WO2017168811A1 - 深紫外led及びその製造方法 - Google Patents

深紫外led及びその製造方法 Download PDF

Info

Publication number
WO2017168811A1
WO2017168811A1 PCT/JP2016/082397 JP2016082397W WO2017168811A1 WO 2017168811 A1 WO2017168811 A1 WO 2017168811A1 JP 2016082397 W JP2016082397 W JP 2016082397W WO 2017168811 A1 WO2017168811 A1 WO 2017168811A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type algan
photonic crystal
periodic structure
contact layer
Prior art date
Application number
PCT/JP2016/082397
Other languages
English (en)
French (fr)
Inventor
行雄 鹿嶋
恵里子 松浦
小久保 光典
田代 貴晴
秀樹 平山
隆一郎 上村
大和 長田
敏郎 森田
Original Assignee
丸文株式会社
東芝機械株式会社
国立研究開発法人理化学研究所
株式会社アルバック
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸文株式会社, 東芝機械株式会社, 国立研究開発法人理化学研究所, 株式会社アルバック, 東京応化工業株式会社 filed Critical 丸文株式会社
Priority to CN201680003179.3A priority Critical patent/CN107534072B/zh
Priority to JP2017517135A priority patent/JP6156898B1/ja
Priority to US15/526,860 priority patent/US10056526B2/en
Priority to KR1020177013240A priority patent/KR101811819B1/ko
Priority to EP16861100.2A priority patent/EP3249701B1/en
Publication of WO2017168811A1 publication Critical patent/WO2017168811A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Definitions

  • the present invention relates to AlGaN-based deep ultraviolet LED technology.
  • Deep UV LEDs with an emission wavelength of 280 nm or less are attracting attention as alternative technologies for mercury lamp sterilization lamps in a wide range of application fields such as sterilization, water purification / air purification, and medical care.
  • WPE power-light conversion efficiency
  • the main reason is that the light extraction efficiency (LEE) is as low as about 6% because emitted light is absorbed by the p-type GaN contact layer by 50% or more.
  • a photonic crystal is provided in a thickness direction including an interface between a p-type GaN contact layer and a p-type AlGaN layer, and incident light is reflected to suppress the absorption.
  • the depth of the photonic crystal provided in the above literature is about 300 nm, which is equal to or greater than the period.
  • the total film thickness of the p-type GaN contact layer and the p-type AlGaN layer is 300 nm or more, or the film thickness of the p-type AlGaN contact layer is 300 nm or more.
  • the p-type AlGaN layer has a thickness of 300 nm, it becomes cloudy and sufficient transparency cannot be secured, resulting in a problem that LEE is lowered.
  • the object of the present invention is to provide a new technique for increasing the light extraction efficiency in a deep ultraviolet LED.
  • a deep ultraviolet LED having a design wavelength ⁇ , a reflective electrode layer, a metal layer, a p-type GaN contact layer, and a p-type AlGaN transparent to the wavelength ⁇ .
  • the distance from the end surface of the hole in the substrate direction to the quantum well layer is not less than the total thickness of the barrier layer and the multiple quantum barrier layer (or the electron blocking layer) within 80 nm and the depth thereof h before
  • the maximum value of the light extraction efficiency is obtained within the total thickness of the p-type AlGaN layer and the p-type GaN contact layer, and the reflective photonic crystal periodic structure is opened with respect to the TE polarization component.
  • the period a of the photonic crystal periodic structure satisfies the Bragg condition for the light of the design wavelength ⁇ , and the order m in the Bragg conditional expression satisfies 1 ⁇ m ⁇ 5
  • a deep ultraviolet LED is provided that satisfies R / a where the photonic band gap is maximized when the radius is R and the radius of the hole is R.
  • a deep ultraviolet LED having a design wavelength ⁇ , a reflective electrode layer, an ultrathin metal layer, a p-type AlGaN contact layer transparent to the wavelength ⁇ , multiple quantum A p-type AlGaN contact layer having a barrier layer (or electron block layer), a barrier layer, and a quantum well layer in this order from the opposite side of the substrate, the p-type AlGaN contact layer having a thickness of 100 nm or less;
  • a reflective photonic crystal periodic structure having a plurality of holes provided in a range in the thickness direction not exceeding the p-type AlGaN contact layer in the substrate direction, the holes in the substrate direction
  • the distance from the end face to the quantum well layer is not less than the total thickness of the barrier layer and the multiple quantum barrier layer (or the electron block layer) within 80 nm, and the depth h is the p-type AlGaN contact layer
  • the reflective photonic crystal periodic structure has a photonic band gap that is open with respect to the TE
  • a deep ultraviolet LED having a design wavelength ⁇ , a reflective electrode layer, a metal layer, a p-type GaN contact layer, and a p-type AlGaN transparent to the wavelength ⁇ .
  • it has a reflective photonic crystal periodic structure having a plurality of holes provided at positions not exceeding the reflective electrode layer, and the distance from the end surface in the substrate direction of the holes to the quantum well layer is the barrier.
  • a maximum value of the light extraction efficiency is obtained within the range of the total thickness of the multiple quantum barrier layer (or the electron blocking layer) within 80 nm, and the reflective photonic crystal periodic structure is open to the TE polarization component.
  • the period a of the periodic structure of the photonic crystal satisfies the Bragg condition for light of the design wavelength ⁇ , and the order m in the Bragg conditional expression is 1 ⁇ m ⁇ 5
  • a deep ultraviolet LED characterized by satisfying R / a that maximizes the photonic band gap when R is the radius of the hole.
  • a deep ultraviolet LED having a design wavelength ⁇ , a reflective electrode layer, an ultrathin metal layer, a p-type AlGaN contact layer transparent to the wavelength ⁇ , a multiple quantum A barrier layer (or an electron blocking layer), a barrier layer, and a quantum well layer are provided in this order from the side opposite to the substrate, and the thickness of the p-type AlGaN contact layer is within 100 nm, and the p in the substrate direction
  • Light having a crystal periodic structure, and the distance from the end surface of the vacancies in the substrate direction to the quantum well layer is 80 nm or more within the total thickness of the barrier layer and the multiple quantum barrier layer (or the electron block layer)
  • a deep ultraviolet LED having a design wavelength ⁇ , a reflective electrode layer, a metal layer, a p-type GaN contact layer, and a p-type AlGaN transparent to the wavelength ⁇ .
  • the distance from the end surface of the hole in the substrate direction to the quantum well layer is the sum of the thicknesses of the barrier layer and the multiple quantum barrier layer (or the electron blocking layer).
  • the maximum value of the light extraction efficiency is obtained when the total value is within 80 nm and the depth h is within the total thickness of the p-type AlGaN layer and the p-type GaN contact layer, and the reflection type photonic crystal period is obtained.
  • the structure has a photonic band gap open to the TE polarization component, the period a of the photonic crystal periodic structure satisfies the Bragg condition for the light of the design wavelength ⁇ , and the Bragg conditional expression
  • a deep ultraviolet LED characterized in that the order m satisfies 1 ⁇ m ⁇ 5 and R / a that maximizes the photonic band gap when R is the radius of the hole.
  • a deep ultraviolet LED having a design wavelength ⁇ , a reflective electrode layer, an ultrathin metal layer, a p-type AlGaN contact layer transparent to the wavelength ⁇ , a multiple quantum A p-type AlGaN contact layer having a barrier layer (or electron block layer), a barrier layer, and a quantum well layer in this order from the opposite side of the substrate, the p-type AlGaN contact layer having a thickness of 100 nm or less;
  • a reflective photonic crystal periodic structure having a plurality of holes provided from the thickness direction not exceeding the p-type AlGaN contact layer in the substrate direction to the interface between the p-type AlGaN contact layer and the ultrathin metal layer.
  • the distance from the end face of the hole in the substrate direction to the quantum well layer is not less than the total thickness of the barrier layer and the multiple quantum barrier layer (or the electron blocking layer) and not more than 80 nm.
  • the maximum value of the light extraction efficiency is obtained when the depth h is within the thickness of the p-type AlGaN contact layer, and the reflective photonic crystal periodic structure is a photonic that is open to the TE polarization component.
  • the period a of the photonic crystal periodic structure satisfies the Bragg condition for the light of the design wavelength ⁇ , and the order m in the Bragg conditional expression satisfies 1 ⁇ m ⁇ 5,
  • a deep ultraviolet LED characterized by satisfying R / a in which the photonic band gap is maximum when the radius of the hole is R.
  • a deep ultraviolet LED having a design wavelength of ⁇ , a reflective electrode layer, a metal layer, a p-type GaN contact layer, and a p-type AlGaN transparent to the wavelength ⁇ A layer, a multiple quantum barrier layer (or electron block layer), a barrier layer, and a quantum well layer in this order from the side opposite to the substrate, and the p-type AlGaN layer has a thickness of 100 nm or less, and the p-type A reflection type photonic crystal period having a plurality of holes provided not exceeding the interface between the GaN contact layer and the p-type AlGaN layer and within the thickness of the p-type GaN contact layer in the substrate direction
  • the distance from the end surface of the hole in the substrate direction to the quantum well layer is not less than the total thickness of the barrier layer and the multiple quantum barrier layer (or the electron blocking layer) within 80 nm and the depth thereof h is the p-type G
  • the maximum value of the light extraction efficiency can be obtained
  • a deep ultraviolet LED manufacturing method which is transparent to a reflective electrode layer, a metal layer, a p-type GaN contact layer, and a wavelength ⁇ .
  • a reflective photonic crystal periodic structure having a plurality of holes provided in a range in the thickness direction not exceeding the p-type AlGaN layer in the substrate direction, including an interface with the type AlGaN layer,
  • the distance from the end surface in the substrate direction of the hole to the quantum well layer is within 80 nm or more of the total thickness of the barrier layer and the multiple quantum barrier layer (or the electron block layer), and the depth h is the p-type AlGaN layer
  • a deep ultraviolet LED manufacturing method wherein the reflective electrode layer, the ultrathin metal layer, and the p-type AlGaN contact layer transparent to the wavelength ⁇ are provided. And a step of preparing a laminated structure containing the p-type AlGaN contact layer within a thickness of 100 nm and in the p-type AlGaN contact layer in the substrate direction.
  • a reflective photonic crystal periodic structure having a plurality of holes provided in a range in the thickness direction not exceeding the p-type AlGaN contact layer, from the end surface of the holes in the substrate direction to the quantum well layer
  • the distance is not less than the total thickness of the barrier layer and the multiple quantum barrier layer (or the electron blocking layer) within 80 nm and the depth h is within the thickness of the p-type AlGaN contact layer.
  • a method of manufacturing a deep ultraviolet LED according to the third aspect which is transparent to a reflective electrode layer, a metal layer, a p-type GaN contact layer, and a wavelength ⁇ .
  • the p-type GaN contact layer and the metal layer are penetrated from the thickness direction not exceeding the p-type AlGaN layer in the substrate direction, including the interface with the p-type AlGaN layer, and reach the reflective electrode layer.
  • a reflective photonic crystal periodic structure having a plurality of vacancies provided at positions not exceeding the distance between the barrier layer and the multiple quantum barrier layer so that the distance from the end surface in the substrate direction of the vacancies to the quantum well layer (Some A step of preparing a mold for forming a reflective photonic crystal periodic structure capable of obtaining a maximum value of light extraction efficiency within a range of not less than 80 nm and not less than a total thickness of the electron block layer), and on the stacked structure. Forming a resist layer and transferring the mold structure; sequentially etching the laminated structure using the resist layer as a mask to form a photonic crystal periodic structure; and redepositing the reflective electrode layer And a process for producing a deep ultraviolet LED.
  • a deep ultraviolet LED manufacturing method comprising a reflective electrode layer, an ultrathin metal layer, and a p-type AlGaN contact that is transparent to a wavelength ⁇ .
  • a layered structure containing layers in this order from the opposite side of the substrate, and the p-type AlGaN contact layer has a thickness of 100 nm or less and exceeds the p-type AlGaN contact layer in the substrate direction
  • a reflective photonic crystal periodic structure having a plurality of holes provided at positions not penetrating the ultrathin metal layer from the thickness direction and reaching the reflective electrode layer but not exceeding the reflective electrode layer;
  • a method for manufacturing a deep ultraviolet LED which includes a step of sequentially etching the laminated structure to form a photonic crystal periodic structure and a step of redepositing a reflective electrode layer.
  • a deep ultraviolet LED manufacturing method wherein the reflective electrode layer, the metal layer, the p-type GaN contact layer, and the wavelength ⁇ are transparent.
  • a deep ultraviolet LED manufacturing method comprising a reflective electrode layer, an ultrathin metal layer, and a p-type AlGaN contact layer transparent to a wavelength ⁇ . And a step of preparing a laminated structure containing the p-type AlGaN contact layer within a thickness of 100 nm and in the p-type AlGaN contact layer in the substrate direction.
  • the distance from the end face in the substrate direction to the quantum well layer is not less than the total thickness of the barrier layer and the multiple quantum barrier layer (or the electron blocking layer) within 80 nm and the depth h is
  • a resist layer is formed and the structure of the mold is transferred, and the stacked structure is sequentially etched using the resist layer as a mask to form a photonic crystal periodic structure.
  • a deep ultraviolet LED manufacturing method wherein the reflective electrode layer, the metal layer, the p-type GaN contact layer, and the wavelength ⁇ are transparent.
  • a step of preparing a laminated structure containing the p-type AlGaN layer in this order from the side opposite to the substrate, the p-type AlGaN layer has a thickness of 100 nm or less, and the p-type GaN contact layer and the p-type AlGaN layer A reflective photonic crystal periodic structure having a plurality of holes provided in the thickness direction of the p-type GaN contact layer in the substrate direction without exceeding the interface with the AlGaN layer,
  • the distance from the end surface in the substrate direction of the vacancy to the quantum well layer is not less than 80 nm and not less than the total thickness of the barrier layer and the multiple quantum barrier layer (or the electron block layer), and the depth h is the p-type GaN.
  • Contact layer A step of preparing a mold for forming a reflective photonic crystal periodic structure that can obtain a maximum value of light extraction efficiency within a film thickness, and crystal growth to the p-type GaN contact layer in the stacked structure
  • a deep ultraviolet process comprising: forming a resist layer and transferring the structure of the mold; and etching the stacked structure sequentially using the resist layer as a mask to form a photonic crystal periodic structure.
  • the LEE of deep ultraviolet LEDs can be dramatically improved.
  • FIG. 1A (a-1) and 1 (a-2) are a cross-sectional view and a plan view showing an example of the structure of a deep ultraviolet LED using a p-type GaN contact layer photonic crystal according to the first embodiment of the present invention. It is.
  • FIG. 1B (b) is a diagram showing a configuration example of a surface-mount package having a deep ultraviolet LED structure using a p-type GaN contact layer photonic crystal according to the first embodiment of the present invention. It is a figure shown as a modification of FIG. 1A. It is a figure shown as a modification of FIG. 1B.
  • FIG. 4B (b) is a diagram showing a configuration example of a surface-mount package having a deep ultraviolet LED structure using a p-type AlGaN contact layer photonic crystal according to the second embodiment of the present invention. It is a figure shown as a modification of FIG. 4A. It is a figure shown as a modification of FIG. 4B. It is a figure which shows the FDTD method calculation model at the time of using a photonic crystal for a p-type GaN contact layer. It is a figure which shows the FDTD method calculation model at the time of using a p-type AlGaN contact layer photonic crystal. It is a figure which shows the calculation model and analysis result of a ray tracing method.
  • Photonic crystal vicinity electric field distribution It is a figure which shows x component, (a) is Flat, (b) is Ex when a photonic crystal periodic structure is provided, (c) is a photonic crystal periodic structure. It is a figure which shows the calculation result regarding Ex at the time of providing. It is a figure which shows photonic crystal vicinity electric field distribution: y component corresponding to FIG. 8A.
  • FIG. 8A It is a figure which shows the photonic crystal vicinity electric field distribution: z component corresponding to FIG. 8A. It is a figure which shows the sum total component of the electric field distribution in the horizontal surface which cross
  • FIG. 12A (a-1) and 12 (a-2) are a cross-sectional view and a plan view showing an example of the structure of a deep ultraviolet LED using a p-type GaN contact layer photonic crystal according to the fourth embodiment of the present invention. It is.
  • FIG. 12B (b) is a diagram showing a configuration example of a surface-mount package having a deep ultraviolet LED structure using a p-type GaN contact layer photonic crystal according to the fourth embodiment of the present invention. It is a figure which shows the FDTD method calculation model at the time of using a p-type GaN photonic crystal.
  • A Enhancement of LEE
  • 16A (a-1) and 16 (a-2) are a cross-sectional view and a plan view showing an example of the structure of a deep ultraviolet LED using a p-type GaN contact layer photonic crystal according to the fifth embodiment of the present invention. It is.
  • FIG. 16A (a-1) and 16 (a-2) are a cross-sectional view and a plan view showing an example of the structure of a deep ultraviolet LED using a p-type GaN contact layer photonic crystal according to the fifth embodiment of the present invention. It is.
  • FIGS. 19A (a-1) and 19 (a-2) are a cross-sectional view and a plan view showing an example of the structure of a deep ultraviolet LED using a p-type AlGaN contact layer photonic crystal according to the sixth embodiment of the present invention. It is.
  • FIG. 19A (a-1) and 19 (a-2) are a cross-sectional view and a plan view showing an example of the structure of a deep ultraviolet LED using a p-type AlGaN contact layer photonic crystal according to the sixth embodiment of the present invention. It is.
  • 19B (b) is a diagram showing a configuration example of a surface-mount package having a deep ultraviolet LED structure using a p-type AlGaN contact layer photonic crystal according to the sixth embodiment of the present invention. It is a figure which shows the FDTD method calculation model at the time of using a p-type AlGaN photonic crystal.
  • 22A (a-1) and 22 (a-2) are a cross-sectional view and a plan view showing an example of the structure of a deep ultraviolet LED using a p-type GaN contact layer photonic crystal according to the seventh embodiment of the present invention. It is.
  • FIG. 22B (b) is a diagram showing a configuration example of a surface-mount package having a deep ultraviolet LED structure using a p-type GaN contact layer photonic crystal according to the seventh embodiment of the present invention. It is a figure which shows the FDTD method calculation model at the time of using a p-type GaN photonic crystal.
  • FIGS. 1A (a-1) and (a-2). the structure (cross-sectional view and plan view) of an AlGaN-based deep ultraviolet LED having a design wavelength ⁇ of 280 nm is shown in FIGS. 1A (a-1) and (a-2). ).
  • FIG. 1B (b) shows a deep ultraviolet LED mounted on a surface mount package.
  • the sapphire substrate 1 In order from the top of the cross-sectional view of FIG. 1A (a-1), the sapphire substrate 1, the AlN buffer layer 2, the n-type AlGaN layer 3, the barrier layer 4, the quantum well layer 5, the barrier layer 6, and the multiple layers. It has a quantum barrier layer (MQB) 7, a p-type AlGaN layer (transparent p-type AlGaN layer) 8, a p-type GaN contact layer 9, a Ni layer 10, and an Au reflective electrode layer 11.
  • MQB quantum barrier layer
  • the p-type AlGaN layer 8 has a film thickness of 100 nm or less, includes the interface between the p-type GaN contact layer 9 and the p-type AlGaN layer 8, and does not exceed the p-type AlGaN layer in the substrate direction.
  • the periodic structure 100 is provided, and the photonic crystal periodic structure 100 is provided with a hole (columnar structure, hole) 101 (h) and has a photonic band gap to reflect light with a wavelength ⁇ . It is a photonic crystal periodic structure. Note that it is not preferable to form the photonic crystal periodic structure only in the p-type GaN contact layer 9 because light is absorbed by the p-type GaN contact layer.
  • the multiple quantum barrier layer (MQB) 7 may be an electron block layer. The same applies to the following embodiments.
  • the reflective photonic crystal periodic structure 100 is formed of a cylinder or the like having a refractive index smaller than that of a p-type AlGaN layer or a p-type GaN contact layer.
  • Holes 101 (h) having a cross section of a circle with a radius R have a hole structure formed in a triangular lattice pattern with a period a along the x and y directions. Further, the hole 101 (h) has a structure that does not exceed the interface between the p-type AlGaN layer 8 and the multiple quantum barrier layer 7, and the hole 101 (h) has an end surface in the substrate direction and the quantum well layer 5.
  • the distance G is in the range of not less than the sum of the film thicknesses of the barrier layer 6 and the multiple quantum barrier layer 7 and not more than 80 nm. Further, the depth h of the reflective photonic crystal periodic structure 100 is within the total thickness of the p-type AlGaN layer 8 and the p-type GaN contact layer 9.
  • the body 101 (h) may have a structure that penetrates the Ni layer 10 and reaches the Au reflective electrode layer 11, but does not reach the interface between the Au reflective electrode layer 11 and air.
  • the deep ultraviolet light having the wavelength ⁇ emitted from the quantum well layer 5 is transmitted in the medium while the TE light and the TM light are emitted in all directions and elliptically polarized.
  • the photonic crystal periodic structure 100 provided in the vicinity of the quantum well layer 5 is formed with two structures of a p-type AlGaN layer 8 and air having different refractive indexes at the end face, and has a hole radius R and a period a.
  • the ratio R / a 0.0.4
  • FIG. 2 is obtained when the photonic band structure of TE light is obtained by the plane wave expansion method.
  • R / a 0.4 was invented by the inventor himself and described in International Application PCT / JP2015 / 071453 (Prior Art 1), “R / a size, PBG size, light extraction It is a value adopted from the principle that the efficiency increase / decrease rate is proportional to each other.
  • the depth does not need to be 300 nm, and even at a shallow depth of about 60 nm.
  • the reflection effect more than the structure of the prior art 1 or the like can be obtained.
  • the possible range of the order m has also expanded. Note that as m decreases, the period also decreases.
  • FIG. 3 is a diagram showing a photonic crystal reflection effect.
  • TE light incident from all directions on the photonic crystal periodic structure provided in the vicinity of the quantum well layer completely satisfies the Bragg scattering conditions as indicated by AR1. In order to satisfy the above, it is scattered in this plane and reflected in the direction of the substrate.
  • TM light is not Bragg-scattered in the depth direction because there is no PBG, as indicated by a broken line AR2. Therefore, the incident light is not absorbed or lost by the p-type GaN contact layer.
  • the layer where the crystal is formed is made thicker by devising the position where the photonic crystal periodic structure is provided in the layer to be provided with the photonic crystal periodic structure.
  • a large light extraction efficiency can be obtained by increasing the reflection effect while suppressing white turbidity.
  • 4A (a-1) is a cross-sectional view
  • FIG. 4A (a-2) is a plan view
  • FIG. 4B (b) shows a deep ultraviolet LED mounted on a surface mount package. Specifically, in order from the top of FIG.
  • the sapphire substrate 1 the AlN buffer layer 2, the n-type AlGaN layer 3, the barrier layer 4, the quantum well layer 5, the barrier layer 6, and the multiple quantum barrier layer ( MQB) 7, a p-type AlGaN contact layer (transparent p-type AlGaN contact layer) 8a, an ultrathin Ni layer 10a, and an Al reflective electrode layer 11a.
  • MQB multiple quantum barrier layer
  • the thickness of the p-type AlGaN contact layer 8a is 100 nm or less
  • the photonic crystal periodic structure 100 is provided in the p-type AlGaN contact layer 8a within a range not exceeding the p-type AlGaN layer in the substrate direction
  • the photonic crystal periodic structure 100 is a reflective photonic crystal periodic structure in which holes (columnar structures, holes) 101 (h) are provided and a photonic band gap is provided to reflect light having a wavelength ⁇ .
  • FIG. 4A (a-1), (a-2), and FIG. 4B (b) are shown in FIG. 4C (a-1), (a-2) and FIG. 4D (b).
  • the depth of the holes in the photonic crystal periodic structure in the thickness direction penetrates the ultrathin metal layer in the direction opposite to the substrate and reaches the reflective electrode layer, but penetrates the reflective electrode layer.
  • the structure is extended to the extent that it is not allowed.
  • FIG. 5 shows a photonic crystal calculation model of the p-type GaN contact layer (first embodiment)
  • FIG. 6 shows a calculation model of the p-type AlGaN contact layer (second embodiment), respectively.
  • FIG. 7A (a-1) is a calculation model of a pGaN contact.
  • FIG. 7A (a-2) shows a radiation pattern as an analysis result.
  • FIG. 7A (b) shows the details of the model and the light extraction efficiency which is the analysis result.
  • FIG. 7A (c-1) is a calculation model of a pAlGaN contact.
  • FIG. 7A (c-2) shows a radiation pattern as an analysis result.
  • FIG. 7B shows the relationship between the size of the photonic band gap and the reflection / transmission effect, and the light extraction efficiency (LEE) increase / decrease rate in the deep ultraviolet LED, which is obtained by analysis by the FDTD method. It is a figure which shows the detailed processing flow for obtaining the diameter d of this, the period a, and the depth h.
  • Step S01 A ratio (R / a) between the period a, which is a periodic structure parameter, and the radius R of the structure is provisionally determined.
  • Step S02 The average refractive index n av is calculated from the respective refractive indexes n 1 and n 2 of the previous structure and R / a, and this is substituted into the Bragg condition formula, and the period a and the radius R for each order m are calculated. obtain.
  • Step S03 The photonic band structure of TE light is analyzed by a plane wave expansion method using dielectric constants ⁇ 1 and ⁇ 2 of each structure obtained from R / a, wavelength ⁇ , and refractive indexes n 1 and n 2 .
  • Step S04 The R / a at which the PBG between the first photonic band and the second photonic band of TE light is maximized is determined by repeated analysis by changing the value of R / a of the provisional determination.
  • Step S05 For R / a that maximizes the PBG, the wavelength ⁇ is obtained by simulation analysis using the FDTD method in which the individual period a and the radius R according to the order m of the Bragg condition and the depth h of an arbitrary periodic structure are used as variables. Calculate the light extraction efficiency for.
  • Step S06 By repeatedly performing the simulation by the FDTD method, the order m of the Bragg condition that maximizes the light extraction efficiency with respect to the wavelength ⁇ , and the period a, the radius R, and the depth h of the periodic structure parameter corresponding to the order m are determined. To do.
  • the analysis was performed by changing the distance from the end face to the quantum well layer from 50 nm to 80 nm and changing the depth of the holes from 40 to 60 nm. The analysis results are shown in Tables 1 and 2.
  • Table 2 also shows LEE analysis results when the order m is changed.
  • pAlGaN p-type AlGaN contact layer photonic crystal
  • pGaN p-type GaN contact layer photonic crystal
  • Flat structure without photonic crystal periodic structure
  • PhC Depth 40 nm hole depth 40 nm
  • Power output value of FDTD method
  • FlatLEE% LEE calculation value of ray tracing method
  • Enhanced LEE increase / decrease rate of PhC output value with respect to output value of Flat
  • PhC LEE% Flat with LEE% of photonic crystal LEE% ⁇ (Enhanced + 100%)
  • FIG. 8A shows the electric field distribution Ex component
  • FIG. 8A (a) is Flat
  • FIG. 8A (b) is a photonic crystal periodic structure (photonic crystal periodic structure is not shown)
  • FIG. 8A (c) is a photonic crystal. It is a periodic structure (photonic crystal periodic structure is shown). Each shows the electric field distribution of the cross-sectional structure.
  • the photonic crystal periodic structure is removed in FIGS. 8A (c) and 8A (b).
  • FIG. 8D (a) is an electric field distribution Etotal of Flat
  • FIG. 8D (b) is an electric field distribution Etotal at the center of the photonic crystal.
  • the electric field propagates repeatedly in the direction of strength (color shading).
  • this analysis result shows that “TE light incident on the photonic crystal periodic structure provided in the vicinity of the quantum well layer from all directions completely satisfies the Bragg scattering condition. In order to satisfy, the physical phenomenon of “scattered in this plane and reflected in the direction of the substrate” is well explained.
  • FIG. 9A shows the LEE increase / decrease rate of the p-type AlGaN contact layer
  • FIG. 9B shows the LEE increase / decrease rate of the p-type GaN contact layer.
  • maximum values are obtained at all depths at a distance of 60 nm from the end face of the hole to the quantum well layer.
  • FIG. 9C shows a photonic crystal periodic structure of a p-type GaN contact layer having a distance to the quantum well layer of 60 nm and a hole depth of 60 nm and its flat, as well as a photonic crystal of the p-type AlGaN contact layer.
  • the periodic structure and its flat radiation pattern are shown.
  • the output value in the front direction (angle 0 to 10 °) with respect to the flat is particularly increased in the photonic crystal periodic structure.
  • FIG. 10A shows the light extraction efficiency with a distance to the quantum well layer of 60 nm for the photonic crystals provided in the p-type GaN contact layer and the p-type AlGaN contact layer. From this result, a proportional relationship between the depth (Depth) h of the photonic crystal periodic structure (hole) and LEE is observed.
  • the reflection effect of the photonic crystal periodic structure can be obtained by bringing the position of the photonic crystal periodic structure closer to the quantum well structure. It can be seen that the light extraction efficiency is twice as high as that of the structure and slightly more than three times as high as that of the photonic crystal periodic structure of the p-type GaN contact layer.
  • FIG. 11 is a diagram illustrating an example of a photonic crystal periodic structure processing process.
  • Nanoimprint lithography technology is used for photonic crystal processing. Since the surface of the p-type GaN contact layer 209 has a warp of 100 ⁇ m or more in the convex direction, the mold corresponds to the resin mold 200. Also, a two-layer resist is used in order to keep the hole diameter close to the vertical and accurately in the dry etching.
  • a lower layer resist 211 is spin-coated on the surface of the p-type GaN contact layer 209 in a wafer having a deep ultraviolet LED laminated structure laminated up to the p-type GaN contact layer 209.
  • a Si-containing upper layer resist 210 is spin-coated to form a two-layer resist (see FIG. 11A).
  • the upper resist is pressed with a resin mold 200 having a reversal pattern of a predetermined photonic crystal periodic structure and UV cured to transfer the photonic crystal pattern 212 to the upper resist 210 (see FIG. 11B).
  • the upper layer resist 210 is etched with oxygen plasma to form a mask 213. Refer to FIG.
  • the distance from the end face of the photonic crystal pattern (hole) 212 to the quantum well layer 205 does not exceed the p-type AlGaN layer 208 by ICP plasma, and the thickness of the barrier layer 206 and the multiple quantum barrier layer 207 is the mask 213.
  • Etching is performed to a position not less than the total value and not more than 80 nm, and processed into a shape in which the hole depth is within the total value of the film thicknesses of the p-type AlGaN layer 208 and the p-type GaN contact layer 209. Refer to FIG. Finally, the remaining lower layer resist 211 is cleaned to perform clean surface exposure.
  • the metal layer and the reflective electrode layer are formed on the GaN or AlGaN crystal after the photonic crystal pattern is formed, and the structure shown in FIG. 1A, FIG. 4A, FIG. 12A, or FIG. Form.
  • the structure shown in FIG. 1C or FIG. 4C is formed by forming a photonic crystal pattern after forming the metal layer and the reflective electrode layer, and re-depositing a reflective electrode layer such as Au or Al thereon.
  • a p-type GaN contact layer or a p-type AlGaN contact layer is formed and then a photonic crystal pattern is formed, and a metal layer and a reflective electrode layer are formed thereon by an oblique deposition method, as shown in FIG. 16A or FIG. 19A. Forming a structure.
  • the metal layer and the reflective electrode layer are stacked on the surface of the p-type GaN contact layer or the p-type AlGaN contact layer without forming the metal layer and the reflective electrode layer in the hole of the photonic crystal pattern. It is possible.
  • 12A (a-1) is a cross-sectional view
  • FIG. 12A (a-2) is a plan view
  • FIG. 12B (b) shows a deep ultraviolet LED mounted on a surface mount package.
  • This LED is the same as the laminated thin film structure of the deep ultraviolet LED in the first embodiment, but the thickness of the p-type GaN contact layer 9 is different from 200 nm. This is to obtain surface flatness by laminating the p-type GaN contact layer thickly in the device manufacturing process.
  • the photonic crystal periodic structure 100 is provided in a range including the interface between the p-type GaN contact layer 9 and the p-type AlGaN layer 8 and not exceeding the p-type AlGaN layer in the substrate direction, and the photonic crystal period
  • the structure 100 is a reflective photonic crystal periodic structure in which holes (columnar structures, holes) 101 (h) are provided and a photonic band gap is provided to reflect light having a wavelength ⁇ .
  • the hole 101 (h) has a structure that does not exceed the interface between the p-type AlGaN layer 8 and the multiple quantum barrier layer 7, and the hole 101 (h) has an end surface in the substrate direction and the quantum well layer 5.
  • the distance G is not less than the total thickness of the barrier layer 6 and the multiple quantum barrier layer 7 and within 80 nm.
  • the depth h of the reflective photonic crystal periodic structure 100 is within the total thickness of the p-type AlGaN layer 8 and the p-type GaN contact layer 9.
  • FIG. 13 shows a photonic crystal calculation model of the p-type GaN contact layer.
  • the analysis results are shown in Table 3, FIG. 14 (a) Enhancement of LEE, (b) light extraction efficiency, and (c) radiation pattern (Radiation Pattern).
  • FIG. 15A is an electric field intensity distribution in a cross section of a photonic crystal having a depth of 120 nm.
  • FIG. 15B is an electric field intensity distribution in a cross section of the photonic crystal having a depth of 140 nm.
  • FIG. 15C is an electric field intensity distribution in a cross section of a photonic crystal having a depth of 160 nm.
  • 15A to 15C (electric field intensity distribution), it can be seen that light (electric field) that has entered the photonic crystal reaches the deepest part of the photonic crystal at any depth. As the depth increases, light (electric field) penetrates into the p-type GaN contact layer, where light is absorbed and lost.
  • the p-type GaN contact layer is thin in order to reduce the depth of the photonic crystal.
  • 16A (a-1) is a cross-sectional view
  • FIG. 16A (a-2) is a plan view
  • FIG. 16B (b) shows a deep ultraviolet LED mounted on a surface mount package.
  • the LED is the same as the laminated thin film structure of the deep ultraviolet LED in the fourth embodiment, but the thickness of the p-type GaN contact layer 9 is different from 150 nm. This is a modification from the viewpoint of another method in the device manufacturing process.
  • the photonic crystal periodic structure 100 is provided in a range including the interface between the p-type GaN contact layer 9 and the p-type AlGaN layer 8 and not exceeding the p-type AlGaN layer in the substrate direction, and the photonic crystal period
  • the structure 100 is a reflective photonic crystal periodic structure in which holes (columnar structures, holes) 101 (h) are provided and a photonic band gap is provided to reflect light having a wavelength ⁇ .
  • the void 101 (h) does not exceed the interface between the p-type AlGaN layer 8 and the multiple quantum barrier layer 7, but has a structure that reaches the interface between the p-type GaN contact layer 9 and the Ni layer 10, and
  • the distance G between the end surface of the hole 101 (h) in the substrate direction and the quantum well layer 5 is equal to or greater than the total thickness of the barrier layer 6 and the multiple quantum barrier layer 7 and within 80 nm.
  • the depth h of the reflective photonic crystal periodic structure 100 is within the total thickness of the p-type AlGaN layer 8 and the p-type GaN contact layer 9.
  • FIG. 17 shows a photonic crystal calculation model of the p-type GaN contact layer.
  • the analysis results are shown in Table 4, FIG. 18 (a) Enhancement of LEE, FIG. 18 (b) light extraction efficiency, and FIG. 18 (c) radiation pattern (Radiation Pattern).
  • 19A (a-1) is a cross-sectional view
  • FIG. 19A (a-2) is a plan view
  • FIG. 19B (b) shows a deep ultraviolet LED mounted on a surface mount package.
  • the LED is the same as the laminated thin film structure of the deep ultraviolet LED in the second embodiment, but is a modification viewed from the viewpoint of another method in the device manufacturing process.
  • the p-type AlGaN contact layer 8a has a thickness of 100 nm or less, and the p-type AlGaN contact layer 8a is provided with the photonic crystal periodic structure 100 in a range not exceeding the p-type AlGaN contact layer in the substrate direction.
  • the photonic crystal periodic structure 100 is a reflective photonic crystal periodic structure in which holes (columnar structures, holes) 101 (h) are provided and a photonic band gap is provided to reflect light having a wavelength ⁇ .
  • the hole 101 (h) does not exceed the interface between the p-type AlGaN contact layer 8a and the multiple quantum barrier layer 7, but has reached the interface between the p-type AlGaN contact layer 8a and the ultrathin Ni layer 10a.
  • the distance G between the end surface of the hole 101 (h) in the substrate direction and the quantum well layer 5 is equal to or greater than the total thickness of the barrier layer 6 and the multiple quantum barrier layer 7 and within 80 nm.
  • the depth h of the reflective photonic crystal periodic structure 100 is within the thickness of the p-type AlGaN contact layer 8a.
  • FIG. 20 shows a photonic crystal calculation model of the p-type AlGaN contact layer.
  • the analysis results are shown in Table 5, FIG. 21 (a) Enhancement of LEE, FIG. 21 (b) LEE, and FIG. 21 (c) radiation pattern (Radiation Pattern).
  • 22A (a-1) is a cross-sectional view
  • FIG. 22A (a-2) is a plan view
  • FIG. 22B (b) shows a deep ultraviolet LED mounted on a surface mount package.
  • the LED is the same as the laminated thin film structure of the deep ultraviolet LED in the first embodiment and the fourth embodiment, but the position where the photonic crystal periodic structure 100 is provided is different. This is a modification from the viewpoint of another method in the device manufacturing process.
  • the photonic crystal periodic structure 100 is provided in the range of the thickness of the p-type GaN contact layer 9 without exceeding the interface between the p-type GaN contact layer 9 and the p-type AlGaN layer 8 in the substrate direction;
  • the photonic crystal periodic structure 100 is a reflective photonic crystal periodic structure in which holes (columnar structures, holes) 101 (h) are provided and a photonic band gap is provided to reflect light having a wavelength ⁇ .
  • the hole 101 (h) does not exceed the interface between the p-type GaN contact layer 9 and the Ni layer 10, and the distance G from the end surface of the hole 101 (h) in the substrate direction to the quantum well layer 5 is
  • the total thickness of the barrier layer 6 and the multiple quantum barrier layer 7 is not less than 80 nm and not less than 80 nm. Further, the depth h of the reflective photonic crystal periodic structure 100 is within the thickness of the p-type GaN contact layer 9.
  • the deep ultraviolet light having the wavelength ⁇ emitted from the quantum well layer 5 is transmitted in the medium while being elliptically polarized by emitting TE light and TM light in all directions. Since the photonic crystal periodic structure 100 provided in the vicinity of the quantum well layer 5 is provided within the film thickness of the p-type GaN contact layer 9, two different refractions of the p-type GaN contact layer 9 and air are present at the end face.
  • the ratio R / a 0.4, which is the ratio of the radius R of the holes to the period a, is 0.4
  • the photonic band structure of TM light is obtained by the plane wave expansion method, and it is confirmed that PBG is obtained between the first photonic band and the second photonic band in TE light.
  • FIG. 23 shows a photonic crystal calculation model of the LED structure.
  • the thickness of the p-type AlGaN layer 8 is changed in 10 nm steps in the range of 0 nm to 30 nm, and the position of the hole 101 (h) is the end face in the substrate direction with the p-type AlGaN layer 8 and the p-type GaN contact.
  • the depth was set to 120 nm from the interface of the layer 9.
  • the distance G between the quantum well layer 5 and the end face of the hole 101 (h) in the substrate direction becomes shorter. That is, the distance G is 50 nm when the thickness of the p-type AlGaN layer 8 is 0 nm, and similarly, the distance G is set to be 80 nm when the thickness of the p-type AlGaN layer 8 is 30 nm by changing in 10 nm steps.
  • the analysis results are shown in Table 6, FIG. 24 (a) Enhancement of LEE, FIG. 24 (b) light extraction efficiency, and FIG. 24 (c) radiation pattern (Radiation Pattern).
  • the light extraction efficiency increase / decrease rate of FIG. 24A increases as the thickness of the p-type AlGaN layer decreases, and the distance G from the quantum well layer 5 is 50 nm (in this case, p-type AlGaN).
  • a maximum value of about 2.7 times the strength is obtained when the layer thickness is 0 nm, and about 2.5 times the strength is obtained even when the distance G is 60 nm (also the thickness of the p-type AlGaN layer is 10 nm). It has been.
  • the maximum value of 17.3% is obtained by distance G50nm.
  • FIG. 24C shows a radiation pattern at a distance G50 nm, and it can be seen that the output in the axial direction (0 to 30 °) increases with respect to Flat.
  • an LED device is created.
  • the LEE of a deep ultraviolet LED can be dramatically improved by providing a photonic crystal periodic structure in a thin p-type AlGaN layer.
  • Each component of the present invention can be arbitrarily selected, and an invention having a selected configuration is also included in the present invention.
  • the present invention can be used for deep ultraviolet LEDs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

深紫外LEDにおいて光取出し効率を高める。設計波長をλとする深紫外LEDであって、反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層、多重量子障壁層或いは電子ブロック層、バリア層、量子井戸層とを、基板とは反対側からこの順で有し、前記p型AlGaN層の膜厚が100nm以内で、少なくとも前記p型GaNコンタクト層と前記p型AlGaN層との界面を含み、前記基板方向において前記p型AlGaN層を超えない厚さ方向の範囲内に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層(或いは前記電子ブロック層)の膜厚の合計値以上80nm以内及びその深さhが前記p型AlGaN層と前記p型GaNコンタクト層の膜厚の合計値以内において光取出し効率の極大値が得られ、かつ、前記反射型フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式にある次数mは1≦m≦5を満たし、前記空孔の半径をRとした時、フォトニックバンドギャップが最大となるR/aを満たすことを特徴とする深紫外LED。

Description

深紫外LED及びその製造方法
 本発明はAlGaN系深紫外LED技術に関する。
 発光波長が280nm以下の深紫外LEDは、殺菌、浄水・空気浄化、医療などの幅広い応用分野で、水銀ランプ殺菌灯の代替技術として注目されている。しかし、LEDの電力光変換効率(WPE)は数%と水銀ランプの20%と比較して著しく低い。その主な理由は、発光した光がp型GaNコンタクト層で50%以上吸収されるために光取出し効率(LEE)が、6%程度と低いことに起因する。
 特許文献1によれば、p型GaNコンタクト層とp型AlGaN層との界面を含む厚さ方向にフォトニック結晶を設けて、入射光を反射させて上記吸収を抑制している。
特許第5757512号公報
 しかしながら、上記文献に設けられたフォトニック結晶の深さは周期と同等以上の300nm程度の深さがないと有効な反射効果が得られない。そのためには、p型GaNコンタクト層とp型AlGaN層の膜厚総和が300nm以上、或いはp型AlGaNコンタクト層の膜厚が300nm以上必要となる。
 ところが、p型AlGaN層を膜厚300nmとすると、白濁し、十分な透明度を確保することができず、結果としてLEEが低下するという問題が生じる。
 本発明は、深紫外LEDにおいて、光取出し効率を高める新たな技術を提供することを目的とする。
 本発明の第一の観点によれば、設計波長をλとする深紫外LEDであって、反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層、多重量子障壁層(或いは電子ブロック層)、バリア層、量子井戸層とを、基板とは反対側からこの順で有し、前記p型AlGaN層の膜厚が100nm以内で、少なくとも前記p型GaNコンタクト層と前記p型AlGaN層との界面を含み、前記基板方向において前記p型AlGaN層を超えない厚さ方向の範囲内に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層(或いは前記電子ブロック層)の膜厚の合計値以上80nm以内及びその深さhが前記p型AlGaN層と前記p型GaNコンタクト層の膜厚の合計値以内において光取出し効率の極大値が得られ、かつ、前記反射型フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式にある次数mは1≦m≦5を満たし、前記空孔の半径をRとした時、フォトニックバンドギャップが最大となるR/aを満たすことを特徴とする深紫外LEDが提供される。
 本発明の第二の観点によれば、設計波長をλとする深紫外LEDであって、反射電極層と、極薄膜金属層と、波長λに対し透明な、p型AlGaNコンタクト層、多重量子障壁層(或いは電子ブロック層)、バリア層、量子井戸層とを、基板とは反対側からこの順で有し、前記p型AlGaNコンタクト層の膜厚が100nm以内で、前記p型AlGaNコンタクト層内に、前記基板方向において前記p型AlGaNコンタクト層を超えない厚さ方向の範囲内に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層(或いは前記電子ブロック層)の膜厚の合計値以上80nm以内及びその深さhが前記p型AlGaNコンタクト層の膜厚以内において光取出し効率の極大値が得られ、かつ、前記反射型フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式にある次数mは1≦m≦5を満たし、前記空孔の半径をRとした時、フォトニックバンドギャップが最大となるR/aを満たすことを特徴とする深紫外LEDが提供される。
 本発明の第三の観点によれば、設計波長をλとする深紫外LEDであって、反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層、多重量子障壁層(或いは電子ブロック層)、バリア層、量子井戸層とを、基板とは反対側からこの順で有し、前記p型AlGaN層の膜厚が100nm以内で、少なくとも前記p型GaNコンタクト層と前記p型AlGaN層との界面を含み、前記基板方向において前記p型AlGaN層を超えない厚さ方向からp型GaNコンタクト層及び金属層を貫通し、反射電極層内に達しているが、反射電極層を超えない位置に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層(或いは前記電子ブロック層)の膜厚の合計値以上80nm以内において光取出し効率の極大値が得られ、かつ、前記反射型フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式にある次数mは1≦m≦5を満たし、前記空孔の半径をRとした時、フォトニックバンドギャップが最大となるR/aを満たすことを特徴とする深紫外LEDが提供される。
 本発明の第四の観点によれば、設計波長をλとする深紫外LEDであって、反射電極層と、極薄膜金属層と、波長λに対し透明な、p型AlGaNコンタクト層、多重量子障壁層(或いは電子ブロック層)、バリア層、量子井戸層とを、基板とは反対側からこの順で有し、前記p型AlGaNコンタクト層の膜厚が100nm以内で、前記基板方向において前記p型AlGaNコンタクト層を超えない厚さ方向から極薄膜金属層を貫通し、反射電極層内に達しているが、反射電極層を超えない位置に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層(或いは前記電子ブロック層)の膜厚の合計値以上80nm以内において光取出し効率の極大値が得られ、かつ、前記反射型フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式にある次数mは1≦m≦5を満たし、前記空孔の半径をRとした時、フォトニックバンドギャップが最大となるR/aを満たすことを特徴とする深紫外LEDが提供される。
 本発明の第五の観点によれば、設計波長をλとする深紫外LEDであって、反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層、多重量子障壁層(或いは電子ブロック層)、バリア層、量子井戸層とを、基板とは反対側からこの順で有し、前記p型AlGaN層の膜厚が100nm以内で、少なくとも前記p型GaNコンタクト層と前記p型AlGaN層との界面を含み、前記基板方向において前記p型AlGaN層を超えない厚さ方向からp型GaNコンタクト層と金属層の界面にかけて設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層(或いは前記電子ブロック層)の膜厚の合計値以上80nm以内及びその深さhが前記p型AlGaN層と前記p型GaNコンタクト層の膜厚の合計値以内において光取出し効率の極大値が得られ、かつ、前記反射型フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式にある次数mは1≦m≦5を満たし、前記空孔の半径をRとした時、フォトニックバンドギャップが最大となるR/aを満たすことを特徴とする深紫外LEDが提供される。
 本発明の第六の観点によれば、設計波長をλとする深紫外LEDであって、反射電極層と、極薄膜金属層と、波長λに対し透明な、p型AlGaNコンタクト層、多重量子障壁層(或いは電子ブロック層)、バリア層、量子井戸層とを、基板とは反対側からこの順で有し、前記p型AlGaNコンタクト層の膜厚が100nm以内で、前記p型AlGaNコンタクト層内に、前記基板方向において前記p型AlGaNコンタクト層を超えない厚さ方向からp型AlGaNコンタクト層と極薄膜金属層の界面にかけて設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層(或いは前記電子ブロック層)の膜厚の合計値以上80nm以内及びその深さhが前記p型AlGaNコンタクト層の膜厚以内において光取出し効率の極大値が得られ、かつ、前記反射型フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式にある次数mは1≦m≦5を満たし、前記空孔の半径をRとした時、フォトニックバンドギャップが最大となるR/aを満たすことを特徴とする深紫外LEDが提供される。
 本発明の第七の観点によれば、設計波長をλとする深紫外LEDであって、反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層、多重量子障壁層(或いは電子ブロック層)、バリア層、量子井戸層とを、基板とは反対側からこの順で有し、前記p型AlGaN層の膜厚が100nm以内で、前記p型GaNコンタクト層と前記p型AlGaN層との界面を超えず、かつ、前記基板方向において前記p型GaNコンタクト層の膜厚の範囲内に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層(或いは前記電子ブロック層)の膜厚の合計値以上80nm以内及びその深さhが前記p型GaNコンタクト層の膜厚以内において光取出し効率の極大値が得られ、かつ、前記反射型フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式にある次数mは1≦m≦5を満たし、前記空孔の半径をRとした時、フォトニックバンドギャップが最大となるR/aを満たすことを特徴とする深紫外LEDが提供される。
 本発明の第八の観点によれば、上記第一の観点による深紫外LEDの製造方法であって、反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層とを、基板とは反対側からこの順で含有する積層構造体を準備する工程と、前記p型AlGaN層の膜厚が100nm以内で、少なくとも前記p型GaNコンタクト層と前記p型AlGaN層との界面を含み、前記基板方向において前記p型AlGaN層を超えない厚さ方向の範囲内に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層(或いは前記電子ブロック層)の膜厚の合計値以上80nm以内及びその深さhが前記p型AlGaN層と前記p型GaNコンタクト層の膜厚の合計値以内において光取出し効率の極大値が得られる反射型フォトニック結晶周期構造を形成するための金型を準備する工程と、前記積層構造体上に、レジスト層を形成し、前記金型の構造を転写する工程と、前記レジスト層をマスクとして順次前記積層構造体をエッチングしてフォトニック結晶周期構造を形成する工程と、を有する深紫外LEDの製造方法が提供される。    
 本発明の第九の観点によれば、上記第二の観点による深紫外LEDの製造方法であって、反射電極層と、極薄膜金属層と、波長λに対し透明な、p型AlGaNコンタクト層とを、基板とは反対側からこの順で含有する積層構造体を準備する工程と、前記p型AlGaNコンタクト層の膜厚が100nm以内で、前記p型AlGaNコンタクト層内に、前記基板方向において前記p型AlGaNコンタクト層を超えない厚さ方向の範囲内に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層(或いは前記電子ブロック層)の膜厚の合計値以上80nm以内及びその深さhが前記p型AlGaNコンタクト層の膜厚以内において光取出し効率の極大値が得られる反射型フォトニック結晶周期構造を形成するための金型を準備する工程と、前記積層構造体上に、レジスト層を形成し、前記金型の構造を転写する工程と、前記レジスト層をマスクとして順次前記積層構造体をエッチングしてフォトニック結晶周期構造を形成する工程と、を有する深紫外LEDの製造方法が提供される。
 本発明の第十の観点によれば、上記第三の観点による深紫外LEDの製造方法であって、反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層とを、基板とは反対側からこの順で含有する積層構造体を準備する工程と、前記p型AlGaN層の膜厚が100nm以内で、少なくとも前記p型GaNコンタクト層と前記p型AlGaN層との界面を含み、前記基板方向において前記p型AlGaN層を超えない厚さ方向からp型GaNコンタクト層と金属層を貫通し、反射電極層内に達しているが、反射電極層を超えない位置に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層(或いは前記電子ブロック層)の膜厚の合計値以上80nm以内において光取出し効率の極大値が得られる反射型フォトニック結晶周期構造を形成するための金型を準備する工程と、前記積層構造体上に、レジスト層を形成し、前記金型の構造を転写する工程と、前記レジスト層をマスクとして順次前記積層構造体をエッチングしてフォトニック結晶周期構造を形成する工程と、反射電極層を再蒸着させる工程と、を有する深紫外LEDの製造方法が提供される。
 本発明の第十一の観点によれば、上記第四の観点による深紫外LEDの製造方法であって、反射電極層と、極薄膜金属層と、波長λに対し透明な、p型AlGaNコンタクト層とを、基板とは反対側からこの順で含有する積層構造体を準備する工程と、前記p型AlGaNコンタクト層の膜厚が100nm以内で、前記基板方向において前記p型AlGaNコンタクト層を超えない厚さ方向から極薄膜金属層を貫通し、反射電極層内に達しているが反射電極層を超えない位置に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層(或いは前記電子ブロック層)の膜厚の合計値以上80nm以内において光取出し効率の極大値が得られる反射型フォトニック結晶周期構造を形成するための金型を準備する工程と、前記積層構造体上に、レジスト層を形成し、前記金型の構造を転写する工程と、前記レジスト層をマスクとして順次前記積層構造体をエッチングしてフォトニック結晶周期構造を形成する工程と、反射電極層を再蒸着させる工程と、を有する深紫外LEDの製造方法が提供される。
 本発明の第十二の観点によれば、上記第五の観点による深紫外LEDの製造方法であって、反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層とを、基板とは反対側からこの順で含有する積層構造体を準備する工程と、前記p型AlGaN層の膜厚が100nm以内で、少なくとも前記p型GaNコンタクト層と前記p型AlGaN層との界面を含み、前記基板方向において前記p型AlGaN層を超えない厚さ方向からp型GaNコンタクト層と金属層の界面にかけて設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層(或いは前記電子ブロック層)の膜厚の合計値以上80nm以内及びその深さhが前記p型AlGaN層と前記p型GaNコンタクト層の膜厚の合計値以内において光取出し効率の極大値が得られる反射型フォトニック結晶周期構造を形成するための金型を準備する工程と、前記積層構造体のうち前記p型GaNコンタクト層まで結晶成長させた上に、レジスト層を形成し、前記金型の構造を転写する工程と、前記レジスト層をマスクとして順次前記積層構造体をエッチングしてフォトニック結晶周期構造を形成する工程と、前記フォトニック結晶周期構造形成後に金属層と反射電極層をこの順で斜め蒸着させる工程と、を有する深紫外LEDの製造方法が提供される。
 本発明の第十三の観点によれば上記第六の観点による深紫外LEDの製造方法であって、反射電極層と、極薄膜金属層と、波長λに対し透明な、p型AlGaNコンタクト層とを、基板とは反対側からこの順で含有する積層構造体を準備する工程と、前記p型AlGaNコンタクト層の膜厚が100nm以内で、前記p型AlGaNコンタクト層内に、前記基板方向において前記p型AlGaNコンタクト層を超えない厚さ方向からp型AlGaNコンタクト層と極薄膜金属層の界面にかけて設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層(或いは前記電子ブロック層)の膜厚の合計値以上80nm以内及びその深さhが前記p型AlGaNコンタクト層の膜厚以内において光取出し効率の極大値が得られる反射型フォトニック結晶周期構造を形成するための金型を準備する工程と、前記積層構造体のうち前記p型AlGaNコンタクト層まで結晶成長させた上に、レジスト層を形成し、前記金型の構造を転写する工程と、前記レジスト層をマスクとして順次前記積層構造体をエッチングしてフォトニック結晶周期構造を形成する工程と、前記フォトニック結晶周期構造形成後に極薄膜金属層と反射電極層をこの順で斜め蒸着させる工程と、を有する深紫外LEDの製造方法が提供される。
 本発明の第十四の観点によれば、上記第七の観点による深紫外LEDの製造方法であって、反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層とを、基板とは反対側からこの順で含有する積層構造体を準備する工程と、前記p型AlGaN層の膜厚が100nm以内で、前記p型GaNコンタクト層と前記p型AlGaN層との界面を超えず、かつ、前記基板方向において前記p型GaNコンタクト層の膜厚の範囲内に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層(或いは前記電子ブロック層)の膜厚の合計値以上80nm以内及びその深さhが前記p型GaNコンタクト層の膜厚以内において光取出し効率の極大値が得られる反射型フォトニック結晶周期構造を形成するための金型を準備する工程と、前記積層構造体のうち前記p型GaNコンタクト層まで結晶成長させた上に、レジスト層を形成し、前記金型の構造を転写する工程と、前記レジスト層をマスクとして順次前記積層構造体をエッチングしてフォトニック結晶周期構造を形成する工程と、を有する深紫外LEDの製造方法が提供される。
 本発明によれば、膜厚の薄いp型AlGaN層にフォトニック結晶周期構造を設けることで、深紫外LEDのLEEを飛躍的に向上させることができる。
図1A(a-1)、(a-2)は、本発明の第1の実施の形態によるp型GaNコンタクト層フォトニック結晶を用いた深紫外LEDの構造の一例を示す断面図および平面図である。 図1B(b)は、本発明の第1の実施の形態によるp型GaNコンタクト層フォトニック結晶を用いた深紫外LEDの構造の表面実装型パッケージの構成例を示す図である。 図1Aの変形例として示す図である。 図1Bの変形例として示す図である。 フォトニック結晶周期構造がブラッグ散乱条件(mλ/neff=2a、但しneff:等価屈折率、a:周期、m:次数)を満たす場合のTM光(図2(a))、TE光(図2(b))のフォトニックバンド構造を平面波展開法で求めた一例を示す図である。 フォトニック結晶反射効果の様子を示す上面図(a)と、断面図(b)である。 図4A(a-1)、(a-2)は、本発明の第2の実施の形態によるp型AlGaNコンタクト層フォトニック結晶を用いた深紫外LEDの構造の一例を示す断面図および平面図である。 図4B(b)は、本発明の第2の実施の形態によるp型AlGaNコンタクト層フォトニック結晶を用いた深紫外LEDの構造の表面実装型パッケージの構成例を示す図である。 図4Aの変形例として示す図である。 図4Bの変形例として示す図である。 p型GaNコンタクト層にフォトニック結晶を用いた場合のFDTD法計算モデルを示す図である。 p型AlGaNコンタクト層フォトニック結晶を用いた場合のFDTD法計算モデルを示す図である。 光線追跡法の計算モデルと解析結果を示す図である。 フォトニックバンドギャップの大きさと反射・透過効果の関係、並びに、深紫外LEDにおける光取出し効率(LEE)増減率をFDTD法による解析で求め、LEE増減率が最大となるフォトニック結晶の直径d、周期a及び深さhを得るための詳細な処理フロー図である。 フォトニック結晶近傍電界分布:x成分を示す図であり、(a)はFlatの場合,(b)はフォトニック結晶周期構造を設けた場合のEx,(c)は、フォトニック結晶周期構造を設けた場合のExに関する計算結果を示す図である。 図8Aに対応する、フォトニック結晶近傍電界分布:y成分を示す図である。 図8Aに対応するフォトニック結晶近傍電界分布:z成分を示す図である。 フォトニック結晶空孔の深さ方向中間点と垂直交差する水平面内における電界分布の合計成分を示す図である。 FDTD法によるLEE増減率の解析結果を示す図である。 FDTD法と光線追跡法のクロスシミュレーションによるLEE解析結果を示す図である。 フォトニック結晶周期構造の加工プロセスの一例を示す図である。 図12A(a-1)、(a-2)は、本発明の第4の実施の形態によるp型GaNコンタクト層フォトニック結晶を用いた深紫外LEDの構造の一例を示す断面図および平面図である。 図12B(b)は、本発明の第4の実施の形態によるp型GaNコンタクト層フォトニック結晶を用いた深紫外LEDの構造の表面実装型パッケージの構成例を示す図である。 p型GaNフォトニック結晶を用いた場合のFDTD法計算モデルを示す図である。 (a)Enhancement of LEE、(b)光取出し効率、(c)放射パターン(Radiation Pattern)の解析結果である。 フォトニック結晶の深さ120nmの断面における電界強度分布である。 フォトニック結晶の深さ140nmの断面における電界強度分布である。 フォトニック結晶の深さ160nmの断面における電界強度分布である。 図16A(a-1)、(a-2)は、本発明の第5の実施の形態によるp型GaNコンタクト層フォトニック結晶を用いた深紫外LEDの構造の一例を示す断面図および平面図である。 図16(b)は、本発明の第5の実施の形態によるp型GaNコンタクト層フォトニック結晶を用いた深紫外LEDの構造の表面実装型パッケージの構成例を示す図である。 p型GaNフォトニック結晶を用いた場合のFDTD法計算モデルを示す図である。 (a)Enhancement of LEE、(b)光取出し効率、(c)放射パターン(Radiation Pattern)の解析結果である。 図19A(a-1)、(a-2)は、本発明の第6の実施の形態によるp型AlGaNコンタクト層フォトニック結晶を用いた深紫外LEDの構造の一例を示す断面図および平面図である。 図19B(b)は、本発明第6の実施の形態によるp型AlGaNコンタクト層フォトニック結晶を用いた深紫外LEDの構造の表面実装型パッケージの構成例を示す図である。 p型AlGaNフォトニック結晶を用いた場合のFDTD法計算モデルを示す図である。 (a)Enhancement of LEE、(b)光取出し効率、(c)放射パターン(Radiation Pattern)の解析結果である。 図22A(a-1)、(a-2)は、本発明の第7の実施の形態によるp型GaNコンタクト層フォトニック結晶を用いた深紫外LEDの構造の一例を示す断面図および平面図である。 図22B(b)は、本発明の第7の実施の形態によるp型GaNコンタクト層フォトニック結晶を用いた深紫外LEDの構造の表面実装型パッケージの構成例を示す図である。 p型GaNフォトニック結晶を用いた場合のFDTD法計算モデルを示す図である。 (a)Enhancement of LEE、(b)光取出し効率、(c)放射パターン(Radiation Pattern)の解析結果である。
 以下に、本発明の実施の形態による深紫外LEDについて、図面を参照しながら詳細に説明する。
 (第1の実施の形態)
 本発明の第1の実施の形態に係る深紫外LEDとして、設計波長λを280nmとするAlGaN系深紫外LEDの構造(断面図と平面図)を図1A(a-1)、(a-2)に表す。図1B(b)は表面実装型パッケージに搭載した深紫外LEDである。
 具体的には、図1A(a-1)の断面図の上から順番に、サファイア基板1、AlNバッファー層2、n型AlGaN層3、バリア層4、量子井戸層5、バリア層6、多重量子障壁層(MQB)7、p型AlGaN層(透明p型AlGaN層)8、p型GaNコンタクト層9、Ni層10、Au反射電極層11を有する。そして、p型AlGaN層8の膜厚が100nm以内であり、p型GaNコンタクト層9とp型AlGaN層8との界面を含み、基板方向においてp型AlGaN層を超えない範囲内にフォトニック結晶周期構造100を設けており、かつ、フォトニック結晶周期構造100は、空孔(柱状構造、ホール)101(h)を設け、フォトニックバンドギャップを有することにより波長λの光を反射する反射型フォトニック結晶周期構造である。尚、フォトニック結晶周期構造をp型GaNコンタクト層9内のみに形成すると、光がp型GaNコンタクト層で吸収されてしまうため、好ましくない。尚、多重量子障壁層(MQB)7は、電子ブロック層であっても良い。以下の実施の形態でも同様である。
 図1A(a-2)にxy平面図として示す通り、反射型フォトニック結晶周期構造100は、円柱などの形状の、p型AlGaN層やp型GaNコンタクト層よりも屈折率が小さい空気などの半径がRの円を断面とする空孔101(h)が、x方向及びy方向に沿って周期aで三角格子状に形成されたホール構造を有する。また、空孔101(h)は、p型AlGaN層8と多重量子障壁層7の界面を超えない構造であり、かつ、空孔101(h)の基板方向の端面と量子井戸層5までの距離Gが、バリア層6と多重量子障壁層7の膜厚の合計値以上80nm以内の範囲にある。さらに、反射型フォトニック結晶周期構造100の深さhが、p型AlGaN層8とp型GaNコンタクト層9の膜厚の合計値以内である。
 尚、デバイス製造プロセス上の別の方法という観点から見た本実施の形態の変形例として、図1C(a-1)、(a-2)、図1D(b)に示すように、柱状構造体101(h)はNi層10を貫通してAu反射電極層11内に達しているがAu反射電極層11と空気の界面には到達していない構造であってもよい。
 上記の構造においては、量子井戸層5で発光した波長λの深紫外光はTE光とTM光が全方向に放射されて楕円偏光しながら媒質中を伝搬する。量子井戸層5の近傍に設けられたフォトニック結晶周期構造100が、端面において異なる屈折率をもつp型AlGaN層8と空気を二つの構造体として形成され、空孔の半径Rと周期aの比であるR/a=0.4とした時、上記フォトニック結晶の充填率fは次式で計算されf=2π/30.5×(R/a)=0.58となる。
 そして、空気の屈折率n=1.0、p型AlGaNの屈折率n=2.583、f=0.58より等価屈折率neffは次式で計算されneff=(n +(n -n )×f)0.5=1.838が得られる。
 そして、発光波長λ=280nmとすると、このフォトニック結晶周期構造がブラッグ散乱条件(mλ/neff=2a、但しneff:等価屈折率、a:周期、m:次数)を満たす場合のTM光、TE光のフォトニックバンド構造を平面波展開法で求めると図2が得られる。
 図2(a)に示すように、TM光ではフォトニックバンドギャップ(PBG)が観測されないが、図2(b)に示すように、TE光では第1フォトニックバンド(ω1TE)と第2フォトニックバンド(ω2TE)間に大きなPBGが観測された。
 尚、R/a=0.4は、発明者自身が発明し、国際出願PCT/JP2015/071453号(先行技術1)に記載した、「R/aの大きさ、PBGの大きさ、光取出し効率増減率が其々比例する」という原理から採用した値である。
 本実施の形態においては、フォトニック結晶の位置が量子井戸層に近づくに従い、周期が先行技術1等における300nmであっても、深さを300nmにする必要がなく、60nm程度の浅い深さでも、先行技術1等の構造以上の反射効果が得られる。また、次数mの取り得る範囲も広がった。尚、mが小さくなると周期も小さくなる。
 図3は、フォトニック結晶反射効果の様子を示す図である。図3(a)、(b)に示すように、量子井戸層の近傍に設けられたフォトニック結晶周期構造にあらゆる方向から入射したTE光は、AR1で示すように、ブラッグ散乱の条件を完全に満たすために、この面内で散乱されて基板の方向に反射される。一方、TM光は破線AR2で示すように、PBGが無いために深さ方向にブラッグ散乱されることはない。従って、入射した光がp型GaNコンタクト層で吸収・消失されない。
 従って、本実施の形態による深紫外LEDによれば、フォトニック結晶周期構造を設ける対象となる層において、フォトニック結晶周期構造を設ける位置を工夫することで、結晶を形成する層を厚くすることなく白濁を抑制しつつ、反射効果を増大させることにより、大きな光取り出し効率を得ることができる。
 (第2の実施の形態)
 次に、本発明の第2の実施の形態に係る深紫外LEDとして、設計波長λを280nmとするAlGaN系深紫外LEDの構造を図4A(a-1)、(a-2)に表す。図4A(a-1)は断面図、図4A(a-2)は平面図である。図4B(b)は表面実装型パッケージに搭載した深紫外LEDである。具体的には、図4A(a-1)の上から順番にサファイア基板1、AlNバッファー層2、n型AlGaN層3、バリア層4、量子井戸層5、バリア層6、多重量子障壁層(MQB)7、p型AlGaNコンタクト層(透明p型AlGaNコンタクト層)8a、極薄膜Ni層10a、Al反射電極層11aを有する。
 そしてp型AlGaNコンタクト層8aの膜厚が100nm以内であり、p型AlGaNコンタクト層8aに、基板方向においてp型AlGaN層を超えない範囲内にフォトニック結晶周期構造100を設けており、かつ、フォトニック結晶周期構造100は、空孔(柱状構造体、ホール)101(h)を設け、フォトニックバンドギャップを有することにより波長λの光を反射する反射型フォトニック結晶周期構造である。
 また、図4A(a-1)、(a-2)、図4B(b)の変形例を図4C(a-1)、(a-2)及び図4D(b)に示す。この構造は、フォトニック結晶周期構造の空孔の厚さ方向の深さを、基板とは反対側の方向に、極薄膜金属層を貫通し反射電極層内に達するが、反射電極層を貫通させない範囲まで延長した構造である。
 その他の、フォトニック結晶周期構造の詳細及び平面波展開法にてフォトニックバンド構造からTE光及びTM光の様子を観測することに関しては、第1の実施の形態と同じである。この場合、フォトニック結晶周期構造に入射した光は面内で散乱されて基板の方向に反射されるために、Al反射電極(反射率90%)に吸収・消失されることはない。
 そこで、実際に計算モデルを作成してFDTD法で光取出し効率増減率とフォトニック結晶近傍の電界分布(Ex、Ey、Ez)成分を解析してフォトニック結晶周期構造の反射効果を検証した。
 図5にp型GaNコンタクト層のフォトニック結晶計算モデル(第1の実施の形態)、図6にp型AlGaNコンタクト層の計算モデル(第2の実施の形態)を其々示す。
 また、光取出し効率(LEE)を求めるために、計算モデルを作成して光線追跡法で解析した(図7A参照)。図7A(a-1)はpGaNコンタクトの計算モデルである。図7A(a-2)は解析結果で放射パターンである。図7A(b)にモデルの詳細と解析結果である光取出し効率を示した。図7A(c-1)は、pAlGaNコンタクトの計算モデルである。図7A(c-2)は解析結果で放射パターンである。
 図7Bは、フォトニックバンドギャップの大きさと反射・透過効果の関係、並びに、深紫外LEDにおける光取出し効率(LEE)増減率をFDTD法による解析で求め、LEE増減率が最大となるフォトニック結晶の直径d、周期a及び深さhを得るための詳細な処理フローを示す図である。
(ステップS01)
 周期構造パラメータである周期aと構造体の半径Rの比(R/a)を仮決定する。
(ステップS02)
 前期構造体のそれぞれの屈折率nとn、及びこれらとR/aから平均屈折率navを算出し、これをブラッグ条件の式に代入し、次数mごとの周期aと半径Rを得る。
(ステップS03)
 R/a及び波長λ並びに前記屈折率n、nから得られる各構造体の誘電率ε及びεを用いた平面波展開法により、TE光のフォトニックバンド構造を解析する。
(ステップS04)
 TE光の第一フォトニックバンドと第二フォトニックバンド間のPBGが最大となるR/aを、前記仮決定のR/aの値を変えて繰り返し行う解析により決定する。
(ステップS05)
 PBGを最大にするR/aについて、ブラッグ条件の次数mに応じた個別の周期a及び半径R、並びに、任意の周期構造の深さhを変数として行うFDTD法によるシミュレーション解析により、前記波長λに対する光取出し効率を求める。
(ステップS06)
 FDTD法によるシミュレーションを繰り返し行うことにより、波長λに対する光取出し効率が最大となるブラッグ条件の次数mと、その次数mに対応する周期構造パラメータの周期a、半径R、及び、深さhを決定する。
 上記のような発明者の知見に基づいて、先ず、ブラッグ散乱条件の次数m=4、R/a=0.4における空孔の直径、周期を求め、フォトニック結晶周期構造中の空孔の端面から量子井戸層までの距離を50nm~80nm及び空孔の深さを40~60nm間で変化させて解析した。解析結果を表1、表2に記載する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、pAlGaN単層の場合、pGaN単層の場合及びpGaN/pAlGaN2層の場合におけるLEEの解析結果が示されている。
 また、表2には、次数mを変化させた場合にけるLEEの解析結果が示されている。
 尚、以下の説明において、pAlGaN:p型AlGaNコンタクト層のフォトニック結晶、pGaN:p型GaNコンタクト層のフォトニック結晶、Flat:フォトニック結晶周期構造の無い構造、PhC Depth 40nm:空孔の深さが40nm、Power:FDTD法の出力値、FlatLEE%:光線追跡法のLEE計算値、Enhanced:Flatの出力値に対するPhC出力値のLEE増減率、PhC LEE%:フォトニック結晶のLEE%でFlat LEE%×(Enhanced+100%)、m4:次数m=4、G50nm:空孔の端面から量子井戸層までの距離が50nm、Diameter:空孔の直径、Period:フォトニック結晶の周期、と定義する。
 フォトニック結晶周期構造の反射効果の実証として、特にp型GaNコンタクト層のフォトニック結晶で最も増減率の高かったm=3(直径:183nm、周期:228nm、深さ:60nm)のフォトニック結晶近傍の電界分布を観測した。図8Aは、電界分布Ex成分で、図8A(a)がFlat,図8A(b)がフォトニック結晶周期構造(フォトニック結晶周期構造を図示せず)、図8A(c)がフォトニック結晶周期構造(フォトニック結晶周期構造を図示)である。それぞれは、断面構造の電界分布を示している。但し、わかりやすいように、図8A(c)、図8A(b)では、フォトニック結晶周期構造を取り除いている。
 尚、それぞれの図面の右側には、実験結果がわかりやすいように簡単な電界の凡例を示した。また、各層の境界を示すとともに各層の名称を付記した。
 Flatではp型GaNコンタクト層とNi層との部分に強度の高い電界成分Exが観測されるのに対して(図8A(a))、フォトニック結晶周期構造を設けた構造ではp型GaNコンタクト層とNi層との部分(図8A(b)のA1、図8A(c)の図のA2領域参照)に強度の高い電界成分Exは観測されていない。
 この結果は、フォトニック結晶周期構造を設けた構造では、p型GaNコンタクト層とNi層との部分におけるフォトニック結晶による反射効果が得られていることを実証している。図8Bの電界分布のEy成分及び図8Cの電界分布のEz成分においても、図8AのEx成分と同様の現象が観測された(A3、A4の領域参照)。
 更に、電界分布Ex、Ey、Ezの合計成分であるEtotalについて、フォトニック結晶空孔の深さ方向の中間点でこの空孔に対して垂直に交差する水平面の電界分布を観測した(図8D参照)。
 図8D(a)がFlatの電界分布Etotalで、図8D(b)がフォトニック結晶中心部の電界分布Etotalである。図8D(a)のFlatにおいては、電界が外側に向かって強弱(色の濃淡)を繰り返して伝搬している。
 それに対して、図8D(b)のフォトニック結晶を設けた構造においては、各空孔間に電界が滞留して、特に中心部分で色濃く(図中においては白く表示)表示されている。これはこの部分でブラッグ散乱が誘発されて定在波を形成している様子を示している。そして、その直後に、基板の方向に光が反射されていく。
 従って、この解析結果は、図3を参照して説明したように、『量子井戸層の近傍に設けられたフォトニック結晶周期構造にあらゆる方向から入射したTE光は、ブラッグ散乱の条件を完全に満たすために、この面内で散乱されて基板の方向に反射される』という物理現象を良く説明している。
 FDTD法によるLEE増減率の解析結果を図9に示す。
 図9(a)がp型AlGaNコンタクト層、図9(b)がp型GaNコンタクト層のフォトニック結晶のLEE増減率である。特徴的な現象として、空孔の端面から量子井戸層までの距離60nmでは、全ての深さにおいて極大値が得られていることである。また、図9(c)に量子井戸層までの距離60nm、空孔の深さ60nmからなるp型GaNコンタクト層のフォトニック結晶周期構造とそのFlat、同様にp型AlGaNコンタクト層のフォトニック結晶周期構造とそのFlatの放射パターンを示す。フォトニック結晶周期構造を有する方がFlatに対して正面方向(角度0~10°)への出力値が特に増大している。
 また、FDTD法と光線追跡法のクロスシミュレーションで得られた光取出し効率(LEE)の解析結果を図10に示す。図10(a)はp型GaNコンタクト層及びp型AlGaNコンタクト層に設けられたフォトニック結晶に関して、量子井戸層までの距離が60nmの光取出し効率を示している。この結果より、フォトニック結晶周期構造(ホール)の深さ(Depth)hとLEEとの比例関係が観測される。また、図10(b)はLEEの次数mの依存性を示している。次数m=3或いは4のLEEが最も大きいことがわかる。これらの結果は、発明者の既出願で説明した傾向と一致していることから、シミュレーションの正当性が実証された。
 以上の結果から、本発明の実施の形態によれば、フォトニック結晶周期構造の位置を量子井戸構造に近づけることで、フォトニック結晶周期構造の反射効果はp型AlGaNコンタクト層のフォトニック結晶周期構造で2倍、p型GaNコンタクト層のフォトニック結晶周期構造で3倍強の光取出し効率が得られることがわかる。
(第3の実施の形態)
 本発明の第3の実施の形態に係る深紫外LEDの反射型フォトニック結晶周期構造を加工する製造方法について詳細を説明する。図11は、フォトニック結晶周期構造加工プロセスの一例を示す図である。
 フォトニック結晶の加工には、ナノインプリントリソグラフィーの技術を利用する。p型GaNコンタクト層209の表面は凸方向に100μm以上の反りがあるので、金型は樹脂モールド200で対応する。また、ドライエッチング時に垂直に近くかつホールの直径を正確に保持するために、二層レジストを使用する。
 具体的には、p型GaNコンタクト層209まで積層された深紫外LED積層構造体を有するウエハーにおいて、p型GaNコンタクト層209の表面に下層レジスト211をスピンコートする。次に、Si含有の上層レジスト210をスピンコートして二層レジストを形成する(図11(a)参照)。
 上層レジストに対し、所定のフォトニック結晶周期構造の反転パターンを有する樹脂モールド200で押してUV硬化させてフォトニック結晶パターン212を上層レジスト210に転写する(図11(b)参照)。次に酸素プラズマで上層レジスト210をエッチングしてマスク213を形成する。図11(c)参照。そしてこのマスク213をICPプラズマでp型AlGaN層208を超えない、フォトニック結晶パターン(ホール)212の端面から量子井戸層205までの距離が、バリア層206と多重量子障壁層207の膜厚の合計値以上80nm以内の位置までエッチングして、ホールの深さがp型AlGaN層208とp型GaNコンタクト層209の膜厚の合計値以内の形状に加工する。図11(d)参照。最後に残存した下層レジスト211を洗浄して清浄な面出しを行う。
 尚、金属層及び反射電極層は、フォトニック結晶パターン形成後、GaNまたはAlGaNの結晶再成長を行い、その上に形成する等で図1A、図4A、図12A、または図22Aに示される構造を形成する。または、金属層及び反射電極層まで形成後にフォトニック結晶パターンを形成し、その上にAuまたはAl等反射電極層を再蒸着させる等で、図1Cまたは図4Cに示される構造を形成する。あるいは、p型GaNコンタクト層またはp型AlGaNコンタクト層を形成後にフォトニック結晶パターンを形成し、その上に斜め蒸着法にて金属層及び反射電極層を形成する等で図16Aまたは図19Aに示される構造を形成する。
 斜め蒸着法によれば、金属層および反射電極層をフォトニック結晶パターンのホール内に形成せずに、p型GaNコンタクト層またはp型AlGaNコンタクト層の表面に金属層および反射電極層を積層することが可能である。
(第4の実施の形態)
 次に、本発明の第4の実施の形態に係る深紫外LEDとして、設計波長λを280nmとするAlGaN系深紫外LEDの構造を図12A(a-1)、(a-2)に表す。図12A(a-1)は断面図、図12A(a-2)は平面図である。図12B(b)は表面実装型パッケージに搭載した深紫外LEDである。
 このLEDは第1の実施の形態にある深紫外LEDの積層薄膜構造と同じであるが、p型GaNコンタクト層9の膜厚が200nmと異なる。これは、デバイス製造プロセス上p型GaNコンタクト層を厚く積層することで表面の平坦性を得るためである。
 そして、p型GaNコンタクト層9とp型AlGaN層8との界面を含み、基板方向においてp型AlGaN層を超えない範囲内にフォトニック結晶周期構造100を設けており、かつ、フォトニック結晶周期構造100は、空孔(柱状構造、ホール)101(h)を設け、フォトニックバンドギャップを有することにより波長λの光を反射する反射型フォトニック結晶周期構造である。
 また、空孔101(h)は、p型AlGaN層8と多重量子障壁層7の界面を超えない構造であり、かつ、空孔101(h)の基板方向の端面と量子井戸層5までの距離Gが、バリア層6と多重量子障壁層7の膜厚の合計値以上80nm以内にある。さらに、反射型フォトニック結晶周期構造100の深さhは、p型AlGaN層8とp型GaNコンタクト層9の膜厚の合計値以内である。
 上記の構造を反映した計算モデルを作成して、FDTD法及び光線追跡法を併用して光取出し効率増減率(Enhancement of LEE)及び光取出し効率(LEE)を計算した。図13に前記p型GaNコンタクト層のフォトニック結晶計算モデルを示す。そして、解析結果を表3、図14(a)Enhancement of LEE、(b)光取出し効率、(c)放射パターン(Radiation Pattern)に示す。
Figure JPOXMLDOC01-appb-T000003
 図14(a)の光取出し効率増減率では、空孔の端面から量子井戸層までの距離50nmでは、全ての深さにおいてFlatに対する強度が2.5倍以上の極大値が得られている。また、図14(c)の放射パターンでは、フォトニック結晶周期構造を有する方がFlatに対して正面方向(角度0~10°)への出力値が増大している。一方、図14(b)のFDTD法と光線追跡法のクロスシミュレーションで得られた光取出し効率では、フォトニック結晶の深さが大きくなるにつれて若干減少となっている。そこで、フォトニック結晶の深さ120nm、140nm、160nmの断面における電界強度分布を比較してみた。
 図15Aは、フォトニック結晶の深さ120nmの断面における電界強度分布である。図15Bは、フォトニック結晶の深さ140nmの断面における電界強度分布である。図15Cは、フォトニック結晶の深さ160nmの断面における電界強度分布である。図15AからCまで(電界強度分布)より、何れの深さにおいてもフォトニック結晶に侵入した光(電界)はフォトニック結晶の最深部まで到達していることがわかる。そして深さが大きくなるに従い、光(電界)がp型GaNコンタクト層に侵入していて、そこで、光が吸収・消失されることが理由として考えられる。
 従って、p型GaNコンタクト層にフォトニック結晶を形成する場合、フォトニック結晶の深さを浅くするためにもp型GaNコンタクト層の膜厚は薄いほうが好ましい。
(第5の実施の形態)
 次に、本発明の第5の実施の形態に係る深紫外LEDとして、設計波長λを280nmとするAlGaN系深紫外LEDの構造を図16A(a-1)、(a-2)に示す。図16A(a-1)は断面図、図16A(a-2)は平面図である。図16B(b)は表面実装型パッケージに搭載した深紫外LEDである。
 前記LEDは第4の実施の形態にある深紫外LEDの積層薄膜構造と同じであるが、p型GaNコンタクト層9の膜厚が150nmと異なる。これは、デバイス製造プロセス上の別の方法という観点から見た変形例となる。
 そして、p型GaNコンタクト層9とp型AlGaN層8との界面を含み、基板方向においてp型AlGaN層を超えない範囲内にフォトニック結晶周期構造100を設けており、かつ、フォトニック結晶周期構造100は、空孔(柱状構造、ホール)101(h)を設け、フォトニックバンドギャップを有することにより波長λの光を反射する反射型フォトニック結晶周期構造である。
 また、空孔101(h)は、p型AlGaN層8と多重量子障壁層7の界面を超えないが、p型GaNコンタクト層9とNi層10の界面に到達した構造であり、かつ、空孔101(h)の基板方向の端面と量子井戸層5までの距離Gが、バリア層6と多重量子障壁層7の膜厚の合計値以上80nm以内にある。さらに、反射型フォトニック結晶周期構造100の深さhは、p型AlGaN層8とp型GaNコンタクト層9の膜厚の合計値以内である。
 前記構造を反映した計算モデルを作成して、FDTD法及び光線追跡法を併用して光取出し効率増減率(Enhancement of LEE)及び光取出し効率(LEE)を計算した。図17に前記p型GaNコンタクト層のフォトニック結晶計算モデルを示す。そして、解析結果を表4、図18(a)Enhancement of LEE、図18(b)光取出し効率、図18(c)放射パターン(Radiation Pattern)に示す。
Figure JPOXMLDOC01-appb-T000004
 図18(a)の光取出し効率増減率では、量子井戸層5から60nmの距離においてFlatに対する強度が2.5倍以上の極大値が得られている。また、図18(b)の光取出し効率においても15.7%の極大値が得られている。さらに、放射パターンでは、軸上(0~10°)の出力がFlatに対して増大している。
(第6の実施の形態)
次に、本発明の第6の実施の形態に係る深紫外LEDとして、設計波長λを280nmとするAlGaN系深紫外LEDの構造を図19A(a-1)、(a-2)に示す。図19A(a-1)は断面図、図19A(a-2)は平面図である。図19B(b)は表面実装型パッケージに搭載した深紫外LEDである。
 前記LEDは第2の実施の形態にある深紫外LEDの積層薄膜構造と同じであるが、デバイス製造プロセス上の別の方法という観点から見た変形例となる。
 そして、p型AlGaNコンタクト層8aの膜厚が100nm以内であり、p型AlGaNコンタクト層8aに、基板方向においてp型AlGaNコンタクト層を超えない範囲内にフォトニック結晶周期構造100を設けており、かつ、フォトニック結晶周期構造100は、空孔(柱状構造、ホール)101(h)を設け、フォトニックバンドギャップを有することにより波長λの光を反射する反射型フォトニック結晶周期構造である。
 また、空孔101(h)は、p型AlGaNコンタクト層8aと多重量子障壁層7の界面を超えないが、p型AlGaNコンタクト層8aと極薄膜Ni層10aの界面に到達した構造であり、かつ、空孔101(h)の基板方向の端面と量子井戸層5までの距離Gが、バリア層6と多重量子障壁層7の膜厚の合計値以上80nm以内にある。さらに、反射型フォトニック結晶周期構造100の深さhは、p型AlGaNコンタクト層8aの膜厚以内である。
 前記構造を反映した計算モデルを作成して、FDTD法及び光線追跡法を併用して光取出し効率増減率(Enhancement of LEE)及び光取出し効率(LEE)を計算した。図20に前記p型AlGaNコンタクト層のフォトニック結晶計算モデルを示す。そして、解析結果を、表5、図21(a)Enhancement of LEE、図21(b)LEE、図21(c)放射パターン(Radiation Pattern)に示す。
Figure JPOXMLDOC01-appb-T000005
 図21(a)の光取出し効率増減率では、量子井戸層5から50nmの距離においてFlatに対する強度が1.75倍と極大値が得られている。また、図21(b)の光取出し効率では、23.0%の極大値が得られている。さらに、図21(c)の放射パターンでは、軸上(0~10°)の出力がFlatに対して増大している。
(第7の実施の形態)
 次に、本発明の第7の実施の形態に係る深紫外LEDとして、設計波長λを280nmとするAlGaN系深紫外LEDの構造を図22A(a-1)、(a-2)に示す。図22A(a-1)は断面図、図22A(a-2)は平面図である。図22B(b)は表面実装型パッケージに搭載した深紫外LEDである。
 前記LEDは第1の実施の形態及び第4の実施の形態にある深紫外LEDの積層薄膜構造と同じであるが、フォトニック結晶周期構造100を設けている位置が異なる。これは、デバイス製造プロセス上の別の方法という観点から見た変形例となる。
 基板方向において、p型GaNコンタクト層9とp型AlGaN層8との界面を超えず、かつ、p型GaNコンタクト層9の膜厚の範囲内にフォトニック結晶周期構造100を設けており、かつ、フォトニック結晶周期構造100は、空孔(柱状構造、ホール)101(h)を設け、フォトニックバンドギャップを有することにより波長λの光を反射する反射型フォトニック結晶周期構造である。
 また、空孔101(h)は、p型GaNコンタクト層9とNi層10の界面を超えず、かつ、空孔101(h)の基板方向の端面と量子井戸層5までの距離Gが、バリア層6と多重量子障壁層7の膜厚の合計値以上80nm以内にある。さらに、反射型フォトニック結晶周期構造100の深さhは、p型GaNコンタクト層9の膜厚以内である。
 上記の構造において、量子井戸層5で発光した波長λの深紫外光はTE光とTM光が全方向に放射されて楕円偏光しながら媒質中を伝搬する。量子井戸層5の近傍に設けられたフォトニック結晶周期構造100は、p型GaNコンタクト層9の膜厚内に設けられるため、端面においては、p型GaNコンタクト層9と空気の二つの異なる屈折率をもつ構造体として形成され、空孔の半径Rと周期aの比であるR/a=0.4とした時、上記フォトニック結晶の充填率fは次式で計算されf=2π/30.5×(R/a)=0.58となる。
 そして、空気の屈折率n=1.0、p型GaNの屈折率n=2.618、f=0.58より等価屈折率neffは次式で計算されneff=(n +(n -n )×f)0.5=1.859が得られる。
 そして、発光波長λ=280nmとすると、このフォトニック結晶周期構造がブラッグ散乱条件(mλ/neff=2a、但しneff:等価屈折率、a:周期、m:次数)を満たす場合のTE光とTM光のフォトニックバンド構造を平面波展開法で求め、TE光において第1フォトニックバンドと第2フォトニックバンドの間にPBGが得られることを確認する。
 前記構造を反映した計算モデルを作成して、FDTD法及び光線追跡法を併用して光取出し効率増減率(Enhancement of LEE)及び光取出し効率(LEE)を計算した。図23に前記LED構造のフォトニック結晶計算モデルを示す。前記計算モデルは、p型AlGaN層8の膜厚を0nmから30nmの範囲で10nmステップで変化させ、空孔101(h)の位置は基板方向の端面をp型AlGaN層8とp型GaNコンタクト層9の界面から120nmの深さになるように設定した。この場合、p型AlGaN層8の膜厚が薄くなるに従い、量子井戸層5と空孔101(h)の基板方向の端面との距離Gが短くなる。すなわち、p型AlGaN層8の膜厚0nmで距離Gは50nmとなり、同様に10nmステップで変化させて、p型AlGaN層8の膜厚30nmでは距離Gが80nmとなるように設定した。この解析結果を表6、図24(a)Enhancement of LEE、図24(b)光取出し効率、図24(c)放射パターン(Radiation Pattern)を示す。
Figure JPOXMLDOC01-appb-T000006
 図24(a)の光取出し効率増減率では、p型AlGaN層の膜厚が薄くなるに従い、光取出し効率増減率が上がり、量子井戸層5からの距離Gが50nm(この場合のp型AlGaN層の膜厚は0nm)において強度約2.7倍の極大値が得られており、距離Gが60nm(同じく、p型AlGaN層の膜厚10nm)においても約2.5倍の強度が得られている。また、図24(b)の光取出し効率においても、距離G50nmで17.3%の極大値が得られている。さらに、図24(c)は、距離G50nmにおける放射パターンを示しており、軸上方向(0~30°)の出力がFlatに対して増大していることがわかる。
 以下、図1A等に示される構造を形成した後に、LEDデバイスを作成する。
 上記の各実施の形態による深紫外LED技術によれば、膜厚の薄いp型AlGaN層にフォトニック結晶周期構造を設けることで、 深紫外LEDのLEEを飛躍的に向上させることができる。
 上記の実施の形態において、添付図面に図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
 また、本発明の各構成要素は、任意に取捨選択することができ、取捨選択した構成を具備する発明も本発明に含まれるものである。
 本発明は、深紫外LEDに利用可能である。
1…サファイア基板、2…AlNバッファー層、3…n型AlGaN層、4…バリア層、5…量子井戸層、6…バリア層、7…多重量子障壁層(MQB)、8…p型AlGaN層(透明p型AlGaN層)、8a…p型AlGaNコンタクト層(透明p型AlGaNコンタクト層)、9…p型GaNコンタクト層、10…Ni層、11…Au反射電極層。 

Claims (14)

  1.  設計波長をλとする深紫外LEDであって、反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層、多重量子障壁層或いは電子ブロック層、バリア層、量子井戸層とを、基板とは反対側からこの順で有し、前記p型AlGaN層の膜厚が100nm以内で、少なくとも前記p型GaNコンタクト層と前記p型AlGaN層との界面を含み、前記基板方向において前記p型AlGaN層を超えない厚さ方向の範囲内に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層或いは前記電子ブロック層の膜厚の合計値以上80nm以内及びその深さhが前記p型AlGaN層と前記p型GaNコンタクト層の膜厚の合計値以内において光取出し効率の極大値が得られ、かつ、前記反射型フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式にある次数mは1≦m≦5を満たし、前記空孔の半径をRとした時、フォトニックバンドギャップが最大となるR/aを満たすことを特徴とする深紫外LED。
  2.  設計波長をλとする深紫外LEDであって、反射電極層と、極薄膜金属層と、波長λに対し透明な、p型AlGaNコンタクト層、多重量子障壁層或いは電子ブロック層、バリア層、量子井戸層とを、基板とは反対側からこの順で有し、前記p型AlGaNコンタクト層の膜厚が100nm以内で、前記p型AlGaNコンタクト層内に、前記基板方向において前記p型AlGaNコンタクト層を超えない厚さ方向の範囲内に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層或いは前記電子ブロック層の膜厚の合計値以上80nm以内及びその深さhが前記p型AlGaNコンタクト層の膜厚以内において光取出し効率の極大値が得られ、かつ、前記反射型フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式にある次数mは1≦m≦5を満たし、前記空孔の半径をRとした時、フォトニックバンドギャップが最大となるR/aを満たすことを特徴とする深紫外LED。
  3.  設計波長をλとする深紫外LEDであって、反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層、多重量子障壁層或いは電子ブロック層、バリア層、量子井戸層とを、基板とは反対側からこの順で有し、前記p型AlGaN層の膜厚が100nm以内で、少なくとも前記p型GaNコンタクト層と前記p型AlGaN層との界面を含み、前記基板方向において前記p型AlGaN層を超えない厚さ方向からp型GaNコンタクト層及び金属層を貫通し、反射電極層内に達しているが、反射電極層を超えない位置に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層或いは前記電子ブロック層の膜厚の合計値以上80nm以内において光取出し効率の極大値が得られ、かつ、前記反射型フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式にある次数mは1≦m≦5を満たし、前記空孔の半径をRとした時、フォトニックバンドギャップが最大となるR/aを満たすことを特徴とする深紫外LED。
  4.  設計波長をλとする深紫外LEDであって、反射電極層と、極薄膜金属層と、波長λに対し透明な、p型AlGaNコンタクト層、多重量子障壁層或いは電子ブロック層、バリア層、量子井戸層とを、基板とは反対側からこの順で有し、前記p型AlGaNコンタクト層の膜厚が100nm以内で、前記基板方向において前記p型AlGaNコンタクト層を超えない厚さ方向から極薄膜金属層を貫通し、反射電極層内に達しているが、反射電極層を超えない位置に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層或いは前記電子ブロック層の膜厚の合計値以上80nm以内において光取出し効率の極大値が得られ、かつ、前記反射型フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式にある次数mは1≦m≦5を満たし、前記空孔の半径をRとした時、フォトニックバンドギャップが最大となるR/aを満たすことを特徴とする深紫外LED。
  5.  設計波長をλとする深紫外LEDであって、反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層、多重量子障壁層或いは電子ブロック層、バリア層、量子井戸層とを、基板とは反対側からこの順で有し、前記p型AlGaN層の膜厚が100nm以内で、少なくとも前記p型GaNコンタクト層と前記p型AlGaN層との界面を含み、前記基板方向において前記p型AlGaN層を超えない厚さ方向からp型GaNコンタクト層と金属層の界面にかけて設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層或いは前記電子ブロック層の膜厚合計値以上80nm以内及びその深さhが前記p型AlGaN層と前記p型GaNコンタクト層の膜厚の合計値以内において光取出し効率の極大値が得られ、かつ、前記反射型フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式にある次数mは1≦m≦5を満たし、前記空孔の半径をRとした時、フォトニックバンドギャップが最大となるR/aを満たすことを特徴とする深紫外LED。
  6.  設計波長をλとする深紫外LEDであって、反射電極層と、極薄膜金属層と、波長λに対し透明な、p型AlGaNコンタクト層、多重量子障壁層或いは電子ブロック層、バリア層、量子井戸層とを、基板とは反対側からこの順で有し、前記p型AlGaNコンタクト層の膜厚が100nm以内で、前記p型AlGaNコンタクト層内に、前記基板方向において前記p型AlGaNコンタクト層を超えない厚さ方向からp型AlGaNコンタクト層と極薄膜金属層の界面にかけて設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層或いは前記電子ブロック層の膜厚の合計値以上80nm以内及びその深さhがp型AlGaNコンタクト層の膜厚以内において光取出し効率の極大値が得られ、かつ、前記反射型フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式にある次数mは1≦m≦5を満たし、前記空孔の半径をRとした時、フォトニックバンドギャップが最大となるR/aを満たすことを特徴とする深紫外LED。
  7.  設計波長をλとする深紫外LEDであって、反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層、多重量子障壁層或いは電子ブロック層、バリア層、量子井戸層とを、基板とは反対側からこの順で有し、前記p型AlGaN層の膜厚が100nm以内で、前記p型GaNコンタクト層と前記p型AlGaN層との界面を超えず、かつ、前記基板方向において前記p型GaNコンタクト層の膜厚の範囲内に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層或いは前記電子ブロック層の膜厚の合計値以上80nm以内及びその深さhが前記p型GaNコンタクト層の膜厚以内において光取出し効率の極大値が得られ、かつ、前記反射型フォトニック結晶周期構造は、TE偏光成分に対して開かれるフォトニックバンドギャップを有し、前記設計波長λの光に対して前記フォトニック結晶周期構造の周期aがブラッグの条件を満たし、かつ、ブラッグの条件式にある次数mは1≦m≦5を満たし、前記空孔の半径をRとした時、フォトニックバンドギャップが最大となるR/aを満たすことを特徴とする深紫外LED。
  8.  請求項1記載の深紫外LEDの製造方法であって、
     反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層とを、基板とは反対側からこの順で含有する積層構造体を準備する工程と、
     前記p型AlGaN層の膜厚が100nm以内で、少なくとも前記p型GaNコンタクト層と前記p型AlGaN層との界面を含み、前記基板方向において前記p型AlGaN層を超えない厚さ方向の範囲内に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層或いは前記電子ブロック層の膜厚の合計値以上80nm以内及びその深さhが前記p型AlGaN層と前記p型GaNコンタクト層の膜厚の合計値以内において光取出し効率の極大値が得られる反射型フォトニック結晶周期構造を形成するための金型を準備する工程と、
     前記積層構造体上に、レジスト層を形成し、前記金型の構造を転写する工程と、
     前記レジスト層をマスクとして順次前記積層構造体をエッチングしてフォトニック結晶周期構造を形成する工程と
    を有する深紫外LEDの製造方法。
  9.  請求項2記載の深紫外LEDの製造方法であって、
     反射電極層と、極薄膜金属層と、波長λに対し透明な、p型AlGaNコンタクト層とを、基板とは反対側からこの順で含有する積層構造体を準備する工程と、
     前記p型AlGaNコンタクト層の膜厚が100nm以内で、前記p型AlGaNコンタクト層内に、前記基板方向において前記p型AlGaNコンタクト層を超えない厚さ方向の範囲内に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層或いは前記電子ブロック層の膜厚の合計値以上80nm以内及びその深さhが前記p型AlGaNコンタクト層の膜厚以内において光取出し効率の極大値が得られる反射型フォトニック結晶周期構造を形成するための金型を準備する工程と、
     前記積層構造体上に、レジスト層を形成し、前記金型の構造を転写する工程と、
     前記レジスト層をマスクとして順次前記積層構造体をエッチングしてフォトニック結晶周期構造を形成する工程とを有する深紫外LEDの製造方法。
  10.  請求項3記載の深紫外LEDの製造方法であって、
     反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層とを、基板とは反対側からこの順で含有する積層構造体を準備する工程と、
     前記p型AlGaN層の膜厚が100nm以内で、少なくとも前記p型GaNコンタクト層と前記p型AlGaN層との界面を含み、前記基板方向において前記p型AlGaN層を超えない厚さ方向からp型GaNコンタクト層と金属層を貫通し、反射電極層内に達しているが、反射電極層を超えない位置に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層或いは前記電子ブロック層の膜厚の合計値以上80nm以内において光取出し効率の極大値が得られる反射型フォトニック結晶周期構造を形成するための金型を準備する工程と、
     前記積層構造体上に、レジスト層を形成し、前記金型の構造を転写する工程と、
     前記レジスト層をマスクとして順次前記積層構造体をエッチングしてフォトニック結晶周期構造を形成する工程と、
     反射電極層を再蒸着させる工程と
    を有する深紫外LEDの製造方法。
  11.  請求項4記載の深紫外LEDの製造方法であって、
     反射電極層と、極薄膜金属層と、波長λに対し透明な、p型AlGaNコンタクト層とを、基板とは反対側からこの順で含有する積層構造体を準備する工程と、
     前記p型AlGaNコンタクト層の膜厚が100nm以内で、前記基板方向において前記p型AlGaNコンタクト層を超えない厚さ方向から極薄膜金属層を貫通し、反射電極層内に達しているが反射電極層を超えない位置に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層或いは前記電子ブロック層の膜厚の合計値以上80nm以内において光取出し効率の極大値が得られる反射型フォトニック結晶周期構造を形成するための金型を準備する工程と、
     前記積層構造体上に、レジスト層を形成し、前記金型の構造を転写する工程と、
     前記レジスト層をマスクとして順次前記積層構造体をエッチングしてフォトニック結晶周期構造を形成する工程と、
     反射電極層を再蒸着させる工程と
    を有する深紫外LEDの製造方法。
  12.  請求項5記載の深紫外LEDの製造方法であって、
    反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層とを、基板とは反対側からこの順で含有する積層構造体を準備する工程と、
     前記p型AlGaN層の膜厚が100nm以内で、少なくとも前記p型GaNコンタクト層と前記p型AlGaN層との界面を含み、前記基板方向において前記p型AlGaN層を超えない厚さ方向からp型GaNコンタクト層と金属層の界面にかけて設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層或いは前記電子ブロック層の膜厚の合計値以上80nm以内及びその深さhが前記p型AlGaN層と前記p型GaNコンタクト層の膜厚の合計値以内において光取出し効率の極大値が得られる反射型フォトニック結晶周期構造を形成するための金型を準備する工程と、
     前記積層構造体のうち前記p型GaNコンタクト層まで結晶成長させた上に、レジスト層を形成し、前記金型の構造を転写する工程と、
     前記レジスト層をマスクとして順次前記積層構造体をエッチングしてフォトニック結晶周期構造を形成する工程と、
     前記フォトニック結晶周期構造形成後に金属層と反射電極層をこの順で斜め蒸着させる工程と
    を有する深紫外LEDの製造方法。
  13.  請求項6記載の深紫外LEDの製造方法であって、
     反射電極層と、極薄膜金属層と、波長λに対し透明な、p型AlGaNコンタクト層とを、基板とは反対側からこの順で含有する積層構造体を準備する工程と、
     前記p型AlGaNコンタクト層の膜厚が100nm以内で、前記p型AlGaNコンタクト層内に、前記基板方向において前記p型AlGaNコンタクト層を超えない厚さ方向からp型AlGaNコンタクト層と極薄膜金属層の界面にかけて設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層或いは前記電子ブロック層の膜厚の合計値以上80nm以内及びその深さhが前記p型AlGaNコンタクト層の膜厚以内において光取出し効率の極大値が得られる反射型フォトニック結晶周期構造を形成するための金型を準備する工程と、
     前記積層構造体のうち前記p型AlGaNコンタクト層まで結晶成長させた上に、レジスト層を形成し、前記金型の構造を転写する工程と、
     前記レジスト層をマスクとして順次前記積層構造体をエッチングしてフォトニック結晶周期構造を形成する工程と、
     前記フォトニック結晶周期構造形成後に極薄膜金属層と反射電極層をこの順で斜め蒸着させる工程と
    を有する深紫外LEDの製造方法。
  14.  請求項7記載の深紫外LEDの製造方法であって、
    反射電極層と、金属層と、p型GaNコンタクト層と、波長λに対し透明な、p型AlGaN層とを、基板とは反対側からこの順で含有する積層構造体を準備する工程と、前記p型AlGaN層の膜厚が100nm以内で、前記p型GaNコンタクト層と前記p型AlGaN層との界面を超えず、かつ、前記基板方向において前記p型GaNコンタクト層の膜厚の範囲内に設けられた複数の空孔を有する反射型フォトニック結晶周期構造を有し、前記空孔の基板方向の端面から量子井戸層までの距離が前記バリア層と前記多重量子障壁層或いは前記電子ブロック層の膜厚の合計値以上80nm以内及びその深さhが前記p型GaNコンタクト層の膜厚以内において光取出し効率の極大値が得られる反射型フォトニック結晶周期構造を形成するための金型を準備する工程と、前記積層構造体のうち前記p型GaNコンタクト層まで結晶成長させた上に、レジスト層を形成し、前記金型の構造を転写する工程と、前記レジスト層をマスクとして順次前記積層構造体をエッチングしてフォトニック結晶周期構造を形成する工程と、を有する深紫外LEDの製造方法。 
PCT/JP2016/082397 2016-03-30 2016-11-01 深紫外led及びその製造方法 WO2017168811A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680003179.3A CN107534072B (zh) 2016-03-30 2016-11-01 深紫外led及其制造方法
JP2017517135A JP6156898B1 (ja) 2016-03-30 2016-11-01 深紫外led及びその製造方法
US15/526,860 US10056526B2 (en) 2016-03-30 2016-11-01 Deep ultraviolet LED and method for manufacturing the same
KR1020177013240A KR101811819B1 (ko) 2016-03-30 2016-11-01 심자외 led 및 그 제조 방법
EP16861100.2A EP3249701B1 (en) 2016-03-30 2016-11-01 Deep ultraviolet led and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016069434 2016-03-30
JP2016-069434 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017168811A1 true WO2017168811A1 (ja) 2017-10-05

Family

ID=59014415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082397 WO2017168811A1 (ja) 2016-03-30 2016-11-01 深紫外led及びその製造方法

Country Status (6)

Country Link
US (1) US10056526B2 (ja)
EP (1) EP3249701B1 (ja)
KR (1) KR101811819B1 (ja)
CN (1) CN107534072B (ja)
TW (1) TWI634674B (ja)
WO (1) WO2017168811A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146737A1 (ja) * 2018-01-26 2019-08-01 丸文株式会社 深紫外led及びその製造方法
WO2020040304A1 (ja) * 2018-08-24 2020-02-27 丸文株式会社 深紫外led装置及びその製造方法
WO2020138146A1 (ja) * 2018-12-28 2020-07-02 丸文株式会社 深紫外led装置及びその製造方法
JP2021097148A (ja) * 2019-12-18 2021-06-24 日機装株式会社 半導体発光素子
JP2021174876A (ja) * 2020-04-24 2021-11-01 日機装株式会社 半導体発光素子および半導体発光素子の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102056414B1 (ko) 2015-09-03 2020-01-22 마루분 가부시키가이샤 심자외 led 및 그 제조 방법
CN110197839B (zh) * 2018-06-15 2021-08-03 京东方科技集团股份有限公司 双面显示面板及其制备方法、双面显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104969A1 (ja) * 2010-02-24 2011-09-01 独立行政法人理化学研究所 窒化物半導体多重量子障壁を有する発光素子及びその製造方法
JP2013120829A (ja) * 2011-12-07 2013-06-17 Sharp Corp 窒化物半導体紫外発光素子
JP2013530537A (ja) * 2010-06-18 2013-07-25 センサー エレクトロニック テクノロジー インコーポレイテッド 深紫外発光ダイオード
WO2015008776A1 (ja) * 2013-07-17 2015-01-22 丸文株式会社 半導体発光素子及び製造方法
JP5757512B1 (ja) 2014-03-06 2015-07-29 丸文株式会社 深紫外led及びその製造方法

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5337328A (en) 1992-05-08 1994-08-09 Sdl, Inc. Semiconductor laser with broad-area intra-cavity angled grating
US5955749A (en) 1996-12-02 1999-09-21 Massachusetts Institute Of Technology Light emitting device utilizing a periodic dielectric structure
US7053420B2 (en) 2001-03-21 2006-05-30 Mitsubishi Cable Industries, Ltd. GaN group semiconductor light-emitting element with concave and convex structures on the substrate and a production method thereof
JP3991612B2 (ja) 2001-04-09 2007-10-17 日亜化学工業株式会社 発光素子
US6936854B2 (en) 2001-05-10 2005-08-30 Canon Kabushiki Kaisha Optoelectronic substrate
US7194174B2 (en) 2001-10-19 2007-03-20 Ignis Technologies As Integrated photonic crystal structure and method of producing same
JP4329374B2 (ja) 2002-07-29 2009-09-09 パナソニック電工株式会社 発光素子およびその製造方法
US6878969B2 (en) 2002-07-29 2005-04-12 Matsushita Electric Works, Ltd. Light emitting device
JP2004200209A (ja) 2002-12-16 2004-07-15 Fuji Xerox Co Ltd 電極等の導電パターンの形成方法およびこれを用いた面発光型半導体レーザ並びにその製造方法
JP4610863B2 (ja) 2003-03-19 2011-01-12 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー フォトニック結晶構造を使用するled効率の改良
JP4317375B2 (ja) 2003-03-20 2009-08-19 株式会社日立製作所 ナノプリント装置、及び微細構造転写方法
US7083993B2 (en) 2003-04-15 2006-08-01 Luminus Devices, Inc. Methods of making multi-layer light emitting devices
US7367691B2 (en) 2003-06-16 2008-05-06 Industrial Technology Research Institute Omnidirectional one-dimensional photonic crystal and light emitting device made from the same
JP2007529105A (ja) 2003-07-16 2007-10-18 松下電器産業株式会社 半導体発光装置とその製造方法、照明装置および表示装置
US7012279B2 (en) 2003-10-21 2006-03-14 Lumileds Lighting U.S., Llc Photonic crystal light emitting device
US20070267646A1 (en) 2004-06-03 2007-11-22 Philips Lumileds Lighting Company, Llc Light Emitting Device Including a Photonic Crystal and a Luminescent Ceramic
WO2006011734A1 (en) 2004-07-24 2006-02-02 Young Rak Do Led device comprising thin-film phosphor having two dimensional nano periodic structures
US20060043400A1 (en) 2004-08-31 2006-03-02 Erchak Alexei A Polarized light emitting device
JP2006196658A (ja) 2005-01-13 2006-07-27 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法
JP2006276388A (ja) 2005-03-29 2006-10-12 Alps Electric Co Ltd フォトニック結晶スラブ及びフォトニック結晶導波路と光デバイス
TW200707799A (en) 2005-04-21 2007-02-16 Aonex Technologies Inc Bonded intermediate substrate and method of making same
JP4027393B2 (ja) * 2005-04-28 2007-12-26 キヤノン株式会社 面発光レーザ
US7592637B2 (en) 2005-06-17 2009-09-22 Goldeneye, Inc. Light emitting diodes with reflective electrode and side electrode
US8163575B2 (en) 2005-06-17 2012-04-24 Philips Lumileds Lighting Company Llc Grown photonic crystals in semiconductor light emitting devices
TWI253771B (en) 2005-07-25 2006-04-21 Formosa Epitaxy Inc Light emitting diode structure
JP2007109689A (ja) 2005-10-11 2007-04-26 Seiko Epson Corp 発光素子、発光素子の製造方法及び画像表示装置
US7679098B2 (en) 2006-01-30 2010-03-16 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Highly directional light emitting diode using photonic bandgap waveguides
US7687811B2 (en) 2006-03-21 2010-03-30 Lg Electronics Inc. Vertical light emitting device having a photonic crystal structure
JP2007294789A (ja) 2006-04-27 2007-11-08 Sony Corp 半導体レーザ素子
KR100736623B1 (ko) 2006-05-08 2007-07-09 엘지전자 주식회사 수직형 발광 소자 및 그 제조방법
JP4231880B2 (ja) 2006-07-26 2009-03-04 株式会社東芝 3次元構造体およびそれを有する発光素子ならびにその製造方法
JP2008053425A (ja) 2006-08-24 2008-03-06 Matsushita Electric Ind Co Ltd 半導体発光装置
US7829905B2 (en) 2006-09-07 2010-11-09 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Semiconductor light emitting device
US7697584B2 (en) 2006-10-02 2010-04-13 Philips Lumileds Lighting Company, Llc Light emitting device including arrayed emitters defined by a photonic crystal
JP2008098526A (ja) 2006-10-13 2008-04-24 Toyoda Gosei Co Ltd 発光素子
JP2008117922A (ja) * 2006-11-02 2008-05-22 Yamaguchi Univ 半導体発光素子及びその製造方法
KR100886821B1 (ko) 2007-05-29 2009-03-04 한국광기술원 전기적 특성을 향상한 광자결정 발광 소자 및 제조방법
JP2008311317A (ja) 2007-06-12 2008-12-25 Eudyna Devices Inc 半導体発光素子
KR101341374B1 (ko) 2007-07-30 2013-12-16 삼성전자주식회사 광자결정 발광소자 및 그 제조방법
JP4408443B2 (ja) 2007-08-01 2010-02-03 株式会社日立製作所 回転電機
JP2009267263A (ja) 2008-04-28 2009-11-12 Kyocera Corp 発光装置およびその製造方法
KR100933529B1 (ko) 2008-05-28 2009-12-23 재단법인서울대학교산학협력재단 광자결정 구조체를 구비한 발광소자
KR20110031275A (ko) 2008-06-05 2011-03-25 아사히 가라스 가부시키가이샤 나노 임프린트용 몰드, 그 제조 방법 및 표면에 미세 요철 구조를 갖는 수지 성형체 그리고 와이어 그리드형 편광자의 제조 방법
JP5282503B2 (ja) 2008-09-19 2013-09-04 日亜化学工業株式会社 半導体発光素子
JP5379434B2 (ja) 2008-09-22 2013-12-25 学校法人 名城大学 発光素子用サファイア基板の製造方法
JP4892025B2 (ja) 2008-09-26 2012-03-07 株式会社東芝 インプリント方法
KR101040462B1 (ko) 2008-12-04 2011-06-09 엘지이노텍 주식회사 발광 소자 및 그 제조방법
WO2010064609A1 (ja) 2008-12-05 2010-06-10 旭硝子株式会社 光硬化性組成物および表面に微細パターンを有する成形体の製造方法
GB0902569D0 (en) 2009-02-16 2009-04-01 Univ Southampton An optical device
KR100999713B1 (ko) 2009-03-17 2010-12-08 엘지이노텍 주식회사 발광소자 및 그 제조방법
JP5300078B2 (ja) 2009-10-19 2013-09-25 国立大学法人京都大学 フォトニック結晶発光ダイオード
CN102576784B (zh) 2009-10-23 2015-06-17 日本电气株式会社 发光元件和设置有该发光元件的投影显示装置
DE102009057780A1 (de) 2009-12-10 2011-06-16 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und photonischer Kristall
JP5549338B2 (ja) 2010-04-09 2014-07-16 ウシオ電機株式会社 紫外光放射用窒素化合物半導体ledおよびその製造方法
JP5331051B2 (ja) 2010-04-21 2013-10-30 パナソニック株式会社 発光素子
US9130348B2 (en) 2010-07-30 2015-09-08 Kyoto University Two-dimensional photonic crystal laser
CN103221740B (zh) 2010-11-18 2015-02-25 日本电气株式会社 光源单元和具有其的投影显示设备
JP5620827B2 (ja) 2011-01-06 2014-11-05 富士フイルム株式会社 ナノインプリントモールドの洗浄方法
KR20120092325A (ko) 2011-02-11 2012-08-21 서울옵토디바이스주식회사 광 결정 구조를 갖는 발광 다이오드 및 그것을 제조하는 방법
KR20120092326A (ko) 2011-02-11 2012-08-21 서울옵토디바이스주식회사 광 결정 구조를 갖는 비극성 발광 다이오드 및 그것을 제조하는 방법
JP5678728B2 (ja) 2011-03-03 2015-03-04 大日本印刷株式会社 モールドおよびその製造方法
JP2012186414A (ja) 2011-03-08 2012-09-27 Toshiba Corp 発光装置
JP5715686B2 (ja) 2011-03-23 2015-05-13 創光科学株式会社 窒化物半導体紫外線発光素子
CN103299396B (zh) 2011-06-23 2015-11-25 旭化成电子材料株式会社 微细图案形成用积层体及微细图案形成用积层体的制造方法
US20130009167A1 (en) 2011-07-06 2013-01-10 Sharp Kabushiki Kaisha Light emitting diode with patterned structures and method of making the same
CN103650176B (zh) 2011-07-12 2016-12-14 丸文株式会社 发光元件及其制造方法
JP2013042079A (ja) 2011-08-19 2013-02-28 Sharp Corp 半導体発光装置
WO2013132993A1 (ja) 2012-03-07 2013-09-12 株式会社 アルバック 素子の製造方法
CN104170056B (zh) 2012-03-12 2017-07-21 旭化成株式会社 模具、抗蚀剂积层体及其制造方法以及凹凸结构体
KR102059030B1 (ko) 2012-09-24 2019-12-24 엘지이노텍 주식회사 자외선 발광 소자
CN103165771B (zh) 2013-03-28 2015-07-15 天津三安光电有限公司 一种具有埋入式孔洞结构的氮化物底层及其制备方法
JP2015041763A (ja) 2013-08-20 2015-03-02 正幸 安部 光半導体装置及びその製造方法
JP5999800B1 (ja) 2015-01-16 2016-09-28 丸文株式会社 深紫外led及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104969A1 (ja) * 2010-02-24 2011-09-01 独立行政法人理化学研究所 窒化物半導体多重量子障壁を有する発光素子及びその製造方法
JP2013530537A (ja) * 2010-06-18 2013-07-25 センサー エレクトロニック テクノロジー インコーポレイテッド 深紫外発光ダイオード
JP2013120829A (ja) * 2011-12-07 2013-06-17 Sharp Corp 窒化物半導体紫外発光素子
WO2015008776A1 (ja) * 2013-07-17 2015-01-22 丸文株式会社 半導体発光素子及び製造方法
JP2015195388A (ja) * 2013-07-17 2015-11-05 丸文株式会社 フォトニック結晶周期構造のパラメータ計算方法、プログラム及び記録媒体
JP5757512B1 (ja) 2014-03-06 2015-07-29 丸文株式会社 深紫外led及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEKI HIRAYAMA ET AL.: "Recent progress and future prospects of AlGaN-based high- efficiency deep-ultraviolet light-emitting", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 53, no. 10, 17 September 2014 (2014-09-17), pages 100209-1 - 100209-10, XP055404492 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146737A1 (ja) * 2018-01-26 2019-08-01 丸文株式会社 深紫外led及びその製造方法
JPWO2019146737A1 (ja) * 2018-01-26 2021-01-07 丸文株式会社 深紫外led及びその製造方法
US11309454B2 (en) 2018-01-26 2022-04-19 Marubun Corporation Deep ultraviolet LED and method for producing the same
JP7316610B2 (ja) 2018-01-26 2023-07-28 丸文株式会社 深紫外led及びその製造方法
JP7316610B6 (ja) 2018-01-26 2024-02-19 丸文株式会社 深紫外led及びその製造方法
WO2020040304A1 (ja) * 2018-08-24 2020-02-27 丸文株式会社 深紫外led装置及びその製造方法
WO2020138146A1 (ja) * 2018-12-28 2020-07-02 丸文株式会社 深紫外led装置及びその製造方法
JP2021097148A (ja) * 2019-12-18 2021-06-24 日機装株式会社 半導体発光素子
JP2021174876A (ja) * 2020-04-24 2021-11-01 日機装株式会社 半導体発光素子および半導体発光素子の製造方法

Also Published As

Publication number Publication date
US20180198026A1 (en) 2018-07-12
KR101811819B1 (ko) 2017-12-22
CN107534072B (zh) 2019-04-19
EP3249701A4 (en) 2017-11-29
CN107534072A (zh) 2018-01-02
TW201735393A (zh) 2017-10-01
EP3249701B1 (en) 2020-07-08
TWI634674B (zh) 2018-09-01
US10056526B2 (en) 2018-08-21
EP3249701A1 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
WO2017168811A1 (ja) 深紫外led及びその製造方法
KR101763460B1 (ko) 광학 기판, 반도체 발광 소자 및 반도체 발광 소자의 제조 방법
TWI608631B (zh) Deep ultraviolet LED and its manufacturing method
KR20140022106A (ko) 발광소자 및 그 제조방법
KR20160037948A (ko) 반도체 발광 소자 및 그 제조 방법
US10950751B2 (en) Deep ultraviolet LED and method for manufacturing the same
JP7316610B2 (ja) 深紫外led及びその製造方法
JP2017063099A (ja) 凹凸構造を含む基板の製造方法及び半導体発光素子の製造方法
WO2020138146A1 (ja) 深紫外led装置及びその製造方法
Shin et al. High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices
KR20080093556A (ko) 질화물계 발광 소자 및 그 제조방법
JP6156898B1 (ja) 深紫外led及びその製造方法
WO2020040304A1 (ja) 深紫外led装置及びその製造方法
TW201501351A (zh) 發光二極體製造方法
TW201712890A (zh) 發光元件的製造方法
Chavoor et al. Light extraction improvement of GaN LEDs using nano-scale top transmission gratings
WO2024090391A1 (ja) 深紫外led
Xiong et al. Lattice-parameter effects on diffracted transmission of GaN two-dimensional square-lattice photonic crystals

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017517135

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016861100

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15526860

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE