguide, method for manufacturing the same, and optical communication device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911646A (zh) * 2016-06-13 2016-08-31 南京邮电大学 一种基于光子晶体的波分模分混合复用解复用器及方法
CN105911646B (zh) * 2016-06-13 2018-08-21 南京邮电大学 一种基于光子晶体的波分模分混合复用解复用器及方法

Also Published As

Publication number Publication date
JP2003156642A (ja) 2003-05-30

Similar Documents

Publication Publication Date Title
EP1219984B1 (en) Photonic crystal waveguide
CA2728879C (en) Composite subwavelength-structured waveguide in optical systems
US6873777B2 (en) Two-dimensional photonic crystal device
Dideban et al. Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems
JP2020518864A (ja) 可変の回折効率を有する回折格子及び画像を表示するための方法
JP4278597B2 (ja) 光制御素子
KR100578683B1 (ko) 광학장치와 그 제조 방법
US8208776B2 (en) Optical control device
US7269310B2 (en) Optical connector, optical coupling method and optical element
JP3800088B2 (ja) フォトニック結晶導波路
JP4971045B2 (ja) 光制御素子
JP3702445B2 (ja) 光学素子及びその光学素子を用いた装置
JP3867848B2 (ja) 光導波路
US7336879B2 (en) Two-dimensional photonic crystal slab, two-dimensional photonic crystal waveguide, and optical device
JP4327064B2 (ja) 光制御素子
JP3766844B2 (ja) 格子変調フォトニック結晶
JP4128382B2 (ja) 光偏向素子
JP4062308B2 (ja) フォトニック結晶導波路
JP6530332B2 (ja) 光導波路およびドロップフィルタ
JP2003131028A (ja) 光回路
JP4372589B2 (ja) 光制御素子
JP4381859B2 (ja) 光制御素子
JP4313344B2 (ja) フォトニック結晶導波路
Solgaard et al. 12 Photonic Crystals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20061004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees