CN115350590B - 一种冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法和应用 - Google Patents

一种冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法和应用 Download PDF

Info

Publication number
CN115350590B
CN115350590B CN202210993566.3A CN202210993566A CN115350590B CN 115350590 B CN115350590 B CN 115350590B CN 202210993566 A CN202210993566 A CN 202210993566A CN 115350590 B CN115350590 B CN 115350590B
Authority
CN
China
Prior art keywords
nanofiltration membrane
cof
organic framework
covalent organic
crown ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210993566.3A
Other languages
English (en)
Other versions
CN115350590A (zh
Inventor
邵志超
陈军帅
高可心
毕前程
翟黎鹏
米立伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongyuan University of Technology
Original Assignee
Zhongyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongyuan University of Technology filed Critical Zhongyuan University of Technology
Priority to CN202210993566.3A priority Critical patent/CN115350590B/zh
Publication of CN115350590A publication Critical patent/CN115350590A/zh
Application granted granted Critical
Publication of CN115350590B publication Critical patent/CN115350590B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/72Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of the groups B01D71/46 - B01D71/70 and B01D71/701 - B01D71/702
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/06Amines
    • C08G12/08Amines aromatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法和应用,属于水处理分离膜技术领域。本发明先利用冠醚基有机芳胺配体与1,3,6,8‑四(4'‑醛基苯)芘配体通过缩合反应构筑了一种功能化二维COFs材料(B18C6‑COF),该COF具有高比表面积、良好的结晶度和优良的稳定性。通过界面聚合方法将B18C6‑COF与聚酰胺进行复合制备纳米分离膜。该复合膜具有较高的微孔率、可定制的化学结构和良好的聚合物亲和力。本发明的纳滤膜在水的处理中体现出优异的水通量以及对Li+/Mg2+的高选择性筛分。制备方法简单易行,为高选择性离子分离材料提供了新的选择,同时拓展了共价有机框架材料的应用价值。

Description

一种冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法 和应用
技术领域
本发明属于于水处理分离膜技术领域,具体涉及一种用于Li+/Mg2+高效分离的冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法。
背景技术
随着新能源技术的不断发展以及移动设备的大量增加,锂电池的需求日益增大,锂的高效提取方法从盐湖卤水中引起了广泛的关注,与传统的沉淀法、萃取法、吸附法相比,膜分离法具有操作容易、易控制、不发生相变的优势被认为是绿色环保的技术。特别是纳滤膜的操作区间介于超滤和反渗透之间,因其表面分离层由聚电解质构成,因而对纳米级(0.001微米)无机盐具有一定的截留率。然而,平衡透水性和选择性一直存在巨大的挑战。在这种情况下,在聚酰胺薄膜中加入多功能纳米填料(沸石,碳纳米管,天然硅酸黏土,MOFs等)已经被证明可以增加水分子传输路径,从而提高水通量。然而,无机或杂化纳米填料与聚合物亲和力较弱,且容易发生团聚,这不可避免地会形成非选择性界面缺陷。此外,大多数多孔纳米材料的孔径与纳滤膜的孔径范围不匹配。共价有机骨架(COFs)具有高比表面积、可调的周期性孔隙、结构有序等优点。良好的稳定性以及聚合物亲和性最大限度地避免了界面缺陷的形成。COFs晶体孔径通常在0.8 ~ 5 nm范围内,与纳滤膜孔径匹配度高,相比于无机氧化物具有更好的相容性。进而有希望为解决现有材料的不足,为设计开发高性能分离材料提供参考。
发明内容
本发明的目的在于提供一种用于Li+/Mg2+分离的稳定性好、亲水性强,离子分离性能高的冠醚共价有机框架/聚酰胺复合纳滤膜及其制备方法。
针对现有技术中存在的问题,本发明提供一种冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法,先利用冠醚基有机芳胺配体与1,3,6,8-四(4'-醛基苯)芘配体通过缩合反应构筑了一种功能化二维COFs材料(B18C6-COF), 该COF具有高比表面积、良好的结晶度和优良的稳定性。通过界面聚合方法将B18C6-COF与聚酰胺进行复合制备纳米分离膜。该复合膜具有较高的微孔率、可定制的化学结构和良好的聚合物亲和力。
本发明提供的冠醚基团功能化的共价有机框架/聚酰胺复合纳滤膜(B18C6-COF/TFN)的制备方法,采用如下技术方案:
(1)将1,3,6,8-四(4'-醛基苯)芘和4',4''-二氨基二苯并-18-冠-6溶于1,2-二氯苯中,加入乙酸溶液,常温搅拌使体系混合均匀;
(2)将反应体系在77k下瞬间冷冻,并经过三次冷冻-解冻循环来脱气。将试管密封,然后在120℃下加热3天;
(3)反应完以后,收集的粉末用二甲基乙酰胺、四氢呋喃和甲醇洗涤,在100℃下真空干燥12小时,得到相应的黄色粉末B18C6-COF材料;
(4)将质量分数为0.01%的B18C6-COF纳米颗粒水溶液通过抽滤法(2 bar)负载在聚苯乙烯(PS)基板表面,在1%聚乙烯亚胺(PEI)水溶液中浸泡5 min,室温干燥至膜表面无明显液体;
(5)将0.3 wt%的均苯三甲酰氯(TMC)正己烷溶液倒在复合膜表面进行界面聚合反应。制备的膜在50℃下加热10分钟,在去离子水中浸泡1-3小时后储存备用。
进一步,所述步骤(1)中1,3,6,8-四(4'-醛基苯)芘和4',4''-二氨基二苯并-18-冠-6的摩尔比为1:2。
进一步,所述聚苯乙烯基板可以用聚砜、聚醚砜或聚丙烯腈膜中的任一种替换。
本发明还提供了冠醚基共价有机框架/聚酰胺复合纳滤膜在Li+/Mg2+离子选择性分离方面的应用。
本发明的冠醚基共价有机框架/聚酰胺复合纳滤膜在水的处理中体现出优异的水通量以及对Li+/Mg2+的高选择性筛分。
本发明与现有技术相比具有以下有益效果:
1、本发明先制备了多孔性共价有机框架(B18C6-COF),再将其掺杂制备共价有机框架/聚酰胺复合纳滤膜。本发明制备的杂化膜是基于COF结构中纯有机骨架和周期性孔隙与纳米膜具有良好的相容性,冠醚基团能够与特定金属离子具有配位亲和性,使该膜具有优异的Li+/Mg2+分离性能和较好的稳定性。
2、本发明的复合纳滤膜制备方法简单易行,为离子筛分提供了新的选择,同时拓展了晶态COFs材料的应用价值;
3、本发明的复合纳滤膜(B18C6-COF/TFN)材料表现出了很好的Li+/Mg2+分离性能,Mg2+的截留率达到97.1%,选择性达到33.4,明显高于其他文献和专利报道。
4、本发明的复合纳滤膜(B18C6-COF/TFN)材料具有很好的透水性,性能最好的复合纳滤膜具有58.2 L m-2 h-1 bar-1
附图说明
图1是材料制备用到的醛基单体和氨基单体分子式。
图2是B18C6-COF材料的晶体结构图。
图3是B18C6-COF材料的红外光谱分析图。
图4是B18C6-COF材料的电镜分析图。
图5是B18C6-COF材料在的PXRD图谱。
图6是复合纳滤膜(B18C6-COF/TFN)的AFM测试。
图7是复合纳滤膜(B18C6-COF/TFN)的亲水性测试。
图8是复合纳滤膜(B18C6-COF/TFN)的XPS测试。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
本实施例的共价有机框架/聚酰胺复合纳滤膜(B18C6-COF/TFN), 制备方法如下:
将1,3,6,8-四(4'-醛基苯)芘(0.024 mmol)和4',4''-二氨基二苯并-18-冠-6(0.048 mmol)溶于1,2-二氯苯中,加入6 M乙酸溶液0.2 mL作为催化剂,,常温搅拌使体系混合均匀,在77k下瞬间冷冻,并经过三次冷冻-解冻循环来脱气。将试管密封,然后在120℃下加热3天。反应完以后,收集的粉末分别用N,N-二甲基乙酰胺、四氢呋喃和甲醇洗涤,在100℃下真空干燥12小时,得到相应的黄色粉末B18C6-COF纳米颗粒材料;将B18C6-COF纳米颗粒溶于水中得到质量分数为0.01%的B18C6-COF纳米颗粒水溶液,将该B18C6-COF纳米颗粒水溶液通过抽滤法(真空度为2 bar)负载在聚苯乙烯(PS)基板表面,在1%聚乙烯亚胺(PEI)水溶液中浸泡5 min,室温干燥至膜表面无明显液体。将0.3 wt%的均苯三甲酰氯(TMC)正己烷溶液倒在复合膜表面1分钟进行界面聚合反应。制备的膜在50℃下加热10分钟,在去离子水中浸泡1小时后储存备用。
1、实施例1中B18C6-COF材料红外光谱分析
将实施例1中B18C6-COF材料放置在研钵内研磨0.5 h得到均匀的粉末。并加入溴化钾粉末混合,压片制样,在500-3700 cm-1范围内,使用Thermo iS50 FT-IR对样品粉末进行FI-IR光谱分析。得到红外分析图像,如图3所示,明显存在冠醚和亚胺基团特征峰。
2、 实施例1中B18C6-COF材料电镜分析
将实施例1中B18C6-COF材料利用甲醇进行分散在硅片上,干燥后固定在导电胶上面,并喷金120 s,在蔡司Merlin紧凑型场发射扫描电子显微镜(FE-SEM)上进项操作,得到高分辨扫描电镜图,如图4所示,粒径大小在1微米以内。
3、 实施例1中B18C6-COF材料PXRD分析
将实施例1中B18C6-COF放置空气中干燥后在研钵内研磨0.5 h得到均匀的粉末。并采用PANalytical X'Pert PRO型粉末衍射仪,通过Cu-Kα射线辐射,测试5 min获得粉末X射线衍射图谱,并与模拟图谱进行对比分析,如图5所示,样品显示出了良好的结晶性。
4、 实施例1中复合纳滤膜(B18C6-COF/TFN)的原子力显微镜分析
将实施例1中复合纳滤膜(B18C6-COF/TFN)裁剪至直径为5mm的圆片。并用原子力显微镜进行测试,如图6所示,COF复合纳滤膜(B18C6-COF/TFN)表面粗糙度较小,在10 nm以内。
5、实施例1中复合纳滤膜(B18C6-COF/TFN)的亲水性测试
将实施例1复合纳滤膜(B18C6-COF/TFN)裁剪至直径为5mm的圆片,利用接触角测量仪对膜表面对水滴的接触角进行测试。如图7所示,COF改性的复合纳滤膜(B18C6-COF/TFN)亲水性更强。
6、实施例1中复合纳滤膜(B18C6-COF/TFN)的X射线光电子能谱分析
将实施例1复合纳滤膜(B18C6-COF/TFN)裁剪至直径为5mm的圆片,利用Thermoscientific K-Alpha X射线光电子能谱仪测定了X射线光电子能谱(XPS)。得到X射线光电子能谱分析图像,如图8所示,膜内含有典型的C1s、N1s 、O1s的特征峰。
实施例2 实施例1制备的复合纳滤膜(B18C6-COF/TFN)对单组分MgCl2的截留测试。
在室温条件下,测试实施例1制备的复合纳滤膜(B18C6-COF/TFN)过滤单组分MgCl2溶液(浓度为25.5g/L),测试在错流装置下进行,压力为0 .4MPa,数据误差均在合理误差范围之内。如表1所示,复合膜对单组分MgCl2的截留率为97.7%。
实施例3 实施例1制备的复合纳滤膜(B18C6-COF/TFN)对单组分LiCl的截留测试。
在室温条件下,测试实施例1制备的复合纳滤膜(B18C6-COF/TFN)过滤单组分LiCl溶液(浓度为25.5g/L),测试在错流装置下进行,压力为0.4 MPa,数据误差均在合理误差范围之内。如表1所示,复合膜对单组分LiCl的截留率为11.1%。
实施例4 实施例1制备的复合纳滤膜(B18C6-COF/TFN)对混合组分溶液的截留测试。
在室温条件下,测试实施例1制备的复合纳滤膜(B18C6-COF/TFN)过滤MgCl2和LiCl的混合溶液(浓度为25.5g/L,Mg2+/Li+=50),测试在错流装置下进行,压力为0.4 MPa,数据误差均在合理误差范围之内。如表1所示,复合纳滤膜(B18C6-COF/TFN)对于混合组分的离子分离效果明显, Li+/ Mg2+的选择性高达33.4。
对比例1 未改性纳滤膜的制备
将聚苯乙烯(PS)基板在1%聚乙烯亚胺(PEI)水溶液中浸泡5 min,室温干燥至膜表面无明显液体。将0.3 wt%的均苯三甲酰氯(TMC)正己烷溶液倒在复合膜表面1分钟进行界面聚合反应。制备的膜在50℃下加热10分钟,在去离子水中浸泡1小时。
对比例2 未改性纳滤膜的离子筛分性能
在室温条件下,测试对比例1制备的纳滤膜(TFC)过滤MgCl2和LiCl及混合溶液(浓度为25.5g/L),测试在错流装置下进行,压力为0.4 MPa,数据误差均在合理误差范围之内。如表1所示,未改性的纳滤膜(TFC)对于Li+/ Mg2+的选择性为12.04,远低于冠醚基团功能化的共价有机框架/聚酰胺复合纳滤膜(B18C6-COF/TFN)。
表1 复合纳滤膜(B18C6-COF/TFN)和未改性纳滤膜离子筛分测试。
以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (10)

1.一种冠醚基共价有机框架/聚酰胺复合纳滤膜,其特征在于:所述共价有机框架为B18C6-COF材料,结构单元为1,3,6,8-四(4'-醛基苯)芘和4',4''-二氨基二苯并-18-冠-6,所述B18C6-COF材料为单斜晶系,P2/n空间群,晶胞参数为a=31.824(7) Å, α=108.371(4)°,b=32.280 Å, β=98.788(2) °,c= 4.356(0) Å ,γ=91.285(2) °;
所述的冠醚基共价有机框架/聚酰胺复合纳滤膜的制备方法包括以下步骤:
(1)将1,3,6,8-四(4'-醛基苯)芘和4',4''-二氨基二苯并-18-冠-6溶于1,2-二氯苯中,加入乙酸溶液作为催化剂,常温搅拌使体系混合均匀;
(2)将步骤(1)所得反应体系在77k下瞬间冷冻,并经过三次冷冻-解冻循环来脱气,将试管密封,然后加热反应;
(3)加热反应完以后,收集粉末,分别用N,N-二甲基乙酰胺、四氢呋喃和甲醇洗涤,干燥得到黄色粉末即为B18C6-COF纳米颗粒材料;
(4)将B18C6-COF纳米颗粒溶于水中配制成B18C6-COF纳米颗粒水溶液,然后将B18C6-COF纳米颗粒水溶液通过抽滤法负载在聚苯乙烯基板表面,在聚乙烯亚胺水溶液中浸泡后室温干燥至膜表面无明显液体得到复合膜;
(5)将均苯三甲酰氯正己烷溶液倒在复合膜表面在常温状态下进行界面聚合反应,将聚合反应制备的复合膜加热,然后在去离子水中浸泡后储存备用即得冠醚基共价有机框架/聚酰胺复合纳滤膜。
2.根据权利要求1所述的冠醚基共价有机框架/聚酰胺复合纳滤膜的制备方法,其特征在于包括以下步骤:
(1)将1,3,6,8-四(4'-醛基苯)芘和4',4''-二氨基二苯并-18-冠-6溶于1,2-二氯苯中,加入乙酸溶液作为催化剂,常温搅拌使体系混合均匀;
(2)将步骤(1)所得反应体系在77k下瞬间冷冻,并经过三次冷冻-解冻循环来脱气,将试管密封,然后加热反应;
(3)加热反应完以后,收集粉末,分别用N,N-二甲基乙酰胺、四氢呋喃和甲醇洗涤,干燥得到黄色粉末即为B18C6-COF纳米颗粒材料;
(4)将B18C6-COF纳米颗粒溶于水中配制成B18C6-COF纳米颗粒水溶液,然后将B18C6-COF纳米颗粒水溶液通过抽滤法负载在聚苯乙烯基板表面,在聚乙烯亚胺水溶液中浸泡后室温干燥至膜表面无明显液体得到复合膜;
(5)将均苯三甲酰氯正己烷溶液倒在复合膜表面在常温状态下进行界面聚合反应,将聚合反应制备的复合膜加热,然后在去离子水中浸泡后储存备用即得冠醚基共价有机框架/聚酰胺复合纳滤膜。
3.根据权利要求2所述的冠醚基共价有机框架/聚酰胺复合纳滤膜的制备方法,其特征在于:所述步骤(1)中1,3,6,8-四(4'-醛基苯)芘和4',4''-二氨基二苯并-18-冠-6的摩尔比为1:2。
4.根据权利要求2所述的冠醚基共价有机框架/聚酰胺复合纳滤膜的制备方法,其特征在于:所述步骤(2)中加热反应温度为120℃,反应时间为3天。
5.根据权利要求2所述的冠醚基共价有机框架/聚酰胺复合纳滤膜的制备方法,其特征在于:所述步骤(3)中干燥温度为100℃,干燥时间为12小时。
6.根据权利要求2所述的冠醚基共价有机框架/聚酰胺复合纳滤膜的制备方法,其特征在于:所述步骤(4)中B18C6-COF纳米颗粒水溶液的质量分数为0.01%,聚乙烯亚胺水溶液的质量分数为1%,浸泡时间为5min。
7.根据权利要求2所述的冠醚基共价有机框架/聚酰胺复合纳滤膜的制备方法,其特征在于:所述步骤(5)中均苯三甲酰氯正己烷溶液的质量分数为0.3%,聚合反应时间为1min。
8.根据权利要求2所述的冠醚基共价有机框架/聚酰胺复合纳滤膜的制备方法,其特征在于:步骤(5)中将聚合反应制备的复合膜加热,所述加热温度为50℃,加热时间为10min,在去离子水中浸泡时间为1-3小时。
9.根据权利要求1所述的冠醚基共价有机框架/聚酰胺复合纳滤膜在Li+/Mg2+离子选择性分离方面的应用。
10.根据权利要求9所述的应用,其特征在于:所述冠醚基共价有机框架/聚酰胺复合纳滤膜对Mg2+的截留率达到97.1%,选择性达到33.4。
CN202210993566.3A 2022-08-18 2022-08-18 一种冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法和应用 Active CN115350590B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210993566.3A CN115350590B (zh) 2022-08-18 2022-08-18 一种冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210993566.3A CN115350590B (zh) 2022-08-18 2022-08-18 一种冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115350590A CN115350590A (zh) 2022-11-18
CN115350590B true CN115350590B (zh) 2024-03-01

Family

ID=84001820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210993566.3A Active CN115350590B (zh) 2022-08-18 2022-08-18 一种冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115350590B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105642133A (zh) * 2016-02-03 2016-06-08 河北工业大学 一种聚酰胺/COFs杂化纳滤复合膜及其制备方法
CN105727763A (zh) * 2016-03-07 2016-07-06 天津大学 一种含氟聚酰胺复合纳滤膜的制备方法
CN108421422A (zh) * 2018-01-18 2018-08-21 方大炭素新材料科技股份有限公司 一种选择性离子分离的纳滤复合膜及其制备方法
WO2018161396A1 (zh) * 2017-03-06 2018-09-13 中国石油大学(华东) 一种高选择性全脂环族聚酰胺纳滤膜及其制备方法
CN113144912A (zh) * 2021-04-21 2021-07-23 山东晨钟机械股份有限公司 一种基于tfc结构的高通量共价有机骨架纳滤膜的制备方法
CN114288876A (zh) * 2022-01-07 2022-04-08 天津工业大学 一种从镁锂混合液中提取锂的冠醚功能化纳滤膜的制备方法
CN114534524A (zh) * 2022-03-03 2022-05-27 齐齐哈尔大学 一种基于离子液体界面聚合制备共价有机骨架膜的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210331122A1 (en) * 2018-08-14 2021-10-28 University Of Wyoming Two-dimensional nanoporous covalent organic framework for selective separation and filtration membrane formed therefrom
CN110449042A (zh) * 2019-08-28 2019-11-15 同济大学 具有抗菌抗生物污染功能的聚酰胺薄层复合反渗透膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105642133A (zh) * 2016-02-03 2016-06-08 河北工业大学 一种聚酰胺/COFs杂化纳滤复合膜及其制备方法
CN105727763A (zh) * 2016-03-07 2016-07-06 天津大学 一种含氟聚酰胺复合纳滤膜的制备方法
WO2018161396A1 (zh) * 2017-03-06 2018-09-13 中国石油大学(华东) 一种高选择性全脂环族聚酰胺纳滤膜及其制备方法
CN108421422A (zh) * 2018-01-18 2018-08-21 方大炭素新材料科技股份有限公司 一种选择性离子分离的纳滤复合膜及其制备方法
CN113144912A (zh) * 2021-04-21 2021-07-23 山东晨钟机械股份有限公司 一种基于tfc结构的高通量共价有机骨架纳滤膜的制备方法
CN114288876A (zh) * 2022-01-07 2022-04-08 天津工业大学 一种从镁锂混合液中提取锂的冠醚功能化纳滤膜的制备方法
CN114534524A (zh) * 2022-03-03 2022-05-27 齐齐哈尔大学 一种基于离子液体界面聚合制备共价有机骨架膜的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Covalent Organic Framework-Mediated Thin-Film Composite Polyamide Membranes toward Precise Ion Sieving;Shuangqiao Han等;《APPLIED MATERIALS & INTERFACES》;第第14卷卷(第第2期期);第3427-3436页 *
基于界面聚合技术的复合纳滤膜研究进展;田家宇;常海霖;高珊珊;宗悦;张瑞君;崔福义;;净水技术;第39卷(10);第86-93+180页 *
界面聚合聚酰胺纳滤膜渗透选择性能优化的研究进展;秘一芳;安全福;;化工进展;第39卷(06);第2093-2104页 *
米鹏;褚良银;杨文川;徐丹;巨晓洁.钠离子识别型复合膜的制备与性能研究.过滤与分离.2006,(第03期), *
聚哌嗪酰胺复合纳滤膜的性能调控;凡祖伟等;《净水技术》;第第39卷卷(第第2期期);第125-128页 *

Also Published As

Publication number Publication date
CN115350590A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
Ren et al. High flux thin film nanocomposite membranes based on porous organic polymers for nanofiltration
Hwang et al. Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation
Li et al. In-situ growth of UiO-66-NH2 in porous polymeric substrates at room temperature for fabrication of mixed matrix membranes with fast molecular separation performance
Wang et al. Hydrophilic polymers of intrinsic microporosity as water transport nanochannels of highly permeable thin-film nanocomposite membranes used for antibiotic desalination
CN106215720B (zh) 一种掺杂石墨烯量子点耐有机溶剂超滤膜的制备方法、所制备的超滤膜以及该超滤膜的应用
Feng et al. Hybrid ultrafiltration membranes based on PES and MOFs@ carbon quantum dots for improving anti-fouling performance
Zhao et al. Polyamide thin film nanocomposite membrane containing polydopamine modified ZIF-8 for nanofiltration
Oskoui et al. Effect of different additives on the physicochemical properties and performance of NLDH/PVDF nanocomposite membrane
Liu et al. Synthesis of novel high flux thin-film nanocomposite nanofiltration membranes containing GO–SiO2 via interfacial polymerization
CN112007521B (zh) 一种高通量复合纳滤膜的制备方法
Khan et al. Incorporating covalent organic framework nanosheets into polyamide membranes for efficient desalination
CN110479109B (zh) 通量高、抗污染性强的聚偏氟乙烯混合基质膜的制备方法
CN113648850B (zh) 具有高通量和高去除率MXene/还原多孔氧化石墨烯(r-HGO)复合膜的制备方法
Chen et al. Covalent Organic Frameworks: The Rising‐Star Platforms for the Design of CO2 Separation Membranes
CN112354378B (zh) 层状MoS2纳米片共混还原的氧化石墨烯纳滤膜及其制备方法
CN108993165B (zh) 一种层状无机材料有机溶剂纳滤复合膜及其制备方法
KR20150064457A (ko) 분리막, 및 상기 분리막을 포함하는 수처리 장치
Xiao et al. MOFs-mediated nanoscale Turing structure in polyamide membrane for enhanced nanofiltration
CN107694356B (zh) 一种β-CD/HNTs共混聚偏氟乙烯膜及制备方法
Jiang et al. Porous hydrogen-bonded organic framework membranes for high-performance molecular separation
Wu et al. Advanced Covalent Organic Framework‐Based Membranes for Recovery of Ionic Resources
Yu et al. Recent advances in separation membranes based on porous organic molecular materials
Ghanbari et al. Development of melamine-based covalent organic framework-MOF pearl-like heterostructure integrated poly (ether-block-amide) for CO2/CH4 separation
Kachhadiya et al. Separation of n-butanol from aqueous mixtures using TiO2 and h-BN functionalized MIL-101 (Cr) incorporated PVDF mixed matrix membranes
Meng et al. Incorporating imine-based covalent organic frameworks nanosheet as an active filler for long-term nanofiltration desalination

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant