WO2018161396A1 - 一种高选择性全脂环族聚酰胺纳滤膜及其制备方法 - Google Patents

一种高选择性全脂环族聚酰胺纳滤膜及其制备方法 Download PDF

Info

Publication number
WO2018161396A1
WO2018161396A1 PCT/CN2017/079628 CN2017079628W WO2018161396A1 WO 2018161396 A1 WO2018161396 A1 WO 2018161396A1 CN 2017079628 W CN2017079628 W CN 2017079628W WO 2018161396 A1 WO2018161396 A1 WO 2018161396A1
Authority
WO
WIPO (PCT)
Prior art keywords
alicyclic
nanofiltration membrane
full
acid chloride
mass fraction
Prior art date
Application number
PCT/CN2017/079628
Other languages
English (en)
French (fr)
Inventor
牛青山
远冰冰
袁涛
李鹏
孙海翔
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Priority to US16/033,413 priority Critical patent/US10780401B2/en
Publication of WO2018161396A1 publication Critical patent/WO2018161396A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the invention relates to the technical field of preparation of water treatment materials, in particular to a high selectivity full-aliphatic ring-shaped polyamide nanofiltration membrane and a preparation method thereof.
  • Membrane separation technology solves the growing water supply problem with a process intensive strategy. It has the advantages of using less raw materials, less energy consumption, smaller device size, and no pollution. It is considered to be a potential way.
  • Commonly used water treatment membranes are divided into microfiltration membrane, ultrafiltration membrane, nanofiltration membrane and reverse osmosis membrane; among them, nanofiltration membrane is also called “loose” reverse osmosis membrane, and its molecular weight cutoff is between 200-1000, and the pore diameter is Between 0.1 and 2 nm; since nanofiltration membranes can be “cut” depending on the molecular weight of the retentate, nanofiltration membranes are widely used in water softening, pharmaceuticals and dyes, food processing, wastewater and wastewater treatment and recycling, especially in Water softening, organic low molecular weight (relative molecular mass 200 ⁇ 1000) classification and concentration, organic matter desalination purification and concentration, industrial wastewater zero emissions and other aspects have unique advantages and obvious energy saving effects.
  • nanofiltration membranes With the deep application of nanofiltration membranes, especially the salt separation technology in the zero-discharge process in recent years puts forward higher requirements for the performance of nanofiltration membranes: finer pore size distribution, controllable thickness and high desalination selectivity. High-throughput nanofiltration membranes have become a new development direction. Improving the membrane forming process and synthesizing new interfacial polymerization monomers have become the main ideas for the preparation of a new generation of nanofiltration membranes.
  • polyamide-based nanofiltration membranes are prepared by classical interfacial polymerization based on TMC (p-benzenetricarboxylic acid chloride) and PIP (hydrous piperazine) monomers, and have a mixed structure of aromatic and alicyclic groups;
  • the specific preparation steps are as follows: first, the porous support is first immersed in the aqueous amine solution, and then the excess aqueous phase amine solution is removed by gas purging or roller sweeping, and then immersed in the oil phase acid chloride solution. In the middle, after 15 s - 5 min, a nanofiltration membrane having a thickness of 20-200 nm was prepared.
  • the traditional interfacial polymerization process has been able to prepare a nanofiltration membrane with excellent desalination performance, it cannot Surface polymerization and external (thickness, roughness, surface functionality) morphology, internal (chemical, molecular topology, molecular uniformity) regulation, while the external morphology and internal structure of the membrane on water flux, salt retention and The selectivity of water and salt is crucial; and the traditional interfacial polymerization method generally removes the residual water phase monomer and oil on the surface of the ultrafiltration membrane by roller sweep or gas purge during the removal of excess raw materials.
  • Phase monomer, the surface of the ultrafiltration membrane and the water-oil two-phase monomer distribution in the pore size are not uniform, due to the transient characteristics of the interfacial polymerization reaction, at this time, the interfacial polymerization is carried out in an uncontrollable manner (monomer diffusion-control mechanism) Further, the morphology and thickness of the resulting film are not uniform, which affects the desalination performance of the prepared nanofiltration membrane.
  • the retention rate of monovalent salt is often more than 30%, and the multivalent salt and the monovalent salt cannot be completely realized. Separation; this may be mainly determined by the spatial structure and reactivity of the monomer, because the existing commercial nanofiltration membrane basically adopts a rigid, coplanar aromatic acid chloride monomer and a twisted, non-coplanar structure nitrogen-containing heterocyclic ring.
  • the semi-aromatic polyamide nanofiltration membrane is prepared by interfacial polymerization of the alicyclic amine, and the formed membrane structure is tightly packed, and the micropore structure is narrowly distributed. Therefore, the flux is low and the salt separation effect is poor.
  • the object of the present invention is to provide a highly selective full-aliphatic cycloalkane nanofiltration membrane and a preparation method thereof for solving the existing nanofiltration membrane preparation.
  • the method is difficult to control, and the obtained nanofiltration membrane has low flux and poor selectivity.
  • a method for preparing a highly selective full-aliphatic cycloalkane nanofiltration membrane comprising:
  • the at least one alicyclic acid chloride solution and the at least one alicyclic amine solution are alternately uniformly coated on the porous support film by spin coating or static method for interfacial polymerization, and sequentially circulated to form at least one layer of full alicyclic polycondensation.
  • the amide nanofiltration membrane; the layer and the interlayer may be alternately spin-coated with the alicyclic acid chloride solution and the alicyclic amine solution, and the last spin coating solution may be an alicyclic amine monomer solution or an alicyclic acid chloride.
  • Monomer solution Layer layer assembly (multilayer interfacial reaction polymerization) nanofiltration membrane layer can be 1-10 layers; during the preparation process, an alicyclic acid chloride monomer solution and an alicyclic amine monomer solution can be used for the traditional interface.
  • Polymerization or active layer assembly (multilayer interfacial reaction polymerization) to prepare a nanofiltration membrane, or two or more alicyclic acid chloride monomers, and a mixed solution of two or more alicyclic amine monomers, may be used for mutual reaction.
  • a nanofiltration membrane is prepared by a single interfacial polymerization or active layer assembly (multilayer interfacial reaction polymerization).
  • the standing method is to statically coat the alicyclic acid chloride or cycloaliphatic amine solution on the porous support membrane or the multilayer alicyclic polyamide nanofiltration membrane for 2-300 s;
  • the spin coating method is to spin-coat an alicyclic acid chloride or alicyclic amine solution on a porous support membrane or a multilayer alicyclic nanofiltration membrane at 50 to 10000 rpm for 2 to 300 s.
  • the invention has the beneficial effects of preparing a nanofiltration membrane by using an alicyclic acid chloride and an alicyclic amine as a raw material, a twisted, non-coplanar structure of an alicyclic acid chloride monomer and a twisted, non-coplanar structure nitrogen-containing heterocyclic grease.
  • the cycloamine monomer is subjected to single interfacial polymerization or active layer assembly. Since both monomers have a non-coplanar and twisted structure, the nanofiltration membrane formed has a wide distribution of micropores, high throughput, and good
  • the monovalent salt permeability (the monovalent salt interception ⁇ 16%) and the retention of the divalent salt are more than 99%, and therefore, has an excellent salt separation effect.
  • the nanofiltration membrane is uniformly coated by the spin coating method, so that the monomer solution can be uniformly present in the micropores of the base film and the surface of the base film, so that the film formed by the interfacial polymerization has low roughness and uniform film thickness;
  • different spin-coating times and rotational speeds can control the distribution of the aqueous phase or oil phase monomer on the micropores of the base film and the surface or the surface of the active layer, thereby controlling the water phase monomer and the oil phase monomer on the surface of the base film.
  • the degree of surface polymerization of the active layer to achieve the control of the morphology, structure, composition and thickness of the nanofiltration membrane, thereby enabling the controllable preparation of the nanofiltration membrane, so that the obtained full-fat cycloalkane nanofiltration membrane can be Valence, monovalent selectivity and flux are regulated to achieve different properties of the "tailor-made" preparation of membrane materials.
  • the full-alicyclic cycloheptamide nanofiltration membrane prepared by the invention has a twisted structure, and the removal rate of the organic matter having a molecular weight of less than 800 g mol -1 can be up to 99% or more; the prepared nanofiltration membrane has a smoother texture.
  • the surface of the film has a surface roughness of 2 nm or less and an ultrathin film thickness of 50 nm or less.
  • the present invention can also be improved as follows:
  • the porous support is removed by spin coating.
  • Excess alicyclic acid chloride solution or cycloaliphatic amine solution on the surface of the membrane or on the multilayer alicyclic polyamide nanofiltration membrane is removed by spin coating at 3000-10000 rpm for 2 to 300 s.
  • the beneficial effects of adopting the above further technical solution are as follows: the aqueous phase and the oil phase monomer solution on the surface of the porous supporting membrane are removed by spin coating, so that the distribution of the amine monomer solution in the micropores and the surface of the porous supporting membrane is more uniform;
  • a layer of an alicyclic acid chloride monomer active molecule is uniformly coated on a porous support film or a multilayer alicyclic polyamide nanofiltration membrane by a standing method or a spin coating method, the acid chloride monomer molecule and the upper layer are The alicyclic amine monomer molecule undergoes interfacial polymerization on the molecular level.
  • the newly prepared full-fat cycloalkane nanofiltration membrane is subjected to spin coating force, its morphology,
  • the chemical composition and structure will change accordingly; in particular, during the assembly process of the active layer, the thickness, chemical composition and morphology of the fully alicyclic polyamide nanofiltration membrane prepared by different layer number adjustments will be Membrane properties such as selectivity, desalination rate and water flux regulation.
  • the method further comprises the steps of:
  • the whole cycloaliphatic nanofiltration membrane is washed with a low-boiling organic solvent, and after 15-60 s, it is rotated at 3000-10000 rpm for 40-60 s to remove the organic solvent, and then heat-treated at 50-90 ° C for 60 s - 10 min to obtain a high selection.
  • the concentration of the alicyclic acid chloride solution is from 0.01% by weight to 2% by weight, and the concentration of the alicyclic amine solution is from 0.01% by weight to 4% by weight.
  • the alicyclic acid chloride solution is composed of an alicyclic acid chloride, an oil phase solvent and an additive; wherein the alicyclic acid chloride is 0.01 to 2% by weight, the oil phase solvent is 96 to 99.98% by weight, and the additive is 0.01 to 2% by weight.
  • the oil phase solvent is one or a mixture of n-hexane, cyclohexane, cyclopentane, n-heptane, n-octane and iso-Par;
  • the cycloaliphatic amine solution is composed of an alicyclic amine, an aqueous phase solvent and an additive; wherein the alicyclic amine has a mass fraction of 0.01 to 4 wt%, and the aqueous phase solvent is 46 to 99.98 wt%, and the quality of the additive The fraction is from 0.01 to 50% by weight.
  • the alicyclic acid chloride solution is composed of an alicyclic acid chloride and an oil phase solvent, the alicyclic acid chloride has a mass fraction of 0.01 to 2%, and the oil phase solvent has a mass fraction of 98 to 99.9%.
  • the additive is a nanoparticle or an organic phenol or a cosolvent or a hydrophilic additive or a surfactant having a twisted space structure;
  • the nanoparticles are flake graphene, elongated single-walled or multi-walled nanotubes or organic spherical, cage or round porous molecules;
  • the organophenol having a twisted space structure is 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spirobifluorene or -9 - bisphenol, the phenolic structure has a large spatial structure, and can form a more twisted block copolymer of polyester and polyamide;
  • the co-solvent is acetone, polyol, organic phosphide or dimethylformamide;
  • the hydrophilic additive is a quaternary ammonium salt, an alkanolamine, camphorsulfonic acid or polyvinylpyrrolidone (PVP); the surfactant is PEG200, PEG400, PEG600.
  • A is an alicyclic group which is a four-membered ring, a five-membered ring, a six-membered ring, a seven-membered ring or an eight-membered ring; and R 1 , R 2 , R 3 and R 4 are -C(O)Cl- or The number of H,-C(O)Cl- is 3-6, and the two -C(O)Cl- groups are between ortho or meta;
  • the alicyclic acid chloride used is three or more "-COCl" attached to an alicyclic saturated hydrocarbon such as cyclobutane, cyclopentane or cyclohexane; and the alicyclic acid chloride of the present invention may be selected as 1, 2,3,4-cyclobutanetetracarboxylic acid chloride, 1,2,4,5-cyclohexyltetracarboxylic acid chloride, 1,3,5-cyclohexanetricarboxylic acid chloride, 1,2,4-cyclopentylformyl chloride, 1, One or more of 2,3,4-cyclopentatetrayl chloride and 1,2,3,4,5,6-cyclohexylhexacarbonyl chloride.
  • R 1 and R 2 are -(CH 2 ) n - or -NH-, n is 1-3; R 3 , R 4 , R 5 and R 6 are -NH 2 or CH 3 ; -NH-, - The number of NH 2 is 1-4; and, when -NH 2 is on the same side of the ring, both cis and trans conformations are included;
  • the alicyclic amine is a nitrogen-containing heterocyclic ring structure in which two or more "-NH-, -NH 2 " are bonded to an alicyclic saturated hydrocarbon or a substitute for the original alicyclic saturated hydrocarbon;
  • the alicyclic amine monomer may be 2,5-dimethylpiperazine, (1R, 2R)-(-)-1,2-diaminocyclohexane, 1,2-diaminocyclohexane One or more of 2,6-dimethylpiperazine, anhydrous piperazine, and cyclohexane-1,4-diamine.
  • the porous support membrane is an organic polymer ultrafiltration membrane or a hollow fiber ultrafiltration membrane or an inorganic ultrafiltration membrane material or an organic and inorganic hybrid porous support membrane;
  • the organic polymer ultrafiltration membrane is polysulfone, poly Ether sulfone, polyacrylonitrile or polyimide;
  • the inorganic ultrafiltration membrane material is a porous alumina or a porous ceramic membrane.
  • the invention adopts an alicyclic acid chloride and an alicyclic amine monomer to perform single-interface polymerization or active layer layer assembly (multi-layer interface reaction polymerization) in a convenient and controllable manner, thereby preparing high selectivity.
  • the full-aliphatic ring-shaped polyamide nanofiltration separation membrane with low surface roughness can obtain the retention ratio of Na 2 SO 4 and NaCl to 99% or more and 13% or less under a certain optimal condition.
  • the flux can reach 89.615kg m -2 h -1 Mpa -1 and 104.339kg m -2 h -1 Mpa -1 , which shows excellent bivalent/monovalent selectivity, and the flux is improved compared with the traditional interfacial polymerization method.
  • the rejection ratio of the semi-aromatic polyamide nanofiltration membrane to Cl -1 is about -19%, and the full-alicyclic cycloalkane nanofiltration membrane prepared by the invention
  • the retention rate of Cl -1 can reach above -38%, and has a very low monovalent salt rejection; the full-aliphatic polyamide nanofiltration membrane prepared by the invention is suitable for water softening, zero discharge of industrial wastewater treatment, biomedicine, etc. field.
  • Example 1 is a cross-sectional view of a full-alicyclic cycloalkane nanofiltration membrane prepared in Example 1 of the present invention
  • FIG. 2 is a cross-sectional view of a full-aliphatic ring-shaped polyamide nanofiltration membrane prepared by a conventional interfacial polymerization-plate method according to Comparative Example 1 of the present invention
  • Example 3 is a comparison of the desalination performance of the full-aliphatic ring-shaped polyamide nanofiltration membrane prepared by the conventional interfacial polymerization-plate and frame method and the spin coating method used in Example 1 of the present invention in Comparative Example 1;
  • Example 4 is a desalination performance of a full-fraction cycloaliphatic nanofiltration membrane of different layers prepared by spin coating according to Example 4 of the present invention
  • Fig. 5 is a graph showing the effect of the preparation of a full-alicyclic cycloheptamide nanofiltration membrane and a commercial semi-aromatic polyamide nanofiltration membrane on the mixed solutions of different concentrations of SO 4 2- and Cl -1 according to Example 1 of the present invention.
  • a method for preparing a highly selective full-aliphatic polyamide nanofiltration membrane comprising the following steps:
  • the alicyclic amine solution is decanted by rotating for 40 s; the alicyclic amine solution is composed of piperazine, an additive and an aqueous phase solvent, the additive is acetone, the aqueous phase solvent is water, and the mass fraction of piperazine is 1.5 wt%, acetone
  • the mass fraction is 0.1 wt%, and the mass fraction of the aqueous phase solvent is 98.4 wt%;
  • oil phase solvent composition wherein the oil phase solvent is n-hexane, the mass fraction of 1,3,5-cyclohexanetricarboxylic acid chloride is 0.15 wt%, and the mass fraction of the oil phase solvent is 99.85 wt%;
  • the whole lipocyclic nanofiltration membrane is prepared by the traditional interfacial polymerization method. Specifically, (1) the polyethersulfone ultrafiltration bottom membrane is first immersed in the aliphatic amine solution, and taken out after 120 s, the gas is purged by the ultrafiltration membrane. The surface is used to remove excess fatty amine solution from the membrane surface; the cycloaliphatic amine solution is composed of piperazine, an additive and an aqueous phase solvent, the additive is acetone, and the aqueous phase solvent is water, wherein the mass fraction of piperazine is 1.5 wt%. , the acetone mass fraction is 0.1 wt%, and the mass fraction of the aqueous phase solvent is 98.4 wt%;
  • FIG. 2 As a comparative example 1, a cross-sectional view thereof is shown in FIG. 2; as can be seen from FIG. 1 and FIG. 2, the conventional interfacial polymerization-plate-and-frame method and the full-aliphatic polyamide nanofiltration membrane prepared by the spin coating method have the same cross-sectional shape.
  • the appearance is composed of a porous support layer and an active layer; the desalination performance of the full-fat cycloalkane nanofiltration membrane prepared by the conventional interfacial polymerization-plate method and the spin coating method used in the first embodiment of the present invention is as shown in FIG. As shown in Fig.
  • the nanofiltration membrane prepared by the interfacial polymerization-spin coating method and the nanofiltration membrane prepared by the interfacial polymerization-plate method have the retention of Mg 2 SO 4 in the 5-30 s interfacial polymerization time.
  • the rate was maintained above 97%, and the nanofiltration membrane prepared by the interfacial polymerization-spin coating method increased the flux of the nanofiltration membrane prepared by the interfacial polymerization-plate method by 20-40% in different interfacial polymerization time.
  • the retention order of the different alicyclic polyamide nanofiltration membranes for different salts is Na 2 SO 4 ⁇ MgSO 4 ⁇ CaCl 2 ⁇ KCl ⁇ NaCl, as shown in Table 1, wherein The rejection of the divalent salt Na 2 SO 4 is above 98.97%, while the retention rates for the monovalent salts NaCl and KCl are 15.465% and 18.49%, respectively, reflecting excellent difference in monovalent and divalent selective permeability;
  • the flux sequence of the full alicyclic polyamide nanofiltration membrane for different salts is KCl>NaCl>Na 2 SO 4 ⁇ MgSO 4 ⁇ CaCl 2 , and the monovalent salt flux is greater than the divalent salt flux.
  • a method for preparing a highly selective full-aliphatic polyamide nanofiltration membrane comprising the following steps:
  • the full alicyclic polyamide nanofiltration membrane with graphene oxide added has lower monovalent salt retention and higher pass than the unfilled full alicyclic nanofiltration membrane.
  • the amount and the divalent salt interception remain unchanged; specifically, the rejection ratio of the graphene oxide-based full-aliphatic polyamide nanofiltration membrane to Na 2 SO 4 and NaCl is 98.90% and 12.525%, respectively, and the flux is 89.615, respectively.
  • 104.339kg m -2 h -1 MPa -1 compared with the full-aliphatic polyamide nanofiltration membrane without added graphene oxide, the flux of monovalent and divalent salts increased by 55% and 58%, respectively.
  • the interception of the price salt was reduced to 12.525%, and the divalent salt interception remained unchanged.
  • a method for preparing a highly selective full-aliphatic polyamide nanofiltration membrane comprising the following steps:
  • 1,2,3,4-cyclobutanetetracarboxylic acid chloride was used as a cycloaliphatic acid chloride solution to prepare a full-aliphatic ring-shaped polyamide nanofiltration membrane prepared by four active layer stacking operations for Na 2 SO 4 .
  • desalination performance test of NaCl as shown in Table 4 below:
  • the retention ratio of Na 2 SO 4 and NaCl to the full alicyclic polyamide nanofiltration membrane prepared by the active layer assembly is 98% and 15%, respectively, and the full alicyclic ring increases with the number of layers.
  • the retention of Na 2 SO 4 by the polyamide nanofiltration membrane increased from 86.35% to 98.51%, while the retention of NaCl remained basically unchanged from 12.84% to 15.01%.
  • the active layer The flux of the polyamide nanofiltration membrane prepared by layer assembly is also reduced, and the flux to Na 2 SO 4 is reduced from 90.20 kg m -2 h -1 MPa -1 to 72.40 kg m -2 h -1 MPa -1 .
  • the alicyclic polyamide nanofiltration membrane exhibits differential interception and flux, and the performance of the nanofiltration membrane can be regulated by the active layer assembly.
  • a method for preparing a highly selective full-aliphatic polyamide nanofiltration membrane comprising the following steps:
  • a alicyclic acid chloride solution is allowed to stand on the ultrafiltration bottom membrane prepared in the step (1) for 30 s, and then rotated by spin coating at 8000 rpm for 50 s to remove excess alicyclic acid chloride solution;
  • the alicyclic acid chloride solution is 1,2,3,4,5,6-cyclohexylhexacarbonyl chloride, oil phase solvent and additive composition, the additive is acetone, the oil phase solvent is n-heptane, among which 1, 2, 3, 4, 5, 6-ring
  • the mass fraction of hexaformyl chloride is 0.3 wt%, the mass fraction of acetone is 1 wt%, and the mass fraction of n-heptane is 98.7 wt%;
  • steps (1), (2), (3) which is a full-aliphatic polyacyl prepared by the active layer assembly method.
  • the amine nanofiltration membrane finally, it was placed in a 3 wt% isopropanol/water solution for 3 min, then placed at 90 ° C, and heat treated for 5 min to obtain a highly selective full-fat cycloalkane nanofiltration membrane product.
  • the full-aliphatic polyamide nanofiltration membrane prepared by the filter membrane compared with 1,2,3,4-cyclotetramethylene chloride has a lower flux and a high rejection, but the retention of NaCl remains substantially unchanged.
  • a method for preparing a highly selective full-aliphatic polyamide nanofiltration membrane comprising the following steps:
  • the alicyclic amine solution is composed of piperazine and an aqueous phase solvent, and the aqueous solvent is water.
  • the mass fraction of piperazine is 4wt%, the mass fraction of water is 96wt%;
  • the retention sequence of the full-alicyclic cycloheptamide nanofiltration membrane prepared from 1,2,3,4-cyclotetramethylene chloride for different salts is Na 2 SO 4 ⁇ MgSO 4 ⁇ CaCl 2 ⁇ KCl ⁇ NaCl, wherein the rejection of the monovalent salt is below 19%, and the divalent salt rejection is above 98%, maintaining a high monovalent and divalent selectivity; compared with Example 1, 1, 2, 3
  • the full-alicyclic cycloheptamide nanofiltration membrane prepared by 4-cyclobutyltetracarboxylic acid chloride has a high flux, and the Na 2 SO 4 flux can be 79.163 kg m -2 h -1 MPa -1 , which is an example. 1.27 times of 1.
  • a method for preparing a highly selective full-aliphatic polyamide nanofiltration membrane comprising the following steps:
  • the full-fat cycloalkane nanofiltration membrane to which reduced graphene oxide is added exhibits lower monovalent salt retention and higher pass than unadded.
  • the amount and the divalent salt interception remain basically unchanged; specifically, when the number of layers of the active layer is increased from 1 to 4, the retention of Na 2 SO 4 by the full-aliphatic nanofiltration membrane is not changed much.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polyamides (AREA)

Abstract

一种全脂环族聚酰胺纳滤膜及其制备方法。该方法包括:采用静置法或旋涂法在多孔支撑膜上交替均匀涂覆至少一种脂环族酰氯溶液与至少一种脂环族胺溶液进行界面聚合,形成至少一层全脂环族聚酰胺纳滤膜。该方法制备的全脂环族聚酰胺纳滤膜粗糙度低、厚度均匀,通量高,分盐效果好,适用于水软化、工业废水处理零排放等领域。

Description

一种高选择性全脂环族聚酰胺纳滤膜及其制备方法 技术领域
本发明涉及水处理材料制备技术领域,具体涉及一种高选择性全脂环族聚酰胺纳滤膜及其制备方法。
背景技术
膜分离技术以过程集约的策略解决日益增长的水供应问题,具有使用原料少、能源消耗少、装置尺寸小、无污染的优点,被认为是有潜力的方式。常用的水处理膜分为微滤膜、超滤膜、纳滤膜和反渗透膜;其中,纳滤膜又称“疏松性”反渗透膜,其截留分子量在200-1000之间,孔径在0.1-2nm之间;由于纳滤膜可依截留物质的不同分子量进行“切割”,故纳滤膜在水软化、医药和染料、食品加工、废水和污水处理及回收领域得到广泛应用,尤其在水软化、有机低分子(相对分子质量200~1000)的分级浓缩、有机物的除盐净化和浓缩、工业废水零排放等方面具有独特的优点和明显节能效果。
随着纳滤膜应用的深入,尤其是近年来零排放工艺中的分盐技术对纳滤膜的性能提出了更高要求:孔径尺度分布更加精细、形貌厚度可控、高的脱盐选择性、高通量的纳滤膜成为新的发展方向。改进制膜工艺、合成新的界面聚合单体成为制备新一代纳滤膜的主要思路。
目前,几乎所有聚酰胺基纳滤膜都基于TMC(均苯三甲酰氯)与PIP(无水哌嗪)单体通过经典的界面聚合反应制备而来,具有芳香族和脂环族的混合结构;具体制备步骤如下:即,先将多孔支撑体浸泡于水相胺溶液中,然后通过气体吹扫或滚轴推扫方式将表面多余的水相胺溶液除去,随后将其浸泡于油相酰氯溶液中,15s-5min后取出,即制备出厚度为20-200nm的纳滤膜。
尽管传统界面聚合工艺已可制备出脱盐性能优异的纳滤膜,但却不能对界 面聚合反应以及膜外部(厚度,粗糙度,表面官能度)形貌、内部(化学,分子拓扑,分子均匀性)进行调控,而膜的外部形貌和内部结构对水通量,盐截留及水与盐的选择性来讲又至关重要;并且传统界面聚合法在对于多余原料的去除过程中,一般以滚轴推扫或气体吹扫方式去除超滤膜表面残留水相单体和油相单体,超滤膜表面与孔径内的水油两相单体分布并不均匀,因界面聚合反应的瞬时特征,此时,界面聚合以不可控的方式(单体扩散-控制机制)进行,进而生成膜的形貌、厚度并不均一,影响制备纳滤膜的脱盐性能。
另一方面,尽管应用实践表明TMC与PIP单体制备的纳滤膜具有一定的截留精度,但一价盐(NaCl)的截留率往往大于30%,并不能实现多价盐与单价盐的彻底分离;这可能主要是由单体的空间结构与反应活性所决定,因为现有的商业纳滤膜基本采用刚性、共平面结构芳香族酰氯单体与扭曲、非共平面结构的含氮杂环脂环族胺进行界面聚合制备半芳香族聚酰胺纳滤膜,形成的膜结构堆叠紧密,微孔结构分布窄,因此,通量低,分盐效果差。
发明内容
为了解决现有纳滤膜分离现状与制备中存在的问题,本发明的目的是提供一种高选择性全脂环族聚酰胺纳滤膜及其制备方法,以解决现有的纳滤膜制备方法不易调控、得到的纳滤膜通量低、选择性差的问题。
本发明解决上述技术问题的技术方案如下:提供一种高选择性全脂环族聚酰胺纳滤膜的制备方法,包括:
采用旋涂法或静置法在多孔支撑膜上交替均匀涂覆至少一种脂环族酰氯溶液与至少一种脂环族胺溶液进行界面聚合,依次循环,形成至少一层全脂环族聚酰胺纳滤膜;层与层间可为脂环族酰氯溶液与脂环族胺溶液多次交替旋涂,最后一次旋涂溶液可为脂环族胺单体溶液,也可为脂环族酰氯单体溶液;活性 层层组装(多层界面反应聚合)纳滤膜层数可以为1-10层;制备过程中,可以采用一种脂环族酰氯单体溶液和一种脂环族胺单体溶液进行传统界面聚合或活性层层组装(多层界面反应聚合)制备纳滤膜,也可采用两种或多种脂环族酰氯单体,及两种或多种脂环族胺单体混合溶液,相互进行单次界面聚合或活性层层组装(多层界面反应聚合)制备纳滤膜。
其中,静置法为将脂环族酰氯或脂环族胺溶液在多孔支撑膜或多层脂环族聚酰胺纳滤膜上静置涂敷2-300s;
旋涂法为将脂环族酰氯或脂环族胺溶液在多孔支撑膜或多层脂环族聚酰胺纳滤膜上以50-10000rpm下旋转涂敷2-300s。
本发明的有益效果为:采用脂环族酰氯和脂环族胺为原料制备纳滤膜,扭曲、非共平面结构的脂环族酰氯单体与扭曲、非共平面结构的含氮杂环脂环族胺单体进行单次界面聚合或活性层层组装,由于两种单体均具有非共平面、扭曲结构,因此,形成的纳滤膜微孔结构分布较宽,具有高通量、好的一价盐透过性(一价盐截留〈16%)、保持二价盐截留在99%以上的特点,因此,具有极好的分盐效果。
同时,本发明采用旋涂法均匀涂敷制备纳滤膜,可使单体溶液均匀地存在于底膜微孔内及底膜表面,从而使界面聚合形成的膜粗糙度低且膜厚度均一;另一方面,不同的旋涂时间和转速可控制水相或油相单体在底膜微孔及表面或活性层表面的分布含量,进而控制水相单体和油相单体在底膜表面和活性层表面聚合反应的程度,实现纳滤膜形貌、结构、组成与厚度的控制,进而实现纳滤膜的可控制备,使制得的全脂环族聚酰胺纳滤膜能够对二价、一价选择性和通量进行调控,实现不同性能的“量体裁衣”式制备膜材料。
本发明制备的全脂环族聚酰胺纳滤膜由于具有扭曲的结构,对分子量低于 800g mol-1的有机物的脱除率最高可以达到99%或以上;制备的纳滤膜具有更加光滑的膜表面,其表面粗糙度在2nm以下,超薄的膜厚度,其膜厚在50nm以下。
在上述技术方案的基础上,本发明还可以做如下改进:
进一步,在单次界面聚合或活性层层组装过程中,还包括步骤:
当采用静置法或旋转涂敷法在多孔支撑膜上或多层脂环族聚酰胺纳滤膜上涂覆脂环族酰氯溶液或脂环族胺溶液后,再采用旋涂法除去多孔支撑膜表面上或多层脂环族聚酰胺纳滤膜上多余的脂环族酰氯溶液或脂环族胺溶液,以3000-10000rpm转速,旋涂2-300s将其甩出除去。
采用上述进一步技术方案的有益效果为:以旋涂法除去多孔支撑膜表面的水相和油相单体溶液,使多孔支撑膜微孔内与表面的胺单体溶液分布更加均匀;此外,在采用静置法或旋转涂敷法在多孔支撑膜上或多层脂环族聚酰胺纳滤膜上均匀涂敷一层脂环族酰氯单体活性分子时,酰氯单体分子与上一层的脂环族胺单体分子进行分子层面上界面聚合,此时,在旋转除去多余酰氯单体溶液的同时,新制备的全脂环族聚酰胺纳滤膜由于受到旋涂力,其形貌、化学组成和结构会发生相应改变;特别地,在活性层层组装过程中,通过不同的层数调控制备的全脂环族聚酰胺纳滤膜的厚度、化学组成和形貌,从而给于纳滤膜性能,如选择性、脱盐率与水通量的调控。
进一步,当形成全脂环族聚酰胺纳滤膜后,还包括步骤:
以低沸点有机溶剂洗涤全脂环族聚酰胺纳滤膜,15-60s后,以3000-10000rpm转速旋转40-60s以除去有机溶剂,再置于50-90℃热处理60s-10min,得到高选择性全脂环族聚酰胺纳滤膜;其中,低沸点有机溶剂为正己烷、环己烷、环戊烷、正庚烷、正辛烷和iso-Par中的一种或几种。
进一步,脂环族酰氯溶液的浓度为0.01wt%-2wt%,脂环族胺溶液的浓度为0.01wt%-4wt%。
进一步,所述脂环族酰氯溶液由脂环族酰氯、油相溶剂和添加剂组成;其中,脂环族酰氯为0.01-2wt%,油相溶剂为96-99.98wt%,添加剂为0.01-2wt%;所述油相溶剂为正己烷、环己烷、环戊烷、正庚烷、正辛烷和iso-Par中的一种或几种混合;
所述脂环族胺溶液由脂环族胺、水相溶剂和添加剂组成;其中,所述脂环族胺的质量分数为0.01-4wt%,水相溶剂为46-99.98wt%,添加剂的质量分数为0.01-50wt%。
进一步,所述脂环族酰氯溶液由脂环族酰氯和油相溶剂组成,所述脂环族酰氯的质量分数为0.01-2%,油相溶剂的质量分数为98-99.9%。
进一步,所述添加剂为纳米粒或具有扭曲空间结构的有机酚或共溶剂或亲水性添加剂或表面活性剂;
所述纳米粒为片状石墨烯、细长状单壁或多壁纳米管或有机球状、笼状或轮状多孔分子;
所述具有扭曲空间结构的有机酚为5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺二茚满或芴-9-双酚,该酚类结构具有较大的空间结构,可形成更加扭曲的聚酯与聚酰胺的嵌段共聚物;
所述共溶剂为丙酮、多元醇、有机磷化物或二甲基甲酰胺;
所述亲水性添加剂为季铵盐、醇胺、樟脑磺酸或聚乙烯吡咯烷酮(PVP);所述表面活性剂为PEG200、PEG400、PEG600。
进一步,所述脂环族酰氯的结构式为:
Figure PCTCN2017079628-appb-000001
其中,A为脂环族,其为四元环、五元环、六元环、七元环或八元环;R1、R2、R3、R4为-C(O)Cl-或H,-C(O)Cl-的个数为3-6个,两个-C(O)Cl-基团之间为邻位或间位;
所用脂环族酰氯为三个或三个以上“-COCl”连接在脂环族饱和烃上,如环丁烷、环戊烷或环己烷等;本发明可以选用脂环族酰氯为1,2,3,4-环丁四甲酰氯、1,2,4,5-环己四甲酰氯、1,3,5-环己三甲酰氯、1,2,4-环戊三甲酰氯、1,2,3,4-环戊四甲酰氯和1,2,3,4,5,6-环己六甲酰氯中的一种或多种。
进一步,所述脂环族胺的结构式为:
Figure PCTCN2017079628-appb-000002
其中,R1、R2为-(CH2)n-或-NH-,n为1-3;R3、R4、R5、R6为-NH2或CH3;-NH-、-NH2的个数为1-4;并且,-NH2在环同一侧时,包括顺式与反式两种构象;
所述脂环族胺为两个或两个以上“-NH-、-NH2”连接在脂环族饱和烃上或替代原有脂环族饱和烃的C,成为含氮杂环结构;其中,脂环族胺单体可以为2,5-二甲基哌嗪、(1R,2R)-(-)-1,2-二胺基环己烷、1,2-二胺基环己烷、2,6-二甲基哌嗪、无水哌嗪、环己烷-1,4-二胺中的一种或多种。
进一步,所述多孔支撑膜为有机高分子超滤膜或中空纤维超滤膜或无机超滤膜材料或有机与无机杂化的多孔支撑膜;所述有机高分子超滤膜为聚砜、聚醚砜、聚丙烯腈或聚酰亚胺;所述无机超滤膜材料为多孔氧化铝或多孔陶瓷膜。
本发明具有以下有益效果:
本发明通过采用脂环族酰氯与脂环族胺单体,以一种操作方便、可控的方 法进行单次界面聚合或活性层层组装(多层界面反应聚合),进而制备高选择性的、表面粗糙度低的全脂环族聚酰胺纳滤分离膜,在某一最优条件下,制备的纳滤膜对Na2SO4、NaCl的截留率分别可以达到99%以上及13%以下,通量可以达到89.615kg m-2h-1Mpa-1及104.339kg m-2h-1Mpa-1,体现出优异的二价/一价选择性,同时通量较传统界面聚合法提升可达50%;在测试一定浓度的混合盐溶液时,半芳香族聚酰胺纳滤膜对Cl-1的截留率为-19%左右,本发明制备的全脂环族聚酰胺纳滤膜对Cl-1的截留率可达到-38%以上,具有极低的一价盐截留率;本发明制备的全脂环族聚酰胺纳滤膜适用于水软化、工业废水处理零排放及生物医药等领域。
附图说明
图1为本发明实施例1制备得到的全脂环族聚酰胺纳滤膜截面形貌;
图2为本发明对比例1采用传统界面聚合-板框法制备的全脂环族聚酰胺纳滤膜的截面形貌;
图3为本发明对比例1采用传统界面聚合-板框法与本发明实施例1所采用的旋涂法制备的全脂环族聚酰胺纳滤膜在不同界面聚合时间的脱盐性能比较;
图4为本发明实施例4采用旋涂法制备的不同层数的全脂环族聚酰胺纳滤膜的脱盐性能;
图5为本发明实施例1制备得到全脂环族聚酰胺纳滤膜与商业化半芳香族聚酰胺纳滤膜对不同浓度SO4 2-和Cl-1混合溶液的截留效果。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1:
一种高选择性全脂环族聚酰胺纳滤膜的制备方法,包括以下步骤:
(1)采用旋涂法在聚醚砜超滤底膜上涂覆一层脂环族胺溶液,具体为,将哌嗪溶液在底膜上静置120秒,再采用旋涂法以10000rpm转速,旋转40s将脂环族胺溶液甩出;脂环族胺溶液由哌嗪、添加剂和水相溶剂组成,添加剂为丙酮,水相溶剂为水,其中哌嗪的质量分数为1.5wt%,丙酮的质量分数为0.1wt%,水相溶剂的质量分数为98.4wt%;
(2)再采用旋涂法在步骤(1)制得的旋涂了脂环族胺溶液的聚醚砜超滤膜上旋转涂覆一层脂环族酰氯溶液进行界面聚合,其中旋转涂敷时间为10s,转速300rpm,之后,再采用旋涂法以10000rpm转速,旋转40s以将多余的脂环族酰氯溶液甩出;所述脂环族酰氯溶液由1,3,5-环己三酰氯和油相溶剂组成,其中油相溶剂为正己烷,1,3,5-环己三酰氯的质量分数为0.15wt%,油相溶剂的质量分数为99.85wt%;
(3)以正己烷洗涤步骤(3)制备的全脂环族聚酰胺纳滤膜,15s后,以3000rpm转速旋转40s以除去正己烷,再置于50℃热处理60s,得到高选择性全脂环族聚酰胺纳滤膜制品,其截面图如图1所示。
对比例1
采用传统的界面聚合法制备全脂环族聚酰胺纳滤膜,具体为,(1)先将聚醚砜超滤底膜浸泡于脂肪族胺溶液中,120s后取出,气体吹扫超滤膜表面以赶走膜面多余的脂肪族胺溶液;脂环族胺溶液由哌嗪、添加剂和水相溶剂组成,添加剂为丙酮,水相溶剂为水,其中,哌嗪的质量分数为1.5wt%,丙酮质量分数为0.1wt%,水相溶剂的质量分数为98.4wt%;
(2)将1,3,5-环己三酰氯溶液浸泡在步骤(1)制得的表面含有哌嗪溶液的超滤底膜上,10s后取出;其中,油相溶剂为正己烷,1,3,5-环己三酰氯的质量 分数为0.15wt%,油相溶剂的质量分数为99.85wt%;
(3)以正己烷冲洗步骤(3)制备的全脂环族聚酰胺纳滤膜,冲洗时间15s,同样地,50℃热处理60s,即得全脂环族聚酰胺纳滤膜制品。
作为对比例1,其截面图如图2所示;由图1和图2可知,传统界面聚合-板框法与旋涂法制备的全脂环族聚酰胺纳滤膜具有相一致的截面形貌,由多孔支撑层与活性层组成;采用传统界面聚合-板框法与本发明实施例1所采用的旋涂法制备的全脂环族聚酰胺纳滤膜的脱盐性能比较图如图3所示,从图3中可以看出,在5-30s界面聚合时间内,界面聚合-旋涂法制备的纳滤膜与界面聚合-板框法制备的纳滤膜对Mg2SO4的截留率均维持在97%以上,且在不同的界面聚合时间内,界面聚合-旋涂法制备的纳滤膜较界面聚合-板框法制备的纳滤膜通量提升20-40%。
将实施例1制备的全脂环族聚酰胺纳滤膜与对比例1制备的全脂环族聚酰胺纳滤膜对各类盐的截留性能进行测试,具体如下表1和表2;
表1实施例1制备的全脂环族聚酰胺纳滤膜对盐截留性能
Figure PCTCN2017079628-appb-000003
表2对比例1制得的全脂环族聚酰胺纳滤膜对盐截留性能
Figure PCTCN2017079628-appb-000004
Figure PCTCN2017079628-appb-000005
从上述表1和表2中可以看出,全脂环族聚酰胺纳滤膜对不同盐的截留顺序为Na2SO4〉MgSO4〉CaCl2〉KCl〉NaCl,以表1为例,其中对二价盐Na2SO4的截留率98.97%以上,而对一价盐NaCl和KCl的截留率则分别为15.465%和18.49%,体现出优异的一价、二价选择透过性差异;在通量上,全脂环族聚酰胺纳滤膜对不同盐的通量顺序为KCl〉NaCl〉Na2SO4〉MgSO4〉CaCl2,一价盐通量大于二价盐通量,这是由于不同盐溶液的水合离子半径大小不同,由此造成渗透时膜两侧渗透压差不同所致;比较表1与表2可看出,界面聚合-旋涂法与界面聚合-板框法制备纳滤膜的截留率变化不大但通量前者较后者高。
实施例2:
一种高选择性全脂环族聚酰胺纳滤膜的制备方法,包括以下步骤:
(1)采用旋涂法在聚酰亚胺超滤底膜上涂覆一层脂环族胺溶液,具体为,将哌嗪和氧化石墨烯组成的脂环族胺混合溶液在底膜上以500rpm旋涂,时间为10s,再采用旋涂法以9000rpm转速,旋转30s以将脂环族胺溶液甩出除去;脂环族胺溶液由氧化石墨烯、哌嗪和水组成,其中,氧化石墨烯的质量分数为0.05wt%,哌嗪的质量分数为2wt%,水相溶剂的质量分数为97.95wt%;
(2)再采用旋涂法在步骤(1)制得的旋涂了脂环族胺溶液的聚酰亚胺超滤底膜上涂覆一层脂环族酰氯溶液进行界面聚合,具体为,将脂环族酰氯溶液在底膜上以500rpm旋涂,时间10s,再采用旋涂法以3000rpm转速,旋转40s以将多余的脂环族酰氯溶液甩出;脂环族酰氯溶液由1,2,4-环戊三甲酰氯和油相溶剂组成,油相溶剂为正庚烷,其中,1,2,4-环戊三甲酰氯质量分数为0.01wt%,正庚烷的质量分数为97.23wt%;
(3)以正己烷洗涤步骤(3)制备的全脂环族聚酰胺纳滤膜,60s后,以10000rpm转速旋转60s以除去正己烷,再置于90℃热处理2min,得到高选择性全脂环族聚酰胺纳滤膜制品。
对该实施例中采用氧化石墨烯作为水相添加剂制备得到的全脂环族聚酰胺纳滤膜的脱盐性能进行测试,具体如下表3:
表3氧化石墨烯作为水相添加剂对脱盐性能的影响
Figure PCTCN2017079628-appb-000006
从上表中可以看出,添加有氧化石墨烯的全脂环族聚酰胺纳滤膜较未添加的全脂环族聚酰胺纳滤膜体现出更低的一价盐截留和更高的通量,且二价盐截留保持不变;具体为,氧化石墨烯基全脂环族聚酰胺纳滤膜对Na2SO4和NaCl的截留率分别为98.90%及12.525%,通量分别为89.615及104.339kg m-2h-1MPa-1,较未添加氧化石墨烯的全脂环族聚酰胺纳滤膜,对一价、二价盐的通量分别提升55%及58%,而一价盐的截留则降至12.525%,二价盐截留保持不变。
实施例3:
一种高选择性全脂环族聚酰胺纳滤膜的制备方法,包括以下步骤:
(1)采用旋涂法在聚丙烯腈超滤底膜上涂覆一层脂环族胺溶液,具体为,将脂肪族胺溶液在底膜上以50rpm旋转涂敷,旋涂5s,再采用旋涂法以10000rpm转速,旋转10s以将脂环族胺溶液甩出;脂环族胺溶液由环己烷-1,4-二胺、樟脑磺酸和水组成,其中,环己烷-1,4-二胺的质量分数为2wt%,樟脑磺酸的质量分 数为0.5wt%,水的质量分数为97.5wt%;
(2)再采用旋涂法在步骤(1)制得的旋涂了脂环族胺溶液的聚丙烯腈超滤底膜上涂覆一层脂环族酰氯溶液进行界面聚合,具体为,将脂环族酰氯溶液在底膜上以500rpm旋涂,旋转涂敷时间为20s,之后,再采用旋涂法以3000rpm转速,旋转60s以将多余的脂环族酰氯溶液甩出;脂环族酰氯溶液由1,2,3,4-环丁四甲酰氯和油相溶剂组成,其中,油相溶剂为正庚烷,1,2,3,4-环丁四甲酰氯的质量分数为0.38wt%,正庚烷的质量分数为99.62wt%;
(3)以环己烷洗涤步骤(3)制备的全脂环族聚酰胺纳滤膜,120s后,以7000rpm转速旋转50s以除去正己烷;
(4)重复步骤(1)、(2)、(3),即为活性层层组装法制备的全脂环族聚酰胺纳滤膜;将得到的全脂环族聚酰胺纳滤膜再置于70℃下,热处理5min,得到高选择性全脂环族聚酰胺纳滤膜制品。
对该实施例中采用1,2,3,4-环丁四甲酰氯作为脂环族酰氯溶液经4次活性层层组装制备得到的全脂环族聚酰胺纳滤膜进行对Na2SO4和NaCl的脱盐性能测试,具体如下表4:
表4 1,2,3,4-环丁四甲酰氯基聚酰胺纳滤膜对Na2SO4和NaCl的截留性能
Figure PCTCN2017079628-appb-000007
从表4可知,采用活性层层组装制备的全脂环族聚酰胺纳滤膜对Na2SO4和 NaCl的截留率分别在98%及15%以下,且随层数的增加,全脂环族聚酰胺纳滤膜对Na2SO4的截留由86.35%增加至98.51%,而对NaCl的截留则基本保持不变,由12.84%增加至15.01%;同时,随层数的增加,活性层层组装制备的聚酰胺纳滤膜的通量亦随之降低,对Na2SO4的通量由90.20kg m-2h-1MPa-1降至72.40kg m-2h-1MPa-1;而对NaCl的通量在1-4层,由118.41kg m-2h-1MPa-1降至85.32kg m-2h-1MPa-1;由此,即表明不同的层数的全脂环族聚酰胺纳滤膜表现出有差异性的截留和通量,即可由活性层层组装实现对纳滤膜的性能进行调控。
实施例4:
一种高选择性全脂环族聚酰胺纳滤膜的制备方法,包括以下步骤:
(1)采用静置法在聚砜超滤底膜上涂覆一层脂环族胺溶液,具体为,将脂环族胺溶液在聚砜底膜上静置200s,采用旋涂法以3000rpm转速,旋转60s以将多余的脂环族胺溶液甩出;脂环族胺溶液由2,6-二甲基哌嗪和水组成,其中,2,6-二甲基哌嗪的质量分数为3wt%,水的质量分数为97wt%;
(2)再采用旋涂法在步骤(1)制得的旋涂了脂环族胺溶液的聚砜超滤底膜上涂覆一层脂环族酰氯溶液进行界面聚合,具体为,将脂环族酰氯溶液在步骤(1)制得的超滤底膜上静置30s,再采用旋涂法以8000rpm转速,旋转50s以将多余的脂环族酰氯溶液甩出;脂环族酰氯溶液由1,2,3,4,5,6-环己六甲酰氯、油相溶剂和添加剂组成,添加剂为丙酮,油相溶剂为正庚烷,其中1,2,3,4,5,6-环己六甲酰氯的质量分数为0.3wt%,丙酮的质量分数为1wt%,正庚烷的质量分数为98.7wt%;
(3)以环己烷洗涤步骤(3)制备的全脂环族聚酰胺纳滤膜,120s后,以10000rpm转速旋转60s以除去环己烷;
(4)重复步骤(1)、(2)、(3),即为活性层层组装法制备的全脂环族聚酰 胺纳滤膜;最后,先将其置于3wt%异丙醇/水溶液中3min,再置于90℃下,热处理5min,得到高选择性全脂环族聚酰胺纳滤膜制品。
将本实施例制备得到的不同层数的全脂环族聚酰胺纳滤膜对Na2SO4和NaCl的截留性能进行测试,具体见下表5:
表5不同层数的全脂环族聚酰胺纳滤膜对Na2SO4和NaCl的截留性能
Figure PCTCN2017079628-appb-000008
从表5中可知,与实施例3的脱盐性能相比,对于二价盐Na2SO4,1,2,3,4,5,6-环己六甲酰氯制备的全脂环族聚酰胺纳滤膜较1,2,3,4-环丁四甲酰氯制备的全脂环族聚酰胺纳滤膜具有较低的通量与高的截留率,但对NaCl的截留则基本保持不变。具体来说,随层数的增加,纳滤膜对Na2SO4的通量由72.81kg m-2h-1MPa-1降低至31.85kg m-2h-1MPa-1,而截留由98.80%升高至99.34%;同时,NaCl的截留率仍维持在19%以下,通量则亦随层数增加而降低。由此,进一步表明不同层数的全脂环族聚酰胺纳滤膜表现出有差异性的截留和通量,即可由活性层层组装实现对纳滤膜的性能进行调控。
实施例5:
一种高选择性全脂环族聚酰胺纳滤膜的制备方法,包括以下步骤:
(1)采用旋涂法在聚丙烯腈超滤底膜上涂覆一层脂环族胺溶液,具体为,将脂环族胺溶液在聚丙烯腈底膜上进行旋转涂敷,时间为5s,转速500rpm,再 采用旋涂法以10000rpm转速,旋转10s以将多余的脂环族胺溶液甩出,脂环族胺溶液由哌嗪和水相溶剂组成,水相溶剂为水,其中,哌嗪的质量分数为4wt%,水的质量分数为96wt%;
(2)再采用旋涂法在步骤(1)制得的旋涂了哌嗪溶液的聚丙烯腈超滤底膜上涂覆一层脂环族酰氯溶液进行界面聚合,具体为,将脂环族酰氯在涂敷有哌嗪分子的底膜上旋涂10s,转速300rpm,再采用旋涂法以6000rpm转速,旋转20s以将多余的脂环族酰氯溶液甩出;脂环族酰氯溶液由1,2,3,4-环丁四甲酰氯和油相溶剂组成,其中,1,2,3,4-环丁四甲酰氯的质量分数为0.4wt%;油相溶剂由甲苯和正己烷组成,正己烷的质量分数为98wt%,甲苯的质量分数为1.6wt%;
(3)以正己烷洗涤步骤(2)制备的全脂环族聚酰胺纳滤膜,40s后,以7000rpm转速旋转50s以除去正己烷,再置于80℃热处理5min,得到高选择性全脂环族聚酰胺纳滤膜制品。
将本实施例制备得到的全脂环族聚酰胺纳滤膜对各类盐的的截留性能进行测试,具体见下表6:
表6界面聚合法制备全脂环族聚酰胺纳滤膜对各类盐截留性能
Figure PCTCN2017079628-appb-000009
从表6可知,由1,2,3,4-环丁四甲酰氯制备的全脂环族聚酰胺纳滤膜对不同盐的截留顺序为Na2SO4〉MgSO4〉CaCl2〉KCl〉NaCl,其中,对一价盐的截留率在19%以下,而二价盐截留率在98%以上,维持较高的一价、二价选择性; 与实施例1比较,1,2,3,4-环丁四甲酰氯制备的全脂环族聚酰胺纳滤膜具有较高的通量,其Na2SO4通量可为79.163kg m-2h-1MPa-1,是实施例1的1.27倍。
实施例6:
一种高选择性全脂环族聚酰胺纳滤膜的制备方法,包括以下步骤:
(1)采用旋涂法在聚酰亚胺超滤底膜上涂覆一层脂环族胺溶液,具体为,将脂环族胺溶液在底膜上静置180s,采用旋涂法以5000rpm转速,旋转30s以将脂环族胺溶液甩出;脂环族胺溶液由还原氧化石墨烯、哌嗪和水组成,其中,还原氧化石墨烯的质量分数为0.1wt%,哌嗪的质量分数为2wt%,水的质量分数为97.9wt%;
(2)再采用旋涂法在步骤(1)制得的旋涂了脂环族胺溶液的聚酰亚胺超滤底膜上涂覆一层脂环族酰氯溶液进行界面聚合,具体为,将脂环族酰氯溶液在涂敷有脂环族胺溶液的底膜上静置5s,采用旋涂法以3000rpm转速,旋转40s以将多余的脂环族酰氯溶液甩出;脂环族酰氯溶液由1,2,4-环戊三甲酰氯、添加剂和油相溶剂组成,添加剂为二甲基吡啶,油相溶剂为环戊烷,其中,1,2,4-环戊三甲酰氯的质量分数为0.2wt%,二甲基吡啶的质量分数为1wt%,环戊烷的质量分数为98.8wt%;
(3)以正己烷洗涤步骤(3)制备的全脂环族聚酰胺纳滤膜,60s后,以10000rpm转速旋转60s以除去正己烷,再置于90℃热处理2min,得到高选择性全脂环族聚酰胺纳滤膜制品;
(4)重复上述步骤,即得不同层数的全脂环族聚酰胺纳滤膜。
对该实施例中采用还原氧化石墨烯作为水相添加剂制备得到的全脂环族聚酰胺纳滤膜的脱盐性能进行测试,具体如下表7:
表7还原氧化石墨烯基全脂环族聚酰胺纳滤膜对Na2SO4和NaCl的截留性能
Figure PCTCN2017079628-appb-000010
从上表中可以看出,与实施例1相比较得,添加有还原氧化石墨烯的全脂环族聚酰胺纳滤膜较未添加的体现出更低的一价盐截留和更高的通量,且二价盐截留基本保持不变;具体为,当活性层层组装层数由1层增长为4层时,全脂环族聚酰胺纳滤膜对Na2SO4的截留变化不大,均维持在99%以上,而通量由97.23kg m-2h-1MPa-1降为76.38kg m-2h-1MPa-1,对NaCl而言,其截留均在12%以下,维持较低的截留率,通量则由106.61kg m-2h-1MPa-1降为90kg m-2h-1MPa-1。以上表明,活性层层组装制备的不同的层数下的全脂环族聚酰胺纳滤膜表现出有差异性的截留和通量,即,可利用活性层层组装实现对纳滤膜的性能进行调控。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种高选择性全脂环族聚酰胺纳滤膜的制备方法,其特征是,包括:
    采用旋涂法或静置法在多孔支撑膜上交替均匀涂覆至少一种脂环族酰氯溶液与至少一种脂环族胺溶液进行界面聚合,形成至少一层全脂环族聚酰胺纳滤膜;
    其中,静置法为将脂环族酰氯或脂环族胺溶液在多孔支撑膜或多层全脂环族聚酰胺纳滤膜上静置涂敷2-300s;
    旋涂法为将脂环族酰氯或脂环族胺溶液在多孔支撑膜或多层全脂环族聚酰胺纳滤膜上以50-10000rpm下旋转涂敷2-300s。
  2. 根据权利要求1所述的高选择性全脂环族聚酰胺纳滤膜的制备方法,其特征是,在界面聚合过程中,还包括如下步骤:
    当在多孔支撑膜上以静置法或旋涂法分别涂覆脂环族酰氯溶液或脂环族胺溶液后,再采用旋涂法除去多孔支撑膜或多层全脂环族酰胺纳滤膜表面上多余的脂环族酰氯溶液或脂环族胺溶液,以3000-10000rpm转速,旋涂2-300s将其甩出除去。
  3. 根据权利要求1所述的高选择性全脂环族聚酰胺纳滤膜的制备方法,其特征是,当形成全脂环族聚酰胺纳滤膜后,还包括步骤:
    以有机溶剂洗涤全脂环族聚酰胺纳滤膜,15-60s后,以3000-10000rpm转速旋转40-60s以除去有机溶剂,再置于50-90℃热处理60s-10min,得到高选择性全脂环族聚酰胺纳滤膜制品。
  4. 根据权利要求1至3任一项所述的高选择性全脂环族聚酰胺纳滤膜的制备方法,其特征是,脂环族酰氯溶液的浓度为0.01wt%-2wt%,脂环族胺溶液的浓度为0.01wt%-4wt%。
  5. 根据权利要求4所述的高选择性全脂环族聚酰胺纳滤膜的制备方法,其特 征是,所述脂环族酰氯溶液由脂环族酰氯、油相溶剂和添加剂组成;其中,脂环族酰氯的质量分数为0.01-2wt%,油相溶剂的质量分数为96-99.98wt%,添加剂的质量分数为0.01-2wt%;所述油相溶剂为正己烷、环己烷、环戊烷、正庚烷、正辛烷和iso-Par中的一种或几种混合;
    所述脂环族胺溶液由脂环族胺、水相溶剂和添加剂组成;其中,脂环族胺的质量分数为0.01-4wt%,水相溶剂的质量分数为46-99.98wt%,添加剂的质量分数为0.01-50wt%;所述水相溶剂为水;
  6. 根据权利要求5所述的高选择性全脂环族聚酰胺纳滤膜的制备方法,其特征是,所述脂环族酰氯溶液由脂环族酰氯和油相溶剂组成,所述脂环族酰氯的质量分数为0.01-2wt%,油相溶剂的质量分数为98-99.99wt%。
    所述脂环族胺溶液由脂环族胺和水相溶剂组成,所述脂环族胺的质量分数为0.01-4wt%,水相溶剂为96-99.99wt%。
  7. 根据权利要求5所述的选择性全脂环族聚酰胺纳滤膜的制备方法,其特征是,所述添加剂为纳米粒或具有扭曲空间结构的有机酚或共溶剂或亲水性添加剂或表面活性剂;
    所述纳米粒为片状石墨烯、细长状单壁或多壁碳纳米管或有机球状、笼状或轮状多孔分子;
    所述具有扭曲空间结构的有机酚为5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺二茚满或芴-9-双酚;
    所述共溶剂为丙酮、多元醇、有机磷化物或二甲基甲酰胺;
    所述亲水性添加剂为季铵盐、醇胺、樟脑磺酸或聚乙烯吡咯烷酮(PVP);
    所述表面活性剂为PEG200、PEG400、PEG600。
  8. 根据权利要求5所述的高选择性全脂环族聚酰胺纳滤膜的制备方法,其 特征是,所述脂环族酰氯的结构式为:
    Figure PCTCN2017079628-appb-100001
    其中,A为脂环族,其为四元环、五元环、六元环、七元环或八元环;R1、R2、R3、R4为-C(O)Cl-或H,-C(O)Cl-的个数为3-6个,两个-C(O)Cl-基团之间为邻位或间位。
  9. 根据权利要求5所述的高选择性全脂环族聚酰胺纳滤膜的制备方法,其特征是,所述脂环族胺的结构式为:
    Figure PCTCN2017079628-appb-100002
    其中,R1、R2为-(CH2)n-或-NH-,n为1-3;R3、R4、R5、R6为-NH2或CH3;-NH-、-NH2的个数为1-4;并且,-NH2在环同一侧时,包括顺式与反式两种构象。
  10. 根据权利要求1所述的高选择性全脂环族聚酰胺纳滤膜的制备方法,其特征是,所述多孔支撑膜为有机高分子超滤膜或中空纤维超滤膜或无机超滤膜材料或有机与无机杂化的多孔膜;所述有机高分子超滤膜为聚砜、聚醚砜、聚丙烯腈或聚酰亚胺;所述无机超滤膜材料为多孔氧化铝或多孔陶瓷膜。
  11. 采用权利要求1-10任一项所述的高选择性全脂环族聚酰胺纳滤膜的制备方法制备得到的高选择性全脂环族聚酰胺纳滤膜。
PCT/CN2017/079628 2017-03-06 2017-04-06 一种高选择性全脂环族聚酰胺纳滤膜及其制备方法 WO2018161396A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/033,413 US10780401B2 (en) 2017-03-06 2018-07-12 Highly selective alicyclic polyamide nanofiltration membrane and making method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710127595.0 2017-03-06
CN201710127595.0A CN108452689A (zh) 2017-03-06 2017-03-06 一种高选择性全脂环族聚酰胺纳滤膜及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/033,413 Continuation-In-Part US10780401B2 (en) 2017-03-06 2018-07-12 Highly selective alicyclic polyamide nanofiltration membrane and making method thereof

Publications (1)

Publication Number Publication Date
WO2018161396A1 true WO2018161396A1 (zh) 2018-09-13

Family

ID=63220206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079628 WO2018161396A1 (zh) 2017-03-06 2017-04-06 一种高选择性全脂环族聚酰胺纳滤膜及其制备方法

Country Status (3)

Country Link
US (1) US10780401B2 (zh)
CN (1) CN108452689A (zh)
WO (1) WO2018161396A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113385049A (zh) * 2021-06-04 2021-09-14 中国石油大学(华东) 一种高选择性自微孔聚酰胺纳滤复合膜及其制备方法
CN113769593A (zh) * 2021-07-09 2021-12-10 上海唯赛勃环保科技股份有限公司 一种用于盐湖提锂的纳滤膜及其制备方法
CN115228300A (zh) * 2022-06-24 2022-10-25 河北工业大学 一种离子选择性纳滤膜及其制备方法和应用
CN115350590A (zh) * 2022-08-18 2022-11-18 中原工学院 一种冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法和应用
CN115430296A (zh) * 2022-09-20 2022-12-06 中国科学院过程工程研究所 一种具有催化中间层的复合纳滤膜及其制备方法和应用
CN116236904A (zh) * 2023-03-30 2023-06-09 中国科学院长春应用化学研究所 一种高性能复合纳滤膜及其制备方法
CN116272421A (zh) * 2023-03-24 2023-06-23 泰州九润环保科技有限公司 一种分子筛/聚酰胺混合基质膜

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9902141B2 (en) 2014-03-14 2018-02-27 University Of Maryland Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction and eludication of water and solute transport mechanisms
CN109289543A (zh) * 2018-10-26 2019-02-01 中国石油大学(华东) 一种自微孔高通量纳滤复合膜及其制备方法
CN109758909A (zh) * 2018-12-21 2019-05-17 天津膜天膜科技股份有限公司 一种高选择性纳滤膜的制备方法
CN109833778A (zh) * 2018-12-26 2019-06-04 天津膜天膜科技股份有限公司 提高连续化生产外压型中空纤维纳滤膜截留率的方法
CN110385046B (zh) * 2018-12-29 2021-09-24 启成(江苏)净化科技有限公司 一种以多酰氯取代环状大分子制备大通量反渗透膜的方法
JP7027364B2 (ja) * 2019-03-12 2022-03-01 日東電工株式会社 硫酸イオン除去システム及び方法
CN109876666B (zh) * 2019-03-19 2021-10-26 暨南大学 一种聚酰胺-氧化石墨烯复合膜及其制备方法和应用
CN110152503B (zh) * 2019-03-29 2021-12-21 浙江工业大学 一种氧化石墨烯与自具微孔聚合物复合的耐溶剂纳滤膜的制备方法
CN110038438B (zh) * 2019-04-04 2021-10-26 三达膜科技(厦门)有限公司 一种有机无机复合陶瓷纳滤膜的制备方法
EP3969158A1 (en) * 2019-05-15 2022-03-23 Via Separations, Inc. Filtration apparatus containing graphene oxide membrane
CN114375222A (zh) 2019-05-15 2022-04-19 维阿分离股份有限公司 耐用石墨烯氧化物膜
CN112090282B (zh) * 2019-06-17 2022-04-05 天津工业大学 高选择性聚酰胺纳滤膜及其制备方法
CN111282439B (zh) * 2019-11-27 2021-06-11 泰州市野徐太丰防护用品厂 一种结构优化的抗污染聚酰胺复合膜
KR102330752B1 (ko) * 2020-03-30 2021-11-25 한국과학기술연구원 탄성이 우수한 다공성 고분자 박막의 제조방법, 이를 이용한 세포배양 장치의 제조방법 및 이에 의해 제조된 세포배양 장치
CN113797771B (zh) * 2020-06-12 2023-04-14 三达膜科技(厦门)有限公司 一种氧化石墨烯-二氧化钛-银掺杂哌嗪聚酰胺复合纳滤膜及其制备方法
CN112076635B (zh) * 2020-07-29 2022-08-23 南京工业大学 一种导电聚合物分离膜、制备方法以及在染料分离中的用途
CN111921391A (zh) * 2020-08-06 2020-11-13 东华理工大学 一种基于热诱导无机盐晶体生长制备纳滤膜的方法
CN112516822B (zh) * 2020-10-29 2022-08-23 南京工业大学 一种纳滤膜以及基于纳米胶囊的膜性能调控方法
CN114432896A (zh) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 一种纳滤膜的制备方法
CN114632429B (zh) * 2020-12-15 2023-01-20 中化(宁波)润沃膜科技有限公司 含复合脱盐层的复合纳滤膜及其制备方法
CN114653230B (zh) * 2020-12-22 2023-08-18 浙江迪萧科技有限公司 一种高选择分离性复合膜的制备方法
CN113144912B (zh) * 2021-04-21 2022-09-09 山东晨钟机械股份有限公司 一种基于tfc结构的高通量共价有机骨架纳滤膜的制备方法
CN113491955B (zh) * 2021-06-04 2023-05-26 中国石油大学(华东) 一种具有异质结构分离层的复合膜及其制备方法
CN113441016A (zh) * 2021-07-06 2021-09-28 华侨大学 一种基于分步旋涂法的界面聚合制备复合纳滤膜的方法
CN113371736A (zh) * 2021-07-25 2021-09-10 浙江红狮环保股份有限公司 一种氯化钠硫酸钠混合废盐资源化再利用的方法
CN113713633B (zh) * 2021-07-30 2023-04-25 清华大学 一种褶皱结构多功能纳滤膜及其制备方法
CN113694740B (zh) * 2021-08-31 2022-10-14 华中科技大学 一种离子化单体制备的荷正电纳滤膜及其制备方法
CN113856488A (zh) * 2021-11-08 2021-12-31 湖南澳维环保科技有限公司 一种复合纳滤膜及其制备方法
WO2023097166A1 (en) 2021-11-29 2023-06-01 Via Separations, Inc. Heat exchanger integration with membrane system for evaporator pre-concentration
CN114307672A (zh) * 2021-12-13 2022-04-12 天津大学浙江研究院 一种二维晶种层介导共价有机框架膜及其制备和应用
CN114432907B (zh) * 2022-02-17 2023-05-16 中国科学院苏州纳米技术与纳米仿生研究所 具有超高锂镁选择性的复合纳滤膜及其制备方法与应用
CN114452843A (zh) * 2022-03-01 2022-05-10 杭州奈诺膜环境技术有限公司 一种电中性疏松纳滤膜及其制备方法
CN114618325A (zh) * 2022-03-14 2022-06-14 德蓝水技术股份有限公司 一种复合纳滤膜及其制备方法
CN114656356B (zh) * 2022-03-28 2023-10-13 中国科学院长春应用化学研究所 一种螺环二茚满四酰氯及其制备方法、复合膜及其制备方法
CN114950136A (zh) * 2022-04-15 2022-08-30 中海油天津化工研究设计院有限公司 一种适用于油田回注水处理聚酰胺纳滤膜的制备方法
CN115155327A (zh) * 2022-05-10 2022-10-11 广东奥斯博膜材料技术有限公司 一种适用于低温预处理盐湖卤水的纳滤膜及其制备方法
CN114931865B (zh) * 2022-05-16 2023-06-09 重庆理工大学 一种聚酰胺陶瓷复合纳滤膜、制备方法及其应用
CN115121126B (zh) * 2022-07-18 2023-07-25 中国科学院赣江创新研究院 一种用于稀土回收水凝胶层调控界面聚合纳滤膜的结构及其制备方法
CN115178109B (zh) * 2022-08-01 2023-08-15 同济大学 一种基于共价有机框架复合物ncof的复合纳滤膜及其制备方法
CN115414804A (zh) * 2022-10-11 2022-12-02 湖南大学 一种应用于水处理的超薄高效分离膜制备方法
CN116036883B (zh) * 2022-12-28 2023-06-30 山东招金膜天股份有限公司 含氟聚合物纳米纤维基复合纳滤膜的制备方法
CN117065585A (zh) * 2023-08-22 2023-11-17 苏州苏瑞膜纳米科技有限公司 一种带隧道结构基膜的大通量复合纳滤膜的制备方法和纳滤膜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464873B1 (en) * 1999-06-15 2002-10-15 Hydranautics Interfacially polymerized, bipiperidine-polyamide membranes for reverse osmosis and/or nanofiltration and process for making the same
CN101870772A (zh) * 2009-04-24 2010-10-27 中国科学院上海应用物理研究所 一种具有周期性纳米结构的高分子膜的制备方法及所用模板
CN105080367A (zh) * 2014-04-24 2015-11-25 中国石油化工股份有限公司 一种含有复合纳米粒子的复合纳滤膜及制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020218B1 (en) * 1997-07-02 2003-05-21 Nitto Denko Corporation Composite reverse osmosis membrane and process for preparing the same
KR100409017B1 (ko) * 2000-06-23 2003-12-06 주식회사 엘지화학 다성분계 복합 분리막 및 그의 제조방법
DE10064334A1 (de) * 2000-12-21 2002-06-27 Degussa Polyamid-Mehrschichtverbund
KR20050074166A (ko) * 2004-01-13 2005-07-18 주식회사 새 한 고유량 나노필트레이션 복합막의 제조방법
CN100457241C (zh) * 2006-09-08 2009-02-04 浙江工商大学 多层聚酰胺复合膜的制备方法
CN101053780A (zh) * 2007-02-09 2007-10-17 上海大学 复合纳滤膜的制备方法
US8445076B2 (en) * 2008-06-11 2013-05-21 The Regents Of The University Of California Fouling and scaling resistant nano-structured reverse osmosis membranes
CN101934201A (zh) * 2009-06-29 2011-01-05 北京时代沃顿科技有限公司 一种高选择性复合纳滤膜及其制备方法
US8857629B2 (en) * 2010-07-15 2014-10-14 International Business Machines Corporation Composite membrane with multi-layered active layer
GB201117950D0 (en) * 2011-10-18 2011-11-30 Imp Innovations Ltd Membranes for separation
KR102096286B1 (ko) * 2012-03-12 2020-04-02 나노시타 가부시키가이샤 고분자 초박막 및 다공질 고분자 초박막
CN102698614B (zh) * 2012-06-16 2014-05-28 浙江大学 一种多层结构管式纳滤膜及其制备方法
CN103055715B (zh) * 2013-02-04 2015-01-28 北京科泰兴达高新技术有限公司 一种复合纳滤膜及其制备方法
WO2014192883A1 (ja) * 2013-05-30 2014-12-04 東レ株式会社 複合半透膜
CN103611432B (zh) * 2013-12-17 2016-03-09 哈尔滨工业大学 一种聚合物/石墨烯纳米复合膜的制备方法
CN105435656B (zh) * 2014-07-22 2017-10-03 中国石油化工股份有限公司 一种复合纳滤膜及其制备方法
CN105457494B (zh) * 2014-09-09 2018-02-13 贵阳时代沃顿科技有限公司 一种纳米结构高通量海水淡化反渗透膜及其制备方法
CN105694028A (zh) * 2016-01-25 2016-06-22 贵阳时代沃顿科技有限公司 一种用于复合反渗透膜制备的界面聚合油相反应组合物及其使用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464873B1 (en) * 1999-06-15 2002-10-15 Hydranautics Interfacially polymerized, bipiperidine-polyamide membranes for reverse osmosis and/or nanofiltration and process for making the same
CN101870772A (zh) * 2009-04-24 2010-10-27 中国科学院上海应用物理研究所 一种具有周期性纳米结构的高分子膜的制备方法及所用模板
CN105080367A (zh) * 2014-04-24 2015-11-25 中国石油化工股份有限公司 一种含有复合纳米粒子的复合纳滤膜及制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113385049A (zh) * 2021-06-04 2021-09-14 中国石油大学(华东) 一种高选择性自微孔聚酰胺纳滤复合膜及其制备方法
CN113385049B (zh) * 2021-06-04 2022-12-20 中国石油大学(华东) 一种高选择性自微孔聚酰胺纳滤复合膜及其制备方法
CN113769593A (zh) * 2021-07-09 2021-12-10 上海唯赛勃环保科技股份有限公司 一种用于盐湖提锂的纳滤膜及其制备方法
CN113769593B (zh) * 2021-07-09 2023-12-29 上海唯赛勃环保科技股份有限公司 一种用于盐湖提锂的纳滤膜及其制备方法
CN115228300A (zh) * 2022-06-24 2022-10-25 河北工业大学 一种离子选择性纳滤膜及其制备方法和应用
CN115228300B (zh) * 2022-06-24 2024-02-23 河北工业大学 一种离子选择性纳滤膜及其制备方法和应用
CN115350590A (zh) * 2022-08-18 2022-11-18 中原工学院 一种冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法和应用
CN115350590B (zh) * 2022-08-18 2024-03-01 中原工学院 一种冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法和应用
CN115430296A (zh) * 2022-09-20 2022-12-06 中国科学院过程工程研究所 一种具有催化中间层的复合纳滤膜及其制备方法和应用
CN116272421A (zh) * 2023-03-24 2023-06-23 泰州九润环保科技有限公司 一种分子筛/聚酰胺混合基质膜
CN116272421B (zh) * 2023-03-24 2024-03-29 泰州九润环保科技有限公司 一种分子筛/聚酰胺混合基质膜
CN116236904A (zh) * 2023-03-30 2023-06-09 中国科学院长春应用化学研究所 一种高性能复合纳滤膜及其制备方法

Also Published As

Publication number Publication date
US10780401B2 (en) 2020-09-22
CN108452689A (zh) 2018-08-28
US20180326362A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2018161396A1 (zh) 一种高选择性全脂环族聚酰胺纳滤膜及其制备方法
Xu et al. Mussel-inspired modification of PPS membrane to separate and remove the dyes from the wastewater
Gu et al. A facile preparation of positively charged composite nanofiltration membrane with high selectivity and permeability
Vatanpour et al. A thin film nanocomposite reverse osmosis membrane containing amine-functionalized carbon nanotubes
JP5692885B2 (ja) 銀ナノワイヤ層を含む逆浸透膜及びその製造方法
Zhang et al. Improving the hydrostability of ZIF-8 membrane by biomolecule towards enhanced nanofiltration performance for dye removal
CN107126850A (zh) 一种聚磺酰胺纳滤或反渗透复合膜及其制备方法
Zhang et al. Highly permeable thin-film nanocomposite membranes embedded with PDA/PEG nanocapsules as water transport channels
CN108325389B (zh) 一种吖内酯基聚酰胺膜及其制备方法
CN111282447A (zh) 具有纳米级超薄分离层的脱盐复合膜的制备方法
CN106582299B (zh) 一种氨化氧化石墨烯基3d纳米颗粒改性有机分离膜制备方法
CN102294178A (zh) 一种含有两性离子的聚酰胺纳滤膜及其制备方法
CN108246128A (zh) 一种脂肪族聚酰胺疏松反渗透膜及其制备方法和应用
CN110496533A (zh) 一种含聚合物涂层的高性能纳滤复合膜
KR20160128771A (ko) 지지체 없는 자유계면에서의 계면중합으로 제조된 활성층을 이용한 분리막의 제조방법
Tsai et al. The preparation of polyelectrolyte/hydrolyzed polyacrylonitrile composite hollow fiber membrane for pervaporation
CN113856501A (zh) 一种复合纳滤膜及其制备方法和应用
Zhu et al. Recent advances of thin film composite membranes for pervaporation applications: A comprehensive review
CN103958037A (zh) 具有良好耐氯性的高通量水处理分离膜
CN104923086A (zh) 一种半芳香聚酰胺复合反渗透膜及其制备方法
Yang et al. Trimethylamine N-oxide-derived zwitterionic polyamide thin-film composite nanofiltration membranes with enhanced anti-dye deposition ability for efficient dye separation and recovery
Chen et al. Facile and fast fabrication of high structure-stable thin film nanocomposite membrane for potential application in solvent resistance nanofiltration
Yang et al. Superwetting membrane by co-deposition technique using a novel N‑oxide zwitterionic polymer assisted by bioinspired dopamine for efficient oil–water separation
Li et al. Perfluorooctanoyl chloride engineering toward high-flux antifouling polyamide nanofilms for desalination
CN107596929A (zh) 一种耐高温高通量复合反渗透膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899454

Country of ref document: EP

Kind code of ref document: A1