WO2014123033A1 - リチウムイオン二次電池セパレータ用不織布基材及びリチウムイオン二次電池セパレータ - Google Patents

リチウムイオン二次電池セパレータ用不織布基材及びリチウムイオン二次電池セパレータ Download PDF

Info

Publication number
WO2014123033A1
WO2014123033A1 PCT/JP2014/051780 JP2014051780W WO2014123033A1 WO 2014123033 A1 WO2014123033 A1 WO 2014123033A1 JP 2014051780 W JP2014051780 W JP 2014051780W WO 2014123033 A1 WO2014123033 A1 WO 2014123033A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
fiber
binder
pet
fibers
Prior art date
Application number
PCT/JP2014/051780
Other languages
English (en)
French (fr)
Inventor
友洋 佐藤
重松 俊広
加藤 真
兵頭 建二
相澤 和佳奈
Original Assignee
三菱製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱製紙株式会社 filed Critical 三菱製紙株式会社
Priority to EP14748767.2A priority Critical patent/EP2955773B1/en
Priority to JP2014560728A priority patent/JP6292626B2/ja
Priority to CN201710524282.9A priority patent/CN107248563B/zh
Priority to CN201480007528.XA priority patent/CN104995765B/zh
Priority to US14/763,967 priority patent/US9768430B2/en
Priority to EP17173691.1A priority patent/EP3246970B1/en
Publication of WO2014123033A1 publication Critical patent/WO2014123033A1/ja
Priority to US15/631,267 priority patent/US10230087B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nonwoven fabric substrate and a lithium ion secondary battery separator used for a lithium ion secondary battery separator.
  • lithium ion secondary battery separator for a lithium ion secondary battery (hereinafter sometimes abbreviated as “battery”)
  • battery a lithium ion secondary battery separator
  • polyolefins such as polyethylene and polypropylene
  • a porous membrane made of a resin has been used.
  • the resin porous membrane has a problem that it melts and contracts when the battery abnormally generates heat, and the function of isolating the positive and negative electrodes is lost, resulting in a significant short circuit.
  • Non-woven fabric base material for lithium ion secondary battery separators containing polyethylene terephthalate (PET) fibers (hereinafter referred to as “nonwoven fabric base material”) as a separator that hardly melts or shrinks even when the battery is abnormally heated.
  • nonwoven fabric base material polyethylene terephthalate (PET) fibers
  • separators obtained by coating various inorganic pigments have been proposed (see, for example, Patent Documents 1 to 3).
  • Patent Document 1 describes a nonwoven fabric substrate containing fibers having a fiber diameter of 0.1 to 10 ⁇ m.
  • Patent Document 2 describes a nonwoven fabric substrate containing crystallized PET fibers and binder PET fibers, and containing short fibers having an average fiber diameter of 3 ⁇ m or less as essential components.
  • Patent Document 3 describes a nonwoven fabric base material containing crystallized PET fibers and binder PET fibers, and including fibers having a fiber length of 2 mm or less as crystallized PET fibers.
  • the nonwoven fabric substrates of Patent Documents 1 to 3 when a thin separator is to be manufactured, the nonwoven fabric substrate is likely to wrinkle when a coating liquid containing an inorganic pigment is applied. There was a problem of falling.
  • Patent Document 1 in order to manufacture a separator using a nonwoven fabric base material having a thickness of 13 ⁇ m, an apparatus having a complicated configuration is used that conveys the nonwoven fabric base material supported by a belt.
  • the coating liquid containing the inorganic pigment is applied at an extremely low line speed of 8 m / hr.
  • the coating liquid breakthrough occurs and it is difficult to achieve both low internal resistance and high tensile strength.
  • JP 2005-536857 A Publication JP 2009-230975 A JP 2011-82148 A
  • the present invention is intended to solve the above problems. That is, in a nonwoven fabric base material used for a lithium ion secondary battery separator, when applying a coating liquid containing an inorganic pigment, a nonwoven fabric base material for a lithium ion secondary battery separator that is difficult to wrinkle and has high productivity of the separator. It is something to be offered. In addition, when applying a coating liquid containing an inorganic pigment, an attempt is made to provide a nonwoven fabric base material for a lithium ion secondary battery separator that is difficult to cause back-through of the coating liquid and that has both low internal resistance and high tensile strength. Is. Furthermore, it is intended to provide a nonwoven fabric base material for a lithium ion secondary battery separator that has high strength, good liquid retention, and can reduce the resistance of the separator.
  • the nonwoven fabric base material for lithium ion secondary battery separators mainly composed of polyethylene terephthalate fibers
  • the nonwoven fabric base material contains polyethylene terephthalate fibers for binder and crystallized polyethylene terephthalate fibers, and the fiber length is 2.5 mm or less.
  • the lithium ion secondary battery according to (1) comprising 21 to 60% by mass of polyethylene terephthalate fiber for binder having an average fiber diameter of 14.0 ⁇ m or less and a fiber length of 0.5 to 2.5 mm.
  • Nonwoven fabric substrate for separator for separator.
  • the nonwoven fabric base material for a lithium ion secondary battery separator according to (1) comprising a total of 80 to 100% by mass of crystallized polyethylene terephthalate fibers, and the crystallized polyethylene terephthalate fibers having an average fiber diameter of 2.0 to 4.0 ⁇ m .
  • a nonwoven fabric base material for lithium ion secondary battery separators mainly composed of polyethylene terephthalate fibers, characterized in that it contains polyethylene terephthalate fibers for binders containing 3,5-dicarbomethoxybenzenesulfonic acid as a copolymerization component.
  • a nonwoven fabric base material for lithium ion secondary battery separators mainly composed of polyethylene terephthalate fibers, characterized in that it contains polyethylene terephthalate fibers for binders containing 3,5-dicarbomethoxybenzenesulfonic acid as a copolymerization component.
  • a treatment for applying a coating liquid containing an inorganic pigment to a nonwoven fabric base material for a lithium ion secondary battery separator according to any one of (1) to (4), and a coating liquid containing organic particles At least one treatment selected from a treatment comprising: laminating a resin microporous membrane; a treatment comprising forming a fine fiber layer by an electrostatic spinning method; and a treatment applying a solid electrolyte or a gel electrolyte. Lithium ion secondary battery separator.
  • the nonwoven fabric substrate of the present invention producing a lithium ion secondary battery separator in which an inorganic pigment is coated on a nonwoven fabric substrate with high productivity is less likely to wrinkle when an inorganic pigment coating solution is applied. Can do.
  • a coating liquid containing an inorganic pigment it is possible to produce a lithium ion secondary battery separator that is unlikely to cause back-through of the coating liquid and that has both low internal resistance and high tensile strength.
  • the nonwoven fabric base material for lithium ion secondary battery separators which is strong and has good liquid retention can be provided.
  • the nonwoven fabric base material for lithium ion secondary battery separators mainly composed of polyethylene terephthalate (PET) fibers contains PET fibers for binders and crystallized PET fibers, and 10 PET fibers for binders having a fiber length of 2.5 mm or less.
  • PET polyethylene terephthalate
  • the number of binder PET fibers in the nonwoven fabric base material can be increased and evenly distributed in the nonwoven fabric base material. Productivity can be improved.
  • a binder PET fiber having an average fiber diameter of 14.0 ⁇ m or less and a fiber length of 0.5 to 2.5 mm is contained, whereby the binder PET fiber in the nonwoven fabric substrate is contained.
  • the number of binder PET fibers and the number of bonded PET fibers can be reduced. Both wearing power increases. Therefore, a sufficiently high strength can be expressed with a small content of 10 to 30% by mass, and as a result, a low internal resistance can be obtained.
  • the average fiber diameter of the crystallized PET fiber is 2.0 to 4.0 ⁇ m, the nonwoven fabric substrate is appropriately clogged, the back-through of the coating liquid is reduced, and a low internal resistance is obtained. .
  • the nonwoven fabric base material for lithium ion secondary battery separators mainly composed of PET fibers contains PET fibers for binders containing 3,5-dicarbomethoxybenzenesulfonic acid as a copolymerization component, whereby the nonwoven fabric base material The fibers can be bonded without excessively closing the voids, and the nonwoven fabric substrate for a lithium ion secondary battery separator having high strength can be obtained without deteriorating the liquid retention.
  • the nonwoven fabric substrate (1) is mainly composed of PET fibers, contains PET fibers for binder and crystallized PET fibers, and contains 10 to 60% by mass of PET fibers for binder having a fiber length of 2.5 mm or less. It is a feature.
  • Nonwoven fabric substrate (1) contains PET fibers for binder. If the fiber length of the binder PET fiber is longer than 2.5 mm, the nonwoven fabric base material tends to stretch, or the binder PET fibers tend to get entangled with each other, resulting in uneven distribution in the nonwoven fabric base material. Sometimes wrinkles are likely to enter or the strength of the nonwoven fabric substrate may be weakened.
  • the fiber length of the binder PET fiber is more preferably 0.5 to 2.5 mm, still more preferably 0.7 to 2.3 mm, and particularly preferably 1.0 to 2.0 mm.
  • the content of the PET fiber for binder having a fiber length of 2.5 mm or less is 10 to 60% by mass. When the amount is less than 10% by mass, the strength of the nonwoven fabric substrate is weakened, and wrinkles are easily formed. When the amount is more than 60% by mass, the molten component closes the pores of the nonwoven fabric base material, and the liquid retention of the nonwoven fabric base material deteriorates. Moreover, internal resistance becomes high.
  • the content of the PET fiber for binder having a fiber length of 2.5 mm or less is more preferably 15 to 50% by mass, still more preferably 20 to 40% by mass, and particularly preferably 25 to 35% by mass.
  • the average fiber diameter of the binder PET fibers is preferably 0.1 to 14.0 ⁇ m.
  • the average fiber diameter of the binder PET fiber is more preferably 1.0 to 13.0 ⁇ m, still more preferably 1.5 to 10.0 ⁇ m, and particularly preferably 2.0 to 10.0 ⁇ m. .
  • the “average fiber diameter” as used herein refers to an average value of 10 fibers from the smallest of 20 measured equivalent circular diameters of fibers forming the nonwoven fabric substrate from a scanning electron micrograph of the nonwoven fabric substrate cross section. It is. The reason for using only the ten measured values from the smaller one is to exclude the measured values for fibers that have been severely cut off from a right angle to the longitudinal direction of the fibers.
  • PET fiber for the binder examples include a core-sheath type, an eccentric type, a side-by-side type, a sea-island type, an orange type, a multi-bimetal type composite fiber, and a single component type.
  • a one-component type heat-sealing fiber is preferable.
  • Nonwoven fabric substrate (1) contains crystallized PET fibers.
  • the content of the crystallized PET fiber is preferably 40 to 90% by mass, more preferably 50 to 85% by mass, further preferably 60 to 80% by mass, and particularly preferably 65 to 75% by mass. Even if the content of the crystallized PET fiber is less than 40% by mass or more than 90% by mass, the strength of the nonwoven fabric substrate may be weakened.
  • the average fiber diameter of the crystallized PET fiber is preferably from 0.1 to 10.0 ⁇ m, more preferably from 0.5 to 9.0 ⁇ m, still more preferably from 1.0 to 8.0 ⁇ m. If the average fiber diameter is less than 0.1 ⁇ m, the fibers may be too thin and fall off from the nonwoven fabric substrate. If the average fiber diameter is greater than 10.0 ⁇ m, it may be difficult to make the separator thin.
  • the fiber length of the crystallized PET fiber is preferably 1 to 10 mm, more preferably 2 to 7 mm, and further preferably 3 to 5 mm. If the fiber length is shorter than 1 mm, the strength of the nonwoven fabric substrate may be weakened. If the fiber length is longer than 10 mm, the fibers may be entangled and become lumpy, resulting in uneven thickness.
  • Nonwoven fabric substrate (1) mainly comprises PET fibers.
  • the “main body” means that the content of PET fibers is 70% by mass or more.
  • fibers other than PET fiber For example, short fiber and fibrillated solvent-spun cellulose and regenerated cellulose; natural cellulose fiber; pulped and fibrillated natural cellulose fiber; polyolefin, acrylic, wholly aromatic polyester, wholly aromatic polyester amide, polyamide, semi-aromatic polyamide , Wholly aromatic polyamide, wholly aromatic polyether, wholly aromatic polycarbonate, wholly aromatic polyazomethine, polyimide, polyamideimide (PAI), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), poly-p-phenylene Single fibers and composite fibers made of resins such as benzobisoxazole (PBO), polybenzimidazole (PBI), polytetrafluoroethylene (PTFE), ethylene-vinyl alcohol copolymer, and
  • One kind of these fibers may be contained, or two or more kinds thereof may be contained.
  • Semi-aromatic refers to those having, for example, a fatty chain as part of the main chain.
  • the wholly aromatic polyamide may be para-type or meta-type.
  • the basis weight of the nonwoven fabric base material (1) is preferably 6.0 ⁇ 20.0g / m 2, 8.0 ⁇ 18.0g / m 2 , more preferably, 10.0 ⁇ 16.0g / m 2 and more preferable. If it exceeds 20.0 g / m 2 , it may be difficult to reduce the thickness of the separator, and if it is less than 6.0 g / m 2 , it may be difficult to obtain sufficient strength.
  • the basis weight is measured based on the method defined in JIS P 8124 (paper and paperboard—basis weight measurement method).
  • the thickness of the nonwoven fabric substrate (1) is preferably 10 to 30 ⁇ m, more preferably 13 to 27 ⁇ m, and even more preferably 15 to 25 ⁇ m. If it is less than 10 ⁇ m, sufficient strength of the nonwoven fabric substrate may not be obtained. If it is thicker than 30 ⁇ m, it is difficult to make the separator thin. The thickness is measured with an outer micrometer having a minimum display amount of 0.001 mm as defined in JIS B7502-1994.
  • the nonwoven fabric substrate (2) is a PET fiber for binders (hereinafter referred to as “for binder”) having an average fiber diameter of 14.0 ⁇ m or less and a fiber length of 0.5 to 2.5 mm in the nonwoven fabric substrate (1). It is characterized by containing 21 to 60% by mass of PET fiber (I) ”(sometimes abbreviated as“ PET fiber (I) ”).
  • the “average fiber diameter” as used herein refers to an average value of 10 fibers from the smallest of 20 measured equivalent circular diameters of fibers forming the nonwoven fabric substrate from a scanning electron micrograph of the nonwoven fabric substrate cross section. It is. The reason for using only the ten measured values from the smaller one is to exclude the measured values for fibers that have been severely cut off from a right angle to the longitudinal direction of the fibers.
  • the average fiber diameter of the binder PET fiber (I) is 14.0 ⁇ m or less, the number of fibers in the thickness direction is increased, so that the strength of the nonwoven fabric substrate is increased. If the PET fiber for binder (I) is too thin, it may fall off from the nonwoven fabric substrate, and therefore the average fiber diameter of the PET fiber for binder (I) is preferably 0.1 ⁇ m or more. Further, the average fiber diameter of the PET fiber (I) for binder is more preferably 1.0 to 13.0 ⁇ m, and further preferably 2.0 to 10.0 ⁇ m.
  • the fiber length of the binder-use PET fiber (I) When the fiber length of the binder-use PET fiber (I) is shorter than 0.5 mm, the fiber may fall off from the nonwoven fabric substrate. If the length is longer than 2.5 mm, the nonwoven fabric base material tends to stretch, the PET fibers for binder (I) tend to get entangled, and the distribution in the nonwoven fabric base material becomes uneven. Become.
  • the fiber length of the binder PET fiber (I) is more preferably 0.7 to 2.3 mm, and still more preferably 1.0 to 2.0 mm.
  • the content of the binder-use PET fiber (I) is less than 21% by mass, the strength of the nonwoven fabric substrate may be weakened or wrinkles may be easily formed. When it is more than 60% by mass, the molten component closes the pores of the nonwoven fabric base material, and the liquid retention of the nonwoven fabric base material deteriorates.
  • the content of the PET fiber (I) for binder is more preferably 25 to 50% by mass, further preferably more than 30% by mass and 50% by mass or less, and particularly preferably 35 to 45% by mass.
  • Nonwoven fabric substrate (2) contains crystallized PET fibers.
  • the content of crystallized PET fibers is preferably 40 to 79% by mass, more preferably 50 to 75% by mass, further preferably 50% by mass or more and less than 70% by mass, and particularly preferably 55 to 65% by mass. Even if the content of the crystallized PET fiber is less than 40% by mass or more than 79% by mass, the strength of the nonwoven fabric substrate may be weakened.
  • the average fiber diameter of the crystallized PET fiber is preferably from 0.1 to 10.0 ⁇ m, more preferably from 0.5 to 9.0 ⁇ m, still more preferably from 1.0 to 8.0 ⁇ m. If the average fiber diameter is less than 0.1 ⁇ m, the fibers may be too thin and fall off from the nonwoven fabric substrate. If the average fiber diameter is greater than 10.0 ⁇ m, it may be difficult to make the separator thin.
  • the fiber length of the crystallized PET fiber is preferably 1 to 10 mm, more preferably 2 to 7 mm, and further preferably 3 to 5 mm. If the fiber length is shorter than 1 mm, the strength of the nonwoven fabric substrate may be weakened. If the fiber length is longer than 10 mm, the fibers may be entangled and become lumpy, resulting in uneven thickness.
  • the nonwoven fabric substrate (2) may contain a binder PET fiber other than the binder PET fiber (I), but the content is preferably 20% by mass or less. If the content exceeds 20% by mass, the melted component of the binder PET fiber may block the pores of the nonwoven fabric substrate, and the resistance of the separator may deteriorate.
  • PET fiber for the binder examples include a core-sheath type, an eccentric type, a side-by-side type, a sea-island type, an orange type, a multi-bimetal type composite fiber, and a single component type.
  • a one-component type heat-sealing fiber is preferable.
  • the basis weight of the nonwoven fabric substrate (2) is preferably 6.0 ⁇ 20.0g / m 2, 8.0 ⁇ 18.0g / m 2 , more preferably, 10.0 ⁇ 16.0 g / m 2 and more preferable. If it exceeds 20.0 g / m 2 , it may be difficult to reduce the thickness of the separator, and if it is less than 6.0 g / m 2 , it may be difficult to obtain sufficient strength.
  • the basis weight is measured based on the method defined in JIS P 8124 (paper and paperboard—basis weight measurement method).
  • the thickness of the nonwoven fabric substrate (2) is preferably 10 to 30 ⁇ m, more preferably 13 to 27 ⁇ m, and even more preferably 15 to 25 ⁇ m. If it is less than 10 ⁇ m, sufficient strength of the nonwoven fabric substrate may not be obtained. If it is thicker than 30 ⁇ m, it is difficult to make the separator thin. The thickness is measured with an outer micrometer having a minimum display amount of 0.001 mm as defined in JIS B7502-1994.
  • the nonwoven fabric substrate (3) is a nonwoven fabric substrate (1) having an average fiber diameter of 1.5 to 2.8 ⁇ m and a fiber length of 1.0 to 2.5 mm (hereinafter referred to as “binder”). 10-30% by mass) of PET fiber (II) for use as a binder), and 80-100% by mass in total of PET fiber (II) for binder and crystallized PET fiber, and crystallized PET fiber.
  • the average fiber diameter is 2.0 to 4.0 ⁇ m.
  • the “average fiber diameter” as used herein refers to an average value of 10 fibers from the smallest of 20 measured equivalent circular diameters of fibers forming the nonwoven fabric substrate from a scanning electron micrograph of the nonwoven fabric substrate cross section. It is. The reason for using only the ten measured values from the smaller one is to exclude the measured values for fibers that have been severely cut off from a right angle to the longitudinal direction of the fibers.
  • the average fiber diameter of the binder-use PET fibers (II) By setting the average fiber diameter of the binder-use PET fibers (II) to 2.8 ⁇ m or less, the number of the binder-use PET fibers is increased, and the specific surface area of the binder-use PET fibers is increased to improve the binding force. Sufficient strength can be obtained with a small content of 30% by mass or less. However, even if the nonwoven fabric substrate (3) contains a small amount of binder-use PET fibers having a fiber diameter exceeding 2.8 ⁇ m, the effect on the nonwoven fabric substrate (3) is not greatly affected. Here, the “small amount” is 15% by mass or less with respect to the nonwoven fabric substrate.
  • the PET fiber for binders having a thin average fiber diameter like the PET fiber for binders (II) when the fiber length exceeds 2.5 mm, the PET fibers for binder are easily entangled with each other in the nonwoven fabric base material. The distribution of the PET fibers for the binder becomes non-uniform, and the binding force is reduced. If the content is as low as 30% by mass or less, sufficient strength cannot be obtained. However, even if the nonwoven fabric substrate (3) contains a small amount of binder-use PET fibers having a fiber length exceeding 2.5 mm, the effect on the nonwoven fabric substrate (3) is not greatly affected.
  • the “small amount” herein is 10% by mass or less based on the nonwoven fabric substrate.
  • the average fiber diameter of the binder-use PET fibers (II) is 1.5 ⁇ m or more, entanglement between the binder-use PET fibers can be suppressed, and the distribution of the binder-use PET fibers in the nonwoven fabric substrate is made uniform. Therefore, the binding force is improved, and sufficient strength can be obtained with a small content of 30% by mass or less.
  • the nonwoven fabric substrate (3) contains a small amount of binder PET fibers having a fiber diameter of less than 1.5 ⁇ m, the effect on the nonwoven fabric substrate (3) is not greatly affected.
  • the “small amount” is 5% by mass or less with respect to the nonwoven fabric substrate.
  • the fiber length of the PET fiber for binder (II) is 1.0 mm or more, the PET fiber for binder can be prevented from falling off from the non-woven fabric substrate, and the strength is sufficient with a small content of 30% by mass or less. Is obtained. From such a viewpoint, the fiber length of the binder-use PET fiber (II) is more preferably 1.5 mm or more. However, even if the nonwoven fabric substrate (3) contains a small amount of binder PET fibers having a fiber length of less than 1.0 mm, the effect on the nonwoven fabric substrate (3) is not greatly affected. Here, the “small amount” is 5% by mass or less with respect to the nonwoven fabric substrate.
  • the content of the PET fiber (II) for binder is less than 10% by mass, the strength of the nonwoven fabric substrate is weakened. From such a viewpoint, the content of the binder-use PET fiber (II) is more preferably 15% by mass or more. In addition, when the content of the binder fiber having a thin average fiber diameter is more than 30% by mass as in the case of the PET fiber (II) for the binder, the melted component may block the pores of the nonwoven fabric substrate and increase the internal resistance. . From such a viewpoint, the content of the PET fiber for binder (II) is preferably 30% by mass or less, and more preferably 25% by mass or less.
  • sea component is eluted from melt-spun sea-island fiber filaments using PET resin as island component and appropriate solvent-soluble resin such as alkaline aqueous solution-soluble polyester resin as sea component.
  • a single component type PET fiber for a binder obtained by cutting the fiber having an average fiber diameter of 1.5 to 2.8 ⁇ m obtained by using a suitable cutting device so that the fiber length is 1.0 to 2.5 mm. Staples can be used.
  • the sea-island fiber filament may be first cut to have a fiber length of 1.0 to 2.5 mm and then the sea component may be eluted.
  • Nonwoven fabric substrate (3) contains 80 to 100% by mass in total of PET fiber (II) for binder and crystallized PET fiber.
  • fibers other than PET fiber (II) for binder and crystallized PET fiber may be contained, but the amount is limited to 20% by mass or less.
  • the fiber other than the PET fiber for binder (II) and the crystallized PET fiber exceeds 20% by mass, the binding force between the PET fiber for binder (II) and the other fiber decreases.
  • a nonwoven fabric substrate with high strength cannot be obtained. From such a viewpoint, it is more preferable that the nonwoven fabric substrate (3) contains 90% by mass or more in total of the PET fiber (II) for binder and the crystallized PET fiber.
  • the nonwoven fabric substrate (3) crystallized PET fibers having an average fiber diameter of 2.0 to 4.0 ⁇ m are used. If the average fiber diameter is less than 2.0 ⁇ m, the nonwoven fabric substrate is too clogged and the internal resistance is increased. However, even if the nonwoven fabric substrate (3) contains a small amount of crystallized PET fibers having a fiber diameter of less than 2.0 ⁇ m, the effect on the nonwoven fabric substrate (3) is not greatly affected.
  • the “small amount” is 15% by mass or less based on the nonwoven fabric substrate.
  • the average fiber diameter of the crystallized PET fiber exceeds 4.0 ⁇ m, the non-woven fabric base material becomes insufficiently clogged, and the coating liquid tends to break through. From such a viewpoint, the average fiber diameter of the crystallized PET fiber is more preferably 3.5 ⁇ m or less. However, even if the nonwoven fabric substrate (3) contains a small amount of crystallized PET fibers having a fiber diameter exceeding 4.0 ⁇ m, the effect on the nonwoven fabric substrate (3) is not greatly affected. Here, the “small amount” is 15% by mass or less with respect to the nonwoven fabric substrate.
  • the fiber length of the crystallized PET fiber is preferably 2.5 to 6.0 mm. If the fiber length of the crystallized PET fiber is less than 2.5 mm, sufficient tensile strength may not be obtained, and if it exceeds 6.0 mm, the formation deteriorates due to the entanglement of the fibers, and the separator High-thickness defects that may have an undesirable effect on the use of
  • the basis weight of the nonwoven fabric substrate (3) is preferably 6.0 to 12.0 g / m 2 . If it is less than 6.0 g / m 2 , it may be difficult to obtain sufficient strength. If it exceeds 12.0 g / m 2 , it may be difficult to make the separator thin.
  • the basis weight is measured based on the method defined in JIS P 8124 (paper and paperboard—basis weight measurement method).
  • the thickness of the nonwoven fabric substrate (3) is preferably 8 to 18 ⁇ m. If it is less than 8 micrometers, even if it is a nonwoven fabric base material (3), the show-through of a coating liquid may arise easily. If it is thicker than 18 ⁇ m, the internal resistance may increase. In the present invention, the thickness of the nonwoven fabric substrate is measured with an outer micrometer having a minimum display amount of 0.001 mm as defined in JIS B7502-1994.
  • the nonwoven fabric substrate (4) is composed mainly of PET fibers and contains 3,5-dicarbomethoxybenzenesulfonic acid as a copolymerization component, and is abbreviated as “PET fibers for binder (III)”. May be included).
  • the average fiber diameter of the binder PET fiber (III) is preferably 0.5 to 14.0 ⁇ m, more preferably 1.0 to 13.0 ⁇ m, and more preferably 2.0 to 10.0 ⁇ m. Further preferred. If the average fiber diameter is thinner than 0.5 ⁇ m, it may fall off from the nonwoven fabric substrate. If it is thicker than 14.0 ⁇ m, the number of fibers in the thickness direction will decrease, and the strength of the nonwoven fabric substrate may be weakened. .
  • the “average fiber diameter” as used herein refers to an average value of 10 fibers from the smallest of 20 measured equivalent circular diameters of fibers forming the nonwoven fabric substrate from a scanning electron micrograph of the nonwoven fabric substrate cross section. It is. The reason for using only the ten measured values from the smaller one is to exclude the measured values for fibers that have been severely cut off from a right angle to the longitudinal direction of the fibers.
  • the fiber length of the binder PET fiber (III) is preferably 0.5 to 5.0 mm, more preferably 0.7 to 4.0 mm, and further preferably 1.0 to 3.0 mm. preferable. If the fiber length is shorter than 0.5 mm, the fiber may fall off from the nonwoven fabric substrate, and if it is longer than 5.0 mm, the fiber may become entangled and become lumpy, resulting in uneven thickness.
  • the content of the PET fiber (III) for binder is preferably 5 to 60% by mass, more preferably 10 to 55% by mass, and further preferably 20 to 50% by mass.
  • the content is less than 5% by mass, the strength of the nonwoven fabric substrate may be weakened.
  • the content is more than 60% by mass, the molten component closes the pores of the nonwoven fabric substrate and the liquid retention of the nonwoven fabric substrate deteriorates. Or the resistance of the separator may increase.
  • the binder PET fiber (III) is preferably a single-component heat-sealing fiber from the viewpoint of obtaining uniformity.
  • the PET fiber (III) for binder may contain alkyl glycol and its derivatives as copolymerization components other than 3,5-dicarbomethoxybenzenesulfonic acid.
  • alkyl glycol and its derivatives diethylene glycol is preferred.
  • the nonwoven fabric substrate (4) preferably contains crystallized PET fibers in addition to the binder PET fibers (III).
  • the content of crystallized PET fiber is preferably 40 to 95% by mass, more preferably 45 to 90% by mass, and further preferably 50 to 80% by mass. Even if the content of the crystallized PET fiber is less than 40% by mass or more than 95% by mass, the strength of the nonwoven fabric substrate may be weakened.
  • the average fiber diameter of the crystallized PET fiber is preferably 0.5 to 10.0 ⁇ m, more preferably 0.7 to 8.0 ⁇ m, and further preferably 1.0 to 6.0 ⁇ m. If the average fiber diameter is less than 0.5 ⁇ m, the fibers may be too thin and fall off from the nonwoven fabric substrate. If the average fiber diameter is greater than 10.0 ⁇ m, it may be difficult to make the separator thin.
  • the fiber length of the crystallized PET fiber is preferably 1 to 10 mm, more preferably 2 to 7 mm, and further preferably 3 to 5 mm. If the fiber length is shorter than 1 mm, the strength of the nonwoven fabric substrate may be weakened. If the fiber length is longer than 10 mm, the fibers may be entangled and become lumpy, resulting in uneven thickness.
  • the nonwoven fabric substrate (4) may contain binder PET fibers other than the binder PET fibers (III), but the content is preferably 20% by mass or less. If the content exceeds 20% by mass, the melted component of the binder PET fiber may block the voids of the nonwoven fabric substrate, resulting in deterioration of liquid retention and separator resistance.
  • Nonwoven fabric substrate (4) mainly comprises PET fibers.
  • the “main body” means that the content of the PET fiber is 70% by mass or more.
  • fibers other than PET fiber For example, short fiber and fibrillated solvent-spun cellulose and regenerated cellulose; natural cellulose fiber; pulped and fibrillated natural cellulose fiber; polyolefin, acrylic, wholly aromatic polyester, wholly aromatic polyester amide, polyamide, semi-aromatic polyamide , Wholly aromatic polyamide, wholly aromatic polyether, wholly aromatic polycarbonate, wholly aromatic polyazomethine, polyimide, polyamideimide (PAI), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), poly-p-phenylene Single fibers and composite fibers made of resins such as benzobisoxazole (PBO), polybenzimidazole (PBI), polytetrafluoroethylene (PTFE), ethylene-vinyl alcohol copolymer,
  • One kind of these fibers may be contained, or two or more kinds thereof may be contained.
  • Semi-aromatic refers to those having, for example, a fatty chain as part of the main chain.
  • the wholly aromatic polyamide may be para-type or meta-type.
  • the basis weight of the nonwoven fabric substrate (4) is preferably 6.0 ⁇ 20.0g / m 2, 8.0 ⁇ 18.0g / m 2 , more preferably, 10.0 ⁇ 16.0g / m 2 and more preferable. If it exceeds 20.0 g / m 2 , it may be difficult to reduce the thickness of the separator, and if it is less than 6.0 g / m 2 , it may be difficult to obtain sufficient strength.
  • the basis weight is measured based on the method defined in JIS P 8124 (paper and paperboard—basis weight measurement method).
  • the thickness of the nonwoven fabric substrate (4) is preferably 10 to 30 ⁇ m, more preferably 13 to 27 ⁇ m, and even more preferably 15 to 25 ⁇ m. If it is less than 10 ⁇ m, sufficient strength of the nonwoven fabric substrate may not be obtained. If it is thicker than 30 ⁇ m, it is difficult to make the separator thin. The thickness is measured with an outer micrometer having a minimum display amount of 0.001 mm as defined in JIS B7502-1994.
  • the nonwoven fabric substrates (1) to (4) of the present invention are preferably used for the production of a separator formed by coating a coating solution containing an inorganic pigment on a nonwoven fabric substrate.
  • the nonwoven fabric substrates (1) to (4) of the present invention are made of resin fine particles such as separators, polyethylene microporous membranes, and polypropylene microporous membranes, which are obtained by coating a nonwoven fabric substrate with a coating liquid containing organic particles.
  • the nonwoven fabric substrates (1) to (4) of the present invention are precursor sheets for lithium ion secondary battery separators.
  • Inorganic pigments include alumina, gibbsite, boehmite, magnesium oxide, magnesium hydroxide, silica, titanium oxide, barium titanate, zirconium oxide and other inorganic oxides, aluminum nitride and silicon nitride inorganic nitrides, aluminum compounds, zeolites And mica.
  • Organic particles include particles of polyethylene, polypropylene, polyacrylonitrile, polymethyl methacrylate, polyethylene oxide, polystyrene, polyvinylidene fluoride, ethylene-vinyl monomer copolymer, polyolefin wax, and the like.
  • the medium for preparing a coating liquid containing inorganic pigments and organic particles is not particularly limited as long as it can uniformly dissolve or disperse binders, inorganic pigments, organic particles, etc.
  • aromatic carbonization such as toluene Hydrogen, tetrahydrofuran such as tetrahydrofuran, ketones such as methyl ethyl ketone, alcohols such as isopropyl alcohol, N-methyl-2-pyrrolidone (NMP), dimethylacetamide, dimethylformamide, dimethyl sulfoxide, water, etc. are used as necessary. be able to. Moreover, you may mix and use these media as needed.
  • the medium to be used is preferably a medium that does not expand or dissolve the nonwoven fabric substrate.
  • Examples of methods for applying a coating liquid containing inorganic pigments and organic particles onto a nonwoven fabric substrate include various coating methods such as blades, rods, reverse rolls, lips, dies, curtains, and air knives, flexo, screen, and offset.
  • Various printing methods such as gravure and inkjet, transfer methods such as roll transfer and film transfer, pulling methods such as dipping, and the like can be selected and used as necessary.
  • the porous film is not particularly limited as long as it is a resin capable of forming a film, but polyolefin resins such as polyethylene resins and polypropylene resins are preferable.
  • the polyethylene resin include a resin of a single polyethylene resin such as ultra-low density polyethylene, low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, or ultra high density polyethylene.
  • the mixture of an ethylene propylene copolymer, a polyethylene-type resin, and another polyolefin resin is mentioned.
  • Polypropylene resins include homopropylene (propylene homopolymer), propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, etc. Examples thereof include a random copolymer or block copolymer with ⁇ -olefin.
  • the lithium ion secondary battery in the present invention is a general term for secondary batteries in which lithium ions in the electrolyte solution are responsible for electrical conduction.
  • Battery negative electrode active materials include natural graphite, artificial graphite, carbon materials such as hard carbon and coke; metal lithium; alloys of metals such as silicon, aluminum, tin, nickel and lead; lithium; lithium titanate, tin oxide Examples thereof include complex oxides of lithium and metal such as lithium silicate.
  • the positive electrode active material examples include lithium cobaltate, lithium manganate, lithium nickelate, lithium titanate, lithium nickel manganese oxide, etc .; transition metal and lithium composite oxide; olivine type lithium iron phosphate; nickel-cobalt-manganese -One or more transition metals such as lithium complex oxide, nickel-cobalt-manganese-lithium complex oxide, nickel-cobalt-aluminum-lithium complex oxide, iron-manganese-nickel-lithium complex oxide And lithium composite oxide, or one or more transition metals, one or more typical metals, and lithium composite oxide.
  • a solution obtained by dissolving a lithium salt in an organic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, dimethoxymethane, or a mixed solvent thereof is used.
  • the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ). If necessary, additives such as vinylene carbonate and boric acid esters may be added.
  • a gelled electrolytic solution obtained by dissolving a polymer such as polyethylene glycol or a derivative thereof, polymethacrylic acid derivative, polysiloxane or a derivative thereof, or polyvinylidene fluoride can be used.
  • a method for producing the nonwoven fabric substrates (1) to (4) a method can be used in which a nonwoven fabric is produced by forming a fiber web and bonding, fusing, or intertwining the fibers in the fiber web.
  • the obtained nonwoven fabric may be used as it is or may be used as a laminate comprising a plurality of sheets.
  • the method for producing the fiber web include a dry method such as a card method, an air lay method, a spun bond method, and a melt blow method; a wet method such as a paper making method; and an electrostatic spinning method.
  • the fiber web obtained by a wet method is homogeneous and dense, and can be suitably used as a nonwoven fabric substrate for a lithium ion secondary battery separator.
  • the wet method is a method in which fibers are dispersed in water to form a uniform papermaking slurry, and this papermaking slurry is obtained using a papermaking machine having at least one of a wire such as a circular net, a long net, and an inclined type to obtain a fiber web. is there.
  • a hydroentanglement method As a method for producing a nonwoven fabric from a fibrous web, a hydroentanglement method, a needle punch method, a binder adhesion method, or the like can be used.
  • a wet method when used with emphasis on uniformity, it is preferable to bond the PET fibers for the binder by performing a binder bonding method.
  • a uniform nonwoven fabric is formed from a uniform fiber web by the binder bonding method.
  • the thickness or make the thickness uniform it is preferable to adjust the thickness or make the thickness uniform by pressurizing the nonwoven fabric thus manufactured with a calendar or the like.
  • a lithium ion secondary battery separator having a thickness of 25 ⁇ m or less which is difficult to manufacture with high productivity due to wrinkles generated during coating and back-through of the coating liquid. It is possible to manufacture. In particular, it is also possible to produce a lithium ion secondary battery separator having a thickness of 22 ⁇ m or less. Of course, a lithium ion secondary battery separator having a thickness of more than 25 ⁇ m can also be easily manufactured. On the other hand, an extremely thin separator having a thickness of less than 10 ⁇ m is difficult to manufacture according to the present invention. The thickness is measured with an outer micrometer having a minimum display amount of 0.001 mm as defined in JIS B7502-1994.
  • PET fiber A2 for binder Single-component unstretched PET fiber (softening point 120 ° C., melting point 230 ° C.) having an average fiber diameter of 4.3 ⁇ m and a fiber length of 1.5 mm was designated as PET fiber A2 for binder.
  • PET fiber A3 for binder Single-component unstretched PET fiber (softening point 120 ° C., melting point 230 ° C.) having an average fiber diameter of 4.3 ⁇ m and a fiber length of 2.5 mm was designated as PET fiber A3 for binder.
  • PET fiber A4 for binder Single-component unstretched PET fibers (softening point 120 ° C., melting point 230 ° C.) having an average fiber diameter of 14.0 ⁇ m and a fiber length of 2.5 mm were designated as PET fibers A4 for binders.
  • PET fiber A5 for binder Single-component unstretched PET fiber (softening point 120 ° C., melting point 230 ° C.) having an average fiber diameter of 1.0 ⁇ m and a fiber length of 1.0 mm was designated as PET fiber A5 for binder.
  • PET fiber A6 for binder A core-sheath type heat-fusible PET fiber (sheath part melting point: 110 ° C., core part: 250 ° C.) having an average fiber diameter of 7.2 ⁇ m and a fiber length of 2.0 mm was designated as PET fiber A6 for binder.
  • PET fiber A7 for binder A single-component unstretched PET fiber (softening point 120 ° C., melting point 230 ° C.) having an average fiber diameter of 4.3 ⁇ m and a fiber length of 0.3 mm was designated as PET fiber A7 for binder.
  • PET fiber A8 for binder Single-component unstretched PET fibers (softening point 120 ° C., melting point 230 ° C.) having an average fiber diameter of 4.3 ⁇ m and a fiber length of 3.0 mm were used as PET fibers A8 for binders.
  • PET fiber A9 for binder Single-component unstretched PET fiber (softening point 120 ° C., melting point 230 ° C.) having an average fiber diameter of 15.0 ⁇ m and a fiber length of 2.5 mm was designated as PET fiber A9 for binder.
  • a papermaking slurry was prepared according to the fiber raw materials and fiber blending ratio shown in Table 1.
  • “B1” in Table 1 is a crystallized PET fiber having an average fiber diameter of 2.5 ⁇ m and a fiber length of 3 mm
  • “B2” is a crystallized PET fiber having an average fiber diameter of 3.2 ⁇ m and a fiber length of 3 mm
  • “B3” is a crystallized PET fiber having an average fiber diameter of 5.5 ⁇ m and a fiber length of 3 mm
  • “B4” is a crystallized PET fiber having an average fiber diameter of 7.8 ⁇ m and a fiber length of 5 mm
  • “C1” is a fineness of 0.75 dtex.
  • Wholly aromatic polyamide fiber having a fiber length of 3 mm (copoly (para-phenylene-3,4'-oxydiphenylene terephthalamide, copolymer (para-phenylene-3,4'-oxydiphenylethylene amide)), "C2" has a fineness 0.10 dtex, fiber length 3 mm acrylic fiber (acrylonitrile, methyl acrylate, methacrylic acid derivative It means consisting of components acrylonitrile copolymer).
  • Example 1 to 3, 5 to 13 Slurries 1 to 3, 5 to 12 and 14 were wet-made at a speed of 18 m / min using a circular net / tilted combination paper machine, and the nonwoven fabric bases of Examples 1 to 3, 5 to 12 and 14 shown in Table 2 were used.
  • a material was prepared. The thickness was determined by using a heat calender device having a configuration of metal roll-resin roll (Shore hardness D92) under the conditions of a metal roll temperature of 195 ° C., a linear pressure of 200 kN / m, a processing speed of 10 m / min, and a nip (nip). Adjustment was performed by performing a thermal calendar process.
  • a heat calender device having a configuration of metal roll-resin roll (Shore hardness D92) under the conditions of a metal roll temperature of 195 ° C., a linear pressure of 200 kN / m, a processing speed of 10 m / min, and
  • Example 4 Slurry 4 was subjected to wet paper making at a speed of 18 m / min using a circular mesh / tilted combination paper machine to produce a separator of Example 4 shown in Table 2.
  • the thickness was determined by using a heat calender device having a structure of metal roll-resin roll (Shore hardness D92) under the conditions of a metal roll temperature of 195 ° C., a linear pressure of 100 kN / m, a processing speed of 10 m / min, and a nip (nip). Adjustment was performed by performing a thermal calendar process.
  • Comparative Examples 1 and 3 Slurries 13 and 16 were subjected to wet paper making at a speed of 18 m / min using a circular net / tilted combination paper machine to produce separators of Comparative Examples 1 and 2 shown in Table 2.
  • the thickness was determined by using a heat calender device having a configuration of metal roll-resin roll (Shore hardness D92) under the conditions of a metal roll temperature of 195 ° C., a linear pressure of 200 kN / m, a processing speed of 10 m / min, and a nip (nip). Adjustment was performed by performing a thermal calendar process.
  • Comparative Example 2 Slurry 15 was subjected to wet paper making at a speed of 18 m / min using a circular mesh / tilted combination paper machine to produce a separator of Comparative Example 2 shown in Table 2.
  • the thickness was determined by using a heat calender device having a structure of metal roll-resin roll (Shore hardness D92) under the conditions of a metal roll temperature of 195 ° C., a linear pressure of 100 kN / m, a processing speed of 10 m / min, and a nip (nip). Adjustment was performed by performing a thermal calendar process.
  • the liquid retention rate is measured twice or more for one sample, and the average value of the measured values is “A” if it is 300% or more, “B” if it is 270% or more and less than 300%, and if it is less than 270%. Represented by “C”.
  • a 100% part by weight boehmite having a volume average particle size of 0.9 ⁇ m and a BET specific surface area of 5.5 m 2 / g is dispersed in 150 parts by weight of water. 75 parts by mass of a 2% by weight aqueous solution of methylcellulose sodium salt was added and mixed with stirring.
  • the coating liquid A is 47 g / m 2 as a liquid at a line speed of 30 m / min.
  • One side of the coating was applied.
  • the coated nonwoven fabric substrate was dried by blowing hot air at 90 ° C. with a floating air dryer directly connected to a reverse gravure coater to obtain a separator.
  • the separator was classified into the following three stages according to the state of occurrence of wrinkles when the separator was wound up by 500 m with a reeler.
  • Wrinkles are not observed during coating. ⁇ : Less wrinkling during coating. ⁇ : Many wrinkles occur during coating.
  • the nonwoven fabric substrates produced in Examples 1 to 13 are mainly composed of PET fibers, contain PET fibers for binders and crystallized PET fibers, and have a fiber length of 2.5 mm or less.
  • a lithium ion secondary battery separator coated with an inorganic pigment could be manufactured.
  • the nonwoven fabric base materials produced in Examples 1 to 11 mainly consist of PET, have an average fiber diameter of 14.0 ⁇ m or less, and have a fiber length of 0.5 to 2.5 mm. It is also a nonwoven fabric substrate (2) containing 21 to 60% by mass. Therefore, the elongation of the nonwoven fabric substrate is small, and the distribution of the PET fibers for binder in the nonwoven fabric substrate is uniform. Therefore, even when compared with the nonwoven fabric substrates prepared in Examples 12 to 13, Generation
  • the nonwoven fabric base material produced in Example 12 has a fiber length of the PET fibers for binders shorter than 0.5 mm, a slight dropout from the nonwoven fabric base material is seen, and the nonwoven fabric base material produced in Examples 1 to 11 However, the tensile strength was weakened.
  • the nonwoven fabric substrate produced in Example 13 has an average fiber diameter of 14.0 ⁇ m thicker than the PET fiber for the binder, so the number of fibers in the thickness direction is reduced, and the nonwoven fabric substrate produced in Examples 1 to 11 However, the tensile strength was weakened.
  • the nonwoven fabric base material produced in Comparative Example 1 has a fiber length of the PET fiber for the binder longer than 2.5 mm, the nonwoven fabric base material is easily stretched and entangled between the binder PET fibers, so wrinkles are included. Easy and inferior in productivity.
  • the non-woven fabric base material produced in Comparative Example 2 had a PET fiber for binder content of less than 10% by mass, so that wrinkles at the time of coating were likely to occur and the separator productivity was poor. Since the nonwoven fabric base material produced in Comparative Example 3 had a content of PET fiber for binder of more than 60% by mass, the melted component blocked the pores, resulting in poor liquid retention.
  • the nonwoven fabric base materials produced in Examples 1 to 11 will be compared. Since the nonwoven fabric substrate produced in Example 1 has a slightly short fiber length of the PET fiber for binder, the nonwoven fabric substrate produced in Example 4 has a slightly thick fiber diameter of the PET fiber for binder. Since the basis weight of the nonwoven fabric substrate produced in 9 was slightly low, the tensile strength was slightly weaker than that of the nonwoven fabric substrates produced in Examples 2, 3, 5 to 8, 10, and 11.
  • the nonwoven fabric base material produced in Example 8 has an average fiber diameter of 14.0 ⁇ m or less and a slightly higher content of PET fibers (I) for binders having a fiber length of 0.5 to 2.5 mm. As compared with the nonwoven fabric base materials produced in Examples 1 to 7 and 9 to 11, the liquid retention was slightly deteriorated.
  • the nonwoven fabric substrate produced in Example 3 has a slightly longer fiber length of the PET fiber for binder
  • the nonwoven fabric substrate produced in Example 4 has an average fiber diameter of 14.0 ⁇ m or less and a fiber length. Since the content of the PET fiber for binder having a thickness of 0.5 to 2.5 mm was slightly smaller, the wrinkles were slightly more likely to occur during coating than the nonwoven fabric substrates prepared in Examples 1, 2, and 5 to 11.
  • ⁇ PET fiber for binder (average fiber diameter 1.6 ⁇ m)>
  • a binder fiber having an average fiber diameter of 1.6 ⁇ m was produced by cutting a filament produced by eluting sea components from sea-island fibers into a predetermined length.
  • ⁇ PET fiber for binder (average fiber diameter 2.8 ⁇ m)>
  • a binder fiber having an average fiber diameter of 2.8 ⁇ m was produced by cutting a filament produced by eluting sea components from sea-island fibers into a predetermined length.
  • ⁇ PET fiber for binder (average fiber diameter 4.3 ⁇ m)>
  • a binder fiber having an average fiber diameter of 4.3 ⁇ m was produced by cutting a filament produced by a melt spinning method into a predetermined length.
  • ⁇ Crystalline PET fiber 24 Crystallized PET staple (softening point 250 ° C.) obtained by melt spinning and having a mean fiber diameter of 2.4 ⁇ m cut to a length of 3.0 mm was used as the stretched crystallized PET fiber 24.
  • Crystallized PET staple (softening point 250 ° C.) obtained by cutting a filament having an average fiber diameter of 1.6 ⁇ m produced by eluting sea components from sea-island fibers into a length of 3.0 mm is used as stretched crystallized PET fiber 16 It was.
  • ⁇ Crystalline PET fiber 43 > Crystallized PET staples (softening point 250 ° C.) prepared by melt spinning and having filaments with an average fiber diameter of 4.3 ⁇ m cut to a length of 3.0 mm were used as stretched crystallized PET fibers 43.
  • ⁇ Cellulose fiber> Using a double disk refiner, lyocell (solvent-spun cellulose) fibers beaten to a Canadian standard freeness of 50 mL were used.
  • ⁇ Aramid fiber> Para-aramid fibers beaten to a Canadian standard freeness of 250 mL using a double disc refiner were used.
  • Papermaking slurries were prepared according to the fiber raw materials and contents shown in Tables 4-5. These were made at a speed of 8 m / min using an inclined wire paper machine so that the basis weight after drying was 9.0 g / m 2 , dried by a cylinder dryer, and then a metal roll-resin roll (Shore hardness D92 ) With a metal roll temperature of 195 ° C., a linear pressure of 100 kN / m, a processing speed of 5 m / min, and a nip (nip) of a non-woven fabric base having a thickness of 13 ⁇ m. I got the material.
  • Non-volatile concentration of 40 containing 100 parts by mass of magnesium hydroxide having an average particle size of 1.0 ⁇ m, 1.5 parts by mass of styrene-butadiene latex, and 1.0 part by mass of sodium carboxymethylcellulose in the nonwoven fabric base materials of Examples and Comparative Examples
  • the coating solution of mass% was applied using a rod coater so that the coating amount after drying was 10 g / m 2 . At this time, black color image paper was used as the mount.
  • Tables 4 to 5 show the results of classification into the following four stages according to the amount of the coating liquid that has adhered to the black drawing paper used as the backing sheet through the nonwoven fabric substrate in the separator preparation.
  • a The coating liquid is not attached to the mount.
  • a lithium ion secondary battery for evaluation having a capacity of 30 mAh (electrode area: 15 cm 2 , positive electrode: lithium manganate, negative electrode: hard carbon, electrolyte: 1M lithium hexafluorophosphate (LiPF 6 ) using each separator produced.
  • Ethylene carbonate (EC) / diethyl carbonate (DEC) 3/7 (volume ratio) mixed solvent solution, pouch type battery) was prepared.
  • Tables 4 to 5 show the internal resistances obtained by the following (Equation 2) from the inter-terminal voltage E 0 after the battery was fully charged and the inter-terminal voltage E 1 immediately after discharging at 150 mA for 10 seconds.
  • the nonwoven fabric base materials produced in Examples 14 to 30 are mainly composed of PET fibers, contain PET fibers for binders and crystallized PET fibers, and 10 to 60 masses of PET fibers for binders having a fiber length of 2.5 mm or less. % Containing nonwoven fabric substrate (1). For this reason, wrinkles at the time of coating did not occur or even if they occurred, it was possible to correct by adjusting the lateral tension. On the other hand, since the nonwoven fabric base material of Comparative Example 4 contains only 5% by mass of the binder PET fibers, the nonwoven fabric base material of Comparative Example 5 has a fiber length of 3. 3% for the binder PET fibers. Since it was as long as 0 mm, wrinkles occurred and it was difficult to correct the wrinkles.
  • the nonwoven fabric base materials produced in Examples 14 to 21 are 10 to 30 masses of PET fiber (II) for binder having an average fiber diameter of 1.5 to 2.8 ⁇ m and a fiber length of 1.0 to 2.5 mm.
  • the nonwoven fabric substrate of Example 22 has a tensile strength of 400 N / m because the fiber diameter of the PET fiber for binder is as thin as 1.3 ⁇ m, which is lower than the nonwoven fabric substrate prepared in Examples 14-21.
  • the nonwoven fabric base material of Example 23 has a tensile strength of 420 N / m because the fiber diameter of the PET fiber for binder is as thick as 4.3 ⁇ m.
  • the nonwoven fabric base material prepared in Examples 14 to 21 Low Since the nonwoven fabric base material of Example 24 has a high content of PET fiber for binder as 40% by mass, the internal resistance of the lithium ion battery separator produced using this is 4.8 ⁇ .
  • Examples 14 to 21 It is high compared with the lithium ion battery separator produced using the nonwoven fabric substrate produced in 1.
  • the nonwoven fabric substrate of Example 25 has a tensile strength of 330 N / m because the fiber length of the binder PET fiber is as short as 0.5 mm, which is lower than that of the nonwoven fabric substrate produced in Examples 14-21.
  • the nonwoven fabric base materials of Example 26 and Example 27 contain fibers other than PET fibers in excess of 20% by mass, so that the tensile strengths are 300 and 280 N / m, respectively. Low compared to the nonwoven fabric substrate.
  • the fiber diameter of the crystallized PET fiber is as thin as 1.6 ⁇ m.
  • the internal resistance of the lithium ion battery separator produced using this is 4.8 ⁇ , and Examples 14 to 21 It is high compared with the non-woven fabric base material made in In the nonwoven fabric substrate of Example 29, the fiber diameter of the crystallized PET fiber is as thick as 4.3 ⁇ m, so that the coating liquid does not show through compared with the nonwoven fabric substrates prepared in Examples 14-21.
  • PET fiber A11 for binder Single-component unstretched PET fiber having an average fiber diameter of 0.5 ⁇ m and a fiber length of 0.5 mm containing 3,5-dicarbomethoxybenzenesulfonic acid and diethylene glycol as a copolymerization component (softening point 120 ° C., melting point 230 ° C. ) was designated as PET fiber A11 for binder.
  • PET fiber A12 for binder As a copolymerization component, a single-component unstretched PET fiber containing 3,5-dicarbomethoxybenzenesulfonic acid and diethylene glycol and having an average fiber diameter of 1.0 ⁇ m and a fiber length of 1.0 mm (softening point 120 ° C., melting point 230 ° C. ) was designated as PET fiber A12 for binder.
  • PET fiber A13 for binder As a copolymerization component, a single-component unstretched PET fiber containing 3,5-dicarbomethoxybenzenesulfonic acid and diethylene glycol and having an average fiber diameter of 2.0 ⁇ m and a fiber length of 2.0 mm (softening point 120 ° C., melting point 230 ° C. ) was designated as PET fiber A13 for binder.
  • PET fiber A14 for binder As a copolymerization component, a single-component unstretched PET fiber having an average fiber diameter of 4.3 ⁇ m and a fiber length of 3.0 mm containing 3,5-dicarbomethoxybenzenesulfonic acid and diethylene glycol (softening point 120 ° C., melting point 230 ° C. ) was designated as PET fiber A14 for binder.
  • PET fiber A15 for binder Single-component unstretched PET fiber having an average fiber diameter of 10.0 ⁇ m and a fiber length of 4.0 mm containing 3,5-dicarbomethoxybenzenesulfonic acid and diethylene glycol as a copolymerization component (softening point 120 ° C., melting point 230 ° C. ) was designated as PET fiber A15 for binder.
  • PET fiber A16 for binder Single-component unstretched PET fiber having an average fiber diameter of 14.0 ⁇ m and a fiber length of 5.0 mm containing 3,5-dicarbomethoxybenzenesulfonic acid and diethylene glycol as a copolymerization component (softening point 120 ° C., melting point 230 ° C. ) was designated as PET fiber A16 for binder.
  • ⁇ PET fiber a17 for binder> As a copolymer component, a single-component unstretched PET fiber (softening point 120 ° C., melting point 230 ° C.) having an average fiber diameter of 10.5 ⁇ m and a fiber length of 5.0 mm containing diethylene glycol was used as a binder PET fiber a17.
  • ⁇ PET fiber a18 for binder> As a copolymer component, a core-sheath type heat-fusible PET fiber (sheath part melting point: 110 ° C., core part: 250 ° C.) having an average fiber diameter of 10.1 ⁇ m and a fiber length of 5.0 mm containing diethylene glycol is used as a binder PET. It was set as fiber a18.
  • a papermaking slurry was prepared according to the fiber raw materials and fiber blending ratio shown in Table 6.
  • “B11” in Table 6 is a crystallized PET fiber having an average fiber diameter of 0.7 ⁇ m and a fiber length of 1.7 mm containing diethylene glycol as a copolymer component
  • “B12” is diethylene glycol as a copolymer component.
  • Examples 30 to 44 Slurries 17 to 31 were wet paper-made at a speed of 18 m / min using a circular net / tilted combination paper machine to prepare nonwoven fabric substrates of Examples 30 to 44 shown in Table 7.
  • the thickness was determined by using a heat calender device having a configuration of metal roll-resin roll (Shore hardness D92) under the conditions of a metal roll temperature of 195 ° C., a linear pressure of 200 kN / m, a processing speed of 10 m / min, and a nip (nip). Adjustment was performed by performing a thermal calendar process.
  • Comparative Example 6 The slurry 32 was subjected to wet papermaking at a speed of 18 m / min using a circular mesh / tilted combination paper machine to prepare a nonwoven fabric substrate of Comparative Example 6 shown in Table 7.
  • the thickness was determined by using a heat calender device having a configuration of metal roll-resin roll (Shore hardness D92) under the conditions of a metal roll temperature of 195 ° C., a linear pressure of 200 kN / m, a processing speed of 10 m / min, and a nip (nip). Adjustment was performed by performing a thermal calendar process.
  • Comparative Example 7 The slurry 33 was subjected to wet papermaking at a speed of 18 m / min using a circular mesh / tilted combination paper machine to produce a nonwoven fabric substrate of Comparative Example 7 shown in Table 7.
  • Comparative Example 8 The non-woven fabric substrate of Comparative Example 7 was subjected to a metal roll temperature of 195 ° C., a linear pressure of 200 kN / m, a processing speed of 10 m / min, and a 1 nip using a heat calender device having a metal roll-resin roll (Shore hardness D92). Thermal calendar treatment was performed under the conditions of (nip), and a nonwoven fabric substrate of Comparative Example 8 shown in Table 7 was produced.
  • the liquid retention rate is measured twice or more for one sample, and the average value of the measured values is “A” if it is 300% or more, “B” if it is 270% or more and less than 300%, and if it is less than 270%. Represented by “C”.
  • a 100% part by weight boehmite having a volume average particle size of 0.9 ⁇ m and a BET specific surface area of 5.5 m 2 / g is dispersed in 150 parts by weight of water. 75 parts by mass of a 2% by weight aqueous solution of methylcellulose sodium salt was added and mixed with stirring.
  • the coating liquid A is 47 g / m 2 as a liquid at a line speed of 30 m / min.
  • One side of the coating was applied.
  • the coated substrate was dried by blowing hot air at 90 ° C. with a floating air dryer directly connected to a reverse gravure coater to obtain a separator.
  • the nonwoven fabric substrates produced in Examples 30 to 44 contain PET fibers for binders mainly composed of PET and containing 3,5-dicarbomethoxybenzenesulfonic acid as a copolymerization component.
  • the nonwoven fabric base material produced in Comparative Example 6 does not contain PET fibers for binders containing 3,5-dicarbomethoxybenzenesulfonic acid as a copolymerization component.
  • the liquid retention was deteriorated.
  • the resistance of the separator was increased.
  • Comparative Example 7 since the nonwoven fabric base materials produced in Comparative Examples 7 and 8 do not contain a binder-use PET fiber containing 3,5-dicarbomethoxybenzenesulfonic acid as a copolymerization component, Comparative Example 7 before thermal calendering treatment was used. The strength of the nonwoven fabric base material was weak, and the nonwoven fabric base material of Comparative Example 8 after the thermal calendering treatment had poor liquid retention and increased separator resistance.
  • the nonwoven fabric substrate produced in Example 30 is a nonwoven fabric substrate because the fiber diameter of the PET fiber for binder containing 3,5-dicarbomethoxybenzenesulfonic acid as a copolymerization component is slightly thin and the fiber length is slightly short. Some of the fibers dropped out from the fabric, and the tensile strength was slightly weaker than the nonwoven fabric substrates of Examples 31 to 34 and 37 to 44.
  • the nonwoven fabric substrate produced in Example 35 has a slightly smaller number of fibers in the thickness direction because the fiber diameter of the PET fiber for binder containing 3,5-dicarbomethoxybenzenesulfonic acid as a copolymerization component is slightly thick. Thus, the tensile strength was slightly weaker than the nonwoven fabric substrates of Examples 31 to 34 and 37 to 44.
  • the nonwoven fabric substrate produced in Example 36 has a slightly lower content of PET fiber for binder containing 3,5-dicarbomethoxybenzenesulfonic acid as a copolymerization component, and the basis weight is slightly lower. Compared to 31-34 and 37-44 nonwoven fabric substrates, the tensile strength was slightly weaker.
  • the nonwoven fabric substrate produced in Example 41 has a slightly higher content of the PET fiber for the binder containing 3,5-dicarbomethoxybenzenesulfonic acid as a copolymerization component, so that the voids of the nonwoven substrate are blocked.
  • the liquid retention was slightly deteriorated and the resistance of the separator was slightly increased.
  • the nonwoven fabric base material produced in Example 43 is a copolymer of PET fiber for binder containing 3,5-dicarbomethoxybenzenesulfonic acid as a copolymerization component and 3,5-dicarbomethoxybenzenesulfonic acid as binder fibers.
  • PET for binders not contained as a component is used in combination, since the content of PET for binders not containing 3,5-dicarbomethoxybenzenesulfonic acid as a copolymerization component is slightly high, voids in the nonwoven substrate A blocked portion was observed, and the liquid retention was slightly deteriorated and the resistance of the separator was slightly increased as compared with the nonwoven fabric substrates of Examples 30 to 40, 42 and 44.
  • a nonwoven fabric base material for a lithium ion secondary battery separator is suitable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Paper (AREA)

Abstract

[要約] ポリエチレンテレフタレート繊維を主体としてなるリチウムイオン二次電池セパレータ用不織布基材において、該不織布基材がバインダー用ポリエチレンテレフタレート繊維と結晶化ポリエチレンテレフタレート繊維を含有し、繊維長が2.5mm以下のバインダー用ポリエチレンテレフタレート繊維を10~60質量%含有することを特徴とするリチウムイオン二次電池セパレータ用不織布基材。

Description

リチウムイオン二次電池セパレータ用不織布基材及びリチウムイオン二次電池セパレータ
 本発明は、リチウムイオン二次電池セパレータに用いる不織布基材及びリチウムイオン二次電池セパレータに関する。
 リチウムイオン二次電池(以下、「電池」と略記する場合がある)用のリチウムイオン二次電池セパレータ(以下、「セパレータ」と略記する場合がある)としては、従来、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂からなる多孔膜が用いられてきた。しかし、樹脂製多孔膜には、電池が異常発熱した場合に溶融・収縮し、正負極を隔離する機能が失われて、著しい短絡を生じる問題があった。
 電池が異常発熱した場合でも溶融・収縮を生じにくいセパレータとして、ポリエチレンテレフタレート(PET)繊維を含有してなるリチウムイオン二次電池セパレータ用不織布基材(以下、「不織布基材」と略記する場合がある)に各種の無機顔料を塗工してなるセパレータが提案されている(例えば、特許文献1~3参照)。
 特許文献1には、繊維径0.1~10μmの繊維を含有してなる不織布基材が記載されている。特許文献2には、結晶化PET繊維とバインダー用PET繊維を含有し、平均繊維径が3μm以下の短繊維を必須成分として含有する不織布基材が記載されている。そして、特許文献3には、結晶化PET繊維とバインダー用PET繊維を含有し、結晶化PET繊維として繊維長が2mm以下の繊維を含む不織布基材が記載されている。しかしながら、特許文献1~3の不織布基材では、厚みの薄いセパレータを製造しようとする場合、無機顔料を含む塗液を塗工する際に、不織布基材にシワが入りやすく、セパレータの生産性が落ちる問題があった。例えば、特許文献1の実施例(2a~2u)では、厚さ13μmの不織布基材を用いたセパレータを製造するために、不織布基材をベルトで支持して搬送する複雑な構成の装置を用い、8m/hrという極端に低いライン速度で、無機顔料を含む塗液を塗工している。また、塗液の裏抜けが生じる場合や、低い内部抵抗と高い引張強度の両立が困難な場合もあった。
 さらに、特許文献1~3のセパレータは、不織布基材の強度を上げるために、バインダー用PET繊維の溶融を進めると、バインダー用PET繊維が不織基材中の空隙を塞ぎ、保液性が悪化するという問題や、セパレータの抵抗が高くなるという問題が発生する場合があった。
特表2005-536857号公報 特開2009-230975号公報 特開2011-82148号公報
 本発明は、上記課題を解決しようとするものである。すなわち、リチウムイオン二次電池セパレータに用いる不織布基材において、無機顔料を含む塗液を塗工する際に、シワが入りにくく、セパレータの生産性の高いリチウムイオン二次電池セパレータ用不織布基材を提供しようとするものである。また、無機顔料を含む塗液を塗工する際に、塗液の裏抜けが生じにくく、かつ低い内部抵抗と高い引張強度を両立するリチウムイオン二次電池セパレータ用不織布基材を提供しようとするものである。さらに、強度が強く、保液性が良好であり、セパレータの抵抗を低くすることができるリチウムイオン二次電池セパレータ用不織布基材を提供しようとするものである。
 上記課題は、下記発明によって解決された。
(1)ポリエチレンテレフタレート繊維を主体としてなるリチウムイオン二次電池セパレータ用不織布基材において、該不織布基材がバインダー用ポリエチレンテレフタレート繊維と結晶化ポリエチレンテレフタレート繊維を含有し、繊維長が2.5mm以下のバインダー用ポリエチレンテレフタレート繊維を10~60質量%含有することを特徴とするリチウムイオン二次電池セパレータ用不織布基材。
(2)平均繊維径が14.0μm以下であり、かつ、繊維長が0.5~2.5mmのバインダー用ポリエチレンテレフタレート繊維を21~60質量%含有する(1)記載のリチウムイオン二次電池セパレータ用不織布基材。
(3)平均繊維径が1.5~2.8μmであり、かつ繊維長が1.0~2.5mmのバインダー用ポリエチレンテレフタレート繊維を10~30質量%含有し、該バインダー用ポリエチレンテレフタレート繊維と結晶化ポリエチレンテレフタレート繊維を合計で80~100質量%含有し、結晶化ポリエチレンテレフタレート繊維の平均繊維径が2.0~4.0μmである(1)記載のリチウムイオン二次電池セパレータ用不織布基材。
(4)ポリエチレンテレフタレート繊維を主体としてなるリチウムイオン二次電池セパレータ用不織布基材において、3,5-ジカルボメトキシベンゼンスルホン酸を共重合成分として含有するバインダー用ポリエチレンテレフタレート繊維を含有することを特徴とするリチウムイオン二次電池セパレータ用不織布基材。
(5)上記(1)~(4)のいずれかに記載のリチウムイオン二次電池セパレータ用不織布基材に、無機顔料を含む塗液を塗工する処理、有機粒子を含む塗液を塗工してなる処理、樹脂微多孔膜を積層する処理、静電紡糸法により微細繊維層を形成してなる処理、固体電解質やゲル状電解質を塗工する処理から選ばれる少なくとも1つの処理を施してなるリチウムイオン二次電池セパレータ。
 本発明の不織布基材によれば、無機顔料の塗液を塗工する際にシワが入りにくく、高い生産性で不織布基材に無機顔料を塗工したリチウムイオン二次電池セパレータを製造することができる。また、無機顔料を含む塗液を塗工する際に、塗液の裏抜けが生じにくく、かつ低い内部抵抗と高い引張強度を両立するリチウムイオン二次電池セパレータを製造することができる。さらに、強度が強く、保液性が良好なリチウムイオン二次電池セパレータ用不織布基材を提供することができる。
 すなわち、ポリエチレンテレフタレート(PET)繊維を主体としてなるリチウムイオン二次電池セパレータ用不織布基材がバインダー用PET繊維と結晶化PET繊維を含有し、繊維長が2.5mm以下のバインダー用PET繊維を10~60質量%含有することによって、不織布基材中のバインダー用PET繊維の本数が増え、不織布基材中に均一に分布させることができることから、塗工時にシワを入り難くすることができ、セパレータの生産性を向上させることができる。
 特に、平均繊維径が14.0μm以下であり、かつ、繊維長が0.5~2.5mmのバインダー用PET繊維を21~60質量%含有させることによって、不織布基材中のバインダー用PET繊維の本数が増え、不織布基材中に均一に分布させることができることから、塗工時にシワを入りにくくすることができ、セパレータの生産性を向上させるという効果を達成することができる。
 また、平均繊維径が1.5~2.8μmであり、かつ繊維長が1.0~2.5mmのバインダー用PET繊維を含有させることにより、バインダー用PET繊維の本数と1本当たりの結着力とが共に増加する。そのため、10~30質量%と言う少ない含有量で、十分に高い強度を発現することができ、その結果、低い内部抵抗が得られる。また、結晶化PET繊維の平均繊維径が2.0~4.0μmであることにより、適度に目の詰まった不織布基材となり、塗液の裏抜けが少なくなると共に、低い内部抵抗が得られる。
 また、PET繊維を主体としてなるリチウムイオン二次電池セパレータ用不織布基材が3,5-ジカルボメトキシベンゼンスルホン酸を共重合成分として含有するバインダー用PET繊維を含有させることによって、不織布基材中の空隙を過度に塞ぐことなく、繊維間を接着させることができ、保液性を悪化させることなく、強度の強いリチウムイオン二次電池セパレータ用不織布基材とすることができる。
<リチウムイオン二次電池セパレータ用不織布基材(1)>
 不織布基材(1)は、PET繊維を主体としてなり、バインダー用PET繊維と結晶化PET繊維を含有し、繊維長が2.5mm以下のバインダー用PET繊維を10~60質量%含有することを特徴としている。
 不織布基材(1)は、バインダー用PET繊維を含有する。バインダー用PET繊維の繊維長が2.5mmより長いと、不織布基材が伸びやすくなったり、バインダー用PET繊維同士が絡まりやすく、不織布基材中の分布が不均一となったりするため、塗工時にシワが入り易くなる場合や不織布基材の強度が弱くなる場合がある。バインダー用PET繊維の繊維長は、より好ましくは0.5~2.5mmであり、さらに好ましくは0.7~2.3mmであり、特に好ましくは1.0~2.0mmである。
 繊維長が2.5mm以下のバインダー用PET繊維の含有量は、10~60質量%である。10質量%より少ない場合、不織布基材の強度が弱くなったり、シワが入りやすくなったりする。60質量%より多い場合、溶融成分が不織布基材の細孔を塞ぎ、不織布基材の保液性が悪化する。また、内部抵抗が高くなる。繊維長が2.5mm以下のバインダー用PET繊維の含有量は、より好ましくは15~50質量%であり、さらに好ましくは20~40質量%であり、特に好ましくは25~35質量%である。
 バインダー用PET繊維の平均繊維径は、0.1~14.0μmであることが好ましい。平均繊維径が14.0μm以下の場合、厚さ方向における繊維本数が多くなるため、不織布基材の強度が強くなる。バインダー用PET繊維が細すぎると、不織布基材から脱落する場合があることから、バインダー用PET繊維の平均繊維径は0.1μm以上であることが好ましい。また、バインダー用PET繊維の平均繊維径は、より好ましくは1.0~13.0μmであり、さらに好ましくは1.5~10.0μmであり、特に好ましくは2.0~10.0μmである。
 ここで言う「平均繊維径」とは、不織布基材断面の走査型電子顕微鏡写真より、不織布基材を形成する繊維の等価円直径を20本計測したもののうち、小さい方から10本の平均値である。小さい方から10本の測定値のみを用いる理由は、繊維の長手方向に対して直角から大きく外れて切断された繊維に関する測定値を除外するためである。
 バインダー用PET繊維は、芯鞘型、偏芯型、サイドバイサイド型、海島型、オレンジ型、多重バイメタル型の複合繊維、あるいは単一成分タイプなどが挙げられるが、均一性を得るという点から特に単一成分タイプの熱融着繊維であることが好ましい。
 不織布基材(1)は、結晶化PET繊維を含有する。結晶化PET繊維の含有量は40~90質量%が好ましく、50~85質量%がより好ましく、60~80質量%がさらに好ましく、65~75質量%が特に好ましい。結晶化PET繊維の含有量が40質量%より少なくても、90質量%より多くても、不織布基材の強度が弱くなる場合がある。
 結晶化PET繊維の平均繊維径は0.1~10.0μmが好ましく、0.5~9.0μmがより好ましく、1.0~8.0μmがさらに好ましい。平均繊維径が0.1μm未満では、繊維が細すぎて、不織布基材から脱落する場合があり、平均繊維径が10.0μmより太いと、セパレータの薄膜化が難しくなる場合がある。
 結晶化PET繊維の繊維長は1~10mmが好ましく、2~7mmがより好ましく、3~5mmがさらに好ましい。繊維長が1mmより短いと、不織布基材の強度が弱くなることがあり、10mmより長いと、繊維がもつれてダマになり、厚みむらが生じる場合がある。
 不織布基材(1)はPET繊維を主体としてなる。不織布基材(1)において、「主体」とは、PET繊維の含有量が70質量%以上のことを言う。また、PET繊維以外の繊維を含有しても良い。例えば、溶剤紡糸セルロースや再生セルロースの短繊維やフィブリル化物;天然セルロース繊維;天然セルロース繊維のパルプ化物やフィブリル化物;ポリオレフィン、アクリル、全芳香族ポリエステル、全芳香族ポリエステルアミド、ポリアミド、半芳香族ポリアミド、全芳香族ポリアミド、全芳香族ポリエーテル、全芳香族ポリカーボネート、全芳香族ポリアゾメチン、ポリイミド、ポリアミドイミド(PAI)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)、ポリ-p-フェニレンベンゾビスオキサゾール(PBO)、ポリベンゾイミダゾール(PBI)、ポリテトラフルオロエチレン(PTFE)、エチレン-ビニルアルコール共重合体などの樹脂からなる単繊維や複合繊維、これらの樹脂からなる単繊維や複合繊維のフィブリル化物や分割物を含有しても良い。これらの繊維は、1種含有しても良いし、2種以上含有しても良い。半芳香族とは、主鎖の一部に例えば脂肪鎖などを有するものを指す。全芳香族ポリアミドはパラ型、メタ型いずれでも良い。
 不織布基材(1)の坪量は、6.0~20.0g/mが好ましく、8.0~18.0g/mがより好ましく、10.0~16.0g/mがさらに好ましい。20.0g/mを超えると、セパレータの薄膜化が難しい場合があり、6.0g/m未満であると、十分な強度を得ることが難しい場合がある。なお、坪量はJIS P 8124(紙及び板紙-坪量測定法)に規定された方法に基づき測定される。
 不織布基材(1)の厚みは10~30μmが好ましく、13~27μmがより好ましく、15~25μmがさらに好ましい。10μm未満では、十分な不織布基材の強度が得られない場合があり、30μmより厚いと、セパレータの薄膜化が難しくなる。なお、厚みは、JIS B7502-1994に定められる、最小表示量0.001mmの外側マイクロメータによって測定する。
<リチウムイオン二次電池セパレータ用不織布基材(2)>
 不織布基材(2)は、不織布基材(1)において、平均繊維径が14.0μm以下であり、かつ、繊維長が0.5~2.5mmのバインダー用PET繊維(以下、「バインダー用PET繊維(I)」と略記する場合がある)を21~60質量%含有することを特徴としている。
 ここで言う「平均繊維径」とは、不織布基材断面の走査型電子顕微鏡写真より、不織布基材を形成する繊維の等価円直径を20本計測したもののうち、小さい方から10本の平均値である。小さい方から10本の測定値のみを用いる理由は、繊維の長手方向に対して直角から大きく外れて切断された繊維に関する測定値を除外するためである。
 バインダー用PET繊維(I)の平均繊維径が14.0μm以下の場合、厚さ方向における繊維本数が多くなるため、不織布基材の強度が強くなる。バインダー用PET繊維(I)が細すぎると、不織布基材から脱落する場合があることから、バインダー用PET繊維(I)の平均繊維径は0.1μm以上であることが好ましい。また、バインダー用PET繊維(I)の平均繊維径は、より好ましくは1.0~13.0μmであり、さらに好ましくは2.0~10.0μmである。
 バインダー用PET繊維(I)の繊維長が0.5mmより短いと、繊維が不織布基材から脱落することがある。2.5mmより長いと、不織布基材が伸びやすくなったり、バインダー用PET繊維(I)同士が絡まりやすく、不織布基材中の分布が不均一となったりするため、塗工時にシワが入りやすくなる。バインダー用PET繊維(I)の繊維長は、より好ましくは0.7~2.3mmであり、さらに好ましくは1.0~2.0mmである。
 バインダー用PET繊維(I)の含有量が21質量%より少ない場合、不織布基材の強度が弱くなったり、シワが入りやすくなったりする。60質量%より多い場合、溶融成分が不織布基材の細孔を塞ぎ不織布基材の保液性が悪化する。バインダー用PET繊維(I)の含有量は、より好ましくは25~50質量%であり、さらに好ましくは30質量%超50質量%以下であり、特に好ましくは35~45質量%である。
 不織布基材(2)は、結晶化PET繊維を含有する。結晶化PET繊維の含有量は40~79質量%が好ましく、50~75質量%がより好ましく、50質量%以上70質量%未満がさらに好ましく、55~65質量%が特に好ましい。結晶化PET繊維の含有量が40質量%より少なくても、79質量%より多くても、不織布基材の強度が弱くなる場合がある。
 結晶化PET繊維の平均繊維径は0.1~10.0μmが好ましく、0.5~9.0μmがより好ましく、1.0~8.0μmがさらに好ましい。平均繊維径が0.1μm未満では、繊維が細すぎて、不織布基材から脱落する場合があり、平均繊維径が10.0μmより太いと、セパレータの薄膜化が難しくなる場合がある。
 結晶化PET繊維の繊維長は1~10mmが好ましく、2~7mmがより好ましく、3~5mmがさらに好ましい。繊維長が1mmより短いと、不織布基材の強度が弱くなることがあり、10mmより長いと、繊維がもつれてダマになり、厚みむらが生じる場合がある。
 不織布基材(2)は、バインダー用PET繊維(I)以外のバインダー用PET繊維を含有しても良いが、その含有量は20質量%以下が好ましい。含有量が20質量%を超えると、バインダー用PET繊維の溶融成分が不織布基材の細孔を塞ぎ、セパレータの抵抗が悪化することがある。
 バインダー用PET繊維は、芯鞘型、偏芯型、サイドバイサイド型、海島型、オレンジ型、多重バイメタル型の複合繊維、あるいは単一成分タイプなどが挙げられるが、均一性を得るという点から特に単一成分タイプの熱融着繊維であることが好ましい。
 不織布基材(2)の坪量は、6.0~20.0g/mが好ましく、8.0~18.0g/mがより好ましく、10.0~16.0g/mがさらに好ましい。20.0g/mを超えると、セパレータの薄膜化が難しい場合があり、6.0g/m未満であると、十分な強度を得ることが難しい場合がある。なお、坪量はJIS P 8124(紙及び板紙-坪量測定法)に規定された方法に基づき測定される。
 不織布基材(2)の厚みは10~30μmが好ましく、13~27μmがより好ましく、15~25μmがさらに好ましい。10μm未満では、十分な不織布基材の強度が得られない場合があり、30μmより厚いと、セパレータの薄膜化が難しくなる。なお、厚みは、JIS B7502-1994に定められる、最小表示量0.001mmの外側マイクロメータによって測定する。
<リチウムイオン二次電池セパレータ用不織布基材(3)>
 不織布基材(3)は、不織布基材(1)において、平均繊維径が1.5~2.8μmで、かつ繊維長が1.0~2.5mmのバインダー用PET繊維(以下、「バインダー用PET繊維(II)」と略記する場合がある)を10~30質量%含有し、バインダー用PET繊維(II)と結晶化PET繊維の合計で80~100質量%含有し、結晶化PET繊維の平均繊維径が2.0~4.0μmであることを特徴とする。
 ここで言う「平均繊維径」とは、不織布基材断面の走査型電子顕微鏡写真より、不織布基材を形成する繊維の等価円直径を20本計測したもののうち、小さい方から10本の平均値である。小さい方から10本の測定値のみを用いる理由は、繊維の長手方向に対して直角から大きく外れて切断された繊維に関する測定値を除外するためである。
 バインダー用PET繊維(II)の平均繊維径を2.8μm以下とすることで、バインダー用PET繊維の本数が多くなり、また、バインダー用PET繊維の比表面積も増大して結着力が向上し、30質量%以下という少ない含有量で十分な強度が得られる。ただし、不織布基材(3)において、繊維径が2.8μmを超えるバインダー用PET繊維が少量含まれていても、不織布基材(3)における効果に対し大きな影響は及ぼさない。ここにおける「少量」とは、不織布基材に対して15質量%以下である。
 また、バインダー用PET繊維(II)のように、細い平均繊維径のバインダー用PET繊維においては、繊維長が2.5mmを超える場合、バインダー用PET繊維同士が絡まり易くなり、不織布基材中のバインダー用PET繊維の分布が不均一になって結着力が低下し、やはり30質量%以下という少ない含有量では十分な強度が得られなくなる。ただし、不織布基材(3)において、繊維長が2.5mmを超えるバインダー用PET繊維が少量含まれていても、不織布基材(3)における効果に対し大きな影響は及ぼさない。ここにおける「少量」とは、不織布基材に対して10質量%以下である。
 バインダー用PET繊維(II)の平均繊維径が1.5μm以上であることによって、バインダー用PET繊維同士の絡まりを抑制することができ、不織布基材中のバインダー用PET繊維の分布を均一にすることができるので、結着力が向上し、30質量%以下という少ない含有量で十分な強度を得ることができる。ただし、不織布基材(3)において、繊維径が1.5μm未満であるバインダー用PET繊維が少量含まれていても、不織布基材(3)における効果に対し大きな影響は及ぼさない。ここにおける「少量」とは、不織布基材に対して5質量%以下である。
 また、バインダー用PET繊維(II)の繊維長が1.0mm以上であることによって、バインダー用PET繊維の不織布基材からの脱落を抑制でき、やはり30質量%以下という少ない含有量で十分な強度が得られる。このような観点より、バインダー用PET繊維(II)の繊維長は、1.5mm以上であることがより好ましい。ただし、不織布基材(3)において、繊維長が1.0mm未満であるバインダー用PET繊維が少量含まれていても、不織布基材(3)における効果に対し大きな影響は及ぼさない。ここにおける「少量」とは、不織布基材に対して5質量%以下である。
 バインダー用PET繊維(II)の含有量が10質量%より少ない場合、不織布基材の強度が弱くなる。このような観点より、バインダー用PET繊維(II)の含有量は、15質量%以上であることがより好ましい。また、バインダー用PET繊維(II)のように、平均繊維径が細いバインダー繊維の含有量が30質量%より多い場合、溶融成分が不織布基材の細孔を塞ぎ内部抵抗が高くなることがある。このような観点より、バインダー用PET繊維(II)の含有量は、30質量%以下であることが好ましく、25質量%以下であることがより好ましい。
 バインダー用PET繊維(II)としては、PET樹脂を島成分、アルカリ水溶液可溶型ポリエステル樹脂等の適切な溶剤可溶型樹脂を海成分として溶融紡糸された海島型繊維フィラメントから、海成分を溶出して得られる平均繊維径が1.5~2.8μmの繊維を、適切な切断装置を用いて繊維長1.0~2.5mmとなるように切断した単一成分型のバインダー用PET繊維ステープルを用いることができる。海島型繊維フィラメントをまず繊維長1.0~2.5mmとなるように切断してから海成分を溶出しても良い。平均繊維径が1.5~2.8μm、繊維長1.0~2.5mmであれば、前記の方法以外で製造された、芯鞘型、偏芯型、サイドバイサイド型、海島型、オレンジ型、多重バイメタル型の複合繊維、あるいは単一成分タイプのバインダー用PET繊維を用いることも可能である。
 不織布基材(3)は、バインダー用PET繊維(II)と結晶化PET繊維の合計で80~100質量%含有する。言い換えれば、バインダー用PET繊維(II)と結晶化PET繊維以外の繊維を含有しても良いが、その量は20質量%以下に限定される。バインダー用PET繊維(II)と結晶化PET繊維以外の繊維が20質量%を超えて含まれる場合には、バインダー用PET繊維(II)とそれ以外の繊維との間の結着力が低下するため、強度の高い不織布基材を得ることができない。このような観点より、不織布基材(3)は、バインダー用PET繊維(II)と結晶化PET繊維の合計で、90質量%以上を含有することがより好ましい。
 不織布基材(3)においては、結晶化PET繊維として、平均繊維径が2.0~4.0μmのものが用いられる。平均繊維径が2.0μm未満であると、不織布基材の目が詰まりすぎ、内部抵抗が高くなる。ただし、不織布基材(3)において、繊維径が2.0μm未満である結晶化PET繊維が少量含まれていても、不織布基材(3)における効果に対し大きな影響は及ぼさない。ここにおける「少量」とは、不織布基材に対し15質量%以下である。
 結晶化PET繊維の平均繊維径が4.0μmを超えると、不織布基材の目の詰まりが不十分になり、塗液の裏抜けが生じやすくなる。このような観点より、結晶化PET繊維の平均繊維径は、3.5μm以下であることがより好ましい。ただし、不織布基材(3)において、繊維径が4.0μmを超える結晶化PET繊維が少量含まれていても、不織布基材(3)における効果に対し大きな影響は及ぼさない。ここにおける「少量」とは、不織布基材に対して15質量%以下である。
 不織布基材(3)において、結晶化PET繊維の繊維長は、2.5~6.0mmであることが好ましい。結晶化PET繊維の繊維長が2.5mm未満であると、十分な引張強度が得られないことがあるし、6.0mmを超える場合には、繊維の絡みにより地合が悪化して、セパレータとしての使用に好ましくない影響を与える高厚み欠陥を生じることがある。
 不織布基材(3)の坪量は、6.0~12.0g/mが好ましい。6.0g/m未満であると、十分な強度を得ることが難しい場合がある。また12.0g/mを超えると、セパレータの薄膜化が難しい場合がある。なお、坪量はJIS P 8124(紙及び板紙-坪量測定法)に規定された方法に基づき測定される。
 不織布基材(3)の厚みは8~18μmが好ましい。8μm未満では、不織布基材(3)であっても、塗液の裏抜けが生じやすくなることがある。18μmより厚いと、内部抵抗が高くなることがある。なお、本発明において、不織布基材の厚みは、JIS B7502-1994に定められる、最小表示量0.001mmの外側マイクロメータによって測定する。
<リチウムイオン二次電池セパレータ用不織布基材(4)>
 不織布基材(4)は、PET繊維を主体としてなり、3,5-ジカルボメトキシベンゼンスルホン酸を共重合成分として含有するバインダー用PET繊維(以下、「バインダー用PET繊維(III)」と略記する場合がある)を含有する。
 バインダー用PET繊維(III)の平均繊維径は0.5~14.0μmであることが好ましく、1.0~13.0μmであることがより好ましく、2.0~10.0μmであることがさらに好ましい。平均繊維径が0.5μmより細いと、不織布基材から脱落する場合があり、14.0μmより太いと、厚さ方向における繊維本数が少なくなるため、不織布基材の強度が弱くなる場合がある。
 ここで言う「平均繊維径」とは、不織布基材断面の走査型電子顕微鏡写真より、不織布基材を形成する繊維の等価円直径を20本計測したもののうち、小さい方から10本の平均値である。小さい方から10本の測定値のみを用いる理由は、繊維の長手方向に対して直角から大きく外れて切断された繊維に関する測定値を除外するためである。
 バインダー用PET繊維(III)の繊維長は0.5~5.0mmであることが好ましく、0.7~4.0mmであることがより好ましく、1.0~3.0mmであることがさらに好ましい。繊維長が0.5mmより短いと、繊維が不織布基材から脱落する場合があり、5.0mmより長いと、繊維がもつれてダマになり、厚みむらが生じる場合がある。
 バインダー用PET繊維(III)の含有量は5~60質量%が好ましく、10~55質量%がより好ましく、20~50質量%がさらに好ましい。含有量が5質量%より少ないと、不織布基材の強度が弱くなる場合があり、60質量%より多いと、溶融成分が不織布基材の細孔を塞ぎ、不織布基材の保液性が悪化する場合や、セパレータの抵抗が高くなる場合がある。
 バインダー用PET繊維(III)は、均一性を得るという点から単一成分タイプの熱融着繊維であることが好ましい。
 バインダー用PET繊維(III)は3,5-ジカルボメトキシベンゼンスルホン酸以外の共重合成分として、アルキルグリコール及びその誘導体を含有しても良い。アルキルグリコール及びその誘導体として、ジエチレングリコールが好ましい。
 不織布基材(4)は、バインダー用PET繊維(III)以外に、結晶化PET繊維を含有することが好ましい。結晶化PET繊維の含有量は40~95質量%が好ましく、45~90質量%がより好ましく、50~80質量%がさらに好ましい。結晶化PET繊維の含有量が40質量%より少なくても、95質量%より多くても、不織布基材の強度が弱くなる場合がある。
 結晶化PET繊維の平均繊維径は0.5~10.0μmが好ましく、0.7~8.0μmがより好ましく、1.0~6.0μmがさらに好ましい。平均繊維径が0.5μm未満では、繊維が細すぎて、不織布基材から脱落する場合があり、平均繊維径が10.0μmより太いと、セパレータの薄膜化が難しくなる場合がある。
 結晶化PET繊維の繊維長は1~10mmが好ましく、2~7mmがより好ましく、3~5mmがさらに好ましい。繊維長が1mmより短いと、不織布基材の強度が弱くなることがあり、10mmより長いと、繊維がもつれてダマになり、厚みむらが生じる場合がある。
 不織布基材(4)は、バインダー用PET繊維(III)以外のバインダー用PET繊維を含有しても良いが、その含有量は20質量%以下が好ましい。含有量が20質量%を超えると、バインダー用PET繊維の溶融成分が不織布基材の空隙を塞ぎ、保液性が悪化することや、セパレータの抵抗が悪化することがある。
 不織布基材(4)はPET繊維を主体としてなる。「主体」とは、PET繊維の含有量が70質量%以上のことを言う。また、PET繊維以外の繊維を含有しても良い。例えば、溶剤紡糸セルロースや再生セルロースの短繊維やフィブリル化物;天然セルロース繊維;天然セルロース繊維のパルプ化物やフィブリル化物;ポリオレフィン、アクリル、全芳香族ポリエステル、全芳香族ポリエステルアミド、ポリアミド、半芳香族ポリアミド、全芳香族ポリアミド、全芳香族ポリエーテル、全芳香族ポリカーボネート、全芳香族ポリアゾメチン、ポリイミド、ポリアミドイミド(PAI)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)、ポリ-p-フェニレンベンゾビスオキサゾール(PBO)、ポリベンゾイミダゾール(PBI)、ポリテトラフルオロエチレン(PTFE)、エチレン-ビニルアルコール共重合体などの樹脂からなる単繊維や複合繊維、これらの樹脂からなる単繊維や複合繊維のフィブリル化物や分割物を含有しても良い。これらの繊維は、1種含有しても良いし、2種以上含有しても良い。半芳香族とは、主鎖の一部に例えば脂肪鎖などを有するものを指す。全芳香族ポリアミドはパラ型、メタ型いずれでも良い。
 不織布基材(4)の坪量は、6.0~20.0g/mが好ましく、8.0~18.0g/mがより好ましく、10.0~16.0g/mがさらに好ましい。20.0g/mを超えると、セパレータの薄膜化が難しい場合があり、6.0g/m未満であると、十分な強度を得ることが難しい場合がある。なお、坪量はJIS P 8124(紙及び板紙-坪量測定法)に規定された方法に基づき測定される。
 不織布基材(4)の厚みは10~30μmが好ましく、13~27μmがより好ましく、15~25μmがさらに好ましい。10μm未満では、十分な不織布基材の強度が得られない場合があり、30μmより厚いと、セパレータの薄膜化が難しくなる。なお、厚みは、JIS B7502-1994に定められる、最小表示量0.001mmの外側マイクロメータによって測定する。
<リチウムイオン二次電池セパレータ用不織布基材(1)~(4)及びリチウムイオン二次電池セパレータ>
 本発明の不織布基材(1)~(4)は、無機顔料を含む塗液を不織布基材に塗工してなるセパレータの製造に好ましく用いられる。これに加え、本発明の不織布基材(1)~(4)は、不織布基材に有機粒子を含む塗液を塗工してなるセパレータ、ポリエチレン微多孔膜、ポリプロピレン微多孔膜等の樹脂微多孔膜と不織布基材を積層してなるセパレータ、不織布基材上に、静電紡糸法により微細繊維層を形成してなるセパレータ、固体電解質やゲル状電解質を塗工してなるセパレータ等に用いることもできる。このように、本発明の不織布基材(1)~(4)は、リチウムイオン二次電池セパレータの前駆体シートである。
 無機顔料としては、アルミナ、ギブサイト、ベーマイト、酸化マグネシウム、水酸化マグネシウム、シリカ、酸化チタン、チタン酸バリウム、酸化ジルコニウムなどの無機酸化物、窒化アルミニウムや窒化珪素などの無機窒化物、アルミニウム化合物、ゼオライト、マイカなどが挙げられる。
 有機粒子としては、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、ポリメチルメタクリレート、ポリエチレンオキシド、ポリスチレン、ポリフッ化ビニリデン、エチレン-ビニルモノマー共重合体、ポリオレフィンワックスなどの粒子が挙げられる。
 無機顔料や有機粒子を含む塗液を調製するための媒体としては、バインダーや無機顔料、有機粒子等を均一に溶解又は分散できるものであれば特に限定されず、例えば、トルエンなどの芳香族炭化水素類、テトラヒドロフランなどのフラン類、メチルエチルケトンなどのケトン類、イソプロピルアルコールなどのアルコール類、N-メチル-2-ピロリドン(NMP)、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、水などを必要に応じて用いることができる。また、必要に応じてこれらの媒体を混合して用いても良い。なお、使用する媒体は、不織布基材を膨張あるいは溶解させないものが好ましい。
 無機顔料や有機粒子を含む塗液を不織布基材上に塗工する方法としては、例えばブレード、ロッド、リバースロール、リップ、ダイ、カーテン、エアーナイフ等各種の塗工方式、フレキソ、スクリーン、オフセット、グラビア、インクジェット等の各種印刷方式、ロール転写、フィルム転写などの転写方式、ディッピング等の引き上げ方式等を、必要に応じて選択して用いることができる。
 多孔質フィルムとしては、フィルムを形成できる樹脂であれば、特に制限はないが、ポリエチレン系樹脂及びポリプロピレン系樹脂と言ったポリオレフィン系樹脂が好ましい。ポリエチレン系樹脂としては、超低密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、又は超高密度ポリエチレンのようなポリエチレン系樹脂単独の樹脂が挙げられる。また、エチレンプロピレン共重合体、ポリエチレン系樹脂と他のポリオレフィン系樹脂との混合物なども挙げられる。ポリプロピレン系樹脂としては、ホモプロピレン(プロピレン単独重合体)、プロピレンとエチレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネン若しくは1-デセンなどのα-オレフィンとのランダム共重合体又はブロック共重合体などが挙げられる。
 本発明におけるリチウムイオン二次電池とは、電解液中のリチウムイオンが電気伝導を担う二次電池を総称したものである。電池の負極活物質としては、天然黒鉛、人造黒鉛、ハードカーボンやコークスなどの炭素材料;金属リチウム;珪素、アルミニウム、スズ、ニッケル、鉛等の金属とリチウムとの合金;チタン酸リチウム、酸化スズ、珪酸リチウム等の金属とリチウムの複合酸化物等が例示される。正極活物質としては、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、チタン酸リチウム、リチウムニッケルマンガン酸化物等、遷移金属とリチウムの複合酸化物;オリビン型リン酸鉄リチウム;ニッケル-コバルト-マンガン-リチウムの複合酸化物、ニッケル-コバルト-マンガン-リチウムの複合酸化物、ニッケル-コバルト-アルミニウム-リチウムの複合酸化物、鉄-マンガン-ニッケル-リチウムの複合酸化物等、1種以上の遷移金属とリチウムの複合酸化物、又は1種以上の遷移金属と1種以上の典型金属とリチウムの複合酸化物等が例示される。
 電池の電解液には、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメトキシメタン、これらの混合溶媒などの有機溶媒にリチウム塩を溶解させたものが用いられる。リチウム塩としては、六フッ化リン酸リチウム(LiPF)や4フッ化ホウ酸リチウム(LiBF)が挙げられる。必要に応じ、ビニレンカーボネート、ホウ酸エステル類等の添加剤が添加されていても差し支えない。また、ポリエチレングリコールやその誘導体、ポリメタクリル酸誘導体、ポリシロキサンやその誘導体、ポリフッ化ビニリデン等のポリマーを溶解させて、ゲル状にした電解液を用いることもできる。
 不織布基材(1)~(4)の製造方法としては、繊維ウェブを形成し、繊維ウェブ内の繊維を接着・融着・絡合させて不織布を製造する方法を用いることができる。得られた不織布は、そのまま使用しても良いし、複数枚からなる積層体として使用することもできる。繊維ウェブの製造方法としては、例えば、カード法、エアレイ法、スパンボンド法、メルトブロー法等の乾式法;抄紙法等の湿式法;静電紡糸法等がある。このうち、湿式法によって得られる繊維ウェブは、均質かつ緻密であり、リチウムイオン二次電池セパレータ用不織布基材として好適に用いることができる。湿式法は、繊維を水中に分散して均一な抄紙スラリーとし、この抄紙スラリーを円網、長網、傾斜式等のワイヤーの少なくとも1つを有する抄紙機を用いて、繊維ウェブを得る方法である。
 繊維ウェブから不織布を製造する方法としては、水流交絡法、ニードルパンチ法、バインダー接着法等を使用することができる。特に、均一性を重視して前記湿式法を用いる場合、バインダー接着法を施してバインダー用PET繊維を接着することが好ましい。バインダー接着法により、均一な繊維ウェブから均一な不織布が形成される。
 このようにして製造した不織布に対して、カレンダーなどによって加圧することによって、厚さを調整することや、あるいは厚さを均一化することが好ましい。特に、本発明により厚み25μm以下の薄いセパレータを製造しようとする場合、不織布に熱を加えながらカレンダーによって加圧することで、不織布基材の厚みを薄くすることが好ましい。ただし、バインダー用PET繊維が皮膜化しない温度(バインダー用PET繊維の融点又は軟化点よりも20℃以上低い温度)で加圧することが好ましい。
 本発明によれば、従来技術では、塗工時に発生するシワや、塗液の裏抜けのため、高い生産性で製造することが困難であった、厚み25μm以下のリチウムイオン二次電池セパレータを製造することが可能である。特に、厚み22μm以下のリチウムイオン二次電池セパレータを製造することも可能である。もちろん、厚み25μm超のリチウムイオン二次電池セパレータも容易に製造することができる。一方、厚み10μm未満といった極端に薄いセパレータは、本発明によっても製造が難しい。なお、厚みは、JIS B7502-1994に定められる、最小表示量0.001mmの外側マイクロメータによって測定する。
 以下、実施例により本発明をさらに詳しく説明するが、本発明は実施例に限定されるものではない。
≪実施例1~13、比較例1~3≫
<バインダー用PET繊維A1>
 平均繊維径4.3μm、繊維長0.5mmの単一成分型未延伸PET繊維(軟化点120℃、融点230℃)をバインダー用PET繊維A1とした。
<バインダー用PET繊維A2>
 平均繊維径4.3μm、繊維長1.5mmの単一成分型未延伸PET繊維(軟化点120℃、融点230℃)をバインダー用PET繊維A2とした。
<バインダー用PET繊維A3>
 平均繊維径4.3μm、繊維長2.5mmの単一成分型未延伸PET繊維(軟化点120℃、融点230℃)をバインダー用PET繊維A3とした。
<バインダー用PET繊維A4>
 平均繊維径14.0μm、繊維長2.5mmの単一成分型未延伸PET繊維(軟化点120℃、融点230℃)をバインダー用PET繊維A4とした。
<バインダー用PET繊維A5>
 平均繊維径1.0μm、繊維長1.0mmの単一成分型未延伸PET繊維(軟化点120℃、融点230℃)をバインダー用PET繊維A5とした。
<バインダー用PET繊維A6>
 平均繊維径7.2μm、繊維長2.0mmの芯鞘型熱融着性PET繊維(鞘部溶点:110℃、芯部:250℃)をバインダー用PET繊維A6とした。
<バインダー用PET繊維A7>
 平均繊維径4.3μm、繊維長0.3mmの単一成分型未延伸PET繊維(軟化点120℃、融点230℃)をバインダー用PET繊維A7とした。
<バインダー用PET繊維A8>
 平均繊維径4.3μm、繊維長3.0mmの単一成分型未延伸PET繊維(軟化点120℃、融点230℃)をバインダー用PET繊維A8とした。
<バインダー用PET繊維A9>
 平均繊維径15.0μm、繊維長2.5mmの単一成分型未延伸PET繊維(軟化点120℃、融点230℃)をバインダー用PET繊維A9とした。
 表1に示した繊維原料と繊維配合率に従って、抄紙用スラリーを調製した。ここで、表1中の「B1」は、平均繊維径2.5μm、繊維長3mmの結晶化PET繊維、「B2」は、平均繊維径3.2μm、繊維長3mmの結晶化PET繊維、「B3」は、平均繊維径5.5μm、繊維長3mmの結晶化PET繊維、「B4」は、平均繊維径7.8μm、繊維長5mmの結晶化PET繊維、「C1」は、繊度0.75dtex、繊維長3mmの全芳香族ポリアミド繊維(コポリ(パラ-フェニレン-3,4′-オキシジフェニレンテレフタルアミド、copoly(para-phenylene-3,4′-oxydiphenyleneterephthalic amide))、「C2」は、繊度0.10dtex、繊維長3mmのアクリル系繊維(アクリロニトリル、アクリル酸メチル、メタクリル酸誘導体の3成分からなるアクリロニトリル系共重合体)を意味する。
Figure JPOXMLDOC01-appb-T000001
<不織布基材>
(実施例1~3、5~13)
 スラリー1~3、5~12、14を円網・傾斜コンビネーション抄紙機を用いて、18m/minの速度で湿式抄紙し、表2に示す実施例1~3、5~12、14の不織布基材を作製した。厚みは、金属ロール-樹脂ロール(ショア硬度D92)の構成の熱カレンダー装置を使用して、金属ロール温度195℃、線圧200kN/m、加工速度10m/min、1ニップ(nip)の条件で熱カレンダー処理を行うことで調整した。
(実施例4)
 スラリー4を円網・傾斜コンビネーション抄紙機を用いて、18m/minの速度で湿式抄紙し、表2に示す実施例4のセパレータを作製した。厚みは、金属ロール-樹脂ロール(ショア硬度D92)の構成の熱カレンダー装置を使用して、金属ロール温度195℃、線圧100kN/m、加工速度10m/min、1ニップ(nip)の条件で熱カレンダー処理を行うことで調整した。
(比較例1および3)
 スラリー13、16を円網・傾斜コンビネーション抄紙機を用いて、18m/minの速度で湿式抄紙し、表2に示す比較例1~2のセパレータを作製した。厚みは、金属ロール-樹脂ロール(ショア硬度D92)の構成の熱カレンダー装置を使用して、金属ロール温度195℃、線圧200kN/m、加工速度10m/min、1ニップ(nip)の条件で熱カレンダー処理を行うことで調整した。
(比較例2)
 スラリー15を円網・傾斜コンビネーション抄紙機を用いて、18m/minの速度で湿式抄紙し、表2に示す比較例2のセパレータを作製した。厚みは、金属ロール-樹脂ロール(ショア硬度D92)の構成の熱カレンダー装置を使用して、金属ロール温度195℃、線圧100kN/m、加工速度10m/min、1ニップ(nip)の条件で熱カレンダー処理を行うことで調整した。
Figure JPOXMLDOC01-appb-T000002
[引張強度]
 実施例及び比較例の不織布基材を流れ方向に長辺がくるように50mm巾、200mm長に切り取り、試験片を卓上型材料試験機(商品名:STA-1150、(株)オリエンテック製)を用いて、つかみ間隔100mm、引張速度300mm/分の条件で伸長し、切断時の荷重値を引張強度とした。1試料について5ヶ所以上引張強度を測定し、全測定値の平均値を表3に示した。
[保液性]
 実施例及び比較例の不織布基材を100mm×100mmに切り取り、その質量(W1)を計測した後、試験片をプロピレンカーボネートに1分間浸し、1分間干した後の質量(W2)を計測し、保液率を下記(式1)により求めた。
(式1) 保液率(%)=(W2-W1)/W1×100
 保液率は、1試料について2回以上測定し、測定値の平均値について、300%以上であれば「A」、270%以上300%未満であれば「B」、270%未満であれば「C」で表した。
[塗工時のシワ]
 体積平均粒子径0.9μm、BET比表面積5.5m/gのベーマイト100質量部を、水150質量部に分散したものに、その1質量%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2質量%水溶液75質量部を添加・攪拌混合し、ガラス転移点-18℃、体積平均粒子径0.2μmのカルボキシ変性スチレン-ブタジエン共重合樹脂エマルション(固形分濃度50質量%)10質量部を添加・攪拌混合し、最後に調整水を加えて固形分濃度を25質量%に調整し、塗液Aを作製した。
 実施例及び比較例の不織布基材の樹脂ロール面に、塗工装置としてリバースグラビアコーターを用い、30m/minのライン速度にて、塗液Aを、液としての付着量が47g/mとなるように片面塗工した。塗工された不織布基材は、リバースグラビアコーターに直結されたフローティングエアドライヤーで、90℃の熱風を吹き付けて乾燥させ、セパレータを得た。「塗液時のシワ」の評価として、セパレータをリーラーで500m巻き取った際のシワの発生状況により、次の3段階に分類した。
○:塗工時のシワの発生は見られない。
△:塗工時のシワの発生が少ない。
×:塗工時のシワの発生が多い。
Figure JPOXMLDOC01-appb-T000003
 表3に示した通り、実施例1~13で作製した不織布基材は、PET繊維を主体としてなり、バインダー用PET繊維と結晶化PET繊維を含有し、繊維長が2.5mm以下のバインダー用PET繊維を10~60質量%含有している不織布基材(1)である。そのため、不織布基材の伸びが少ないこと、不織布基材中のバインダー用PET繊維の分布が均一であることから、塗工時のシワの発生を抑えることができ、高い生産性で不織布基材に無機顔料を塗工したリチウムイオン二次電池セパレータを製造することができた。
 実施例1~11で作製した不織布基材は、PETを主体としてなり、平均繊維径が14.0μm以下であり、かつ、繊維長が0.5~2.5mmのバインダー用PET繊維(I)を21~60質量%含有している不織布基材(2)でもある。そのため、不織布基材の伸びが少ないこと、不織布基材中のバインダー用PET繊維の分布が均一であることから、実施例12~13で作製した不織布基材と比較しても、塗工時のシワの発生を抑えることができ、高い生産性で不織布基材に無機顔料を塗工したリチウムイオン二次電池セパレータを製造することができた。実施例12で作製した不織布基材は、バインダー用PET繊維の繊維長が0.5mmより短いことから、不織布基材からの脱落が若干見られ、実施例1~11で作製した不織布基材よりも、引張強度が弱くなった。実施例13で作製した不織布基材は、バインダー用PET繊維の平均繊維径が14.0μmより太いことから、厚さ方向における繊維本数が少なくなり、実施例1~11で作製した不織布基材よりも、引張強度が弱くなった。
 比較例1で作製した不織布基材は、バインダー用PET繊維の繊維長が2.5mmより長いことから、不織布基材が伸びやすい上、バインダー用PET繊維同士のもつれが見られたため、シワが入りやすく、生産性に劣っていた。
 比較例2で作製した不織布基材は、バインダー用PET繊維の含有量が10質量%より少ないことから、塗工時のシワが入りやすく、セパレータの生産性に劣っていた。比較例3で作製した不織布基材は、バインダー用PET繊維の含有量が60質量%より多いことから、溶融成分が細孔を塞ぎ、保液性が悪化した。
 以下、実施例1~11で作製した不織布基材を比較する。実施例1で作製した不織布基材は、バインダー用PET繊維の繊維長がやや短いことから、実施例4で作製した不織布基材は、バインダー用PET繊維の繊維径がやや太いことから、実施例9で作製した不織布基材は、坪量がやや低いことから、実施例2、3、5~8、10、11で作製した不織布基材に比べ、やや引張強度が弱くなった。
 実施例8で作製した不織布基材は、平均繊維径が14.0μm以下であり、かつ、繊維長が0.5~2.5mmのバインダー用PET繊維(I)の含有量がやや多いことから、実施例1~7、9~11で作製した不織布基材に比べ、やや保液性が悪くなった。
 実施例3で作製した不織布基材は、バインダー用PET繊維の繊維長がやや長いことから、実施例4で作製した不織布基材は、平均繊維径が14.0μm以下であり、かつ、繊維長が0.5~2.5mmのバインダー用PET繊維の含有量がやや少ないことから、実施例1、2、5~11で作製した不織布基材に比べ、塗工時にややシワが入りやすかった。
≪実施例14~29、比較例4~5≫
<バインダー用PET繊維(平均繊維径1.3μm)>
 平均繊維径1.3μmのバインダー繊維は、海島繊維から海成分を溶出することで製造されたフィラメントを、所定の長さに切断することにより製造した。
<バインダー用PET繊維(平均繊維径1.6μm)>
 平均繊維径1.6μmのバインダー繊維は、海島繊維から海成分を溶出することで製造されたフィラメントを、所定の長さに切断することにより製造した。
<バインダー用PET繊維(平均繊維径2.8μm)>
 平均繊維径2.8μmのバインダー繊維は、海島繊維から海成分を溶出することで製造されたフィラメントを、所定の長さに切断することにより製造した。
<バインダー用PET繊維(平均繊維径4.3μm)>
 平均繊維径4.3μmのバインダー繊維は、溶融紡糸法で製造されたフィラメントを、所定の長さに切断することにより製造した。
<結晶化PET繊維24>
 溶融紡糸法で製造された、平均繊維径2.4μmのフィラメントを、長さ3.0mmに切断した結晶化PETステープル(軟化点250℃)を延伸結晶化PET繊維24として用いた。
<結晶化PET繊維16>
 海島繊維から海成分を溶出することで製造された平均繊維径1.6μmのフィラメントを、長さ3.0mmに切断した結晶化PETステープル(軟化点250℃)を延伸結晶化PET繊維16として用いた。
<結晶化PET繊維43>
 溶融紡糸法で製造された、平均繊維径4.3μmのフィラメントを、長さ3.0mmに切断した結晶化PETステープル(軟化点250℃)を延伸結晶化PET繊維43として用いた。
<セルロース繊維>
 ダブルディスクリファイナーを用いて、カナダ標準ろ水度50mLに叩解したリヨセル(溶剤紡糸セルロース)繊維を用いた。
<アラミド繊維>
 ダブルディスクリファイナーを用いて、カナダ標準ろ水度250mLに叩解したパラアラミド繊維を用いた。
<抄造>
 表4~5に示した繊維原料と含有量に従って、抄紙用スラリーを調製した。これらを、乾燥後の坪量が9.0g/mとなるように傾斜ワイヤー抄紙機を用いて8m/minの速度で抄造し、シリンダードライヤーによって乾燥し、金属ロール-樹脂ロール(ショア硬度D92)の構成の熱カレンダー装置を使用して、金属ロール温度195℃、線圧100kN/m、加工速度5m/min、1ニップ(nip)の条件で熱カレンダー処理を行って、厚み13μmの不織布基材を得た。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
<引張強度>
 実施例及び比較例の不織布基材を、流れ方向に長辺がくるように、50mm巾、200mm長に切り取り、試験片を卓上型材料試験機(商品名:STA-1150、(株)オリエンテック製)を用いて、つかみ間隔100mm、引張速度300mm/分の条件で伸長し、切断時の荷重値を引張強度とした。結果を表4~5に示す。
<シワ>
 塗工時のシワを模擬するため、以下の試験を行った。すなわち、実施例及び比較例の不織布基材を、幅250mmにスリットし、巻き出し速度3m/min、巻き出し張力5Nで送り出し、鉛直上方2mに設けたロールで水平方向に方向転換後、巻き取った。20m巻き取る間のシワの発生程度により、次の3段階に分類した。
○:シワが発生しない
△:時々シワが発生するが、横方向の張力を加えると消失する
×:常時シワが発生し、横方向の張力を加えてもすぐに再発する
<セパレータ>
 実施例及び比較例の不織布基材に、平均粒径1.0μmの水酸化マグネシウム100質量部、スチレン-ブタジエンラテックス1.5質量部、カルボキシメチルセルロースナトリウム1.0質量部を含む、不揮発分濃度40質量%の塗液を、乾燥後の塗工量が10g/mになるように、ロッドコーターを用いて塗工した。このとき、台紙としては黒色の色画用紙を用いた。
<塗液の裏抜け>
 前記のセパレータ作製において、台紙として用いた黒画用紙に、不織布基材を抜けて付着した塗液の量に応じて、次の4段階に分類した結果を表4~5に示す。
A 台紙に塗液が付着していない。
B 台紙に斑点状に塗液が付着した(付着面積10%未満)。
C 台紙に裏抜けした塗液が付着した(付着面積10%以上30%以下)。
D 台紙に裏抜けした塗液が大量に付着した(付着面積30%超)。
<内部抵抗>
 作製した各セパレータを用い、容量30mAhの評価用リチウムイオン二次電池(電極面積:15cm、正極:マンガン酸リチウム、負極:ハードカーボン、電解液:1M六フッ化リン酸リチウム(LiPF)の炭酸エチレン(EC)/炭酸ジエチル(DEC)=3/7(容量比)混合溶媒溶液、パウチ型電池)を作製した。この電池の満充電後の端子間電圧Eと、150mAで10秒間放電した直後の端子間電圧Eとより、下記(式2)によって求めた内部抵抗を表4~5に示す。
(式2) R=(E-E)/0.15
 実施例14~30で作製した不織布基材は、PET繊維を主体としてなり、バインダー用PET繊維と結晶化PET繊維を含有し、繊維長が2.5mm以下のバインダー用PET繊維を10~60質量%含有している不織布基材(1)である。そのため、塗工時のシワが発生しないか、又は発生しても、横方向の張力を調整することで是正することが可能であった。これに対して、比較例4の不織布基材は、バインダー用PET繊維を5質量%しか含有していないため、また、比較例5の不織布基材は、バインダー用PET繊維の繊維長が3.0mmと長いため、シワが発生し、シワの是正も困難であった。
 実施例14~21で作製した不織布基材は、平均繊維径が1.5~2.8μmで、かつ繊維長が1.0~2.5mmのバインダー用PET繊維(II)を10~30質量%含有し、バインダー用PET繊維(II)と結晶化PET繊維を合計で80~100質量%含有し、結晶化PET繊維の平均繊維径が2.0~4.0μmである不織布基材(3)でもある。そのため、引張強度が高く、これらの不織布基材に無機顔料を塗工する際の塗液裏抜けが少なく、得られたリチウムイオン電池セパレータ内部抵抗も4.4Ω以下と低い。
 実施例22の不織布基材は、バインダー用PET繊維の繊維径が1.3μmと細いため、引張強度が400N/mであり、実施例14~21で作製した不織布基材と比較して低い。また、実施例23の不織布基材は、バインダー用PET繊維の繊維径が4.3μmと太いため、引張強度が420N/mであり、実施例14~21で作製した不織布基材と比較して低い。実施例24の不織布基材は、バインダー用PET繊維の含有量が40質量%と多いため、これを用いて作製されたリチウムイオン電池セパレータの内部抵抗は4.8Ωであり、実施例14~21で作製した不織布基材を用いて作製されたリチウムイオン電池セパレータと比較して高い。実施例25の不織布基材は、バインダー用PET繊維の繊維長が0.5mmと短いため、引張強度が330N/mであり、実施例14~21で作製した不織布基材と比較して低い。実施例26、実施例27の不織布基材は、PET繊維以外の繊維が20質量%を超えて含有されているため、引張強度がそれぞれ300、280N/mであり、実施例14~21で作製した不織布基材と比較して低い。実施例28の不織布基材は、結晶化PET繊維の繊維径が1.6μmと細いため、これを用いて作製されたリチウムイオン電池セパレータの内部抵抗は4.8Ωであり、実施例14~21で作製した不織布基材と比較して高い。実施例29の不織布基材は、結晶化PET繊維の繊維径が4.3μmと太いため、実施例14~21で作製した不織布基材と比較して、塗液の裏抜けが悪い。
≪実施例30~44、比較例6~8≫
<バインダー用PET繊維A11>
 共重合成分として、3,5-ジカルボメトキシベンゼンスルホン酸とジエチレングリコールを含有する平均繊維径0.5μm、繊維長0.5mmの単一成分型未延伸PET繊維(軟化点120℃、融点230℃)をバインダー用PET繊維A11とした。
<バインダー用PET繊維A12>
 共重合成分として、3,5-ジカルボメトキシベンゼンスルホン酸とジエチレングリコールを含有する平均繊維径1.0μm、繊維長1.0mmの単一成分型未延伸PET繊維(軟化点120℃、融点230℃)をバインダー用PET繊維A12とした。
<バインダー用PET繊維A13>
 共重合成分として、3,5-ジカルボメトキシベンゼンスルホン酸とジエチレングリコールを含有する平均繊維径2.0μm、繊維長2.0mmの単一成分型未延伸PET繊維(軟化点120℃、融点230℃)をバインダー用PET繊維A13とした。
<バインダー用PET繊維A14>
 共重合成分として、3,5-ジカルボメトキシベンゼンスルホン酸とジエチレングリコールを含有する平均繊維径4.3μm、繊維長3.0mmの単一成分型未延伸PET繊維(軟化点120℃、融点230℃)をバインダー用PET繊維A14とした。
<バインダー用PET繊維A15>
 共重合成分として、3,5-ジカルボメトキシベンゼンスルホン酸とジエチレングリコールを含有する平均繊維径10.0μm、繊維長4.0mmの単一成分型未延伸PET繊維(軟化点120℃、融点230℃)をバインダー用PET繊維A15とした。
<バインダー用PET繊維A16>
 共重合成分として、3,5-ジカルボメトキシベンゼンスルホン酸とジエチレングリコールを含有する平均繊維径14.0μm、繊維長5.0mmの単一成分型未延伸PET繊維(軟化点120℃、融点230℃)をバインダー用PET繊維A16とした。
<バインダー用PET繊維a17>
 共重合成分として、ジエチレングリコールを含有する平均繊維径10.5μm、繊維長5.0mmの単一成分型未延伸PET繊維(軟化点120℃、融点230℃)をバインダー用PET繊維a17とした。
<バインダー用PET繊維a18>
 共重合成分として、ジエチレングリコールを含有する平均繊維径10.1μm、繊維長5.0mmの芯鞘型熱融着性PET繊維(鞘部溶点:110℃、芯部:250℃)をバインダー用PET繊維a18とした。
 表6に示した繊維原料と繊維配合率に従って、抄紙用スラリーを調製した。ここで、表6中の「B11」は、共重合成分として、ジエチレングリコールを含有する平均繊維径0.7μm、繊維長1.7mmの結晶化PET繊維、「B12」は、共重合成分として、ジエチレングリコールを含有する平均繊維径2.5μm、繊維長3.0mmの結晶化PET繊維、「B13」は、共重合成分として、ジエチレングリコールを含有する平均繊維径3.2μm、繊維長3.0mmの結晶化PET繊維、「B14」は、共重合成分として、ジエチレングリコールを含有する平均繊維径5.5μm、繊維長3.0mmの結晶化PET繊維、「B15」は、共重合成分として、ジエチレングリコールを含有する平均繊維径7.8μm、繊維長5mmの結晶化PET繊維、「C11」は、繊度0.75dtex、繊維長3mmの全芳香族ポリアミド繊維(コポリ(パラ-フェニレン-3,4′-オキシジフェニレンテレフタルアミド、copoly(para-phenylene-3,4′-oxydiphenyleneterephthalic amide))を意味する。
Figure JPOXMLDOC01-appb-T000006
<不織布基材>
(実施例30~44)
 スラリー17~31を円網・傾斜コンビネーション抄紙機を用いて、18m/minの速度で湿式抄紙し、表7に示す実施例30~44の不織布基材を作製した。厚みは、金属ロール-樹脂ロール(ショア硬度D92)の構成の熱カレンダー装置を使用して、金属ロール温度195℃、線圧200kN/m、加工速度10m/min、1ニップ(nip)の条件で熱カレンダー処理を行うことで調整した。
(比較例6)
 スラリー32を円網・傾斜コンビネーション抄紙機を用いて、18m/minの速度で湿式抄紙し、表7に示す比較例6の不織布基材を作製した。厚みは、金属ロール-樹脂ロール(ショア硬度D92)の構成の熱カレンダー装置を使用して、金属ロール温度195℃、線圧200kN/m、加工速度10m/min、1ニップ(nip)の条件で熱カレンダー処理を行うことで調整した。
(比較例7)
 スラリー33を円網・傾斜コンビネーション抄紙機を用いて、18m/minの速度で湿式抄紙し、表7に示す比較例7の不織布基材を作製した。
(比較例8)
 比較例7の不織布基材を、金属ロール-樹脂ロール(ショア硬度D92)の構成の熱カレンダー装置を使用して、金属ロール温度195℃、線圧200kN/m、加工速度10m/min、1ニップ(nip)の条件で熱カレンダー処理し、表7に示す比較例8の不織布基材を作製した。
Figure JPOXMLDOC01-appb-T000007
[引張強度]
 実施例及び比較例の不織布基材を流れ方向に長辺がくるように50mm巾、200mm長に切り取り、試験片を卓上型材料試験機(商品名:STA-1150、(株)オリエンテック製)を用いて、つかみ間隔100mm、引張速度300mm/分の条件で伸長し、切断時の荷重値を引張強度とした。1試料について5ヶ所以上引張強度を測定し、全測定値の平均値を求めた。引張強度が、700N/m以上であれば「A」、600N/m以上700N/m未満であれば「B」、600N/m未満であれば「C」で表し、表8に示した。
[保液性]
 実施例及び比較例の不織布基材を100mm×100mmに切り取り、その質量(W1)を計測した後、試験片をプロピレンカーボネートに1分間浸し、1分間干した後の質量(W2)を計測し、保液率を下記(式1)により求めた。
(式1) 保液率(%)=(W2-W1)/W1×100
 保液率は、1試料について2回以上測定し、測定値の平均値について、300%以上であれば「A」、270%以上300%未満であれば「B」、270%未満であれば「C」で表した。
[セパレータの作製]
 体積平均粒子径0.9μm、BET比表面積5.5m/gのベーマイト100質量部を、水150質量部に分散したものに、その1質量%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2質量%水溶液75質量部を添加・攪拌混合し、ガラス転移点-18℃、体積平均粒子径0.2μmのカルボキシ変性スチレン-ブタジエン共重合樹脂エマルション(固形分濃度50質量%)10部を添加・攪拌混合し、最後に調整水を加えて固形分濃度を25質量%に調整し、塗液Aを作製した。実施例及び比較例の不織布基材の樹脂ロール面に、塗工装置としてリバースグラビアコーターを用い、30m/minのライン速度にて、塗液Aを、液としての付着量が47g/mとなるように片面塗工した。塗工された基材は、リバースグラビアコーターに直結されたフローティングエアドライヤーで、90℃の熱風を吹き付けて乾燥させ、セパレータを得た。
[評価用電池の作製]
 前記の各セパレータを用い、正極にマンガン酸リチウム、負極にメソカーボンマイクロビーズ、電解液にヘキサフルオロリン酸リチウム(LiPF)の1mol/L炭酸ジエチル(DEC)/炭酸エチレン(EC)(容量比7/3)混合溶媒溶液を用いた設計容量30mAhの評価用電池を作製した。
[内部抵抗の評価]
 作製した各電池について、60mA定電流充電→4.2V定電圧充電(1時間)→60mAで定電流放電→2.8Vになったら次のサイクル のシーケンスにて、5サイクルの慣らし充放電を行った後、60mA定電流充電→4.2V定電圧充電(1時間)→6mAで30分間定電流放電(放電量3mAh)→放電終了直前の電圧を測定(電圧a)→60mA定電流充電→4.2V定電圧充電(1時間)→90mAで2分間定電流放電(放電量3mAh)→放電終了直前の電圧(電圧b)の測定を行い、内部抵抗を下記(式3)により求めた。結果を表8に記す。
(式3) 内部抵抗Ω=(電圧a-電圧b)/(90mA-6mA)
 A:内部抵抗4Ω未満
 B:内部抵抗4Ω以上5Ω未満
 C:内部抵抗5Ω以上
Figure JPOXMLDOC01-appb-T000008
 表8に示した通り、実施例30~44で作製した不織布基材は、PETを主体としてなり、3,5-ジカルボメトキシベンゼンスルホン酸を共重合成分として含有するバインダー用PET繊維を含有している不織布基材(4)である。よって、不織布基材の強度が強く、保液性に優れており、セパレータの抵抗も低く優れていた。
 一方、比較例6で作製した不織布基材は、3,5-ジカルボメトキシベンゼンスルホン酸を共重合成分として含有するバインダー用PET繊維を含有していないことから、バインダー繊維が不織基材中の空隙を塞ぎ、保液性が悪化した。また、セパレータの抵抗も高くなった。
 比較例7、8で作製した不織布基材は、3,5-ジカルボメトキシベンゼンスルホン酸を共重合成分として含有するバインダー用PET繊維を含有していないことから、熱カレンダー処理前の比較例7の不織布基材では強度が弱くなり、熱カレンダー処理後の比較例8の不織布基材では保液性が悪く、セパレータの抵抗も高くなった。
 実施例30で作製した不織布基材は、3,5-ジカルボメトキシベンゼンスルホン酸を共重合成分として含有するバインダー用PET繊維の繊維径がやや細く、繊維長がやや短いことから、不織布基材からの繊維の脱落が若干見られ、実施例31~34、37~44の不織布基材に比べ、引張強度がやや弱くなった。
 実施例35で作製した不織布基材は、3,5-ジカルボメトキシベンゼンスルホン酸を共重合成分として含有するバインダー用PET繊維の繊維径がやや太いことから、厚さ方向における繊維本数がやや少なくなり、実施例31~34、37~44の不織布基材に比べ、引張強度がやや弱くなった。
 実施例36で作製した不織布基材は、3,5-ジカルボメトキシベンゼンスルホン酸を共重合成分として含有するバインダー用PET繊維の含有量がやや少なく、さらに坪量がやや低いことから、実施例31~34、37~44の不織布基材に比べ、引張強度がやや弱くなった。
 実施例41で作製した不織布基材は、3,5-ジカルボメトキシベンゼンスルホン酸を共重合成分として含有するバインダー用PET繊維の含有量がやや多いことから、不織基材の空隙が塞がれた部分が見られ、実施例30~40、42、44の不織布基材に比べ、保液性がやや悪くなり、セパレータの抵抗もやや高くなった。
 実施例43で作製した不織布基材は、バインダー繊維として、3,5-ジカルボメトキシベンゼンスルホン酸を共重合成分として含有するバインダー用PET繊維と3,5-ジカルボメトキシベンゼンスルホン酸を共重合成分として含有しないバインダー用PETが併用されているが、3,5-ジカルボメトキシベンゼンスルホン酸を共重合成分として含有しないバインダー用PETの含有量がやや多いことから、不織基材の空隙が塞がれた部分が見られ、実施例30~40、42、44の不織布基材に比べ、保液性がやや悪くなり、セパレータの抵抗もやや高くなった。
 本発明の活用例としては、リチウムイオン二次電池セパレータ用不織布基材が好適である。

Claims (5)

  1.  ポリエチレンテレフタレート繊維を主体としてなるリチウムイオン二次電池セパレータ用不織布基材において、該不織布基材がバインダー用ポリエチレンテレフタレート繊維と結晶化ポリエチレンテレフタレート繊維を含有し、繊維長が2.5mm以下のバインダー用ポリエチレンテレフタレート繊維を10~60質量%含有することを特徴とするリチウムイオン二次電池セパレータ用不織布基材。
  2.  平均繊維径が14.0μm以下であり、かつ、繊維長が0.5~2.5mmのバインダー用ポリエチレンテレフタレート繊維を21~60質量%含有する請求項1記載のリチウムイオン二次電池セパレータ用不織布基材。
  3.  平均繊維径が1.5~2.8μmであり、かつ繊維長が1.0~2.5mmのバインダー用ポリエチレンテレフタレート繊維を10~30質量%含有し、該バインダー用ポリエチレンテレフタレート繊維と結晶化ポリエチレンテレフタレート繊維を合計で80~100質量%含有し、結晶化ポリエチレンテレフタレート繊維の平均繊維径が2.0~4.0μmである請求項1記載のリチウムイオン二次電池セパレータ用不織布基材。
  4.  ポリエチレンテレフタレート繊維を主体としてなるリチウムイオン二次電池セパレータ用不織布基材において、3,5-ジカルボメトキシベンゼンスルホン酸を共重合成分として含有するバインダー用ポリエチレンテレフタレート繊維を含有することを特徴とするリチウムイオン二次電池セパレータ用不織布基材。
  5.  請求項1~4のいずれかに記載のリチウムイオン二次電池セパレータ用不織布基材に、無機顔料を含む塗液を塗工する処理、有機粒子を含む塗液を塗工してなる処理、樹脂微多孔膜を積層する処理、静電紡糸法により微細繊維層を形成してなる処理、固体電解質やゲル状電解質を塗工する処理から選ばれる少なくとも1つの処理を施してなるリチウムイオン二次電池セパレータ。
PCT/JP2014/051780 2013-02-05 2014-01-28 リチウムイオン二次電池セパレータ用不織布基材及びリチウムイオン二次電池セパレータ WO2014123033A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14748767.2A EP2955773B1 (en) 2013-02-05 2014-01-28 Nonwoven substrate for lithium-ion secondary cell separator, and lithium-ion secondary cell separator
JP2014560728A JP6292626B2 (ja) 2013-02-05 2014-01-28 リチウムイオン二次電池セパレータ用不織布基材及びリチウムイオン二次電池セパレータ
CN201710524282.9A CN107248563B (zh) 2013-02-05 2014-01-28 锂离子二次电池分隔件用无纺布基材和锂离子二次电池分隔件
CN201480007528.XA CN104995765B (zh) 2013-02-05 2014-01-28 锂离子二次电池分隔件用无纺布基材和锂离子二次电池分隔件
US14/763,967 US9768430B2 (en) 2013-02-05 2014-01-28 Non-woven fabric base material for lithium ion secondary battery separator and lithium ion secondary battery separator
EP17173691.1A EP3246970B1 (en) 2013-02-05 2014-01-28 Non-woven fabric base material for lithium ion secondary battery separator and lithium ion secondary battery separator
US15/631,267 US10230087B2 (en) 2013-02-05 2017-06-23 Non-woven fabric base material for lithium ion secondary battery separator and lithium ion secondary battery separator

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-020308 2013-02-05
JP2013020308 2013-02-05
JP2013262265 2013-12-19
JP2013-262265 2013-12-19
JP2013-263275 2013-12-20
JP2013263275 2013-12-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/763,967 A-371-Of-International US9768430B2 (en) 2013-02-05 2014-01-28 Non-woven fabric base material for lithium ion secondary battery separator and lithium ion secondary battery separator
US15/631,267 Continuation US10230087B2 (en) 2013-02-05 2017-06-23 Non-woven fabric base material for lithium ion secondary battery separator and lithium ion secondary battery separator

Publications (1)

Publication Number Publication Date
WO2014123033A1 true WO2014123033A1 (ja) 2014-08-14

Family

ID=51299630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051780 WO2014123033A1 (ja) 2013-02-05 2014-01-28 リチウムイオン二次電池セパレータ用不織布基材及びリチウムイオン二次電池セパレータ

Country Status (5)

Country Link
US (2) US9768430B2 (ja)
EP (2) EP3246970B1 (ja)
JP (2) JP6292626B2 (ja)
CN (2) CN107248563B (ja)
WO (1) WO2014123033A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183111A (ja) * 2016-03-30 2017-10-05 旭化成株式会社 セパレータおよびその製造方法
KR20190039067A (ko) * 2016-06-07 2019-04-10 상하이 에너지 뉴 머티리얼스 테크놀로지 컴퍼니, 리미티드 고분자 전해질 막 및 이의 제조 방법
JP2019210567A (ja) * 2018-06-04 2019-12-12 帝人フロンティア株式会社 湿式不織布
JPWO2019049510A1 (ja) * 2017-09-11 2020-10-15 株式会社クラレ 非水電解質電池セパレータ用塗工液、並びに、それを用いた非水電解質電池用セパレータ及び非水電解質電池
US11342578B2 (en) 2017-05-15 2022-05-24 Lg Energy Solution, Ltd. Method for manufacturing solid electrolyte membrane for all solid type battery and solid electrolyte membrane manufactured by the method
JP7323728B1 (ja) * 2023-01-31 2023-08-08 大王製紙株式会社 湿式不織布を含む電磁波シールド用基材及び電磁波シールド材

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105977433A (zh) * 2016-05-26 2016-09-28 厦门大学 一种复合无纺布及其制备方法与在锂硫电池中的应用
JP6579383B2 (ja) * 2016-08-10 2019-09-25 荒川化学工業株式会社 リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用セパレータの製造方法、及びリチウムイオン二次電池
CN106876632A (zh) * 2017-01-12 2017-06-20 广东骏东科技有限公司 一种锂离子电池用陶瓷隔膜及其制备方法
CN112996958A (zh) * 2018-11-13 2021-06-18 日本宝翎株式会社 无纺布以及电化学元件用隔膜
WO2020189597A1 (ja) * 2019-03-20 2020-09-24 三菱製紙株式会社 リチウムイオン電池用セパレータ
JP7284286B2 (ja) * 2019-11-01 2023-05-30 帝人フロンティア株式会社 電池セパレータ用不織布および電池セパレータ
US20230216142A1 (en) * 2020-06-12 2023-07-06 Shenzhen Senior Technology Material Co., Ltd. Non-woven fabric and preparation method therefor, lithium battery diaphragm, and lithium battery diaphragm base membrane
CN112599925A (zh) * 2020-12-16 2021-04-02 宁波日新恒力科技有限公司 一种电池电容器用复合隔膜及其制备方法
CN118044049A (zh) 2021-10-29 2024-05-14 帝人芳纶有限公司 适用于锂离子电池中的隔膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536857A (ja) 2002-08-24 2005-12-02 デグサ アクチエンゲゼルシャフト 高エネルギーバッテリー中で使用するためのセパレータ並びにその製造方法
JP2009230975A (ja) 2008-03-21 2009-10-08 Mitsubishi Paper Mills Ltd リチウムイオン二次電池用基材
JP2010238448A (ja) * 2009-03-30 2010-10-21 Mitsubishi Paper Mills Ltd リチウムイオン二次電池用セパレータ
JP2011082148A (ja) 2009-09-09 2011-04-21 Mitsubishi Paper Mills Ltd リチウムイオン二次電池用基材及びリチウムイオン二次電池用セパレータ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217441A (en) * 1977-04-19 1980-08-12 E. I. Du Pont De Nemours And Company Modified polyester films
JPH07302584A (ja) * 1994-05-09 1995-11-14 Daicel Chem Ind Ltd 電池用セパレータ
US6096234A (en) * 1997-01-23 2000-08-01 Shin-Etsu Chemical Co., Ltd. Cross-linked polymer solid electrolyte, method of manufacturing cross-linked solid polymer electrolyte, composite solid electrolyte, and thin solid cell employing composite solid electrolyte
JPH10300314A (ja) * 1997-04-18 1998-11-13 Samsung Electron Co Ltd 冷気吐出口の開閉装置を備えた冷蔵庫
AU779797B2 (en) * 2000-03-07 2005-02-10 Teijin Limited Lithium ion secondary cell, separator, cell pack, and charging method
JP3878421B2 (ja) 2001-02-20 2007-02-07 松下電器産業株式会社 固体電解コンデンサ用セパレータ及び固体電解コンデンサ
FR2822296A1 (fr) * 2001-03-19 2002-09-20 Atofina Elements de batteries lithium-ion fabriques a partir d'une poudre microcomposite a base d'une charge et d'un fluoropolymere
JP4507500B2 (ja) * 2003-03-31 2010-07-21 パナソニック株式会社 電解コンデンサの製造方法
JP2004303940A (ja) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd 電解コンデンサ
JP4536625B2 (ja) * 2004-09-07 2010-09-01 パナソニック株式会社 電解コンデンサ用電解液及びそれを用いた電解コンデンサ
JP2006127890A (ja) 2004-10-28 2006-05-18 Teijin Fibers Ltd 電気化学素子用セパレータおよびそれよりなる電気化学素子
CN100415795C (zh) * 2006-06-23 2008-09-03 江苏江南高纤股份有限公司 碱溶性聚酯及其制备方法
JP2011187346A (ja) * 2010-03-10 2011-09-22 Mitsubishi Paper Mills Ltd リチウムイオン二次電池用基材
JP2012190622A (ja) * 2011-03-09 2012-10-04 Mitsubishi Paper Mills Ltd 電気化学素子用セパレータ及びそれを用いた電気化学素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536857A (ja) 2002-08-24 2005-12-02 デグサ アクチエンゲゼルシャフト 高エネルギーバッテリー中で使用するためのセパレータ並びにその製造方法
JP2009230975A (ja) 2008-03-21 2009-10-08 Mitsubishi Paper Mills Ltd リチウムイオン二次電池用基材
JP2010238448A (ja) * 2009-03-30 2010-10-21 Mitsubishi Paper Mills Ltd リチウムイオン二次電池用セパレータ
JP2011082148A (ja) 2009-09-09 2011-04-21 Mitsubishi Paper Mills Ltd リチウムイオン二次電池用基材及びリチウムイオン二次電池用セパレータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2955773A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183111A (ja) * 2016-03-30 2017-10-05 旭化成株式会社 セパレータおよびその製造方法
KR20190039067A (ko) * 2016-06-07 2019-04-10 상하이 에너지 뉴 머티리얼스 테크놀로지 컴퍼니, 리미티드 고분자 전해질 막 및 이의 제조 방법
KR102432479B1 (ko) 2016-06-07 2022-08-12 상하이 에너지 뉴 머티리얼스 테크놀로지 컴퍼니, 리미티드 고분자 전해질 막 및 이의 제조 방법
US11342578B2 (en) 2017-05-15 2022-05-24 Lg Energy Solution, Ltd. Method for manufacturing solid electrolyte membrane for all solid type battery and solid electrolyte membrane manufactured by the method
US11908993B2 (en) 2017-05-15 2024-02-20 Lg Energy Solution, Ltd. Method for manufacturing solid electrolyte membrane for all solid type battery and solid electrolyte membrane manufactured by the method
JPWO2019049510A1 (ja) * 2017-09-11 2020-10-15 株式会社クラレ 非水電解質電池セパレータ用塗工液、並びに、それを用いた非水電解質電池用セパレータ及び非水電解質電池
JP2019210567A (ja) * 2018-06-04 2019-12-12 帝人フロンティア株式会社 湿式不織布
JP7148280B2 (ja) 2018-06-04 2022-10-05 帝人フロンティア株式会社 湿式不織布
JP7323728B1 (ja) * 2023-01-31 2023-08-08 大王製紙株式会社 湿式不織布を含む電磁波シールド用基材及び電磁波シールド材

Also Published As

Publication number Publication date
CN104995765A (zh) 2015-10-21
CN107248563A (zh) 2017-10-13
JP6542343B2 (ja) 2019-07-10
US20150372269A1 (en) 2015-12-24
US20170288190A1 (en) 2017-10-05
CN107248563B (zh) 2022-03-15
EP3246970B1 (en) 2021-07-07
JPWO2014123033A1 (ja) 2017-02-02
EP2955773B1 (en) 2020-04-01
EP2955773A1 (en) 2015-12-16
EP2955773A4 (en) 2017-02-15
CN104995765B (zh) 2017-12-05
EP3246970A1 (en) 2017-11-22
JP6292626B2 (ja) 2018-03-14
US9768430B2 (en) 2017-09-19
US10230087B2 (en) 2019-03-12
JP2018081922A (ja) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6292626B2 (ja) リチウムイオン二次電池セパレータ用不織布基材及びリチウムイオン二次電池セパレータ
CN102986060B (zh) 锂离子二次电池用隔板及使用其而成的锂离子二次电池
JP5225173B2 (ja) リチウムイオン二次電池用セパレータ
JP6953413B2 (ja) リチウムイオン電池セパレータ用基材及びリチウムイオン電池セパレータ
WO2018074442A1 (ja) 電気化学素子用セパレータ及びそれを含む電気化学素子
JP2012155941A (ja) 電気化学素子用セパレータおよびそれを用いた電気化学素子
JP6408810B2 (ja) リチウム二次電池用セパレータ及びリチウム二次電池用セパレータの製造方法
JP6841706B2 (ja) リチウムイオン電池セパレータ
JP2020161243A (ja) リチウム二次電池セパレータ用不織布基材及びリチウム二次電池セパレータ
JP2012190622A (ja) 電気化学素子用セパレータ及びそれを用いた電気化学素子
JP2014053260A (ja) リチウムイオン二次電池用セパレータ基材、リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
JP6581512B2 (ja) リチウムイオン二次電池用セパレータ
JP2018206671A (ja) リチウムイオン電池セパレータ用基材及びリチウムイオン電池セパレータ
JP2013254570A (ja) リチウムイオン電池用セパレータ及びリチウムイオン電池
JP6018526B2 (ja) 金属イオン二次電池セパレータ
JP2019212492A (ja) リチウムイオン電池セパレータ及びリチウムイオン電池
JP2015046287A (ja) リチウムイオン二次電池用セパレータ及びそれを用いてなるリチウムイオン二次電池
JP2019207775A (ja) リチウムイオン電池セパレータ及びリチウムイオン電池
JP2019186128A (ja) 電気化学素子用セパレータ及び電気化学素子
JP2019212436A (ja) リチウムイオン電池セパレータ用基材及びリチウムイオン電池セパレータ
JP2019212403A (ja) リチウムイオン電池セパレータ用基材及びリチウムイオン電池セパレータ
JP2017174582A (ja) リチウムイオン二次電池用セパレータ及びそれを用いてなるリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560728

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14763967

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014748767

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE