WO2018212568A1 - 전고체 전지용 고체 전해질막의 제조 방법 및 상기 방법에 의해 제조된 고체 전해질막 - Google Patents

전고체 전지용 고체 전해질막의 제조 방법 및 상기 방법에 의해 제조된 고체 전해질막 Download PDF

Info

Publication number
WO2018212568A1
WO2018212568A1 PCT/KR2018/005570 KR2018005570W WO2018212568A1 WO 2018212568 A1 WO2018212568 A1 WO 2018212568A1 KR 2018005570 W KR2018005570 W KR 2018005570W WO 2018212568 A1 WO2018212568 A1 WO 2018212568A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte membrane
particles
present
polymer
Prior art date
Application number
PCT/KR2018/005570
Other languages
English (en)
French (fr)
Inventor
조성주
신호석
우승희
강성중
한혜은
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019559254A priority Critical patent/JP7092796B2/ja
Priority to US16/473,137 priority patent/US11342578B2/en
Priority to EP18801673.7A priority patent/EP3553868B1/en
Priority to CN201880007447.8A priority patent/CN110192302B/zh
Publication of WO2018212568A1 publication Critical patent/WO2018212568A1/ko
Priority to US17/724,933 priority patent/US11908993B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid electrolyte membrane for an all-solid-state battery having low detachment of solid electrolyte particles and excellent durability and a method of manufacturing the same.
  • Lithium ion secondary batteries are widely used as power supply devices for portable electronic devices. Recently, there is a movement to use lithium ion secondary batteries as electric vehicles or industrial batteries.
  • the structure of a lithium ion secondary battery is relatively simple and consists of three elements: a negative electrode active material, a positive electrode active material, and an electrolyte. Battery action proceeds by moving lithium ions from the positive electrode to the negative electrode and from the negative electrode to the positive electrode.
  • the electrolyte portion only functions as a lithium ion conductor.
  • an electrolyte solution in which lithium salt is dissolved in an aprotic organic solvent is used.
  • such an electrolyte solution has problems in use due to electrolyte leakage or gas generation, and thus, there is a need for development of an all-solid-state battery to solve such a problem.
  • An all-solid-state battery using a solid electrolyte has advantages such as (1) improved safety, (2) a battery having an optimized structure, (3) high energy density, and (4) high power density, compared to a battery using a liquid electrolyte.
  • an all-solid-state battery arranges a sheet-shaped solid electrolyte between a positive electrode and a negative electrode.
  • the sheet-like solid electrolyte is usually prepared by mixing the inorganic solid electrolyte particles and the binder resin in the form of a sheet.
  • the solid electrolyte sheet in which the particles are bound with the binder resin has a problem in that the solid electrolyte particles are detached.
  • FIG. 4 is a schematic view of a conventionally proposed solid electrolyte membrane (a).
  • the solid electrolyte slurry (a2) is applied to the surface of the nonwoven fabric (a1) and press-fitted, the solid electrolyte slurry may not be embedded in all of the nonwoven fabric thickness directions. The amount remaining on the surface of the nonwoven fabric is large. Accordingly, there is a need for the development of a solid electrolyte membrane having high physical strength and flexibility while preventing particles from detaching.
  • An object of the present invention is to provide a method for producing a novel solid electrolyte membrane for an all-solid-state battery having high ion conductivity, low detachment of inorganic solid electrolyte particles, and improved flexibility and durability.
  • the objects and advantages of the present invention may be realized by the means or method described in the claims and combinations thereof.
  • the present invention relates to a solid electrolyte membrane for an all-solid-state battery and a method of manufacturing the same for solving the above problems.
  • a first aspect of the present invention relates to the solid electrolyte membrane, wherein the solid electrolyte membrane includes a plurality of inorganic solid electrolyte particles and a plurality of polymer filaments, and the polymer filaments are entangled with each other and are formed to cross and bind to each other. A structure is formed, and the whole thickness direction of the said network structure is filled with the said inorganic solid electrolyte particle.
  • the polymer filament is polyolefin, polyester, polyamide, polyacetal, polycarbonate, polyimide, polyetherketone, polyethersulfone, polyphenylene oxide, poly It includes one or two or more polymer materials selected from the group consisting of phenylene sulfide, polyvinylidene fluoride, polyvinyl chloride, polyacrylonitrile, cellulose, and polyparaphenylene benzobisoxazole.
  • the inorganic solid electrolyte of any one of the first to second aspects of the particles comprising at least one form of the primary particles and the secondary particles formed by the aggregation of the primary particles It includes form.
  • the polymer filament has a diameter of 100 nm to 2 ⁇ m.
  • the inorganic solid electrolyte includes at least one of an oxide-based solid electrolyte and a sulfide-based solid electrolyte.
  • the inorganic solid electrolyte and the polymer filament in the solid electrolyte membrane are included in a weight ratio of 99: 1 to 30:70.
  • a seventh aspect of the present invention relates to a method for manufacturing a solid electrolyte membrane for an all-solid-state battery, the method comprising the steps of preparing a non-woven precursor in which the polymer filament is integrated;
  • Preparing a slurry for forming a solid electrolyte membrane Obtaining a mixture of the nonwoven precursor and the slurry; Drying the mixture to obtain a preliminary solid electrolyte membrane; And pressing the preliminary solid electrolyte membrane to obtain a solid electrolyte membrane.
  • the polymer filament is obtained by spinning by electrospinning.
  • the solid electrolyte membrane is uniformly filled in the three-dimensional network structure of the polymer filament because the slurry for forming the solid electrolyte membrane is embedded in the nonwoven fabric precursor before the nonwoven fabric is compressed. Its filling rate is high. Therefore, a large amount of the inorganic solid electrolyte components may be uniformly distributed in the solid electrolyte membrane as compared with the method of injecting the inorganic solid electrolyte particles into the crimped nonwoven fabric, for example, by press-fitting the solid electrolyte particles. The path of ion conduction by is formed sufficiently, and the ion conductivity is excellent. In addition, there is little detachment of solid electrolyte particles from the solid electrolyte membrane, and durability and flexibility are increased by the three-dimensional network structure, thereby preventing shape deformation.
  • FIG 1 schematically illustrates an electrospinning process according to one embodiment of the invention.
  • FIG. 2 exemplarily shows a state in which a mixture of a polymer filament and a slurry for forming a solid electrolyte is applied onto a release plate.
  • Figure 3 schematically illustrates a pressurization process according to one embodiment of the invention.
  • FIG. 4 is a schematic cross-sectional view of a conventional solid electrolyte membrane.
  • the present invention relates to a solid electrolyte membrane for an all-solid-state battery and an electrochemical device including the same.
  • the present invention also relates to a method of manufacturing the solid electrolyte membrane.
  • the electrochemical device may be, for example, a lithium ion secondary battery, and in particular, may be an all-solid-state battery using a polymer electrolyte, an inorganic solid electrolyte, or both as electrolyte materials.
  • the solid electrolyte membrane according to the present invention includes a mixed phase of a polymer filament and a solid electrolyte which is a fine fibrous polymer material.
  • the solid electrolyte may include at least one of a polymer-based solid electrolyte and an inorganic solid electrolyte.
  • the solid electrolyte membrane may further include a binder resin.
  • the polymer filaments are entangled with each other to cross and bind to each other to form a three-dimensional network structure.
  • the three-dimensional network structure may exhibit a nonwoven fabric-like structure in which a plurality of polymer filaments are entangled with each other. That is, the three-dimensional network structure is a three-dimensional structure composed of the fibrous polymer materials intersecting with each other may exhibit a three-dimensional network form.
  • the solid electrolyte is incorporated into the structure by using the network structure as a support to fill the network structure.
  • the solid electrolyte is densely packed in a state in which the solid electrolyte particles are densely packed inside the solid electrolyte membrane, so that the porosity of the solid electrolyte membrane is 15% or less, preferably 10 It is lower than%.
  • the solid electrolyte may be included in the form of covering all or at least part of the outer surface of the network structure in the solid electrolyte membrane.
  • the polymer filament may be obtained by spinning the polymer material by the method of electrospinning, for example, by using a method of electrospinning the polymer solution in which the polymer material is dissolved Or a method of wet spinning in which filaments are discharged into lower alcohols such as methanol and ethanol.
  • the polymer filaments are not limited to those formed by the above method.
  • the three-dimensional network structure in which the polymer filaments are entangled may have a nonwoven fabric-like structure.
  • the solid electrolyte membrane is a composite including a mixed phase formed by filling a plurality of inorganic solid electrolyte particles inside the three-dimensional network structure of the nonwoven fabric-like structure.
  • the solid electrolyte membrane may be filled with a large amount of solid electrolyte particles in a uniform distribution in the pores in the three-dimensional network structure and smooth contact between the particles can provide a sufficient path for ion conduction.
  • the solid electrolyte membrane according to the present invention is obtained by filling the filament aggregate obtained after spinning the polymer filament with a solid electrolyte and then pressing. Accordingly, the three-dimensional network structure can be filled with a large amount of a solid electrolyte therein, compared to the normal non-woven fabric can ensure a high ion conductivity.
  • the plurality of inorganic solid electrolyte particles and the polymer filaments in the solid electrolyte membrane are bound to and / or attached to each other to form one membrane unit. If the solid electrolyte membrane contains a binder resin, the binder resin can assist in their binding.
  • the polymer filament may have a diameter of 100nm to 2 ⁇ m, within the range 300nm or more, 500nm or more, 700nm or more, 1 ⁇ m or more, 1.3 ⁇ m or more, 1.5 ⁇ m or more or 1.7 It may be at least ⁇ m, or may be at most 1.8 ⁇ m, at most 1.5 ⁇ m, at most 1.2 ⁇ m, at most 1 ⁇ m, at most 800 nm or at most 500 nm.
  • the polymer filament may have an aspect ratio greater than 1, for example, the length thereof may be 5 ⁇ m to 500 ⁇ m.
  • the length of the filament may be at least 10 ⁇ m, at least 50 ⁇ m, at least 100 ⁇ m, at least 200 ⁇ m, at least 300 ⁇ m, or at least 400 ⁇ m within the above range, or at least 400 within the above range. It may be up to 300 ⁇ m, up to 200 ⁇ m, up to 100 ⁇ m, up to 50 ⁇ m, or up to 30 ⁇ m.
  • the diameter and length of the filament can be confirmed by observing the shape through SEM image analysis.
  • the polymer material may be used in a conventional nonwoven fabric manufacturing process, and may be used without limitation as long as it can be spun into filaments having a diameter and length in the above-mentioned range by electrospinning, and may be appropriately used depending on the purpose of use of the solid electrolyte membrane. It may comprise a polymeric material.
  • the polymeric material may be a thermoplastic resin and / or a thermosetting resin.
  • Non-limiting examples thereof include polyolefins such as polyethylene and polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyesters such as polyparaphenylene benzobisoxazole, polyamides such as aramid, polyacetal, polycarbonate, and poly Mid, polyether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyethylene naphthalene, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyacrylonitrile, cellulose, nylon, polya It may include any one or a mixture of two or more selected from the group consisting of a reelet and glass.
  • the inorganic solid electrolyte is not limited to specific components as long as it is generally used in an all-solid-state battery, and may be appropriately selected and used according to battery characteristics.
  • the inorganic solid electrolyte is not particularly limited to specific components, and may include one or more of an inorganic solid electrolyte such as a crystalline solid electrolyte, an amorphous solid electrolyte, and a glass ceramic solid electrolyte. have.
  • the solid electrolyte may include at least one of an oxide-based solid electrolyte and a sulfide-based solid electrolyte.
  • the sulfide-based solid electrolyte may include lithium sulfide, silicon sulfide, germanium sulfide, boron sulfide, and the like.
  • the inorganic solid electrolyte may be in the form of particles, and the particles may include at least one form of primary particles and secondary particles formed by aggregation of the primary particles.
  • the inorganic solid electrolyte particles may have a particle diameter in the range of 200 nm to 5 ⁇ m.
  • the inorganic solid electrolyte and the polymer filament (nonwoven precursor) in the solid electrolyte membrane may be included in a weight ratio (wt%) of about 99: 1 to 30:70.
  • the inorganic solid electrolyte may be 90 wt% or less, 85 wt% or less, 75 wt% or less, 65 wt% or less, 60 wt% or less in the solid electrolyte membrane, or the inorganic solid electrolyte may be 40 wt% within the above range. At least 50 wt%, at least 60 wt%, at least 70 wt%, at least 80 wt%, at least 90 wt%.
  • the content of the inorganic solid electrolyte in the solid electrolyte membrane is 30% by weight or less, there is a high possibility that the electrolyte particles are separated from each other in the solid electrolyte membrane, and thus, the ion conduction path cannot be sufficiently provided.
  • the binder resin may provide a binding force between membrane components in a solid electrolyte membrane, and PVdF-based binder resins or acrylic binder resins used as binders in the electrochemical device field may be used without limitation.
  • PVdF-based binder resins or acrylic binder resins used as binders in the electrochemical device field may be used without limitation.
  • a nonpolar solvent having a polarity index of 3 or less as the dispersion medium of the slurry, wherein as the binder resin
  • rubber-based binder resin it is preferable to use rubber-based binder resin.
  • the rubber binder resin is natural rubber, butyl rubber, bromo-butyl rubber, chlorinated butyl rubber, styrene isoprene rubber, styrene-ethylene-butylene-styrene rubber, acrylonitrile-butadiene-styrene rubber, It may include one or more selected from the group consisting of polybutadiene rubber, nitrile butadiene rubber, styrene butadiene rubber, styrene butadiene styrene rubber (SBS), EPDM (ethylene propylene diene monomer) rubber.
  • SBS styrene butadiene styrene rubber
  • EPDM ethylene propylene diene monomer
  • the binder resin may be included in the range of 1 to 10% by weight of the solid electrolyte membrane, the content thereof is in the range of 7% by weight or less, 5% by weight or less, 3% by weight or less Can be adjusted appropriately.
  • the solid electrolyte membrane may have a thickness of 10 ⁇ m to 700 ⁇ m.
  • it is not particularly limited to the above range and may be appropriately adjusted in consideration of the final purpose (characteristics of the battery, etc.).
  • the solid electrolyte membrane has a porosity of 10 vol% or less, 8 vol% or less, or 3 vol% or less, or close to 0 vol%, very low, or together with or independently of air permeability. Is preferably measured to infinity and becomes unmeasurable.
  • the air permeability of the solid electrolyte membrane is in the range of 3,000 sec / 100 cc or more.
  • the porosity may be measured using BELSORP (BET equipment) of BEL JAPAN using an adsorption gas such as nitrogen, or may be measured by a method such as mercury intrusion porosimetry.
  • the true density of the electrode active material layer is determined from the density (apparent density) of the obtained electrode (electrode active material layer), the composition ratio of materials included in the electrode (electrode active material layer), and the density of each component.
  • the porosity of the electrode active material layer can be calculated from the difference between the apparent density and the net density.
  • the present invention also provides a method for producing a solid electrolyte membrane having the above characteristics.
  • 1 to 3 are process flowcharts listing the method for producing an electrolyte membrane according to the present invention in order of process. Reference to this will be described in detail the manufacturing method of the electrolyte membrane according to the present invention.
  • the method for preparing an electrolyte membrane according to the present invention includes the following (S10) to (S50):
  • (S10) and (S20) of the above step may not be performed sequentially and may be performed at the same time (S20) or after the process (S10) may be performed.
  • a nonwoven precursor in which polymer filaments are integrated is manufactured (S10).
  • the term 'nonwoven precursor' refers to a state in which the pressing step for binding the filaments is not performed in a state in which the fine polymer filaments spun for manufacturing the nonwoven fabric is simply deposited or accumulated.
  • the spinning of the filament may be carried out by the method of electrospinning.
  • Electrospinning is a method of obtaining continuous fibers with a diameter of a few nm using an electric field. Electrospinning devices usually comprise high voltage power supplies, spinnerets and collectors for collecting fibers. In electrospinning, the polymer solution and the dust collecting plate are charged with opposite electrodes.
  • the polymer solution discharged to the end of the nozzle is stretched in a conical form (taylor) by the electrostatic repulsion force and the coulomb force according to the applied voltage is spun in the form of filament to collect the fibers in the current collector plate.
  • electrospinning it is possible to finely form the filament to tens to hundreds of nanometers by controlling the spinning process such as the aperture size, voltage and / or current range of the spinning nozzle, and thus, it is advantageous to form a non-woven fabric having a high porosity.
  • the electrospinning is preferably wet spinning, in which the spun filaments are accumulated and / or deposited in solution.
  • the filaments are not entangled but uniformly distributed in the solution until the integrated filaments are compressed to form a nonwoven fabric, which is advantageous for forming uniform pores.
  • the nonwoven precursor in the case of manufacturing the nonwoven precursor by the method of wet spinning, the polymer material (for example, polyacrylonitrile) as described above is dissolved in a suitable dispersion medium such as DMF to prepare a polymer solution, which is formed in the form of water, fine filament,
  • a suitable dispersion medium such as DMF
  • the nonwoven precursor can be obtained by spinning into a coagulant such as methanol or ethanol and then collecting the filaments in an integrated state as a result of spinning.
  • the nonwoven precursor may be further freeze-dried to dry the solvent, such as the dispersion medium or coagulation liquid.
  • 1 is an electrospinning process according to an embodiment of the present invention, which schematically illustrates the discharge of the polymer filament 20 into the coagulating solution 30 in the spinning device 10.
  • a slurry for forming a solid electrolyte membrane is prepared (S20).
  • the slurry is a single or two or more selected from solid electrolyte membrane materials including inorganic solid electrolyte particles selected from xylene cyclopentane, cyclohexane, hexane, anhydrous hexane, toluene, ether, tertiary alcohol, secondary amine, tertiary amine, and the like. It may be prepared by dispersing in a suitable solvent such as a suitable solvent.
  • the electrolyte membrane material may further include a binder resin as described above.
  • the slurry is mixed by induction mixing the solid content including the oxide-based solid electrolyte particles, such as LAGP and binder resin in a weight ratio of 10:90 to 50:50 by weight ratio Can be prepared.
  • the mixing method may use a conventional mixing method such as induced mixing and is not particularly limited to any one method.
  • a mixture of the nonwoven fabric precursor obtained in the step (S10) and the slurry for forming the solid electrolyte membrane is obtained (30).
  • the mixture may be prepared by incorporating the nonwoven precursor into the slurry and filling the slurry into the nonwoven precursor. In this step, an inorganic solid electrolyte or the like is filled between the pores formed in the nonwoven precursor.
  • the mixture may be prepared in the form of a dispersion in which the nonwoven precursor and the slurry are mixed so that the components are uniformly dispersed.
  • the mixing of the nonwoven precursor and the slurry can be carried out by a mechanical (physical) mixing method.
  • Such a mechanical mixing method is not particularly limited to any one method, and one or more may be appropriately selected from the manual mixing method and the automatic mixing method.
  • the mixing may be performed by placing the mixture in a bowl having a predetermined volume and mixing using a mortar (induced mixing), and in addition, a conventional screw, impeller, paddle and hammer mixer may be appropriately selected.
  • a conventional screw, impeller, paddle and hammer mixer may be appropriately selected.
  • the nonwoven precursor is a state in which filaments are irregularly accumulated in a shape such as cotton, and the slurry penetrates into the pores of the filaments of the nonwoven precursor by the mixing process, and the nonwoven precursor having a low mechanical strength is partially dismantled. It may be mixed with the slurry and slurried.
  • the mixture may be applied to a release plate such as a PET film to a predetermined thickness may be prepared to be added to a subsequent process, such as a drying process.
  • the nonwoven precursor has a larger pore size than the nonwoven fabric obtained after being pressed in a state that the spun filaments are pressed before being pressed. Therefore, when filling such a nonwoven precursor with a slurry, the filling rate is improved compared to the finished nonwoven fabric, and finally, the inorganic solid electrolyte particles and the binder, such as components, are very advantageous in showing a very uniform dispersed phase in the prepared electrolyte membrane.
  • a preliminary solid electrolyte membrane S40
  • the solvent in the slurry is removed, and a dry solid (preliminary solid electrolyte membrane) in which solid solids such as inorganic solid electrolyte particles and filaments in the slurry are physically weakly bound to each other is obtained.
  • the binder resin assists in their binding.
  • the drying method in this step is not particularly limited. The drying is preferably performed under temperature and time conditions that do not cause component changes or deterioration of the constituents, and may be dried at room temperature or heating conditions as necessary. Moreover, cold air and hot air can be added as needed.
  • the preliminary solid electrolyte membrane is pressurized (S50).
  • the pressurization may be appropriate pressure in consideration of the porosity of the finally obtained solid electrolyte membrane.
  • the pressurization may be in the range of 100 MPa to 1,000 MPa.
  • the pressurization devices such as hot presses and hydraulic presses may be selected and used appropriately, and the hot presses may be adjusted in the range of 50 ° C. to 150 ° C., but in particular It is not limited.
  • FIG. 3 schematically illustrates a pressurization process according to an embodiment of the present invention, and referring to this, by the upper pressurizing device 60a in which a preliminary solid electrolyte membrane as a result of drying is supported on the support 60b of the pressurizing device. Is pressurized.
  • the solid electrolyte membrane for an all-solid-state battery according to the present invention fills a slurry for forming an electrolyte membrane in a nonwoven precursor that is in a state before the nonwoven fabric is compressed, the slurry may be evenly filled in the nonwoven precursor, and thus the filling rate of the slurry is very high. Therefore, in the solid electrolyte membrane according to the present invention, a large amount of inorganic solid electrolyte particles may be contained, compared to an electrolyte membrane prepared by filling a slurry in a conventional nonwoven material prepared by compressing an aggregate of filaments, thereby providing a high level of ions. Can indicate conductivity. Therefore, the solid electrolyte membrane prepared according to the production method of the present invention can exhibit uniform high ion mobility across the entire electrolyte membrane.
  • the electrolyte membrane prepared by the above method exhibits flexibility and rigidity at the same time, there is little form deformation, and the durability is improved with respect to the external force applied to the battery. In addition, desorption of the inorganic solid electrolyte particles is prevented.
  • the present invention provides an all-solid-state battery comprising the solid electrolyte membrane.
  • the all-solid-state battery includes a negative electrode, a positive electrode, and a solid electrolyte membrane interposed between the negative electrode and the positive electrode, wherein the solid electrolyte membrane has the above-described characteristics.
  • the positive electrode and the negative electrode includes a current collector and an electrode active material layer formed on at least one surface of the current collector.
  • the electrode active material layer includes an electrode active material, a solid electrolyte, a binder (binder resin), and a conductive material.
  • the electrode when the electrode is a negative electrode, as the negative electrode active material, carbon such as lithium metal oxide, non-graphitized carbon, graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4
  • the binder may include a rubber binder resin.
  • PVdF-based binder resins and acrylic binder resins used as electrode binders have low solubility in nonpolar solvents, making electrode slurry difficult. Therefore, in the present invention, a rubber-based resin having high solubility in a nonpolar solvent is used as the binder.
  • the rubber binder resin is a natural rubber, butyl rubber, bromo-butyl rubber, chlorinated butyl rubber, styrene isoprene rubber, styrene-ethylene-butylene- Group consisting of styrene rubber, acrylonitrile-butadiene-styrene rubber, polybutadiene rubber, nitrile butadiene rubber, styrene butadiene rubber, styrene butadiene styrene rubber (SBS), ethylene propylene diene monomer (EPDM) rubber It may include one or more selected from.
  • SBS nitrile butadiene rubber
  • EPDM ethylene propylene diene monomer
  • the solid electrolyte may be used as long as it can be used as a solid electrolyte material of an all-solid-state battery, and is not limited to particular components.
  • a solid electrolyte may include at least one of a polymer-based solid electrolyte material and an inorganic solid electrolyte material exhibiting ion conductivity.
  • the inorganic solid electrolytes include crystalline solid electrolytes, amorphous solid electrolytes, and glass ceramic solid electrolytes.
  • the solid electrolyte may include a sulfide-based solid electrolyte, and examples of the sulfide-based solid electrolyte may include lithium sulfide, silicon sulfide, germanium sulfide, and boron sulfide.
  • the conductive material is, for example, graphite, carbon black, carbon fiber or metal fiber, metal powder, conductive whisker, conductive metal oxide, activated carbon and polyphenylene derivatives It may be any one selected from the group consisting of or a mixture of two or more of these conductive materials. More specifically, natural graphite, artificial graphite, super-p, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, denka black, aluminum powder, nickel powder, oxide It may be one or a mixture of two or more conductive materials selected from the group consisting of zinc, potassium titanate and titanium oxide.
  • the current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • Examples of the current collector include stainless steel, copper, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel.
  • the surface-treated with carbon, nickel, titanium, silver, etc. can be used for the surface.
  • LPS (Li 2 SP 2 O 5 ) particles were introduced into xylene using an inorganic solid electrolyte, followed by induction mixing at a solid concentration of 30 wt% to obtain a uniform slurry.
  • the prepared nonwoven fabric precursor was added to the prepared slurry, followed by mixing through induction mixing, to finally obtain a mixture in which the slurry was mixed between the filaments of the nonwoven precursor.
  • the content of the inorganic solid electrolyte particles and the polymer filaments (the polymer filaments constituting the nonwoven precursor) in the mixture was 80:20 by weight.
  • the mixture was applied onto a PET film using a doctor blade and then the solvent was dried (60 ° C., 12 hr) and rolled at 100 ° C., 300 Mpa using a hot press.
  • the PET film was removed to finally form a three-dimensional network structure in which nonwoven fabric-like structures, that is, polymer filaments were entangled with each other and intersected and bound to each other, and the inside of the network was filled with the inorganic solid electrolyte particles.
  • An electrolyte membrane was obtained.
  • the thickness of the solid electrolyte membrane was 100 ⁇ m.
  • a solid electrolyte membrane was prepared in the same manner as in Example 1 except that the content of the solid electrolyte and the polymer filament in the slurry for forming the solid electrolyte membrane was 75:25 by weight.
  • LPS particles (Li 2 SP 2 O 5 ) were dispersed in xylene with an inorganic solid electrolyte to prepare a slurry having a final solid concentration of 38%, which was coated on a release film of PET with a thickness of 200 ⁇ m. This was allowed to stand on a 60 ° C. hot plate to remove the remaining solvent, which was then rolled using a hot press at 100 ° C. and 300 Mpa. A solid electrolyte membrane was obtained therefrom, and the thickness thereof was 100 ⁇ m.
  • the slurry prepared in Comparative Example 1 was introduced into the PET nonwoven fabric through a rolling process of 300Mpa using a hydraulic press (Carver, 4350L).
  • a solid electrolyte membrane having a final thickness of 200 ⁇ m was obtained.
  • Solid electrolyte: non-woven fabric 80:20 wt%).
  • the obtained solid electrolyte membrane was obtained in such a way that the solid electrolyte slurry was not embedded in all of the nonwoven fabric thickness directions and the inorganic solid electrolyte particles were located only on the surface of the nonwoven fabric.
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Ionic Conductivity (S / cm) 7.0x10 -4 6.7 x 10 -4 1.0 x 10 -3 2.0 x 10 -5
  • the electrolyte membranes of each of Examples and Comparative Examples were bent and stretched at an angle of 180 degrees to 90 degrees to determine whether desorption of the electrolyte occurred.
  • Comparative Example 1 desorption of electrolyte particles occurred immediately after the first deformation.
  • Comparative Example 2 the desorption of particles occurred when the strain was applied four times or more.
  • particle detachment did not occur even after 30 or more repeated deformations.
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Bending test 32 35 One 4
  • the solid electrolyte membrane according to the embodiment of the present invention had excellent ion conductivity and markedly improved desorption problem of the particles.
  • the solid electrolyte particles and the polymer filaments were well mixed to have a very uniform mixed phase, and it was confirmed that the solid electrolyte membrane was densely packed in the solid electrolyte membrane.
  • the solid electrolyte did not press well into the nonwoven fabric even by pressurization, and the nonwoven fabric was further compressed during pressurization, resulting in low porosity, thus insufficient incorporation of the solid electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

본 발명에 따른 고체 전해질막은 고분자 필라멘트가 부직포 유사 형상의 그물망 형태의 3차원 구조체로 치밀하게 교차되어 구성되어 있으며, 상기 구조체 중 무기 고체 전해질이 함입되어 균일하게 분포하고 있다. 이러한 구조적 특징에 의해 다량의 고체 전해질 입자들이 전해질막 내에 균일한 분포로 충진되고 입자들간의 접촉이 원할하여 이온 전도의 경로가 충분히 제공된다. 또한, 상기 3차원 구조체에 의해 고체 전해질막의 내구성이 향상되며 유연성 및 강성이 증가된다. 이러한 부직포 복합 고체 전해질막은 무기 고체 전해질 입자의 탈리가 방지되는 효과가 있다.

Description

전고체 전지용 고체 전해질막의 제조 방법 및 상기 방법에 의해 제조된 고체 전해질막
본 출원은 2017년 5월 15일에 출원된 한국특허출원 제10-2017-0060063호에 기초한 우선권을 주장한다. 본 발명은 고체 전해질 입자의 탈리가 적고 내구성이 우수한 전고체 전지용 고체 전해질막 및 이를 제조하는 방법에 대한 것이다.
휴대형 전자기기용 전원장치로는 리튬이온 이차전지가 널리 사용되고 있다. 또한 최근에는 리튬이온 이차전지를 전기자동차나 산업용 전지로 활용하려는 움직임이 있다. 리튬이온 이차전지의 구조는 비교적 단순하여 음극 활물질, 양극 활물 질 그리고 전해액의 3대 요소로 되어 있다. 리튬이온이 양극으로부터 음극으로, 음극으로부터 양극으로 이동함으로써 전지 작용이 진행된다. 전해질 부분은 리튬이온 전도체로만 기능한다. 널리 사용되고 있는 리튬이온 이차전지에서는 비 프로톤성 유기용매에 리튬염을 용해시킨 전해질 용액이 사용되고 있다. 그러나 이러한 전해질 용액은 전해액 누출이나 가스 발생으로 인한 사용상 문제점이 내포되어 있어 이러한 문제를 해결하기 위해 전고체 전지에 대한 개발 필요성이 대두되고 있다.
고체 전해질을 이용한 전고체 전지는 액상 전해질 사용한 전지와 비교하여, (1) 안전성 향상, (2) 최적화 구조를 갖는 전지, (3) 높은 에너지밀도 및 (4) 높은 출력밀도 등의 장점이 있다. 통상적으로 전고체 전지는 양극과 음극 사이에 시트 형상의 고체 전해질을 배치한다. 이러한 시트 형상의 고체 전해질은 통상적으로 무기 고체 전해질 입자와 바인더 수지를 혼합하여 시트 형태로 제조한 것을 사용한다. 그러나 입자를 바인더 수지로 결착시킨 상태의 고체 전해질 시트는 고체 전해질 입자가 탈리되는 문제가 있다. 한편, 종래 고체 전해질 입자들을 포함하는 슬러리를 부직포의 내부로 함입시키는 방법이 제안되었는데, 부직포 내부 중심까지 고체 전해질 입자들이 잘 함입되지 않고 부직포의 표층부 부분에만 입자들이 위치하게 되어 부직포 내부를 충분히 충진하지 못하는 문제가 있었다. 따라서 고체 전해질 입자들이 서로 접촉하지 못하고 부직포의 상부측 및 하부측으로 서로 떨어져 있어 이온 전도도가 높지 않은 문제가 있었다. 또한, 함입되지 않고 부직포의 표층부에 잔존된 입자들은 전해질막에서 무기 고체 전해질 입자가 탈리되는 문제가 있었다. 도 4는 종래 제안된 고체 전해질막(a)을 개략적으로 도시한 것으로서 이를 참조하면 고체 전해질 슬러리(a2)를 부직포(a1) 표면에 도포하고 압입하더라도 부직포 두께 방향 전부에 고체 전해질 슬러리가 함입되지 못하고 부직포의 표면에 잔존하는 양이 많다. 이에 물리적 강도가 높고 유연하면서도 입자가 탈리되지 않는 고체 전해질막의 개발이 요구된다.
본 발명은 이온 전도도가 높고 무기 고체 전해질 입자의 탈리가 적으며 유연성 및 내구성이 개선된 신규한 전고체 전지용 고체 전해질막을 제조하는 방법을 제공하는 것을 목적으로 한다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 기재된 수단 또는 방법 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명은 상기 과제를 해결하기 위한 전고체 전지용 고체 전해질 막 및 이를 제조하는 방법에 대한 것이다.
본 발명의 제1 측면은 상기 고체 전해질막에 대한 것으로서, 상기 고체 전해질막은 복수의 무기 고체 전해질 입자 및 복수의 고분자 필라멘트를 포함하며, 상기 고분자 필라멘트들은 서로 얽혀 상호간에 교차 및 결착되어 형성된 3차원 망상 구조체를 형성하고, 상기 망상 구조체의 두께 방향 전부가 상기 무기 고체 전해질 입자로 충진되어 있는 것이다.
본 발명의 제2 측면은, 상기 제1 측면에 있어서, 상기 고분자 필라멘트는 폴리올레핀, 폴리에스테르, 폴리아미드, 폴리아세탈, 폴리카보네이트, 폴리이미드, 폴리에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리플루오르화비닐리덴, 폴리염화비닐, 폴리아크릴로나이트릴, 셀룰로오스, 및 폴리파라페닐렌벤조비스옥사졸로 이루어진 군에서 선택되는 1종 또는 2종 이상의 고분자 재료를 포함하는 것이다.
본 발명의 제3 측면은, 상기 제1 내지 제2 측면 중 어느 하나에 있어서, 상기 무기 고체 전해질은 1차 입자 및 1차 입자가 응집되어 형성된 2차 입자 중 적어도 하나의 형태를 포함하는 입자의 형태를 포함하는 것이다.
본 발명의 제4 측면은, 상기 제1 내지 제3 측면 중 어느 하나에 있어서, 상기 고분자 필라멘트는 직경이 100nm 내지 2㎛인 것이다.
본 발명의 제5 측면은, 상기 제1 내지 제4 측면 중 어느 하나에 있어서, 상기 무기 고체 전해질은 산화물계 고체 전해질 및 황화물계 고체 전해질 중 하나 이상을 포함하는 것이다.
본 발명의 제6 측면은, 상기 제1 내지 제5 측면 중 어느 하나에 있어서, 상기 고체 전해질막 중 무기 고체 전해질과 고분자 필라멘트는 99:1 내지 30:70의 중량비로 포함되는 것이다.
본 발명의 제7 측면은 전고체 전지용 고체 전해질막을 제조하는 방법에 대한 것으로서, 상기 방법은 고분자 필라멘트가 집적된 부직포 전구체를 제조하는 단계;
고체 전해질막 형성용 슬러리를 준비하는 단계; 상기 부직포 전구체와 상기 슬러리가 혼합된 혼합물을 수득하는 단계; 상기 혼합물이 건조되어 예비 고체 전해질막이 수득되는 단계; 및 상기 예비 고체 전해질막이 가압되어 고체 전해질막이 수득되는 단계;를 포함한다.
본 발명의 제8 측면은, 상기 제7 측면에 있어서, 상기 고분자 필라멘트는 전기 방사의 방법으로 방사되어 수득된 것이다.
본 발명에 따른 전고체 전지용 고체 전해질막의 제조 방법은 부직포를 압착하기 전 상태의 부직포 전구체에 고체 전해질막 형성용 슬러리를 함입시키므로 고분자 필라멘트의 3차원 망상 구조체의 내부에 상기 고체 전해질이 골고루 충진되며, 이의 충진율이 높다. 따라서, 일반적으로 압착된 부직포에 무기 고체 전해질 입자를 압입하는 등의 방법으로 충진시키는 방법에 비해 고체 전해질막 내부에 무기 고체 전해질 성분들의 많은 양이 균일하게 분포될 수 있고 이에 따라 고체 전해질 입자들의 접촉에 의한 이온 전도의 경로가 충분히 형성되어 이온 전도도가 우수하다. 뿐만 아니라 고체 전해질막에서 고체 전해질 입자의 탈리가 적고 3차원 망상 구조체에 의해 내구성 및 유연성이 증가하여 형태 변형이 방지된다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다.
도1은 본 발명의 일 실시양태에 따른 전기 방사 공정을 개략적으로 도식화하여 나타낸 것이다.
도2는 고분자 필라멘트와 고체 전해질 형성용 슬러리의 혼합물이 이형판 상에 도포된 상태를 예시적으로나타낸 것이다.
도3은 본 발명의 일 실시양태에 따른 가압 공정을 개략적으로 도시한 것이다.
도 4는 종래 고체 전해질막의 단면을 개략적으로 도식화하여 나타낸 것이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.
이어지는 발명의 상세한 설명에서 사용된 특정한 용어는 편의를 위한 것이지 제한적인 것은 아니다. '우', '좌', '상면' 및 '하면'의 단어들은 참조가 이루어진 도면들에서의 방향을 나타낸다. '내측으로' 및 '외측으로' 의 단어들은 각각 지정된 장치, 시스템 및 그 부재들의 기하학적 중심을 향하거나 그로부터 멀어지는 방향을 나타낸다. '전방', '후방', '상방', '하방' 및 그 관련 단어들 및 어구들은 참조가 이루어진 도면에서의 위치들 및 방위들을 나타내며 제한적이어서는 안된다. 이러한 용어들은 위에서 열거된 단어들, 그 파생어 및 유사한 의미의 단어들을 포함한다.
본 발명은 전고체 전지용 고체 전해질막 및 이를 포함하는 전기화학소자에 대한 것이다. 또한, 상기 고체 전해질막을 제조하는 방법에 대한 것이다. 상기 전기화학소자는 예를 들어 리튬 이온 이차 전지일 수 있으며, 특히 전해질 재료로 고분자 전해질, 무기 고체 전해질 또는 이 둘 모두를 사용하는 전고체 전지일 수 있다.
본 발명에 따른 상기 고체 전해질막은 미세 섬유상의 고분자 재료인 고분자 필라멘트와 고체 전해질의 혼합상을 포함한다. 본 발명의 일 실시양태에 있어서, 상기 고체 전해질은 고분자계 고체 전해질 및 무기 고체 전해질 중 1종 이상을 포함할 수 있다. 한편, 상기 고체 전해질막은 바인더 수지를 더 포함할 수 있다.
상기 고체 전해질막에서 상기 고분자 필라멘트들은 서로 얽혀 상호간에 교차 및 결착되어 3차원 망상 구조체를 형성한다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 3차원의 망상 구조체는 다수의 고분자 필라멘트들이 서로 얽혀 형성된 부직포 유사 구조를 나타낼 수 있다. 즉 상기 3차원의 망상 구조체는 섬유상의 고분자 재료들이 서로 교차하여 구성된 3차원 구조체로서 3차원의 그물망 형태를 나타낼 수 있다. 또한, 본 발명의 구체적인 일 실시양태에 있어서, 고체 전해질은 상기 망상 구조체를 지지체로 하여 상기 구조의 내부에 혼입되어 상기 망상 구조체를 충진하고 있다. 본 발명의 일 실시양태에 있어서, 상기 고체 전해질은 상기 고체 전해질막 내부에 고체 전해질 입자들이 밀집하여 패킹된 상태로 고밀도로 충진되어 있으며 이에 따라 고체 전해질막의 기공도는 15% 이하, 바람직하게는 10% 이하로 낮은 것이다. 본 발명의 일 실시양태에 있어서, 상기 고체 전해질은 상기 고체 전해질막에서 상기 망상 구조체 외부면의 전부 또는 적어도 일부를 피복하는 형태로 포함될 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 고분자 필라멘트는 고분자 재료를 전기 방사의 방법으로 방사하여 수득된 것일 수 있으며, 예를 들어, 고분자 재료가 용해된 고분자 용액을 전기 방사의 방법을 이용하여 물이나 메탄올이나에탄올 등의 저급 알코올 중으로 필라멘트를 토출하는 습식 방사의 방법으로 수득된 것일 수 있다. 그러나 고분자 필라멘트는 상기 방법에 의해 형성된 것만으로 한정되지는 않는다.
본 발명의 일 실시양태에 있어서 상기 고분자 필라멘트들이 얽혀있는 3차원 망상 구조체는 부직포 유사 구조를 가질 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 고체 전해질막은 부직포 유사 구조의 3차원 망상 구조체의 내부에 복수의 무기 고체 전해질 입자가 충진되어 형성된 혼합상을 포함하는 복합물이다. 상기 고체 전해질막은 다량의 고체 전해질 입자들이 3차원 망상 구조체 내의 기공에 균일한 분포로 충진되고 입자들간의 접촉이 원할하여 이온 전도의 경로가 충분히 제공될 수 있다. 또한, 지지체로 기능하는 3차원 망상 구조체에 의해 고체 전해질막의 내구성이 향상되며 유연성 및 강성이 증가되므로 고체 전해질막으로부터 무기 고체 전해질 입자의 탈리가 방지되는 효과가 있다. 특히 고체 전해질막이 굽혀지거나 절곡되는 등의 형태 변형이 발생되더라도 고체 전해질막이 찢어지거나 이로부터 전해질 막으로부터고체 전해질 입자가 탈리되는 일이 감소된다. 또한, 후술하는 바와 같이, 본 발명에 따른 고체 전해질막은 고분자 필라멘트를 방사한 후 수득된 필라멘트 집적체를 고체 전해질로 충진시킨 후 압착하는 방식으로 얻어지는 것이다. 따라서, 상기 3차원 망상 구조체는, 통상의 부직포에 비해서, 내부에 많은 양의 고체 전해질이 충진될 수 있어 높은 이온 전도도를 확보할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서 상기 고체 전해질막 중 상기 복수의 무기 고체 전해질 입자와 상기 고분자 필라멘트들은 상호간 서로 결착 및/또는 부착되어 하나의 막 단위체를 형성한다. 만일 상기 고체 전해질막이 바인더 수지를 포함하는 경우에는 바인더 수지가 이들의 결착에 조력할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 고분자 필라멘트는 직경이 100nm 내지 2㎛일 수 있으며, 상기 범위 내에서 300nm 이상, 500nm 이상, 700nm 이상, 1㎛ 이상, 1.3㎛ 이상, 1.5㎛ 이상 또는 1.7㎛ 이상일 수 있으며, 또는 1.8㎛ 이하, 1.5㎛ 이하, 1.2㎛ 이하, 1㎛ 이하, 800nm 이하 또는 500nm 이하일 수 있다.
또한, 본 발명의 구체적인 일 실시양태에 있어서, 상기 고분자 필라멘트는 종횡비가 1을 초과할 수 있으며, 예를 들어 이의 길이는 5㎛ 내지 500㎛일 수 있다. 본 발명의 일 실시양태에 있어서 상기 필라멘트의 길이는 상기 범위 내에서 10㎛이상, 50㎛이상, 100㎛이상, 200㎛ 이상, 300㎛이상, 또는 400㎛ 이상일 수 있으며, 또는 상기 범위 내에서 400㎛이하, 300㎛이하, 200㎛이하, 100㎛ 이하, 50㎛이하, 또는 30㎛이하일 수 있다. 본 발명의 일 실시양태에 있어서, 상기 필라멘트의 직경과 길이는 SEM 이미지 분석을 통한 형상 관찰을 통해 확인할 수 있다.
상기 고분자 재료는 통상적인 부직포 제조 공정시 사용될 수 있는 것으로서 전기 방사에 의해 전술한 범위의 직경과 길이를 갖는 필라멘트로 방사될 수 있는 성질의 것이면 제한 없이 사용될 수 있으며, 고체 전해질막의 사용 목적에 따라 적절한 고분자 재료를 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 고분자 재료는 열가소성 수지 및/또는 열경화성 수지일 수 있다. 이의 비제한적인 예로는 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리파라페닐렌벤조비스옥사졸 등의 폴리에스테르, 아라미드와 같은 폴리아미드, 폴리아세탈, 폴리카보네이트, 폴리이미드, 폴리에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌, 폴리테트라플루오로에틸렌, 폴리플루오린화비닐리덴, 폴리염화비닐, 폴리아크릴로나이트릴, 셀룰로오스, 나일론, 폴리아릴레트 및 유리로 이루어진 군에서 선택되는 어느 하나 또는 이 중 둘 이상의 혼합물을 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 무기 고체 전해질은 통상적으로 전고체 전지에 사용되는 것이면 특정한 성분으로 한정되지 않고 전지 특성에 따라 적절하게 선택하여 사용할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 무기 고체 전해질은 특별히 구체적인 성분으로 한정되는 것은 아니며, 결정성 고체 전해질, 비결정성 고체 전해질, 유리 세라믹 고체 전해질과 같은 무기 고체 전해질 중 하나 이상을 포함할 수 있다. 본 발명에 있어서, 상기 고체 전해질은 산화물계 고체 전해질 및 황화물계 고체 전해질 중 하나 이상을 포함할 수 있다. 일 실시양태에 있어서, 상기 황화물계 고체 전해질로는 황화 리튬, 황화 규소, 황화 게르마늄, 및 황화 붕소 등을 예로 들 수 있다. 이러한 무기 고체 전해질의 구체적인 예로는 LLTO 계 화합물 (La,Li)TiO3), Li6La2CaTa2O12, Li6La2ANb2O12(A=Ca, Sr), Li2Nd3TeSbO12, Li3BO2.5N0 .5, Li9SiAlO8, LAGP계 화합물(Li1 + xAlxGe2 -x(PO4)3, 여기에서 0≤x≤1, 0≤y≤1), Li2O-Al2O3-TiO2-P2O5와 같은 LATP계 화합물(Li1 + xAlxTi2 -x(PO4)3, 여기에서 0≤x≤1, 0≤y≤1), Li1 + xTi2 - xAlxSiy(PO4)3 -y(여기에서, 0≤x≤1, 0≤y≤1), LiAlxZr2 -x(PO4)3(여기에서, 0≤x≤1, 0≤y≤1), LiTixZr2 -x(PO4)3(여기에서, 0≤x≤1, 0≤y≤1), Li2S-P2S5와 같은 LPS계 화합물, Li3 . 833Sn0 . 833As0 . 166S4, Li4SnS4, Li3 . 25Ge0 .25P0. 75S4, B2S3-Li2S, xLi2S-(100-x)P2S5 (x는 70 ~ 80), Li2S-SiS2-Li3N, Li2S-P2S5-LiI, Li2S-SiS2-LiI, Li2S-B2S3-LiI, Li3N, LISICON, LIPON계 화합물(Li3 + yPO4 - xNx, 여기에서 0≤x≤1, 0≤y≤1), Li3.25Ge0.25P0.75S4과 같은 Thio-LISICON계 화합물, 페롭스카이트계 화합물((La, Li)TiO3), LiTi2(PO4)3과 같은 나시콘계 화합물, 구성 성분으로 리튬, 란타늄, 지르코늄 및 산소를 포함하는 LLZO계 화합물 등을 들 수 있으며, 이 중 1종 이상을 포함할 수 있다.
본 발명의 일 실시양태에 있어서, 상기 무기 고체 전해질은 입자의 형태일 수 있으며, 상기 입자는 1차 입자 및 1차 입자가 응집되어 형성된 2차 입자 중 적어도 하나의 형태를 포함할 있다. 또한, 상기 무기 고체 전해질 입자는 입경이 200nm 내지 5㎛의 범위를 나타낼 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 고체 전해질막 중 무기 고체 전해질과 고분자 필라멘트(부직포 전구체)는 약 99:1 내지 30:70의 중량비(중량%)로 포함될 수 있다. 상기 무기 고체 전해질은 상기 고체 전해질막 중 90중량% 이하, 85 중량% 이하, 75 중량% 이하, 65 중량% 이하, 60 중량% 이하일 수 있으며, 또는 상기 무기 고체 전해질은 상기 범위 내에서 40 중량% 이상, 50 중량% 이상, 60 중량% 이상, 70 중량% 이상, 80 중량% 이상, 90 중량% 이상일 수 있다. 만일 상기 고체 전해질막 중 무기 고체 전해질의 함량이 30중량% 이하인 경우에는 고체 전해질 막 중에서 전해질 입자가 서로 이격될 가능성이 높아 이온전도 경로를 충분히 제공할 수 없다.
상기 바인더 수지는 고체 전해질막에서 막 구성 성분들 사이의 결착력을 제공하는 것으로서 전기화학소자 분야에서 바인더로 사용되는 PVdF계 바인더 수지나 아크릴계 바인더 수지 등이 제한없이 사용될 수 있다. 한편 본 발명의 구체적인 일 실시 양태에 있어서, 고체 전해질로 황화물계 고체 전해질을 사용하는 경우, 슬러리의 분산매로는 극성도(polarity index)가 3 이하인 비극성 용매를 사용하는 것이 바람직하며, 이때 바인더 수지로는 용해도를 고려하여 고무계 바인더 수지를 사용하는 것이 바람직하다. 상기 고무계 바인더 수지는 천연고무, 부틸계 러버, 브로모-부틸계 러버, 염소화 부틸계 러버, 스티렌 이소프렌계 러버, 스티렌-에틸렌-부틸렌-스티렌계 러버, 아크릴로니트릴-부타디엔-스티렌계 러버, 폴리부타디엔계 러버, 니트릴 부타디엔계 러버, 스티렌 부타디엔계 러버, 스티렌 부타디엔 스티렌계 러버(SBS), EPDM(ethylene propylene diene monomer)계 러버로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 바인더 수지는 상기 고체 전해질막 중 1 내지 10 중량%의 범위로 포함될 수 있으며, 이의 함량은 7 중량% 이하, 5 중량% 이하, 3 중량% 이하의 범위로 적절하게 조절될 수 있다.
본 발명의 구체적인 일 실시양태에 있어서 상기 고체 전해질막은 두께가 10㎛ 내지 700㎛일 수 있다. 그러나 상기 범위에 특별히 한정되는 것은 아니며 최종적인 목적(전지의 특성 등)을 고려하여 적절하게 조절될 수 있다.
또한, 본 발명의 구체적인 일 실시양태에 있어서, 상기 고체 전해질막은 기공도가 10vol% 이하, 8 vol % 이하, 또는 3 vol % 이하, 또는 0 vol % 가까운 정도로 매우 낮거나, 이와 함께 또는 독립적으로 통기도가 무한대로 측정되어 측정 불가능한 정도가 되는 것이 바람직하다. 예를 들어 상기 고체 전해질막의 통기도는 3,000sec/100cc 이상의 범위를 갖는 것이다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 용어 통기도는 전해질막에 대해 100cc의 공기가 투과하는 시간을 의미한다. 이는 JIS P8117에 준거하여 측정될 수 있다. 이에 따르면, 두께 T1을 가지는 전해질막에서 측정된 공기 투과도 P1은 수식 : P2=(P1×20)/T1에 의해 전해질막의 두께를 20㎛으로 할 경우의 투과도 P2로 환산될 수 있다. 이의 단위는 sec/100cc이며, 투과도와 상호 교환하여 사용할 수 있고, 통상적으로 걸리값(Gurely value) 등으로 표시될 수 있다. 한편, 상기 기공도는 질소 등의 흡착 기체를 이용하여 BEL JAPAN사의 BELSORP (BET 장비)를 이용하여 측정하거나 수은 압입법(Mercury intrusion porosimetry)과 같은 방법으로 측정될 수 있다. 또는 본 발명의 일 실시양태에 있어서, 수득된 전극(전극 활물질층)의 밀도(겉보기 밀도)와 전극(전극 활물질층)에 포함된 재료들의 조성비와 각 성분들의 밀도로부터 전극 활물질층의 진밀도를 계산하고 겉보기 밀도(apparent density)와 진밀도(net density)의 차이로부터 전극 활물질층의 기공도를 계산할 수 있다.
또한, 본 발명은 전술한 특징을 갖는 고체 전해질막의 제조 방법을 제공한다. 도 1 내지 도 3은 본 발명에 따른 전해질막의 제조 방법을 공정 순서대로 나열한 공정 흐름도이다. 이를 참조하여 본 발명에 따른 전해질막의 제조 방법을 상세하게 설명한다.
본 발명에 따른 전해질막의 제조 방법은 하기 (S10) 내지 (S50)을 포함한다:
(S10) 고분자 필라멘트가 집적된 부직포 전구체를 제조하는 단계;
(S20) 고체 전해질막 형성용 슬러리를 준비하는 단계;
(S30) 상기 (S10)에서 수득된 부직포 전구체와 상기 슬러리가 혼합된 혼합물을 수득하는 단계;
(S40) 상기 혼합물이 건조되어 예비 고체 전해질막이 수득되는 단계; 및
(S50) 상기 예비 고체 전해질막이 가압되어 고체 전해질막이 수득되는 단계.
상기 단계 중 (S10) 및 (S20)은 순차적으로 수행되지 않아도 무방하며 동시에 수행되거나 (S20) 공정 수행 후(S10)의 공정이 수행되어도 무방하다.
우선, 고분자 필라멘트가 집적된 부직포 전구체를 제조한다(S10). 본 발명에 있어서 상기 용어 ‘부직포 전구체’는 부직포 제조를 위해 방사된 미세 고분자 필라멘트들이 단순히 퇴적 또는 집적되어 있는 상태로 필라멘트들의 상호 결착을 위한 압착단계가 수행되지 않은 상태를 의미한다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 필라멘트의 방사는 전기 방사의 방법으로 수행될 수 있다. 전기 방사(electrospinning)는 전기장을 이용하여 작게는 수 nm의 직경을 갖는 연속상의 섬유를 얻는 방법이다. 전기 방사 장치는 보통 고전압power supply, 방적 돌기(spinneret) 및 섬유를 수집하는 집진판(collector)를 포함하여 구성된다. 전기 방사시 고분자 용액과 집진판은 서로 반대 전극으로 하전된다. 노즐 끝단으로 토출된 고분자 용액은 인가된 전압에 따른 정전기적 반발력 및 쿨롱력에 의해 원뿔 형태(taylor)를 그리며 연신되어 필라멘트의 형태로 방사되어 집전판에 섬유들이 모아지게 된다. 전기 방사를 이용하는 경우 방사 노즐의 구경, 전압 및/또는 전류 범위 등 방사 공정을 제어하여 필라멘트를 수십 내지 수백 나노 수준으로 미세하게 형성할 수 있어 기공도가 높은 부직포를 형성하는데 유리하다.
한편, 본 발명의 구체적인 일 실시양태에 있어서, 상기 전기 방사는 방사된 필라멘트들이 용액 중에서 집적 및/또는 퇴적되는 방식인 습식 방사인 것이 바람직하다. 습식 방사의 방법으로 필라멘트들을 집적시키는 경우 집적된 필라멘트들을 압착시켜 부직포를 형성할 때까지 필라멘트들이 엉기지 않고 용액 중 균일하게 분포되어 있어 균일한 기공 형성에 유리하다. 예를 들어 습식 방사의 방법으로 부직포 전구체를 제조하는 경우 전술한 바와 같은 고분자 재료(예를 들어 폴리아크릴로니트릴)을 DMF등 적절한 분산매에 용해하여 고분자 용액을 제조하고 이를 미세 필라멘트의 형태로 물, 메탄올 또는 에탄올과 같은 응고액 중으로 방사한 후 방사 결과 집적된 상태의 필라멘트를 수집하는 방식으로 부직포 전구체를 수득할 수 있다. 또한 상기 부직포 전구체는 상기 분산매나 응고액과 같은 용제를을 건조하기 위해 추가적으로 동결 건조를 더 수행할 수 있다.
도 1은 본 발명의 일 실시양태에 따른 전기 방사 공정에 대한 것으로서, 방사 장치(10)에서 고분자 필라멘트(20)이 응고액(30) 중으로 토출되는 것을 개략적으로 나타낸 것이다.
다음으로 고체 전해질막 형성용 슬러리를 준비한다(S20). 상기 슬러리는 무기 고체 전해질 입자를 포함하는 고체 전해질막 재료들을 자일렌 시클로펜탄, 시클로헥산, 헥산, 무수 헥산, 톨루엔, 에테르, 3급 알코올, 2급 아민, 3급 아민 등에서 선택된 단독 또는 2종 이상을 포함하는 적절한 용매에 등 적절한 용매에 분산시켜 준비될 수 있다. 상기 전해질막 재료는 전술한 바와 같이 바인더 수지를 더 포함할 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 슬러리는 LAGP 등 산화물계 고체 전해질 입자 및 바인더 수지를 포함하는 고형분을 무수 자일렌에 중량비로 10:90 내지 50:50의 비율로 혼합한 후 유발 믹싱하여 준비될 수 있다. 상기 혼합 방법은 유발 믹싱 등 통상의 혼합 방법을 사용할 수 있으며 어느 하나의 방법으로 특별하게 한정되는 것은 아니다.
이후, 상기 (S10) 단계에서 수득된 부직포 전구체와 상기 고체 전해질막 형성용 슬러리가 혼합된 혼합물을 수득한다(30). 상기 혼합물은 상기 부직포 전구체가 상기 슬러리로 함입되어 부직포 전구체 내부에 슬러리가 충진된 상태로 준비될 수 있다. 본 단계를 통해 부직포 전구체 중 형성된 기공의 사이 사이에 무기 고체 전해질 등이 충진된다. 본 발명의 일 실시양태에 있어서, 상기 혼합물은 상기 부직포 전구체와 상기 슬러리가 혼합되어 구성 성분들이 균일하게 분산된 분산물의 형태로 준비될 수 있다. 본 발명의 일 실시양태에 있어서, 상기 부직포 전구체와 상기 슬러리의 혼합은 기계적(물리적)인 믹싱 방법에 의해 수행될 수 있다. 이러한 기계적인 믹싱 방법은 어느 한 방법으로 특별히 한정되는 것은 아니며 수동 혼합 및 자동 혼합 방법에서 하나 이상을 적절하게 선택할 수 있다. 예를 들어 상기 믹싱은 소정 부피를 갖는 사발에 상기 혼합물을 넣고 막자를 이용하여 혼합할 수 있으며 (유발 믹싱), 이 외에도 통상의 스크류식, 임펠러식, 패들식 및 하머식 믹서 등을 적절하게 선택하여 적용할 수 있다. 상기 부직포 전구체는 필라멘트들이 솜과 같이 엉성한 상태로 불규칙하게 집적되어 있는 상태이며, 이러한 믹싱 공정에 의해 상기 슬러리가 부직포 전구체의 필라멘트의 공극 사이로 침투하기도 하고, 낮은 기계적 강도를 갖는 부직포 전구체가 일부 해체되어 상기 슬러리와 함께 혼합되어 슬러리화 되기도 한다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 혼합물은 PET 필름과 같은 이형판 상에 소정 두께로 도포되어 건조 공정 등 후속 공정으로 투입되도록 준비될 수 있다. 상기 이형판은 후술하는 가압 단계 수행 후 제거되는 것이다. 도 2는 이형판(50)의 표면에 고분자 필라멘트(20)와 고체 전해질막 형성용 슬러리(40)의 혼합물이 도포된 상태를 예시적으로 나타낸 것이다.
상기 부직포 전구체는 방사된 필라멘트들이 압착되기 전 상태인 관계로 압착된 후 수득되는 부직포에 비해 기공의 크기가 크다. 따라서, 이러한 부직포 전구체를 슬러리로 충진하는 경우 완성된 부직포에 비해 충진율이 향상되는 효과가 있으며 최종적으로 제조된 전해질막에서 무기 고체 전해질 입자 및 바인더 등 구성 성분들이 매우 균일한 분산상을 나타내는데 매우 유리하다.
다음으로, 상기 혼합물을 건조하여 예비 고체 전해질막을 수득한다(S40). 상기 건조 단계에서 슬러리 중 용매가 제거되고 슬러리 중 무기 고체 전해질 입자들과 필라멘트들 등의 고형분들이 상호간에 물리적으로 약하게 결착한 상태인 건조 고형물(예비 고체 전해질막)이 수득된다. 상기 슬러리가 바인더 수지를 포함하는 경우에는 바인더 수지가 이들의 결착에 조력한다. 상기 단계에서 건조 방식은 특별히 한정되지 않는다. 상기 건조는 구성 성분들의 성분 변화 또는 열화를 유발하지 않는 온도 및 시간 조건 하에서 이루어지는 것이 바람직하며 필요에 따라 상온 또는 가열 조건에서 건조될 수 있다. 또한, 필요에 따라 냉풍이나 열풍을 부가할 수 있다.
다음으로, 상기 예비 고체 전해질막을 가압한다(S50). 본 발명의 구체적인 일 실시양태에 있어서, 상기 가압은 최종적으로 수득되는 고체 전해질막의 기공도를 고려하여 적절한 압력을 인가할 수 있다. 본 발명의 구체적인 일 실시양태에 있어서 상기 가압은 100 MPa 내지 1,000 MPa의 범위에서 이루어질 수 있다. 가압에 의해 전해질막의 구성 성분들의 결착이 공고하게 유지될 수 있어 고체 전해질막의 구조가 안정되며 소망하는 기공도를 나타낼 수 있다. 본 발명의 일 실시양태에 있어서, 핫 프레스 및 유압 프레스기와 같은 공지의 가압 장치 중 적절하게 하나 이상을 선택하여 사용될 수 있으며, 상기 핫 프레스는 50℃ 내지 150℃ 범위로 조절될 수 있으나, 특별히 이에 한정되는 것은 아니다. 도 3은 본 발명의 일 실시양태에 따른 가압 공정을 개략적으로 도시한 것으로서 이를 참조하면, 건조 결과물인 예비 고체 전해질막이 가압 장치의 지지대(60b)에 지지된 상태로 상부 가압 장치(60a)에 의해서 가압된다.
본원 발명에 따른 전고체 전지용 고체 전해질막은 부직포를 압착하기 전 상태인 부직포 전구체에 전해질막 형성용 슬러리를 충진시키므로 부직포 전구체의 내부에 골고루 상기 슬러리가 충진될 수 있어 슬러리의 충진율이 매우 높다. 따라서, 본 발명에 따른 고체 전해질막은, 필라멘트들의 집적체를 압착하여 준비된 통상적인 부직포 재료에 슬러리를 충진시켜 제조된 전해질막에 비해 많은 양의 무기 고체 전해질 입자가 함입될 수 있어, 높은 수준의 이온 전도도를 나타낼 수 있다. 따라서, 본 발명의 제조 방법에 따라 제조된 고체 전해질막은 전해질막 전면에 걸쳐 균일하고 높은 이온 이동도를 발휘할 수 있다.
또한, 상기 방법으로 제조된 전해질막은 유연성과 강성을 동시에 나타내므로 형태 변형이 적으며, 전지에 대해 가하여진 외력에 대해 내구성이 향상되는 효과가 있다. 아울러 무기 고체 전해질 입자의 탈리가 방지된다.
한편, 본 발명은 상기 고체 전해질막을 포함하는 전고체 전지를 제공한다. 상기 전고체 전지는 음극, 양극 및 상기 음극과 양극 사이에 개재된 고체 전해질막을 포함하며, 상기 고체 전해질막은 전술한 특징을 구비한 것이다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 양극 및 음극 전극은 집전체 및 상기 집전체의 적어도 일측 표면에 형성된 전극 활물질층을 구비한다. 상기 전극 활물질층은 전극 활물질, 고체 전해질, 결착제(바인더 수지) 및 도전재를 포함한다.
본 발명에 있어서, 상기 전극이 양극인 경우에는, 양극 활물질로, 리튬 망간복합 산화물(LiMn2O4, LiMnO2 등), 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1 + xMn2 - xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 -xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 중 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
본 발명에 있어서, 상기 전극이 음극인 경우에는 음극 활물질로 리튬 금속산화물, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, 및 Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물 중 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
상기 결착제(바인더 수지)는 고무계 바인더 수지를 포함할 수 있다. 전극 바인더로 사용되는 PVdF계 바인더 수지나 아크릴계 바인더 수지는 비극성 용매에 대한 용해도가 낮기 때문에 전극 슬러리 제조가 어렵다. 따라서 본 발명에서는 결착제로 비극성 용매에 대한 용해도가 높은 고무계 수지가 사용된다. 본 발명의 일 실시양태에 있어서, 상기 고무계 바인더 수지는 상기 고무계 바인더 수지는 천연고무, 부틸계 러버, 브로모-부틸계 러버, 염소화 부틸계 러버, 스티렌 이소프렌계 러버, 스티렌-에틸렌-부틸렌-스티렌계 러버, 아크릴로니트릴-부타디엔-스티렌계 러버, 폴리부타디엔계 러버, 니트릴 부타디엔계 러버, 스티렌 부타디엔계 러버, 스티렌 부타디엔 스티렌계 러버(SBS), EPDM(ethylene propylene diene monomer)계 러버로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 고체 전해질은 통상적으로 전고체 전지의 고체 전해질 재료로 사용될 수 있는 것이면 모두 사용 가능하며, 특별한 성분으로 한정되는 것은 아니다. 이러한 고체 전해질로는 이온 전도성을 나타내는 고분자계 고체 전해질 재료 및 무기 고체 전해질 재료 중 1종 이상이 포함될 수 있다. 상기 무기 고체 전해질은 결정성 고체 전해질, 비결정성 고체 전해질, 유리세라믹 고체 전해질과 같은 것을 들 수 있다. 본 발명의 일 실시양태에 있어서, 상기 고체 전해질은 황화물계 고체 전해질을 포함할 수 있으며, 이러한 황화물계 고체 전해질로는 황화 리튬, 황화 규소, 황화 게르마늄, 및 황화 붕소 등을 예로 들 수 있다. 이러한 무기 고체 전해질의 구체적인 예로는 LLTO 계 화합물 (La,Li)TiO3), Li6La2CaTa2O12, Li6La2ANb2O12(A=Ca, Sr), Li2Nd3TeSbO12, Li3BO2.5N0 .5, Li9SiAlO8, LAGP계 화합물(Li1 + xAlxGe2 -x(PO4)3, 여기에서 0≤x≤1, 0≤y≤1), Li2O-Al2O3-TiO2-P2O5와 같은 LATP계 화합물(Li1 + xAlxTi2 -x(PO4)3, 여기에서 0≤x≤1, 0≤y≤1), Li1 + xTi2 - xAlxSiy(PO4)3 -y(여기에서, 0≤x≤1, 0≤y≤1), LiAlxZr2 -x(PO4)3(여기에서, 0≤x≤1, 0≤y≤1), LiTixZr2 -x(PO4)3(여기에서, 0≤x≤1, 0≤y≤1), Li2S-P2S5와 같은 LPS계 화합물, Li3 . 833Sn0 . 833As0 . 166S4, Li4SnS4, Li3 . 25Ge0 .25P0. 75S4, B2S3-Li2S, xLi2S-(100-x)P2S5 (x는 70 ~ 80), Li2S-SiS2-Li3N, Li2S-P2S5-LiI, Li2S-SiS2-LiI, Li2S-B2S3-LiI, Li3N, LISICON, LIPON계 화합물(Li3 + yPO4 - xNx, 여기에서 0≤x≤1, 0≤y≤1), Li3.25Ge0.25P0.75S4과 같은 Thio-LISICON계 화합물, 페롭스카이트계 화합물((La, Li)TiO3), LiTi2(PO4)3과 같은 나시콘계 화합물, 구성 성분으로 리튬, 란타늄, 지르코늄 및 산소를 포함하는 LLZO계 화합물 등을 들 수 있으며, 이 중 1종 이상을 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 도전재는, 예를 들어, 흑연, 카본블랙, 탄소 섬유 또는 금속 섬유, 금속 분말, 도전성 위스커, 도전성 금속 산화물, 활성 카본(activated carbon) 및 폴리페닐렌 유도체로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 도전성 재료의 혼합물일 수 있다. 더욱 구체적으로는 천연 흑연, 인조 흑연, 슈퍼 피(super-p), 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 덴카(denka) 블랙, 알루미늄 분말, 니켈 분말, 산화 아연, 티탄산 칼륨 및 산화 티탄으로 이루어진 군으로부터 선택된 1종 또는 이들 중 2종 이상의 도전성 재료의 혼합물일 수 있다.
상기 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 구리, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
<부직포 전구체의 제조>
폴리아크릴로니트릴(Polyacrylonitrile, Mn=100,000g/mol)을 DMF에 녹여 12%의 용액을 제조하였다. 제조된 고분자 용액을 500ml의 메탄올 응고욕에 1.0ml/min의 속도로 필라멘트를 전기 방사 (15kV, 집전판 까지의 거리 10cm)한 뒤 침전된 부직포 전구체를 회수하여 12시간 동안 동결 건조하여 부직포 전구체를 수득하였다. 상기 부직포 전구체에서 필라멘트의 직경은 500nm 내지 2㎛의 범위로 수득되었다. 상기 전기 방사는 KD Scientific Inc.(model 100)을 이용하여 수행하였다.
<고체 전해질막 형성용 슬러리의 제조>
무기 고체 전해질로 LPS(Li2S-P2O5) 입자를 자일렌에 투입하여 고형분 농도 30wt%로 유발 믹싱하여 균일한 슬러리를 수득하였다.
<슬러리가 함입된 부직포 전구체의 준비>
상기 제조된 슬러리에 제조된 부직포 전구체를 투입하여 유발 믹싱을 통해 혼합하는 단계를 거쳐 최종적으로 부직포 전구체의 필라멘트들 사이에 슬러리가 혼합된 혼합물을 수득하였다. 상기 혼합물 중 무기 고체 전해질 입자와 고분자 필라멘트(부직포 전구체를 구성하는 고분자 필라멘트)의 함량은 중량비로 80:20 이었다. 상기 혼합물을 PET 필름 위에 닥터 블레이드를 이용하여 도포한 후 용매를 건조하고 (60℃, 12hr), 핫 프레스를 이용해서 100℃, 300Mpa의 힘으로 압연하였다. 압연 뒤 PET 필름을 제거하여 최종적으로 부직포 유사 구조, 즉 고분자 필라멘트들은 서로 얽혀 상호간에 교차 및 결착되어 형성된 3차원 망상 구조체를 형성하고, 상기 망상 구조체의 내부가 상기 무기 고체 전해질 입자로 충진되어 있는 고체 전해질막을 수득하였다. 상기 고체 전해질막의 두께는 100㎛였다.
실시예 2
고체 전해질막 형성용 슬러리 중 고체 전해질과 고분자 필라멘트의 함량은 중량비로 75:25로 하는 것을 제외하고는 실시예 1과 동일한 방법으로 고체 전해질막을 제조하였다.
비교예 1
무기 고체 전해질로 LPS 입자(Li2S-P2O5)를 자일렌에 분산시켜 최종 고형분 농도 38%의 슬러리를 제조하였으며, 이를 PET 소재의 이형 필름에 200㎛의 두께로 코팅하였다. 이를 60℃의 핫 플레이트 위에 정치시켜 잔존 용매를 제거하고, 핫 프레스를 이용해서 100℃, 300Mpa의 힘으로 압연하였다. 이로부터 고체 전해질막을 수득하였으며, 이의 두께는 100㎛이었다.
비교예 2
PET 소재 부직포(기공도 40%, 두께 40㎛)에 비교예 1에서 제조된 슬러리를 도포한 후 유압 프레스기(Carver, 4350L)를 이용해서300Mpa의 압연 공정을 통해 슬러리를 PET 부직포 내부로 인입시켰다. 최종 두께 200㎛의 고체 전해질막을 수득하였다. (고체 전해질: 부직포 = 80:20 wt%). 얻어진 고체 전해질막은 부직포 두께 방향 전부에 고체 전해질 슬러리가 함입되지 못하여 부직포의 표면에만 무기 고체 전해질 입자가 위치하는 형태로 얻어졌다.
이온 전도도의 측정
상기 실시예 1, 실시예 2, 비교예 1 및 비교예 2의 고체 전해질막에 대해 분석 장치(VMP3, Bio logic science instrument)를 사용하여, 25 ℃에서 amplitude =10mV 및 scan range 0.1 hz 내지 1Mhz 조건으로, 전기화학적 임피던스 분광 분석 결과를 얻었으며 이를 아래 표 1과 같이 정리하였다. 상기 이온 전도도의 측정을 위해서 한 쌍의 SUS 박막들 사이에 각 실시예 및 비교예에서 수득된 고체 전해질막을 개재시켰다.
실시예 1 실시예 2 비교예 1 비교예 2
이온 전도도(S/cm) 7.0x10-4 6.7x10-4 1.0x10-3 2.0x10-5
내구성 평가
각 실시예 및 비교예의 전해질막을 180도에서 90도 각도로 구부렸다 펴는 변형을 반복하여 전해질의 탈리가 일어나는지 확인하였다. 비교예 1의 경우에는 1회차 변형시 바로 전해질 입자의 탈리가 발생하였다. 비교예 2의 경우에는 4회차 이상 변형을 가한 경우 입자의 탈리가 발생하였다. 이에 반하여 실시예 1 및 2의 고체 전해질막의 경우에는 30회 이상의 반복적인 변형에도 입자의 탈리가 발생하지 않았다.
실시예 1 실시예 2 비교예 1 비교예 2
Bending test(회) 32 35 1 4
상기에서 확인할 수 있는 바와 같이 본 발명의 실시예에 따른 고체 전해질막은 이온 전도도가 우수함과 동시에 입자의 탈리 문제가 현저하게 개선된 것을 확인할 수 있었다. 실시예에 따른 고체 전해질막은 고체 전해질 입자와 고분자 필라멘트가 잘 혼합되어 매우 균일한 혼합상을 갖는 것으로서 고체 전해질막 내에 고체 전해질이 고밀도로 충전되어 있음이 확인되었다. 비교예 2의 경우에는 가압에 의하더라도 고체 전해질이 부직포 내부까지 잘 압입되지 않았으며, 가압시 부직포가 더 압착되어 기공도가 낮아져 고체 전해질의 함입이 불충분하였다.
[부호의 설명]
10 방사 장치, 20 고분자 필라멘트, 30 응고액, 100 예비 고체 전해질막, 40 고체 전해질막 형성용 슬러리, 50 이형판, 60a 상부 가압장치, 60b 지지대, 200 고체 전해질막

Claims (8)

  1. 복수의 무기 고체 전해질 및 복수의 고분자 필라멘트를 포함하며, 상기 고분자 필라멘트들은 서로 얽혀 상호간에 교차 및 결착되어 형성된 3차원 망상 구조체를 형성하고, 상기 망상 구조체의 두께 방향 전부가 상기 무기 고체 전해질 입자로 충진되어 있는 것인, 고체 전해질막.
  2. 제1항에 있어서,
    상기 고분자 필라멘트는 폴리올레핀, 폴리에스테르, 폴리아미드, 폴리아세탈, 폴리카보네이트, 폴리이미드, 폴리에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리플루오르화비닐리덴, 폴리염화비닐, 폴리아크릴로나이트릴, 셀룰로오스, 및 폴리파라페닐렌벤조비스옥사졸로 이루어진 군에서 선택되는 1종 또는 2종 이상의 고분자 재료를 포함하는 것인 고체 전해질막.
  3. 제1항에 있어서,
    상기 무기 고체 전해질은 1차 입자 및 1차 입자가 응집되어 형성된 2차 입자 중 적어도 하나의 형태를 포함하는 입자의 형태를 포함하는 것인, 고체 전해질막.
  4. 제1항에 있어서,
    상기 고분자 필라멘트는 직경이 100nm 내지 2㎛인 것인, 고체 전해질막.
  5. 제1항에 있어서,
    상기 무기 고체 전해질은 산화물계 고체 전해질 및 황화물계 고체 전해질 중 하나 이상을 포함하는 것인, 고체 전해질막.
  6. 제1항에 있어서,
    상기 고체 전해질막 중 무기 고체 전해질과 고분자 필라멘트는 99:1 내지 30:70의 중량비로 포함되는 것인, 고체 전해질막.
  7. 고분자 필라멘트가 집적된 부직포 전구체를 제조하는 단계;
    고체 전해질막 형성용 슬러리를 준비하는 단계;
    상기 부직포 전구체와 상기 슬러리가 혼합된 혼합물을 수득하는 단계;
    상기 혼합물이 건조되어 예비 고체 전해질막이 수득되는 단계; 및
    상기 예비 고체 전해질막이 가압되어 고체 전해질막이 수득되는 단계;
    를 포함하는 전고체 전지용 고체 전해질막의 제조 방법.
  8. 제8항에 있어서,
    상기 고분자 필라멘트는 전기 방사의 방법으로 방사되어 수득된 것인, 전고체 전지용 고체 전해질막의 제조 방법.
PCT/KR2018/005570 2017-05-15 2018-05-15 전고체 전지용 고체 전해질막의 제조 방법 및 상기 방법에 의해 제조된 고체 전해질막 WO2018212568A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019559254A JP7092796B2 (ja) 2017-05-15 2018-05-15 全固体電池用固体電解質膜の製造方法及び該方法によって製造された固体電解質膜
US16/473,137 US11342578B2 (en) 2017-05-15 2018-05-15 Method for manufacturing solid electrolyte membrane for all solid type battery and solid electrolyte membrane manufactured by the method
EP18801673.7A EP3553868B1 (en) 2017-05-15 2018-05-15 Method for manufacturing solid electrolyte membrane for all solid type battery and solid electrolyte membrane manufactured by the method
CN201880007447.8A CN110192302B (zh) 2017-05-15 2018-05-15 全固体电池用固体电解质膜的制造方法和通过所述方法制造的固体电解质膜
US17/724,933 US11908993B2 (en) 2017-05-15 2022-04-20 Method for manufacturing solid electrolyte membrane for all solid type battery and solid electrolyte membrane manufactured by the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0060063 2017-05-15
KR20170060063 2017-05-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/473,137 A-371-Of-International US11342578B2 (en) 2017-05-15 2018-05-15 Method for manufacturing solid electrolyte membrane for all solid type battery and solid electrolyte membrane manufactured by the method
US17/724,933 Continuation US11908993B2 (en) 2017-05-15 2022-04-20 Method for manufacturing solid electrolyte membrane for all solid type battery and solid electrolyte membrane manufactured by the method

Publications (1)

Publication Number Publication Date
WO2018212568A1 true WO2018212568A1 (ko) 2018-11-22

Family

ID=64274120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005570 WO2018212568A1 (ko) 2017-05-15 2018-05-15 전고체 전지용 고체 전해질막의 제조 방법 및 상기 방법에 의해 제조된 고체 전해질막

Country Status (6)

Country Link
US (2) US11342578B2 (ko)
EP (1) EP3553868B1 (ko)
JP (1) JP7092796B2 (ko)
KR (1) KR102178714B1 (ko)
CN (1) CN110192302B (ko)
WO (1) WO2018212568A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786817A (zh) * 2019-01-23 2019-05-21 蜂巢能源科技有限公司 固态锂电池及其应用和制备无纺布增强的固态电解质膜的方法
WO2020218422A1 (ja) * 2019-04-26 2020-10-29 株式会社日本製鋼所 固体電解質膜の製造方法、全固体電池の製造方法、固体電解質膜の製造装置および全固体電池の製造装置
JP7374664B2 (ja) 2019-08-29 2023-11-07 マクセル株式会社 固体電解質シートおよび全固体リチウム二次電池

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909322B (zh) * 2019-12-04 2023-05-02 中国科学院宁波材料技术与工程研究所 一种原位成型的硫化物复合固体电解质及其制备方法
CN112909332A (zh) * 2019-12-04 2021-06-04 中国科学院宁波材料技术与工程研究所 一种高柔韧性的硫化物复合固体电解质及其制备方法
CN112909330B (zh) * 2019-12-04 2023-01-17 中国科学院宁波材料技术与工程研究所 一种自支撑超薄硫化物电解质片、其制备方法及其应用
CN112909343A (zh) * 2019-12-04 2021-06-04 中国科学院宁波材料技术与工程研究所 一种织物增强的超薄硫化物电解质片、其制备方法及其应用
CN112909327A (zh) * 2019-12-04 2021-06-04 中国科学院宁波材料技术与工程研究所 一种多孔陶瓷支撑的超薄硫化物电解质片、其制备方法及其应用
CN111244532A (zh) * 2020-03-23 2020-06-05 上海汽车集团股份有限公司 一种三维无机聚合物复合固体电解质及三元固态锂电池
WO2021222527A1 (en) * 2020-04-30 2021-11-04 Piersica Inc. Solid-state polymer separator for lithium-ion batteries
JP7276264B2 (ja) * 2020-06-30 2023-05-18 トヨタ自動車株式会社 固体電解質含有層の製造方法、固体電池の製造方法および固体電池
CN116057742A (zh) * 2020-09-01 2023-05-02 大金工业株式会社 全固态二次电池用合剂、全固态二次电池用合剂片及其制造方法以及全固态二次电池
US11075413B1 (en) * 2020-12-15 2021-07-27 WATTRII Inc. Solid-state battery and method of forming same
US11271247B1 (en) * 2020-12-15 2022-03-08 WATTRII, Inc. Solid-state battery and method of forming same
CN114695954A (zh) * 2020-12-31 2022-07-01 江苏时代新能源科技有限公司 固态电解质膜、固态电池及装置
US11830977B2 (en) 2021-02-25 2023-11-28 International Business Machines Corporation Method to reduce interfacial resistance of hybrid solid-state electrolytes for secondary energy storage devices
JP7286703B2 (ja) * 2021-03-26 2023-06-05 本田技研工業株式会社 固体電解質シートの製造方法及び固体電解質シート
CN113471524A (zh) * 2021-08-06 2021-10-01 中汽创智科技有限公司 一种固态电解质膜、制备方法及其应用
CN113346126A (zh) * 2021-08-09 2021-09-03 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 复合固态电解质、全固态锂离子电池及其制备方法
CN114976233A (zh) * 2022-06-21 2022-08-30 合肥国轩高科动力能源有限公司 一种复合凝胶聚合物电解质及其制备方法和应用
CN117438639A (zh) 2022-07-12 2024-01-23 通用汽车环球科技运作有限责任公司 自立式薄电解质层

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928551B2 (ja) * 1989-08-28 1999-08-03 ジェイエスアール株式会社 固体電解質または電極活物質シートの支持体用織布の製造方法
JP2005005024A (ja) * 2003-06-10 2005-01-06 Nbc Inc 固体電解質担持体用織布およびリチウム電池用固体電解質シート
KR20130142224A (ko) * 2012-06-15 2013-12-30 한국전자통신연구원 고체 고분자 전해질, 그 제조방법, 및 이를 포함하는 리튬전지
KR101601511B1 (ko) * 2014-10-23 2016-03-09 현대자동차주식회사 복합형 고체전해질층 및 그 제작 방법
KR20160068464A (ko) * 2014-12-05 2016-06-15 삼성에스디아이 주식회사 유무기 복합 전해질, 이를 포함하는 전극-전해질 접합체 및 리튬이차전지, 및 상기 전극-전해질 접합체의 제조방법
KR20170060063A (ko) 2014-09-17 2017-05-31 코닌클리케 필립스 엔.브이. 조명 시스템

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482186A (ja) 1990-07-25 1992-03-16 Matsushita Electric Ind Co Ltd 面状採暖具
JPH0482166A (ja) 1990-07-25 1992-03-16 Japan Synthetic Rubber Co Ltd 固体電解質シートの製造方法
US5437692A (en) * 1994-11-02 1995-08-01 Dasgupta; Sankar Method for forming an electrode-electrolyte assembly
US6180281B1 (en) * 1997-12-12 2001-01-30 Johnson Research & Development Company, Inc. Composite separator and electrode
JP4161431B2 (ja) 1998-10-27 2008-10-08 ソニー株式会社 全固体二次電池
JP2000215915A (ja) 1999-01-25 2000-08-04 Fujikura Ltd 固体状電解質
JP4365098B2 (ja) * 2001-03-27 2009-11-18 シャープ株式会社 リチウムポリマー二次電池およびその製造方法
JP4238645B2 (ja) * 2003-06-12 2009-03-18 日産自動車株式会社 バイポーラ電池
JP2005129272A (ja) 2003-10-21 2005-05-19 Yuasa Corp 非水電解質電池
ATE431374T1 (de) 2004-12-22 2009-05-15 Asahi Glass Co Ltd Elektrolytmembran, verfahren zu deren herstellung und membran-elektrodenanordnung für festpolymerbrennstoffzellen
JP4956961B2 (ja) 2004-12-22 2012-06-20 旭硝子株式会社 電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
JP5355012B2 (ja) 2008-09-25 2013-11-27 Fdkエナジー株式会社 電池缶及びアルカリ電池
DE102008049726B4 (de) 2008-09-30 2012-02-09 Advanced Micro Devices, Inc. Gestapelte Chipkonfiguration mit stromgespeistem Wärmeübertragungssystem und Verfahren zum Steuern der Temperatur in einem Halbleiterbauelement
JP5155278B2 (ja) 2009-10-26 2013-03-06 アオイ電子株式会社 イオン伝導性高分子電解質二次電池
US9112240B2 (en) * 2010-01-04 2015-08-18 Nanotek Instruments, Inc. Lithium metal-sulfur and lithium ion-sulfur secondary batteries containing a nano-structured cathode and processes for producing same
JP6088759B2 (ja) * 2012-06-29 2017-03-01 Jxエネルギー株式会社 リチウムイオン二次電池用セパレータの製造方法
JP6206900B2 (ja) 2012-11-12 2017-10-04 国立研究開発法人産業技術総合研究所 固体電解質シート、電極シート、及び全固体二次電池
KR101699037B1 (ko) * 2012-11-12 2017-01-23 주식회사 엘지화학 세퍼레이터의 제조방법, 그에 의해 제조된 세퍼레이터 및 그를 포함하는 전기화학소자
WO2014123033A1 (ja) 2013-02-05 2014-08-14 三菱製紙株式会社 リチウムイオン二次電池セパレータ用不織布基材及びリチウムイオン二次電池セパレータ
US9419265B2 (en) 2013-10-31 2016-08-16 Lg Chem, Ltd. High-strength electrospun microfiber non-woven web for a separator of a secondary battery, a separator comprising the same and a method for manufacturing the same
KR101689754B1 (ko) 2013-10-31 2016-12-26 주식회사 엘지화학 이차전지의 분리막용 고강도 극세섬유 웹, 이를 포함하는 분리막 및 이의 제조 방법
KR20150051556A (ko) * 2013-11-04 2015-05-13 주식회사 엘지화학 다공성 코팅층을 구비한 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
JP6310716B2 (ja) 2014-02-10 2018-04-11 古河機械金属株式会社 固体電解質シート、全固体型リチウムイオン電池、および固体電解質シートの製造方法
JP6253149B2 (ja) 2014-05-01 2017-12-27 国立大学法人山口大学 固体電解質を用いる電気化学デバイスの製造方法及び電気化学デバイス
JP2016031789A (ja) 2014-07-25 2016-03-07 ニッポン高度紙工業株式会社 固体電解質シート、及び、全固体二次電池
KR101622355B1 (ko) 2014-07-28 2016-05-18 울산과학기술원 고체전해질 복합체, 이의 제조방법, 및 이를 포함하는 전고체전지
US20160079597A1 (en) * 2014-09-16 2016-03-17 Samsung Electronics Co., Ltd. All-solid lithium ion secondary battery
JP2016139482A (ja) * 2015-01-26 2016-08-04 三星電子株式会社Samsung Electronics Co.,Ltd. 固体電解質シート、及び全固体二次電池
CN105470564A (zh) * 2016-01-22 2016-04-06 山东鸿正电池材料科技有限公司 一种固体电解质膜及其制备方法和锂离子电池
JP6424938B2 (ja) 2017-10-30 2018-11-21 東亜ディーケーケー株式会社 フロー型電極装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928551B2 (ja) * 1989-08-28 1999-08-03 ジェイエスアール株式会社 固体電解質または電極活物質シートの支持体用織布の製造方法
JP2005005024A (ja) * 2003-06-10 2005-01-06 Nbc Inc 固体電解質担持体用織布およびリチウム電池用固体電解質シート
KR20130142224A (ko) * 2012-06-15 2013-12-30 한국전자통신연구원 고체 고분자 전해질, 그 제조방법, 및 이를 포함하는 리튬전지
KR20170060063A (ko) 2014-09-17 2017-05-31 코닌클리케 필립스 엔.브이. 조명 시스템
KR101601511B1 (ko) * 2014-10-23 2016-03-09 현대자동차주식회사 복합형 고체전해질층 및 그 제작 방법
KR20160068464A (ko) * 2014-12-05 2016-06-15 삼성에스디아이 주식회사 유무기 복합 전해질, 이를 포함하는 전극-전해질 접합체 및 리튬이차전지, 및 상기 전극-전해질 접합체의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3553868A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786817A (zh) * 2019-01-23 2019-05-21 蜂巢能源科技有限公司 固态锂电池及其应用和制备无纺布增强的固态电解质膜的方法
CN109786817B (zh) * 2019-01-23 2021-09-21 蜂巢能源科技有限公司 固态锂电池及其应用和制备无纺布增强的固态电解质膜的方法
WO2020218422A1 (ja) * 2019-04-26 2020-10-29 株式会社日本製鋼所 固体電解質膜の製造方法、全固体電池の製造方法、固体電解質膜の製造装置および全固体電池の製造装置
JP7390635B2 (ja) 2019-04-26 2023-12-04 株式会社日本製鋼所 固体電解質膜の製造方法、全固体電池の製造方法、固体電解質膜の製造装置および全固体電池の製造装置
JP7374664B2 (ja) 2019-08-29 2023-11-07 マクセル株式会社 固体電解質シートおよび全固体リチウム二次電池

Also Published As

Publication number Publication date
EP3553868B1 (en) 2022-09-14
EP3553868A1 (en) 2019-10-16
CN110192302B (zh) 2022-09-13
JP7092796B2 (ja) 2022-06-28
KR102178714B1 (ko) 2020-11-13
KR20180125407A (ko) 2018-11-23
EP3553868A4 (en) 2019-11-20
CN110192302A (zh) 2019-08-30
JP2020509565A (ja) 2020-03-26
US11342578B2 (en) 2022-05-24
US20220255117A1 (en) 2022-08-11
US11908993B2 (en) 2024-02-20
US20190372149A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2018212568A1 (ko) 전고체 전지용 고체 전해질막의 제조 방법 및 상기 방법에 의해 제조된 고체 전해질막
WO2018212567A1 (ko) 전고체 전지용 전극 및 이를 제조하는 방법
WO2018084431A1 (ko) 전극 및 이를 이용한 이차전지와 전극의 제조방법
WO2013012292A2 (ko) 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2014030899A1 (ko) 셧다운 기능을 갖는 복합 다공성 분리막 및 그 제조방법과 이를 이용한 이차전지
WO2014084681A1 (ko) 표면 특성이 다른 무기물 입자의 이중 다공성 코팅층을 포함하는 이차전지용 분리막, 이를 포함하는 이차전지, 및 상기 분리막의 제조방법
WO2018038584A1 (ko) 전기화학소자용 분리막 및 상기 분리막을 포함하는 전기화학소자
WO2014182095A1 (ko) 절연층을 포함한 전극 구조체, 그 제조방법 및 상기 전극을 포함하는 전기화학소자
WO2016064256A1 (ko) 유/무기 복합 다공층을 포함하는 이차 전지용 세퍼레이터 및 이의 제조 방법
WO2020130695A1 (ko) 고체 전해질막 및 이를 제조하는 방법 및 이를 포함하는 전고체 전지
WO2015020338A1 (ko) 플렉시블 집전체 및 그 제조방법과 이를 이용한 이차전지
WO2016047835A1 (ko) 셀룰로오스 나노섬유 분리막을 포함하는 전기화학소자 및 이의 제조방법
WO2015065116A1 (ko) 유기-무기 복합 다공성 막, 이를 포함하는 세퍼레이터 및 전극 구조체
WO2019045552A1 (ko) 플렉시블 전지의 제조방법 및 이로부터 제조된 플렉시블 전지
WO2016117950A1 (ko) 출력특성이 향상된 리튬이차전지
WO2021075924A1 (ko) 전기화학소자용 분리막, 상기 분리막을 포함하는 전기화학소자 및 상기 분리막의 제조방법
WO2020050559A1 (ko) 분리막 기재가 없는 이차전지용 분리막
WO2017082680A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2018062851A1 (ko) 전극 및 이를 이용한 이차전지와 전극의 제조방법
WO2014073750A1 (ko) 이차전지용 복합부직포 분리막 및 제조방법
WO2018030810A1 (ko) 전극과 분리막이 부분 결착된 전극조립체
WO2021172809A1 (ko) 리튬 이차전지용 전극의 제조 방법
WO2014157987A1 (ko) 이차전지용 전극 조립체 및 이를 이용한 이차전지
WO2023239031A1 (ko) 리튬 이차전지용 분리막의 제조방법, 이로부터 제조된 리튬 이차전지용 분리막 및 이를 이용한 리튬 이차전지의 제조방법
WO2016085226A1 (ko) 플렉서블 배터리용 분리막, 이의 제조방법 및 이를 포함하는 플렉서블 배터리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559254

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018801673

Country of ref document: EP

Effective date: 20190710

NENP Non-entry into the national phase

Ref country code: DE