WO2017017891A1 - Iii族窒化物半導体発光素子およびその製造方法 - Google Patents

Iii族窒化物半導体発光素子およびその製造方法 Download PDF

Info

Publication number
WO2017017891A1
WO2017017891A1 PCT/JP2016/003021 JP2016003021W WO2017017891A1 WO 2017017891 A1 WO2017017891 A1 WO 2017017891A1 JP 2016003021 W JP2016003021 W JP 2016003021W WO 2017017891 A1 WO2017017891 A1 WO 2017017891A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group iii
iii nitride
nitride semiconductor
type
Prior art date
Application number
PCT/JP2016/003021
Other languages
English (en)
French (fr)
Inventor
康弘 渡邉
武彦 藤田
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57884346&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017017891(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to EP16830000.2A priority Critical patent/EP3331035B1/en
Priority to KR1020187002002A priority patent/KR102171911B1/ko
Priority to US15/748,620 priority patent/US10573783B2/en
Priority to CN201680043718.6A priority patent/CN107851689B/zh
Publication of WO2017017891A1 publication Critical patent/WO2017017891A1/ja
Priority to US16/568,716 priority patent/US11024769B2/en
Priority to US17/176,181 priority patent/US20210193874A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Definitions

  • the present invention relates to a group III nitride semiconductor light emitting device and a method for manufacturing the same, and more particularly to a group III nitride semiconductor light emitting device having both an excellent device lifetime and an excellent light emission output and a method for manufacturing the same.
  • a group III nitride semiconductor composed of a compound of a group III element such as Al, Ga, In or the like and N is used as a material for a light emitting element from blue light to deep ultraviolet light.
  • a group III nitride semiconductor made of AlGaN having a high Al composition is used for an ultraviolet light emitting device having an emission wavelength of 340 nm or less and a deep ultraviolet light emitting device (DUV-LED) having an emission wavelength of 300 nm or less.
  • the light extraction efficiency of a deep ultraviolet light emitting device using a group III nitride semiconductor is extremely low, and it has been said that it is difficult to achieve a high output, but in order to realize a small and high output deep ultraviolet light emitting device.
  • various attempts have been made to realize high external quantum efficiency characteristics, low resistance characteristics, and the like.
  • Patent Document 1 a light emitting device formed on an AlN group III nitride single crystal, a high concentration n-type group III nitride layer, an n-type or i-type group III nitride barrier layer, and an n-type or i-type group III A multiple quantum well structure comprising a nitride well layer, an i-type group III nitride final barrier layer, a p-type group III nitride layer, the i-type group III nitride final barrier layer, and the p-type group III A p-type or i-type Al z Ga 1-z N layer (0.95 ⁇ z ⁇ 0.95) formed between the nitride layer and serving as an electron energy barrier with respect to the i-type group III nitride final barrier layer. 1) a light emitting device having an electron blocking layer.
  • the light emission efficiency of an ultraviolet light emitting element using a group III nitride semiconductor can be increased.
  • there is a demand for improving the device life characteristics of the group III nitride semiconductor light emitting device there is room for improvement in terms of life.
  • an object of the present invention is to provide a group III nitride semiconductor light emitting device having both an excellent device lifetime and an excellent light emission output, and a method for manufacturing the same.
  • the inventors of the present invention diligently studied how to solve the above-mentioned problems, considered that carrier leakage from the light-emitting layer is a cause of a short lifetime, a laminate formed by laminating a barrier layer and a well layer, a p-type semiconductor layer, Attention was paid to the layer structure between and the thickness thereof. And, by providing an AlN guide layer with an appropriate thickness between the laminate and the p-type semiconductor layer, the lifetime of the group III nitride semiconductor light-emitting device can be remarkably improved and an excellent light emission output can be obtained. As a result, the present invention has been completed.
  • the gist of the present invention is as follows. (1) An n-type group III nitride semiconductor layer, a barrier layer, and a well layer having a smaller band gap than that of the barrier layer are alternately stacked in this order by N layers (where N is an integer) III A group nitride semiconductor laminate, an AlN guide layer, and a p-type group III nitride semiconductor layer in this order, wherein the thickness of the AlN guide layer is 0.5 nm or more and 2.0 nm or less. A group III nitride semiconductor light emitting device.
  • the n-th well layer in the group III nitride semiconductor laminate is in contact with the AlN guide layer, or A final barrier layer having a band gap larger than the well layer and less than the AlN guide layer is provided between the n-th well layer and the AlN guide layer in the group III nitride semiconductor stacked body.
  • the p-type group III nitride semiconductor layer includes a first p-type group III nitride semiconductor layer and a second p-type group III nitride semiconductor layer in this order.
  • the band gap is smaller than the AlN guide layer and larger than the barrier layer, and the band cap of the second p-type group III nitride semiconductor layer is smaller than the first p-type group III nitride semiconductor layer.
  • the group III nitride light-emitting device according to any one of (1) to (5).
  • the first p-type group III nitride semiconductor layer and the second p-type group III nitride semiconductor layer are in contact with each other, and the second p-type group III nitride semiconductor layer comprises only a p-type contact layer.
  • a first step of forming an n-type group III nitride semiconductor layer, and a barrier layer and a well layer having a smaller band gap than the barrier layer are alternately arranged in this order on the n-type group III nitride semiconductor layer.
  • a first step of forming an n-type group III nitride semiconductor layer, and a barrier layer and a well layer having a smaller band gap than the barrier layer are alternately arranged in this order on the n-type group III nitride semiconductor layer.
  • an AlGaN altered layer is epitaxially grown using a source gas containing trimethylgallium gas and ammonia gas, and then the supply of the trimethylaluminum gas and the trimethylgallium gas is stopped to stop the epitaxy.
  • the axial growth is interrupted, and the AlGaN altered layer is exposed in a carrier gas atmosphere containing hydrogen as a main component, thereby removing at least a part of the AlGaN altered layer and altering the AlN guide layer.
  • the AlN guide layer is provided with an appropriate thickness, it is possible to provide a group III nitride semiconductor light-emitting device having a device lifetime superior to that of the prior art and a method for manufacturing the same.
  • FIG. 1 is a schematic cross-sectional view illustrating a group III nitride semiconductor light emitting device according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view illustrating a stacked body, a final barrier layer, an AlN guide layer, and a p-type semiconductor layer in a group III nitride semiconductor light emitting device according to another embodiment of the present invention. It is a figure which shows a part of band structure of the group III semiconductor light-emitting device according to this invention, (A) shows one Embodiment, (B) shows another embodiment.
  • 3 is a flowchart for explaining a first embodiment of a method for producing a group III semiconductor light emitting device according to the present invention.
  • FIG. 4 is a TEM cross-sectional photograph of a group III semiconductor light-emitting device in Experimental Example 1.
  • 10 is a graph showing EL output with respect to the thickness of the AlN guide layer of Samples 1 to 3, 12, and 14 and the design thickness of the AlGaN altered layer of Samples 4 to 10 in Experimental Example 2.
  • 10 is a graph showing EL output with respect to thicknesses of AlN guide layers of Samples 1 to 10, 12, and 14 in Experimental Example 2.
  • a group III nitride semiconductor light emitting device 100 includes an n-type group III nitride semiconductor layer 30, a barrier layer 40a, and a well having a smaller band gap than the barrier layer 40a.
  • a group III nitride semiconductor stack 40 in which the layers 40b are alternately stacked in this order in N layers (where N is an integer), an AlN guide layer 60, a p-type group III nitride semiconductor layer 70, In this order, and the thickness of the AlN guide layer 60 is not less than 0.5 nm and not more than 2.0 nm.
  • n layer 30 the n-type group III nitride semiconductor layer 30
  • group III nitride semiconductor stacked body 40 is referred to as “stacked body 40”
  • p layer 70 the p-type group III nitride semiconductor layer 70
  • the n layer 30 of the group III semiconductor light emitting device 100 can be provided on an AlN template substrate in which an AlN layer 20 is provided on the surface of the substrate 10.
  • the stacked body 40, the AlN guide layer 60, and the p layer 70 are partially removed by etching or the like, and an n-type electrode 80 formed on the exposed n layer 30 and a p layer are formed.
  • a p-type electrode 90 formed on 70 may be provided.
  • the group III semiconductor light emitting device 100 according to the embodiment of the present invention is characterized by an n layer 30, a stacked body 40, an AlN guide layer 60 and a p layer 70, and an optional final barrier layer 60 (FIG. 2).
  • the stacked body 40 and the AlN guide layer 60 are particularly characteristic.
  • the substrate 10, the AlN layer 20, the n-type electrode 80, and the p-type electrode 90 can have a general configuration, and the specific configuration is not limited at all.
  • a buffer layer selected from one or more of an AlGaN layer, a composition gradient layer, and a superlattice layer may be provided between the AlN layer 20 and the n layer 30.
  • the n layer 30, the stacked body 40, the AlN guide layer 60, and the p layer 70 which are features that characterize the present invention, will be described first.
  • the n layer 30 is a group III nitride semiconductor layer containing at least Al, and a general n-type semiconductor layer can be used as long as it is a layer constituting the pn junction of the group III nitride semiconductor layer 100.
  • the n layer 30 is made of, for example, an AlGaN material, and may contain In in an amount of 5% or less with respect to Al and Ga as group III elements.
  • the n layer 30 is doped with an n-type dopant (impurity), and examples of the n-type dopant include Si, Ge, Sn, S, O, Ti, and Zr.
  • the dopant concentration is not particularly limited as long as it is a dopant concentration capable of functioning as an n-type, and can be, for example, 1.0 ⁇ 10 18 atoms / cm 3 to 1.0 ⁇ 10 20 atoms / cm 3 .
  • the Al content of the n layer 30 is not particularly limited and can be in a general range.
  • the n-type semiconductor layer 30 can also be composed of a single layer or a plurality of layers. The composition and thickness of the layer 40 side portion of the n layer 30 may be appropriately adjusted so that the layer 40 side portion of the n layer 30 may also function as the barrier layer 40a. It is assumed that one layer 40a is formed.
  • the stacked body 40 is provided subsequent to the n layer 30.
  • the stacked body 40 is formed by alternately stacking N layers (where N is an integer) of barrier layers 40a and well layers 40b having a smaller band gap than the barrier layers 40a in this order.
  • N is an integer
  • AlGaN materials having different Al compositions can be used as the barrier layer 40a and the well layer 40b.
  • the barrier layer 40a and the well layer 40b may be made of an AlGaInN material or the like by introducing a group III element such as In at a composition ratio of 5% or less if necessary, but only Al and Ga are used as the group III element. It is more preferable to use the existing ternary AlGaN material.
  • Each layer of the stacked body 40 may be either n-type or i-type, but the barrier layer is preferably n-type. This is because the electron concentration is increased and the crystal defects in the well layer are compensated.
  • the stacked body 40 is formed by repeatedly forming a barrier layer and a well layer, and removing the last barrier layer on the p-layer side from a general multiple quantum well (MQW) structure sandwiched between the barrier layers. It can be said that it corresponds to.
  • MQW multiple quantum well
  • the Al composition a of the barrier layer 40a is set to 0.40 to 0.95, for example.
  • the Al composition b of the well layer 40b can be, for example, 0.30 to 0.80 (where a> b).
  • the number N of the barrier layers 40a and the well layers 40b can be set to 1 to 10, for example.
  • the thickness of the barrier layer 40a can be 3 nm to 30 nm, and the thickness of the well layer 40b can be 0.5 nm to 5 nm.
  • the center wavelength of the light emitted from the stacked body 40 is 300 nm or less, and the group III nitride semiconductor light-emitting device finally manufactured 100 can be a DUV-LED.
  • the AlN guide layer 60 is provided on the group III nitride semiconductor light emitting device 100 following the stacked body 40.
  • the AlN guide layer 60 is most preferably a nitride semiconductor layer made of AlN formed with the Al composition ratio of the group III element as 100%.
  • the Al composition ratio is 96% to 100%. If there is, it is included in the AlN guide layer 60.
  • the thickness of the AlN guide layer 60 is set to 0.5 nm or more and 2.0 nm or less. The technical significance of providing the AlN guide layer 60 in the above thickness range will be described later.
  • the AlN guide layer 60 is preferably undoped, but a p-type dopant such as Mg or an n-type dopant such as Si may be added. Further, the impurity concentration in the AlN guide layer 60 does not need to be uniform. For example, the impurity concentration may be different between the stacked body 40 side and the p layer 70 side. When the dopant is added, not only the i-type but also a part or the whole may be made p-type or n-type as a result.
  • i-type refers to a layer to which a specific impurity is not intentionally added (also referred to as an undoped layer). Ideally, it is preferable to use a semiconductor that does not contain impurities at all. However, any semiconductor that does not function electrically as either p-type or n-type may be used, and has a low carrier density (for example, 5 ⁇ 10 16 / (those less than cm 3 ) can be referred to as i-type. Further, even if the p-type dopant is diffused from the p layer 70, the specific impurity is not intentionally added.
  • the p layer 70 provided subsequent to the AlN guide layer 60 is not particularly limited as long as holes can be injected into the stacked body 40, and can have a general configuration.
  • a multi-layer structure including any one or all of the p-type electron block layer 71, the p-type cladding layer 72, and the p-type contact layer 73 may be formed using AlGaN materials having different ratios (details will be described later).
  • Mg, Zn, Ca, Be, Mn etc. can be illustrated as a p-type dopant with which the p layer 70 is doped.
  • the average dopant concentration of the entire p layer 70 is not particularly limited as long as it is a dopant concentration capable of functioning as a p-type.
  • the p layer 70 in this embodiment may or may not have the p-type cladding layer 72.
  • the group III nitride semiconductor light emitting device 100 it is a particularly characteristic configuration in the present invention to provide the AlN guide layer 60 with an appropriate thickness on the p layer 70 side of the stacked body 40 described above. Although details will be described later in Examples, it has been clarified from the experimental results of the present inventors that the element lifetime of the group III nitride semiconductor light emitting device 100 can be improved by providing the AlN guide layer 60.
  • FIG. 3A shows a band structure of the conduction band of group III nitride semiconductor light emitting device 100 according to the embodiment.
  • these layers are provided so that the n-th well layer 40b in the stacked body 40 and the AlN guide layer 60 are in contact with each other.
  • the stacked body 40 and the AlN guide layer 60 are provided adjacent to each other.
  • the device life of the group III nitride semiconductor light emitting device 100 can be improved along with the light emission output.
  • the thickness of the AlN guide layer 60 is more than 0.5 nm and less than 2.0 nm, the light emission output can be increased more reliably.
  • the thickness is preferably 0.7 nm or more and 1.7 nm. More preferably, it is more preferably 0.8 nm or more and 1.5 nm or less.
  • the group III nitride semiconductor light emitting device 100 includes an n-th well layer 40b on the AlN guide layer 60 side in the stacked body 40, and It is also preferable to further include a final barrier layer 50 having a band gap greater than the well layer 40a and less than the AlN guide layer 60 between the AlN guide layer 60 and the AlN guide layer 60.
  • the Al composition ratio c of the final barrier layer 50 is preferably b ⁇ c ⁇ 1, and preferably a ⁇ c ⁇ 1. In this case, the thickness of the final barrier layer 50 is 1.5 nm or less.
  • the thickness is 0.1 nm or more and 1.0 nm or less, which is much thinner than the thickness of the final barrier layer 50 used in the prior art.
  • the effect of improving the element lifetime by the introduction of the AlN guide layer 60 can be surely obtained if the thickness of the final barrier layer 50 is 1.5 nm or less, but the above-described effect is obtained by setting the thickness of the layer 50 to 1.0 nm or less.
  • the lifetime improvement effect can be obtained more reliably, and the light emission output of the group III nitride semiconductor light emitting device can be increased.
  • the thickness of the final barrier layer 50 exceeds 1.0 nm, carriers from the stacked body 40 overflow into a two-dimensional well at the interface between the final barrier layer 50 and the AlN guide layer 60. It is estimated that the injection efficiency may be lowered.
  • the thickness of the final barrier layer 50 is 0.1 nm or more, one atomic layer that is not affected by alteration remains, so that the alteration of the well layer 40 Can be avoided.
  • the p layer 70 can have a general configuration, and the p layer 70 includes a first p-type group III nitride semiconductor layer and a second p-type group III nitride semiconductor layer in this order. It is preferable.
  • the band gap of the first p-type group III nitride semiconductor layer is preferably smaller than the AlN guide layer 60 and larger than the barrier layer 40a, and the band cap of the second p-type group III nitride semiconductor layer is It is preferably smaller than the first p-type group III nitride semiconductor layer.
  • the first p-type group III nitride semiconductor layer may include the p-type electron block layer 71, and the first p-type group III nitride semiconductor layer may have a single-layer structure including only the p-type electron block layer 71.
  • the second p-type group III nitride semiconductor layer can have a multi-layer structure including a p-type cladding layer 72 and a p-type contact layer 73, and the second p-type group III nitride semiconductor layer is a p-type contact layer 73. It is also preferable that it consists of only.
  • the configuration of each layer of the p layer 70 will be described.
  • the electron block layer 71 is provided adjacent to the AlN guide layer 60, and has a band gap smaller than that of the AlN guide layer 60 but larger than that of the barrier layer 40a (ie, an Al composition a of the barrier layer 40a). (Al composition is also large).
  • the electron blocking layer 71 is provided between the quantum well structure (MWQ) functioning as the light emitting layer and the p-type cladding layer, thereby blocking the electrons and allowing the electrons to emit light (in the case of MQW). It is injected into the well layer) and used as a layer for increasing the electron injection efficiency.
  • MWQ quantum well structure
  • the electron block layer 71 provided adjacent to the AlN guide layer 60 can similarly prevent the flow of electrons to the p layer 70 side, and can increase the electron injection efficiency.
  • Such electron blocking layer 71 may be, for example, a Al z Ga 1-z N material (a ⁇ z ⁇ 1).
  • the Al composition of the electron block layer 50 is preferably 0.5 or more and 1.0 or less (that is, a ⁇ z ⁇ 1 and 0.5 ⁇ z). .
  • the total thickness of the electron block layer 71 is preferably 6 nm to 60 nm, for example. This is because, even if the thickness of the electron blocking layer 71 is less than 6 nm or exceeds 60 nm, the output is significantly reduced.
  • the thickness of the electron block layer 70 is thicker than the thickness of the barrier layer 40a.
  • the p-type dopant doped in the electron blocking layer is the same as the p-type dopant in the p-layer 70 described above, but may be doped with a dopant other than p-type if necessary, and partially undoped. These areas may be provided.
  • the second p-type group III nitride semiconductor layer may include a p-type electron clad layer 72.
  • the Al composition z of the p-type electron blocking layer 71 is as described above, and the band gap is the second largest layer after the AlN layer, whereas the Al composition of the “cladding layer” is that of the p-type electron blocking layer. It shall be smaller than the Al composition by 0.1 and larger than the p-type contact layer by 0.1.
  • the Al composition of the p-type cladding layer 72 is y
  • the Al composition of the electron block layer 71 is z
  • the Al composition of the p-type contact layer 73 is x, x + 0.1 ⁇ y ⁇ z ⁇ 0.1.
  • the Al composition conventionally used as the cladding layer is often less than or equal to the Al composition of the barrier layer. For this reason, the electron block layer in this specification and the clad layer in the prior art are distinguished based on the Al composition of the barrier layer.
  • the p-type cladding layer is optional and may not be provided, and the second p-type group III nitride semiconductor layer is composed only of the p-type contact layer 73. It is preferable to do. By so doing, the device life of the group III nitride semiconductor light emitting device 100 can be improved more reliably.
  • the p-type cladding layer 72 is provided, the thickness can be set to 2 nm to 300 nm.
  • the p-type cladding layer 72 can be Al y Ga 1-y N (0.20 ⁇ y ⁇ b), and the Al composition y is preferably 0.35 ⁇ y ⁇ b.
  • the p-type cladding layer 72 may have a multilayer structure in which the Al composition is changed.
  • the Al composition of the first p-type cladding layer is the second p-type cladding layer. It is preferable to make it larger than the Al composition with the cladding layer.
  • the first p-type group III nitride semiconductor layer and the second p-type group III nitride semiconductor layer are in contact with each other, and the second p-type group III nitride semiconductor layer is composed of only the p-type contact layer 73.
  • the p-type contact layer 73 can be a p-type Al x Ga 1-x N material with an Al composition x of 0 ⁇ x ⁇ 0.1.
  • the p-type contact layer 73 is a layer for reducing the contact resistance between the p-type electrode 80 and the electron block layer 71 formed on the surface thereof, and sufficiently reduces the contact resistance with the p-type electrode 80. be able to.
  • a dopant for making the p-type contact layer 73 p-type magnesium (Mg), zinc (Zn), or the like can be used.
  • the thickness of the p-type contact layer 73 can be 5 nm or more and 200 nm or less.
  • the p-type contact layer 73 preferably has a multi-layer structure in which any one element or a plurality of elements such as an Al composition, a dopant species, a dopant concentration, and a carrier gas species at the time of formation are changed.
  • the substrate 10, the AlN layer 20, the n-type electrode 80, and the p-type electrode 90 shown in FIG. 1 will be described below, but various modifications can be made.
  • the sapphire substrate 10, the AlN layer 20, the n-type electrode 80, and the p-type electrode 90 shown in FIG. 1 do not limit the present invention.
  • a sapphire substrate can be used as the substrate 10 of the group III semiconductor light emitting device 100.
  • An AlN template substrate provided with an AlN layer 20 epitaxially grown on the surface of the sapphire substrate may be used.
  • any sapphire substrate can be used, and the presence or absence of an off angle is arbitrary. When the off angle is provided, the crystal axis orientation in the tilt direction is either the m-axis direction or the a-axis direction. But you can.
  • the main surface of the sapphire substrate can be a surface in which the C surface is inclined at an off angle ⁇ of 0.5 degrees.
  • the crystallinity of the AlN layer on the surface of the sapphire substrate is excellent. It is also preferable that an undoped AlGaN layer is provided on the surface of the AlN template substrate. Further, an AlN single crystal substrate may be used as the substrate 10.
  • the n-type electrode 80 can be, for example, a metal composite film having a Ti-containing film and an Al-containing film formed on the Ti-containing film, and the thickness, shape, and size thereof depend on the shape and size of the light-emitting element. Can be selected as appropriate.
  • the p-type electrode 90 can also be a metal composite film having, for example, a Ni-containing film and an Au-containing film formed on the Ni-containing film. The thickness, shape, and size of the p-type electrode 90 are the same as those of the light-emitting element. It can be suitably selected according to the size.
  • the manufacturing method according to the first embodiment includes a first step (FIG. 4E) for forming an n-type group III nitride semiconductor layer 30 (hereinafter, n layer 30), and a barrier layer 40a on the n layer 30.
  • a group III nitride semiconductor stacked body 40 (hereinafter referred to as a stacked body 40) in which well layers 40b having a band gap smaller than that of the barrier layer 40a are alternately stacked in this order by N layers (where N is an integer).
  • the first embodiment is particularly characterized in that in the third step, the AlN guide layer 60 is epitaxially grown using a source gas composed of trimethylaluminum gas and ammonia gas.
  • a source gas composed of trimethylaluminum gas and ammonia gas.
  • a sapphire substrate is generally prepared as the substrate 10.
  • An AlN template substrate having an AlN layer formed on the surface 10A of the substrate 10 is preferably formed, and a commercially available AlN template substrate may be used (FIGS. 4A to 4B).
  • the AlN layer 20 is formed by a known thin film growth method such as metal organic chemical vapor deposition (MOCVD), chemical vapor deposition (MBD), molecular beam epitaxy (MBE), or sputtering. Can do.
  • TMA trimethylaluminum
  • NH 3 ammonia
  • the growth temperature of the AlN layer 20 is not particularly limited, but is preferably 1270 ° C. or higher and 1350 ° C. or lower, and more preferably 1290 ° C. or higher and 1330 ° C. or lower. Within this temperature range, the crystallinity of the AlN layer 20 can be improved when the heat treatment step is subsequently performed.
  • the growth pressure in the chamber can be set to 5 Torr to 20 Torr, for example. More preferably, it is 8 Torr to 15 Torr.
  • V / III ratio the molar ratio of group V element to group III element calculated based on the growth gas flow rate of group V element gas such as NH 3 gas and group III element gas such as TMA gas
  • V / III ratio the molar ratio of group V element to group III element calculated based on the growth gas flow rate of group V element gas such as NH 3 gas and group III element gas such as TMA gas
  • V / III ratio the molar ratio of group V element to group III element calculated based on the growth gas flow rate of group V element gas such as NH 3 gas and group III element gas such as TMA gas.
  • V / III ratio group V element gas
  • it may be 130 or more and 190 or less. More preferably, it is 140 or more and 180 or less.
  • the AlN layer 20 on the sapphire substrate 10 obtained as described above it is preferable to heat-treat the AlN layer 20 on the sapphire substrate 10 obtained as described above at a temperature higher than the growth temperature of the AlN layer 20.
  • This heat treatment step can be performed using a known heat treatment furnace. By performing such heat treatment, the half width of the X-ray rocking curve of the (10-12) plane of the AlN layer 20 is set to 400 seconds or less, and high crystallinity can be realized (FIG. 4C).
  • an undoped AlGaN layer 20 ′ on the AlN layer 20.
  • TMA trimethyl gallium
  • NH 3 gas as an N source
  • a layer made of an AlGaN material can be formed. This is an n layer 30 and a laminate described below.
  • These source gases are supplied into the chamber using hydrogen gas or nitrogen gas or a mixed gas of both as a carrier gas. In general, hydrogen gas is used as a carrier gas.
  • the V / III ratio calculated based on the growth gas flow rate of the group V element gas such as NH 3 gas and the group III element gas such as TMA gas can be set to 100 or more and 100000 or less, for example. More preferably, it is 300 or more and 30000 or less. Since there is an optimum V / III ratio depending on the growth temperature and growth pressure, it is preferable to set the growth gas flow rate appropriately as in the case of forming the AlN layer 20.
  • n layer 30 can be formed on the AlN layer 20, and is preferably formed on the undoped AlGaN layer 20 '.
  • the n-type dopant is as described above.
  • a second step of forming the stacked body 40 is performed.
  • the ratio of the flow rate of the Al source and the flow rate of the Ga source may be appropriately changed.
  • the growth temperature is preferably 1000 ° C. or higher and 1400 ° C. or lower, and more preferably 1050 ° C. or higher and 1350 ° C. or lower.
  • the AlN guide layer 60 is epitaxially grown using a source gas composed of trimethylaluminum gas (TMA gas) and ammonia gas (NH 3 gas).
  • TMA gas trimethylaluminum gas
  • NH 3 gas ammonia gas
  • the raw material gas is particularly preferably composed of only trimethylaluminum gas (TMA gas) and ammonia gas (NH 3 gas).
  • the carrier gas a carrier gas mainly containing nitrogen is preferably used, and nitrogen gas is more preferably used.
  • the growth temperature is preferably 1000 ° C. or higher and 1400 ° C. or lower, more preferably 1050 ° C. or higher and 1350 ° C. or lower. By appropriately selecting the growth time, the thickness of the AlN guide layer 60 can be set to 0.5 nm or more and 2.0 nm or less.
  • the p layer 70 may include any or all of the p-type electron block layer 71, the p-type cladding layer 72, and the p-type contact layer 73.
  • a dopant for forming the p layer 70 for example, Mg or Zn can be appropriately selected and used, and as the Mg source, cyclopentadienyl magnesium (CP 2 Mg) can be used. ZnCl 2 can be used.
  • a mixed gas of a dopant source may be supplied to the chamber.
  • the formation of the p-type electron block layer 71 is a gas containing hydrogen as a main component as a carrier gas.
  • the source gas is TMA, TMG and NH 3 gas as described above, and further, a dopant source gas is appropriately selected and used.
  • the supply of the TMA gas is interrupted, the carrier gas is switched from nitrogen to hydrogen, and after about 20 seconds to 1 minute, the TMA gas and the TMG gas are supplied to supply the electron block layer 71.
  • carrier gas containing hydrogen as a main component means a carrier gas in which the ratio of the volume of hydrogen gas to the total volume of the carrier gas is 60% or more. More preferably, it is 85% or more. Note that a gas having purity that is commercially available for semiconductor manufacturing may be used. The same applies to “carrier gas containing nitrogen as a main component”.
  • the volume ratio of the carrier gas is intended for the gas supplied into the chamber and passing through the space in the vicinity of the wafer, and is exhausted without passing through the space in the vicinity of the wafer for the purpose of purging the heater and the inner wall of the chamber. Gas is not included. In other words, even if hydrogen is exhausted at a large flow rate through the heater or the inner wall of the chamber, it becomes “a carrier gas mainly composed of nitrogen” when nitrogen is substantially flowing near the wafer.
  • the growth temperature of the p layer 70 is preferably 1000 ° C. or higher and 1400 ° C. or lower, more preferably 1050 ° C. or higher and 1350 ° C. or lower, although it depends on the Al composition ratio.
  • the growth pressure in the chamber can be set at, for example, 10 Torr to 760 Torr. More preferably, it is 20 Torr to 380 Torr.
  • the growth temperature when forming the p-type contact layer 73 having a small Al composition ratio in the p layer 70 is preferably 800 ° C. or higher and 1400 ° C. or lower, and more preferably 900 ° C. or higher and 1300 ° C. or lower.
  • the growth pressure in the chamber can be, for example, 10 Torr to 760 Torr, and more preferably 20 Torr to 600 Torr.
  • As the carrier gas hydrogen gas, nitrogen gas, or a mixed gas of both can be used as described above.
  • the AlN layer 60 side The carrier gas may be hydrogen gas, and the opposite side (that is, the p-type electrode 90 side) may be nitrogen gas, or vice versa.
  • the p-type cladding layer 72 may be provided, it is preferable that the p-type cladding layer 72 is not provided from the viewpoint of device lifetime as described above.
  • the stacked body 40, the AlN layer 60, and a part of the p layer 70 are removed by etching or the like, and an n-type electrode 80 is formed on the exposed n layer 30 to form a p layer 70.
  • a p-type electrode 90 can be formed thereon.
  • the group III nitride semiconductor light emitting device 100 can be manufactured according to the manufacturing method of the first embodiment of the present invention.
  • a second embodiment of a method for manufacturing a group III nitride semiconductor light emitting device 100 according to the present invention will be described.
  • the first step of forming the n layer 30 and the barrier layer 40a and the well layer 40b having a smaller band gap than the barrier layer 40a are alternately formed on the n layer 30 in this order.
  • a second step of forming a stacked body 40 formed by stacking layers (where N is an integer), and an AlN guide layer 60 having a thickness of 0.5 nm or more and 2.0 nm or less is formed on the stacked body 40.
  • a third step and a fourth step of forming a p-layer 70 on the AlN guide layer 60 A description of the same contents as those in the first embodiment is omitted.
  • TMA gas trimethylaluminum gas
  • TMG gas trimethylgallium gas
  • ammonia gas in a carrier gas atmosphere containing nitrogen as a main component
  • the AlGaN altered layer 50 ′ is epitaxially grown using a source gas containing NH 3 gas), then the epitaxial growth is interrupted, and the AlGaN altered layer 50 ′ is exposed by switching to a carrier gas atmosphere containing hydrogen as a main component. It is particularly characterized in that at least a part or all of the altered layer 50 ′ is altered to the AlN guide layer 60, and the remaining part of the AlGaN altered layer 50 ′ is the final barrier layer 60 (see FIG. 5).
  • altered here means that the thickness of the AlGaN-altered layer 50 ′ is reduced in addition to the fact that all or part of the composition of the AlGaN-altered layer 50 ′ changes from AlGaN to AlN after the growth is interrupted. means. This alteration will be described in more detail below with reference to FIGS. 5 (A) to (C).
  • an AlGaN altered layer 50 ′ is epitaxially grown on the stacked body 40 using a source gas containing trimethylaluminum gas (TMA gas), trimethylgallium gas (TMG gas), and ammonia gas (NH 3 gas) (FIG. 4 ( A), (B)).
  • TMA gas trimethylaluminum gas
  • TMG gas trimethylgallium gas
  • NH 3 gas ammonia gas
  • As the carrier gas for the GaN-modified layer 50 nitrogen or a mixture of hydrogen containing nitrogen as a main component can be used.
  • the growth temperature, growth pressure, V / III ratio, and the like can be general conditions for forming a layer made of an AlGaN material.
  • the AlGaN altered layer 50 ′ is formed to have a thickness of about 0.5 to 1.5 nm thicker than the total thickness of the AlN guide layer 60 and the final barrier layer 50 to be formed later.
  • the epitaxial growth of the AlGaN altered layer 50 ′ is interrupted, and the AlGaN altered layer 50 ′ is exposed in a carrier gas atmosphere (for example, a carrier gas atmosphere mainly composed of hydrogen) having a lower nitrogen partial pressure than that during the growth of the altered layer.
  • a carrier gas atmosphere for example, a carrier gas atmosphere mainly composed of hydrogen
  • TMA gas and TMG gas which are group III element source gases
  • the AlGaN altered layer 50 ′ is exposed with hydrogen as a carrier gas while supplying ammonia gas.
  • nitrogen gas is used as the carrier gas when forming the AlGaN altered layer 50 ', the carrier gas is switched from nitrogen to hydrogen.
  • the nitrogen partial pressure it is preferable to further reduce the nitrogen partial pressure by switching the carrier gas from nitrogen to hydrogen and then adjusting the ratio of ammonia gas and hydrogen gas as necessary.
  • the surface layer portion of the AlGaN altered layer 50 ' is transformed into AlN to become the AlN guide layer 60, and the remaining portion is the AlGaN altered layer.
  • the final barrier layer 50 is formed with the Al composition ratio of 50 ′.
  • the thickness of the AlN guide layer 60 to be formed is about 0.5 to 1.5 nm, and the total thickness of the AlN guide layer 60 and the final barrier layer 50 to be formed.
  • the inventors have experimentally confirmed that the thickness is about 0.5 to 1.5 nm thinner than the thickness of the AlGaN altered layer 50 ′. That is, at the time of transformation into the AlN guide layer, at least a part of the AlGaN alteration layer 50 ′ is removed. This is presumed to be because Ga in the surface layer portion of the AlGaN altered layer 50 ′ was lost during exposure to hydrogen gas.
  • the exposure time with hydrogen (that is, the growth interruption time) after stopping the supply of the group III element source gas is not particularly limited, but preferably does not affect the well layer, and the AlN guide layer 60 and the final barrier layer 50 are not affected.
  • the exposure time is preferably about 15 seconds to 90 seconds, and more preferably about 45 seconds to 75 seconds.
  • the entire AlGaN altered layer 50 ′ is altered to the AlN guide layer 60. This is because variations in device lifetimes of a plurality of group III nitride semiconductor light-emitting devices obtained by cutting out the wafer can be suppressed.
  • the design thickness of the AlGaN altered layer 50 ′ is 0.5 nm or more and 2.0 nm or less, the entire AlGaN altered layer 50 ′ can be altered to the AlN guide layer 60, and the thickness of the formed AlN guide layer 60 is 0. .5 nm to 1.0 nm.
  • the output decreases when the alteration reaches the region of the well layer 40b, the variation in output tends to be larger than that in the first embodiment.
  • the thickness of the final barrier layer 50 is 1.0 nm or less. It is preferable to set the design thickness of the AlGaN altered layer 50 ′ so that When the design thickness of the AlGaN altered layer 50 ′ is more than 2.0 nm and not more than 3.0 nm, the thickness of the formed AlN guide layer 60 is not less than 0.8 and not more than 1.2 nm, and the thickness of the final barrier layer is not more than 1.0 nm. It becomes.
  • the thickness of the final barrier layer 50 is preferably 1.0 nm or less as described above.
  • the group III nitride semiconductor light emitting device 100 according to the present invention can be formed by the manufacturing method according to any of the first and second embodiments described above.
  • the embodiment of these manufacturing methods is only one embodiment for manufacturing the group III nitride semiconductor light emitting device 100 according to the present invention, and the group III nitride semiconductor light emitting device 100 is manufactured according to other embodiments. May be.
  • the manufacturing method of 1st Embodiment can adjust the thickness of an AlN guide layer more correctly, it is preferable.
  • Example 1 According to the flowchart shown in FIG. 4, the group III nitride semiconductor light-emitting device in Experimental Example 1 was fabricated. First, a sapphire substrate (diameter 2 inches, thickness: 430 ⁇ m, plane orientation: (0001), m-axis direction off angle ⁇ : 0.5 degree, terrace width: 100 nm, step height: 0.20 nm) was prepared ( FIG. 4 (A)). Next, an AlN layer having a center film thickness of 0.60 ⁇ m (average film thickness of 0.61 ⁇ m) was grown on the sapphire substrate by MOCVD to obtain an AlN template substrate (FIG. 4B).
  • the growth temperature of the AlN layer was 1300 ° C.
  • the growth pressure in the chamber was 10 Torr
  • the growth gas flow rates of ammonia gas and TMA gas were set so that the V / III ratio was 163.
  • the flow rate of the group V element gas (NH 3 ) is 200 sccm
  • the flow rate of the group III element gas (TMA) is 53 sccm.
  • the film thickness of the AlN layer a total of 25 films including the center in the wafer plane and dispersed at equal intervals using an optical interference type film thickness measuring device (Nanospec M6100A; manufactured by Nanometrics). The thickness was measured.
  • the AlN template substrate is introduced into a heat treatment furnace, and after reducing the pressure to 10 Pa and purging nitrogen gas to normal pressure, the furnace is made a nitrogen gas atmosphere. On the other hand, heat treatment was performed (FIG. 4C). At that time, the heating temperature was 1650 ° C., and the heating time was 4 hours.
  • Al 0.65 Ga 0.35 N having a thickness of 24 nm serving as an n-type guide layer and a barrier layer was formed on the n-type Al 0.56 Ga 0.44 N layer.
  • a 2.4 nm thick well layer made of Al 0.45 Ga 0.55 N and a barrier layer made of Al 0.65 Ga 0.35 N having a thickness of 5.8 nm are alternately formed, and two layers of Al 0.45 Ga 0.55 N are formed.
  • Si was doped in the formation of the barrier layers.
  • an undoped AlGaN altered layer made of Al 0.65 Ga 0.35 N and having a thickness of 2 nm was formed on the third well layer using nitrogen gas as a carrier gas and a furnace pressure (growth pressure) of 52 torr.
  • the carrier gas was stopped while supplying ammonia gas, and hydrogen was supplied.
  • the ratio of hydrogen to ammonia was set to 1: By changing the pressure from 1 to 2.13: 1, the AlGaN altered layer was exposed for 30 seconds with the furnace pressure increased to 75 torr and the nitrogen partial pressure further lowered, and the 2 nm thick AlGaN altered layer was exposed to 1 nm thickness. Altered to an AlN guide layer.
  • the TMA gas and the TMG gas which are group III element source gases, are supplied again, and a 40-nm p-type electron blocking layer made of Al 0.68 Ga 0.32 N and doped with Mg is formed. Formed.
  • a p-type contact layer made of GaN and doped with Mg and having a layer thickness of 175 nm was formed.
  • a high Mg concentration layer was formed by reducing the flow rate of TMG gas to increase the existence probability of Mg and lowering the growth rate ( FIG. 4 (H)).
  • the Mg concentration of the p-type contact layer having a thickness of 150 nm on the p-type electron blocking layer side is 3.0 ⁇ 10 19 atoms / cm 3
  • the Mg concentration of the remaining 30 nm portion with a high Mg concentration is It was 1.2 ⁇ 10 20 atoms / cm 3 .
  • a mask was formed on the p-type contact layer, and mesa etching by dry etching was performed to expose a part of the n-type Al 0.56 Ga 0.44 N layer.
  • a p-type electrode made of Ni / Au was formed on the p-type contact layer, and an n-type electrode made of Ti / Al was formed on the exposed n-type Al 0.56 Ga 0.44 N layer.
  • Ni has a thickness of 50 mm and Au has a thickness of 1500 mm.
  • the thickness of Ti is 200 mm and the thickness of Al is 1500 mm.
  • contact annealing was performed at 550 ° C. to form an electrode (FIG. 4I).
  • Table 1 shows the configuration of each layer from the undoped AlGaN layer to the p-type contact layer above the AlN layer 20 of the group III nitride semiconductor light-emitting device manufactured as described above.
  • a representative TEM cross-sectional photograph of this group III nitride semiconductor light emitting device is shown in FIG.
  • the actual measured thicknesses of each layer in Table 1 were obtained from a TEM cross-sectional photograph, and the Al composition ratio values of each layer were obtained by measurement using energy dispersive X-ray analysis (EDS). Is. If the thickness is sufficient, it can be identified using SEM-EDS. If the thickness of each layer is small, such as an AlN guide layer, well layer, or barrier layer, identification is performed using TEM-EDS. be able to.
  • EDS energy dispersive X-ray analysis
  • the surface layer portion 1 nm (average value) of the AlGaN altered layer was transformed into an AlN guide layer, and the altered AlN guide layer and It was also confirmed that the total thickness of the final barrier layer was 1 nm thinner on average than the thickness of the AlGaN altered layer.
  • Example 1 A group III nitride semiconductor light-emitting device according to Sample 1 was fabricated under the same conditions as in Experimental Example 1, except that the AlN guide layer was formed as follows. In forming the AlN guide layer, the group III element source gas was TMA gas, and the thickness was 1 nm. Further, no dopant was added, and an i-type AlN guide layer was formed. The carrier gas and the growth pressure were the same as in Experimental Example 1, and the same conditions were used when switching the carrier gas to the p-type electron block layer.
  • Example 2 A Group III nitride semiconductor light-emitting device according to Sample 2 was fabricated in the same manner as Sample 1, except that the AlN guide layer was formed with a thickness of 0.5 nm.
  • Example 3 A Group III nitride semiconductor light-emitting device according to Sample 3 was fabricated in the same manner as Sample 1, except that the AlN guide layer was formed with a thickness of 2.0 nm.
  • Example 4 A design thickness of the AlGaN altered layer was 2.0 nm, and a group III nitride semiconductor light-emitting device according to sample 4 was fabricated under the same conditions as in Experimental Example 1.
  • Example 5 A Group III nitride semiconductor light-emitting device according to Sample 5 was fabricated in the same manner as Sample 4, except that the design thickness of the AlGaN altered layer was 1.0 nm.
  • Example 6 A Group III nitride semiconductor light-emitting device according to Sample 6 was fabricated in the same manner as Sample 4 except that the design thickness of the AlGaN altered layer was set to 3.0 nm.
  • Example 7 A Group III nitride semiconductor light-emitting device according to Sample 7 was fabricated in the same manner as Sample 4, except that the design thickness of the AlGaN altered layer was 4.0 nm.
  • Example 8 A Group III nitride semiconductor light-emitting device according to Sample 8 was produced in the same manner as Sample 4 except that the designed thickness of the AlGaN altered layer was 5.0 nm.
  • Example 9 A Group III nitride semiconductor light emitting device according to Sample 9 was produced in the same manner as Sample 8, except that the composition of the AlGaN altered layer was Al 0.55 Ga 0.45 N.
  • Sample 10 A group III nitride semiconductor light-emitting device according to Sample 10 was fabricated in the same manner as Sample 9, except that the design thickness of the AlGaN altered layer was 20.0 nm.
  • Example 11 A Group III nitride semiconductor light-emitting device according to Sample 12 was fabricated in the same manner as Sample 1 except that neither the AlN guide layer nor the AlGaN altered layer was formed.
  • Sample 12 A Group III nitride semiconductor light-emitting device according to Sample 12 was fabricated in the same manner as Sample 1 except that the carrier gas for forming the p-type electron block layer was changed to nitrogen gas.
  • Example 13 A Group III nitride semiconductor light-emitting device according to Sample 13 was fabricated in the same manner as Sample 4 except that the growth was not interrupted and the carrier gas for forming the p-type electron block layer was changed to nitrogen gas.
  • Sample 14 A group III nitride semiconductor light-emitting device according to Sample 14 was fabricated in the same manner as Sample 1, except that the AlN guide layer was formed with a thickness of 3.0 nm.
  • Table 2 shows the conditions for forming the AlN guide layer and the AlGaN altered layer of Samples 1 to 15 described above.
  • the thickness of the AlN guide layer is preferably more than 0.5 nm and less than 2.0 nm.
  • the thickness is set to 1.0 nm or less. It was confirmed that it is preferable to do. Furthermore, it was confirmed that the EL output can be improved by making the band gap of the final barrier layer larger than that of the barrier layer. From Evaluation 3, it was confirmed that a sample in which the thickness of the AlN guide layer and the AlGaN altered layer was appropriate was not only a high EL output but also a light emitting device with a long device lifetime.
  • the AlN guide layer In comparison between sample 1 and sample 4, when the AlN guide layer is formed directly on the last well layer, the AlN guide layer is formed directly on the last well layer, compared to the case where the AlN guide layer is formed by alteration. There is little variation in EL output. In addition, since the variation in EL output of sample 4 is larger than that of sample 6, when the AlN guide layer is formed by being altered, it is preferably between the time when the final barrier layer is completely altered and just before that. The EL output is expected to decrease when the final barrier layer is affected deeply into the well layer.
  • Sample 4 was the same as Sample 4 except that a p-type cladding layer (thickness: 50 nm) made of Al 0.35 Ga 0.65 N doped with Mg was formed between the p-type electron blocking layer and the p-type contact layer.
  • a Group III nitride semiconductor light-emitting device according to Sample 21 was fabricated.
  • a p-type cladding layer (thickness: 50 nm) was formed between the p-type electron blocking layer and the p-type contact layer under the same conditions as the sample 21.
  • Such a group III nitride semiconductor light emitting device was fabricated.
  • a group III nitride semiconductor light-emitting device having a device lifetime superior to that of the prior art and a method for manufacturing the same can be provided, which is useful.
  • Substrate 10A Main surface 20 of substrate AlN layer 30 n-type semiconductor layer 40 Stack 40a Barrier layer 40b Well layer 50 Final barrier layer 50 ′ AlGaN altered layer 60 AlN guide layer 70 p-type semiconductor layer 71 p-type electron block layer 72 p Type cladding layer 73 p type contact layer 80 n type electrode 90 p type electrode 100 Group III nitride semiconductor device

Abstract

従来よりも優れた素子寿命を有するIII族窒化物半導体発光素子およびその製造方法を提供する。 本発明のIII族窒化物半導体発光素子100は、n型III族窒化物半導体層30と、障壁層40aおよび、障壁層40aよりもバンドギャップの小さい井戸層40bをこの順に交互にN層ずつ(但し、Nは整数である)積層してなるIII族窒化物半導体積層体40と、AlNガイド層60と、p型III族窒化物半導体層70と、をこの順に有し、AlNガイド層60の厚さが0.5nm以上2.0nm以下であることを特徴とする。

Description

III族窒化物半導体発光素子およびその製造方法
 本発明は、III族窒化物半導体発光素子およびその製造方法に関し、特に、優れた素子寿命および優れた発光出力を共に有するIII族窒化物半導体発光素子およびその製造方法に関する。
 従来、Al、Ga、In等のIII族元素とNとの化合物からなるIII族窒化物半導体は、青色光から深紫外光の発光素子の材料として用いられている。中でも、高Al組成のAlGaNからなるIII族窒化物半導体は、発光波長340nm以下の紫外発光素子や発光波長300nm以下の深紫外光発光素子(DUV-LED)に用いられている。
 一般に、III族窒化物半導体を用いた深紫外光発光素子の光取出し効率は極めて低く、高出力化の実現は困難と言われてきたが、小型かつ高出力な深紫外発光素子を実現するために、高外部量子効率特性や低抵抗特性などを実現するための試みが種々行われてきた。
 例えば、本願出願人らは、特許文献1において以下の発光素子を先に提案している。すなわち、AlN系III族窒化物単結晶上に形成する発光素子において、高濃度n型III族窒化物層と、n型又はi型のIII族窒化物障壁層とn型又はi型のIII族窒化物井戸層とからなる多重量子井戸構造と、i型のIII族窒化物ファイナルバリア層と、p型III族窒化物層と、前記i型III族窒化物ファイナルバリア層と前記p型III族窒化物層との間に形成され、前記i型III族窒化物ファイナルバリア層に対して電子のエネルギー障壁となるp型又はi型のAlzGa1-zN層(0.95<z≦1)からなる電子ブロック層とを有する発光素子である。
 特許文献1に記載の技術では、量子井戸構造の量子井戸厚の最適化により内部量子効率の向上が実現され、また、電子ブロック層の導入および最適化と、ファイナルバリア層の最適化とにより、電子注入効率の最適化が実現される。
特開2010-205767号公報
 特許文献1に記載の技術により、III族窒化物半導体を用いた紫外発光素子における発光効率を高めることができる。しかしながら、発光効率を改善する以外にも、III族窒化物半導体発光素子の素子寿命特性を改善することが希求されており、寿命の点で改善の余地が残されている。
 そこで本発明は、優れた素子寿命および優れた発光出力を共に有するIII族窒化物半導体発光素子およびその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決する方途について鋭意検討し、発光層からのキャリア漏れが低寿命の原因と考え、障壁層および井戸層を積層してなる積層体と、p型半導体層との間の層構成およびその厚みに着目した。そして、上記積層体およびp型半導体層の間にAlNガイド層を適切な厚みで設けることによって、III族窒化物半導体発光素子の寿命を顕著に改善できると共に、優れた発光出力を得ることができることを知見し、本発明を完成するに至った。
 すなわち、本発明の要旨構成は以下の通りである。
(1)n型III族窒化物半導体層と、障壁層および、該障壁層よりもバンドギャップの小さい井戸層をこの順に交互にN層ずつ(但し、Nは整数である)積層してなるIII族窒化物半導体積層体と、AlNガイド層と、p型III族窒化物半導体層と、をこの順に有し、前記AlNガイド層の厚さが0.5nm以上2.0nm以下であることを特徴とするIII族窒化物半導体発光素子。
(2)前記AlNガイド層がi型である、前記(1)に記載のIII族窒化物発光素子。
(3)前記III族窒化物半導体積層体における前記n層目の井戸層と、前記AlNガイド層とが接する、または、
 前記III族窒化物半導体積層体における前記n層目の井戸層と、前記AlNガイド層との間に、バンドギャップが前記井戸層超かつ前記AlNガイド層未満のファイナルバリア層を有し、該ファイナルバリア層の厚みが1.5nm以下である、前記(1)または(2)に記載のIII族窒化物発光素子。
(4)前記ファイナルバリア層の厚みが0.1nm以上1.0nm以下である、前記(3)に記載のIII族窒化物発光素子。
(5)前記AlNガイド層の厚さが0.5nm超2.0nm未満である、前記(1)~(4)のいずれかに記載のIII族窒化物発光素子。
(6)前記p型III族窒化物半導体層は、第1p型III族窒化物半導体層および第2p型III族窒化物半導体層をこの順に有し、前記第1p型III族窒化物半導体層のバンドギャップは、前記AlNガイド層よりも小さく、かつ、前記障壁層よりも大きく、前記第2p型III族窒化物半導体層のバンドキャップは、前記第1p型III族窒化物半導体層よりも小さい、前記(1)~(5)のいずれかに記載のIII族窒化物発光素子。
(7)前記第1p型III族窒化物半導体層と前記第2p型III族窒化物半導体層とが接し、前記第2p型III族窒化物半導体層がp型コンタクト層のみからなる、前記(6)に記載のIII族窒化物発光素子。
(8)n型III族窒化物半導体層を形成する第1工程と、前記n型III族窒化物半導体層上に、障壁層および、該障壁層よりもバンドギャップの小さい井戸層をこの順に交互にN層ずつ(但し、Nは整数である)積層してなるIII族窒化物半導体積層体を形成する第2工程と、前記III族窒化物半導体積層体上に、厚さ0.5nm以上2.0nm以下のAlNガイド層を形成する第3工程と、前記AlNガイド層上に、p型III族窒化物半導体層を形成する第4工程と、を含み、前記第3工程において、トリメチルアルミニウムガスおよびアンモニアガスからなる原料ガスを用いて前記AlNガイド層をエピタキシャル成長させることを特徴とするIII族窒化物半導体発光素子の製造方法。
(9)n型III族窒化物半導体層を形成する第1工程と、前記n型III族窒化物半導体層上に、障壁層および、該障壁層よりもバンドギャップの小さい井戸層をこの順に交互にN層ずつ(但し、Nは整数である)積層してなるIII族窒化物半導体積層体を形成する第2工程と、前記III族窒化物半導体積層体上に、厚さ0.5nm以上2.0nm以下のAlNガイド層を形成する第3工程と、前記AlNガイド層上に、p型III族窒化物半導体層を形成する第4工程と、を含み、前記第3工程において、トリメチルアルミニウムガス、トリメチルガリウムガスおよびアンモニアガスを含む原料ガスを用いてAlGaN変質層をエピタキシャル成長させ、次いで前記トリメチルアルミニウムガスおよび前記トリメチルガリウムガスの供給を止めて前記エピタキシャル成長を中断し、水素を主成分とするキャリアガス雰囲気で前記AlGaN変質層を曝すことにより、前記AlGaN変質層の少なくとも一部を除去すると共に前記AlNガイド層に変質させ、前記AlGaN変質層の残部をファイナルバリア層とすることを特徴とするIII族窒化物半導体発光素子の製造方法。
(10)前記第3工程において、前記AlGaN変質層の全部を前記AlNガイド層に変質させる、前記(9)に記載のIII族窒化物半導体発光素子の製造方法。
(11)前記AlNガイド層はi型である、前記(8)~(10)のいずれかに記載のIII族窒化物半導体発光素子の製造方法。
 本発明によれば、AlNガイド層を適切な厚みで設けたので、従来よりも優れた素子寿命を有するIII族窒化物半導体発光素子およびその製造方法を提供することができる。
本発明の一実施形態に従うIII族窒化物半導体発光素子を説明する模式断面図である。 本発明の別の実施形態に従うIII族窒化物半導体発光素子における積層体、ファイナルバリア層、AlNガイド層およびp型半導体層を説明する模式断面図である。 本発明に従うIII族半導体発光素子のバンド構造の一部を示す図であり、(A)は一実施形態を示し、(B)は別の実施形態を示す。 本発明に従うIII族半導体発光素子の製造方法の第1実施形態を説明するためのフローチャートである。 本発明に従うIII族半導体発光素子の製造方法の第2実施形態を説明するためのフローチャートである。 実験例1におけるIII族半導体発光素子のTEM断面写真である。 実験例2において、試料1~3、12、14のAlNガイド層の厚さおよび試料4~10のAlGaN変質層の設計厚さに対するEL出力を示すグラフである。 実験例2において、試料1~10、12、14のAlNガイド層の厚さに対するEL出力を示すグラフである。
(III族窒化物半導体発光素子)
 以下、図面を参照して本発明の実施形態について説明する。なお、同一の構成要素には原則として同一の参照番号を付して、説明を省略する。また、各図において、説明の便宜上、基板および各層の縦横の比率を実際の比率から誇張して示している。
 図1に示すように、本発明の一実施形態に従うIII族窒化物半導体発光素子100は、n型III族窒化物半導体層30と、障壁層40aおよび、障壁層40aよりもバンドギャップの小さい井戸層40bをこの順に交互にN層ずつ(但し、Nは整数である)積層してなるIII族窒化物半導体積層体40と、AlNガイド層60と、p型III族窒化物半導体層70と、をこの順に有し、AlNガイド層60の厚さが0.5nm以上2.0nm以下であることを特徴とする。以下、本明細書においてn型III族窒化物半導体層30を「n層30」、III族窒化物半導体積層体40を「積層体40」、p型III族窒化物半導体層70を「p層70」と、それぞれ略記する。
 ここで、図1に示すように、III族半導体発光素子100のn層30を、基板10の表面にAlN層20が設けられたAlNテンプレート基板上に設けることができる。また、III族半導体発光素子100には、積層体40、AlNガイド層60およびp層70の一部をエッチング等により除去し、露出したn層30上に形成したn型電極80と、p層70上に形成したp型電極90とが設けられてもよい。本発明の一実施形態に従うIII族半導体発光素子100において、n層30、積層体40、AlNガイド層60およびp層70、ならびに随意に設けられてもよいファイナルバリア層60(図2)が特徴となる構成であり、そのうち、積層体40およびAlNガイド層60が特に特徴となる構成である。上記の基板10、AlN層20、n型電極80およびp型電極90は一般的な構成とすることができ、具体的な構成は何ら限定されるものではない。また、図示しないが、AlN層20とn層30の間には、AlGaN層、組成傾斜層、超格子層の1つ以上から選ばれるバッファ層を備えていてもよい。以下、本発明の特徴となる構成である、n層30、積層体40、AlNガイド層60およびp層70についてまず説明する。
 n層30は、少なくともAlを含むIII族窒化物半導体層であり、III族窒化物半導体層100のpn接合を構成する層であれば、一般的なn型半導体層を用いることができる。n層30は、例えばAlGaN材料からなり、また、III族元素としてのAlとGaに対して5%以内の量のInを含んでいてもよい。n層30には、n型のドーパント(不純物)がドープされ、n型ドーパントとしては、Si,Ge,Sn,S,O,Ti,Zr等を例示することができる。ドーパント濃度は、n型として機能することのできるドーパント濃度であれば特に限定されず、例えば1.0×1018atoms/cm3~1.0×1020atoms/cm3とすることができる。また、n層30のAl含有率は、特に制限はなく、一般的な範囲とすることができる。n型半導体層30を単層または複数層から構成することもできる。n層30の積層体40側の部分の組成および厚みを適宜調整して、斯かるn層30の積層体40側の部分が障壁層40aの機能を兼ねてもよく、その場合には障壁層40aが1層形成されているとみなす。
 III族窒化物半導体発光素子100において、積層体40がn層30に続いて設けられる。積層体40は、障壁層40aおよび、障壁層40aよりもバンドギャップの小さい井戸層40bをこの順に交互にN層ずつ(但し、Nは整数である)積層してなる。例えば、障壁層40aおよび井戸層40bとして、Al組成の異なるAlGaN材料を用いることができる。障壁層40aおよび井戸層40bは、必要に応じて、In等のIII族元素を5%以内の組成比で導入し、AlGaInN材料等としてもよいが、III族元素としてはAlおよびGaのみを用いた三元系のAlGaN材料とすることがより好ましい。積層体40の各層は、n型およびi型のいずれとしてもよいが、障壁層はn型とすることが好ましい。電子濃度が増え、井戸層内の結晶欠陥を補償する効果があるためである。なお、積層体40は、障壁層および井戸層を繰り返し形成し、障壁層で挟み込んだ一般的な多重量子井戸(MQW:Multiple Quantum Well)構造から、p層側の最後の障壁層を取り除いたものに相当すると言える。
 障壁層40aとしてAlaGa1-aN材料を用い、井戸層40bとしてAlbGa1-bN材料を用いる場合、障壁層40aのAl組成aを例えば0.40~0.95とすることができ、井戸層40bのAl組成bを、例えば0.30~0.80(但し、a>b)とすることができる。また、障壁層40aおよび井戸層40bのそれぞれの層数Nを、例えば1~10とすることができる。さらに、障壁層40aの厚みを3nm~30nmとすることができ、井戸層40bの厚みを0.5nm~5nmとすることができる。
 なお、積層体40における井戸層40bのAl組成bを0.35以上とすると、積層体40から放射される光の中心波長が300nm以下となり、最終的に作製されるIII族窒化物半導体発光素子100をDUV-LEDとすることができる。
 積層体40に続き、AlNガイド層60がIII族窒化物半導体発光素子100に設けられる。AlNガイド層60は、最も好ましくはIII族元素のAl組成比を100%として形成したAlNからなる窒化物半導体層である。ただし、他のIII族元素(Ga等)が製造工程中に不可避に混入した場合や、変質時に発生するガスや変質の進行状況を考慮して、結果としてAl組成比が96%~100%であれば、AlNガイド層60に含まれるものとする。AlNガイド層60の厚みを0.5nm以上2.0nm以下とする。AlNガイド層60を、上記厚み範囲で設ける技術的意義については後述する。AlNガイド層60は、アンドープであることが好ましいが、Mgなどのp型ドーパントやSiなどのn型ドーパントを添加しても構わない。また、AlNガイド層60中の不純物濃度が均一である必要はなく、例えば、積層体40側とp層70側との間で、不純物濃度が異なっていても良い。ドーパントを添加した際にはi型だけでなく、結果として一部もしくは全体がp型化、またはn型化してもよい。
 なお、「i型」であるとは、特定の不純物を意図的には添加していない層(アンドープ層ともいう)のことをいう。理想的には、不純物を全く含まない半導体とするのが好ましいが、電気的にp型またはn型のいずれとしても機能しない半導体であればよく、キャリア密度が小さいもの(例えば5×1016/cm3未満のもの)はi型と称することができる。また、p層70よりp型ドーパントの拡散があったとしても、特定の不純物を意図的に添加したことにはならない。
 AlNガイド層60に続き設けられるp層70は、正孔を積層体40に注入できる限りは、特に限定されず、一般的な構成とすることができ、図2に例示すように、Al組成比の異なるAlGaN材料を用いてp型電子ブロック層71、p型クラッド層72およびp型コンタクト層73のいずれか1層または全部を含む複数層構造としてもよい(詳細を後述する)。また、p層70にドープするp型ドーパントとしては、Mg,Zn,Ca,Be,Mn等を例示することができる。また、p層70全体の平均ドーパント濃度は、p型として機能することのできるドーパント濃度であれば特に限定されず、例えば1.0×1018atoms/cm3~5.0×1021atoms/cm3とすることができる。なお、後述するが、本実施形態におけるp層70は、p型クラッド層72を有していても、有していなくてもいずれでもよい。
 ここで、III族窒化物半導体発光素子100において、上述の積層体40のp層70の側に、AlNガイド層60を適切な厚みで設けることが本発明における特に特徴的な構成となる。実施例において詳細を後述するが、AlNガイド層60を設けることでIII族窒化物半導体発光素子100の素子寿命を改善できることが、本発明者らの実験結果により明らかとなった。
 図3(A)に上記一実施形態に従うIII族窒化物半導体発光素子100の伝導帯のバンド構造を示す図を示す。図3(A)では、積層体40におけるn層目の井戸層40bと、AlNガイド層60とが接するようにこれらの層を設けている。換言すれば、積層体40とAlNガイド層60とを隣接して設けている。素子寿命を向上することができる理由が理論的に明らかになったわけではないが、本発明者らはその理由を以下のように考えている。すなわち、AlNガイド層が厚すぎれば、正孔が十分に積層体へ注入されず、動作電圧が高くなるばかりか、積層体からのキャリアの漏れを促進させてしまい非発光再結合など、非効率なキャリアの消費となりうる。薄い層でキャリアのブロックが可能であれば、正孔の注入が促進される。そのため、AlNガイド層60を適切な厚みで設けることで、発光出力と共に、III族窒化物半導体発光素子100の素子寿命を向上することができたのだと推測される。さらに、AlNガイド層60の厚さを0.5nm超2.0nm未満とすると、発光出力をより確実に増大させることもできるため好ましく、この目的のために厚さを0.7nm以上1.7nm以下とすることがより好ましく、0.8nm以上1.5nm以下とすることが特に好ましい。
 以上、本実施形態により、従来よりも優れた素子寿命および優れた発光出力を共に有するIII族窒化物半導体発光素子を実現することができる。
 ここで、図2の模式図および図3(B)のバンド構造に示すように、III族窒化物半導体発光素子100は、積層体40におけるAlNガイド層60側のn層目の井戸層40bと、AlNガイド層60との間に、バンドギャップが井戸層40a超かつAlNガイド層60未満のファイナルバリア層50を更に有することも好ましい。ファイナルバリア層50としてAlCGa1-cN材料を用いる場合、ファイナルバリア層50のAl組成比cは、b<c<1であり、a≦c<1であることが好ましい。この場合、ファイナルバリア層50の厚みを1.5nm以下とする。0.1nm以上1.0nm以下と、従来技術で用いられるファイナルバリア層50の厚みよりも非常に薄いことがより好ましい。AlNガイド層60の導入による素子寿命改善効果は、ファイナルバリア層50の厚みが1.5nm以下であれば確実に得られるが、該層50の厚みを1.0nm以下とすることで、上述した寿命改善効果がより確実に得られる上、III族窒化物半導体発光素子の発光出力を高めることができる。これは、ファイナルバリア層50の厚みが1.0nmを越えると、積層体40からのキャリアがファイナルバリア層50とAlNガイド層60との界面にて、2次元的な井戸へとオーバーフローすることで、注入効率が低下する場合があるからだと推測される。変質によってファイナルバリア層の一部がAlNガイド層となる場合、ファイナルバリア層50の厚みが0.1nm以上であれば、変質の影響を受けない1原子層が残ることで、井戸層40の変質を避けることができる。
 ここで、既述のとおりp層70を一般的な構成とすることができるが、p層70は、第1p型III族窒化物半導体層および第2p型III族窒化物半導体層をこの順に有することが好ましい。そして、第1p型III族窒化物半導体層のバンドギャップは、AlNガイド層60よりも小さく、かつ、障壁層40aよりも大きいことが好ましく、第2p型III族窒化物半導体層のバンドキャップは、第1p型III族窒化物半導体層よりも小さいことが好ましい。例えば、第1p型III族窒化物半導体層はp型電子ブロック層71を含むことができ、第1p型III族窒化物半導体層がp型電子ブロック層71のみからなる単層構造となることが好ましい。また、第2p型III族窒化物半導体層は、p型クラッド層72およびp型コンタクト層73を含む複数層構造とすることができ、第2p型III族窒化物半導体層がp型コンタクト層73のみからなることも好ましい。以下、p層70の各層の構成を説明する。
 電子ブロック層71は、AlNガイド層60に隣接して設けられ、AlNガイド層60よりはバンドギャップが小さいが、障壁層40aよりはバンドギャップが大きい層(すなわち。障壁層40aのAl組成aよりもAl組成が大きい)である。電子ブロック層71は一般的に、発光層として機能する量子井戸構造(MWQ)とp型クラッド層との間に設けることにより、電子を堰止めして、電子を発光層(MQWの場合には井戸層)内に注入して、電子の注入効率を高めるための層として用いられる。これは、発光層のAl組成が高い場合には、p層70のホール濃度が低いため、ホールを発光層に注入しにくく、一部の電子がp層70側に流れてしまうが、電子ブロック層71を設けることにより、こうした電子の流れを防止することができるからである。本実施形態でも、AlNガイド層60に隣接して設けられた電子ブロック層71は、同様にp層70側への電子の流れを防止することができ、電子の注入効率を高めることができる。
 このような電子ブロック層71は、例えばAlzGa1-zN材料(a<z<1)とすることができる。障壁層40aのAl組成にもよるが、例えばこの電子ブロック層50のAl組成は、0.5以上1.0以下(すなわち、a<z<1かつ0.5≦z)とすることが好ましい。これにより、井戸層40bへの電子の注入効率を高めることができる。また、電子ブロック層71全体の厚みは、例えば6nm~60nmであることが好ましい。電子ブロック層71の厚さが6nmより薄くても60nmを超えても、出力の大幅な減少がみられるためである。なお、電子ブロック層70の厚みは、障壁層40aの厚みよりは厚いことが好ましい。なお、電子ブロック層にドープするp型ドーパントについては、既述のp層70におけるp型ドーパントと同様であるが、必要に応じてp型以外のドーパントをドープしてもよく、部分的にアンドープの領域を設けてもよい。
 第2p型III族窒化物半導体層は、p型電子クラッド層72を含んでもよい。p型電子ブロック層71のAl組成zは既述のとおりであり、バンドギャップがAlN層の次に大きな層であるのに対して、「クラッド層」のAl組成は、p型電子ブロック層のAl組成よりも0.1を超えて小さく、p型コンタクト層よりも0.1を超えて大きいものを指すものとする。p型クラッド層72のAl組成をyとし、電子ブロック層71のAl組成をz、p型コンタクト層73のAl組成をxとすると、x+0.1<y<z-0.1である。なお、中心波長が300nm以下において使用されるp型のAlGaNはAl組成が大きいほど電流が流れにくいため、従来クラッド層として使用されるAl組成は、障壁層のAl組成以下であることが多い。このため、本明細書における電子ブロック層と従来技術におけるクラッド層とは、障壁層のAl組成を基準として区別することとする。
 なお、本実施形態に従うIII族窒化物半導体発光素子100において、p型クラッド層は任意であり、設けなくてもよく、第2p型III族窒化物半導体層を、p型コンタクト層73のみから構成することが好ましい。こうすることで、III族窒化物半導体発光素子100の素子寿命をより確実に改善することができる。なお、p型クラッド層72を設けるのであれば、その厚みは、2nm~300nmとすることができる。この場合、p型クラッド層72を、AlyGa1-yN(0.20≦y<b)とすることができ、Al組成yを0.35≦y<bとすることが好ましい。なお、図示しないが、p型クラッド層72は、Al組成を変えた複数層構造としてもよい。この場合、発光層側のp型クラッド層を第1p型クラッド層、p型コンタクト層側のp型クラッド層を第2p型クラッド層とすると、第1p型クラッド層のAl組成を、第2p型クラッド層とのAl組成よりも大きくすることが好ましい。
 また、第1p型III族窒化物半導体層と第2p型III族窒化物半導体層とが接し、第2p型III族窒化物半導体層がp型コンタクト層73のみからなることが好ましい。この場合、p型コンタクト層73は、Al組成xを0≦x≦0.1とした、p型のAlxGa1-xN材料とすることができる。p型コンタクト層73は、その表面に形成されるp型電極80と電子ブロック層71との間の接触抵抗を低減するための層であり、p型電極80との接触抵抗を十分に低減することができる。特に、p型コンタクト層73のAl組成xを、x=0(すなわち、GaN)とすることが好ましい。このp型コンタクト層73をp型とするためのドーパントとしては、マグネシウム(Mg)や亜鉛(Zn)などを用いることができる。また、p型コンタクト層73の厚みを5nm以上200nm以下とすることができる。なお、図示しないが、p型コンタクト層73は、Al組成、ドーパント種、ドーパント濃度、形成時のキャリアガス種などのいずれか1つまたは複数要素を変えた、複数層構造とすることも好ましい。
 以下に、図1に示した基板10、AlN層20、n型電極80およびp型電極90についてそれらの具体的な態様を例示的に説明するが、これらは種々の変形が可能である。既述のとおり、本発明に従う実施形態において、図1に示したサファイア基板10、AlN層20、n型電極80およびp型電極90は、本発明を何ら限定するものではない。
 III族半導体発光素子100の基板10として、サファイア基板を用いることができる。サファイア基板の表面にエピタキシャル成長させたAlN層20が設けられたAlNテンプレート基板を用いてもよい。サファイア基板としては、任意のサファイア基板を用いることができ、オフ角の有無は任意であり、オフ角が設けられている場合の傾斜方向の結晶軸方位は、m軸方向またはa軸方向のいずれでもよい。例えば、サファイア基板の主面を、C面が0.5度のオフ角θで傾斜した面とすることができる。AlNテンプレート基板を用いる場合、サファイア基板表面のAlN層の結晶性が優れていることが好ましい。また、AlNテンプレート基板の表面に、アンドープのAlGaN層が設けられていることも好ましい。また、基板10としてAlN単結晶基板を用いてもよい。
 n型電極80は、例えばTi含有膜およびこのTi含有膜上に形成されたAl含有膜を有する金属複合膜とすることができ、その厚み、形状およびサイズは、発光素子の形状およびサイズに応じて適宜選択することができる。また、p型電極90についても、例えばNi含有膜およびこのNi含有膜上に形成されたAu含有膜を有する金属複合膜とすることができ、その厚み、形状およびサイズは、発光素子の形状およびサイズに応じて適宜選択することができる。
(III族窒化物半導体発光素子の製造方法:第1実施形態)
 次に、本発明に従うIII族窒化物半導体発光素子100の製造方法の第1実施形態を説明する。第1実施形態に係る製造方法は、n型III族窒化物半導体層30(以下、n層30)を形成する第1工程(図4(E))と、n層30上に、障壁層40aおよび、障壁層40aよりもバンドギャップの小さい井戸層40bをこの順に交互にN層ずつ(但し、Nは整数である)積層してなるIII族窒化物半導体積層体40(以下、積層体40)を形成する第2工程(図4(F))と、積層体40上に、厚さ0.5nm以上2.0nm以下のAlNガイド層60を形成する第3工程(図4(G))と、AlNガイド層60上に、p型III族窒化物半導体層70(以下、p層70)を形成する第4工程(図4(H))と、を含む。第1実施形態では、上記第3工程において、トリメチルアルミニウムガスおよびアンモニアガスからなる原料ガスを用いてAlNガイド層60をエピタキシャル成長させることを特に特徴とする。以下、第1実施形態の好適な実施形態に従うフローチャートを示す図4を用いて各工程を順次説明するが、既述の実施形態と重複する説明については省略する。
 まず、基板10としてサファイア基板を用意するのが一般的である。基板10の表面10AにAlN層を形成したAlNテンプレート基板を形成することが好ましく、市販のAlNテンプレート基板を用いてもよい(図4(A)~図4(B))。なお、AlN層20は、例えば、有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法や分子線エピタキシ(MBE:Molecular Beam Epitaxy)法、スパッタ法などの公知の薄膜成長方法により形成することができる。
 AlN層20のAl源としては、トリメチルアルミニウム(TMA)を用いることができる。また、N源としては、アンモニア(NH3)ガスを用いることができる。これらの原料ガスを、キャリアガスとして水素ガスを用いることにより、AlN層20を形成することができる。
 なお、AlN層20の成長温度は特に限定されないが、1270℃以上1350℃以下が好ましく、1290℃以上1330℃以下がより好ましい。この温度範囲であれば、続いて熱処理工程を行う場合にAlN層20の結晶性を向上することができる。また、チャンバ内の成長圧力については、例えば5Torr~20Torrとすることができる。より好ましくは、8Torr~15Torrである。
 また、NH3ガスなどのV族元素ガスと、TMAガスなどのIII族元素ガスの成長ガス流量を元に計算されるIII族元素に対するV族元素のモル比(以降、V/III比と記載する)については、例えば130以上190以下とすることができる。より好ましくは140以上180以下である。なお、成長温度および成長圧力に応じて最適なV/III比が存在するため、成長ガス流量を適宜設定することが好ましい。
 続いて、上述のようにして得られた、サファイア基板10上のAlN層20に対して、このAlN層20の成長温度よりも高温で熱処理を施すことが好ましい。この熱処理工程は、公知の熱処理炉を用いて行うことができる。かかる熱処理を行うことにより、AlN層20の(10-12)面のX線ロッキングカーブの半値幅を400秒以下とし、高い結晶性を実現することができる(図4(C))。
 その後、図4(D)に例示するように、AlN層20上に、アンドープのAlGaN層20’を形成することも好ましい。Al源としてTMA、Ga源としてトリメチルガリウム(TMG)、N源としてNH3ガスを用いることで、AlGaN材料からなる層を形成することができ、このことは以下に説明するn層30、積層体40、ファイナルバリア層50、AlN層60およびp層70の形成においても同様である。これらの原料ガスを、キャリアガスとして水素ガスもしくは窒素ガスまたは両者の混合ガスを用いてチャンバ内に供給する。なお、一般的にはキャリアガスとして水素ガスを用いる。また、NH3ガスなどのV族元素ガスと、TMAガスなどのIII族元素ガスの成長ガス流量を元に計算されるV/III比については、例えば100以上100000以下とすることができる。より好ましくは300以上30000以下である。成長温度および成長圧力に応じて最適なV/III比が存在するため、成長ガス流量を適宜設定することが好ましいのはAlN層20を形成する場合と同様である。
 次に、n層30を形成する第1工程を行う(図4(E))。n層30は、AlN層20上に形成することができ、アンドープのAlGaN層20’上に形成することが好ましい。n型ドーパントについては既述のとおりである。
 続いて、図4(F)に示すように、積層体40を形成する第2工程を行う。井戸層40bおよび障壁層40aを形成する際のAl組成比の調整にあたっては、Al源の流量とGa源の流量の比を適宜変更すればよい。積層体40をAlGaN材料で形成する場合、成長温度を1000℃以上1400℃以下とすることが好ましく、1050℃以上1350℃以下とすることがより好ましい。
 次いで、積層体40上にAlN層60を形成する第3工程を行う。第1実施形態では、本工程において、トリメチルアルミニウムガス(TMAガス)およびアンモニアガス(NH3ガス)からなる原料ガスを用いてAlNガイド層60をエピタキシャル成長させる。Ga等の他のIII族元素の混入を意図的に排除するため、原料ガスはトリメチルアルミニウムガス(TMAガス)およびアンモニアガス(NH3ガス)のみからなることが特に好ましい。キャリアガスとしては、窒素を主成分とするキャリアガスを用いることが好ましく、窒素ガスを用いることがより好ましい。また、成長温度を1000℃以上1400℃以下とすることが好ましく、1050℃以上1350℃以下とすることがより好ましい。成長時間を適宜選択することで、AlNガイド層60の厚さを0.5nm以上2.0nm以下とすることができる。
 次に、図4(H)に示すように、AlN層60の上にp層70を形成する第4工程を行う。既述のとおりp層70は、p型電子ブロック層71、p型クラッド層72およびp型コンタクト層73のいずれかまたは全てを含んでもよい。
 p層70を形成するためのドーパントとしては、例えばMgまたはZnなどから適宜選択して用いることができ、Mg源としては、シクロペンタジニエルマグネシウム(CP2Mg)を用いることができ、Zn源としては、ZnCl2を用いることができる。複数のドーパントを混合してドープする場合には、ドーパント源の混合ガスをチャンバに供給すればよい。
 ここで、p型電子ブロック層71をAlzGa1-zN材料(a<z≦1)で形成する場合、p型電子ブロック層71の形成は、キャリアガスとして水素を主成分とするガスを用いることができる。原料ガスは既述のとおりTMA、TMGおよびNH3ガスであり、さらにドーパント源のガスを適宜選択して用いる。なお、キャリアガスとして窒素ガスを用いてAlN層60の形成し、キャリアガスとして水素を用いてp型電子ブロック層71を形成する場合、キャリアガスの切り替えが必要となる。この場合、AlN層60を形成後、TMAガスの供給を中断し、キャリアガスを窒素から水素に切り替えて20秒~1分程度経過した後に、TMAガスおよびTMGガスを供給して電子ブロック層71を形成する。
 なお、本明細書において、「水素を主成分とするキャリアガス」とは、キャリアガス全体の体積に対する水素ガスの体積の比が60%以上であるキャリアガスを意味している。より好ましくは85%以上である。なお、半導体製造用として市販される純度を有するガスを用いればよい。「窒素を主成分とするキャリアガス」についても同様の意味である。なお、ここでのキャリアガスの体積比は、チャンバ内に供給されウェーハ近傍の空間を通るガスを対象としており、ヒーターやチャンバ内壁のパージを主目的としてウェーハ近傍の空間を通らずに排気されるガスは含めない。つまり、ヒーターやチャンバ内壁に水素を大流量流して排気していても、ウェーハ近傍には実質的に窒素を流している場合には、「窒素を主成分とするキャリアガス」となる。
 また、p層70の成長温度としては、Al組成比にもよるが、1000℃以上1400℃以下が好ましく、1050℃以上1350℃以下がより好ましい。また、チャンバ内の成長圧力については、例えば10Torr~760Torrとすることができる。より好ましくは、20Torr~380Torrである。ただし、p層70のうち、Al組成比の小さいp型コンタクト層73を形成する際の成長温度としては、800℃以上1400℃以下が好ましく、900℃以上1300℃以下がより好ましい。また、チャンバ内の成長圧力については、例えば10Torr~760Torrとすることができ、より好ましくは、20Torr~600Torrである。キャリアガスとしては、既述のとおり水素ガスもしくは窒素ガスまたは両者の混合ガスを用いることができる。図示しないが、p型コンタクト層73を、Al組成、ドーパント種、ドーパント濃度、形成時のキャリアガス種などのいずれか1つまたは複数要素を変えた複数層構造とする場合、AlN層60側のキャリアガスを水素ガスとし、反対側(すなわち、p型電極90側)を窒素ガスとすることもできるし、その逆としてもよい。p型クラッド層72を設けてもよいが、設けない方が素子寿命の観点で好ましいのは、既述のとおりである。
 最後に、図4(I)に示すように、積層体40、AlN層60およびp層70の一部をエッチング等により除去し、露出したn層30上にn型電極80を、p層70上にp型電極90をそれぞれ形成することができる。こうして、本発明の第1実施形態の製造方法に従い、III族窒化物半導体発光素子100を作製することができる。
(III族窒化物半導体発光素子の製造方法:第2実施形態)
 次に、本発明に従うIII族窒化物半導体発光素子100の製造方法の第2実施形態を説明する。第2実施形態に係る製造方法は、n層30を形成する第1工程と、n層30上に、障壁層40aおよび、障壁層40aよりもバンドギャップの小さい井戸層40bをこの順に交互にN層ずつ(但し、Nは整数である)積層してなる積層体40を形成する第2工程と、積層体40上に、厚さ0.5nm以上2.0nm以下のAlNガイド層60を形成する第3工程と、AlNガイド層60上に、p層70を形成する第4工程と、を含む。前述の第1実施形態と重複する内容については説明を省略する。
 第1実施形態と異なり、第2実施形態では、上記第3工程において、窒素を主成分とするキャリアガス雰囲気の下、トリメチルアルミニウムガス(TMAガス)、トリメチルガリウムガス(TMGガス)およびアンモニアガス(NH3ガス)を含む原料ガスを用いてAlGaN変質層50’をエピタキシャル成長させ、次いで該エピタキシャル成長を中断し、水素を主成分とするキャリアガス雰囲気に切り替えてAlGaN変質層50’を曝すことにより、AlGaN変質層50’の少なくとも一部または全部をAlNガイド層60に変質させ、AlGaN変質層50’の残部をファイナルバリア層60とすることを特に特徴とする(図5参照)。なお、ここでいう「変質」とは、成長中断後にAlGaN変質層50’の組成の全部または一部がAlGaNからAlNへ変化することに加えて、AlGaN変質層50’の厚みが減少することを意味する。図5(A)~(C)を用いて、この変質を以下により詳細に説明する。
 まず、積層体40上に、トリメチルアルミニウムガス(TMAガス)、トリメチルガリウムガス(TMGガス)およびアンモニアガス(NH3ガス)を含む原料ガスを用いてAlGaN変質層50’をエピタキシャル成長させる(図4(A)、(B))。GaN変質層50のキャリアガスは窒素、または、窒素を主成分として水素を混合したものを利用できる。成長温度、成長圧力、V/III比等はAlGaN材料からなる層を形成する際の一般的な条件とすることができる。このとき、AlGaN変質層50’の厚みを、後に形成されるAlNガイド層60およびファイナルバリア層50の合計厚さより0.5~1.5nm程度厚く形成する。
 次に、AlGaN変質層50’のエピタキシャル成長を中断し、変質層の成長時よりも窒素分圧の低いキャリアガス雰囲気(例えば水素を主成分とするキャリアガス雰囲気)でAlGaN変質層50’を曝す。より具体的には、III族元素の原料ガスであるTMAガスおよびTMGガスの供給を止め、アンモニアガスは供給しつつ、キャリアガスである水素でAlGaN変質層50’を曝す。AlGaN変質層50’の形成時にキャリアガスとして窒素ガスを用いる場合には、キャリアガスを窒素から水素へと切り替える。また、キャリアガスを窒素から水素へと切り替えた後に、必要に応じてアンモニアガスおよび水素ガスの割合を調整して、窒素分圧をさらに下げることが好ましい。III族元素の原料ガスの供給を止め、水素ガスに曝して窒素分圧を下げることにより、AlGaN変質層50’の表層部はAlNへと変質してAlNガイド層60となり、残部はAlGaN変質層50’のAl組成比のまま、ファイナルバリア層50となる。
 ここで、水素ガスの暴露時間にもよるが、形成されるAlNガイド層60の厚みは0.5~1.5nm程度となるとともに、形成されるAlNガイド層60およびファイナルバリア層50の合計厚さは、AlGaN変質層50’の厚さよりも0.5~1.5nm程度薄くなることが本発明者らにより実験的に確認された。すなわち、AlNガイド層に変質する際に、AlGaN変質層50’の少なくとも一部が除去される。これは、水素ガスへの暴露の際に、AlGaN変質層50’表層部のGaが抜けたためだと推定される。III族元素の原料ガスの供給を止めての水素による暴露時間(すなわち成長中断時間)は特に制限されないが、井戸層へは影響を及ぼさないことが好ましく、AlNガイド層60およびファイナルバリア層50のそれぞれの目標厚さにもよっては、暴露時間を、15秒~90秒程度とすることが好ましく、45秒~75秒程度とすることがより好ましい。
 この第3工程において、AlGaN変質層50’の全部をAlNガイド層60に変質させることが好ましい。ウェーハを切り出して得られる複数のIII族窒化物半導体発光素子の素子寿命にばらつきを抑制できるためである。AlGaN変質層50’の設計厚みを0.5nm以上2.0nm以下とすると、AlGaN変質層50’の全部をAlNガイド層60に変質させることができ、形成されるAlNガイド層60の厚みは0.5nm以上1.0nm以下となる。ただし、変質が井戸層40bの領域まで及んでしまうと出力が減少することから、第1実施形態と比べると出力のばらつきが大きくなりやすい傾向にある。
 一方、この第3工程において、AlGaN変質層50’の一部のみをAlNガイド層60に変質させつつ、残部をファイナルバリア層50とする場合には、ファイナルバリア層50の厚みが1.0nm以下となるようにAlGaN変質層50’の設計厚みを設定することが好ましい。AlGaN変質層50’の設計厚みを2.0nm超3.0nm以下とすると、形成されるAlNガイド層60の厚みは0.8以上1.2nm以下となり、ファイナルバリア層の厚みは1.0nm以下となる。なお、ファイナルバリア層50の厚みが1.0nm以下であることが好ましいのは既述のとおりである。
 以上説明した第1および第2実施形態のいずれかに従う製造方法により、本発明に従うIII族窒化物半導体発光素子100を形成することができる。もちろん、これらの製造方法の実施形態は、本発明に従うIII族窒化物半導体発光素子100を製造するための一実施形態に過ぎず、他の実施形態によりIII族窒化物半導体発光素子100が作製されてもよい。なお、第2実施形態に比べると、第1実施形態の製造方法の方がより正確にAlNガイド層の厚みを調整することができるため好ましい。
 以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。
[実験例1]
 図4に示したフローチャートに従って、実験例1におけるIII族窒化物半導体発光素子を作製した。まず、サファイア基板(直径2インチ、厚さ:430μm、面方位:(0001)、m軸方向オフ角θ:0.5度、テラス幅:100nm、ステップ高さ:0.20nm)を用意した(図4(A))。次いで、MOCVD法により、上記サファイア基板上に中心膜厚0.60μm(平均膜厚0.61μm)のAlN層を成長させ、AlNテンプレート基板とした(図4(B))。その際、AlN層の成長温度は1300℃、チャンバ内の成長圧力は10Torrであり、V/III比が163となるようにアンモニアガスとTMAガスの成長ガス流量を設定した。V族元素ガス(NH3)の流量は200sccm、III族元素ガス(TMA)の流量は53sccmである。なお、AlN層の膜厚については、光干渉式膜厚測定機(ナノスペックM6100A;ナノメトリックス社製)を用いて、ウェーハ面内の中心を含む、等間隔に分散させた計25箇所の膜厚を測定した。
 次いで、上記AlNテンプレート基板を熱処理炉に導入し、10Paまで減圧後に窒素ガスを常圧までパージすることにより炉内を窒素ガス雰囲気とした後に、炉内の温度を昇温してAlNテンプレート基板に対して熱処理を施した(図4(C))。その際、加熱温度は1650℃、加熱時間は4時間とした。
 続いて、MOCVD法により、アンドープのAlGaN層として、Al0.7Ga0.3Nからなる厚さ1.32μmのアンドープAl0.7Ga0.3N層を形成した(図4(D))。次に、n型半導体層として、Al0.62Ga0.38Nからなり、Siドープした厚さ1.69μmのn型Al0.62Ga0.38N層を上記AlGaN層上に形成し、続けてSiドープした厚さ0.36μmのn型Al0.56Ga0.44N層を形成した(図4(E))。なお、SIMS分析の結果、n型Al0.62Ga0.38N層およびn型Al0.56Ga0.44N層のSi濃度はともに1.0×1019atoms/cm3であった。
 続いて、n型Al0.56Ga0.44N層上に、n型ガイド層および障壁層を兼ねる厚さ24nmのAl0.65Ga0.35Nを形成した。次いで、Al0.45Ga0.55Nからなる厚さ2.4nmの井戸層および厚さ5.8nmのAl0.65Ga0.35Nからなる障壁層を交互に2層ずつ形成し、さらにAl0.45Ga0.55Nからなる厚さ2.4nmの井戸層を形成した(図4(F))。(すなわち、井戸層の層数および障壁層の層数NはともにN=3である。)なお、障壁層の形成においてはSiをドープした。
 その後、3層目の井戸層上に、窒素ガスをキャリアガスとし、炉内圧力(成長圧力)52torrで厚さ2nmのAl0.65Ga0.35NからなるアンドープのAlGaN変質層を形成した。次に、TMAガスおよびTMGガスの供給を停止しつつ、アンモニアガスを供給し続けたままキャリアガスの窒素を止めて水素を供給し、水素供給開始から35秒後に水素とアンモニアの割合を1:1から2.13:1に変えることで、炉内圧力を75torrに上げると共に窒素分圧をさらに下げた状態でAlGaN変質層を30秒間暴露し、厚さ2nmのAlGaN変質層を厚さ1nmのAlNガイド層に変質させた。その後、キャリアガスを水素としたまま、III族元素の原料ガスであるTMAガスおよびTMGガスを再び供給して、Al0.68Ga0.32Nからなり、Mgドープした層さ40nmのp型電子ブロック層を形成した。
 続いて、キャリアガスを窒素ガスに切り替えた後、GaNからなり、Mgドープした層厚175nmのp型コンタクト層を形成した。なお、厚さ175nmの内の、電極に接する厚さ25nmの領域においては、TMGガスの流量を減らしてMgの存在確率を上げ、かつ、成長速度を落とすことにより高Mg濃度の層とした(図4(H))。SIMS分析の結果、p型電子ブロック層側の厚さ150nm部分のp型コンタクト層のMg濃度は3.0×1019atoms/cm3であり、高Mg濃度とした残り30nm部分のMg濃度は1.2×1020atom/cm3であった。
 その後、p型コンタクト層の上にマスクを形成してドライエッチングによるメサエッチングを行い、n型Al0.56Ga0.44N層の一部を露出させた。次いで、p型コンタクト層上に、Ni/Auからなるp型電極を形成し、露出したn型Al0.56Ga0.44N層上には、Ti/Alからなるn型電極を形成した。なお、p型電極のうち、Niの厚みは50Åであり、Auの厚みは1500Åである。また、n型電極のうち、Tiの厚みは200Åであり、Alの厚みは1500Åである。最後に550℃でコンタクトアニール(RTA)を行って、電極を形成した(図4(I))。
 以上のとおりにして作製したIII族窒化物半導体発光素子の、AlN層20よりも上の、アンドープAlGaN層からp型コンタクト層までの各層の構成を表1に示す。このIII族窒化物半導体発光素子の一部のTEM断面写真を代表例として図6に示す。表1中の各層の実測値の厚さは、TEM断面写真より得られたものであり、各層のAl組成比の値は、エネルギー分散型X線分析(EDS)を用いた測定より得られたものである。
 なお、十分な厚さがあればSEM-EDSを用いて同定することができ、AlNガイド層や井戸層、障壁層のように各層の厚さが薄い場合にはTEM-EDSを用いて同定することができる。
Figure JPOXMLDOC01-appb-T000001
 図6より、このIII族窒化物半導体発光素子では、設計厚さ2nmのAlGaN変質層が厚さ0.9nmのAlNガイド層に変質されたことが確認できる。このとき、AlGaN変質層を形成した位置にAl0.65Ga0.35N層は観察されなかった。なお、AlGaN変質層の厚みを変えた同様の試験を行い、TEM断面写真を取得したところ、AlGaN変質層の表層部1nm(平均値)がAlNガイド層に変質し、変質後のAlNガイド層と、ファイナルバリア層の合計厚みは、AlGaN変質層の厚さから平均値で1nm薄くなることも確認された。
[実験例2]
(試料1)
 AlNガイド層の形成を下記のとおりとした以外は、実験例1と同じ条件で試料1に係るIII族窒化物半導体発光素子を作製した。AlNガイド層の形成にあたり、III族元素の原料ガスはTMAガスとし、厚さを1nmとした。また、ドーパントは添加せず、i型のAlNガイド層とした。なお、キャリアガスおよび成長圧力は実験例1と同じであり、p型電子ブロック層へのキャリアガスの切り替えに際しても、同一条件とした。
(試料2)
 AlNガイド層を厚さ0.5nmで形成した以外は、試料1と同様にして試料2に係るIII族窒化物半導体発光素子を作製した。
(試料3)
 AlNガイド層を厚さ2.0nmで形成した以外は、試料1と同様にして試料3に係るIII族窒化物半導体発光素子を作製した。
(試料4)
 AlGaN変質層の設計厚さを2.0nmとし、実験例1と同じ条件で試料4に係るIII族窒化物半導体発光素子を作製した。
(試料5)
 AlGaN変質層の設計厚さを1.0nmとした以外は、試料4と同様にして試料5に係るIII族窒化物半導体発光素子を作製した。
(試料6)
 AlGaN変質層の設計厚さを3.0nmとした以外は、試料4と同様にして試料6に係るIII族窒化物半導体発光素子を作製した。
(試料7)
 AlGaN変質層の設計厚さを4.0nmとした以外は、試料4と同様にして試料7に係るIII族窒化物半導体発光素子を作製した。
(試料8)
 AlGaN変質層の設計厚さを5.0nmとした以外は、試料4と同様にして試料8に係るIII族窒化物半導体発光素子を作製した。
(試料9)
 AlGaN変質層の組成をAl0.55Ga0.45Nとした以外は、試料8と同様にして試料9に係るIII族窒化物半導体発光素子を作製した。
(試料10)
 AlGaN変質層の設計厚さを20.0nmとした以外は、試料9と同様にして試料10に係るIII族窒化物半導体発光素子を作製した。
(試料11)
 AlNガイド層およびAlGaN変質層のいずれも形成しなかった以外は、試料1と同様にして試料12に係るIII族窒化物半導体発光素子を作製した。
(試料12)
 p型電子ブロック層形成時のキャリアガスを窒素ガスにした以外は、試料1と同様にして試料12に係るIII族窒化物半導体発光素子を作製した。
(試料13)
 成長中断を行なわず、また、p型電子ブロック層形成時のキャリアガスを窒素ガスにした以外は、試料4と同様にして試料13に係るIII族窒化物半導体発光素子を作製した。
(試料14)
 AlNガイド層を厚さ3.0nmで形成した以外は、試料1と同様にして試料14に係るIII族窒化物半導体発光素子を作製した。
 以上の試料1~15のAlNガイド層およびAlGaN変質層の形成条件を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(評価1:厚さの評価)
 作製した試料1~14に係るIII族窒化物半導体発光素子のTEM断面写真を取得し、AlNガイド層およびファイナルバリア層のそれぞれの厚さを測定しつつ、AlNガイド層への変質の有無を確認した。厚さの測定にあたり、試料1~14の各作製条件によって形成したウェーハから3~10個のIII族窒化物半導体発光素子を切り出して観察した。変質の有無およびAlNガイド層の厚さおよびファイナルバリア層の厚さの平均値を表2に示す。
(評価2:EL出力の評価)
 作製した試料1~14に係るIII族窒化物半導体発光素子を作製した直後の発光出力を確認するため、マルチチャネル型分光器(C10082CAH,浜松ホトニクス社製)を用いて、電流10mA出力でのEL出力を測定した。試料1~10,12,14について、測定結果を図7Aおよび図7Bに示す。なお、図7Bは、上記評価1を基に図7Aの測定結果をAlNガイド層の厚さに対するEL出力としたものである。なお、試料11,13は非発光であったため、図示しない。
(評価3:素子寿命の評価)
 評価2においてEL出力が高く安定していた試料1について、作製したフリップチップ型のIII族窒化物半導体発光素子を、積分球により電流20mAのときの発光出力Po(mW)を測定し、さらに1000時間通電後の残存出力(1000時間通電後の出力/初期発光出力)を測定したところ、初期の出力に対して85%であった。他に、評価2においてEL出力が試料1と同程度に大きかった試料4、および試料10についても同様に残存出力を測定したところ、それぞれ83~88%、60であった。
 以上の評価1~3より、以下のことが確認された。
 まず、評価1の結果から、Al組成比100%のAlNガイド層を最後の井戸層上に直接形成した場合、実験例1で確認されたAlGaN変質層の変質および薄化は発生せず、また厚さの変化も生じないことが確認された。一方、試料4~11では、AlGaN変質層の表層部1.0nm(平均値)がAlNに変質して、AlNガイド層が形成されることが確認された。このとき、AlGaN変質層の全体の厚さは平均値で1.0nm薄くなり、残部はAlGaN変質層のAl組成を維持したまま、ファイナルバリア層となることも確認された。
 次に、評価2より、EL出力を高めるためにはAlNガイド層の厚さを0.5nm超2.0nm未満とすることが好ましく、ファイナルバリア層を設ける場合はその厚みを1.0nm以下とすることが好ましいことが確認された。さらに、ファイナルバリア層のバンドギャップを障壁層よりも大きくした方がEL出力を向上できることも確認された。そして、評価3より、AlNガイド層やAlGaN変質層の厚さを適切にした試料は、EL出力が高いだけでなく、素子寿命の長い発光素子であることが確認できた。なお、試料1と試料4とを比較すると、変質させてAlNガイド層を形成する場合と比べて、AlNガイド層を最後の井戸層上に直接形成する場合の方が、同一ロット内のウェーハ間のEL出力ばらつきが少ない。また、試料6よりも試料4のEL出力ばらつきが大きいことより、変質させてAlNガイド層を形成する場合は、ファイナルバリア層が全て変質し終わるときからその少し前までの間であることが好ましく、ファイナルバリア層を超えて井戸層の深くまで影響が及ぶと、EL出力が低下すると予想される。
 なお、試料12,14から、AlNガイド層の厚さを0nmとした場合(即ちAlNガイド層を形成しない場合)、井戸層へダメージが生じるため、非発光になったと考えられる。これに対して、試料1,13から、AlNガイド層を形成した後、キャリアガスを変更せずにp型電子ブロック層を形成しても、高出力が見られた。したがって、p型電子ブロック層の成長条件に因らず、井戸層とp型電子ブロック層との間に、適切な厚みのAlNガイド層を形成することが必要であることが判明した。
[実験例3]
(試料21)
 試料4において、p型電子ブロック層と、p型コンタクト層との間に、MgをドープしたAl0.35Ga0.65Nからなるp型クラッド層(厚み:50nm)を形成した以外は、試料4と同様にして試料21に係るIII族窒化物半導体発光素子を作製した。
(試料22)
 試料10において、p型電子ブロック層と、p型コンタクト層との間に、試料21と同じ条件でp型クラッド層(厚み:50nm)を形成した以外は、試料10と同様にして試料22に係るIII族窒化物半導体発光素子を作製した。
 前述の評価2、3と同様に、試料21、22に係るIII族窒化物半導体発光素子の素子寿命の評価およびEL出力の評価を行った。試料4、10と併せて結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、p型クラッド層を設けることで、EL出力を増大できる場合があるものの、素子寿命の低下につながることが確認できた。したがって、素子寿命の観点ではp型クラッド層を設けない方が好ましいことが確認できた。
 本発明によれば、従来よりも優れた素子寿命を有するIII族窒化物半導体発光素子およびその製造方法を提供することができるため、有用である。
10  基板
10A 基板の主面
20  AlN層
30  n型半導体層
40  積層体
40a 障壁層
40b 井戸層
50  ファイナルバリア層
50’ AlGaN変質層
60  AlNガイド層
70  p型半導体層
71  p型電子ブロック層
72  p型クラッド層
73  p型コンタクト層
80  n型電極
90  p型電極
100 III族窒化物半導体素子

Claims (11)

  1.  n型III族窒化物半導体層と、
     障壁層および、該障壁層よりもバンドギャップの小さい井戸層をこの順に交互にN層ずつ(但し、Nは整数である)積層してなるIII族窒化物半導体積層体と、
     AlNガイド層と、
     p型III族窒化物半導体層と、をこの順に有し、
     前記AlNガイド層の厚さが0.5nm以上2.0nm以下であることを特徴とするIII族窒化物半導体発光素子。
  2.  前記AlNガイド層がi型である、請求項1に記載のIII族窒化物発光素子。
  3.  前記III族窒化物半導体積層体における前記n層目の井戸層と、前記AlNガイド層とが接する、または、
     前記III族窒化物半導体積層体における前記n層目の井戸層と、前記AlNガイド層との間に、バンドギャップが前記井戸層超かつ前記AlNガイド層未満のファイナルバリア層を有し、該ファイナルバリア層の厚みが1.5nm以下である、請求項1または2に記載のIII族窒化物発光素子。
  4.  前記ファイナルバリア層の厚みが0.1nm以上1.0nm以下である、請求項3に記載のIII族窒化物発光素子。
  5.  前記AlNガイド層の厚さが0.5nm超2.0nm未満である、請求項1~4のいずれか1項に記載のIII族窒化物発光素子。
  6.  前記p型III族窒化物半導体層は、第1p型III族窒化物半導体層および第2p型III族窒化物半導体層をこの順に有し、
     前記第1p型III族窒化物半導体層のバンドギャップは、前記AlNガイド層よりも小さく、かつ、前記障壁層よりも大きく、
     前記第2p型III族窒化物半導体層のバンドキャップは、前記第1p型III族窒化物半導体層よりも小さい、請求項1~5のいずれか1項に記載のIII族窒化物発光素子。
  7.  前記第1p型III族窒化物半導体層と前記第2p型III族窒化物半導体層とが接し、前記第2p型III族窒化物半導体層がp型コンタクト層のみからなる、請求項6に記載のIII族窒化物発光素子。
  8.  n型III族窒化物半導体層を形成する第1工程と、
     前記n型III族窒化物半導体層上に、障壁層および、該障壁層よりもバンドギャップの小さい井戸層をこの順に交互にN層ずつ(但し、Nは整数である)積層してなるIII族窒化物半導体積層体を形成する第2工程と、
     前記III族窒化物半導体積層体上に、厚さ0.5nm以上2.0nm以下のAlNガイド層を形成する第3工程と、
     前記AlNガイド層上に、p型III族窒化物半導体層を形成する第4工程と、を含み、
     前記第3工程において、トリメチルアルミニウムガスおよびアンモニアガスからなる原料ガスを用いて前記AlNガイド層をエピタキシャル成長させることを特徴とするIII族窒化物半導体発光素子の製造方法。
  9.  n型III族窒化物半導体層を形成する第1工程と、
     前記n型III族窒化物半導体層上に、障壁層および、該障壁層よりもバンドギャップの小さい井戸層をこの順に交互にN層ずつ(但し、Nは整数である)積層してなるIII族窒化物半導体積層体を形成する第2工程と、
     前記III族窒化物半導体積層体上に、厚さ0.5nm以上2.0nm以下のAlNガイド層を形成する第3工程と、
     前記AlNガイド層上に、p型III族窒化物半導体層を形成する第4工程と、を含み、
     前記第3工程において、トリメチルアルミニウムガス、トリメチルガリウムガスおよびアンモニアガスを含む原料ガスを用いてAlGaN変質層をエピタキシャル成長させ、次いで前記トリメチルアルミニウムガスおよび前記トリメチルガリウムガスの供給を止めて前記エピタキシャル成長を中断し、水素を主成分とするキャリアガス雰囲気で前記AlGaN変質層を曝すことにより、前記AlGaN変質層の少なくとも一部を除去すると共に前記AlNガイド層に変質させ、前記AlGaN変質層の残部をファイナルバリア層とすることを特徴とするIII族窒化物半導体発光素子の製造方法。
  10.  前記第3工程において、前記AlGaN変質層の全部を前記AlNガイド層に変質させる、請求項9に記載のIII族窒化物半導体発光素子の製造方法。
  11.  前記AlNガイド層はi型である、請求項8~10のいずれか1項に記載のIII族窒化物半導体発光素子の製造方法。
PCT/JP2016/003021 2015-07-30 2016-06-22 Iii族窒化物半導体発光素子およびその製造方法 WO2017017891A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16830000.2A EP3331035B1 (en) 2015-07-30 2016-06-22 Group iii nitride semiconductor light-emitting element and manufacturing method therefor
KR1020187002002A KR102171911B1 (ko) 2015-07-30 2016-06-22 Iii족 질화물 반도체 발광소자 및 그 제조방법
US15/748,620 US10573783B2 (en) 2015-07-30 2016-06-22 Group III nitride semiconductor light-emitting element and method of manufacturing same
CN201680043718.6A CN107851689B (zh) 2015-07-30 2016-06-22 Ⅲ族氮化物半导体发光元件及其制造方法
US16/568,716 US11024769B2 (en) 2015-07-30 2019-09-12 Group III nitride semiconductor light-emitting element and method of manufacturing same
US17/176,181 US20210193874A1 (en) 2015-07-30 2021-02-16 Group iii nitride semiconductor light-emitting element and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015151052A JP6092961B2 (ja) 2015-07-30 2015-07-30 Iii族窒化物半導体発光素子およびその製造方法
JP2015-151052 2015-07-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/748,620 A-371-Of-International US10573783B2 (en) 2015-07-30 2016-06-22 Group III nitride semiconductor light-emitting element and method of manufacturing same
US16/568,716 Continuation US11024769B2 (en) 2015-07-30 2019-09-12 Group III nitride semiconductor light-emitting element and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO2017017891A1 true WO2017017891A1 (ja) 2017-02-02

Family

ID=57884346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003021 WO2017017891A1 (ja) 2015-07-30 2016-06-22 Iii族窒化物半導体発光素子およびその製造方法

Country Status (6)

Country Link
US (3) US10573783B2 (ja)
EP (1) EP3331035B1 (ja)
JP (1) JP6092961B2 (ja)
KR (1) KR102171911B1 (ja)
CN (1) CN107851689B (ja)
WO (1) WO2017017891A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069834A1 (ja) * 2017-10-02 2019-04-11 Dowaエレクトロニクス株式会社 深紫外発光素子およびその製造方法
WO2019146737A1 (ja) * 2018-01-26 2019-08-01 丸文株式会社 深紫外led及びその製造方法
WO2020095826A1 (ja) * 2018-11-05 2020-05-14 Dowaエレクトロニクス株式会社 Iii族窒化物半導体発光素子およびその製造方法
JP2020077874A (ja) * 2018-11-05 2020-05-21 Dowaエレクトロニクス株式会社 Iii族窒化物半導体発光素子およびその製造方法
WO2020122137A1 (ja) * 2018-12-14 2020-06-18 Dowaエレクトロニクス株式会社 Iii族窒化物半導体発光素子及びその製造方法
JP2020098908A (ja) * 2018-12-14 2020-06-25 Dowaエレクトロニクス株式会社 Iii族窒化物半導体発光素子及びその製造方法
WO2020153308A1 (ja) * 2019-01-22 2020-07-30 Dowaエレクトロニクス株式会社 深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子
JP2020120114A (ja) * 2019-01-22 2020-08-06 Dowaエレクトロニクス株式会社 深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子
WO2023038129A1 (ja) * 2021-09-09 2023-03-16 国立大学法人三重大学 Iii族窒化物発光デバイス、iii族窒化物エピタキシャルウエハ、iii族窒化物発光デバイスを作製する方法
US11984535B2 (en) 2018-11-05 2024-05-14 Dowa Electronics Materials Co., Ltd. III-nitride semiconductor light-emitting device comprising barrier layers and well layers and method of producing the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10971652B2 (en) 2017-01-26 2021-04-06 Epistar Corporation Semiconductor device comprising electron blocking layers
US11056434B2 (en) 2017-01-26 2021-07-06 Epistar Corporation Semiconductor device having specified p-type dopant concentration profile
US10978612B2 (en) * 2017-07-31 2021-04-13 Xiamen San'an Optoelectronics Co., Ltd Semiconductor light emitting device
CN107394019B (zh) * 2017-07-31 2019-07-12 安徽三安光电有限公司 一种半导体发光元件及其制备方法
JP6379265B1 (ja) * 2017-09-12 2018-08-22 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
JP6392960B1 (ja) * 2017-09-12 2018-09-19 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
JP6917953B2 (ja) * 2017-09-12 2021-08-11 日機装株式会社 窒化物半導体発光素子
KR102383970B1 (ko) * 2017-11-07 2022-04-11 갈리움 엔터프라이지즈 피티와이 엘티디 매립된 활성화된 p-(Al,In)GaN 층
CN107919414A (zh) * 2017-12-04 2018-04-17 歌尔股份有限公司 微发光二极管转移的方法、制造方法、装置和电子设备
US10312047B1 (en) * 2018-06-01 2019-06-04 Eagle Technology, Llc Passive local area saturation of electron bombarded gain
JP2019054236A (ja) * 2018-08-23 2019-04-04 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
CN110211865B (zh) * 2019-05-15 2020-12-15 中国电子科技集团公司第五十五研究所 一种降低氮化镓高电子迁移率场效应管界面热阻的外延生长方法
JP7137539B2 (ja) * 2019-08-06 2022-09-14 日機装株式会社 窒化物半導体発光素子の製造方法
WO2021172171A1 (ja) * 2020-02-28 2021-09-02 ソニーグループ株式会社 レーザ素子
JP2023032343A (ja) * 2021-08-26 2023-03-09 ヌヴォトンテクノロジージャパン株式会社 窒化物半導体発光素子
TWI826038B (zh) * 2022-10-12 2023-12-11 錼創顯示科技股份有限公司 磊晶結構及其形成方法
JP7450081B1 (ja) 2023-02-28 2024-03-14 日機装株式会社 窒化物半導体発光素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151795A (ja) * 2000-11-10 2002-05-24 Sharp Corp 窒化物半導体発光素子、光ピックアップ装置、白色光源装置および表示装置
JP2005209925A (ja) * 2004-01-23 2005-08-04 Nichia Chem Ind Ltd 積層半導体基板
WO2012144046A1 (ja) * 2011-04-21 2012-10-26 創光科学株式会社 窒化物半導体紫外線発光素子
JP2013239608A (ja) * 2012-05-16 2013-11-28 Sanken Electric Co Ltd 窒化物半導体装置の製造方法
JP2014180819A (ja) * 2013-03-19 2014-09-29 Fujifilm Corp 半導体素子用基板およびその製造方法
JP2014241397A (ja) * 2013-05-17 2014-12-25 株式会社トクヤマ 窒化物半導体発光素子、および窒化物半導体ウェーハ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3569807B2 (ja) * 2002-01-21 2004-09-29 松下電器産業株式会社 窒化物半導体素子の製造方法
JP2006108585A (ja) * 2004-10-08 2006-04-20 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
JP5641173B2 (ja) * 2009-02-27 2014-12-17 独立行政法人理化学研究所 光半導体素子及びその製造方法
KR101636182B1 (ko) * 2010-02-24 2016-07-04 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 질화물 반도체 다중 양자 장벽을 갖는 발광 소자 및 그 제조 방법
CN105161402B (zh) * 2010-04-30 2020-08-18 波士顿大学理事会 具有能带结构电位波动的高效紫外发光二极管
JP5277270B2 (ja) * 2010-07-08 2013-08-28 学校法人立命館 結晶成長方法および半導体素子
JP5995302B2 (ja) * 2011-07-05 2016-09-21 パナソニック株式会社 窒化物半導体発光素子の製造方法
KR101953716B1 (ko) 2012-08-23 2019-03-05 엘지이노텍 주식회사 발광소자, 발광 소자 패키지 및 조명 시스템
JP2014096460A (ja) * 2012-11-08 2014-05-22 Panasonic Corp 紫外半導体発光素子およびその製造方法
US20160005919A1 (en) * 2013-02-05 2016-01-07 Tokuyama Corporation Nitride semiconductor light emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151795A (ja) * 2000-11-10 2002-05-24 Sharp Corp 窒化物半導体発光素子、光ピックアップ装置、白色光源装置および表示装置
JP2005209925A (ja) * 2004-01-23 2005-08-04 Nichia Chem Ind Ltd 積層半導体基板
WO2012144046A1 (ja) * 2011-04-21 2012-10-26 創光科学株式会社 窒化物半導体紫外線発光素子
JP2013239608A (ja) * 2012-05-16 2013-11-28 Sanken Electric Co Ltd 窒化物半導体装置の製造方法
JP2014180819A (ja) * 2013-03-19 2014-09-29 Fujifilm Corp 半導体素子用基板およびその製造方法
JP2014241397A (ja) * 2013-05-17 2014-12-25 株式会社トクヤマ 窒化物半導体発光素子、および窒化物半導体ウェーハ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3331035A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11302843B2 (en) 2017-10-02 2022-04-12 Dowa Electronics Materials Co., Ltd. Deep ultraviolet light-emitting device and method of manufacturing same
CN111164768B (zh) * 2017-10-02 2023-05-09 同和电子科技有限公司 深紫外发光元件及其制造方法
CN111164768A (zh) * 2017-10-02 2020-05-15 同和电子科技有限公司 深紫外发光元件及其制造方法
WO2019069834A1 (ja) * 2017-10-02 2019-04-11 Dowaエレクトロニクス株式会社 深紫外発光素子およびその製造方法
KR20200056395A (ko) * 2017-10-02 2020-05-22 도와 일렉트로닉스 가부시키가이샤 심자외 발광소자 및 그 제조 방법
KR102507671B1 (ko) 2017-10-02 2023-03-08 도와 일렉트로닉스 가부시키가이샤 심자외 발광소자 및 그 제조 방법
TWI773836B (zh) * 2017-10-02 2022-08-11 日商同和電子科技股份有限公司 深紫外線發光元件及其製造方法
WO2019146737A1 (ja) * 2018-01-26 2019-08-01 丸文株式会社 深紫外led及びその製造方法
US11309454B2 (en) 2018-01-26 2022-04-19 Marubun Corporation Deep ultraviolet LED and method for producing the same
JP2020077874A (ja) * 2018-11-05 2020-05-21 Dowaエレクトロニクス株式会社 Iii族窒化物半導体発光素子およびその製造方法
TWI734243B (zh) * 2018-11-05 2021-07-21 日商同和電子科技股份有限公司 Iii族氮化物半導體發光元件及其製造方法
WO2020095826A1 (ja) * 2018-11-05 2020-05-14 Dowaエレクトロニクス株式会社 Iii族窒化物半導体発光素子およびその製造方法
US11984535B2 (en) 2018-11-05 2024-05-14 Dowa Electronics Materials Co., Ltd. III-nitride semiconductor light-emitting device comprising barrier layers and well layers and method of producing the same
TWI722718B (zh) * 2018-12-14 2021-03-21 日商同和電子科技股份有限公司 Iii族氮化物半導體發光元件及其製造方法
JP2020098908A (ja) * 2018-12-14 2020-06-25 Dowaエレクトロニクス株式会社 Iii族窒化物半導体発光素子及びその製造方法
WO2020122137A1 (ja) * 2018-12-14 2020-06-18 Dowaエレクトロニクス株式会社 Iii族窒化物半導体発光素子及びその製造方法
JP2020120114A (ja) * 2019-01-22 2020-08-06 Dowaエレクトロニクス株式会社 深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子
WO2020153308A1 (ja) * 2019-01-22 2020-07-30 Dowaエレクトロニクス株式会社 深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子
WO2023038129A1 (ja) * 2021-09-09 2023-03-16 国立大学法人三重大学 Iii族窒化物発光デバイス、iii族窒化物エピタキシャルウエハ、iii族窒化物発光デバイスを作製する方法

Also Published As

Publication number Publication date
US20200006599A1 (en) 2020-01-02
CN107851689A (zh) 2018-03-27
KR20180036701A (ko) 2018-04-09
EP3331035B1 (en) 2020-08-26
EP3331035A4 (en) 2018-11-21
US20190006558A1 (en) 2019-01-03
KR102171911B1 (ko) 2020-10-30
US11024769B2 (en) 2021-06-01
US10573783B2 (en) 2020-02-25
JP2017034036A (ja) 2017-02-09
JP6092961B2 (ja) 2017-03-08
CN107851689B (zh) 2021-10-12
US20210193874A1 (en) 2021-06-24
EP3331035A1 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6092961B2 (ja) Iii族窒化物半導体発光素子およびその製造方法
TWI683448B (zh) Iii族氮化物半導體發光元件及其製造方法
KR102618238B1 (ko) 질화물 반도체 발광소자
TWI659547B (zh) Iii族氮化物半導體發光元件的製造方法
JP2016171127A (ja) Iii族窒化物半導体発光素子およびその製造方法
JP6654731B1 (ja) Iii族窒化物半導体発光素子およびその製造方法
TWI722718B (zh) Iii族氮化物半導體發光元件及其製造方法
TWI734243B (zh) Iii族氮化物半導體發光元件及其製造方法
TWI666790B (zh) Iii族氮化物半導體發光元件的製造方法及iii族氮化物半導體發光元件
WO2020095826A1 (ja) Iii族窒化物半導体発光素子およびその製造方法
JP2019165156A (ja) 半導体発光素子およびその製造方法
US11984535B2 (en) III-nitride semiconductor light-emitting device comprising barrier layers and well layers and method of producing the same
WO2016092822A1 (ja) Iii族窒化物半導体発光素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187002002

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016830000

Country of ref document: EP