CN108421422A - 一种选择性离子分离的纳滤复合膜及其制备方法 - Google Patents

一种选择性离子分离的纳滤复合膜及其制备方法 Download PDF

Info

Publication number
CN108421422A
CN108421422A CN201810049939.5A CN201810049939A CN108421422A CN 108421422 A CN108421422 A CN 108421422A CN 201810049939 A CN201810049939 A CN 201810049939A CN 108421422 A CN108421422 A CN 108421422A
Authority
CN
China
Prior art keywords
composite membrane
ion isolation
filtering composite
nano filtering
selective ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810049939.5A
Other languages
English (en)
Other versions
CN108421422B (zh
Inventor
朱宏伟
李启龙
胡蕊蕊
李虓
郝相龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fangda Carbon New Materials Technology Co Ltd
Tsinghua University
Original Assignee
Fangda Carbon New Materials Technology Co Ltd
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fangda Carbon New Materials Technology Co Ltd, Tsinghua University filed Critical Fangda Carbon New Materials Technology Co Ltd
Priority to CN201810049939.5A priority Critical patent/CN108421422B/zh
Publication of CN108421422A publication Critical patent/CN108421422A/zh
Application granted granted Critical
Publication of CN108421422B publication Critical patent/CN108421422B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/268Water softening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种纳滤复合膜及其制备方法,属于水处理膜技术领域。该纳滤复合膜包括基底支撑层、中间多孔层和超薄分离层三部分;超薄分离层由氧化石墨烯和聚酰胺两种材料复合构成。所述的氧化石墨烯片层大小控制在几十到几百纳米。本发明将氧化石墨烯纳米片分散在哌嗪水相中,然后与均苯三甲酰氯油相通过原位界面聚合反应添加到纳滤膜中,可同时提高纳滤膜的水通量和离子选择性。

Description

一种选择性离子分离的纳滤复合膜及其制备方法
技术领域
本发明涉及一种具有选择性离子分离的纳滤复合膜,更具体地说,是将氧化石墨烯材料加入到纳滤膜的超薄分离层中,属于水处理膜技术领域。
背景技术
日常自来水中通常都含有钙镁金属离子,在长期的使用过程中,这些离子将导致输水管道的结垢或腐蚀,从而降低其使用寿命并增加清洗成本。水软化过程可以有效去除二价钙镁离子。传统的水软化方法有石灰-纯碱法、电渗析法和离子交换法等。然而这些方法会产生大量的中间产物,增加处理工艺。近年来,水处理膜凭借其节能安全高效的优点已经成为主流的离子分离技术。反渗透膜可有效去除钙镁离子,然而其将同时去除饮用水中必需的矿物质钠钾离子。纳滤膜是一种孔径介于0.5-2 nm的压力驱动膜,其可有效去除分子量大于200 Da的有机小分子。同时,通过界面聚合制备的负电性纳滤膜,在尺寸排除效应和静电相互作用的耦合效应下,可有效去除高价离子同时允许单价离子通过。因此,纳滤膜在水软化和净化领域极具潜力。
然而,纳滤膜由于其密实的结构,在保证离子选择性的情况下水通量比较低。而如果提升了水通量则通常伴随着离子选择性的降低。因此,同时提高纳滤膜的水容量和离子选择性是纳滤分离膜技术面临的一个重要挑战。
与传统的高分子膜不同,一些具有天然刚性传质通道的纳米材料,如沸石,碳纳米管,金属有机框架,共价有机框架和石墨烯等,由于其独特的传质性能为水净化技术提供了新的思路。氧化石墨烯(GO)是一种在石墨烯表面和边缘修饰了各种含氧官能团(羟基,羧基,环氧基和羰基)的原子厚度的超薄二维纳米片。GO膜已经被证明具有超快水传输的特性,这主要是因为层层堆叠的GO片中未被氧化的石墨烯区域形成一个具有超低摩擦力和超高毛细效应的纳米通道,水分子可以在纳米通道内部实现超快传输。同时,根据尺寸排除效应、静电排斥作用、和化学相互作用,GO膜可以实现杰出的选择性离子分离效果。此外,GO是通过水溶液法合成的,具备优异的亲水性。虽然GO具备很多适合水净化应用的优异性质,但是纯的GO膜距离实际应用还非常遥远。这主要是因为GO膜具有一些难以解决的致命缺点:如其纳米孔通道即GO片层间距受环境影响很不稳定,压力过滤条件下离子选择性比较差,GO膜在水溶液中长期运行容易解离以及无法实现大面积成膜等。因此,将GO加入高分子纳滤膜基体中有望增强GO片层之间的结合,同时提高高分子膜的通量和离子选择性。
在本发明中,将氧化石墨烯通过原位界面聚合反应加入到纳滤膜超薄分离层中,改善纳滤膜的亲水性和电荷性,从而有效提高纳滤膜的水通量和二价阳离子与单价阳离子的选择性。
发明内容
本发明所要解决的技术问题是针对现有技术中的缺点而本发明的目的在于提供一种一种选择性离子分离的纳滤复合膜,该一种选择性离子分离的纳滤复合膜具有更优的水通量和离子选择性。
本发明的另一目的是提供上述选择性离子分离的纳滤复合膜的制备方法。
为解决本发明的技术问题采用如下技术方案:
一种选择性离子分离的纳滤复合膜,从底向上依次为基底支撑层、中间多孔层和超薄分离层,所述超薄分离层是将氧化石墨烯添加至聚酰胺中发生原位界面聚合反应形成的。
所述氧化石墨烯为片层结构,大小为20-500纳米,片层厚度为1.2-3纳米。
所述的氧化石墨烯先分散在哌嗪水相溶液中,再与聚酰胺发生原位界面聚合反应。
所述的超薄分离层的厚度为20-50纳米。
所述中间多孔层为聚砜类高分子材料,厚度为50-100微米。
所述基底支撑层为无纺布材料,厚度为100-200微米。
选择性离子分离的纳滤复合膜的制备方法,包括如下步骤:
(1)将聚砜类高分子材料溶于N-甲基吡咯烷酮溶剂中,配制聚砜溶液;用自动涂膜机将聚砜溶液均匀涂覆在无纺布表层,浸入去离子水后固化成膜,涂膜厚度为50-100微米;在60-80 ℃条件下干燥10-30 min;
(2)将氧化石墨烯水溶液用细胞破碎仪超声破碎,控制氧化石墨片层大小为20-500纳米;
(3)将哌嗪、樟脑磺酸和三乙胺混溶于去离子水中制备哌嗪水相溶液;
(4)将氧化石墨烯加入哌嗪水相溶液中,超声分散,氧化石墨烯含量控制在10-500ppm;
(5)将均苯三甲酰氯溶于石油碳氢化合物溶剂中制备均苯三甲酰氯油相溶液;
(6)将涂覆有聚砜材料的无纺布的基膜平铺于板子上,倒入哌嗪和氧化石墨烯水相溶液,保持1-3 min后倒掉,用滚轮将表面残留溶液去除干净;再倒入均苯三甲酰氯油相溶液保持10-30 s后倒掉;在60-80 ℃条件下干燥1-5 min,即制得选择性离子分离的纳滤复合膜。
所述步骤(3)中所述的哌嗪浓度控制在0.5-1.5 wt.%,樟脑磺酸浓度控制在1.5-2wt.%,三乙胺浓度控制在0.5 -1wt.%。
所述步骤(5)中所述的均苯三甲酰氯浓度控制在0.01-0.1wt.%。
所述的选择性离子分离的纳滤复合膜应用于选择性离子分离领域。
本发明与现有技术相比,具有以下优点及突出性的技术效果:该方法制备的纳滤复合膜中氧化石墨烯可均匀分散在膜内部;氧化石墨烯的加入不会影响哌嗪和均苯三甲酰氯聚合反应的进行,不会引入缺陷;利用氧化石墨烯片层之间的超快水传输通道提高纳滤膜的水通量(~15LMH);利用氧化石墨烯对纳滤膜电荷性的调控提高纳滤膜的选择性离子分离性能:选择性的提高CaCl2 和MgCl2 的脱盐率(分别从53.11%,64.57% 增加到 63.75%,73.08%),降低MgSO4, NaCl 和KCl 的脱盐率(分别从92.62%,34.91%,36.13% 降低到91.17%,31.58%,32.84%),从而提高纳滤膜对二价阳离子和单价阳离子的分离效率,可促进纳滤膜在水软化领域的应用。
附图说明
图1为本发明选择性离子分离的纳滤复合膜的结构示意图。
图2为本发明实施例1、2、3、4、5中氧化石墨烯纳米片的原子力扫描电镜图。
图3为本发明实施例3中选择性离子分离的纳滤复合膜的X射线衍射图。
图4为本发明实施例3中选择性离子分离的纳滤复合膜的接触角测试结果。
图5为本发明实施例3中选择性离子分离的纳滤复合膜的孔径大小及分布。
图6为本发明实施例3中选择性离子分离的纳滤复合膜的表面Zeta电位测试结果。
图7为本发明实施例3中的选择性离子分离的纳滤复合膜的(a)选择性离子分离测试结果;(b)水的传输速率;(c)离子传输速率。
图8为氧化石墨烯水溶液(a-c)和实施例3中的哌嗪与氧化石墨烯混合水相溶液(d-f)的透射电镜照片。
图9为氧化石墨烯水溶液和实施例3中的哌嗪与氧化石墨烯混合水相溶液的Zeta电位测试结果。
具体实施方式
如图1所示,一种选择性离子分离的纳滤复合膜,从底向上依次为基底支撑层1、中间多孔层2和超薄分离层3,所述超薄分离层3是将氧化石墨烯4添加至聚酰胺中发生原位界面聚合反应形成的。其中氧化石墨烯3为片层结构,大小为20-500纳米之间,片层厚度为1.2-3纳米之间。超薄分离层3的厚度为20-50纳米,起到去除盐离子的作用。超薄分离层的合成方法是原位界面聚合法,发生界面聚合反应所用的单体为哌嗪和均苯三甲酰氯,所述的氧化石墨烯片层大小控制在几十到几百纳米之间,先分散在哌嗪水相溶液中。中间多孔层2为聚砜类高分子材料,厚度为50-100微米,在基底支撑层1上形成多孔结构,起到超滤的作用。基底支撑层1为无纺布材料,厚度为100-200微米,起到结构支撑和增强纳滤膜力学性能的作用。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例中的氧化石墨烯通过改性的Hummers方法制备得到,具体步骤如下:
(1)将0.6 g膨胀石墨加入75 mL含9 g高锰酸钾和1.5 g硝酸钠的浓硫酸中,在冰水浴中混合搅拌均匀(0-4℃);
(2)在0 ℃下冷藏24 h, 使氧化剂缓慢渗入石墨层片间;
(3)所得混合物在35℃下保温30 min,将150 mL去离子水逐滴加入混合物中,整个过程持续充分搅拌;
(4)升温至95℃保温15 min;
(5)将混合物用去离子水稀释至450 mL;
(6)将双氧水逐滴加入混合物中除去过量氧化剂,直至无气泡产生,混合物由红黑色逐渐变为金黄色,即得到氧化石墨;
(7) 将氧化石墨溶液用滤纸过滤;
(8) 用300 mL盐酸过滤清洗,盐酸浓度为10 wt.%;
(9) 用200 mL去离子水清洗;
(10)将上步骤制备的氧化石墨配成氧化石墨水溶液,透析一周;
(11)将透析后的氧化石墨溶液用振荡器震荡,即可得到氧化石墨烯溶液;
(12)取一定体积的氧化石墨烯溶液放在冰箱中冷冻,然后在冷冻干燥箱中使水分充分升华,得到氧化石墨烯粉末后称重,即可标定所制备氧化石墨烯溶液的浓度;
(13)将氧化石墨烯溶液用细胞破碎仪超声破碎,控制氧化石墨烯层片大小在20到500纳米之间。
下面举出几个具体的实施例以进一步理解本发明的具体实施。
实施例1
一种选择性离子分离的纳滤复合膜的制备方法,包括如下步骤:
(1)制备选择性离子分离的纳滤复合膜的中间多孔层:将20wt.%聚砜(PSF)固体颗粒和80wt.% N-甲基吡咯烷酮(NMP)溶液混合,50 ℃加热搅拌6 h,形成均一透明的PSF/NMP溶液;PSF/NMP溶液真空除气,直到没有可见气泡;用自动涂膜机以恒定的速度和厚度使PSF/NMP溶液在预处理的无纺布基底上成膜,膜厚控制在50微米;立即将涂膜的无纺布浸入在去离子水中使PSF固化成多孔结构薄膜,保持24 h,然后取出在空气氛围中60 ℃干燥30 min待用;
(2)配制哌嗪水相溶液和均苯三甲酰氯油相溶液;将哌嗪、樟脑磺酸和三乙胺混溶于去离子水中制备哌嗪水相溶液,哌嗪浓度为0.5 wt.%, 樟脑磺酸浓度为1.5 wt.%, 三乙胺浓度为0.5 wt.%;将氧化石墨烯加入哌嗪水相溶液中,超声分散30 min,氧化石墨烯含量为10ppm;将均苯三甲酰氯溶于石油碳氢化合物溶剂中制备均苯三甲酰氯油相溶液, 均苯三甲酰氯浓度为0.01 wt.%;
(3)制备选择性离子分离的纳滤复合膜的超薄分离层:将基膜(涂覆有聚砜材料的无纺布)平铺于一块A4大小的铝板上,用橡皮筋将无纺布固定,倒入哌嗪或哌嗪和氧化石墨烯水相溶液,保持1 min后倒掉,用滚轮将基膜表面滚干,去除残留溶液;再倒入均苯三甲酰氯油相溶液保持10 s后倒掉;在70 ℃条件下干燥3 min,即制得纯哌嗪纳滤膜(PIP)或氧化石墨烯含量为10 ppm的纳滤复合膜(PIP-GO);将制备得到的纳滤复合膜保存在去离子水中待用。
实施例2
一种选择性离子分离的纳滤复合膜的制备方法,包括如下步骤:
(1)制备选择性离子分离的纳滤复合膜的中间多孔层:将20wt.%聚砜(PSF)固体颗粒和80wt.% N-甲基吡咯烷酮(NMP)溶液混合,50 ℃加热搅拌6 h,形成均一透明的PSF/NMP溶液;PSF/NMP溶液真空除气,直到没有可见气泡;用自动涂膜机以恒定的速度和厚度使PSF/NMP溶液在预处理的无纺布基底上成膜,膜厚控制在100微米;立即将涂膜的无纺布浸入在去离子水中使PSF固化成多孔结构薄膜,保持24 h,然后取出在空气氛围中80 ℃干燥10min待用;
(2)配置哌嗪水相溶液和均苯三甲酰氯油相溶液;将哌嗪、樟脑磺酸和三乙胺混溶于去离子水中制备哌嗪水相溶液,哌嗪浓度为1.5 wt.%, 樟脑磺酸浓度为2 wt.%, 三乙胺浓度为0.85 wt.%;将氧化石墨烯加入哌嗪水相溶液中,超声分散30 min,氧化石墨烯含量为50ppm;将均苯三甲酰氯溶于石油碳氢化合物溶剂中制备均苯三甲酰氯油相溶液, 均苯三甲酰氯浓度为0.01 wt.%;
(3)制备选择性离子分离的纳滤复合膜的超薄分离层:将基膜(涂覆有聚砜材料的无纺布)平铺于一块A4大小的铝板上,用橡皮筋将无纺布固定,倒入哌嗪或哌嗪和氧化石墨烯水相溶液,保持1 min后倒掉,用滚轮将基膜表面滚干,去除残留溶液;再倒入均苯三甲酰氯油相溶液保持10 s后倒掉;在70 ℃条件下干燥3 min,即制得纯哌嗪纳滤膜(PIP)或氧化石墨烯含量为50 ppm的纳滤复合膜(PIP-GO);将制备得到的纳滤复合膜保存在去离子水中待用。
实施例3
一种选择性离子分离的纳滤复合膜的制备方法,包括如下步骤:
(1)制备选择性离子分离的纳滤复合膜的中间多孔层:将20wt.%聚砜(PSF)固体颗粒和80wt.% N-甲基吡咯烷酮(NMP)溶液混合,50 ℃加热搅拌6 h,形成均一透明的PSF/NMP溶液;PSF/NMP溶液真空除气,直到没有可见气泡;用自动涂膜机以恒定的速度和厚度使PSF/NMP溶液在预处理的无纺布基底上成膜,膜厚控制在50微米;立即将涂膜的无纺布浸入在去离子水中使PSF固化成多孔结构薄膜,保持24 h,然后取出在空气氛围中60 ℃干燥30 min待用;
(2)配置哌嗪水相溶液和均苯三甲酰氯油相溶液;将哌嗪、樟脑磺酸和三乙胺混溶于去离子水中制备哌嗪水相溶液,哌嗪浓度为0.9 wt.%, 樟脑磺酸浓度为1.9 wt.%, 三乙胺浓度为1 wt.%;将氧化石墨烯加入哌嗪水相溶液中,超声分散30 min,氧化石墨烯含量为100ppm;将均苯三甲酰氯溶于石油碳氢化合物溶剂中制备均苯三甲酰氯油相溶液, 均苯三甲酰氯浓度为0.01 wt.%;
(3)制备选择性离子分离的纳滤复合膜的超薄分离层:将基膜(涂覆有聚砜材料的无纺布)平铺于一块A4大小的铝板上,用橡皮筋将无纺布固定,倒入哌嗪或哌嗪和氧化石墨烯水相溶液,保持1 min后倒掉,用滚轮将基膜表面滚干,去除残留溶液;再倒入均苯三甲酰氯油相溶液保持10 s后倒掉;在80℃条件下干燥1 min,即制得纯哌嗪纳滤膜(PIP)或氧化石墨烯含量为100 ppm的纳滤复合膜(PIP-GO);将制备得到的纳滤复合膜保存在去离子水中待用。
实施例4
一种选择性离子分离的纳滤复合膜的制备方法,包括如下步骤:
(1)制备选择性离子分离的纳滤复合膜的中间多孔层:将20wt.%聚砜(PSF)固体颗粒和80wt.% N-甲基吡咯烷酮(NMP)溶液混合,50 ℃加热搅拌6 h,形成均一透明的PSF/NMP溶液;PSF/NMP溶液真空除气,直到没有可见气泡;用自动涂膜机以恒定的速度和厚度使PSF/NMP溶液在预处理的无纺布基底上成膜,膜厚控制在50微米;立即将涂膜的无纺布浸入在去离子水中使PSF固化成多孔结构薄膜,保持24 h,然后取出在空气氛围中60 ℃干燥30 min待用;
(2)配置哌嗪水相溶液和均苯三甲酰氯油相溶液;将哌嗪、樟脑磺酸和三乙胺混溶于去离子水中制备哌嗪水相溶液,哌嗪浓度为0.9 wt.%, 樟脑磺酸浓度为1.9 wt.%, 三乙胺浓度为0.85 wt.%;将氧化石墨烯加入哌嗪水相溶液中,超声分散30 min,氧化石墨烯含量为300 ppm;将均苯三甲酰氯溶于石油碳氢化合物溶剂中制备均苯三甲酰氯油相溶液, 均苯三甲酰氯浓度为0.1 wt.%;
(3)制备选择性离子分离的纳滤复合膜的超薄分离层:将基膜(涂覆有聚砜材料的无纺布)平铺于一块A4大小的铝板上,用橡皮筋将无纺布固定,倒入哌嗪或哌嗪和氧化石墨烯水相溶液,保持1 min后倒掉,用滚轮将基膜表面滚干,去除残留溶液;再倒入均苯三甲酰氯油相溶液保持10 s后倒掉;在60℃条件下干燥5 min,即制得纯哌嗪纳滤膜(PIP)或氧化石墨烯含量为300 ppm的纳滤复合膜(PIP-GO);将制备得到的选择性离子分离的纳滤复合膜保存在去离子水中待用。
实施例5
一种选择性离子分离的纳滤复合膜的制备方法,包括如下步骤:
(1)制备选择性离子分离的纳滤复合膜的中间多孔层:将20wt.%聚砜(PSF)固体颗粒和80wt.% N-甲基吡咯烷酮(NMP)溶液混合,50 ℃加热搅拌6 h,形成均一透明的PSF/NMP溶液;PSF/NMP溶液真空除气,直到没有可见气泡;用自动涂膜机以恒定的速度和厚度使PSF/NMP溶液在预处理的无纺布基底上成膜,膜厚控制在50微米;立即将涂膜的无纺布浸入在去离子水中使PSF固化成多孔结构薄膜,保持24 h,然后取出在空气氛围中60 ℃干燥30 min待用;
(2)配置哌嗪水相溶液和均苯三甲酰氯油相溶液;将哌嗪、樟脑磺酸和三乙胺混溶于去离子水中制备哌嗪水相溶液,哌嗪浓度为0.9 wt.%, 樟脑磺酸浓度为1.9 wt.%, 三乙胺浓度为0.85 wt.%;将氧化石墨烯加入哌嗪水相溶液中,超声分散30 min,氧化石墨烯含量为500 ppm;将均苯三甲酰氯溶于石油碳氢化合物溶剂中制备均苯三甲酰氯油相溶液, 均苯三甲酰氯浓度为0.1 wt.%;
(3)制备选择性离子分离的纳滤复合膜的超薄分离层:将基膜(涂覆有聚砜材料的无纺布)平铺于一块A4大小的铝板上,用橡皮筋将无纺布固定,倒入哌嗪或哌嗪和氧化石墨烯水相溶液,保持1 min后倒掉,用滚轮将基膜表面滚干,去除残留溶液;再倒入均苯三甲酰氯油相溶液保持10 s后倒掉;在70℃条件下干燥3 min,即制得纯哌嗪纳滤膜(PIP)或氧化石墨烯含量为500 ppm的纳滤复合膜(PIP-GO);将制备得到的选择性离子分离的纳滤复合膜保存在去离子水中待用。
实施例6
表征和性能测试
将上述实施例3得到的纯哌嗪纳滤膜和选择性离子分离的纳滤复合膜进行结构表征、性能测试和机理分析,X射线衍射图谱如图3所示,加入氧化石墨烯后膜的衍射峰峰强减弱,这主要是因为氧化石墨烯的屏蔽效应,此结果证明了氧化石墨烯在纳滤复合膜中的存在。接触角测试结果如图2所示,加入氧化石墨烯后膜的亲水性提高。孔径大小及分布如图4所示,加入氧化石墨烯对超薄分离层的孔径和分布都没有影响,也就是说氧化石墨烯不会干扰聚合反应的进行。Zeta电位测试结果如图5所示,加入氧化石墨烯后膜表面的负电性在pH大于5.5时减弱。选择性离子分离性能测试结果如图6所示,加入氧化石墨烯可选择性提高膜对二价钙镁离子的选择性,降低一价钠钾离子的选择性。同时对所有测试的盐离子溶液水通量都显著提高。氧化石墨烯在水溶液和哌嗪水相溶液中的透射电镜照片如图7所示,负电荷氧化石墨烯表面可吸附正电性哌嗪有机分子,从而增加复合纳滤膜中哌嗪单体含量。氧化石墨烯在水溶液和哌嗪水相溶液中的Zeta电位测试结果如图8所示,由于氧化石墨烯表面吸附了哌嗪分子,其电负性减弱。

Claims (10)

1.一种选择性离子分离的纳滤复合膜,其特征在于:从底向上依次为基底支撑层(1)、中间多孔层(2)和超薄分离层(3),所述超薄分离层(3)是将氧化石墨烯(4)添加至聚酰胺中发生原位界面聚合反应形成的。
2.根据权利要求1所述的一种选择性离子分离的纳滤复合膜,其特征在于:所述氧化石墨烯(3)为片层结构,大小为20-500纳米,片层厚度为1.2-3纳米。
3.根据权利要求1所述的一种选择性离子分离的纳滤复合膜,其特征在于:所述的氧化石墨烯(3)先分散在哌嗪水相溶液中,再与聚酰胺发生原位界面聚合反应。
4.根据权利要求1或2所述的一种选择性离子分离的纳滤复合膜,其特征在于:其特征在于:所述的超薄分离层(3)的厚度为20-50纳米。
5.按照权利要求1或2所述的一种选择性离子分离的纳滤复合膜,其特征在于:所述中间多孔层(2)为聚砜类高分子材料,厚度为50-100微米。
6.按照权利要求5所述的一种选择性离子分离的纳滤复合膜,其特征在于:所述基底支撑层(1)为无纺布材料,厚度为100-200微米。
7.根据上述任一权利要求书所述的一种选择性离子分离的纳滤复合膜的制备方法,其特征在于包括如下步骤:
(1)将聚砜类高分子材料溶于N-甲基吡咯烷酮溶剂中,配制聚砜溶液;用自动涂膜机将聚砜溶液均匀涂覆在无纺布表层,浸入去离子水后固化成膜,涂膜厚度为50-100微米;在60-80 °C条件下干燥10-30 min;
(2)将氧化石墨烯水溶液用细胞破碎仪超声破碎,控制氧化石墨片层大小为20-500纳米;
(3)将哌嗪、樟脑磺酸和三乙胺混溶于去离子水中制备哌嗪水相溶液;
(4)将氧化石墨烯加入哌嗪水相溶液中,超声分散,氧化石墨烯含量控制在10-500ppm;
(5)将均苯三甲酰氯溶于石油碳氢化合物溶剂中制备均苯三甲酰氯油相溶液;
(6)将涂覆有聚砜材料的无纺布的基膜平铺于板子上,倒入哌嗪和氧化石墨烯水相溶液,保持1-3 min后倒掉,用滚轮将表面残留溶液去除干净;再倒入均苯三甲酰氯油相溶液保持10-30 s后倒掉;在60-80 °C条件下干燥1-5 min,即制得选择性离子分离的纳滤复合膜。
8.根据权利要求7所述的一种选择性离子分离的纳滤复合膜的制备方法,其特征在于:步骤(3)中所述的哌嗪浓度控制在0.5-1.5 wt.%,樟脑磺酸浓度控制在1.5-2 wt.%,三乙胺浓度控制在0.5 -1wt.%。
9.根据权利要求7或8所述的一种选择性离子分离的纳滤复合膜的制备方法,其特征在于:步骤(5)中所述的均苯三甲酰氯浓度控制在0.01-0.1wt.%。
10.根据上述1-6任一权利要求所述的一种选择性离子分离的纳滤复合膜,其特征在于:所述的选择性离子分离的纳滤复合膜应用于选择性离子分离领域。
CN201810049939.5A 2018-01-18 2018-01-18 一种选择性离子分离的纳滤复合膜及其制备方法 Active CN108421422B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810049939.5A CN108421422B (zh) 2018-01-18 2018-01-18 一种选择性离子分离的纳滤复合膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810049939.5A CN108421422B (zh) 2018-01-18 2018-01-18 一种选择性离子分离的纳滤复合膜及其制备方法

Publications (2)

Publication Number Publication Date
CN108421422A true CN108421422A (zh) 2018-08-21
CN108421422B CN108421422B (zh) 2021-05-07

Family

ID=63156001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810049939.5A Active CN108421422B (zh) 2018-01-18 2018-01-18 一种选择性离子分离的纳滤复合膜及其制备方法

Country Status (1)

Country Link
CN (1) CN108421422B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109772177A (zh) * 2019-03-12 2019-05-21 江西理工大学 一种氧化石墨烯改性纳滤膜的制备方法和应用
CN110170253A (zh) * 2019-05-31 2019-08-27 复旦大学 二维/一维异质纳米通道膜、其制备方法及应用
CN110523297A (zh) * 2019-09-09 2019-12-03 香港纺织及成衣研发中心有限公司 一种氧化石墨烯复合纳滤膜及其制备方法
CN110559888A (zh) * 2019-08-29 2019-12-13 浙江工业大学 一种两亲性氧化石墨烯改性超薄复合纳滤膜及其制备方法与应用
CN110773001A (zh) * 2019-10-29 2020-02-11 南京大学 一种纳滤复合膜、制备方法及应用
WO2020177274A1 (zh) * 2019-03-06 2020-09-10 中国海洋大学 复合膜、制备方法及其应用
CN112007514A (zh) * 2020-07-28 2020-12-01 新长丰实业股份有限公司 纳滤复合膜
CN113301990A (zh) * 2018-11-16 2021-08-24 国家研究委员会 多孔基底的处理方法
CN113413769A (zh) * 2021-03-01 2021-09-21 中国农业大学 一种兼具高渗透高选择性的纳滤膜的制备方法
CN114045011A (zh) * 2021-11-09 2022-02-15 上海应用技术大学 一种具有t型通道结构的对苯二甲酸乙二醇酯/石墨烯二维层状复合膜及其制备方法和应用
CN114073895A (zh) * 2020-08-21 2022-02-22 天津工业大学 一种用于镁锂分离的方法及装置
CN114288875A (zh) * 2021-12-31 2022-04-08 复旦大学 基于界面超组装策略得到的pga复合膜在离子筛分的应用
CN115350590A (zh) * 2022-08-18 2022-11-18 中原工学院 一种冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法和应用
US11642632B2 (en) 2020-11-13 2023-05-09 New Micropore, Inc. Nanofiltration composite membranes
CN117085524A (zh) * 2023-10-07 2023-11-21 安庆市长三角未来产业研究院 一种以无纺布为支撑层的高通量纳滤膜及其制备方法与应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989331A (zh) * 2012-12-20 2013-03-27 浙江工商大学 一种聚合物/石墨烯杂化纳滤复合膜及其制备方法
CN104607069A (zh) * 2015-01-27 2015-05-13 清华大学 一种复合脱盐膜及其制备方法和应用
CN105727758A (zh) * 2016-04-13 2016-07-06 天津大学 一种氧化石墨烯复合膜的制备方法及应用
CN105854626A (zh) * 2016-04-29 2016-08-17 清华大学 一种复合反渗透薄膜及其制备方法
CN105921031A (zh) * 2016-05-15 2016-09-07 高学理 一种羧基化氧化石墨烯及其对有机分离膜的改性方法
CN106268379A (zh) * 2016-09-23 2017-01-04 北京碧水源膜科技有限公司 一种酰氯化氧化石墨烯改性的聚酰胺反渗透膜的制备方法、所述改性反渗透膜及其应用
CN106552514A (zh) * 2016-11-11 2017-04-05 北京碧水源膜科技有限公司 一种一体式智能净水龙头专用复合纳滤膜及其制备方法
US20170106334A1 (en) * 2014-06-04 2017-04-20 The Research Foundation For The State University Of New York Highly porous fibrous network materials for gas filtration
CN106823842A (zh) * 2017-03-28 2017-06-13 天津大学 一种氧化石墨烯复合纳滤膜的制备方法
CN107174984A (zh) * 2017-07-13 2017-09-19 中国科学院生态环境研究中心 一种低压高通量抗污染中空纤维纳滤膜的制备方法
CN107297154A (zh) * 2017-06-05 2017-10-27 浙江工业大学 一种羧基化氧化石墨烯纳滤膜及其制备和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989331A (zh) * 2012-12-20 2013-03-27 浙江工商大学 一种聚合物/石墨烯杂化纳滤复合膜及其制备方法
US20170106334A1 (en) * 2014-06-04 2017-04-20 The Research Foundation For The State University Of New York Highly porous fibrous network materials for gas filtration
CN104607069A (zh) * 2015-01-27 2015-05-13 清华大学 一种复合脱盐膜及其制备方法和应用
CN105727758A (zh) * 2016-04-13 2016-07-06 天津大学 一种氧化石墨烯复合膜的制备方法及应用
CN105854626A (zh) * 2016-04-29 2016-08-17 清华大学 一种复合反渗透薄膜及其制备方法
CN105921031A (zh) * 2016-05-15 2016-09-07 高学理 一种羧基化氧化石墨烯及其对有机分离膜的改性方法
CN106268379A (zh) * 2016-09-23 2017-01-04 北京碧水源膜科技有限公司 一种酰氯化氧化石墨烯改性的聚酰胺反渗透膜的制备方法、所述改性反渗透膜及其应用
CN106552514A (zh) * 2016-11-11 2017-04-05 北京碧水源膜科技有限公司 一种一体式智能净水龙头专用复合纳滤膜及其制备方法
CN106823842A (zh) * 2017-03-28 2017-06-13 天津大学 一种氧化石墨烯复合纳滤膜的制备方法
CN107297154A (zh) * 2017-06-05 2017-10-27 浙江工业大学 一种羧基化氧化石墨烯纳滤膜及其制备和应用
CN107174984A (zh) * 2017-07-13 2017-09-19 中国科学院生态环境研究中心 一种低压高通量抗污染中空纤维纳滤膜的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SAIRA BANO,ET.AL: "Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
张慧娟等: "界面聚合法制备TFN NF膜研究进展", 《过滤与分离》 *
王进等: "氧化石墨烯/聚哌嗪酰胺复合纳滤膜在染料脱除中的应用研究", 《膜科学与技术》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113301990A (zh) * 2018-11-16 2021-08-24 国家研究委员会 多孔基底的处理方法
CN113301990B (zh) * 2018-11-16 2024-04-16 国家研究委员会 多孔基底的处理方法
WO2020177274A1 (zh) * 2019-03-06 2020-09-10 中国海洋大学 复合膜、制备方法及其应用
CN109772177A (zh) * 2019-03-12 2019-05-21 江西理工大学 一种氧化石墨烯改性纳滤膜的制备方法和应用
CN110170253A (zh) * 2019-05-31 2019-08-27 复旦大学 二维/一维异质纳米通道膜、其制备方法及应用
CN110559888B (zh) * 2019-08-29 2022-05-24 浙江工业大学 一种两亲性氧化石墨烯改性超薄复合纳滤膜及其制备方法与应用
CN110559888A (zh) * 2019-08-29 2019-12-13 浙江工业大学 一种两亲性氧化石墨烯改性超薄复合纳滤膜及其制备方法与应用
CN110523297A (zh) * 2019-09-09 2019-12-03 香港纺织及成衣研发中心有限公司 一种氧化石墨烯复合纳滤膜及其制备方法
CN110523297B (zh) * 2019-09-09 2022-07-19 香港纺织及成衣研发中心有限公司 一种氧化石墨烯复合纳滤膜及其制备方法
CN110773001A (zh) * 2019-10-29 2020-02-11 南京大学 一种纳滤复合膜、制备方法及应用
CN112007514A (zh) * 2020-07-28 2020-12-01 新长丰实业股份有限公司 纳滤复合膜
CN112007514B (zh) * 2020-07-28 2022-07-12 新长丰实业股份有限公司 纳滤复合膜
CN114073895A (zh) * 2020-08-21 2022-02-22 天津工业大学 一种用于镁锂分离的方法及装置
CN114073895B (zh) * 2020-08-21 2023-12-22 天津工业大学 一种用于镁锂分离的方法及装置
US11642632B2 (en) 2020-11-13 2023-05-09 New Micropore, Inc. Nanofiltration composite membranes
CN113413769A (zh) * 2021-03-01 2021-09-21 中国农业大学 一种兼具高渗透高选择性的纳滤膜的制备方法
CN114045011A (zh) * 2021-11-09 2022-02-15 上海应用技术大学 一种具有t型通道结构的对苯二甲酸乙二醇酯/石墨烯二维层状复合膜及其制备方法和应用
CN114288875A (zh) * 2021-12-31 2022-04-08 复旦大学 基于界面超组装策略得到的pga复合膜在离子筛分的应用
CN114288875B (zh) * 2021-12-31 2024-04-26 复旦大学 基于界面超组装策略得到的pga复合膜在离子筛分的应用
CN115350590A (zh) * 2022-08-18 2022-11-18 中原工学院 一种冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法和应用
CN115350590B (zh) * 2022-08-18 2024-03-01 中原工学院 一种冠醚基共价有机框架/聚酰胺复合纳滤膜及其制备方法和应用
CN117085524A (zh) * 2023-10-07 2023-11-21 安庆市长三角未来产业研究院 一种以无纺布为支撑层的高通量纳滤膜及其制备方法与应用
CN117085524B (zh) * 2023-10-07 2024-04-19 安庆市长三角未来产业研究院 一种以无纺布为支撑层的高通量纳滤膜及其制备方法与应用

Also Published As

Publication number Publication date
CN108421422B (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN108421422A (zh) 一种选择性离子分离的纳滤复合膜及其制备方法
Liu et al. A mussel inspired highly stable graphene oxide membrane for efficient oil-in-water emulsions separation
Jin et al. Polyamide-crosslinked graphene oxide membrane for forward osmosis
Yin et al. Amino-functionalized MOFs combining ceramic membrane ultrafiltration for Pb (II) removal
Jia et al. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation
Obaid et al. Effective polysulfone-amorphous SiO2 NPs electrospun nanofiber membrane for high flux oil/water separation
Wu et al. Thin-film nanocomposite nanofiltration membrane with enhanced desalination and antifouling performance via incorporating L-aspartic acid functionalized graphene quantum dots
Cho et al. Pervaporative seawater desalination using NaA zeolite membrane: Mechanisms of high water flux and high salt rejection
Jiang et al. Realization of super high adsorption capability of 2D δ-MnO2/GO through intra-particle diffusion
Li et al. Role of layered materials in emulsified oil/water separation and anti-fouling performance of modified cellulose acetate membranes with hierarchical structure
CN107640765B (zh) 层间距可控的氧化石墨烯膜及其制备方法、应用
Cheng et al. Fabrication of graphene oxide/silicalite-1 composites with hierarchical porous structure and investigation on their adsorption performance for rhodamine B
Shao et al. One-step preparation of sepiolite/graphene oxide membrane for multifunctional oil-in-water emulsions separation
CN104815608B (zh) 基于氧化石墨烯纳米带多功能油水分离材料的制备方法
Lin et al. Asymmetrically porous anion exchange membranes with an ultrathin selective layer for rapid acid recovery
Bakangura et al. Hierarchically structured porous anion exchange membranes containing zwetterionic pores for ion separation
CN112079349B (zh) 一种限域燃烧制备氮掺杂多孔石墨烯纳米材料的方法及应用
Du et al. Ultra-thin graphene oxide films via contra-diffusion method: Fast fabrication for ion rejection
Junaidi et al. Effect of graphene oxide (GO) and polyvinylpyrollidone (PVP) additives on the hydrophilicity of composite polyethersulfone (PES) membrane
KR101276556B1 (ko) 고강도 탄소 나노 기공막 바이러스 필터 및 이의 제조방법
Mao et al. Hydrophobic metal-organic framework@ graphene oxide membrane with enhanced water transport for desalination
CN104623973A (zh) 一种改性石英砂及其改性方法
Wang et al. Facile fabrication of superhydrophobic/superoleophilic cotton for highly efficient oil/water separation
Zhang et al. Multifunctional granulated blast furnace slag-based inorganic membrane for highly efficient separation of oil and dye from wastewater
Manikandan et al. Performance studies of GO/PF127 incorporated Polyetherimide Ultrafiltration membranes for the rejection of oil from oil wastewater

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 730084 No.11 carbon road, Honggu District, Lanzhou City, Gansu Province

Applicant after: FANGDA CARBON NEW MATERIAL Co.,Ltd.

Applicant after: TSINGHUA University

Address before: 730084 No.277 carbon road, Honggu District, Lanzhou City, Gansu Province

Applicant before: FANGDA CARBON NEW MATERIAL Co.,Ltd.

Applicant before: TSINGHUA University

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant