WO2018012923A1 - 로봇 청소기 및 그 제어 방법 - Google Patents

로봇 청소기 및 그 제어 방법 Download PDF

Info

Publication number
WO2018012923A1
WO2018012923A1 PCT/KR2017/007562 KR2017007562W WO2018012923A1 WO 2018012923 A1 WO2018012923 A1 WO 2018012923A1 KR 2017007562 W KR2017007562 W KR 2017007562W WO 2018012923 A1 WO2018012923 A1 WO 2018012923A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot cleaner
floor
spinmab
rolling
rotation
Prior art date
Application number
PCT/KR2017/007562
Other languages
English (en)
French (fr)
Inventor
박정섭
장재원
김동훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020187036041A priority Critical patent/KR102159972B1/ko
Priority to EP17827993.1A priority patent/EP3485793B1/en
Priority to CN202111353538.7A priority patent/CN114224252B/zh
Priority to US16/333,124 priority patent/US10993598B2/en
Priority to CN201780056687.2A priority patent/CN110087521B/zh
Priority to AU2017296910A priority patent/AU2017296910B2/en
Priority to TW107101302A priority patent/TWI679959B/zh
Publication of WO2018012923A1 publication Critical patent/WO2018012923A1/ko
Priority to US17/222,070 priority patent/US11864697B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/10Floor surfacing or polishing machines motor-driven
    • A47L11/14Floor surfacing or polishing machines motor-driven with rotating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/10Floor surfacing or polishing machines motor-driven
    • A47L11/14Floor surfacing or polishing machines motor-driven with rotating tools
    • A47L11/16Floor surfacing or polishing machines motor-driven with rotating tools the tools being disc brushes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/10Floor surfacing or polishing machines motor-driven
    • A47L11/14Floor surfacing or polishing machines motor-driven with rotating tools
    • A47L11/16Floor surfacing or polishing machines motor-driven with rotating tools the tools being disc brushes
    • A47L11/161Floor surfacing or polishing machines motor-driven with rotating tools the tools being disc brushes with supply of cleaning agents
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/20Floor surfacing or polishing machines combined with vacuum cleaning devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/20Floor surfacing or polishing machines combined with vacuum cleaning devices
    • A47L11/201Floor surfacing or polishing machines combined with vacuum cleaning devices with supply of cleaning agents
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • A47L11/282Floor-scrubbing machines, motor-driven having rotary tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • A47L11/282Floor-scrubbing machines, motor-driven having rotary tools
    • A47L11/283Floor-scrubbing machines, motor-driven having rotary tools the tools being disc brushes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/29Floor-scrubbing machines characterised by means for taking-up dirty liquid
    • A47L11/292Floor-scrubbing machines characterised by means for taking-up dirty liquid having rotary tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/29Floor-scrubbing machines characterised by means for taking-up dirty liquid
    • A47L11/292Floor-scrubbing machines characterised by means for taking-up dirty liquid having rotary tools
    • A47L11/293Floor-scrubbing machines characterised by means for taking-up dirty liquid having rotary tools the tools being disc brushes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/34Machines for treating carpets in position by liquid, foam, or vapour, e.g. by steam
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • A47L11/4005Arrangements of batteries or cells; Electric power supply arrangements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4013Contaminants collecting devices, i.e. hoppers, tanks or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • A47L11/4038Disk shaped surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • A47L11/4041Roll shaped surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • A47L11/405Machines using UV-lamps, IR-lamps, ultrasound or plasma cleaning
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4052Movement of the tools or the like perpendicular to the cleaning surface
    • A47L11/4058Movement of the tools or the like perpendicular to the cleaning surface for adjusting the height of the tool
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • A47L11/4066Propulsion of the whole machine
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • A47L11/4069Driving or transmission means for the cleaning tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4072Arrangement of castors or wheels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/408Means for supplying cleaning or surface treating agents
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/408Means for supplying cleaning or surface treating agents
    • A47L11/4083Liquid supply reservoirs; Preparation of the agents, e.g. mixing devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/408Means for supplying cleaning or surface treating agents
    • A47L11/4088Supply pumps; Spraying devices; Supply conduits
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L13/00Implements for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L13/10Scrubbing; Scouring; Cleaning; Polishing
    • A47L13/20Mops
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L13/00Implements for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L13/10Scrubbing; Scouring; Cleaning; Polishing
    • A47L13/50Auxiliary implements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/06Nozzles with fixed, e.g. adjustably fixed brushes or the like
    • A47L9/0606Nozzles with fixed, e.g. adjustably fixed brushes or the like rigidly anchored brushes, combs, lips or pads
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • A47L9/2826Parameters or conditions being sensed the condition of the floor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2852Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles
    • B08B1/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/041Cleaning travelling work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/0085Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0003Home robots, i.e. small robots for domestic use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • G05D1/648
    • G05D1/65
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/10Floor surfacing or polishing machines motor-driven
    • A47L11/14Floor surfacing or polishing machines motor-driven with rotating tools
    • A47L11/145Floor surfacing or polishing machines motor-driven with rotating tools with supply of cleaning agents
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/06Control of the cleaning action for autonomous devices; Automatic detection of the surface condition before, during or after cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam

Definitions

  • the present invention relates to a robot cleaner for mopping and a control method thereof.
  • the robot cleaner is a device for cleaning by driving foreign substances by sucking foreign substances such as dust from the floor or wiping off the foreign substances from the floor. Recently, a robot cleaner capable of mopping has been developed.
  • a robot cleaner capable of moving by a mop surface is known.
  • the robot cleaner is provided with a first rotating member and a second rotating member for fixing a pair of mop surfaces disposed in the left and right directions to be inclined outward with respect to the vertical axis.
  • the robot cleaner according to the related art moves as the first rotation member and the second rotation member rotate while the mop surfaces fixed to the first rotation member and the second rotation member are in contact with the floor.
  • the prior art 1 is a robot cleaner that is moved by a pair of rotating mop surfaces on the left and right sides, and the friction force generated by the pair of rotating mop surfaces frequently varies, so that straight traveling is difficult. . If straight straight travel is difficult, there is a problem that the area that passes without mopping becomes large on the floor surface where straight straight travel such as near the wall surface is required.
  • the prior art 1 has a problem that the robot cleaner moving by a pair of rotating mop surfaces on the left and right sides is limited in speed or trajectory that can be driven.
  • the prior art 1 has a problem that the robot cleaner moving by a pair of rotating mop surfaces on the left and right sides is difficult to mop without in-situ rotational motion or linear motion.
  • the prior art 1 performs the same operation regardless of the contaminated state of the floor.
  • the prior art 2 (Korea Patent Publication No. 10-0773980) relates to a vacuum cleaner combined robot air purifier and a head for a vacuum cleaner connected thereto, and is provided with an air pollution detection sensor, and operates to determine the air pollution state. .
  • the prior art 2 only senses the contamination state of the air, and has a problem in that a separate sensor is required to be further associated with driving.
  • the prior art 3 (Korean Patent Publication No. 1996-0014582) relates to a cleaner whose cleaning strength is controlled according to the pollution level, and detects the contamination concentration of the washing water sucked into the main body, and when the pollution concentration is high, the voltage of a high magnitude is reduced. It uses a pollution detection method that outputs a low voltage to the microprocessor when it is output to the processor and the pollution concentration is low.
  • Prior art 3 also only senses the contamination state of the wash water, there is a problem that should be provided with a separate sensor independent of the driving.
  • An object of the present invention is to enable the robot cleaner to run stably.
  • Another object of the present invention is to enable the robot cleaner to implement various driving speeds and driving tracks.
  • Another object of the present invention is to enable the robot cleaner to perform mopping even when it is kept in place.
  • Another object of the present invention is to enable the robot cleaner to perform driving appropriate to a situation using various driving motions.
  • Another object of the present invention is to enable the robot cleaner to determine the location of the contaminants and the type of the floor without providing a separate sensor that is not associated with driving.
  • Another object of the present invention is to enable the robot cleaner to perform driving optimized according to the location of the contaminants and the type of floor.
  • the robot cleaner includes a rolling cleaning module including a rolling member provided to contact the floor while rotating clockwise or counterclockwise when viewed from the left.
  • a rolling cleaning module including a rolling member provided to contact the floor while rotating clockwise or counterclockwise when viewed from the left.
  • the sensor unit including the sensor and the data sensed by the sensor unit.
  • a controller for identifying a predetermined area of the floor as a contaminated area it is possible to perform an optimized driving according to the location of the contaminant and the type of the floor.
  • a method of controlling a robot cleaner comprising: monitoring a posture information value of a robot cleaner, wherein the detected posture information value is greater than or equal to a first upper limit reference value; Detecting the motor load current value of the rolling member when it is smaller than the first lower limit reference value, and when the motor load current value of the rolling member is larger than the second upper limit reference value or smaller than the second lower limit reference value, May be identified as a contaminated area.
  • the robot cleaner runs stably by using a pair of spinabs and a rolling member.
  • various driving motions may be implemented by combining the rotational motion of the left and right spinabs and the rotational motion of the rolling member.
  • the robot cleaner may perform driving appropriate to a situation using various driving motions.
  • the robot cleaner may perform the mopping even when the robot cleaner is kept in place.
  • the robot cleaner may determine the location of the contaminants, the material and the type of the floor without having a separate sensor that is not associated with driving.
  • the robot cleaner may perform driving optimized according to the location of the contaminants, the material and the type of the floor.
  • FIG. 1 is a perspective view of a robot cleaner according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the robot cleaner of FIG. 1 viewed from another angle.
  • FIG. 3 is an elevation view of the robot cleaner of FIG.
  • FIG. 4 is an elevation view of the lower side of the robot cleaner of FIG. 1.
  • 5A is a cross-sectional view taken vertically along the line S1-S1 ′ of FIG. 4.
  • FIG. 5B is a cross-sectional view taken vertically along the line S 2 -S 2 ′ in FIG. 4.
  • FIG. 6 is a perspective view illustrating a state in which a case is removed from the robot cleaner of FIG. 1.
  • FIG. 7 is a perspective view illustrating in detail a spin module and a rolling module of the robot cleaner of FIG. 1.
  • FIG. 8 is a block diagram showing a control relationship between the main components of the robot cleaner according to an embodiment of the present invention.
  • 9 to 19 are views referred to for describing various driving control methods of the robot cleaner according to the embodiment of the present invention.
  • 20 is a diagram illustrating sensing data sensed during the last driving on a general floor.
  • 21 is a view referred to for describing the state of the robot cleaner according to the embodiment of the present invention.
  • 22 is a flowchart illustrating a method of controlling a robot cleaner according to an embodiment of the present invention.
  • 23 to 29 are views referred to for describing a method for controlling a robot cleaner according to an embodiment of the present invention.
  • the 'mop' mentioned below may be variously applied in terms of materials such as fabric or paper, and may be used repeatedly or disposable through washing.
  • the present invention can be applied to a vacuum cleaner that the user moves manually or a robot cleaner that runs by itself.
  • a vacuum cleaner that the user moves manually
  • a robot cleaner that runs by itself.
  • the robot cleaner 100 includes a body 110 having a control unit 20.
  • the robot cleaner 100 includes a rolling module 130 supporting the body 110.
  • the robot cleaner 100 includes a spin module 120 supporting the body 110.
  • Body 110 is supported by spin module 120 and rolling module 130.
  • the spin module 120 is provided to mop in contact with the floor.
  • the spin module 120 includes a left spinmab 120a and a right spinmab 120b provided to be mop by an operation of rotating in a clockwise or counterclockwise direction when viewed from above.
  • the left spinmab 120a and the right spinmab 120b are provided to contact the bottom.
  • the spin module 120 is disposed below the body 110.
  • the spin module 120 is disposed in front of the rolling module 130.
  • the robot cleaner 100 may be provided to allow the body 110 to move by a rotation operation of the spin module 120 without a separate wheel.
  • the spin module 120 includes a pair of spinmab modules 120.
  • Spin module 120 includes left spinmab 120 with left spinmab 120a.
  • Spin module 120 includes a right spinmab 120 with a right spinmab 120b.
  • the left spinmab module 120 and the right spinmab module 120 are provided with a mop.
  • the left spinmab module 120 and the right spinmab module 120 each include a mop 121, a rotating plate 122, a water feeder (not shown), a spin shaft 128, a spin driver 124, and a drive transmission. Section 127.
  • the left spinmab module 120 and the right spinmab module 120 include a tilting frame 125, a tilting axis of rotation 126, and an elastic member 129, respectively.
  • Components included in the spin module 120 may be understood as components included in the left spinmab module 120 and the right spinmab module 120, respectively.
  • the rolling module 130 is provided in contact with the floor.
  • Rolling module 130 may be provided in contact with the floor mop.
  • the rolling module 130 is disposed below the body 110.
  • the rolling module 130 may be provided to contact the bottom at a position spaced apart in the front-rear direction from the left and right spinabs.
  • the rolling module 130 is provided to contact the floor at the rear of the spin module 120.
  • the rolling module 130 is provided to mop while rotating.
  • the rolling module 130 may be provided with a mop pad for sliding and mopping the floor according to the movement of the body 110.
  • the rolling module 130 may be provided with vaccum cleaning.
  • the rolling module 130 may include a brush sweeping the floor, and the brush may be rotatably provided.
  • the brush may rotate about an axis of rotation extending substantially in the horizontal direction.
  • the brush may rotate about a rotation axis extending substantially in the left and right directions.
  • the robot cleaner 100 may include a dust container, and the brush may be provided to rub a floor to contain a relatively large foreign substance in the dust container.
  • the rolling module 130 is provided to be in contact with the floor to support the body, and thus, a specific configuration for cleaning the rolling module 130 may be changed.
  • the rolling module 130 may include a rolling member 130a.
  • the robot cleaner 100 may be provided to allow the body 110 to move by a rotation operation of the rolling module 130 without a separate wheel.
  • the rolling member 130a may be rotatably provided around a rotation axis different from the spinabs 120a and 120b.
  • the rolling member 130a may be provided to rotate about a rotation axis extending in a substantially horizontal direction. Accordingly, the rolling member 130a may rotate clockwise or counterclockwise when viewed from the left or the right.
  • the rolling module 130 may be provided with a mop or grind by the operation of rotating clockwise or counterclockwise when viewed from one side (left or right).
  • the rolling member 130a may include a mop part or a brush brushed on the outer surface to mop.
  • the mop or the brush may be fixedly coupled to the rolling member 130a or may be detachably fixed.
  • the rolling module 130 will be described based on the embodiment having the rolling mab 130a which is the rolling member 130a including the mop, but the specific configuration for cleaning the rolling cleaning module 130 can be changed. Do.
  • the robot cleaner 100 is provided so that the body 110 moves in at least one rotational operation of the spin module 120 and the rolling module 130 without a separate wheel.
  • the body 110 may move only by the rotation operation of the spin module 120.
  • the body 110 may move only by the rotation operation of the rolling module 130.
  • the body 110 may move by the rotation operation of the spin module 120 and the rotation operation of the rolling module 130.
  • the robot cleaner 100 includes a water supply module (not shown) for supplying water for mopping.
  • the water supply module may supply water for mopping the spin module 120 or the rolling module 130.
  • the water supply module supplies water to the spin module 120.
  • the water supply module supplies water to the left spinmab module 120 and the right spinmab module 120.
  • the water supply module includes a water tank (not shown) that stores water supplied to the spin module 120 or the rolling module 130.
  • the bath stores water supplied to the spin module 120.
  • the spin module 120 and the rolling module 130 are each provided to mop the floor.
  • the spin module 120 is provided to wet mop (mop while supplying water), and the water supply module supplies water to the spin module 120.
  • the rolling module 130 is provided to dry mop (mop without water supply), the water supply module does not supply water to the rolling module 130.
  • the water supply module supplies water only to the spin module 120 of the spin module 120 and the rolling module 130.
  • the robot cleaner 100 is implemented as in the present embodiment, when the robot cleaner 100 moves forward and cleans, the rolling module 130 follows the wet mop surface by the spin module 120. You can dry mop.
  • the water supply module is a rolling module 130 instead of the spin module 120. It may be provided to supply water to, or may be provided to supply water to both the spin module 120 and the rolling module 130.
  • the robot cleaner 100 includes a battery 160 for supplying power.
  • the battery 160 may supply power for the rotation operation of the spin module 120.
  • the battery 160 may supply power for the rotation operation of the rolling module 130.
  • the robot cleaner 100 includes a case 11 forming a vortex.
  • the case 11 forms an upper side, a front side, a rear side, a left side, and a right side of the body 110.
  • the robot cleaner 100 includes a base 13 forming a lower side of the body 110.
  • the spin module 120 is fixed to the base 13.
  • the rolling module 130 is fixed to the base 13.
  • the robot cleaner 100 includes a rollingmab housing 12 disposed on the base 13 and recessed upward to receive an upper portion of the rollingmab 130a.
  • the controller 20, the water supply module, and the battery 160 are disposed in the inner space formed by the case 11, the base 13, and the rollingab housing 12.
  • the robot cleaner 100 includes a tank opening and closing part 153 for opening and closing the tank.
  • the tank opening and closing part 153 is disposed on the upper side of the body 110.
  • the robot cleaner 100 may include a water level display unit (not shown) in which the water level of the tank is displayed.
  • the water level display part may be formed of a transparent material so that the water level of the water tank inside the body 110 may be directly seen.
  • the robot cleaner 100 includes an obstacle detecting sensor 16 that detects an obstacle in front of the robot cleaner 100.
  • a plurality of obstacle detecting sensors 16a, 16b, and 16c may be provided.
  • the plurality of obstacle detecting sensors 16a, 16b, and 16c are disposed on the front surface of the body 110.
  • the robot cleaner 100 includes a cliff detection sensor 17 that detects the presence of a cliff on the floor in the cleaning area.
  • a plurality of cliff detection sensors 17a, 17b, and 17c may be provided.
  • the front of the spin module 120 may include a cliff detection sensor 17a for detecting the presence of a cliff.
  • the rear of the rolling module 130 may include a cliff detection sensor (17b, 17c) for detecting the presence of the cliff.
  • At least one of the cliff detection sensors 17 may include one or more light emitting elements and one or more light receiving elements.
  • the controller 20 may determine the material of the floor based on the light amount of the reflected light that is output from the light emitting element is reflected from the bottom and received by the light receiving element.
  • the controller 20 may determine the material of the floor as a hard floor when the amount of light of the reflected light is greater than or equal to a predetermined value, and determine the material of the floor when the amount of light of the reflected light is less than the predetermined value. Can be determined by carpet.
  • the robot cleaner 100 may include a power switch (not shown) for inputting ON / OFF of a power supply.
  • the robot cleaner 100 may include an input unit (not shown) for inputting various instructions of a user.
  • the robot cleaner 100 may include a communication module (not shown) for communicating with an external device.
  • the robot cleaner 100 includes an ultraviolet LED 18 that irradiates ultraviolet rays downwardly.
  • the ultraviolet LED 18 is disposed between the spin module 120 and the rolling module 130.
  • the ultraviolet LED 18 is disposed on the lower side of the body 110 and irradiates ultraviolet rays to the outer bottom surface.
  • the ultraviolet LED 18 is disposed on the lower side of the base 13.
  • a plurality of ultraviolet LEDs 18a and 18b may be provided.
  • the plurality of ultraviolet LEDs 18a and 18b are disposed between the ultraviolet LED 18a disposed between the left spinmab 120a and the rolling mab 130a, and between the right spinmab 120b and the rolling mab 130a.
  • An ultraviolet LED 18b is provided.
  • the robot cleaner 100 moves forward and cleans, the robot cleaner 100 is sterilized by irradiating ultraviolet rays while following the floor surface mopped by the spin module 120, followed by the rolling module 130 while following the floor surface irradiated with ultraviolet rays. Cleaning may be performed.
  • the robot cleaner 100 includes a controller 20 for controlling autonomous driving.
  • the controller 20 may process the detection signal of the sensor unit 810 of FIG. 8. For example, the controller 20 may process a detection signal of the obstacle detection sensor 16 or the cliff detection sensor 17. The controller 20 may process a signal input through the input unit or a signal input through the communication module.
  • the controller 20 includes a PCB 20 disposed inside the body 110.
  • Body 110 forms an appearance.
  • the body 110 includes a first portion (not shown) disposed above the spin module 120 and a second portion (not shown) disposed above the rolling module 130.
  • the first portion and the second portion are integrally formed.
  • Body 110 has a lower side between the spin module 120 and the rolling module 130 is recessed upward to form a body gap (not shown).
  • the body gap may be disposed between the first portion and the second portion.
  • the body gap may be formed by recessing the left and right side surfaces of the body 110 inward.
  • the body 110 includes a bumper 115 that senses an external shock.
  • the bumper 115 is disposed above the rotating plate 122 of the spin module 120.
  • the bumper 115 is disposed in front and side of the body 110.
  • a plurality of bumpers 115a and 115b are provided.
  • Bumpers 115a are disposed in front of and to the left of the left spinab 120a.
  • a bumper 115b disposed in front of and to the right of the right spinab 120b is provided.
  • the body 110 includes a case 11 and a base 13 forming an appearance.
  • the base 13 is formed with an opening in which the tilting frame 125 is disposed.
  • the tilting frame 125 is connected to the base 13 through the tilting rotation shaft 126.
  • the tilting rotation shaft 126 is rotatably fixed to the base 13.
  • the base 13 includes a limit that limits the range of rotation of the tilting frame 125.
  • the limit may include an upper limit 13d and a lower limit (not shown).
  • the base 13 includes a top limit 13d that limits the upward rotation range of the tilting frame 125.
  • the upper left limit 13d may be disposed on the left side of the left tilting frame 125.
  • the upper right limit 13d may be disposed on the right side of the right tilting frame 125.
  • the upper left limit 13d is disposed to be in contact with the upper limit contact 125f of the left spinab module 120.
  • the upper right limit 13d is disposed in contact with the upper limit contact 125f of the right spinab module 120.
  • the upper limit contact 125f may be disposed on the tilting frame 125. In a state where the robot cleaner 100 is normally disposed on an external horizontal surface, the upper limit contact portion 125f is in contact with the upper limit 13d, and the inclination angles Ag1 and Ag2 are the smallest.
  • the base 13 includes a bottom limit at which the tilting frame 125 limits the downward rotation range.
  • the lower limit may be disposed on the inner side of the base 13.
  • the lower limit may be disposed below the spin driver 124.
  • the lower limit is provided to contact the lower limit contact portion (not shown) in a state in which the tilting frame 125 is rotated as far as possible in the downward direction.
  • the lower limit contact may be disposed on the lower side of the spin driver 124. In a state where the robot cleaner 100 is normally disposed on an external horizontal surface, the lower limit contact part is spaced apart from the lower limit.
  • the tilting frame 125 In the absence of a force pushing upward from the lower side of the spinab (120a, 120b), the tilting frame 125 is rotated to the maximum angle, the lower limit contact is in contact with the lower limit and the inclination angle (Ag1, Ag2) It is the greatest state.
  • the base 13 includes a second support 13b that fixes the end of the elastic member 129.
  • the elastic member 129 is elastically deformed or elastic by the first support 125d fixed to the tilting frame 125 and the second support 13b fixed to the base 13. Will be restored.
  • the base 13 includes a tilting shaft support 13c for supporting the tilting shaft 126.
  • the tilting rotation shaft support part 13c supports both ends of the tilting rotation shaft 126.
  • the base 13 may include a separate support member 13a for supporting the tilting frame 125.
  • the support member 13a may be provided as a separate part from other parts of the base 13.
  • the support member 13a extends along the edge of the opening formed in the lower side of the base 13.
  • the support member 13a may be provided to form an opening in the center portion, such that the tilting rotation shaft 126 is disposed in the opening.
  • the support member 13a may include the second support 13b.
  • the support member 13a may include the tilting shaft support 13c.
  • the support member 13a may include the upper limit 13d.
  • the support member 13a includes a support member fixing portion 13e engaged with another portion of the base 13.
  • the rolling module 130 is provided to contact the floor at the rear of the spin module 120.
  • the rolling module 130 is provided to mop in contact with the floor according to the movement of the body 110.
  • Rolling module 130 is provided to dry mop.
  • the rolling module 130 may include a rolling mab 130a rotating around the rotation axis Or extending in the horizontal direction.
  • the rotation shaft Or extends in the left and right directions, but in another embodiment, the rotation shaft Or may extend in the front and rear directions, or may extend in the direction between the front and rear directions and the left and right directions.
  • the moving force may be applied to the body 110 in a horizontal direction (vertical direction with respect to the rotation axis Or) by the rotation operation of the rollingab 130a. Further movement force of the robot cleaner 100 is added by adding the additional movement force by the rollingab 130a to the movement force applied to the body 110 by the spin module 120.
  • the rolling module 130 includes a rolling mab 130a that rotates about a rotation axis Or extending in the left and right directions.
  • the rolling mab 130a may rotate about the rotation axis Or extending in a direction parallel to the arrangement direction of the left spinmab 120a and the right spinmab 120b.
  • the moving force may be applied to the body 110 in the front-rear direction by the rotation operation of the rollingab 130a.
  • the additional force in the front and rear direction by the rolling Mab 130a is added to the movement force applied to the body 110 by the spin module 120, thereby enabling more various and efficient driving motions of the robot cleaner 100. Detailed description of the various driving motions will be described later.
  • the clockwise direction is defined as the third forward direction w3f and the counterclockwise direction is defined as the third reverse direction w3r when viewed from the side.
  • the rollingab 130a When the robot cleaner 100 moves forward, the rollingab 130a is provided to mop along the bottom surface where the cleaning is performed by the spin module 120.
  • the rolling mab 130a may be provided with a dry mop to remove moisture from the bottom surface of the wet mop by the left spinmab 120a and the right spinmab 120b.
  • the rolling module 130 includes one rollingab 130a, but in another embodiment, the rolling module 130 may include a plurality of rollingabs.
  • the plurality of rolling mebs may be provided to rotate about a plurality of rotation axes parallel to each other.
  • the rolling module 130 includes a mop 131. Some of the load of the body 110 is transmitted to the floor through the mop 131.
  • the mop 131 is disposed to surround the circumference of the rotating member 132.
  • the mop 131 is disposed along a circumference having the rotation axis Or as a central axis.
  • the mop 131 may be fixedly coupled to the rotating member 132 or may be detachably fixed.
  • the rolling module 130 includes a rotating member 132 rotatably provided.
  • the rotating member 132 fixes the mop 131 of the rolling mat 130a.
  • the rotating member 132 may rotate the mop 131 integrally.
  • the rotating member 132 is rotated by receiving the driving force of the rolling driver 137.
  • the rotating member 132 rotates about the rotation axis Or.
  • the rotating member 132 is formed in a cylindrical shape.
  • the rotating member 132 is formed long in the extending direction of the rotation shaft Or.
  • the rotating member 132 forms a hollow portion 132s therein.
  • the mop 131 is fixed to the outer circumferential surface of the rotating member 132.
  • the rolling module 130 includes a first shaft portion 134 disposed at one end of the rotating member 132.
  • the rolling module 130 includes a second shaft 135 disposed at the other end of the rotating member 132.
  • the first shaft portion 134 and the second shaft portion 135 are disposed at both ends of the rolling module 130 in the extending direction Or.
  • the first shaft portion 134 is disposed at the right end of the rotating member 132
  • the second shaft portion 135 is disposed at the left end of the rotating member 132.
  • One end of the rotating member 132 is formed to be recessed inward
  • the first shaft portion 134 is disposed at the recessed portion of the one end of the rotating member 132.
  • the other end of the rotating member 132 is formed to be recessed inward
  • the second shaft 135 is disposed at the recessed portion of the other end of the rotating member 132.
  • the first shaft portion 134 connects one end of the rotating member 132 and the body 110.
  • First Shaft The first shaft 134 is fixedly connected to the rotating member 132.
  • the first shaft portion 134 is formed to protrude in the direction of the rotation axis Or. In this embodiment, the first shaft portion 134 protrudes to the right.
  • the first shaft portion 134 is inserted into the groove formed in the driving force transmission portion 137a, and is integrally rotated when the driving force transmission portion 137a is rotated.
  • the first shaft portion 134 is formed in a cross-section perpendicular to the rotation axis Or in a non-circular shape (for example, polygonal shape), and the driving force transmission portion 137a is recessed in a shape corresponding to the first shaft portion 134.
  • the groove is formed.
  • the second shaft portion 135 connects the other end of the rotating member 132 with the body 110.
  • the second shaft portion 135 is rotatably connected to the rotating member 132.
  • the second shaft portion 135 is formed to protrude in the direction of the rotation axis Or. In this embodiment, the second shaft portion 135 protrudes to the left.
  • the second shaft 135 is inserted into and fixed to the grooves formed in the body 110 and the coupler 117.
  • the second shaft portion 135 is formed in a cross-section perpendicular to the rotation axis Or in a non-circular shape (eg, a polygon), and the groove formed in the body 110 and / or the coupler 117 is formed in the second shaft portion ( It is formed by recessing into a shape corresponding to 135).
  • a non-circular shape eg, a polygon
  • the rolling module 130 includes a rolling driver 137 that provides a driving force for the rotation of the rolling mab 130a.
  • the rolling driver 137 provides a driving force for rotating the rotating member 132.
  • the rolling drive 137 includes a motor 137d.
  • the motor 137d is disposed inside the body 110.
  • the rolling drive 137 includes a gear assembly 137c that transmits the rotational force of the motor 137d.
  • the gear assembly 137c includes a plurality of gears that mesh with each other and rotate.
  • the plurality of gears may include a main gear that rotates integrally with the axis of the motor 137d and a driven gear that meshes with the main gear to rotate.
  • a plurality of driven gears may be provided to rotate in engagement with each other.
  • the rolling drive 137 may include a shaft 137b that rotates integrally with any one driven gear.
  • the rolling driver 137 may include a driving force transmission unit 137a that transmits a rotational force to the first shaft portion 134.
  • the shaft 137b transmits the rotational force of the driven gear to the driving force transmission unit 137a.
  • the driving force transmission part 137a forms a groove into which the first shaft part 134 is inserted.
  • the shaft 137b, the driving force transmitting part 137a and the first shaft part 134 rotate integrally.
  • the robot cleaner 100 may include a coupler 117 detachably attached to the body 110. Coupler 117 is disposed on the base 13. The coupler 117 supports the lower end of the second shaft 135. The second shaft portion 135 is supported by the base 13. The second shaft portion 135 may form a groove into which the second shaft portion 135 is inserted.
  • the rotating member 132 and the mop 131 may be removed from or coupled to the body 110. For example, in a state where the coupler 117 is removed, the first shaft portion 134 may be pulled out of the end of the body 110 by pulling a portion in which the second shaft portion 135 is disposed among both ends of the rotating member 132. It can be easily taken out from the driving force transmission part 137a.
  • the end of the first shaft portion 134 is first inserted into the groove of the driving force transmission portion 137a, and then the second shaft portion 135 and the coupler 117 are inserted into the body.
  • the user may fix the coupler 117 to the body 110.
  • the user can separate the coupler 117 from the body 110.
  • the spin module 120 includes a left spinmab 120a and a right spinmab 120b provided to contact the bottom while rotating in a clockwise or counterclockwise direction when viewed from above. do.
  • the spin module 120 is mowed by the rotation of the left spinmab 120a and the right spinmab 120b.
  • a component having 'left' in front of its name means a component for operating the left spinmab 120a, and a component having 'right' in front of its name is a right spinab 120b.
  • the description of the components of the spin module 120 when there is no distinction between 'left' and 'right', the description may be applied to both 'left' and 'right'.
  • the point where the rotational axis of the left spinmab 120a intersects with the lower side of the left spinmab 120a is defined as the rotational center Osa of the left spinmab 120a and the right spinmab 120b.
  • the point where the axis of rotation and the lower side of the right spinmab 120b intersect is defined as the rotational center Osb of the right spinmab 120b.
  • the clockwise direction is defined as the first forward direction w1f and the counterclockwise direction is defined as the first reverse direction w1r in the rotational direction of the left spinmab 120a.
  • the counterclockwise direction of the rotational direction of the right spinmab 120b is defined as the second forward direction w2f and the clockwise direction is defined as the second reverse direction w2r.
  • the point Pla receiving the greatest frictional force from the bottom of the lower side of the left spinmab 120a is the center of rotation Osa of the left spinmab 120a.
  • a load greater than another point at the point Pla among the lower sides of the left spinmab 120a may be transmitted to the ground, so that the largest friction force may be generated at the point Pla.
  • the point Pla is disposed exactly on the left side with respect to the rotation center Os, but in another embodiment, the point Pla may be disposed on the left front or the left rear of the rotation center Os. .
  • the point Plb receiving the largest frictional force from the bottom of the lower side of the right spinmab 120b is the rotation center Osb of the right spinmab 120b.
  • a load greater than the other point at the point Plb of the lower side of the right spinab 120b may be transmitted to the ground, so that the largest friction force may be generated at the point Plb.
  • the point (Plb) is disposed on the right side with respect to the center of rotation (Osb), but in another embodiment, the point (Plb) may be disposed on the right front or right rear of the rotation center (Osb). .
  • the point Pla and the point Plb are disposed at positions that are symmetrical to each other.
  • the lower side surface of the left spinmab 120a may be disposed to be inclined downward from the rotation center Osa toward the point Pla.
  • the point Pla becomes the lowest point Pla among the lower surfaces of the left spinmab 120a.
  • the angle formed by this is defined as the inclination angles Ag1 and Ag2.
  • the angle formed by the lower side I1 of the left spinmab 120a with respect to the external horizontal plane H is the inclination angle Ag1, and the lower side I2 of the right spinmab 120b is connected to the external horizontal plane H.
  • the angle formed with respect to is an inclination angle Ag2.
  • Two inclination angles Ag1 and Ag2 may be provided in the same manner.
  • the lower side of the left spinmab 120a may be disposed to be horizontal.
  • the moment can be applied to the left spinmab (120a).
  • the moment applied to the left spinmab 120a is the moment in the clockwise direction when viewed from the front.
  • the point Pla is most strongly in close contact with the external horizontal plane H, thereby generating the greatest friction force.
  • the lower side of the left spinmab 120a and the lower side of the right spinmab 120b are respectively inclined.
  • the inclination angle Ag1 of the left spinab 120a and the inclination angle Ag2 of the right spinab 120b form an acute angle.
  • the inclination angles Ag1 and Ag2 are each about 3 to 6 degrees.
  • the point where the frictional force becomes the most becomes the points Pla and Plb, and the lower entire area of the mop 121 is rotated according to the rotational motion of the left spinab 120a and the right spinmab 120b. It can be set small enough to reach the floor.
  • the lower side of the left spinmab 120a forms a downward slope in the left direction.
  • the lower side of the right spinab 120b forms a downward slope in the right direction.
  • the lower surface of the left spinmab 120a forms the lowest point Pla at the left side.
  • the lower side of the left spinmab 120a forms a peak Pha at the right side.
  • the lower side of the right spinab 120b forms the lowest point Plb at the right side.
  • the lower side of the right spinab 120b forms a peak Phb on the left side.
  • the movement of the robot cleaner 100 is implemented by a frictional force with the ground generated by the spin module 120 and / or the rolling module 130.
  • the spin module 120 may generate a 'forward moving friction force' for moving the body 110 forward or a 'backward moving friction force' for moving the body backwards.
  • the spin module 120 may generate a 'left moment friction force' for turning the body 110 to the left, or a 'right moment friction force' for turning the body 110 to the right.
  • the spin module 120 may generate a friction force that combines any one of the frontward moving friction force and the rearward moving friction force, and one of the leftward moment friction force and the rightward moment friction force.
  • the rolling module 130 may generate a 'forward moving friction force' for moving the body 110 forward or a 'backward moving friction force' for moving the body backwards.
  • the left spinab 120a is rotated at a predetermined rpm in the first forward direction w1f and the right spinmab 120b is rotated at the same rpm in the second forward direction w2f. Can be rotated.
  • the rolling mab 130a may be rotated in the third forward direction w3f.
  • the left spinmab 120a is rotated at a predetermined rpm in the first reverse direction w1r and the right spinmab 120b is rotated at the same rpm in the second reverse direction w2r. Can be rotated.
  • the rolling mab 130a may be rotated in the third reverse direction w3r.
  • the left spinmab 120a is rotated at a predetermined rpm in the first forward direction w1f and the right spinmab 120b is rotated in the second reverse direction w2r. It may be rotated, stopped without rotation, or rotated at an rpm smaller than the rpm in the second forward direction w2f.
  • the right spinmab 120b is rotated at a predetermined rpm in the second forward direction w2f, and the left spinmab 120a is rotated in the first reverse direction w1r. It may be rotated, stopped without rotation, or rotated at an rpm smaller than the predetermined rpm in the first forward direction w1f.
  • the friction force generated by the spin module 120 and the friction force generated by the rolling module 130 may be combined to move or position the body 110.
  • both the spin module 120 and the rolling module 130 may generate the front moving friction force.
  • any one of the spin module 120 and the rolling module 130 may generate the forward moving frictional force and the other may remain stationary without a rotational operation.
  • one of the spin module 120 and the rolling module 130 may generate the relatively large forward moving frictional force and the other may generate the relatively small rearward frictional force.
  • both the spin module 120 and the rolling module 130 may generate the rearward moving friction force.
  • any one of the spin module 120 and the rolling module 130 may generate the rearward moving friction force and the other may remain stationary without the rotation operation.
  • one of the spin module 120 and the rolling module 130 may generate the relatively large rearward moving friction force and the other may generate the relatively small forward moving friction force.
  • the spin module 120 In order to turn the robot cleaner 100 to the right, the spin module 120 generates the right moment frictional force and rotates the rolling mab 130a in the third forward direction w3f, stops without rotation, or the third It can be rotated in the reverse direction w3r.
  • the spin module 120 In order to turn the robot cleaner 100 to the left, the spin module 120 generates the leftward moment friction force, and rotates the rolling mab 130a in the third forward direction w3f, stops without rotation, or the third It can be rotated in the reverse direction w3r.
  • both the spin module 120 and the rolling module 130 may be in a stopped state without a rotation operation.
  • one of the spin module 120 and the rolling module 130 may cause the forward moving frictional force and the other may generate the rearward moving frictional force of the same magnitude.
  • the spin module 120 and the rolling module may rotate while the body 110 is in place, and may mop a certain bottom surface.
  • the rotational direction of the rolling mab 130a is provided to be changeable.
  • the friction force generated by the spin module 120 may be combined with any one of the forward moving frictional force and the rearward moving frictional force by the rollingab 130a, thereby enabling more various operations of the robot cleaner 100.
  • the robot cleaner 100 may increase the maximum speed possible in the front-rear direction, and may diversify the rotation radius generated by the robot cleaner 100 while turning right or left, and may move backward or right while turning backward.
  • the body 110 may implement a function of mopping through a rotation operation while maintaining the position.
  • the rollingab 130a When the spin module 120 performs a predetermined constant rotational motion (operation for generating the forward moving frictional force, the backward moving frictional force, the leftward moment frictional force or the rightward moment frictional force), the rollingab 130a performs two or more different rotational operations. This may be provided.
  • the rollingab 130a When the spin module performs a predetermined constant rotation operation, the rollingab 130a may be controlled to rotate in the third forward direction w3f.
  • the rollingab 130a When the spin module performs a predetermined constant rotation operation, the rollingab 130a may be controlled to rotate in the third reverse direction w3r.
  • rollingab 130a When the spin module makes some constant rotational motion, rollingab 130a may be controlled to remain stationary without rotation.
  • the rollingab 130a When the spin module performs a predetermined constant rotation operation, the rollingab 130a may be controlled to rotate in the third forward direction w3f by selecting any one of two or more predetermined RPMs. When the spin module performs a predetermined constant rotation operation, the rollingab 130a may be controlled to rotate in the third reverse direction w3r by selecting any one of two or more predetermined RPMs. Through this, various driving tracks and driving speeds of the robot cleaner 100 may be implemented.
  • the section in which the rollingab 130a and the bottom contact may be formed long in the left and right directions.
  • the right end of the left spinmab 120a and the left end of the right spinmab 120b may be spaced apart from each other by a predetermined interval.
  • the section in which the rollingab 130a and the bottom contact each other may be provided to overlap all of the gaps between the left spinmab 120a and the right spinmab 120b.
  • the gap between the left spinmab 120a and the right spinmab 120b becomes a portion where the wiping is not performed by the spin module 120.
  • the rollingmab 130a compensates for the mopping of the spin module 120 by mopping the bottom surface corresponding to the gap.
  • the section in which the rollingab 130a and the bottom contact may be formed long in the left and right directions.
  • the section in which the rollingab 130a and the bottom contact each other is the whole of the section connecting the rotational center Osa of the left spinab 120a and the rotational center Osb of the right spinmab 120b. It may be provided to overlap with.
  • the right portion of the center of rotation Ossa of the left spinmab 120a and the left portion of the center of rotation Osb of the right spinmab 120b are points at which the frictional force is relatively small, and the rotation of the left spinmab 120a is performed.
  • mopping may be a portion where cleaning is not performed.
  • the rollingab 130a mops the section connecting the rotational center Osa of the left spinab 120a and the rotational center Osb of the right spinmab 120b.
  • the spin module 120 performs a function to supplement the mopping.
  • the spin module 120 includes a mop portion 121 coupled to the lower side of the rotating plate 122 to be in contact with the bottom.
  • the mop 121 is disposed on the lower side of the left spinmab 120a and the lower side of the right spinmab 120b, respectively.
  • the mop 121 may be fixedly disposed on the rotating plate 122 or may be replaceable.
  • the mop 121 may be fixed to the rotating plate 122 to be detachable by a velcro or a hook.
  • the mop 121 may be composed of only a mop, and may include a mop and a spacer. The mop is a part which directly mops and contacts the floor.
  • the spacer may be disposed between the rotating plate 122 and the mop to adjust the position of the mop.
  • the spacer may be detachably fixed to the rotating plate 122, and the mop may be detachably fixed to the spacer.
  • the mop 121 without the spacer can be implemented to be detachable directly to the rotating plate 122, of course.
  • the spin module 120 includes a spin rotating shaft 128 for rotating the rotating plate 122.
  • the spin rotating shaft 128 is fixed to the rotating plate 122 to transmit the rotational force of the spin driver 124 to the rotating plate 122.
  • Spin axis of rotation 128 is connected to the upper side of the rotating plate (122).
  • the spin axis of rotation 128 is disposed at the upper center of the rotating plate 122.
  • the spin axis of rotation 128 is fixed to the rotation centers Osa and Osb of the rotating plate 122.
  • Spin axis of rotation 128 includes a gear fixing portion (not shown) for fixing the gear 127b.
  • the gear fixing part is disposed on the upper end of the spin rotation axis 128.
  • the spin module 120 includes a left spin rotating shaft 128 fixed to the left rotating plate 122 to rotate the left rotating plate 122, and a right spin rotating shaft fixed to the right rotating plate 122 to rotate the right rotating plate 122. (128).
  • the spin axis of rotation 128 extends perpendicular to the rotor plate 122.
  • the left spin rotation axis 128 is disposed perpendicular to the lower side of the left spinab 120a
  • the right spin rotation axis 128 is disposed perpendicular to the lower side of the right spinab 120b.
  • the spin axis of rotation 128 is inclined with respect to the vertical axis.
  • Spin axis of rotation 128 is disposed so that the top is inclined to one side with respect to the bottom.
  • the left spin rotation axis 128 is disposed so that its upper end is inclined leftward with respect to the lower end.
  • the right spin axis of rotation 128 is disposed so that its upper end is inclined to the right with respect to the lower end.
  • the inclination angle with respect to the vertical axis of the spin axis of rotation 128 may vary with rotation about the tilt axis of rotation 126 of the tilting frame 125.
  • the spin axis of rotation 128 is rotatably coupled to the tilting frame 125 and integrally tilted with the tilting frame 125.
  • the spin driving unit 124, the drive transmission unit 127, the spin rotating shaft 128, the rotating plate 122, the water supply receiving unit, and the mop 121 are provided. Tilts integrally.
  • the spin module 120 includes a water supply receiving unit disposed above the rotating plate 122 to accommodate water.
  • the spin module 120 includes a spin driver 124 that provides a driving force for rotating the spinabs 120a and 120b.
  • the spin driver 124 may be an assembly including at least a motor 124.
  • the spin module 120 includes a left spin driver 124 that provides power for rotating the left spin axis 128, and a right spin driver 124 that provides power for rotating the right spin axis 128. Include.
  • the left spin driver 124 provides a driving force for rotating the left spin rotation axis 128.
  • the right spin driver 124 provides a driving force for rotating the right spin axis of rotation 128.
  • the spin module 120 includes a drive transmission unit 127 that transmits the rotational force of the spin driver 124 to the spin rotation axis 128.
  • the drive transmission unit 127 may include a plurality of gears and / or belts.
  • the drive transmission unit 127 includes a first gear 127a fixed to the rotation shaft of the motor 124.
  • the first gear 127a may be a worm gear.
  • the drive transmission unit 127 may include a second gear 127b that meshes with the first gear 127a and rotates.
  • the second gear 127b may be a spur gear.
  • the second gear 127b is fixed to the spin rotation axis 128, so that the spin rotation axis 128 also rotates when the second gear 127b rotates.
  • the spin module 120 includes a tilting frame 125 that is tiltably disposed in the body 110 within a predetermined angle range.
  • the tilting frame 125 allows the inclination angles Ag1 and Ag2 to be changed depending on the state of the floor.
  • the tilting frame 125 may perform a suspension function of the spinabs 120a and 120b (reduces vertical vibration at the same time as supporting the weight).
  • the tilting frame 125 is tiltably supported by the base 13.
  • the tilting frame 125 rotatably supports the spin axis of rotation 128.
  • the spin module 120 includes a left tilting frame 125 that supports the left spin axis of rotation 128.
  • the left tilting frame 125 is rotatably provided within a predetermined range about the left tilting rotation shaft 126.
  • the spin module 120 includes a right tilting frame 125 that supports the right spin axis of rotation 128.
  • the right tilting frame 125 is rotatably provided within a predetermined range about the right tilting axis of rotation 126.
  • the inclination angle Ag1 of the left spinmab 120a may be increased within a predetermined range by the left tilting frame 125.
  • the inclination angle Ag2 of the right spinmab 120b may be increased within a predetermined range by the right tilting frame 125.
  • the tilting frame 125 includes a frame base 125a forming a lower side.
  • the spin axis of rotation 128 penetrates the frame base 125a up and down.
  • the frame base 125a may be formed in a plate shape to form a thickness up and down.
  • the tilting rotation shaft 126 rotatably connects the base 13 and the frame base 125a.
  • the tilting frame 125 includes a feed water cabinet 125b that accommodates the spin axis of rotation 128 therein.
  • the water supply cabinet 125b forms a space recessed upward from the lower side of the body 110 to accommodate the upper end of the water supply accommodation portion.
  • the water supply cabinet 125b is fixed to the frame base 125a.
  • the water supply cabinet 125b forms a space recessed upward from the lower surface of the frame base 125a. Water flows into the space formed by the water supply cabinet 125b through the water supply unit 125c. By minimizing the scattering of water by the water supply cabinet 125b, all water may be introduced into the water supply receiving portion.
  • the water supply cabinet 125b includes a rotation shaft support part (not shown) that rotatably supports the spin rotation shaft 128.
  • a bearing B may be provided between the rotation shaft support part and the spin rotation shaft 128.
  • the bearing B may include a first bearing B1 disposed below and a second bearing B2 disposed above.
  • the lower end of the rotary shaft support is inserted into the water supply space of the water supply accommodation.
  • the inner circumferential surface of the rotation shaft support portion supports the spin rotation shaft 128.
  • the outer circumferential surface of the rotating shaft support portion faces the inner circumferential surface of the water supply receiving portion.
  • the lower end of the rotation shaft support portion is disposed between the spin rotation shaft 128 and the inner circumferential surface of the water supply receiving portion.
  • the outer circumferential surface of the lower end portion of the rotary shaft support portion and the inner circumferential surface of the water supply receiving portion 123 are spaced apart from each other to form a water supply space Sw.
  • the inclined portion 122d is disposed at the lower end of the rotation shaft support portion.
  • the water supply cabinet 125b includes a partition wall (not shown) protruding from the rotation shaft support.
  • the partition wall covers the upper end of the water supply receiving portion 123.
  • the bulkhead covers the top and outer circumferential surface of the water receptacle.
  • the partition wall is disposed in the centrifugal direction of the rotation shaft support.
  • the partition wall is fixed to and supported by the frame base 125a. The partition supports the shaft support.
  • the tilting frame 125 includes a water supply 125c for receiving water from the water supply module.
  • the water supply part 125c receives water from the supply pipe 156.
  • the water supply part 125c forms a flow path of water.
  • the water supply part 125c guides the water to flow into the water supply receiving part through the water supply cabinet 125b.
  • One end of the flow path formed by the water supply part 125c is connected to an end of the supply pipe 156.
  • the other end of the flow path formed by the water supply part 125c is disposed in the water supply space Sw.
  • One end of the flow path formed by the water supply part 125c is disposed outside the water supply cabinet 125b (inside of the body 110), and the other end is inside the water supply cabinet 125b (the part where the water supply space is disposed). Is placed.
  • the water supply part 125c is fixedly disposed on the tilting frame 125.
  • the water supply part 125c is fixed to the water supply cabinet 125b.
  • the tilting frame 125 includes a first support part 125d supporting one end of the elastic member 129.
  • the other end of the elastic member 129 is supported by the second support portion 13b disposed on the base 13.
  • the second support part 13b may be formed in the support member 13a of the base 13.
  • the first support 125d is fixed to the tilting frame 125.
  • the first support part 125d is disposed at the right side of the left tilting frame 125.
  • the first support part 125d is disposed at the left side of the right tilting frame 125.
  • the second support 13b is fixed to the base.
  • the second support 13b is disposed in the right region of the left spinab module 120.
  • the second support 13b is disposed in the left region of the right spinab module 120.
  • the first support 125d is fixed to the tilting frame 125.
  • the first support part 125d is inclined together with the tilting frame 125 during the tilting operation of the tilting frame 125.
  • the first support portion 125d is formed to protrude in a direction away from the tilting rotation shaft 126 so that a portion where one end portion of the elastic member 129 is fixed is separated from the tilting rotation shaft 126 by a predetermined distance.
  • the distance between the first support part 125d and the second support part 13b is the longest in the state where the inclination angles Ag1 and Ag2 are minimum, and the first support part 125d is in the state where the inclination angles Ag1 and Ag2 are the maximum. And the distance between the second support part 13b is provided to be the closest.
  • the elastic member 129 is provided to be elastically deformed and stretched in a state where the inclination angles Ag1 and Ag2 are minimized.
  • the tilting frame 125 includes a motor support 125e for supporting the spin driver 124.
  • the motor support 125e may support the drive transmission unit 127.
  • the tilting frame 125 includes an upper limit contact portion 125f provided to be in contact with the upper limit 13d.
  • the upper side surface of the upper limit contact portion 125f may be provided to be in contact with the lower side surface of the upper limit 13d.
  • the upper left limit contact 125f may be disposed at the left end of the left tilting frame 125.
  • the upper right limit contact portion 125f may be disposed at the right end of the right tilting frame 125.
  • the spin module 120 includes a tilting rotational axis 126 that is a rotational axis of the tilting frame 125.
  • the tilting rotation shaft 126 extends in a direction perpendicular to the inclination direction of the spinabs 120a and 120b.
  • the tilting rotation shaft 126 may be disposed to extend in the horizontal direction.
  • the tilting axis of rotation 126 extends in the front-back direction.
  • the spin module 120 includes a left tilting rotational axis 126 extending in a direction perpendicular to the inclination direction of the lower surface of the left spinmab 120a.
  • the spin module 120 includes a right tilting rotation axis 126 extending in a direction perpendicular to the inclination direction of the lower surface of the right spinab 120b.
  • the spin module 120 includes an elastic member 129 that applies an elastic force to the tilting frame 125.
  • the elastic member 129 is provided to increase when the tilting frame 125 rotates downward and to decrease when rotated upward.
  • the elastic member 129 allows the tilting frame 125 to operate buffered (elastic).
  • the elastic member 129 exerts a moment force on the tilting frame 125 in the direction in which the inclination angles Ag1 and Ag2 are increased.
  • the elastic member 129 may be disposed to be long in the left and right direction as a whole.
  • the body 110 includes a battery support 14 supporting the battery 160.
  • the battery support 14 arranges the battery 160 above the supply pipe.
  • the battery support 14 serves to guide the position of the supply pipe 156.
  • FIG. 8 is a block diagram showing a control relationship between the main components of the robot cleaner according to an embodiment of the present invention.
  • 9 to 19 are views referred to for describing various driving control methods of the robot cleaner according to the embodiment of the present invention.
  • the robot cleaner 100 when viewed from the top to rotate in a clockwise or counterclockwise direction to contact the floor
  • the spin module 120 including the left spinmab 120a and the right spinmab 120b provided therein, and the rollingab 130a provided in contact with the floor while rotating clockwise or counterclockwise when viewed from the left side.
  • a rolling module 130 disposed behind the spin module 120, and a rotation operation of the left spinmab 120a and the right spinmab 120b and a rotation operation of the rollingmab 130a. It may include a control unit 20 for controlling.
  • the robot cleaner 100 may travel with a pair of spin wheels 120a and 120b in the front wheel and a rolling wheel 130a in the rear wheel.
  • the spinmab 120a and 120b may generate a driving force for driving in a desired direction while performing a wet cleaning function by water supply.
  • Rollingab 130a may rotate about a rotation axis extending in the horizontal direction. That is, when viewed from the left, the rolling mab 130a may rotate clockwise or counterclockwise.
  • the rolling mab (130a), a rotating mop of a cylindrical shape, a plurality of or single roller or a cylindrical rotating body 132, and a high moisture damping force disposed to surround the rotating body 132 and wipe It may include a mop 131 of a good fabric material.
  • the rolling mab 130a may follow the position where the wet cleaning operation of the spin mab 120a and 120b has occurred, and may mop through the mop 131.
  • the controller 20 may control a rotation operation of the left spinmappa 120a and the right spinmab 120b and a rotation operation of the rollingab 130a. In addition, the controller 20 may independently control two spinabs 120a and 120b and one rear rollingab 130a.
  • controller 20 may control the acceleration or deceleration by varying the rotation direction and the rotation speed of the rolling mab 130a.
  • the rolling mop (130a) located in the rear by rotating the rolling mop (130a) located in the rear, it is possible to improve the floor cleaning finishing performance, such as moisture absorption and stain removal performance of the residual water, and the direction of rotation of the rear rolling mop (130a) and / Alternatively, the rotational speed can assist the movement of the main body.
  • the control unit 20 is in the state of sliding the spinmab (120a, 120b) and the rollingab (130a) corresponding to the front and rear wheels at the same time, or the rotational speed and frictional force between the spinmab (120a, 120b) and the rollingab (130a)
  • the movement of the robot cleaner 100 can be controlled by generating a motion caused by a difference in drag force (pull force) due to the difference.
  • the rolling mab (130a) is rotated in the same direction as the running direction by the rotation of the spin-mab (120a, 120b) to increase the rolling drive ratio to enable high-speed movement.
  • the rolling mab 130a rotates in a direction opposite to the traveling direction due to the rotation of the spin mab 120a and 120b to enable the backward movement.
  • the rolling mab 130a may rotate in a direction opposite to the traveling direction due to the rotation of the spin mab 120a and 120b, and the robot cleaner 100 is in place by balancing the force according to the adjustment of the rotational force. By positioning, intensive cleaning of a specific position is possible.
  • the controller 20 controls the rotation of the spinabs 120a and 120b and the rotation of the rollingabs 130a to face in opposite directions, and maintains the force by the rotation in an equilibrium state, thereby maintaining the robot cleaner 100. Can be controlled to drive in place.
  • the cleaning operation can be performed without interruption.
  • the spin module 120 may include a motor 124 for rotating the spinabs 120a and 120b, and the motor 124 may rotate a left motor and a right spin for rotating the left spinmab 120a. It may include a right motor that rotates the mop 120b.
  • the controller 20 may include a first motor driver 821 that drives the motor 124 that rotates the spinabs 120a and 120b.
  • the first motor driver 821 is controlled, and the first motor driver 821 drives the motor 124. Accordingly, the spinabs 120a and 120b are rotated by the motor 124.
  • the first motor driver 821 is for driving the motor 124.
  • the first motor driver 821 is an inverter (not shown), an inverter controller (not shown), and a current detector (not shown) that detects current flowing through the motor 124. And a voltage detector (not shown) for detecting a voltage applied to the motor 230.
  • the first motor driver 821 may be a concept including a converter, which supplies a DC power input to an inverter (not shown).
  • the rolling module 130 is provided in contact with the floor.
  • the rolling module 130 may be provided to contact the floor at the rear of the spin module 120.
  • the rolling module 130 is provided to mop while rotating.
  • the rolling module 130 may be provided with a mop pad for sliding and mopping the floor according to the movement of the body 110.
  • the rolling module 130 may be provided with vaccum cleaning.
  • the rolling module 130 may include a brush sweeping the floor, and the brush may be rotatably provided.
  • the brush may rotate about an axis of rotation extending substantially in the horizontal direction.
  • the brush may rotate about a rotation axis extending substantially in the left and right directions.
  • the robot cleaner 100 may include a dust container, and the brush may be provided to rub a floor to contain a relatively large foreign substance in the dust container.
  • the rolling module 130 may include a motor 137d for rotating the rolling mab 130a, and in this case, the control unit 20 may drive the second motor driving unit for driving the motor 137d. 822 may be included.
  • the second motor driver 822 is controlled, and the second motor driver 822 drives the motor 137d. Accordingly, the rolling mab 130a is rotated by the motor 137d.
  • the second motor driver 822 is for driving the motor 137d.
  • the second motor driver 822 is configured to drive the motor 137d, and an inverter (not shown), an inverter controller (not shown), and a current detector (not shown) for detecting current flowing through the motor 137d. And a voltage detector (not shown) for detecting a voltage applied to the motor 230.
  • the second motor driver 822 may be a concept including a converter, which supplies a DC power input to an inverter (not shown).
  • FIG. 8 illustrates an example in which the first and second motor driving units 821 and 822 are provided in the controller 20, but the present invention is not limited thereto.
  • first and second motor driving units 821 and 822 may be separately provided outside the control unit 20, and may operate under the control of the control unit 20.
  • first and second motor driving units 821 and 822 may vary according to the type and specification of the motors 124 and 137d provided.
  • the robot cleaner 100 may include a storage unit 830 for storing various data.
  • the storage unit 830 records various types of information necessary for controlling the robot cleaner 100, and may include a volatile or nonvolatile recording medium.
  • the recording medium stores data that can be read by a microprocessor, and includes a hard disk drive (HDD), a solid state disk (SSD), a silicon disk drive (SDD), a ROM, a RAM, a CD-ROM, a magnetic Tapes, floppy disks, optical data storage devices, and the like.
  • the storage unit 830 may store cleaning history information. Such cleaning history information may be generated every time cleaning is performed.
  • the robot cleaner 100 may include a sensor unit 810 including a plurality of sensors that sense various data related to the operation and state of the robot cleaner 100.
  • the sensor unit 810 may include an obstacle detecting sensor 811 for detecting an obstacle in front of the sensor unit 810.
  • the obstacle detecting sensor 811 may include a plurality of sensors 16a, 16b, and 16c illustrated in FIG. 1.
  • the obstacle detecting sensor 811 may include an infrared sensor, an ultrasonic sensor, an RF sensor, a geomagnetic sensor, a position sensitive device (PSD) sensor, and the like.
  • the position and type of the sensor included in the obstacle detecting sensor 811 may vary according to the type of the mobile robot, and the obstacle detecting sensor 811 may include more various sensors.
  • the controller 20 may control to perform the avoiding driving on the detected obstacle.
  • control unit 20 may control various driving motions by combining the operations of the front spinmappa 120a and 120b and the rollingmab 130a.
  • the controller 20 may control to perform various avoidance driving according to the obstacle detected by the obstacle detecting sensor 811.
  • the controller 20 may control to perform another avoiding driving based on the distance from the obstacle detected by the obstacle detecting sensor 811.
  • the sensor unit 810 may include a position detection sensor 812 to determine the position by receiving an identification signal from the outside.
  • the position sensor 812 may be a UWB sensor using an ultra wide band (UWB) signal.
  • Ultra Wideband Communication is a technology that transmits signals using ultra-wide frequency at low power over short distances, and has excellent distance resolution and penetration, making it suitable for use in indoor spaces such as walls. have.
  • the controller 20 may determine the position of the robot cleaner 100 according to the signal received from the position sensor 812.
  • the identification signal from the outside is a signal transmitted by a signal generator such as a beacon disposed outside, and a plurality of signal generators may be provided, and each of the plurality of signal generators may be provided in a plurality of spaced apart locations.
  • the position sensor 812 can receive the identification signal transmitted from the signal generator disposed in different places.
  • the position sensor 812 compares the information received at the previous location with the information received at the current location, as well as information on the strength, direction, time of receiving the signal, etc. of the identification signal received from the signal generator. I can grasp the direction.
  • the present invention can detect a position in space from a relative distance from a signal generator such as three or more anchors or beacons that generate a specific identification signal such as UWB or BLE.
  • a signal generator such as three or more anchors or beacons that generate a specific identification signal such as UWB or BLE.
  • the controller 20 may calculate the speed information through a comparison operation between the current position information and the input time of the previously received position information and the position information according to the signal received from the position sensor 812.
  • the rotation of the motor may be controlled by estimating the target path by calculating the remaining distance and the position error with respect to the target trajectory and the current point from the position information.
  • the sensor unit 810 may include an inertial measurement unit (IMU) 813.
  • the inertial measurement unit sensor 813 may include a gyro sensor 813a, a geomagnetic field sensor 813b, and an acceleration sensor 813c.
  • the sensor unit 810 may include a gyro sensor 813a, a geomagnetic field sensor 813b, and an acceleration sensor 813c, respectively.
  • the gyro sensor 813a may detect a predetermined reference direction
  • the geomagnetic field sensor 813b may measure a direction angle (azimuth angle)
  • the acceleration sensor 813c may measure a speed change. Accordingly, the inertial measurement unit sensor 813 may measure the moving speed, direction, gravity, and acceleration of the robot cleaner 100.
  • the gyro sensor 813a and the acceleration sensor 813c may be three-axis sensors, and the information collected by the gyro sensor 813a may be roll, pitch, and yaw information.
  • the information collected by the acceleration sensor 813c may be x-axis acceleration, y-axis acceleration, and z-axis acceleration information.
  • the inertial measurement unit sensor 813 is capable of measuring acceleration in the moving advancing direction, the transverse direction and the height direction, and rolling, pitch, yaw angular velocity, and the control unit 20 is an inertial measurement unit.
  • the speed and direction angle of the robot cleaner 100 can be calculated by integrating the acceleration and the angular velocity obtained from the sensor 813.
  • Rolling Mab (130a) of the robot cleaner 100 may continuously change the ratio of the rolling motion and the sliding motion in accordance with the state of the friction change.
  • the robot cleaner 100 may output the plurality of motor driving units 821 and 822 according to the acceleration and the rotational angular velocity change obtained by the inertial measurement unit sensor 813 to control the motion. It can have a compensation control structure that can be adjusted to change the motor RPM.
  • the controller 20 may include the left spinmab 120a, the right spinmab 120b, and the rolling on the basis of the acceleration and the rotational angular velocity change detected by the inertial measurement unit sensor 813.
  • the rotational speed of the mop 130a can be controlled.
  • controller 20 controls each of the motors 124 and 137d in a form that compensates the output of the motors 124 and 137d by using information sensed by the sensor unit 810 such as acceleration and speed. It is possible.
  • the controller 20 may determine the current driving state of the robot cleaner 100 based on predetermined information such as robot heading angle of the robot cleaner 100 detected by the sensor unit 810. Can be.
  • the sensor unit 810 may further include a cliff detection sensor 814 for detecting the presence of a cliff on the floor in the driving zone.
  • the cliff detection sensor 814 may be the cliff detection sensor 17 illustrated in FIG. 1.
  • At least one of the cliff detection sensors 814 may include one or more light emitting elements and one or more light receiving elements.
  • the floor reflects light depending on the material. For example, hard floors may reflect relatively more light and carpets may reflect less light.
  • the controller 20 may determine the material of the floor based on the amount of the reflected light that is output from the light emitting element is reflected from the bottom and received by the light receiving element.
  • the controller 20 may determine the material of the floor as a hard floor when the amount of light of the reflected light is greater than or equal to a predetermined reference value, and determine the material of the floor when the amount of light of the reflected light is less than the predetermined reference value. Can be determined by carpet.
  • the reference value which is a criterion for determining the material of the floor may be set for each distance between the floor and the cliff detection sensor 814.
  • the reference value when the distance to the floor detected by the cliff detection sensor 814 is 25 mm and the reference value when 35 mm may be different.
  • the controller 20 may be used as a criterion for determining the floor material only when the distance detected by the cliff sensor 814 is greater than or equal to a predetermined distance.
  • the controller 20 may determine the material of the floor based on the amount of reflected light detected when the distance detected by the cliff sensor 814 is 20 mm or more.
  • the carpet can be identified based on the amount of reflected light detected by the cliff sensor 814.
  • the floor condition may be determined in double or triple by using the amount of reflected light and the motor load current value detected by the cliff sensor 814. Accordingly, there is an advantage that can more accurately identify the floor condition.
  • the sensor unit 810 may further include a motor sensor 815 for sensing the operation and status information of the motor.
  • the motor sensor 815 may detect a motor load current value of the motor.
  • the motor detection sensor 815 may be simply provided as a current detector provided in the first and second motor drivers 821 and 822.
  • the robot cleaner 100 includes a front spinmab 120a and 120b and a rear rollingmab 130a, and the front spinmab 120a and 120b and the rear rollingmab 130a move. Have a relationship of mutual cooperation.
  • the controller 20 may control driving of the robot cleaner 100 by controlling the rotation operations of the front spinabs 120a and 120b and the rear rollingabs 130a.
  • the rotational directions of the left spinmab 120a and the right spinmab 120b are opposite to each other during the forward / backward operation.
  • the front spinabs 120a and 120b rotate outward with each other in the forward travel and inwardly rotate with each other in the reverse travel.
  • both the front spinabs 120a and 120b move in the counterclockwise direction (when viewed from below the body). At this time, it becomes the center point of the rotation of the right spinmab (120b), the opposite left spinmab (120a) is to exercise to add the auxiliary force of the right turn.
  • the rear rollingab 130a rotates forward or increases the rotational RPM in the forward movement.
  • the rear rollingab 130a rotates backward or lowers the rotation RPM, thereby adding or lowering assistance to the body motion.
  • the controller 20 rotates the left spinmab 120a and the right spinmab 120b outward, rotates the rollingmab 130a forward, and moves at a high speed forward. Can be controlled.
  • the left spinmab 120a rotates counterclockwise, and the right spinmab 120b rotates clockwise, thereby
  • the spinab 120a and 120b rotate in the outward direction, and the robot cleaner 100 may travel forward.
  • the rolling mab 130a may rotate forward to add an auxiliary force in the forward direction. Accordingly, the acceleration to the front side can be further increased.
  • the left spinab 120a rotates clockwise and the right spinmab 120b rotates counterclockwise, thereby
  • the spinab 120a and 120b rotate in the outward direction, and the robot cleaner 100 may travel forward.
  • the rolling mab 130a may rotate forward to add an auxiliary force in the forward direction. In other words, the acceleration to the front side can be increased.
  • the controller 20 may control the left spinmappa 120a and the right spinbum 120b to rotate outward and the rollingab 130a to rotate forward during the high speed forward driving.
  • the controller 20 may implement various operations by controlling the rotation direction and the speed of the rolling mab 130a when the left spinmab 120a and the right spinmab 120b rotate outwardly. Can be.
  • the control unit 20 rotates the left spinmab 120a and the right spinmab 120b outward, and rotates the rollingab 130a at a first speed backward to stop. It can be controlled to drive.
  • the first speed may be a speed for obtaining a rear thrust force having the same magnitude as the forward thrust force by the rotation of the left spinmab 120a and the right spinmab 120b.
  • control unit 20 rotates the left spinmab 120a and the right spinmab 120b in an outward direction, rotates the rollingab 130a at a second speed to the rear, and moves at low speed.
  • the absolute value of the second speed may be smaller than the absolute value of the first speed. Therefore, as a whole, the forward thrust force is greater than the rear thrust force, and forward driving can be performed, but the speed becomes relatively slow due to the presence of the rear thrust force.
  • the controller 20 rotates the left spinmab 120a and the right spinmab 120b in an outward direction, and rotates the rollingab 130a at a higher speed than the first speed. It can be controlled to drive backward at low speed.
  • the left spinmab 120a rotates in a counterclockwise direction
  • the right spinmab 120b rotates in a clockwise direction, thereby forward spinmab 120a.
  • 120b rotates in the outward direction, and the robot cleaner 100 may travel forward.
  • the rolling mab 130a may rotate backwards to add assistance in the backward direction, which is the opposite direction to the forward direction. Accordingly, the acceleration to the front side can be reduced.
  • the left spinmab 120a rotates in a clockwise direction
  • the right spinmab 120b rotates in a counterclockwise direction, whereby the front spinmab 120a is rotated.
  • 120b rotates in the outward direction, and the robot cleaner 100 may travel forward.
  • the rolling mab 130a may rotate backward to add assistance in the reverse direction. That is, the acceleration to the front side can be made small.
  • the two forward spinmaps 120a and 120b may move forward more slowly than when only the two front spinmaps 120a and 120b are rotated. That is, while maintaining the speed of rotating the spinmab (120a, 120b) for washing performance, it can move slowly forward.
  • the rotational speed (rpm) of the rollingab 130a is further increased in the state of operating in the rotational direction as described above, the spinmab 120a, 120b and the rollingab ( You can mop by rotating 130a).
  • the spin mab may be rotated to mop while rotating the spin mab 120a and 120b and the rolling mab 130a. Can be.
  • the controller 20 rotates the left spinmab 120a and the right spinmab 120b inwardly, rotates the rollingmab 130a backward, and runs at a high speed backward driving. Can be controlled.
  • the left spinmab 120a rotates clockwise, and the right spinmab 120b rotates counterclockwise, thereby moving forward.
  • the spinabs 120a and 120b rotate inward, and the robot cleaner 100 may travel backward.
  • the rolling mab 130a may rotate backward to add assistance in the reverse direction.
  • the rearward acceleration can be further increased.
  • the left spinmab 120a rotates in a counterclockwise direction
  • the right spinmab 120b rotates in a clockwise direction, thereby
  • the spinabs 120a and 120b rotate inward, and the robot cleaner 100 may travel backward.
  • the rolling mab 130a may rotate backward to add assistance in the reverse direction.
  • the acceleration to the rear side can be increased.
  • the two front spinabs 120a and 120b and the rear rolling mab 130a may move backwards more rapidly than when only the two front spinmaps 120a and 120b are rotated.
  • the controller 20 may control the left spinm 120a and the right spinmab 120b to rotate inward, and the rolling mab 130a to rotate rearward.
  • the controller 20 may implement various operations by controlling the rotational direction and the speed of the rolling mab 130a when the left spinmab 120a and the right spinmab 120b rotate in the inward direction. Can be.
  • the controller 20 rotates the left spinmab 120a and the right spinmab 120b inward, and rotates the rollingab 130a at a third speed forward, It can be controlled to stop driving.
  • the third speed may be a speed for obtaining a forward thrust force having the same magnitude as the thrust force to the rear by the rotation of the left spinmab 120a and the right spinmab 120b.
  • control unit 20 rotates the left spinmab 120a and the right spinmab 120b inwardly, rotates the rollingab 130a at a fourth speed forward, and runs at a low speed backward driving.
  • the absolute value of the fourth speed may be smaller than the absolute value of the third speed. Therefore, as a whole, the rear thrust force is larger than the front thrust force, and it is possible to drive backwards, but the speed becomes relatively slow due to the presence of the forward thrust force.
  • the controller 20 rotates the left spinmab 120a and the right spinmab 120b inward, and rotates the rollingab 130a forward at a speed faster than the third speed. It can be controlled to drive forward at low speed.
  • the left spinmab 120a rotates in a clockwise direction
  • the right spinmab 120b rotates in a counterclockwise direction, whereby the front spinmab 120a is rotated.
  • 120b rotates inward, and the robot cleaner 100 may travel backward.
  • the rolling mab 130a may rotate forward to add an auxiliary force in a forward direction opposite to the backward direction. Accordingly, the acceleration to the rear side can be reduced.
  • the left spinmab 120a rotates in a counterclockwise direction
  • the right spinmab 120b rotates in a clockwise direction, thereby forward spinmab 120a. , 120b) rotates inward, and the robot cleaner 100 may travel backward.
  • the rolling mab 130a may rotate forward to add an auxiliary force in the forward direction. In other words, the acceleration to the rear side can be reduced.
  • the two front spinmaps 120a and 120b may move slower than when the two front spinmaps 120a and 120b are rotated. That is, while maintaining the speed of rotating the spinmab (120a, 120b) for washing performance, it can move slowly to the rear.
  • the rotational speed (rpm) of the rollingab 130a is further increased in the state of operating in the rotational direction as described above, the spinmab 120a, 120b and the rollingab ( You can mop by rotating 130a).
  • the mop may be mobbed by rotating the spin mab 120a and 120b and the rolling mab 130a while moving forward. Can be.
  • the controller 20 controls the rotation direction by rotating at least one of the left spinmab 120a and the right spinmab 120b in the clockwise direction or the counterclockwise direction during rotational travel.
  • the rolling magnitude 130a may be rotated forward or backward to control the size of rotation.
  • the left spinmappa 120a and the right spinmab 120b rotate in a counterclockwise direction, so that the robot cleaner 100 may run in a right direction. .
  • the rolling mab 130a may rotate forward to add an auxiliary force in the forward direction. Accordingly, the robot cleaner 100 may rotate with a larger rotation radius.
  • the left spinmab 120a and the right spinmab 120b rotate clockwise, so that the robot cleaner 100 may run in a right direction.
  • the rolling mab 130a may rotate forward to add an auxiliary force in the forward direction. That is, the radius of rotation can be made larger.
  • the right turn can be turned to a larger rotation radius than when only the two spinmappa 120a and 120b are rotated. It is also possible to continuously move the center of rotation forward during the rotation.
  • the controller 20 rotates the left spinmab 120a clockwise at a lower speed than the right spinmab 120b while the right spinmab 120b is rotated counterclockwise when viewed from above.
  • the rollingmab 130b can be rotated forward to control the vehicle to rotate at a large radius of rotation.
  • control unit 20 rotates clockwise at a lower speed than the left spinmab 120a while the left spinmab 120a is rotated counterclockwise when viewed from above.
  • the rollingmab 130b can be rotated forward to control the rotational rotation with a large rotation radius.
  • the left spinmappa 120a and the right spinmab 120b rotate in a counterclockwise direction, such that the robot cleaner 100 may run in a right turn. .
  • the rolling mab 130a may rotate backward to add assistance in the reverse direction. Accordingly, the robot cleaner 100 can rotate with a smaller rotation radius.
  • the left spinmappa 120a and the right spinmab 120b rotate clockwise, so that the robot cleaner 100 may run in a right direction.
  • the rolling mab 130a may rotate backward to add assistance in the reverse direction. That is, the radius of rotation can be made smaller.
  • control unit 20 rotates clockwise at a lower speed than the right spinmab 120b or rotates the left spinmab 120a while the right spinmab 120b is rotated counterclockwise. Even when the mab 120a is stopped, the rolling mab 130b can be rotated to the rear, and it can control so that rotation may run with a small rotation radius.
  • control unit 20 rotates clockwise at a lower speed than the left spinmab 120a while the left spinmab 120a is rotated counterclockwise when viewed from above.
  • the rollingmab 130b can be rotated to the rear to control the rotational rotation with a small rotational radius.
  • the left spinmappa 120a and the right spinmab 120b rotate clockwise, so that the robot cleaner 100 may travel leftward.
  • the rolling mab 130a may rotate forward to add an auxiliary force in the forward direction. Accordingly, the robot cleaner 100 may rotate with a larger rotation radius.
  • the left spinmappa 120a and the right spinmab 120b rotate counterclockwise, so that the robot cleaner 100 may travel left. .
  • the rolling mab 130a may rotate forward to add an auxiliary force in the forward direction. That is, the radius of rotation can be made larger.
  • control unit 20 rotates the counterclockwise rotation at a lower speed than the right spinmap 120b or rotates the left spinmab 120a while the right spinmab 120b is rotating clockwise. Even when the mab 120a is stationary, the rolling mab 130b can be rotated forward, and it can control so that rotation may run with a big rotation radius.
  • control unit 20 rotates counterclockwise at a lower speed than the left spinmab 120a while the left spinmab 120a is rotated clockwise when viewed from above.
  • the rollingmab 130b can be rotated forward to control the rotational rotation with a large rotation radius.
  • the left spinmappa 120a and the right spinmab 120b rotate clockwise, so that the robot cleaner 100 may travel leftward.
  • the rolling mab 130a may rotate backward to add assistance in the reverse direction. Accordingly, the robot cleaner 100 can rotate with a smaller rotation radius.
  • the left spinmappa 120a and the right spinmab 120b rotate counterclockwise, so that the robot cleaner 100 may travel left. .
  • the rolling mab 130a may rotate backward to add assistance in the reverse direction. That is, the radius of rotation can be made smaller.
  • the left rotation can be rotated by a smaller rotation radius than when only the two spinmappa 120a and 120b are rotated.
  • control unit 20 rotates the counterclockwise rotation at a lower speed than the right spinmap 120b or rotates the left spinmab 120a while the right spinmab 120b is rotating clockwise. Even when the mab 120a is stopped, the rolling mab 130b can be rotated to the rear, and it can control so that rotation may run with a small rotation radius.
  • control unit 20 rotates counterclockwise at a lower speed than the left spinmab 120a while the left spinmab 120a is rotated clockwise when viewed from above.
  • the rollingmab 130b can be rotated to the rear to control the rotational rotation with a small rotational radius.
  • Robot cleaner 100 according to the present invention, the difference between the drag force (pull force) due to the difference in the rotational speed, friction force of the spin Mab (120a, 120b) corresponding to the front wheel and the rolling Mab (130a) corresponding to the rear wheel By generating the movement caused, it is possible to travel.
  • the rolling drive ratio is increased to enable high speed movement.
  • the rotation of the spinmab 120a and 120b and the rollingmab 130a balances the force and is in place so that the spinmab 120a and 120b and the rollingmab 130a simultaneously slide a specific position. Can be controlled to intensive cleaning.
  • the sensor unit 810 may include a position sensor 812 to determine the position by receiving an identification signal from the outside, the control unit 20 is the position detection The position of the robot cleaner 100 may be determined according to the signal received from the sensor 812.
  • the identification signal from the outside is a signal transmitted by a signal generator such as a beacon disposed outside, and a plurality of signal generators may be provided, and each of the plurality of signal generators may be provided in a plurality of spaced apart locations.
  • the position sensor 812 can receive the identification signal transmitted from the signal generator disposed in different places.
  • the robot cleaner 100 may receive an identification signal from a signal generator such as UWB, BLE, etc. disposed at a plurality of places a1, a2, and a3 through the position sensor 812.
  • a signal generator such as UWB, BLE, etc. disposed at a plurality of places a1, a2, and a3 through the position sensor 812.
  • the position sensor 812 may include information such as the strength, direction, and time at which the signal is received from the signal generators of the plurality of places a1, a2, and a3, as well as information received from the previous position and the present. The information received at the location can be compared to each other to determine the location or direction.
  • the robot cleaner 100 which concerns on this invention can detect the position in space from the relative distance with three or more signal generators a1, a2, a3.
  • a three point radial position positioning method can be used to detect a position in space.
  • the controller 20 may calculate the speed information through a comparison operation between the input time and the position information of the current position information and the previously received position information according to the signal received from the position sensor 812.
  • the rotation distance of the motor may be controlled by estimating the remaining distance and the position error with respect to the target trajectory and the current point from the position information.
  • the main controller 820 calculates the speed information through a comparison operation between the input time and the position information of the previously received position information, and the remaining distance and position with respect to the target trajectory and the current point from the position information.
  • the input of the motor driving units 821 and 822 may be calculated to follow the target path, thereby controlling the rotation of the rolling mab 130a or the like. Accordingly, the position of the robot cleaner 100 in which the rolling motion and the sliding motion are combined can be stably tracked on the target path.
  • the position sensor 812 may be a UWB sensor using an ultra wide band communication (UWB) signal.
  • UWB ultra wide band communication
  • Robot cleaner 100 according to an embodiment of the present invention, the real-time absolute position recognition in the space through the UWB sensor, it is possible to drive motion control.
  • the UWB sensor enables real-time indoor position recognition in the situation where it is difficult to estimate the moving distance and the current position by detecting the number of wheels due to constant slip, and maintain the current position, move the target point, and drive the uncleaned area. Can be performed.
  • the sensor unit 810 may include an inertial measurement unit (IMU) 813.
  • the inertial measurement unit sensor 813 includes a gyro sensor 813a for detecting a predetermined reference direction, an earth magnetic field sensor 813b for measuring a direction angle (azimuth angle), and an acceleration sensor 813c for measuring a speed change. can do.
  • the sensor unit 810 may include a gyro sensor 813a, a geomagnetic field sensor 813b, and an acceleration sensor 813c, respectively.
  • the sensor unit 810 may measure the moving speed, direction, gravity, and acceleration of the robot cleaner 100.
  • the gyro sensor 813a and the acceleration sensor 813c may be three-axis sensors.
  • the information collected by the gyro sensor 813a is roll, pitch, and yaw information
  • the information collected by the acceleration sensor 813c is x-axis acceleration, y-axis acceleration.
  • z-axis acceleration information is x-axis acceleration, y-axis acceleration.
  • the inertial measurement unit sensor 813 is capable of measuring acceleration in the moving advancing direction, the transverse direction and the height direction, and rolling, pitch, yaw angular velocity, and the control unit 20 is an inertial measurement unit.
  • the speed and direction angle of the robot cleaner 100 can be calculated by integrating the acceleration and the angular velocity obtained from the sensor 813.
  • Rolling Mab (130a) of the robot cleaner 100 may continuously change the ratio of the rolling motion and the sliding motion in accordance with the state of the friction change.
  • the robot cleaner 100 may output the plurality of motor driving units 821 and 822 according to the acceleration and the rotational angular velocity change obtained by the inertial measurement unit sensor 813 to control the motion. It can have a compensation control structure that can be adjusted to change the motor RPM.
  • the controller 20 may include the left spinmab 120a, the right spinmab 120b, and the rolling on the basis of the acceleration and the rotational angular velocity change detected by the inertial measurement unit sensor 813.
  • the rotational speed of the mop 130a can be controlled.
  • controller 20 controls each of the motors 124 and 137d in a form that compensates the output of the motors 124 and 137d by using information sensed by the sensor unit 810 such as acceleration and speed. It is possible.
  • the controller 20 may determine the current driving state of the robot cleaner 100 based on predetermined information such as robot heading angle of the robot cleaner 100 detected by the sensor unit 810. Can be.
  • controller 20 may perform driving motion stabilization control through information obtained by the inertial measurement unit sensor 813.
  • the degree of sliding and friction force may vary depending on the type and state of the floor on which the robot cleaner 100 travels.
  • the controller 20 may determine and compensate for the driving state changed according to the type and state of the floor, based on the information obtained by the inertial measurement unit sensor 813.
  • FIG. 19A illustrates a floorboard 1410 typically laid on the floor of a living space
  • FIG. 19B illustrates a marble floor 1420 laid on a floor of a building lobby, a public place
  • FIG. (c) illustrates a rough bottom 1430.
  • the rough floor 1430 may be a floor formed of a rough material such as wood or carpet.
  • the marble floor 1420 may be more slippery and have less friction than the floor plate 1410. Thus, when controlling to travel at the same speed, the actual travel speed at the marble floor 1420 may be faster than the actual travel speed at the floorboard 1410.
  • the controller 20 may control the respective motors 124 and 137d by compensating the outputs of the motors 124 and 137d using information detected by the sensor unit 810 such as acceleration and speed.
  • the rough floor 1430 may have a greater friction force than the floor plate 1410.
  • the actual travel speed at the rough floor 1430 may be slower than the actual travel speed at the floorboard 1410.
  • the controller 20 may control the respective motors 124 and 137d by compensating the outputs of the motors 124 and 137d using information detected by the sensor unit 810 such as acceleration and speed.
  • the sensor unit 810 may include an obstacle detection sensor 811 for detecting an obstacle in front of the front, the control unit 20 may control to perform the avoidance driving for the detected obstacle.
  • control unit 20 may control various driving motions by combining the operations of the front spinmappa 120a and 120b and the rollingmab 130a.
  • the controller 20 may control to perform various avoidance driving according to the obstacle detected by the obstacle detecting sensor 811.
  • the controller 20 may control to perform another avoiding driving based on the distance from the obstacle detected by the obstacle detecting sensor 811.
  • the controller 20 rotates the left spinmab 120a and the right spinmab 120b clockwise or counterclockwise. Based on the distance from the obstacle detected by the obstacle detecting sensor 811, the rolling mab 130a may be controlled to rotate forward or backward to avoid driving.
  • the controller 20 may adjust the size of the rotation radius, and the appropriate rotation radius according to the distance from the obstacle detected by the obstacle detection sensor 811. Obstacles can be avoided by running in the direction of rotation.
  • the robot cleaner 100 has a left spin provided to contact the floor while rotating clockwise or counterclockwise when viewed from above.
  • Spin module 120 including the Mab (120a) and the right spinmab (120b), the rolling module provided in contact with the floor at a position spaced apart in the front and rear direction from the left spinmab (120a) and the right spinmab (120b) (130), a sensor unit 810 including a plurality of sensors, and a control unit for controlling the rotation operation of the left spinmab (120a) and the right spinmab (120b) and the rotation operation of the rolling Mab (130a) 20 may be included.
  • the controller 20 may control a rotation operation of the left spinmappa 120a and the right spinmab 120b based on the data detected by the sensor unit 810.
  • the controller 20 may control the rotation operation of the rolling mab 130a.
  • the control unit 20 compensates the output of the motors 124 and 137d by using information detected by the sensor unit 810 such as acceleration and speed to compensate the motors 124 and 137d of the Mab 120a, 120b and 130a. Can be controlled.
  • reference values determined based on the sensed data and / or the sensed data for each floor type may be stored in the storage unit 830, and the controller 20 may store the sensing data and the pre-stored data measured while driving. In comparison, the operation of the robot cleaner 100 may be controlled.
  • control unit 20 based on the data detected by the sensor unit 810, whether the robot cleaner 100 is changed in posture and the load of the motors 124, 137d of the mops 120a, 120b, 130a. If it is determined whether the current value changes, and if it is determined that the posture change and the current value change are present, the predetermined area of the floor may be identified as the contaminated area.
  • 20 is a diagram illustrating sensing data sensed during the last driving on a general floor free of contamination.
  • FIG. 20A illustrates a motor load current value measured while driving straight for each of three types of floors.
  • the hard floor may mean a smooth surface to be cleaned of a floor made of stone, wood, or floorboard
  • the rough floor may be a soft floor such as a carpet or a floor formed of rough wood.
  • rough floors may have greater friction than conventional hard floor floors.
  • the rough floor by rotating the mops 120a, 120b, 130a at the same speed, the rough floor generates a larger load than the normal hard floor floor, and the detected motor load current value also appears large.
  • the current amount (motor load current value) and the current change amount of the motors 124 and 137d mounted on the front spinmappa 120a and 120b and the rear rollingmab 130a are sensed, By detecting the amount of current I and the amount of change ⁇ I according to the change of the ground state as a reference, the change of the ground condition can be determined.
  • a change in the motor load current value generated in the motors 124 and 137d by friction with the floor may be sensed, and thus the change in the floor condition may be determined.
  • the rollingab 130a since the rollingab 130a has a larger cross-sectional area in contact with the floor than the spinabs 120a and 120b, the rollingab 130a may be more sensitive to changes in the floor condition. In this case, the motor load current value of the rollingab 130a can be changed larger according to the change in the floor condition, so that the change in the floor condition can be determined with higher accuracy.
  • the pair of spinmappa 120a, 120b is disposed on the left and the right side has an advantage that it is easy to determine in which direction of the floor condition changes left / right.
  • the robot cleaner since the robot cleaner generally performs more straight travel than backward travel, using the motor load current value of the rotating member disposed in front of the spin mops 120a and 120b and the rolling mop 130a changes the ground condition.
  • the advantage is faster detection.
  • Figure 20 (a) illustrates the motor load current value measured while driving straight for each type of floor
  • the present invention is not limited to this.
  • the present invention may further use the sensing data measured by subdividing and diversifying types of floors.
  • FIG. 20B illustrates a measured attitude information value while driving straight.
  • the posture information value may be a heading angle information value.
  • the controller 20 compares the posture information value measured while driving in a straight line with the posture information value detected during the straight drive, and determines that the posture is incorrect when a significant difference occurs. have.
  • Robot cleaner 100 when an unintended robot posture change occurs due to a change in the ground condition due to contamination, unlike an intended motion such as forward, backward or rotation, the gyro
  • the posture of the robot cleaner 100 may be determined by referring to the robot heading angle and the posture change amount ⁇ robot heading angle through the sensor 813a or the geomagnetic field sensor 813c.
  • the robot posture may be determined by detecting a malfunction through the gyro sensor 813a or the geomagnetic field sensor 813c.
  • sensing data collected when driving in a straight line is illustrated and an embodiment using the same is described, but the present invention is not limited thereto.
  • reference value values determined based on sensing data collected during rotation driving and / or sensing data collected during rotation driving may be stored in the storage unit 830, and the controller 20 may sense sensing data measured when driving in rotation.
  • the operation of the robot cleaner 100 may be controlled by comparing the previously stored data with.
  • 21 is a view referred to for describing the state of the robot cleaner according to the embodiment of the present invention.
  • the controller 20 determines whether the robot cleaner 100 has a change in posture and a motor 124 of the mops 120a, 120b, and 130a. If it is determined whether the load current value changes, and if the posture change and the current value change are determined, the predetermined area of the floor may be identified as the contaminated area.
  • the controller 20 may determine that the change in the posture is a change in posture due to an external force.
  • the controller 20 may identify that the type of the floor has changed.
  • the controller 20 may determine that the controller 20 is in a normal state performing the intended operation without a sudden situation.
  • the left spinmab 120a is operated in the same manner as the load current value of the motor 137d of the rollingab 130a.
  • the load current value of the motor 124 of the right spinmab 120b may also be used.
  • the controller 20 may determine that there is a change in posture when the posture information value detected by the sensor unit 810 is larger than the first upper limit reference value or smaller than the first lower limit reference value.
  • the attitude information value may be a heading angle information value.
  • controller 20 may change the current value when the motor load current value of the rollingab 130a detected by the sensor unit 810 is greater than the second upper limit reference value or less than the second lower limit reference value. It can be determined that there is.
  • the controller 20 may identify the left bottom area of the robot cleaner 100 as the contaminated area when the change of the motor load current value of the left spinab 120a is greater than or equal to a predetermined magnitude.
  • the change in the motor load current value of the right spinmab 120b is greater than or equal to a certain magnitude, the right bottom area of the robot cleaner 100 may be identified as the contamination area.
  • the second upper limit reference value and the second lower limit reference value may be set differently according to the type of the floor.
  • the controller 20 may determine the type of contaminants in the contaminated area based on the change direction of the motor load current value of the rolling mep 130a.
  • the controller 20 determines that the polluted area is a sticky polluted area when the motor load current value of the rollingab 130a increases and becomes larger than the second upper limit reference value.
  • the contamination area may be determined as a slippery contamination area.
  • the controller 20 may determine the speed change due to the pollutant by comparing the movement distance estimated by the acceleration sensor 813c with the actual movement distance of the robot cleaner 100.
  • control unit 20 may control to avoid the running or concentrated cleaning run to the contaminated area.
  • 22 is a flowchart illustrating a method of controlling a robot cleaner according to an embodiment of the present invention.
  • 23 to 29 are views referred to for describing a method for controlling a robot cleaner according to an embodiment of the present invention.
  • the robot cleaner 100 may travel under the control of the controller 20 (S2210), and the sensor unit 810 monitors the attitude information value of the robot cleaner 100 while driving. It may be (S2220).
  • the attitude information value may be a heading angle information value.
  • the inertial measurement unit sensor 813 may include a gyro sensor 813a, a geomagnetic field sensor 813b, and an acceleration sensor 813c.
  • the gyro sensor 813a may detect a predetermined reference direction
  • the geomagnetic field sensor 813b may measure a direction angle (azimuth angle)
  • the acceleration sensor 813c may measure a speed change. Accordingly, the inertial measurement unit sensor 813 may measure the moving speed, direction, gravity, and acceleration of the robot cleaner 100.
  • the sensor unit 810 may include a gyro sensor 813a, a geomagnetic field sensor 813b, and an acceleration sensor 813c, respectively.
  • Robot cleaner 100 when an unintended robot posture change occurs due to a change in the ground condition due to contamination, unlike an intended motion such as forward, backward or rotation, the gyro
  • the posture of the robot cleaner 100 may be determined by referring to the robot heading angle and the posture change amount ⁇ robot heading angle through the sensor 813a or the geomagnetic field sensor 813c.
  • the robot posture may be determined by detecting a malfunction through the gyro sensor 813a or the geomagnetic field sensor 813c.
  • the controller 20 may determine whether the posture is changed based on the posture information value measured while driving. For example, the controller 20 may compare the posture information value measured while driving straight ahead with the posture information value detected during the straight travel, and determine that the posture is incorrect when a significant difference occurs.
  • the controller 20 may determine that there is a change in attitude (S2230).
  • the first upper limit reference value and the first lower limit reference value may be the upper limit value and the lower limit value of the reference range set based on the attitude information value measured while driving.
  • the present invention it is possible to estimate whether the pollutants are pollutants through posture change amount information such as horizontal acceleration information and rotation angle information of the robot cleaner 100 using the property of increasing or decreasing the friction force (S2260).
  • a threshold value for example, a first upper limit reference value and a first lower limit reference value
  • the robot cleaner 100 may clean the contaminated area in a predetermined range determined to have contaminants (S2270).
  • the controller 20 may detect the motor load current value of the rollingab 130a (S2240). ).
  • the current applied to the left spinmab 120a and the right spinmab 120b may be measured to finally determine whether the pollutant is present and whether the pollutant is on the left or right side. have.
  • the controller 20 may load the motor load currents of the left spinmappa 120a and the right spinbap 120b.
  • the value may be detected (S2240).
  • the controller 20 may detect a motor load current value in order to determine whether the change in posture due to a contaminant (S2240).
  • the motor load current value may be detected by the motor detection sensor 815 provided in the sensor unit 810 or the current detection unit provided in the first and second motor drivers 821 and 822.
  • the motor detection sensor 815 may be connected to or include the current detection unit provided in the first and second motor driving units 821 and 822.
  • the current amount (motor load current value) and the current change amount of the motors 124 and 137d mounted on the front spinmappa 120a and 120b and the rear rollingmab 130a are sensed, By detecting the amount of current I and the amount of change ⁇ I according to the change of the ground state as a reference, the change of the ground condition can be determined.
  • a change in the motor load current value generated in the motors 124 and 137d by friction with the floor may be sensed, and thus the change in the floor condition may be determined.
  • the control unit 20 pollutes a predetermined area of the floor. It can be identified as (S2260).
  • the second upper limit reference value and the second lower limit reference value may be the upper limit value and the lower limit value of the reference range set based on the motor load current value measured while driving.
  • the second upper limit reference value and the second lower limit reference value may be set differently according to the type of the floor.
  • FIG. 23 illustrates sensing data when driving straight when sticky contamination occurs on a hard floor floor.
  • FIG. 23A illustrates posture information values detected when driving straight when sticky contamination occurs on a hard floor
  • FIG. 23B illustrates a hard floor. (hard floor) Shows the motor load current value detected when driving straight when sticky contamination occurs on the floor.
  • the posture information value detected during the straight driving may include a first upper limit reference value RU1 and a first upper limit reference value (RD1) may be out of range.
  • the robot cleaner 100 may not maintain the posture information value in the normal state according to the intended driving, and the posture information value may be larger than the first upper limit reference value RU1.
  • the controller 20 can determine that a change in posture has occurred.
  • the motor load current value detected during the straight driving may be the second upper limit reference value RU2 and the second upper limit reference value. It may be out of the range of RD2.
  • the robot cleaner 100 may not maintain the motor load current value in the normal state according to the intended driving, and the motor load current value may increase to become larger than the second upper limit reference value RU2.
  • the robot cleaner 100 may not maintain the motor load current value in the normal state according to the intended driving, and the motor load current value may decrease to become smaller than the second lower limit reference value RD2.
  • the controller 20 can determine that a current change has occurred.
  • FIG. 24 illustrates sensing data when driving straight when slippery contamination occurs on the marble floor.
  • FIG. 24 illustrates posture information values detected when driving straight when slippery contamination occurs on the marble floor
  • FIG. 23 (b) illustrates slippery contamination on the marble floor. When this occurs, it shows the motor load current value detected when driving straight.
  • the attitude information value detected during the straight driving may be outside the range of the first upper limit reference value RU1 and the first upper limit reference value RD1. Can be.
  • the robot cleaner 100 may not maintain the posture information value in the normal state according to the intended driving, and the posture information value may be larger than the first upper limit reference value RU1.
  • the controller 20 can determine that a change in posture has occurred.
  • the motor load current value detected during the straight driving ranges between the second upper limit reference value RU2 and the second upper limit reference value RD2. Can escape.
  • the robot cleaner 100 may not maintain the motor load current value in the normal state according to the intended driving, and the motor load current value may decrease to become smaller than the second lower limit reference value RD2.
  • the robot cleaner 100 may not maintain the motor load current value in the normal state according to the intended driving, and the motor load current value may increase to become larger than the second upper limit reference value RU2.
  • the controller 20 can determine that a current change has occurred.
  • controller 20 may control the robot cleaner 100 to avoid the running or the intensive cleaning driving in the contaminated area (S2270).
  • control unit 20 may control various driving motions by combining the operations of the front spinmappa 120a and 120b and the rollingmab 130a. Therefore, the controller 20 may control to perform various avoidance driving according to the determined contamination area.
  • the rolling mab (130a) can rotate in the direction opposite to the running direction by the rotation of the spin mab (120a, 120b), in accordance with the adjustment of the rotational force, the balance of the force of the robot cleaner ( By placing 100 in place, intensive cleaning of a specific position is possible.
  • the controller 20 controls the rotation of the spinabs 120a and 120b and the rotation of the rollingabs 130a to face in opposite directions, and maintains the force by the rotation in an equilibrium state, thereby maintaining the robot cleaner 100. Can be controlled to drive in place.
  • the cleaning operation may be performed without interruption.
  • control unit 20 when the motor load current value of the left spinab 120a is greater than the second upper limit reference value or less than the second lower limit reference value, the left bottom of the robot cleaner 100.
  • An area is identified as the contaminated area, and when the motor load current value of the right spinmab 120b becomes larger than the second upper limit reference value or becomes smaller than the second lower limit reference value, the right bottom of the robot cleaner 100.
  • An area can be identified as the contaminated area.
  • controller 20 may determine the type of contaminant in the contaminated area based on the change direction of the motor load current value of the rollingab 130a.
  • the controller 20 determines that the polluted area is a sticky polluted area when the motor load current value of the rollingab 130a increases and becomes larger than the second upper limit reference value.
  • the contamination area may be determined as a slippery contamination area.
  • the controller 20 may determine that the motor load current value of the rollingab 130a is not greater than the second upper limit reference value or less than the second lower limit reference value, as a posture change caused by an external force. .
  • 25 to 27 illustrate examples of determining whether a pollutant is present in various situations.
  • the robot cleaner Actual travel direction R1 of 100 may vary.
  • the actual traveling direction R1 of the robot cleaner 100 is bent to the right of the directed traveling direction T1.
  • the controller 20 may determine that there is a contaminant that increases friction on the ground where the left spinmab 120a is located. Therefore, the controller 20 may identify the ground on which the left spinmab 120a is located as the contaminated area.
  • the robot cleaner Actual travel direction R2 of 100 may vary.
  • the controller 20 May determine that there is a contaminant that reduces friction on the ground with the left spinmab 120a. Therefore, the controller 20 may identify the ground on which the left spinmab 120a is located as the contaminated area.
  • External force 2700 may be applied to 100. For example, due to an operation in which a user or an obstacle hits or pushes while driving the robot cleaner 100, an external force action situation may occur.
  • the actual direction R3 of the robot cleaner 100 may vary.
  • the actual traveling direction R1 of the robot cleaner 100 is bent to the right rather than the directed traveling direction T1.
  • the control unit 20 determines whether there is no contaminant on the ground on which rollingab 130a and / or spinmab 120a and 120b are located.
  • the sensing data maintains a constant value.
  • the measured data may vary in a predetermined range.
  • the present invention can be applied by setting a predetermined reference range as a criterion for determining posture change and current change.
  • the range of the first upper limit reference value RU1 and the first upper limit reference value RD1 is set for the attitude information value, and the second upper limit reference value RU2 and the second upper limit reference value for the motor load current value.
  • the range of (RD2) can be set.
  • the detected posture information value includes a first upper limit reference value RU1 and a first upper limit reference value RD1. Do not go beyond the normal range.
  • the robot cleaner 100 may cause unintentional posture changes on the contaminated floor. Accordingly, the detected attitude information value may be outside the normal range between the first upper limit reference value RU1 and the first upper limit reference value RD1.
  • the controller 20 may determine that the posture change occurs when the detected posture information value is out of the normal range between the first upper limit reference value RU1 and the first upper limit reference value RD1.
  • the detected motor load current values are the second upper limit reference value RU2 and the second upper limit reference value RD2. Does not go beyond the normal range.
  • the robot cleaner 100 may change the current due to the frictional force with the floor in the contaminated floor. Accordingly, the detected motor load current value may be outside the normal range between the second upper limit reference value RU2 and the second upper limit reference value RD2.
  • the controller 20 may determine that the current change occurs when the detected motor load current value is out of the second upper limit reference value RU2 and the second upper limit reference value RD2.
  • the robot cleaner runs stably by using a pair of spinabs and a rolling member.
  • various driving motions may be implemented by combining the rotational motion of the left and right spinabs and the rotational motion of the rolling member.
  • the robot cleaner may perform driving appropriate to a situation using various driving motions.
  • the robot cleaner may perform the mopping even when the robot cleaner is in place.
  • the robot cleaner may determine the location of the contaminants and the type of the floor without having a separate sensor that is not associated with driving.
  • the robot cleaner may perform driving optimized according to the location of the contaminants and the type of floor.
  • the present invention relates to a contamination detection method and a control method of the mop robot cleaner 100 that performs a moving function and a mop cleaning function simultaneously by the friction movement of the mops 120a, 120b, and 130a rotated by the drive motor.
  • the mop robot cleaner 100 may recognize a contamination state of the floor, and perform a smarter cleaning run such as intensive cleaning of the polluted area and avoiding the polluted area.
  • the robot cleaner and the method of controlling the same according to the present invention are not limited to the configuration and method of the embodiments described as described above, but the embodiments may be modified in whole or in part to enable various modifications. It may alternatively be configured in combination.
  • the control method of the robot cleaner it is possible to implement as a processor readable code on a recording medium readable by the processor.
  • the processor-readable recording medium includes all kinds of recording devices that store data that can be read by the processor. Examples of the processor-readable recording medium include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like, and may also be implemented in the form of a carrier wave such as transmission over the Internet. .
  • the processor-readable recording medium can also be distributed over network coupled computer systems so that the processor-readable code is stored and executed in a distributed fashion.

Abstract

본 발명의 일 측면에 따른 로봇 청소기는, 좌측에서 바라볼 때 시계 방향 또는 반시계 방향으로 회전하면서 바닥에 접촉하게 구비되는 롤링부재를 포함하는 롤링 청소 모듈, 복수의 센서를 포함하는 센서부, 및, 센서부에서 감지되는 데이터에 기초하여, 로봇 청소기의 자세 변화 여부 및 롤링부재의 모터 부하 전류값 변화 여부를 판별하고, 자세 변화와 전류값 변화가 있는 것으로 판별되면, 바닥의 소정 영역을 오염 지역으로 식별하는 제어부를 포함함으로써, 오염물의 위치, 바닥의 종류에 따라 최적화된 주행을 수행할 수 있다.

Description

로봇 청소기 및 그 제어 방법
본 발명은 걸레질을 하는 로봇 청소기 및 그 제어 방법에 관한 것이다.
로봇 청소기는, 스스로 주행하면서 바닥으로부터 먼지 등의 이물질을 흡입하거나 바닥의 이물질을 닦아냄으로써 청소하는 기기이다. 최근에는, 걸레질을 수행할 수 있는 로봇 청소기가 개발되고 있다.
종래 기술 1(한국 등록특허공보 10-1602790)로서 걸레면에 의해 이동을 할 수 있는 로봇 청소기가 알려져 있다. 상기 종래 기술에서, 로봇 청소기는, 좌우 방향으로 배치된 한 쌍의 걸레면을 고정하는 제1 회전 부재 및 제2 회전 부재가 수직 방향 축에 대해 외측으로 하향 경사지게 구비된다. 상기 종래 기술에 따른 로봇 청소기는, 제1 회전 부재 및 제2 회전 부재에 고정된 걸레면만 바닥에 접촉한 상태에서, 제1 회전 부재 및 제2 회전 부재가 회전함에 따라 이동하게 된다.
상기 종래 기술 1은 좌우측의 1쌍의 회전하는 걸레면에 의해 이동하는 로봇 청소기로서, 1쌍의 회전하는 걸레면에 의해 발생하는 마찰력이 각각 빈번하게 달라짐에 따라, 곧은 직진 주행이 어렵다는 문제가 있다. 곧은 직진 주행이 어려울 경우, 벽면 근처 등의 곧은 직진 주행이 필요한 바닥면에서, 걸레질을 하지 않고 지나치는 면적이 커지는 문제가 있다.
또한, 상기 종래 기술 1은 좌우측의 1쌍의 회전하는 걸레면에 의해 이동하는 로봇 청소기는 주행할 수 있는 속도나 궤도가 제한되는 문제가 있다.
또한, 상기 종래 기술 1은 좌우측의 1쌍의 회전하는 걸레면에 의해 이동하는 로봇 청소기는 제자리 회전 운동이나 직선 운동 없이 걸레질을 하기 곤란한 문제가 있다.
또한, 상기 종래 기술 1은 바닥의 오염상태에 상관없이 동일한 동작을 하게 된다.
한편, 종래 기술 2(한국 등록특허공보 10-0773980)는 진공 청소기 겸용 로봇 공기 청정기 및 이에 연결되는 진공청소기용 헤드에 관한 것으로서, 공기오염 감지 센서를 구비하여, 공기 오염 상태를 판별하여 동작하고 있다.
하지만, 종래 기술 2는 공기의 오염 상태만을 센싱할 뿐이고, 주행과 무관한 별도의 센서를 더 구비해야 하는 문제점이 있었다.
또한, 종래 기술 3(한국 등록특허공보 1996-0014582)은 오염도에 따라 청소강도가 제어되는 청소기에 관한 것으로, 본체 내로 흡입되는 세척수의 오염농도를 감지하여 오염농도가 높은 경우 높은 크기의 전압을 마이크로 프로세서에 출력하고 오염농도가 낮을 경우 낮은 크기의 전압을 마이크로 프로세서에 출력하는 오염감지 방법을 이용하고 있다.
종래 기술 3도 세척수의 오염 상태만을 센싱할 뿐이고, 주행과 무관한 별도의 센서를 더 구비해야 하는 문제점이 있었다.
따라서, 별도의 하드웨어의 추가없이 바닥의 오염 상태를 판별하고, 이에 따라 최적화된 주행을 수행할 수 있는 방안이 요구되고 있다.
본 발명의 목적은, 로봇 청소기가 안정적으로 주행할 수 있게 하는 것이다.
본 발명의 다른 목적은, 로봇 청소기가 다양한 주행 속도와 주행 궤도를 구현할 수 있게 하는 것이다.
본 발명의 다른 목적은, 로봇 청소기가 제자리를 유지한 상태에서도 걸레질을 수행할 수 있게 하는 것이다.
본 발명의 다른 목적은, 로봇 청소기가 다양한 주행 모션을 이용하여 상황에 적절한 주행을 수행할 수 있게 하는 것이다.
본 발명의 다른 목적은, 로봇 청소기가 주행과 무관한 별도의 센서를 구비하지 않으면서도 오염물의 위치, 바닥의 종류를 판별할 수 있게 하는 것이다.
본 발명의 다른 목적은, 로봇 청소기가 오염물의 위치, 바닥의 종류에 따라 최적화된 주행을 수행할 수 있게 하는 것이다.
상기 또는 다른 목적을 달성하기 위해 본 발명의 일 측면에 따른 로봇 청소기는, 좌측에서 바라볼 때 시계 방향 또는 반시계 방향으로 회전하면서 바닥에 접촉하게 구비되는 롤링부재를 포함하는 롤링 청소 모듈, 복수의 센서를 포함하는 센서부, 및, 센서부에서 감지되는 데이터에 기초하여, 로봇 청소기의 자세 변화 여부 및 롤링부재의 모터 부하 전류값 변화 여부를 판별하고, 자세 변화와 전류값 변화가 있는 것으로 판별되면, 바닥의 소정 영역을 오염 지역으로 식별하는 제어부를 포함함으로써, 오염물의 위치, 바닥의 종류에 따라 최적화된 주행을 수행할 수 있다.
상기 또는 다른 목적을 달성하기 위해 본 발명의 일 측면에 따른 로봇 청소기의 제어 방법은, 로봇 청소기의 자세 정보값을 모니터링(monitoring)하는 단계, 감지된 자세 정보값이 제1 상한 기준치보다 크거나 제1 하한 기준치보다 작은 경우에, 롤링부재의 모터 부하 전류값을 감지하는 단계, 및, 롤링부재의 모터 부하 전류값이 제2 상한 기준치보다 크거나 제2 하한 기준치보다 작은 경우에, 바닥의 소정 영역을 오염 지역으로 식별하는 단계를 포함할 수 있다.
본 발명의 실시 예들 중 적어도 하나에 의하면, 한 쌍의 스핀맙과 하나의 롤링부재를 이용하여 로봇 청소기가 안정적으로 주행한다는 장점이 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 좌측 스핀맙과 우측 스핀맙의 회전 동작 및 롤링부재의 회전 동작을 조합하여 다양한 주행 모션을 구현할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 로봇 청소기가 다양한 주행 모션을 이용하여 상황에 적절한 주행을 수행할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 로봇 청소기가 제자리를 유지한 상태에서도 걸레질을 수행할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 로봇 청소기가 주행과 무관한 별도의 센서를 구비하지 않으면서도 오염물의 위치, 바닥의 재질, 종류를 판별할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 로봇 청소기가 오염물의 위치, 바닥의 재질, 종류에 따라 최적화된 주행을 수행할 수 있다.
한편, 그 외의 다양한 효과는 후술될 본 발명의 실시 예에 따른 상세한 설명에서 직접적 또는 암시적으로 개시될 것이다.
도 1은 본 발명의 일 실시예에 따른 로봇 청소기의 사시도이다.
도 2는 도 1의 로봇 청소기를 다른 각도에서 바라본 사시도이다.
도 3은 도 1의 로봇 청소기를 정면에서 바라본 입면도이다.
도 4는 도 1의 로봇 청소기의 하측을 바라본 입면도이다.
도 5a는 도 4의 라인 S1-S1’를 따라 수직으로 자른 단면도이다.
도 5b는 도 4의 라인 S2-S2’를 따라 수직으로 자른 단면도이다.
도 6은 도 1의 로봇 청소기에서 케이스를 제거한 상태를 도시한 사시도이다.
도 7은 도 1의 로봇 청소기의 스핀 모듈과 롤링 모듈을 상세히 도시한 사시도이다.
도 8은 본 발명의 일 실시예에 따른 로봇 청소기의 주요 구성들 간의 제어관계를 도시한 블록도이다.
도 9 내지 도 19는 본 발명의 실시예에 따른 로봇 청소기의 다양한 주행 제어 방법에 관한 설명에 참조되는 도면이다.
도 20은 일반 바닥에서의 직전 주행 시 감지된 센싱 데이터를 예시한 도면이다.
도 21은 본 발명의 실시예에 따른 로봇 청소기의 상태 판별에 관한 설명에 참조되는 도면이다.
도 22는 본 발명의 일 실시예에 따른 로봇 청소기의 제어 방법에 관한 순서도이다.
도 23 내지 도 29는 본 발명의 일 실시예에 따른 로봇 청소기의 제어 방법에 관한 설명에 참조되는 도면이다.
이하에서 언급되는 “전(F)/후(R)/좌(Le)/우(Ri)/상(U)/하(D)” 등의 방향을 지칭하는 표현은 도면에 표시된 바에 따라 정의하나, 이는 어디까지나 본 발명이 명확하게 이해될 수 있도록 설명하기 위한 것이며, 기준을 어디에 두느냐에 따라 각 방향들을 다르게 정의할 수도 있음은 물론이다.
이하에서 언급되는 구성요소 앞에 ‘제1, 제2, 제3’ 등의 표현이 붙는 용어 사용은, 지칭하는 구성요소의 혼동을 피하기 위한 것일뿐, 구성요소 들 사이의 순서, 중요도 또는 주종관계 등과는 무관하다. 예를 들면, 제1 구성요소 없이 제2 구성요소 만을 포함하는 발명도 구현 가능하다.
이하에서 언급되는 ‘걸레’는, 직물이나 종이 재질 등 재질면에서 다양하게 적용될 수 있고, 세척을 통한 반복 사용용 또는 일회용일 수 있다.
본 발명은 사용자가 수동으로 이동시키는 청소기 또는 스스로 주행하는 로봇 청소기 등에 적용될 수 있다. 이하, 본 실시예에서는 로봇 청소기를 기준으로 설명한다.
도 1 내지 도 7을 참고하면, 본 발명의 일 실시예에 따른 로봇 청소기(100)는 제어부(20)를 구비하는 바디(110)를 포함한다. 로봇 청소기(100)는 바디(110)를 지지하는 롤링 모듈(130)을 포함한다. 로봇 청소기(100)는 바디(110)를 지지하는 스핀 모듈(120)을 포함한다. 바디(110)는 스핀 모듈(120) 및 롤링 모듈(130)에 의해 지지된다.
스핀 모듈(120)은 바닥과 접촉하여 걸레질하게 구비된다. 스핀 모듈(120)은, 상측에서 바라볼 때 시계 방향 또는 반시계 방향으로 회전하는 동작에 의해 걸레질하게 구비된 좌측 스핀맙(120a)과 우측 스핀맙(120b)을 포함한다. 좌측 스핀맙(120a)과 우측 스핀맙(120b)은 바닥에 접촉하게 구비된다. 스핀 모듈(120)은 바디(110)의 하측에 배치된다. 스핀 모듈(120)은 롤링 모듈(130)의 전방에 배치된다. 로봇 청소기(100)는, 별도의 바퀴 없이 스핀 모듈(120)의 회전 동작으로 바디(110)가 이동 가능하도록 구비될 수 있다.
스핀 모듈(120)은 한 쌍의 스핀맙 모듈(120)을 포함한다. 스핀 모듈(120)은 좌측 스핀맙(120a)을 구비한 좌측 스핀맙 모듈(120)을 포함한다. 스핀 모듈(120)은 우측 스핀맙(120b)을 구비한 우측 스핀맙 모듈(120)을 포함한다. 좌측 스핀맙 모듈(120) 및 우측 스핀맙 모듈(120)은 걸레질하게 구비된다. 좌측 스핀맙 모듈(120) 및 우측 스핀맙 모듈(120)은 각각 걸레부(121), 회전판(122), 급수 수용부(미도시), 스핀 회전축(128), 스핀 구동부(124) 및 구동 전달부(127)를 포함한다. 좌측 스핀맙 모듈(120) 및 우측 스핀맙 모듈(120)은 각각 틸팅 프레임(125), 틸팅 회전축(126) 및 탄성 부재(129)를 포함한다. 스핀 모듈(120)이 구비하는 구성요소는 좌측 스핀맙 모듈(120) 및 우측 스핀맙 모듈(120)이 각각 구비하는 구성요소로 이해될 수 있다.
롤링 모듈(130)은 바닥과 접촉하게 구비된다. 롤링 모듈(130)은 바닥과 접촉하여 걸레질하게 구비될 수 있다. 롤링 모듈(130)은 바디(110)의 하측에 배치된다. 롤링 모듈(130)은 상기 좌측 스핀맙과 우측 스핀맙으로부터 전후 방향으로 이격된 위치에서 바닥에 접촉하게 구비될 수 있다. 예를 들어, 롤링 모듈(130)은 스핀 모듈(120)의 후방에서 바닥에 접촉하게 구비된다. 본 실시예에서, 롤링 모듈(130)은 회전 동작을 하며 걸레질하게 구비된다.
다른 예로, 상기 롤링 모듈(130)은 바디(110)의 이동에 따라 바닥을 슬라이딩하며 걸레질하는 맙 패드 등을 구비할 수 있다.
또 다른 예로, 상기 롤링 모듈(130)은 흡입 청소(vaccum cleaning)가 가능하게 구비될 수 있다.
또 다른 예로, 상기 롤링 모듈(130)은 바닥을 비질(sweeping)하는 브러쉬(brush)를 포함할 수 있고, 나아가 상기 브러쉬가 회전 가능하게 구비될 수도 있다. 상기 브러쉬는 실질적으로 수평 방향으로 연장된 회전축을 중심으로 회전할 수 있다. 상기 브러쉬는 실질적으로 좌우 방향으로 연장된 회전축을 중심으로 회전할 수 있다. 상기 로봇 청소기(100)는 먼지통을 구비할 수 있고, 상기 브러쉬는 바닥을 비질하여 상대적으로 부피가 큰 이물질을 상기 먼지통에 담도록 구비될 수 있다.
이하 본 실시예를 기준으로 설명하나, 롤링 모듈(130)은 바닥에 접촉하게 구비되어 상기 바디를 지지하면 충분하므로, 롤링 모듈(130)의 청소를 위한 구체적인 구성은 변용 가능하다.
롤링 모듈(130)은 롤링부재(130a)를 포함할 수 있다. 또한, 로봇 청소기(100)는, 별도의 바퀴 없이 롤링 모듈(130)의 회전 동작으로 바디(110)가 이동 가능하도록 구비될 수 있다.
롤링부재(130a)는 상기 스핀맙(120a, 120b)과는 상이한 회전축을 중심으로 회전 가능하게 구비될 수 있다.
예를 들어, 롤링부재(130a)는 실질적으로 수평 방향으로 연장된 회전축을 중심으로 회전하게 구비될 수 있다. 이에 따라, 롤링부재(130a)는 좌측 또는 우측에서 바라볼 때 시계 방향 또는 반시계 방향으로 회전할 수 있다.
롤링 모듈(130)은 일측(좌측 또는 우측)에서 바라볼 때 시계 방향 또는 반시계 방향으로 회전하는 동작에 의해 걸레질 또는 비질하게 구비될 수 있다.
롤링부재(130a)는 그 외면에 배치되어 걸레질하는 걸레부 또는 비질하는 브러쉬를 포함할 수 있다. 걸레부 또는 브러쉬는 롤링부재(130a)에 고정적으로 결합될 수도 있고, 탈부착 가능하게 고정될 수도 있다.
이하에서는 롤링 모듈(130)이, 걸레부를 포함하는 롤링부재(130a)인 롤링맙(130a)을 구비하는 실시예를 기준으로 설명하나, 롤링 청소 모듈(130)의 청소를 위한 구체적인 구성은 변용 가능하다.
로봇 청소기(100)는, 별도의 바퀴 없이 스핀 모듈(120) 및 롤링 모듈(130) 중 적어도 하나의 회전 동작으로 바디(110)가 이동하도록 구비된다. 바디(110)는 스핀 모듈(120)의 회전 동작만으로도 이동할 수 있다. 바디(110)는 롤링 모듈(130)의 회전 동작만으로도 이동할 수 있다. 바디(110)는 스핀 모듈(120)의 회전 동작 및 롤링 모듈(130)의 회전 동작에 의해서 이동할 수 있다.
로봇 청소기(100)는 걸레질에 필요한 물을 공급하는 급수 모듈(미도시)을 포함한다. 급수 모듈은 스핀 모듈(120) 또는 롤링 모듈(130)의 걸레질에 필요한 물을 공급할 수 있다. 본 실시예에서, 급수 모듈은 스핀 모듈(120)에 물을 공급한다. 급수 모듈은 상기 좌측 스핀맙 모듈(120) 및 우측 스핀맙 모듈(120)에 물을 공급한다.
급수 모듈은, 스핀 모듈(120) 또는 롤링 모듈(130)에 공급되는 물을 저장하는 수조(미도시)를 포함한다. 본 실시예에서, 수조는 스핀 모듈(120)에 공급되는 물을 저장한다.
스핀 모듈(120) 및 롤링 모듈(130)은 각각 바닥을 걸레질하게 구비된다. 본 실시예에서, 스핀 모듈(120)은 습식 걸레질(물 공급을 하면서 걸레질)을 하게 구비되고, 급수 모듈은 스핀 모듈(120)에 물을 공급한다. 또한, 본 실시예에서 롤링 모듈(130)은 건식 걸레질(물 공급 없이 걸레질)을 하게 구비되고, 급수 모듈은 롤링 모듈(130)에 물을 공급하지 않는다. 본 실시예에서, 급수 모듈은 스핀 모듈(120) 및 롤링 모듈(130) 중 스핀 모듈(120)에만 물을 공급한다. 본 실시예에와 같이 로봇 청소기(100)가 구현됨에 따라, 로봇 청소기(100)가 전방으로 이동하며 청소할 때, 스핀 모듈(120)에 의해 습식 걸레질된 바닥면을 뒤따라가며 롤링 모듈(130)이 건식 걸레질할 수 있다.
이하 스핀 모듈(120)은 습식 걸레질을 하고 롤링 모듈(130)은 건식 걸레질을 하게 구비되는 것을 기준으로 설명하나, 이에 제한될 필요는 없고, 급수 모듈은 스핀 모듈(120) 대신 롤링 모듈(130)에 물을 공급하게 구비될 수도 있고, 스핀 모듈(120) 및 롤링 모듈(130) 모두에 물을 공급하게 구비될 수도 있다.
로봇 청소기(100)는 전원을 공급하기 위한 배터리(160)를 포함한다. 배터리(160)는 스핀 모듈(120)의 회전 동작을 위한 전원을 공급할 수 있다. 배터리(160)는 롤링 모듈(130)의 회전 동작을 위한 전원을 공급할 수 있다.
로봇 청소기(100)는 와관을 형성하는 케이스(11)를 포함한다. 케이스(11)는 바디(110)의 상측면, 전방면, 후방면, 좌측면 및 우측면을 형성한다. 로봇 청소기(100)는 바디(110)의 하측면을 형성하는 베이스(13)를 포함한다. 베이스(13)에 스핀 모듈(120)이 고정된다. 베이스(13)에 롤링 모듈(130)이 고정된다. 로봇 청소기(100)는 베이스(13)에 배치되고 상측으로 함몰되어 롤링맙(130a)의 상측부를 수용하는 롤링맙 하우징(12)을 포함한다. 케이스(11), 베이스(13) 및 롤링맙 하우징(12)이 형성하는 내부 공간에 제어부(20), 급수 모듈 및 배터리(160)가 배치된다.
로봇 청소기(100)는 수조를 열고 닫기 위한 수조 개폐부(153)를 포함한다. 수조 개폐부(153)는 바디(110)의 상측면에 배치된다. 로봇 청소기(100)는 수조의 수위가 표시되는 수위 표시부(미도시)를 포함할 수 있다. 상기 수위 표시부는 투명한 재질로 형성되어, 바디(110) 내부의 수조의 수위를 직접 볼 수있게 구비될 수 있다.
로봇 청소기(100)는 전방의 장애물을 감지하는 장애물 감지센서(16)를 포함한다. 복수의 장애물 감지센서(16a, 16b, 16c)가 구비될 수 있다. 복수의 장애물 감지센서(16a, 16b, 16c)는 바디(110)의 전방면에 배치된다.
로봇 청소기(100)는 청소 구역 내 바닥에 낭떠러지의 존재 여부를 감지하는 낭떠러지 감지센서(17)를 포함한다. 복수의 낭떠러지 감지센서(17a, 17b, 17c)가 구비될 수 있다. 스핀 모듈(120)의 전방에 낭떠러지의 유무를 감지하는 낭떠러지 감지센서(17a)를 포함할 수 있다. 롤링 모듈(130)의 후방에 낭떠러지의 유무를 감지하는 낭떠러지 감지센서(17b, 17c)를 포함할 수 있다.
실시예에 따라서는, 상기 낭떠러지 감지센서(17) 중 적어도 하나는, 하나 이상의 발광 소자와 하나 이상의 수광 소자를 구비할 수 있다.
이 경우에, 제어부(20)는, 상기 발광 소자에서 출력된 광이 바닥에서 반사되어 상기 수광 소자에서 수광되는 반사광의 광량에 기초하여 바닥의 재질을 판별할 수 있다.
예를 들어, 제어부(20)는, 상기 반사광의 광량이 소정 값 이상이면 상기 바닥의 재질을 하드 플로어(hard floor)로 판별하고, 상기 반사광의 광량이 상기 소정 값보다 작으면 상기 바닥의 재질을 카펫으로 판별할 수 있다.
로봇 청소기(100)는 전원 공급의 ON/OFF를 입력하기 위한 전원 스위치(미도시)를 포함할 수 있다. 로봇 청소기(100)는 사용자의 각종 지시를 입력할 수 있는 입력부(미도시)를 포함할 수 있다. 로봇 청소기(100)는 외부의 기기와 통신하기 위한 통신모듈(미도시)을 포함할 수 있다.
로봇 청소기(100)는 하측으로 자외선을 조사하는 자외선 LED(18)를 포함한다. 자외선 LED(18)는 스핀 모듈(120)과 롤링 모듈(130) 사이에 배치된다. 자외선 LED(18)는 바디(110)의 하측면에 배치되어, 외부의 바닥면으로 자외선을 조사한다. 자외선 LED(18)는 베이스(13)의 하측면에 배치된다. 복수의 자외선 LED(18a, 18b)가 구비될 수 있다. 복수의 자외선 LED(18a, 18b)는, 좌측 스핀맙(120a)과 롤링맙(130a) 사이에 배치되는 자외선 LED(18a), 및 우측 스핀맙(120b)과 롤링맙(130a) 사이에 배치되는 자외선 LED(18b)를 포함한다. 이를 통해, 로봇 청소기(100)가 전방으로 이동하며 청소할 때, 스핀 모듈(120)에 의해 걸레질된 바닥면을 뒤따라가며 자외선을 조사하여 살균시키고, 자외선이 조사된 바닥면을 뒤따라가며 롤링 모듈(130)에 의한 청소가 진행될 수 있다.
로봇 청소기(100)는 자율 주행을 제어하는 제어부(20)를 포함한다.
제어부(20)는 센서부(도 8의 810)의 감지 신호를 처리할 수 있다. 예를 들어, 제어부(20)는 장애물 감지센서(16) 또는 낭떠러지 감지센서(17)의 감지 신호를 처리할 수 있다. 제어부(20)는 상기 입력부의 신호 또는 상기 통신 모듈을 통해 입력되는 신호를 처리할 수 있다. 제어부(20)는 바디(110)의 내부에 배치된 PCB(20)를 포함한다.
바디(110)는 외관을 형성한다. 바디(110)는 스핀 모듈(120)의 상측에 배치되는 제1 부분(미도시)과, 롤링 모듈(130)의 상측에 배치되는 제2 부분(미도시)을 포함한다. 제1 부분과 제2 부분은 일체로 형성된다. 바디(110)는 스핀 모듈(120)과 롤링 모듈(130) 사이의 하측면이 상측으로 함몰되어 바디 갭미도시)을 형성한다. 바디 갭은 제1 부분과 제2 부분의 사이에 배치될 수 있다. 바디 갭은 바디(110)의 좌우측면이 각각 내측으로 함몰되어 형성될 수 있다.
바디(110)는 외부의 충격을 감지하는 범퍼(115)를 포함한다. 범퍼(115)는 스핀 모듈(120)의 회전판(122)의 상측에 배치된다. 범퍼(115)는 바디(110)의 전방 및 측방에 배치된다. 복수의 범퍼(115a, 115b)가 구비된다. 좌측 스핀맙(120a)의 전방 및 좌측방에 배치되는 범퍼(115a)가 구비된다. 우측 스핀맙(120b)의 전방 및 우측방에 배치되는 범퍼(115b)가 구비된다.
바디(110)는 외관을 형성하는 케이스(11) 및 베이스(13)를 포함한다.
베이스(13)에는 틸팅 프레임(125)이 배치되는 개구부가 형성된다. 틸팅 프레임(125)은 틸팅 회전축(126)을 통해 베이스(13)와 연결된다. 틸팅 회전축(126)은 베이스(13)에 회전 가능하게 고정된다.
베이스(13)는 틸팅 프레임(125)의 회전 범위를 제한해주는 리미트를 포함한다. 상기 리미트는 상단 리미트(13d)와 하단 리미트(미도시)를 포함할 수 있다.
베이스(13)는 틸팅 프레임(125)의 상측 방향 회전 범위를 제한하는 상단 리미트(13d)를 포함한다. 좌측 상단 리미트(13d)는 좌측 틸팅 프레임(125)의 좌측에 배치될 수 있다. 우측 상단 리미트(13d)는 우측 틸팅 프레임(125)의 우측에 배치될 수 있다. 좌측 상단 리미트(13d)는 좌측 스핀맙 모듈(120)의 상단 리미트 접촉부(125f)와 접촉 가능하게 배치된다. 우측 상단 리미트(13d)는 우측 스핀맙 모듈(120)의 상단 리미트 접촉부(125f)와 접촉 가능하게 배치된다. 상단 리미트 접촉부(125f)는 틸팅 프레임(125)에 배치될 수 있다. 외부의 수평면에 로봇 청소기(100)가 정상적으로 배치된 상태에서, 상단 리미트 접촉부(125f)는 상단 리미트(13d)와 접촉하고, 경사각(Ag1, Ag2)은 가장 작은 상태가 된다.
베이스(13)는 틸팅 프레임(125)이 하측 방향 회전 범위를 제한하는 하단 리미트를 포함한다. 하단 리미트는 베이스(13)의 내측면에 배치될 수 있다. 하단 리미트는 스핀 구동부(124)의 하측에 배치될 수 있다. 하단 리미트는 틸팅 프레임(125)이 하측 방향으로 최대한 회전한 상태에서 하단 리미트 접촉부(미도시)에 접촉되게 구비된다. 하단 리미트 접촉부는 스핀 구동부(124)의 하측면에 배치될 수 있다. 외부의 수평면에 로봇 청소기(100)가 정상적으로 배치된 상태에서, 하단 리미트 접촉부는 하단 리미트와 이격된다. 스핀맙(120a, 120b)의 하측면에서 상측으로 밀어주는 힘이 없는 상태에서, 틸팅 프레임(125)은 최대 각도까지 회전하게 되고, 하단 리미트 접촉부는 하단 리미트와 접촉되고 경사각(Ag1, Ag2)은 가장 큰 상태가 된다.
베이스(13)는 탄성 부재(129)의 단부를 고정하는 제2 지지부(13b)를 포함한다. 틸팅 프레임(125)이 회전할 때, 탄성 부재(129)는 틸팅 프레임(125)에 고정된 제1 지지부(125d)와 베이스(13)에 고정된 제2 지지부(13b)에 의해 탄성 변형하거나 탄성 복원하게 된다.
베이스(13)는 틸팅 회전축(126)을 지지하는 틸팅 회전축 지지부(13c)를 포함한다. 틸팅 회전축 지지부(13c)는 틸팅 회전축(126)의 양 단부를 지지한다.
베이스(13)는 틸팅 프레임(125)을 지지하는 별도의 지지 부재(13a)를 포함할 수 있다. 지지 부재(13a)는 베이스(13)의 다른 부분과는 별도의 부품으로 제공될 수 있다. 지지 부재(13a)는 베이스(13)의 하측면에 형성된 개구부의 가장자리를 따라 연장된다. 지지 부재(13a)는 중앙부에 개구부를 형성하여, 상기 개구부에 틸팅 회전축(126)이 배치되게 구비될 수 있다.
지지 부재(13a)는 상기 제2 지지부(13b)를 포함할 수 있다. 지지 부재(13a)는 상기 틸팅 회전축 지지부(13c)를 포함할 수 있다. 지지 부재(13a)는 상기 상단 리미트(13d)를 포함할 수 있다. 지지 부재(13a)는 베이스(13)의 다른 부분과 결합되는 지지 부재 고정부(13e)를 포함한다.
도 2 내지 도 4, 및 도 5b를 참고하여, 롤링 모듈(130)은 스핀 모듈(120)의 후방에서 바닥에 접촉하게 구비된다. 롤링 모듈(130)은, 바디(110)의 이동에 따라 바닥에 접촉한 상태에서 걸레질하게 구비된다. 롤링 모듈(130)은 건식 걸레질하게 구비된다.
롤링 모듈(130)은 수평 방향으로 연장된 회전축(Or)을 중심으로 회전하는 롤링맙(130a)을 포함할 수 있다. 본 실시예에서 상기 회전축(Or)은 좌우 방향으로 연장되나, 다른 실시예에서 상기 회전축(Or)은 전후 방향으로 연장될 수도 있고, 전후 방향 및 좌우 방향의 사이 방향으로 연장될 수도 있다. 이를 통해, 롤링맙(130a)의 회전 동작에 의해 바디(110)에 수평 방향(회전축(Or)에 대해 수직 방향)으로 이동력을 가할 수 있다. 스핀 모듈(120)에 의해 바디(110)에 가해지는 이동력에 롤링맙(130a)에 의한 추가적인 이동력이 더해짐으로써, 로봇 청소기(100)의 보다 다양한 주행 모션이 가능해진다.
본 실시예에서, 롤링 모듈(130)은 좌우 방향으로 연장된 회전축(Or)을 중심으로 회전하는 롤링맙(130a)을 포함한다. 롤링맙(130a)은 좌측 스핀맙(120a) 및 우측 스핀맙(120b)의 배열 방향과 평행한 방향으로 연장된 회전축(Or)을 중심으로 회전할 수 있다. 이를 통해, 롤링맙(130a)의 회전 동작에 의해 바디(110)에 전후 방향으로 이동력을 가할 수 있다. 스핀 모듈(120)에 의해 바디(110)에 가해지는 이동력에 롤링맙(130a)에 의한 추가적인 전후 방향의 이동력이 더해짐으로써, 로봇 청소기(100)의 보다 다양하고 효율적인 주행 모션이 가능해진다. 다양한 주행 모션에 대한 자세한 설명은 후술한다.
도 4을 참고하여, 측면에서 바라볼 때 롤링맙(130a)의 회전 방향 중 시계 방향을 제3 정방향(w3f)으로 정의하고 반시계 방향을 제3 역방향(w3r)으로 정의한다.
로봇 청소기(100)가 전진 운동할 때, 롤링맙(130a)은 스핀 모듈(120)에 의해 청소가 이루어진 바닥면을 뒤따라 지나가며 걸레질하게 구비된다. 롤링맙(130a)은 건식 걸레질하게 구비되어, 좌측 스핀맙(120a) 및 우측 스핀맙(120b)에 의해 습식 걸레질된 바닥면의 물기를 제거할 수 있다. 본 실시예에서 롤링 모듈(130)은 하나의 롤링맙(130a)을 구비하나, 다른 실시예에서 롤링 모듈(130)은 복수의 롤링맙을 구비하는 것도 가능하다. 상기 복수의 롤링맙은 서로 평행한 복수의 회전축을 중심으로 각각 회전하게 구비될 수 있다.
롤링 모듈(130)은 걸레부(131)를 포함한다. 바디(110)의 하중 중 일부는 걸레부(131)를 통해 바닥에 전달된다. 걸레부(131)는 회전 부재(132)의 둘레를 감싸게 배치된다. 걸레부(131)는 상기 회전축(Or)을 중심축으로 한 둘레를 따라 배치된다. 걸레부(131)는 회전 부재(132)에 고정적으로 결합될 수도 있고, 탈부착 가능하게 고정될 수도 있다.
롤링 모듈(130)은 회전 가능하게 구비된 회전 부재(132)를 포함한다. 회전 부재(132)는 롤링맙(130a)의 걸레부(131)를 고정한다. 회전 부재(132)는 걸레부(131)를 일체로 회전시킬 수 있다. 회전 부재(132)는 롤링 구동부(137)의 구동력을 전달받아 회전한다. 회전 부재(132)는 상기 회전축(Or)을 중심으로 회전한다.
회전 부재(132)는 원통형으로 형성된다. 회전 부재(132)는 회전축(Or)의 연장 방향으로 길게 형성된다. 회전 부재(132)는 내부에 중공부(132s)를 형성한다. 회전 부재(132)의 외주면에 걸레부(131)가 고정된다.
롤링 모듈(130)은 회전 부재(132)의 일 단부에 배치된 제1 축부(134)를 포함한다. 롤링 모듈(130)은 회전 부재(132)의 타 단부에 배치된 제2 축부(135)를 포함한다. 롤링 모듈(130)의 회전축(Or)의 연장 방향 양 단부에 각각 제1 축부(134) 및 제2 축부(135)가 배치된다. 본 실시예에서, 회전 부재(132)의 우측 단부에 제1 축부(134)가 배치되고, 회전 부재(132)의 좌측 단부에 제2 축부(135)가 배치된다. 회전 부재(132)의 일 단부는 내측으로 함몰되게 형성되고, 제1 축부(134)는 회전 부재(132)의 일 단부의 함몰된 부분에 배치된다. 회전 부재(132)의 타 단부는 내측으로 함몰되게 형성되고, 제2 축부(135)는 회전 부재(132)의 타 단부의 함몰된 부분에 배치된다.
제1 축부(134)는 회전 부재(132)의 일 단부와 바디(110)를 연결한다. 제1 축부 제1 축부(134)는 회전 부재(132)에 고정적으로 연결된다. 제1 축부(134)는 회전축(Or) 방향으로 돌출되게 형성된다. 본 실시예에서, 제1 축부(134)는 우측으로 돌출된다. 제1 축부(134)는 구동력 전달부(137a)에 형성된 홈에 삽입되어, 구동력 전달부(137a)가 회전될 때 일체로 회전된다. 제1 축부(134)는 회전축(Or)에 수직한 단면이 원형이 아닌 형상(예를 들어, 다각형)으로 형성되고, 구동력 전달부(137a)에는 제1 축부(134)에 대응되는 형상으로 함몰된 상기 홈이 형성된다.
제2 축부(135)는 회전 부재(132)의 타 단부와 바디(110)를 연결한다. 제2 축부(135)는 회전 부재(132)에 회전 가능하게 연결된다. 제2 축부(135)는 회전축(Or) 방향으로 돌출되게 형성된다. 본 실시예에서, 제2 축부(135)는 좌측으로 돌출된다. 제2 축부(135)는 바디(110) 및 커플러(117)에 형성된 홈에 삽입되어 고정된다. 제1 축부(134)가 구동력 전달부(137a)에 의해 회전될 때, 회전 부재(132) 및 걸레부(131)는 제1 축부(134)와 일체로 회전하고, 제2 축부(135)는 고정되어 회전 부재(132)와 상대 회전한다. 제2 축부(135)와 회전 부재(132) 사에에는 베어링이 배치될 수 있다. 제2 축부(135)는 회전축(Or)에 수직한 단면이 원형이 아닌 형상(예를 들어, 다각형)으로 형성되고, 바디(110) 및/또는 커플러(117)에 형성된 홈은 제2 축부(135)에 대응되는 형상으로 함몰되어 형성된다.
롤링 모듈(130)은 롤링맙(130a)의 회전을 위한 구동력을 제공하는 롤링 구동부(137)를 포함한다. 롤링 구동부(137)는 회전 부재(132)를 회전시키는 구동력을 제공한다. 롤링 구동부(137)는 모터(137d)를 포함한다. 모터(137d)는 바디(110)의 내부에 배치된다. 롤링 구동부(137)는 모터(137d)의 회전력을 전달하는 기어 어셈블리(137c)를 포함한다. 기어 어셈블리(137c)는 서로 맞물려 회전하는 복수의 기어를 포함한다. 예를 들어, 복수의 기어는 모터(137d)의 축과 일체로 회전하는 주동 기어와, 주동 기어와 맞물려 회전하는 종동 기어를 포함할 수 있다. 복수의 종동 기어가 서로 맞물려 회전하게 구비될 수 있다. 롤링 구동부(137)는 어느 하나의 종동 기어와 일체로 회전하는 샤프트(137b)를 포함할 수 있다. 롤링 구동부(137)는 제1 축부(134)에 회전력을 전달하는 구동력 전달부(137a)를 포함할 수 있다. 샤프트(137b)는 상기 어느 하나의 종동 기어의 회전력을 구동력 전달부(137a)에 전달한다. 구동력 전달부(137a)는 제1 축부(134)가 삽입되는 홈을 형성한다. 상기 샤프트137b), 구동력 전달부(137a) 및 제1 축부(134)는 일체로 회전한다.
로봇 청소기(100)는 바디(110)에 탈부착 가능하게 구비된 커플러(117)를 포함할 수 있다. 커플러(117)는 베이스(13)에 배치된다. 커플러(117)는 제2 축부(135)의 하단을 지지한다. 제2 축부(135)는 베이스(13)에 의해 지지된다. 제2 축부(135)는 제2 축부(135)가 삽입되는 홈을 형성할 수 있다. 커플러(117)를 이용하여, 회전 부재(132) 및 걸레부(131)를 바디(110)로부터 제거하거나 바디(110)에 결합시킬 수 있다. 예를 들어, 커플러(117)를 제거한 상태에서, 회전 부재(132)의 양 단부 중 제2 축부(135)가 배치된 부분을 바디(110)의 외부로 끌어당긴 후 제1 축부(134)를 구동력 전달부(137a)로부터 쉽게 빼낼 수 있다. 반대로, 커플러(117)를 제거한 상태에서, 먼저 제1 축부(134)의 말단을 구동력 전달부(137a)의 홈에 삽입하고, 그 후 제2 축부(135) 및 커플러(117)를 바디에 삽입시킬 수 있다. 회전 부재(132)의 바디(110)에 대한 결합 상태를 유지하기 위하여, 사용자가 커플러(117)를 바디(110)에 고정시킬 수 있다. 또한, 회전 부재(132)를 바디(110)로부터 분리시키기 위하여, 사용자가 커플러(117)를 바디(110)로부터 분리시킬 수 있다.
도 1 내지 도 7을 참고하여, 스핀 모듈(120)은 상측에서 바라볼 때 시계 방향 또는 반시계 방향으로 회전하면서 바닥에 접촉하게 구비되는 좌측 스핀맙(120a) 및 우측 스핀맙(120b)을 포함한다. 스핀 모듈(120)은 좌측 스핀맙(120a) 및 우측 스핀맙(120b)의 회전에 의해 걸레질하게 구비된다.
스핀 모듈(120)의 구성 요소 중, 명칭 앞에 ‘좌측’이 붙는 구성 요소는 좌측 스핀맙(120a)을 작동시키기 위한 구성을 의미하고, 명칭 앞에 ‘우측’이 붙는 구성 요소는 우측 스핀맙(120b)을 작동시키기 위한 구성을 의미한다. 스핀 모듈(120)의 구성 요소에 대한 설명에서 ‘좌측’ 및 ‘우측’의 구분이 없는 경우, 해당 설명은 ‘좌측’ 및 ‘우측’ 모두에 적용될 수 있다.
도 4를 참고하여, 좌측 스핀맙(120a)의 회전축과 좌측 스핀맙(120a)의 하측면이 교차하는 지점을 좌측 스핀맙(120a)의 회전 중심(Osa)으로 정의하고, 우측 스핀맙(120b)의 회전축과 우측 스핀맙(120b)의 하측면이 교차하는 지점을 우측 스핀맙(120b)의 회전 중심(Osb)으로 정의한다. 하측에서 바라볼 때, 좌측 스핀맙(120a)의 회전 방향 중 시계 방향을 제1 정방향(w1f)으로 정의하고 반시계 방향을 제1 역방향(w1r)으로 정의한다. 하측에서 바라볼 때, 우측 스핀맙(120b)의 회전 방향 중 반시계 방향을 제2 정방향(w2f)으로 정의하고 시계 방향을 제2 역방향(w2r)으로 정의한다.
도 4를 참고하여, 좌측 스핀맙(120a)이 회전할 때, 좌측 스핀맙(120a)의 하측면 중 바닥으로부터 가장 큰 마찰력을 받는 지점(Pla)은 좌측 스핀맙(120a)의 회전 중심(Osa)에서 좌측에 배치된다. 좌측 스핀맙(120a)의 하측면 중 상기 지점(Pla)에 다른 지점보다 큰 하중이 지면에 전달되게 하여, 상기 지점(Pla)에 가장 큰 마찰력이 발생되게 할 수 있다. 본 실시예에서 상기 지점(Pla)는 회전 중심(Osa)을 기준으로 정확히 좌측에 배치되나, 다른 실시예에서 상기 지점(Pla)은 회전 중심(Osa)의 좌측 전방이나 좌측 후방에 배치될 수도 있다.
도 4를 참고하여, 우측 스핀맙(120b)이 회전할 때, 우측 스핀맙(120b)의 하측면 중 바닥으로부터 가장 큰 마찰력을 받는 지점(Plb)은 우측 스핀맙(120b)의 회전 중심(Osb)에서 우전방에 배치된다. 우측 스핀맙(120b)의 하측면 중 상기 지점(Plb)에 다른 지점보다 큰 하중이 지면에 전달되게 하여, 상기 지점(Plb)에 가장 큰 마찰력이 발생되게 할 수 있다. 본 실시예에서 상기 지점(Plb)는 회전 중심(Osb)을 기준으로 정확히 우측에 배치되나, 다른 실시예에서 상기 지점(Plb)은 회전 중심(Osb)의 우측 전방이나 우측 후방에 배치될 수도 있다.
상기 지점(Pla) 및 상기 지점(Plb)은 좌우 대칭되는 위치에 배치된다.
상기 지점(Pla)이 좌측 스핀맙(120a)의 하측면 중 바닥으로부터 가장 큰 마찰력을 받는 지점이 되게 하기 위해서(또는 상기 지점(Plb)이 우측 스핀맙(120b)의 하측면 중 바닥으로부터 가장 큰 마찰력을 받는 지점이 되게 하기 위해서), 다음과 같은 실시예 등에 따라 다양하게 구현될 수 있다.
도 3을 참고한 일 실시예로, 상기 좌측 스핀맙(120a)의 하측면이 회전 중심(Osa)에서 상기 지점(Pla) 방향으로 하향 경사지게 배치될 수 있다. 이 경우, 상기 지점(Pla)은 상기 좌측 스핀맙(120a)의 하측면 중 최저점(Pla)이 된다. 이 경우, ‘가상의 수평면(H)에 대해 좌측 스핀맙(120a)의 하측면(I1)이 이루는 각도’ 및 ‘가상의 수평면(H)에 대해 우측 스핀맙(120b)의 하측면(I2)이 이루는 각도’를 경사각(Ag1, Ag2)으로 정의한다. 좌측 스핀맙(120a)의 하측면(I1)이 외부의 수평면(H)에 대해 이루는 각은 경사각(Ag1)이고, 우측 스핀맙(120b)의 하측면(I2)이 외부의 수평면(H)에 대해 이루는 각은 경사각(Ag2)이다. 두 경사각(Ag1, Ag2)은 서로 동일하게 구비될 수 있다.
다른 실시예로, 좌측 스핀맙(120a)의 하측면이 수평이 되게 배치될 수 있다. 탄성 부재를 이용하여, 좌측 스핀맙(120a)에 모멘트가 가해지게 구현할 수 있다. 좌측 스핀맙(120a)에 가해지는 모멘트는, 정면에서 볼 때 시계 방향의 모멘트이다. 이 경우, 좌측 스핀맙(120a)이 외부의 수평면(H)에 대해 수평으로 배치된 상태가 되더라도, 상기 지점(Pla)이 외부의 수평면(H)에 가장 강하게 밀착됨으로써 가장 큰 마찰력을 발생시킨다. 이를 위한, 구체적인 제1 실시예 및 제2 실시예는 다음과 같다.
도 3을 참고한 일 실시예에서, 좌측 스핀맙(120a)의 하측면 및 우측 스핀맙(120b)의 하측면은 각각 경사지게 배치된다. 좌측 스핀맙(120a)의 경사각(Ag1) 및 우측 스핀맙(120b)의 경사각(Ag2)은 예각을 형성한다. 본 실시예에서, 경사각(Ag1, Ag2)은 각각 약 3 내지 6도 정도이다. 경사각(Ag1, Ag2)은, 가장 마찰력이 커지는 지점이 상기 지점(Pla, Plb)이 되되, 좌측 스핀맙(120a) 및 우측 스핀맙(120b)의 회전 동작에 따라 걸레부(121)의 하측 전면적이 바닥에 닿을 수 있는 정도로 작게 설정될 수 있다.
좌측 스핀맙(120a)의 하측면은 좌측 방향으로 하향 경사를 형성한다. 우측 스핀맙(120b)의 하측면은 우측 방향으로 하향 경사를 형성한다. 도 4를 참고하여, 좌측 스핀맙(120a)의 하측면은 좌측부에 최저점(Pla)을 형성한다. 좌측 스핀맙(120a)의 하측면은 우측부에 최고점(Pha)을 형성한다. 우측 스핀맙(120b)의 하측면은 우측부에 최저점(Plb)을 형성한다. 우측 스핀맙(120b)의 하측면은 좌측부에 최고점(Phb)을 형성한다.
도 4를 참고하여, 로봇 청소기(100)의 이동은 스핀 모듈(120) 및/또는 롤링 모듈(130)이 발생시키는 지면과의 마찰력에 의해 구현된다.
스핀 모듈(120)은, 바디(110)를 전방으로 이동시키려는 ‘전방 이동 마찰력’, 또는 바디를 후방으로 이동시키려는 ‘후방 이동 마찰력’을 발생시킬 수 있다. 스핀 모듈(120)은, 바디(110)를 좌회전시키려는 ‘좌향 모멘트 마찰력’, 또는 바디(110)를 우회전시키려는 ‘우향 모멘트 마찰력’을 발생시킬 수 있다. 스핀 모듈(120)은, 상기 전방 이동 마찰력 및 상기 후방 이동 마찰력 중 어느 하나와, 상기 좌향 모멘트 마찰력 및 상기 우향 모멘트 마찰력 중 어느 하나를 조합한 마찰력을 발생시킬 수 있다.
롤링 모듈(130)은, 바디(110)를 전방으로 이동시키려는 ‘전방 이동 마찰력’, 또는 바디를 후방으로 이동시키려는 ‘후방 이동 마찰력’을 발생시킬 수 있다.
스핀 모듈(120)이 상기 전방 이동 마찰력을 발생시키기 위해서, 좌측 스핀맙(120a)을 제1 정방향(w1f)으로 소정 rpm으로 회전시키고 우측 스핀맙(120b)을 제2 정방향(w2f)으로 동일한 rpm으로 회전시킬 수 있다.
롤링 모듈(130)이 상기 전방 이동 마찰력을 발생시키기 위해서, 롤링맙(130a)을 제3 정방향(w3f)으로 회전시킬 수 있다.
스핀 모듈(120)이 상기 후방 이동 마찰력을 발생시키기 위해서, 좌측 스핀맙(120a)을 제1 역방향(w1r)으로 소정 rpm으로 회전시키고 우측 스핀맙(120b)을 제2 역방향(w2r)으로 동일한 rpm으로 회전시킬 수 있다.
롤링 모듈(130)이 상기 후방 이동 마찰력을 발생시키기 위해서, 롤링맙(130a)을 제3 역방향(w3r)으로 회전시킬 수 있다.
스핀 모듈(120)이 상기 우향 모멘트 마찰력을 발생시키기 위해서, 좌측 스핀맙(120a)을 제1 정방향(w1f)으로 소정 rpm으로 회전시키고, 우측 스핀맙(120b)을, 제2 역방향(w2r)으로 회전시키거나, 회전없이 정지시키거나, 제2 정방향(w2f)으로 상기 rpm보다 작은 rpm으로 회전시킬 수 있다.
스핀 모듈(120)이 상기 좌향 모멘트 마찰력을 발생시키기 위해서, 우측 스핀맙(120b)을 제2 정방향(w2f)으로 소정 rpm으로 회전시키고, 좌측 스핀맙(120a)을, 제1 역방향(w1r)으로 회전시키거나, 회전없이 정지시키거나, 제1 정방향(w1f)으로 상기 소정 rpm보다 작은 rpm으로 회전시킬 수 있다.
스핀 모듈(120)이 발생시키는 마찰력과 롤링 모듈(130)이 발생시키는 마찰력이 조합되어, 바디(110)를 운동시키거나 제자리에 위치하게 할 수 있다.
로봇 청소기(100)를 전방으로 직진 이동시키기 위해서, 스핀 모듈(120) 및 롤링 모듈(130) 모두가 상기 전방 이동 마찰력을 발생하게 할 수 있다. 다른 예로, 스핀 모듈(120) 및 롤링 모듈(130) 중 어느 하나가 상기 전방 이동 마찰력을 발생시키고 다른 하나가 회전 동작없이 정지 상태를 유지할 수도 있다. 또 다른 예로, 스핀 모듈(120) 및 롤링 모듈(130) 중 어느 하나가 상대적으로 큰 상기 전방 이동 마찰력을 발생시키고 다른 하나가 상대적으로 작은 상기 후방 이동 마찰력을 발생시킬 수도 있다.
로봇 청소기(100)를 후방으로 직진 이동시키기 위해서, 스핀 모듈(120) 및 롤링 모듈(130) 모두가 상기 후방 이동 마찰력을 발생하게 할 수 있다. 다른 예로, 스핀 모듈(120) 및 롤링 모듈(130) 중 어느 하나가 상기 후방 이동 마찰력을 발생시키고 다른 하나가 회전 동작없이 정지 상태를 유지할 수도 있다. 또 다른 예로, 스핀 모듈(120) 및 롤링 모듈(130) 중 어느 하나가 상대적으로 큰 상기 후방 이동 마찰력을 발생시키고 다른 하나가 상대적으로 작은 상기 전방 이동 마찰력을 발생시킬 수도 있다.
로봇 청소기(100)를 우회전시키기 위해서, 스핀 모듈(120)이 상기 우향 모멘트 마찰력을 발생시키고, 롤링맙(130a)을, 제3 정방향(w3f)으로 회전시키거나, 회전없이 정지시키거나, 제3 역방향(w3r)으로 회전시킬 수 있다.
로봇 청소기(100)를 좌회전시키기 위해서, 스핀 모듈(120)이 상기 좌향 모멘트 마찰력을 발생시키고, 롤링맙(130a)을, 제3 정방향(w3f)으로 회전시키거나, 회전없이 정지시키거나, 제3 역방향(w3r)으로 회전시킬 수 있다.
로봇 청소기(100)의 제자리 위치를 유지시키기 위해서, 스핀 모듈(120) 및 롤링 모듈(130) 모두가 회전 동작없이 정지한 상태를 유지할 수 있다. 다른 예로, 스핀 모듈(120) 및 롤링 모듈(130) 중 어느 하나가 상기 전방 이동 마찰력을 발생시키고 다른 하나가 동일한 크기의 상기 후방 이동 마찰력을 발생하게 할 수 있다. 특히, 후자의 경우, 바디(110)는 제자리에 위치한 상태에서 스핀 모듈(120)과 롤링 모듈은 각각 회전 동작을 하며 일정한 바닥면을 걸레질할 수 있다.
상술한 바디(110)의 구체적인 주행 제어 예시를 참고하여, 롤링맙(130a)의 회전 방향이 변경 가능하게 구비된다. 이를 통해, 스핀 모듈(120)이 발생시키는 상기 마찰력에 롤링맙(130a)에 의한 상기 전방 이동 마찰력 및 상기 후방 이동 마찰력 중 어느 하나를 조합시킬 수 있어, 로봇 청소기(100)의 보다 다양한 동작이 가능해진다. 구체적으로, 로봇 청소기(100)는 전후 방향으로 가능한 최고 속도가 더욱 커지게 되며, 로봇 청소기(100)가 우회전하거나 좌회전하면서 만들어내는 회전반경을 다양화 할 수 있고, 후진하면서 우회전 또는 좌회전 동작이 가능하며, 바디(110)가 제자리를 유지하는 상태에서 회전 동작을 통해 걸레질을 하는 기능을 구현할 수 있다.
스핀 모듈(120)이 소정의 일정한 회전 동작(상기 전방 이동 마찰력, 후방 이동 마찰력, 좌향 모멘트 마찰력 또는 우향 모멘트 마찰력을 발생시키는 동작)을 할 때, 롤링맙(130a)은 서로 다른 2가지 이상의 회전 동작이 가능하게 구비될 수 있다. 스핀 모듈이 소정의 일정한 회전 동작을 할 때, 롤링맙(130a)이 제3 정방향(w3f)으로 회전하게 제어될 수 있다. 스핀 모듈이 소정의 일정한 회전 동작을 할 때, 롤링맙(130a)이 제3 역방향(w3r)으로 회전하게 제어될 수 있다. 스핀 모듈이 소정의 일정한 회전 동작을 할 때, 롤링맙(130a)이 회전없이 정지 상태를 유지하게 제어될 수 있다. 스핀 모듈이 소정의 일정한 회전 동작을 할 때, 롤링맙(130a)은 2개 이상의 기설정된 RPM 중 어느 하나를 선택하여 제3 정방향(w3f)으로 회전하게 제어될 수 있다. 스핀 모듈이 소정의 일정한 회전 동작을 할 때, 롤링맙(130a)은 2개 이상의 기설정된 RPM 중 어느 하나를 선택하여 제3 역방향(w3r)으로 회전하게 제어될 수 있다. 이를 통해, 로봇 청소기(100)의 다양한 주행 궤도 및 주행 속도를 구현할 수 있다.
롤링맙(130a)과 바닥이 접촉하는 구간은 좌우 방향으로 길게 형성될 수 있다. 좌측 스핀맙(120a)의 우측단과 우측 스핀맙(120b)의 좌측단은 서로 소정 간격 이격되게 배치될 수 있다. 정면에서 바라볼 때, 롤링맙(130a)과 바닥이 접촉하는 구간은, 좌측 스핀맙(120a)과 우측 스핀맙(120b)의 틈의 전부와 중첩되게 구비될 수 있다. 좌측 스핀맙(120a)과 우측 스핀맙(120b)의 사이의 틈은 스핀 모듈(120)에 의해 걸레질이 잘 수행되지 못하는 부분이 된다. 로봇 청소기(100)의 전후 방향 이동시, 롤링맙(130a)은 상기 틈에 해당하는 바닥면을 걸레질함으로써, 스핀 모듈(120)의 걸레질을 보완해준다.
롤링맙(130a)과 바닥이 접촉하는 구간은 좌우 방향으로 길게 형성될 수 있다. 정면에서 바라볼 때, 롤링맙(130a)과 바닥이 접촉하는 구간은, 좌측 스핀맙(120a)의 회전 중심(Osa)과 우측 스핀맙(120b)의 회전 중심(Osb)을 연결하는 구간의 전부와 중첩되게 구비될 수 있다. 좌측 스핀맙(120a)의 회전 중심(Osa)의 우측 부분 및 우측 스핀맙(120b)의 회전 중심(Osb)의 좌측 부분은 상대적으로 마찰력이 작게 작용하는 지점으로서, 좌측 스핀맙(120a)의 회전 중심(Osa)의 좌측 부분 및 우측 스핀맙(120b)의 회전 중심(Osb)의 우측 부분에 비해 걸레질이 깨끗이 수행되지 못하는 부분이 될 수 있다. 로봇 청소기(100)가 전후 방향으로 이동시, 롤링맙(130a)은 좌측 스핀맙(120a)의 회전 중심(Osa)과 우측 스핀맙(120b)의 회전 중심(Osb)을 연결하는 구간을 걸레질함으로써, 스핀 모듈(120)의 걸레질을 보충해주는 기능을 수행한다.
스핀 모듈(120)은, 회전판(122)의 하측에 결합하여 바닥에 접촉하게 구비되는 걸레부(121)를 포함한다. 걸레부(121)는 좌측 스핀맙(120a)의 하측면 및 우측 스핀맙(120b)의 하측면에 각각 배치된다. 걸레부(121)는 회전판(122)에 고정적으로 배치될 수도 있고, 교체 가능하게 배치될 수 있다. 걸레부(121)는 벨크로 또는 후크 등에 의한 탈부착 가능하게 회전판(122)에 고정될 수 있다. 걸레부(121)는 걸레 만으로 구성될 수도 있고, 걸레와 스페이서(미도)를 포함할 수도 있다. 상기 걸레는 직접 바닥에 접촉하며 걸레질하는 부분이다. 상기 스페이서는 회전판(122)과 상기 걸레의 사이에 배치되어 걸레의 위치를 조절해 줄 수 있다. 상기 스페이서는 회전판(122)에 탈부착 가능하게 고정될 수 있고, 상기 걸레는 상기 스페이서에 탈부착 가능하게 고정될 수 있다. 상기 스페이서없이 걸레(121)가 회전판(122)에 직접 탈부착 가능하게 구현 가능함은 물론이다.
도 5a를 참고하여, 스핀 모듈(120)은 회전판(122)을 회전시키는 스핀 회전축(128)을 포함한다. 스핀 회전축(128)은 회전판(122)에 고정되어 스핀 구동부(124)의 회전력을 회전판(122)에 전달한다. 스핀 회전축(128)은 회전판(122)의 상측에 연결된다. 스핀 회전축(128)은 회전판(122)의 상부 중심에 배치된다. 스핀 회전축(128)은 회전판(122)의 회전 중심(Osa, Osb)에 고정된다. 스핀 회전축(128)은 기어(127b)를 고정시키는 기어 고정부(미도시)를 포함한다. 기어 고정부는 스핀 회전축(128)의 상단에 배치된다.
스핀 모듈(120)은, 좌측 회전판(122)에 고정되어 좌측 회전판(122)을 회전시키는 좌측 스핀 회전축(128)과, 우측 회전판(122)에 고정되어 우측 회전판(122)을 회전시키는 우측 스핀 회전축(128)을 포함한다.
스핀 회전축(128)은 회전판(122)에 대해 수직으로 연장된다. 좌측 스핀 회전축(128)은 좌측 스핀맙(120a)의 하측면에 대해 수직하게 배치되고, 우측 스핀 회전축(128)은 우측 스핀맙(120b)의 하측면에 대해 수직하게 배치된다. 스핀맙(120a, 120b)의 하측면이 수평면에 대해 경사를 가지는 실시예에서, 스핀 회전축(128)은 상하 방향 축에 대해 기울어지게 된다. 스핀 회전축(128)은 상단이 하단에 대해 일측으로 기울어지게 배치된다. 좌측 스핀 회전축(128)은, 상단이 하단에 대해 좌측으로 기울어지게 배치된다. 우측 스핀 회전축(128)은, 상단이 하단에 대해 우측으로 기울어지게 배치된다.
스핀 회전축(128)의 수직축에 대한 기울어진 각도는 틸팅 프레임(125)의 틸팅 회전축(126)을 중심으로 한 회전에 따라 변동될 수 있다. 스핀 회전축(128)은, 틸팅 프레임(125)에 회전 가능하게 결합되어 틸팅 프레임(125)과 일체로 기울임 가능하게 구비된다. 틸팅 프레임(125)이 기울어지는 때, 틸팅 프레임(125)과 함께 스핀 구동부(124), 구동 전달부(127), 스핀 회전축(128), 회전판(122), 급수 수용부 및 걸레부(121)가 일체로 기울어진다.
스핀 모듈(120)은 회전판(122)의 상측에 배치되어 물을 수용할 수 있는 급수 수용부를 포함한다.
스핀 모듈(120)은 스핀맙(120a, 120b)을 회전시키기 위한 구동력을 제공하는 스핀 구동부(124)를 포함한다. 상기 스핀 구동부(124)는 적어도 모터(124)를 포함하는 조립체일 수 있다. 스핀 모듈(120)은, 좌측 스핀 회전축(128)을 회전시키기 위한 동력을 제공하는 좌측 스핀 구동부(124)와, 우측 스핀 회전축(128)을 회전시키기 위한 동력을 제공하는 우측 스핀 구동부(124)를 포함한다. 좌측 스핀 구동부(124)는 좌측 스핀 회전축(128)을 회전시키는 구동력을 제공한다. 우측 스핀 구동부(124)는 우측 스핀 회전축(128)을 회전시키는 구동력을 제공한다.
스핀 모듈(120)은 스핀 구동부(124)의 회전력을 스핀 회전축(128)에 전달하는 구동 전달부(127)를 포함한다. 구동 전달부(127)는 복수의 기어 및/또는 벨트 등을 포함할 수 있다.
본 실시예에서, 구동 전달부(127)는 모터(124)의 회전축에 고정된 제1 기어(127a)를 포함한다. 제1 기어(127a)는 웜기어일 수 있다. 구동 전달부(127)는 제1 기어(127a)와 맞물려 회전하는 제2 기어(127b)를 포함할 수 있다. 제2 기어(127b)는 평기어일 수 있다. 제2 기어(127b)는 스핀 회전축(128)에 고정되어, 제2 기어(127b)가 회전할 때 스핀 회전축(128)도 같이 회전한다.
스핀 모듈(120)은 바디(110)에 소정 각도 범위내로 기울임 가능하게 배치되는 틸팅 프레임(125)을 포함한다. 틸팅 프레임(125)은 경사각(Ag1, Ag2)이 바닥의 상태에 따라 변경될 수 있게 한다. 틸팅 프레임(125)은 스핀맙(120a, 120b)의 서스펜션(중량 지지와 동시에 상하 진동을 완화) 기능을 수행할 수 있다. 틸팅 프레임(125)은 베이스(13)에 기울임 가능하게 지지된다. 틸팅 프레임(125)은 스핀 회전축(128)을 회전 가능하게 지지한다.
스핀 모듈(120)은 좌측 스핀 회전축(128)을 지지하는 좌측 틸팅 프레임(125)을 포함한다. 좌측 틸팅 프레임(125)은 좌측 틸팅 회전축(126)을 중심으로 소정 범위내 회전 가능하게 구비된다.
스핀 모듈(120)은 우측 스핀 회전축(128)을 지지하는 우측 틸팅 프레임(125)을 포함한다. 우측 틸팅 프레임(125)은 우측 틸팅 회전축(126)을 중심으로 소정 범위내 회전 가능하게 구비된다.
예를 들어, 좌측 스핀맙(120a)이 일부 함몰된 형상의 외부의 바닥에 접촉될 때, 좌측 틸팅 프레임(125)에 의해 좌측 스핀맙(120a)의 경사각(Ag1)이 소정 범위내 커질 수 있다. 우측 스핀맙(120b)이 일부 함몰된 형상의 외부의 바닥에 접촉될 때, 우측 틸팅 프레임(125)에 의해 우측 스핀맙(120b)의 경사각(Ag2)이 소정 범위내 커질 수 있다.
틸팅 프레임(125)은 하측면을 형성하는 프레임 베이스(125a)를 포함한다. 스핀 회전축(128)은 프레임 베이스(125a)를 상하로 관통하며 배치된다. 프레임 베이스(125a)는 상하로 두께를 형성하는 판형으로 형성될 수 있다. 틸팅 회전축(126)은 베이스(13)와 프레임 베이스(125a)를 회전 가능하게 연결해준다.
틸팅 프레임(125)은 내부에 스핀 회전축(128)을 수용하는 급수 케비닛(125b)을 포함한다. 급수 케비닛(125b)은, 바디(110)의 하측에서 상측으로 함몰된 공간을 형성하여 급수 수용부의 상단부를 수용한다. 급수 케비닛(125b)은 프레임 베이스(125a)에 고정된다. 급수 케비닛(125b)은 프레임 베이스(125a)의 하측면에서 상측으로 함몰된 공간을 형성한다. 급수 케비닛(125b)이 형성하는 공간 내로 급수부(125c)를 통해 물이 유입된다. 급수 케비닛(125b)에 의해 물의 비산을 최소화하여 모든 물이 급수 수용부 내로 유입되게 유도할 수 있다.
급수 케비닛(125b)은, 스핀 회전축(128)을 회전 가능하게 지지하는 회전축 지지부(미도시)를 포함한다. 회전축 지지부와 스핀 회전축(128) 사이에는 베어링(B)이 구비될 수 있다. 베이링(B)은 하측에 배치되는 제1 베어링(B1)과, 상측에 배치되는 제2 베어링(B2)을 포함할 수 있다.
회전축 지지부의 하단부는 급수 수용의 급수 공간 내로 삽입된다. 회전축 지지부의 내주면은 스핀 회전축(128)을 지지한다. 회전축 지지부의 외주면은 급수 수용부의 내주면을 마주본다. 이를 통해, 스핀 회전축(128)을 안정적으로 지지하면서도 급수 공간 내로 물이 집수되기 용이하게 유도할 수 있다.
회전축 지지부의 하단부는 스핀 회전축(128)과 급수 수용부의 내주면 사이에 배치된다. 회전축 지지부의 하단부의 외주면과 급수 수용부(123)의 내주면은 서로 이격되어, 급수 공간(Sw)이 형성된다. 회전축 지지부의 하단부에 상기 경사부(122d)가 배치된다.
급수 케비닛(125b)은 회전축 지지부에서 돌출되는 격벽(미도시)을 포함한다. 격벽은 급수 수용부(123)의 상단부를 덮어준다. 격벽은 급수 수용부의 상단과 외주면을 덮어준다. 격벽은 회전축 지지부의 원심 방향에 배치된다. 격벽은 프레임 베이스(125a)에 고정되어 지지된다. 격벽은 회전축 지지부를 지지해준다.
틸팅 프레임(125)은 급수 모듈로부터 물을 받아주는 급수부(125c)를 포함한다. 급수부(125c)는 공급관(156)으로부터 물을 공급받는다. 급수부(125c)는 물의 유로를 형성한다. 급수부(125c)는 물이 급수 케비닛(125b)을 통과하여 급수 수용부 내로 유입되게 안내한다. 급수부(125c)가 형성하는 유로의 일단은 공급관(156)의 단부에 연결된다. 급수부(125c)가 형성하는 상기 유로의 타단은 급수 공간(Sw)에 배치된다. 급수부(125c)가 형성하는 유로의 일단은 급수 케비닛(125b)의 외부(바디(110)의 내부)에 배치되고 타단은 급수 케비닛(125b)의 내부(급수 공간이 배치된 부분)에 배치된다. 급수부(125c)는 틸팅 프레임(125)에 고정 배치된다. 급수부(125c)는 급수 케비닛(125b)에 고정된다.
틸팅 프레임(125)은 탄성 부재(129)의 일단을 지지하는 제1 지지부(125d)를 포함한다. 탄성 부재(129)의 타단은 베이스(13)에 배치된 제2 지지부(13b)가 지지한다. 제2 지지부(13b)는 베이스(13)의 지지 부재(13a)에 형성될 수 있다. 틸팅 프레임(125)이 틸팅 회전축(126)을 중심으로 기울임 동작할 때, 제1 지지부(125d)의 위치가 변경되고 탄성 부재(129)의 길이가 변경된다.
제1 지지부(125d)는 틸팅 프레임(125)에 고정된다. 좌측 틸팅 프레임(125)의 우측부에 제1 지지부(125d)가 배치된다. 우측 틸팅 프레임(125)의 좌측부에 제1 지지부(125d)가 배치된다.
제2 지지부(13b)는 베이스에 고정된다. 좌측 스핀맙 모듈(120)의 우측 영역에 제2 지지부(13b)가 배치된다. 우측 스핀맙 모듈(120)의 좌측 영역에 제2 지지부(13b)가 배치된다.
제1 지지부(125d)는 틸팅 프레임(125)에 고정된다. 제1 지지부(125d)는 틸팅 프레임(125)의 기울임 동작시 틸팅 프레임(125)과 함께 기울어진다. 탄성 부재(129)의 일단부가 고정되는 부분이 틸팅 회전축(126)으로부터 소정 거리 떨어지도록, 제1 지지부(125d)는 틸팅 회전축(126)에서 멀어지는 방향으로 돌출되어 형성된다. 경사각(Ag1, Ag2)이 최소가 된 상태에서 제1 지지부(125d)와 제2 지지부(13b) 사이의 거리는 가장 멀어지고, 경사각(Ag1, Ag2)이 최대가 된 상태에서 제1 지지부(125d)와 제2 지지부(13b) 사이의 거리가 가장 가까워지게 구비된다. 탄성 부재(129)는 경사각(Ag1, Ag2)이 최소가 된 상태에서 탄성 변형되어 인장되게 구비된다.
도 5a를 참고하여, 후측에서 바라볼 때, 좌측 틸팅 프레임(125)이 틸팅 회전축(126)을 중심으로 반시계 방향으로 회전하는 경우, 제2 지지부(13b)는 좌측으로 이동하게 되고 탄성 부재(129)는 짧아지며 탄성 복원하게 된다. 후측에서 바라볼 때, 좌측 틸팅 프레임(125)이 틸팅 회전축(126)을 중심으로 시계 방향으로 회전하는 경우, 제2 지지부(13b)는 우측으로 이동하게 되고 탄성 부재(129)는 길어지며 탄성 변형하게 된다. 후측에서 바라볼 때, 우측 틸팅 프레임(125)이 틸팅 회전축(126)을 중심으로 시계 방향으로 회전하는 경우, 제2 지지부(13b)는 우측으로 이동하게 되고 탄성 부재(129)는 짧아지며 탄성 복원하게 된다. 후측에서 바라볼 때, 우측 틸팅 프레임(125)이 틸팅 회전축(126)을 중심으로 반시계 방향으로 회전하는 경우, 제2 지지부(13b)는 좌측으로 이동하게 되고 탄성 부재(129)는 길어지며 탄성 변형하게 된다.
틸팅 프레임(125)은 스핀 구동부(124)를 지지하는 모터 지지부(125e)를 포함한다. 모터 지지부(125e)는 구동 전달부(127)를 지지할 수 있다.
틸팅 프레임(125)은 상단 리미트(13d)에 접촉 가능하게 구비된 상단 리미트 접촉부(125f)를 포함한다. 상단 리미트 접촉부(125f)의 상측면이 상단 리미트(13d)의 하측면에 접촉 가능하게 구비될 수 있다. 좌측 상단 리미트 접촉부(125f)는 좌측 틸팅 프레임(125)의 좌측단에 배치될 수 있다. 우측 상단 리미트 접촉부(125f)는 우측 틸팅 프레임(125)의 우측단에 배치될 수 있다.
스핀 모듈(120)은 틸팅 프레임(125)의 회전축이 되는 틸팅 회전축(126)을 포함한다. 틸팅 회전축(126)은 스핀맙(120a, 120b)의 경사 방향과 수직 방향으로 연장되어 배치된다. 틸팅 회전축(126)은 수평 방향으로 연장되어 배치될 수 있다. 본 실시예에서, 틸팅 회전축(126)은 전후 방향으로 연장되어 배치된다.
스핀 모듈(120)은 좌측 스핀맙(120a)의 하측면의 경사 방향과 수직 방향으로 연장되는 좌측 틸팅 회전축(126)을 포함한다. 스핀 모듈(120)은 우측 스핀맙(120b)의 하측면의 경사 방향과 수직 방향으로 연장되는 우측 틸팅 회전축(126)을 포함한다.
스핀 모듈(120)은 틸팅 프레임(125)에 탄성력을 가하는 탄성 부재(129)를 포함한다. 탄성 부재(129)는 틸팅 프레임(125)이 하측으로 회전할 때 늘어나고 상측으로 회전할 때 줄어들게 구비된다. 탄성 부재(129)는 틸팅 프레임(125)이 완충적으로(탄성적으로) 동작할 수 있게 해준다. 탄성 부재(129)는, 경사각(Ag1, Ag2)이 커지는 방향으로 틸팅 프레임(125)에 모멘트 힘을 가한다. 탄성 부재(129)는 전체적으로 좌우 방향으로 길게 배치될 수 있다.
도 6을 참고하여, 바디(110)는 배터리(160)를 지지하는 배터리 지지부(14)를 포함한다. 배터리 지지부(14)는 배터리(160)를 공급관의 상측에 배치시킨다. 배터리 지지부(14)는 공급관(156)의 위치를 가이드하는 기능을 수행한다.
도 8은 본 발명의 일 실시예에 따른 로봇 청소기의 주요 구성들 간의 제어관계를 도시한 블록도이다.
도 9 내지 도 19는 본 발명의 실시예에 따른 로봇 청소기의 다양한 주행 제어 방법에 관한 설명에 참조되는 도면이다.
도 1 내지 도 7, 및, 도 8과 도 9를 참조하면, 본 발명의 일 실시예에 따른 로봇 청소기(100)는, 상측에서 바라볼 때 시계 방향 또는 반시계 방향으로 회전하면서 바닥에 접촉하게 구비되는 좌측 스핀맙(120a) 및 우측 스핀맙(120b)을 포함하는 스핀 모듈(120), 좌측에서 바라볼 때 시계 방향 또는 반시계 방향으로 회전하면서 바닥에 접촉하게 구비되는 롤링맙(130a)을 포함하고, 상기 스핀 모듈(120)의 후방에 배치되는 롤링 모듈(130), 및, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)의 회전 동작 및 상기 롤링맙(130a)의 회전 동작을 제어하는 제어부(20)를 포함할 수 있다.
본 발명의 일 실시예에 따른 로봇 청소기(100)는, 한 쌍의 스핀맙(120a, 120b) 형태의 전륜과 롤링맙(130a) 형태의 후륜으로 주행할 수 있다.
스핀맙(120a, 120b)은 물공급에 의한 습식 청소 기능을 함과 동시에 원하는 방향으로의 주행을 위한 구동력을 생성할 수 있다.
롤링맙(130a)은 수평 방향으로 연장된 회전축을 중심으로 회전할 수 있다. 즉, 좌측에서 바라볼 때 롤링맙(130a)은 시계 방향 또는 반시계 방향으로 회전할 수 있다.
또한, 롤링맙(130a)은, 실린더 형의 회전하는 물걸레로, 복수개 또는 단일의 롤러 또는 실린더 형상의 회전체(132), 및, 상기 회전체(132)를 감싸도록 배치되는 함습력이 높고 닦임성이 좋은 패브릭 소재의 걸레부(131)를 포함할 수 있다.
전진 운동을 가정하면, 롤링맙(130a)은 스핀맙(120a, 120b)의 습식 청소 동작이 일어난 위치를 뒤따라 지나가며, 걸레부(131)를 통한 걸레질을 수행할 수 있다.
제어부(20)는 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)의 회전 동작 및 상기 롤링맙(130a)의 회전 동작을 제어할 수 있다. 또한, 상기 제어부(20)는 두 개의 스핀맙(120a, 120b)과 하나의 후방 롤링맙(130a)을 각각 독립적으로 제어할 수 있다.
또한, 상기 제어부(20)는, 상기 롤링맙(130a)의 회전 방향 및 회전 속도를 가변하여 가속 또는 감속 제어할 수 있다.
본 발명의 일 실시예에 따르면, 후방에 위치한 롤링맙(130a)의 회전에 의해 잔수의 흡습 및 얼룩 제거 성능 등 바닥 청소 마감 성능을 향상시킬 수 있고, 후방 롤링맙(130a)의 회전 방향 및/또는 회전 속도에 의해 본체의 이동에 조력을 줄 수 있다.
또한, 본 발명의 일 실시예에 따르면, 전방 스핀맙(120a, 120b) 및 후방 롤링맙(130a)의 회전 방향 및 속도 조절을 통해, 다양한 주행 모션 구현 및 회전식 마찰 청소 동작이 동시에 가능하다는 장점이 있다.
제어부(20)는 전후륜에 대응하는 스핀맙(120a, 120b)과 롤링맙(130a)이 동시에 미끌어짐 상태에 있거나, 스핀맙(120a, 120b)과 롤링맙(130a) 간의 회전수와 마찰력의 차이에 의한 드래그포스(끌기힘)의 차이로 기인한 운동을 발생시킴으로써, 로봇 청소기(100)의 주행을 제어할 수 있다..
또한, 롤링맙(130a)은 스핀맙(120a, 120b)의 회전에 의한 주행 방향과 동일 방향으로 회전하여 구름 구동 비율을 높여 고속의 이동을 가능케 한다.
또한, 롤링맙(130a)은 스핀맙(120a, 120b)의 회전에 의한 주행 방향과 반대 방향으로 회전하여 후진 이동을 가능케 한다.
또한, 롤링맙(130a)은 스핀맙(120a, 120b)의 회전에 의한 주행 방향과 반대 방향으로 회전할 수 있고, 그 회전력의 조절에 따라, 힘의 평형을 이루어 로봇 청소기(100)가 제자리에 위치하게 함으로써 특정 위치의 집중 청소가 가능하다.
즉, 제어부(20)는 스핀맙(120a, 120b)의 회전과 롤링맙(130a)의 회전이 반대 방향을 향하도록 제어하고, 그 회전에 의한 힘을 평형 상태로 유지함으로써, 로봇 청소기(100)가 제자리 주행하도록 제어할 수 있다.
또한, 이 경우에도 스핀맙(120a, 120b)과 롤링맙(130a)은 회전을 계속 유지하고 있으므로 청소 동작을 끊김없이 수행될 수 있다.
한편, 스핀 모듈(120)은, 상기 스핀맙(120a, 120b)을 회전시키는 모터(124)를 포함할 수 있고, 상기 모터(124)는 좌측 스핀맙(120a)을 회전시키는 좌측 모터 및 우측 스핀맙(120b)을 회전시키는 우측 모터를 포함할 수 있다.
한편, 제어부(20)는, 상기 스핀맙(120a, 120b)을 회전시키는 모터(124)를 구동하는 제1 모터 구동부(821)를 포함할 수 있다.
상기 제어부(20)의 메인 제어부(820)의 제어 동작에 의해, 상기 제1 모터 구동부(821)가 제어되며, 상기 제1 모터 구동부(821)는 모터(124)를 구동하게 된다. 이에 따라, 상기 스핀맙(120a, 120b)은 모터(124)에 의해 회전하게 된다.
상기 제1 모터 구동부(821)는, 모터(124)를 구동시키기 위한 것으로, 인버터(미도시), 및 인버터 제어부(미도시), 모터(124)에 흐르는 전류를 검출하는 전류 검출부(미도시)와, 모터(230)에 인가되는 전압을 검출하는 전압 검출부(미도시)를 구비할 수 있다. 또한, 상기 제1 모터 구동부(821)는, 인버터(미도시)에 입력되는 직류 전원을 공급하는, 컨버터 등을 더 포함하는 개념일 수 있다.
롤링 모듈(130)은 바닥과 접촉하게 구비된다. 롤링 모듈(130)은 스핀 모듈(120)의 후방에서 바닥에 접촉하게 구비될 수 있다. 본 실시예에서, 롤링 모듈(130)은 회전 동작을 하며 걸레질하게 구비된다.
다른 예로, 상기 롤링 모듈(130)은 바디(110)의 이동에 따라 바닥을 슬라이딩하며 걸레질하는 맙 패드 등을 구비할 수 있다.
또 다른예로, 상기 롤링 모듈(130)은 흡입 청소(vaccum cleaning)가 가능하게 구비될 수 있다.
또 다른예로, 상기 롤링 모듈(130)은 바닥을 비질(sweeping)하는 브러쉬(brush)를 포함할 수 있고, 나아가 상기 브러쉬가 회전 가능하게 구비될 수도 있다. 상기 브러쉬는 실질적으로 수평 방향으로 연장된 회전축을 중심으로 회전할 수 있다. 상기 브러쉬는 실질적으로 좌우 방향으로 연장된 회전축을 중심으로 회전할 수 있다. 상기 로봇 청소기(100)는 먼지통을 구비할 수 있고, 상기 브러쉬는 바닥을 비질하여 상대적으로 부피가 큰 이물질을 상기 먼지통에 담도록 구비될 수 있다.
한편, 롤링 모듈(130)은, 상기 롤링맙(130a)을 회전시키는 모터(137d)를 포함할 수 있고, 이 경우에, 제어부(20)는, 상기 모터(137d)를 구동하는 제2 모터 구동부(822)를 포함할 수 있다.
상기 제어부(20)의 메인 제어부(820)의 제어 동작에 의해, 상기 제2 모터 구동부(822)가 제어되며, 상기 제2 모터 구동부(822)는 모터(137d)를 구동하게 된다. 이에 따라, 상기 롤링맙(130a)은 모터(137d)에 의해 회전하게 된다.
상기 제2 모터 구동부(822)는, 모터(137d)를 구동시키기 위한 것으로, 인버터(미도시), 및 인버터 제어부(미도시), 모터(137d)에 흐르는 전류를 검출하는 전류 검출부(미도시)와, 모터(230)에 인가되는 전압을 검출하는 전압 검출부(미도시)를 구비할 수 있다. 또한, 상기 제2 모터 구동부(822)는, 인버터(미도시)에 입력되는 직류 전원을 공급하는, 컨버터 등을 더 포함하는 개념일 수 있다.
한편, 도 8에서는 상기 제1,2 모터 구동부(821, 822)가 제어부(20) 내에 구비되는 예를 도시하였으나, 본 발명은 이에 한정되지 않는다.
예를 들어, 상기 제1,2 모터 구동부(821, 822)는 각각 상기 제어부(20)의 외부에 별도로 구비되고, 상기 제어부(20)의 제어에 따라 동작할 수 있다.
또한, 상기 제1,2 모터 구동부(821, 822)는, 구비되는 모터(124, 137d)의 종류, 사양에 따라 그 세부 구성이 달라질 수 있다.
본 발명의 일 실시예에 따른 로봇 청소기(100)는, 각종 데이터를 저장하는 저장부(830)를 포함할 수 있다.
저장부(830)는 로봇 청소기(100)의 제어에 필요한 각종 정보들을 기록하는 것으로, 휘발성 또는 비휘발성 기록 매체를 포함할 수 있다. 기록 매체는 마이크로 프로세서(micro processor)에 의해 읽힐 수 있는 데이터를 저장한 것으로, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등을 포함할 수 있다.
실시예에 따라서는, 상기 저장부(830)는 청소 이력 정보를 저장할 수 있다. 이러한 청소 이력 정보는 청소를 수행할 때마다 생성될 수 있다.
또한, 로봇 청소기(100)는 로봇 청소기(100)의 동작, 상태와 관련된 각종 데이터를 센싱하는 복수의 센서들을 포함하는 센서부(810)를 포함할 수 있다.
예를 들어, 상기 센서부(810)는 전방의 장애물을 감지하는 장애물 감지 센서(811)를 포함할 수 있다. 상기 장애물 감지 센서(811)는, 도 1 등에서 예시된 복수의 센서(16a, 16b, 16c)를 포함할 수 있다.
상기 장애물 감지 센서(811)는, 적외선 센서, 초음파 센서, RF 센서, 지자기 센서, PSD(Position Sensitive Device) 센서 등을 포함할 수 있다.
한편, 상기 장애물 감지 센서(811)에 포함되는 센서의 위치와 종류는 이동 로봇의 기종에 따라 달라질 수 있고, 상기 장애물 감지 센서(811)는 더 다양한 센서를 포함할 수 있다.
상기 제어부(20)는 감지되는 장애물에 대한 회피 주행을 수행하도록 제어할 수 있다.
또한, 본 발명에 따르면, 제어부(20)는 전방 스핀맙(120a, 120b)과 롤링맙(130a)의 동작을 조합하여 다양한 주행 모션 제어가 가능하다.
따라서, 제어부(20)는 상기 장애물 감지 센서(811)에서 감지된 장애물에 따라 다양한 회피 주행을 수행하도록 제어할 수 있다.
상기 제어부(20)는 상기 장애물 감지 센서(811)에서 감지된 장애물과의 거리에 기초하여, 다른 회피 주행을 수행하도록 제어할 수 있다.
또한, 상기 센서부(810)는 외부로부터의 식별 신호를 수신하여 위치를 판별하는 위치 감지 센서(812)를 포함할 수 있다.
예를 들어, 상기 위치 감지 센서(812)는, 초광대역통신(Ultra Wide Band: UWB) 신호를 이용하는 UWB 센서일 수 있다. 초광대역통신(UWB)은 단거리 구간에서 저전력으로 초광대역의 주파수를 이용하여 신호를 송신하는 기술로, 거리 분해력과 투과력이 우수하여, 벽 등 장애물이 존재하는 실내 공간에서 이용하기에 적합하다는 장점이 있다.
한편, 상기 제어부(20)는 상기 위치 감지 센서(812)에서 수신된 신호에 따라 로봇 청소기(100)의 위치를 파악할 수 있다.
외부로부터의 식별 신호는 외부에 배치된 비컨(beacon) 등 신호 발생기가 송신하는 신호로, 신호 발생기는 복수 개가 구비되고, 복수 개의 서로 떨어진 장소에 각각이 구비될 수 있다.
이에 따라, 상기 위치 감지 센서(812)는 서로 다른 장소에 배치된 신호 발생기에서 송신된 식별 신호를 수신하는 것이 가능하다.
상기 위치 감지 센서(812)는 신호 발생기로부터 수신한 식별 신호의 세기, 방향, 신호를 수신한 시간 등의 정보는 물론, 이전 위치에서 수신한 정보와 현재 위치에서 수신한 정보를 서로 비교해서 위치 또는 방향을 파악할 수 있다.
또한, 본 발명은 UWB, BLE 등 특정 식별 신호를 발생시키는 3개 소 이상의 앵커(Anchor) 또는 비콘(Beacon)등 신호 발생기와의 상대 거리로부터 공간 내의 위치를 검출할 수 있다.
이 경우에, 제어부(20)는 상기 위치 감지 센서(812)에서 수신된 신호에 따라 현재의 위치 정보와 이전에 수신된 위치 정보의 입력 시간과 위치 정보의 비교 연산을 통해 속도 정보를 산출할 수 있고, 위치 정보로부터 이동 목표 경로(Target Trajectory)와 현재 지점에 대해, 잔존 거리와 위치 오차를 산출하여 목표 경로를 추정하여 모터의 회전을 제어할 수 있다.
한편, 상기 센서부(810)는 관성 측정 유닛 센서(Inertial Measurement Unit: IMU, 813)를 포함할 수 있다. 상기 관성 측정 유닛 센서(813)는, 자이로 센서(813a), 지자계 센서(813b), 및 가속도 센서(813c)를 포함할 수 있다. 또는, 상기 센서부(810)는, 자이로 센서(813a), 지자계 센서(813b), 및 가속도 센서(813c)를 각각 구비하는 것도 가능하다.
자이로 센서(813a)는 정해진 기준 방향을 감지하고, 지자계 센서(813b)는 방향각(방위각)을 측정하고, 가속도 센서(813c)는 속도 변화를 측정할 수 있다. 이에 따라, 관성 측정 유닛 센서(813)는 로봇 청소기(100)의 이동 속도, 방향, 중력, 가속도를 측정할 수 있다.
상기 자이로 센서(813a)와 상기 가속도 센서(813c)는 3축 센서일 수 있고, 상기 자이로 센서(813a)에서 수집된 정보는 롤(Roll), 피치(Pitch) 및 요(Yaw) 정보이고, 상기 가속도 센서(813c)에서 수집된 정보는 x축 가속도, y축 가속도 및 z축 가속도 정보일 수 있다.
관성 측정 유닛 센서(813)는, 이동 진행방향, 횡방향, 높이방향의 가속도와 롤링(roll), 피칭(pitch), 요(yaw) 각속도의 측정이 가능하며, 제어부(20)는 관성 측정 유닛 센서(813)로부터 얻어지는 가속도와 각속도를 적분하여 로봇 청소기(100)의 속도와 방향각의 산출이 가능하다.
한편, 본 발명의 일 실시예에 따른 로봇 청소기(100)의 롤링맙(130a) 등은 마찰력이 변화하는 상태에 따라 구름 운동과 미끄럼 운동의 비율이 지속적으로 변화할 수 있다.
따라서, 본 발명의 일 실시예에 따른 로봇 청소기(100)는, 운동을 제어하기 위해서 관성 측정 유닛 센서(813)에서 획득되는 가속도와 회전각속도 변화에 따라 복수개의 모터 구동부(821, 822) 출력을 조절하여 모터 RPM을 변화시킬 수 있는 보상 제어 구조를 가질수 있다.
예를 들어, 상기 제어부(20)는, 상기 관성 측정 유닛 센서(813)에서 감지되는 가속도와 회전각속도 변화에 기초하여, 상기 좌측 스핀맙(120a), 상기 우측 스핀맙(120b), 및 상기 롤링맙(130a)의 회전 속도를 제어할 수 있다.
또한, 상기 제어부(20)는, 가속도, 속도 등 센서부(810)에서 감지되는 정보를 이용해서 모터(124, 137d)의 출력을 보상하는 형태로 각각의 모터(124, 137d)를 제어하는 것이 가능하다.
또한, 상기 제어부(20)는, 센서부(810)에서 감지되는 로봇 청소기(100)의 방향각 정보(robot heading angle) 등 소정 정보에 기초하여, 현재 로봇 청소기(100)의 주행 상태를 판별할 수 있다.
한편, 상기 센서부(810)는 주행구역 내 바닥에 낭떠러지의 존재 여부를 감지하는 낭떠러지 감지센서(814)를 더 포함할 수 있다. 상기 낭떠러지 감지센서(814)는 도 1에서 예시된 낭떠러지 감지센서(17)일 수 있다.
실시예에 따라서는, 상기 낭떠러지 감지센서(814) 중 적어도 하나는, 하나 이상의 발광 소자와 하나 이상의 수광 소자를 구비할 수 있다.
바닥은 재질에 따라서 광을 반사시키는 정도가 다르다. 예를 들어, 하드 플로어(hard floor)는 상대적으로 광을 많이 반사할 수 있고, 카펫은 상대적으로 광을 적게 반사할 수 있다.
따라서, 제어부(20)는, 상기 발광 소자에서 출력된 광이 바닥에서 반사되어 상기 수광 소자에서 수광되는 반사광의 양에 기초하여 바닥의 재질을 판별할 수 있다.
예를 들어, 제어부(20)는, 상기 반사광의 광량이 소정 기준값 이상이면 상기 바닥의 재질을 하드 플로어(hard floor)로 판별하고, 상기 반사광의 광량이 상기 소정 기준값보다 작으면 상기 바닥의 재질을 카펫으로 판별할 수 있다.
한편, 상기 바닥의 재질의 판별 기준이 되는 기준값은 상기 바닥과 낭떠러지 감지센서(814)와의 거리 별로 설정될 수 있다.
예를 들어, 낭떠러지 감지센서(814)에서 감지되는 바닥과의 거리가 25mm인 경우의 기준값과 35mm인 경우의 기준값은 상이할 수 있다.
한편, 바닥과의 거리가 너무 짧을 경우에, 반사광의 광량이 유의미한 차이가 감지되지 않을 수 있다.
따라서, 제어부(20)는, 낭떠러지 감지센서(814)에서 감지되는 바닥과의 거리가 일정 거리 이상인 경우에만, 바닥 재질의 판단 기준으로 사용할 수 있다.
예를 들어, 제어부(20)는, 낭떠러지 감지센서(814)에서 감지되는 바닥과의 거리가 20mm 이상인 경우에 감지되는 반사광의 광량에 기초하여 바닥의 재질을 판별할 수 있다.
카펫과 같은 바닥에 대해서는 습식 청소를 하지 않는 것이 바람직하다. 따라서, 습식 기능을 제공하는 로봇 청소기(100)에 있어서 카펫을 감지하는 방법의 중요도는 매우 크다,
본 발명의 일실시예에 따르면, 낭떠러지 감지센서(814)에서 감지되는 반사광의 광량에 기초하여 카펫을 식별할 수 있다는 장점이 있다.
또한, 본 발명의 일실시예에 따르면, 낭떠러지 감지센서(814)에서 감지되는 반사광의 광량과 모터 부하 전류값을 이용하여 이중, 삼중으로 바닥 조건을 판별할 수 있다. 이에 따라, 바닥 조건을 더욱 정확하게 식별할 수 있는 장점이 있다.
한편, 본 발명의 일 실시예에 따른 센서부(810)는, 모터의 동작 및 상태 정보를 센싱하는 모터 감지 센서(815)를 더 포함할 수 있다. 상기 모터 감지 센서(815)는 모터의 모터 부하 전류값 등을 감지할 수 있다.
실시예에 따라서는, 상기 모터 감지 센서(815)는 제1,2 모터 구동부(821, 822)에 구비되는 전류 검출부로 간단히 구비될 수도 있다.
본 발명의 실시예에 따른 로봇 청소기(100)는, 전방 스핀맙(120a, 120b) 및 후방 롤링맙(130a)을 포함하고, 전방 스핀맙(120a, 120b) 및 후방 롤링맙(130a)은 이동에 있어 상호 협력의 관계를 가진다.
제어부(20)는, 전방 스핀맙(120a, 120b) 및 후방 롤링맙(130a)의 회전 동작을 제어하여 로봇 청소기(100)의 주행을 제어할 수 있다.
전방 스핀맙(120a, 120b)의 경우, 전/후진 운전시 좌측 스핀맙(120a)과 우측 스핀맙(120b)의 회전방향이 서로 반대이다.
구제척으로, 전방 스핀맙(120a, 120b)은 전진 주행시 상호 외측으로 회전하고, 후진 주행시 상호 내측으로 회전하게 된다.
또한, 좌우 회전의 경우 전방 스핀맙(120a, 120b)의 상호 회전방향이 동일하다.
예를 들어, 로봇 청소기(100)가 오른쪽 방향으로 회전을 하려는 경우, 전방 스핀맙(120a, 120b)은 모두 반시계 방향(본체 아랫방향에서 볼 경우)으로 움직이게 된다. 이 때 우측 스핀맙(120b)의 회전의 중심점이 되며, 반대쪽 좌측 스핀맙(120a)은 우회전의 보조력을 더해주는 운동을 하게 된다.
반대로 로봇 청소기(100)가 왼쪽 방향으로 회전을 하려는 경우, 전방 스핀맙(120a, 120b)은 모두 시계 방향(본체 아랫방향에서 볼 경우)으로 회전하게 되는데, 이때 역시 좌측 스핀맙(120a)은 회전의 중심점이 되며, 반대쪽 우측 스핀맙(120b)은 좌회전의 보조력을 더해주는 운동을 한다.
후방 롤링맙(130a)은, 전진 운동의 경우 앞으로 회전하거나 회전 RPM을 높이게 된다.
반대로 후진 운동의 경우 후방 롤링맙(130a)이 뒤로 회전하거나 회전 RPM을 낮춤으로서 본체 운동에 보조력을 더하거나 낮추는 역할을 한다.
이하에서는 도 10 내지 도 17을 참조하여 로봇 청소기(100)가 주행할 때 전방 스핀맙(120a, 120b)과 후방 롤링맙(130a)의 다양한 동작을 설명한다.
도 10을 참조하면, 제어부(20)는, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)을 외측 방향으로 회전시키고, 상기 롤링맙(130a)을 전방으로 회전시켜, 고속 전진 주행하도록 제어할 수 있다.
도 10의 (a)를 참조하면, 고속 전진 주행시, 상측에서 바라볼 때, 상기 좌측 스핀맙(120a)는 반시계 방향으로 회전하고, 상기 우측 스핀맙(120b)은 시계 방향으로 회전함으로써, 전방 스핀맙(120a, 120b)은 외측 방향으로 회전하고, 로봇 청소기(100)는 전진 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 전방으로 회전함으로써, 전진 방향으로 보조력을 부가할 수 있다. 이에 따라, 전방으로의 가속도를 더 높일 수 있다.
도 10의 (b)를 참조하면, 고속 전진 주행시, 하측에서 바라볼 때, 상기 좌측 스핀맙(120a)는 시계 방향으로 회전하고, 상기 우측 스핀맙(120b)은 반시계 방향으로 회전함으로써, 전방 스핀맙(120a, 120b)은 외측 방향으로 회전하고, 로봇 청소기(100)는 전진 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 전방으로 회전함으로써, 전진 방향으로 보조력을 부가할 수 있다. 즉, 전방으로의 가속도를 크게 할 수 있다.
상기와 같이, 2개의 전방 스핀맙(120a, 120b)과 후방 롤링맙(130a)을 회전시키면, 2개의 전방 스핀맙(120a, 120b)만 회전시킬 때보다, 더욱 빠르게 전방으로 이동할 수 있다.
따라서, 고속 전진 주행시, 제어부(20)는, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)은 외측 방향으로 회전하고, 상기 롤링맙(130a)은 전방으로 회전하도록 제어할 수 있다.
한편, 제어부(20)는, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)이 외측 방향으로 회전할 때, 상기 롤링맙(130a)의 회전 방향 및 속도를 제어함으로써, 다양한 동작을 구현할 수 있다.
예를 들어, 상기 제어부(20)는, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)을 외측 방향으로 회전시키고, 상기 롤링맙(130a)을 후방으로 제1 속도로 회전시켜, 정지 주행하도록 제어할 수 있다. 여기서, 상기 제1 속도는 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)의 회전에 의한 전방으로의 추진력과 동일한 크기의 후방 추진력을 얻기 위한 속도일 수 있다.
또는, 상기 제어부(20)는, 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)을 외측 방향으로 회전시키고, 상기 롤링맙(130a)을 후방으로 제2 속도로 회전시켜, 저속 전진 주행하도록 제어할 수 있다. 여기서, 상기 제2 속도의 절대값은 상기 제1 속도의 절대값보다 작을 수 있다. 따라서, 전체적으로는 전방 추진력이 후방 추진력보다 더 커지고, 전진 주행을 할 수 있으나, 후방 추진력의 존재로 인하여 속도는 상대적으로 느려지게 된다.
또는, 상기 제어부(20)는, 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)을 외측 방향으로 회전시키고, 상기 롤링맙(130a)을 후방으로 상기 제1 속도보다 더 빠른 속도로 회전시켜, 저속 후진 주행하도록 제어할 수 있다.
도 11의 (a)를 참조하면, 상측에서 바라볼 때, 상기 좌측 스핀맙(120a)는 반시계 방향으로 회전하고, 상기 우측 스핀맙(120b)은 시계 방향으로 회전함으로써, 전방 스핀맙(120a, 120b)은 외측 방향으로 회전하고, 로봇 청소기(100)는 전진 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 후방으로 회전함으로써, 전진 방향의 반대 방향인 후진 방향으로 보조력을 부가할 수 있다. 이에 따라, 전방으로의 가속도를 감소시킬 수 있다.
도 11의 (b)를 참조하면, 하측에서 바라볼 때, 상기 좌측 스핀맙(120a)는 시계 방향으로 회전하고, 상기 우측 스핀맙(120b)은 반시계 방향으로 회전함으로써, 전방 스핀맙(120a, 120b)은 외측 방향으로 회전하고, 로봇 청소기(100)는 전진 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 후방으로 회전함으로써, 후진 방향으로 보조력을 부가할 수 있다. 즉, 전방으로의 가속도를 작게할 수 있다.
상기와 같이, 2개의 전방 스핀맙(120a, 120b)과 후방 롤링맙(130a)을 회전시키면, 2개의 전방 스핀맙(120a, 120b)만 회전시킬 때보다, 느리게 전방으로 이동할 수 있다. 즉, 세척성능을 위해 스핀맙(120a, 120b)을 회전하는 속도를 그대로 유지시키면서도, 전방으로 느리게 이동할 수 있다.
또한, 상기와 같은 회전방향으로 동작 중인 상태에서, 롤링맙(130a)의 회전 속도(rpm)를 더욱 늘려주면, 제자리에 정지한 상태(정지 주행)로도 스핀맙(120a, 120b) 및 롤링맙(130a)을 회전시켜 걸레질을 할 수 있다.
또한, 상기와 같은 회전방향으로 동작 중인 상태에서, 롤링맙(130a)의 회전 속도(rpm)을 더욱 늘려주면, 후진하면서 스핀맙(120a, 120b) 및 롤링맙(130a)을 회전시켜 걸레질을 할 수 있다.
즉, 스핀맙(120a, 120b) 및 롤링맙(130a)의 회전속도를 높여 걸레질의 세척성능을 크게 해주면서도, 로봇 청소기(100)의 이동속도를 느리게 하거나 로봇 청소기(100)를 정지 주행하게 하여, 일정 지역을 집중적으로 물걸레질하는 집중 청소를 수행할 수 있다.
도 12를 참조하면, 제어부(20)는, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)을 내측 방향으로 회전시키고, 상기 롤링맙(130a)을 후방으로 회전시켜, 고속 후진 주행하도록 제어할 수 있다.
도 12의 (a)를 참조하면, 고속 전진 주행시, 상측에서 바라볼 때, 상기 좌측 스핀맙(120a)는 시계 방향으로 회전하고, 상기 우측 스핀맙(120b)은 반시계 방향으로 회전함으로써, 전방 스핀맙(120a, 120b)은 내측 방향으로 회전하고, 로봇 청소기(100)는 후진 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 후방으로 회전함으로써, 후진 방향으로 보조력을 부가할 수 있다. 이에 따라, 후방으로의 가속도를 더 높일 수 있다.
도 12의 (b)를 참조하면, 고속 후진 주행시, 하측에서 바라볼 때, 상기 좌측 스핀맙(120a)는 반시계 방향으로 회전하고, 상기 우측 스핀맙(120b)은 시계 방향으로 회전함으로써, 전방 스핀맙(120a, 120b)은 내측 방향으로 회전하고, 로봇 청소기(100)는 후진 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 후방으로 회전함으로써, 후진 방향으로 보조력을 부가할 수 있다. 즉, 후방으로의 가속도를 크게 할 수 있다.
상기와 같이, 2개의 전방 스핀맙(120a, 120b)과 후방 롤링맙(130a)을 회전시키면, 2개의 전방 스핀맙(120a, 120b)만 회전시킬 때보다, 더욱 빠르게 후방으로 이동할 수 있다.
따라서, 고속 후진 주행시, 제어부(20)는, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)은 내측 방향으로 회전하고, 상기 롤링맙(130a)은 후방으로 회전하도록 제어할 수 있다.
한편, 제어부(20)는, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)이 내측 방향으로 회전할 때, 상기 롤링맙(130a)의 회전 방향 및 속도를 제어함으로써, 다양한 동작을 구현할 수 있다.
예를 들어, 상기 제어부(20)는, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)을 내측 방향으로 회전시키고, 상기 롤링맙(130a)을 전방으로 제3 속도로로 회전시켜, 정지 주행하도록 제어할 수 있다. 여기서, 상기 제3 속도는 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)의 회전에 의한 후방으로의 추진력과 동일한 크기의 전방 추진력을 얻기 위한 속도일 수 있다.
또는, 상기 제어부(20)는, 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)을 내측 방향으로 회전시키고, 상기 롤링맙(130a)을 전방으로 제4 속도로 회전시켜, 저속 후진 주행하도록 제어할 수 있다. 여기서, 상기 제4 속도의 절대값은 상기 제3 속도의 절대값보다 작을 수 있다. 따라서, 전체적으로는 후방 추진력이 전방 추진력보다 더 커지고, 후진 주행을 할 수 있으나, 전방 추진력의 존재로 인하여 속도는 상대적으로 느려지게 된다.
또는, 상기 제어부(20)는, 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)을 내측 방향으로 회전시키고, 상기 롤링맙(130a)을 전방으로 상기 제3 속도보다 더 빠른 속도로 회전시켜, 저속 전진 주행하도록 제어할 수 있다.
도 13의 (a)를 참조하면, 상측에서 바라볼 때, 상기 좌측 스핀맙(120a)는 시계 방향으로 회전하고, 상기 우측 스핀맙(120b)은 반시계 방향으로 회전함으로써, 전방 스핀맙(120a, 120b)은 내측 방향으로 회전하고, 로봇 청소기(100)는 후진 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 전방으로 회전함으로써, 후진 방향의 반대 방향인 전진 방향으로 보조력을 부가할 수 있다. 이에 따라, 후방으로의 가속도를 감소시킬 수 있다.
도 13의 (b)를 참조하면, 하측에서 바라볼 때, 상기 좌측 스핀맙(120a)는 반시계 방향으로 회전하고, 상기 우측 스핀맙(120b)은 시계 방향으로 회전함으로써, 전방 스핀맙(120a, 120b)은 내측 방향으로 회전하고, 로봇 청소기(100)는 후진 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 전방으로 회전함으로써, 전진 방향으로 보조력을 부가할 수 있다. 즉, 후방으로의 가속도를 작게할 수 있다.
상기와 같이, 2개의 전방 스핀맙(120a, 120b)과 후방 롤링맙(130a)을 회전시키면, 2개의 전방 스핀맙(120a, 120b)만 회전시킬 때보다, 느리게 후방으로 이동할 수 있다. 즉, 세척성능을 위해 스핀맙(120a, 120b)을 회전하는 속도를 그대로 유지시키면서도, 후방으로 느리게 이동할 수 있다.
또한, 상기와 같은 회전방향으로 동작 중인 상태에서, 롤링맙(130a)의 회전 속도(rpm)를 더욱 늘려주면, 제자리에 정지한 상태(정지 주행)로도 스핀맙(120a, 120b) 및 롤링맙(130a)을 회전시켜 걸레질을 할 수 있다.
또한, 상기와 같은 회전방향으로 동작 중인 상태에서, 롤링맙(130a)의 회전 속도(rpm)을 더욱 늘려주면, 전진하면서 스핀맙(120a, 120b) 및 롤링맙(130a)을 회전시켜 걸레질을 할 수 있다.
즉, 스핀맙(120a, 120b) 및 롤링맙(130a)의 회전속도를 높여 걸레질의 세척성능을 크게 해주면서도, 로봇 청소기(100)의 이동속도를 느리게 하거나 로봇 청소기(100)를 정지 주행하게 하여, 일정 지역을 집중적으로 물걸레질하는 집중 청소를 수행할 수 있다.
한편, 상기 제어부(20)는, 회전 주행 시, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b) 중 적어도 하나를 상기 시계 방향 또는 상기 반시계방향으로 회전시켜, 회전 방향을 제어하고, 상기 롤링맙(130a)을 전방 또는 후방으로 회전시켜 회전 크기를 제어할 수 있다.
도 14의 (a)를 참조하면, 상측에서 바라볼 때, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)은 반시계 방향으로 회전함으로써, 로봇 청소기(100)는 우회전 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 전방으로 회전함으로써, 전진 방향으로 보조력을 부가할 수 있다. 이에 따라, 로봇 청소기(100)는 더 큰 회전반경으로 회전할 수 있다.
도 14의 (b)를 참조하면, 하측에서 바라볼 때, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)은 시계 방향으로 회전함으로써, 로봇 청소기(100)는 우회전 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 전방으로 회전함으로써, 전진 방향으로 보조력을 부가할 수 있다. 즉, 회전반경을 더 크게할 수 있다.
상기와 같이, 2개의 전방 스핀맙(120a, 120b)과 후방 롤링맙(130a)을 회전시키면, 2개의 스핀맙(120a, 120b)만 회전시킬 때보다, 더욱 큰 회전반경으로 우회전 할 수 있다. 또한, 회전을 하는 중에 회전 중심을 계속적으로 전방으로 이동시킬 수 있다.
또는, 제어부(20)는, 상측에서 바라볼때 우측 스핀맙(120b)이 반시계 방향으로 회전하고 있는 상태에서, 좌측 스핀맙(120a)이 우측 스핀맙(120b)보다 낮은 속도로 시계 방향으로 회전하거나, 좌측 스핀맙(120a)이 정지해 있는 경우에도, 롤링맙(130b)을 전방으로 회전시켜, 큰 회전반경으로 회전 주행하도록 제어할 수 있다.
또는, 제어부(20)는, 상측에서 바라볼때 좌측 스핀맙(120a)이 반시계 방향으로 회전하고 있는 상태에서, 우측 스핀맙(120b)이 좌측 스핀맙(120a)보다 낮은 속도로 시계 방향으로 회전하거나, 우측 스핀맙(120b)이 정지해 있는 경우에도, 롤링맙(130b)을 전방으로 회전시켜, 큰 회전반경으로 회전 주행하도록 제어할 수 있다.
도 15의 (a)를 참조하면, 상측에서 바라볼 때, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)은 반시계 방향으로 회전함으로써, 로봇 청소기(100)는 우회전 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 후방으로 회전함으로써, 후진 방향으로 보조력을 부가할 수 있다. 이에 따라, 로봇 청소기(100)는 더 작은 회전반경으로 회전할 수 있다.
도 15의 (b)를 참조하면, 하측에서 바라볼 때, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)은 시계 방향으로 회전함으로써, 로봇 청소기(100)는 우회전 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 후방으로 회전함으로써, 후진 방향으로 보조력을 부가할 수 있다. 즉, 회전반경을 더 작게할 수 있다.
상기와 같이, 2개의 전방 스핀맙(120a, 120b)과 후방 롤링맙(130a)을 회전시키면, 2개의 스핀맙(120a, 120b)만 회전시킬 때보다, 더욱 작은 회전반경으로 우회전할 수 있다. 또한, 회전을 하는 중에 회전 중심을 계속적으로 후방으로 이동시킬 수 있음.
또는, 제어부(20)는, 우측 스핀맙(120b)이 반시계 방향으로 회전하고 있는 상태에서, 좌측 스핀맙(120a)이 우측 스핀맙(120b)보다 낮은 속도로 시계 방향으로 회전하거나, 좌측 스핀맙(120a)이 정지해 있는 경우에도, 롤링맙(130b)을 후방으로 회전시켜, 작은 회전반경으로 회전 주행하도록 제어할 수 있다.
또는, 제어부(20)는, 상측에서 바라볼때 좌측 스핀맙(120a)이 반시계 방향으로 회전하고 있는 상태에서, 우측 스핀맙(120b)이 좌측 스핀맙(120a)보다 낮은 속도로 시계 방향으로 회전하거나, 우측 스핀맙(120b)이 정지해 있는 경우에도, 롤링맙(130b)을 후방으로 회전시켜, 작은 회전반경으로 회전 주행하도록 제어할 수 있다.
도 16의 (a)를 참조하면, 상측에서 바라볼 때, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)은 시계 방향으로 회전함으로써, 로봇 청소기(100)는 좌회전 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 전방으로 회전함으로써, 전진 방향으로 보조력을 부가할 수 있다. 이에 따라, 로봇 청소기(100)는 더 큰 회전반경으로 회전할 수 있다.
도 16의 (b)를 참조하면, 하측에서 바라볼 때, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)은 반시계 방향으로 회전함으로써, 로봇 청소기(100)는 좌회전 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 전방으로 회전함으로써, 전진 방향으로 보조력을 부가할 수 있다. 즉, 회전반경을 더 크게할 수 있다.
상기와 같이, 2개의 전방 스핀맙(120a, 120b)과 후방 롤링맙(130a)을 회전시키면, 2개의 스핀맙(120a, 120b)만 회전시킬 때보다, 더욱 큰 회전반경으로 좌회전 할 수 있다. 또한, 회전을 하는 중에 회전 중심을 계속적으로 전방으로 이동시킬 수 있다.
또는, 제어부(20)는, 우측 스핀맙(120b)이 시계 방향으로 회전하고 있는 상태에서, 좌측 스핀맙(120a)이 우측 스핀맙(120b)보다 낮은 속도로 반시계 방향으로 회전하거나, 좌측 스핀맙(120a)이 정지해 있는 경우에도, 롤링맙(130b)을 전방으로 회전시켜, 큰 회전반경으로 회전 주행하도록 제어할 수 있다.
또는, 제어부(20)는, 상측에서 바라볼때 좌측 스핀맙(120a)이 시계 방향으로 회전하고 있는 상태에서, 우측 스핀맙(120b)이 좌측 스핀맙(120a)보다 낮은 속도로 반시계 방향으로 회전하거나, 우측 스핀맙(120b)이 정지해 있는 경우에도, 롤링맙(130b)을 전방으로 회전시켜, 큰 회전반경으로 회전 주행하도록 제어할 수 있다.
도 17의 (a)를 참조하면, 상측에서 바라볼 때, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)은 시계 방향으로 회전함으로써, 로봇 청소기(100)는 좌회전 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 후방으로 회전함으로써, 후진 방향으로 보조력을 부가할 수 있다. 이에 따라, 로봇 청소기(100)는 더 작은 회전반경으로 회전할 수 있다.
도 17의 (b)를 참조하면, 하측에서 바라볼 때, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)은 반시계 방향으로 회전함으로써, 로봇 청소기(100)는 좌회전 주행할 수 있다.
이 경우에, 상기 롤링맙(130a)은 후방으로 회전함으로써, 후진 방향으로 보조력을 부가할 수 있다. 즉, 회전반경을 더 작게할 수 있다.
상기와 같이, 2개의 전방 스핀맙(120a, 120b)과 후방 롤링맙(130a)을 회전시키면, 2개의 스핀맙(120a, 120b)만 회전시킬 때보다, 더욱 작은 회전반경으로 좌회전할 수 있다. 또한, 회전을 하는 중에 회전 중심을 계속적으로 후방으로 이동시킬 수 있음.
또는, 제어부(20)는, 우측 스핀맙(120b)이 시계 방향으로 회전하고 있는 상태에서, 좌측 스핀맙(120a)이 우측 스핀맙(120b)보다 낮은 속도로 반시계 방향으로 회전하거나, 좌측 스핀맙(120a)이 정지해 있는 경우에도, 롤링맙(130b)을 후방으로 회전시켜, 작은 회전반경으로 회전 주행하도록 제어할 수 있다.
또는, 제어부(20)는, 상측에서 바라볼때 좌측 스핀맙(120a)이 시계 방향으로 회전하고 있는 상태에서, 우측 스핀맙(120b)이 좌측 스핀맙(120a)보다 낮은 속도로 반시계 방향으로 회전하거나, 우측 스핀맙(120b)이 정지해 있는 경우에도, 롤링맙(130b)을 후방으로 회전시켜, 작은 회전반경으로 회전 주행하도록 제어할 수 있다.
본 발명에 따른 로봇 청소기(100)는, 전륜에 대응하는 스핀맙(120a, 120b)과 후륜에 대응하는 롤링맙(130a)의 회전수, 마찰력의 차이에 의한 드래그포스(끌기힘)의 차이로 기인한 운동을 발생시킴으로써, 주행할 수 있다.
또한, 동일한 방향으로 힘을 가하도록 스핀맙(120a, 120b)과 롤링맙(130a)을 회전시키면, 구름 구동 비율을 높여 고속의 이동이 가능하다.
또한, 스핀맙(120a, 120b)과 롤링맙(130a)의 회전이 힘의 평형을 이루어 제자리에 위치함으로써, 스핀맙(120a, 120b)과 롤링맙(130a)이 동시에 미끌어짐 상태에 특정 위치를 집중 청소하도록 제어할 수 있다.
한편, 본 발명의 일 실시예에 따르면, 센서부(810)는 외부로부터의 식별 신호를 수신하여 위치를 판별하는 위치 감지 센서(812)를 포함할 수 있고, 상기 제어부(20)는 상기 위치 감지 센서(812)에서 수신된 신호에 따라 로봇 청소기(100)의 위치를 파악할 수 있다.
외부로부터의 식별 신호는 외부에 배치된 비컨(beacon) 등 신호 발생기가 송신하는 신호로, 신호 발생기는 복수 개가 구비되고, 복수 개의 서로 떨어진 장소에 각각이 구비될 수 있다.
이에 따라, 상기 위치 감지 센서(812)는 서로 다른 장소에 배치된 신호 발생기에서 송신된 식별 신호를 수신하는 것이 가능하다.
도 18을 참조하면, 로봇 청소기(100)는 상기 위치 감지 센서(812)를 통하여 복수의 장소(a1, a2, a3)에 배치된 UWB, BLE 등 신호 발생기로부터의 식별 신호를 수신할 수 있다.
상기 위치 감지 센서(812)는 복수의 장소(a1, a2, a3)의 신호 발생기로부터 수신한 식별 신호의 세기, 방향, 신호를 수신한 시간 등의 정보는 물론, 이전 위치에서 수신한 정보와 현재 위치에서 수신한 정보를 서로 비교해서 위치 또는 방향을 파악할 수 있다.
또한, 본 발명에 따른 로봇 청소기(100)는, 3개 소(a1, a2, a3) 이상의 신호 발생기와의 상대 거리로부터 공간 내의 위치를 검출할 수 있다. 예를 들어, 3점 반경 위치 측위 방법을 이용하여 공간 내의 위치를 검출할 수 있다.
이 경우에, 제어부(20)는, 상기 위치 감지 센서(812)에서 수신된 신호에 따라 현재의 위치 정보와 이전에 수신된 위치 정보의 입력 시간과 위치 정보의 비교 연산을 통해 속도 정보를 산출할 수 있고, 위치 정보로부터 이동 목표 경로(Target Trajectory)와 현재 지점에 대해, 잔존 거리와 위치 오차를 산출하여 목표 경로를 추정하여 모터의 회전을 제어할 수 있다.
메인 제어부(820)는, 이전에 수신된 위치 정보의 입력 시간과 위치 정보의 비교 연산을 통해 속도 정보를 산출하고, 위치 정보로부터 이동 목표 경로(Target Trajectory)와 현재 지점에 대해, 잔존 거리와 위치 오차를 산출하여, 목표 경로를 추종하도록 모터 구동부(821, 822)의 입력을 계산하여 롤링맙(130a) 등의 회전을 제어할 수 있다. 이에 따라, 구름 운동과 미끌어짐 운동이 복합적으로 발생하는 로봇청소기(100)의 위치를 안정적으로 목표 경로에 추종시킬 수 있다.
예를 들어, 상기 위치 감지 센서(812)는, 초광대역통신(UWB) 신호를 이용하는 UWB 센서일 수 있다.
본 발명의 일 실시예에 따른 로봇 청소기(100)는, UWB 센서를 통해 공간 내의 실시간 절대 위치 인식이 가능하며, 주행 모션 제어가 가능하다.
또한, 상시적인 미끌어짐(Slip)으로 인해 바퀴 회전수 감지를 통한 이동 거리 및 현재 위치 추정이 어려운 상황에서 실시간 실내 위치 인식이 가능한 UWB 센서를 통해 현재 위치 유지, 목표 지점 이동, 미청소 영역 주행 기능을 수행할 수 있다.
한편, 센서부(810)는 관성 측정 유닛 센서(Inertial Measurement Unit: IMU, 813)를 포함할 수 있다. 상기 관성 측정 유닛 센서(813)는, 정해진 기준 방향을 감지하는 자이로 센서(813a), 방향각(방위각)을 측정하는 지자계 센서(813b), 및 속도 변화를 측정하는 가속도 센서(813c)를 포함할 수 있다. 또는, 상기 센서부(810)는, 자이로 센서(813a), 지자계 센서(813b), 및 가속도 센서(813c)를 각각 구비하는 것도 가능하다.
이에 따라, 상기 센서부(810)는 로봇 청소기(100)의 이동 속도, 방향, 중력, 가속도를 측정할 수 있다.
상기 자이로 센서(813a)와 상기 가속도 센서(813c)는 3축 센서일 수 있다. 이 경우에, 상기 자이로 센서(813a)에서 수집된 정보는 롤(Roll), 피치(Pitch) 및 요(Yaw) 정보이고, 상기 가속도 센서(813c)에서 수집된 정보는 x축 가속도, y축 가속도 및 z축 가속도 정보일 수 있다.
관성 측정 유닛 센서(813)는, 이동 진행방향, 횡방향, 높이방향의 가속도와 롤링(roll), 피칭(pitch), 요(yaw) 각속도의 측정이 가능하며, 제어부(20)는 관성 측정 유닛 센서(813)로부터 얻어지는 가속도와 각속도를 적분하여 로봇 청소기(100)의 속도와 방향각의 산출이 가능하다.
한편, 본 발명의 일 실시예에 따른 로봇 청소기(100)의 롤링맙(130a) 등은 마찰력이 변화하는 상태에 따라 구름 운동과 미끄럼 운동의 비율이 지속적으로 변화할 수 있다.
따라서, 본 발명의 일 실시예에 따른 로봇 청소기(100)는, 운동을 제어하기 위해서 관성 측정 유닛 센서(813)에서 획득되는 가속도와 회전각속도 변화에 따라 복수개의 모터 구동부(821, 822) 출력을 조절하여 모터 RPM을 변화시킬 수 있는 보상 제어 구조를 가질수 있다.
예를 들어, 상기 제어부(20)는, 상기 관성 측정 유닛 센서(813)에서 감지되는 가속도와 회전각속도 변화에 기초하여, 상기 좌측 스핀맙(120a), 상기 우측 스핀맙(120b), 및 상기 롤링맙(130a)의 회전 속도를 제어할 수 있다.
또한, 상기 제어부(20)는, 가속도, 속도 등 센서부(810)에서 감지되는 정보를 이용해서 모터(124, 137d)의 출력을 보상하는 형태로 각각의 모터(124, 137d)를 제어하는 것이 가능하다.
또한, 상기 제어부(20)는, 센서부(810)에서 감지되는 로봇 청소기(100)의 방향각 정보(robot heading angle) 등 소정 정보에 기초하여, 현재 로봇 청소기(100)의 주행 상태를 판별할 수 있다.
또한, 상기 제어부(20)는, 상기 관성 측정 유닛 센서(813)에서 획득되는 정보를 통해 주행 모션 안정화 제어가 가능하다.
한편, 로봇 청소기(100)가 주행하는 바닥의 종류 및 상태에 따라 미끄러짐 정도와 마찰력이 변할 수 있다. 상기 제어부(20)는, 상기 관성 측정 유닛 센서(813)에서 획득되는 정보를 통해, 바닥의 종류 및 상태에 따라 변경되는 주행 상태를 판별하여 보상 제어할 수 있다.
도 19는 다양한 바닥 상태에 따라 변경되는 마찰력 조건 등을 예시한다.
도 19의 (a)는 통상적으로 거주 공간 바닥에 깔리는 장판 바닥(1410)을 예시하고, 도 19의 (b)는 빌딩 로비, 공공 장소 바닥에 깔리는 대리석 바닥(1420)을 예시하고, 도 19의 (c)는 거친 바닥(1430)을 예시한다. 상기 거친 바닥(1430)은 목재, 카펫 등 표면이 거친 소재로 형성된 바닥일 수 있다.
대리석 바닥(1420)은 장판 바닥(1410)에 비해 더 미끄럽고 작은 마찰력을 가질 수 있다. 따라서, 동일 속도로 주행하도록 제어할 경우에, 대리석 바닥(1420)에서의 실제 주행 속도는 장판 바닥(1410)에서의 실제 주행 속도보다 빨라질 수 있다. 제어부(20)는, 가속도, 속도 등 센서부(810)에서 감지되는 정보를 이용해서 모터(124, 137d)의 출력을 보상하여 각각의 모터(124, 137d)를 제어할 수 있다.
또한, 거친 바닥(1430)은 장판 바닥(1410)에 비해 큰 마찰력을 가질 수 있다. 따라서, 동일 속도로 주행하도록 제어할 경우에, 거친 바닥(1430)에서의 실제 주행 속도는 장판 바닥(1410)에서의 실제 주행 속도보다 느려질 수 있다. 제어부(20)는, 가속도, 속도 등 센서부(810)에서 감지되는 정보를 이용해서 모터(124, 137d)의 출력을 보상하여 각각의 모터(124, 137d)를 제어할 수 있다.
한편, 센서부(810)는 전방의 장애물을 감지하는 장애물 감지 센서(811)를 포함할 수 있고, 제어부(20)는 감지되는 장애물에 대한 회피 주행을 수행하도록 제어할 수 있다.
또한, 본 발명에 따르면, 제어부(20)는 전방 스핀맙(120a, 120b)과 롤링맙(130a)의 동작을 조합하여 다양한 주행 모션 제어가 가능하다.
따라서, 제어부(20)는 상기 장애물 감지 센서(811)에서 감지된 장애물에 따라 다양한 회피 주행을 수행하도록 제어할 수 있다.
상기 제어부(20)는 상기 장애물 감지 센서(811)에서 감지된 장애물과의 거리에 기초하여, 다른 회피 주행을 수행하도록 제어할 수 있다.
예를 들어, 상기 장애물 감지 센서(811)가 장애물을 감지하는 경우에, 상기 제어부(20)는, 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)을 시계 방향 또는 반시계방향으로 회전시키고, 상기 장애물 감지 센서(811)가 감지하는 장애물과의 거리에 기초하여, 상기 롤링맙(130a)을 전방 또는 후방으로 회전시켜 회피 주행하도록 제어할 수 있다.
즉, 도 14 내지 도 17을 참조하여 상술한 것과 같이, 상기 제어부(20)는, 회전반경의 크기를 조절할 수 있고, 상기 장애물 감지 센서(811)가 감지하는 장애물과의 거리에 따라 적절한 회전반경으로 회전하는 주행으로 장애물을 회피할 수 있다.
도 1 내지 도 19를 참조하여 상술한 바와 같이, 본 발명의 일 실시예에 따른 로봇 청소기(100)는, 상측에서 바라볼 때 시계 방향 또는 반시계 방향으로 회전하면서 바닥에 접촉하게 구비되는 좌측 스핀맙(120a) 및 우측 스핀맙(120b)을 포함하는 스핀 모듈(120), 상기 좌측 스핀맙(120a)과 우측 스핀맙(120b)으로부터 전후 방향으로 이격된 위치에서 바닥에 접촉하게 구비되는 롤링 모듈(130), 복수의 센서를 포함하는 센서부(810), 및, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)의 회전 동작 및 상기 롤링맙(130a)의 회전 동작을 제어하는 제어부(20)를 포함할 수 있다.
상기 제어부(20)는, 상기 센서부(810)에서 감지되는 데이터에 기초하여, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)의 회전 동작을 제어할 수 있다.
또한, 상기 롤링맙(130a)을 포함하는 실시예의 경우, 상기 제어부(20)는, 상기 롤링맙(130a)의 회전 동작을 제어할 수 있다.
이하에서는 상기 롤링맙(130a)을 포함하는 실시예를 위주로 설명한다.
상기 제어부(20)는, 가속도, 속도 등 센서부(810)에서 감지되는 정보를 이용해서 모터(124, 137d)의 출력을 보상하여 맙(120a, 120b, 130a)의 모터(124, 137d)를 제어할 수 있다.
또한, 바닥 종류별로 주행시 센싱된 데이터 및/또는 센싱된 데이터에 기초하여 결정된 기준치 값들이 저장부(830)에 저장될 수 있고, 상기 제어부(20)는, 주행시 측정되는 센싱 데이터와 기저장된 데이터를 비교하여 로봇 청소기(100)의 동작을 제어할 수 있다.
또한, 상기 제어부(20)는, 상기 센서부(810)에서 감지되는 데이터에 기초하여, 로봇 청소기(100)의 자세 변화 여부 및 상기 맙(120a, 120b, 130a)의 모터(124, 137d) 부하 전류값 변화 여부를 판별하고, 상기 자세 변화와 상기 전류값 변화가 있는 것으로 판별되면, 바닥의 소정 영역을 오염 지역으로 식별할 수 있다.
도 20은 오염물이 없는 일반 바닥에서의 직전 주행 시 감지된 센싱 데이터를 예시한 도면이다.
도 20의 (a)는, 세 종류의 바닥 별로 직진 주행을 하며 측정된 모터 부하 전류값을 예시한다.
여기서, 하드 플로어(hard floor)는 석재, 목재 또는 장판재로 이루어진 바닥면이 매끄러운 피청소면을 의미하고, 거친 바닥은 카펫 등 소프트 플로어(soft floor) 또는 표면이 거친 목재로 형성된 바닥일 수 있다.
대리석 바닥은 일반 하드 플로어 바닥에 비해 더 미끄럽고 작은 마찰력을 가질 수 있다. 따라서, 동일 속도로 맙(120a, 120b, 130a)을 회전시키면, 대리석 바닥은 일반 하드 플로어 바닥에 비해 더 작은 부하가 발생하고, 감지되는 모터 부하 전류값도 작게 나타난다.
또한, 거친 바닥은 일반 하드 플로어 바닥에 비해 더 큰 마찰력을 가질 수 있다. 따라서, 동일 속도로 맙(120a, 120b, 130a)을 회전시키면, 거친 바닥은 일반 하드 플로어 바닥에 비해 더 큰 부하가 발생하고, 감지되는 모터 부하 전류값도 크게 나타난다.
본 발명에 따르면, 전방 스핀맙(120a, 120b)과 후방 롤링맙(130a)에 장착되어 있는 모터(124, 137d)의 전류량(모터 부하 전류값)과 전류 변화량을 감지하고, 일반 바닥 상태에서의 값을 기준(Reference)으로 하여 바닥 상태 변화에 따른 전류량(I)과 전류 변화량(△I)을 감지함으로써, 바닥 조건의 변화를 판별할 수 있다.
즉, 바닥과 마찰에 의해 모터(124, 137d)에서 발생하는 모터 부하 전류값의 변화를 감지하고 이를 통해 바닥 조건의 변화를 판별할 수 있다.
한편, 롤링맙(130a)은 스핀맙(120a, 120b)보다 바닥과 접촉하는 단면적이 넓기 때문에 바닥 조건의 변화에 더 민감하게 반응할 수 있다. 이 경우에, 롤링맙(130a)의 모터 부하 전류값은 바닥 조건의 변화에 따라 더 크게 변할 수 있어, 바닥 조건의 변화를 더 높은 정확도로 판별할 수 있다.
한편, 스핀맙(120a, 120b)은 좌측과 우측에 한쌍이 배치되므로 바닥 조건이 좌/우측 중 어느 방향에서 변하는 지 판단하기에 용이하다는 장점이 있다.
또한, 통상적으로 로봇 청소기는 직진 주행을 후진 주행보다 많이 수행하므로, 스핀맙(120a, 120b)과 롤링맙(130a) 중 전방에 배치되는 회전부재의 모터 부하 전류값을 이용하는 것이 바닥 조건의 변화를 더 빨리 감지할 수 있다는 장점이 있다.
한편, 도 20의 (a)에서는 종류의 바닥 별로 직진 주행을 하며 측정된 모터 부하 전류값을 예시하지만, 본 발명은 이에 한정되지 않는다. 예를 들어, 본 발명은 바닥의 종류를 더 세분화, 다양화하여 각각 측정된 센싱 데이터를 이용할 수도 있다.
도 20의 (b)는 직진 주행을 하며 측정된 자세 정보값을 예시한다. 예를 들어, 상기 자세 정보값은, 방향각(heading angle) 정보값일 수 있다.
제어부(20)는, 도 20의 (b)와 같이, 직진 주행을 하며 측정된 자세 정보값을, 직진 주행 중 감지되는 자세 정보값과 비교하여, 유의미한 차이가 발생하면 자세가 틀어진 것으로 판단할 수 있다.
본 발명의 일 실시예에 따른 로봇 청소기(100)는, 전진, 후진 혹은 회전 등 의도한 모션(motion)과 다르게 오염 등의 영향에 따른 바닥조건 변화로 의도하지 않은 로봇 자세 변화가 일어나는 경우, 자이로 센서(813a)나 지자계 센서(813c)를 통해 로봇 자세(robot heading angle) 및 자세 변화량(△robot heading angle)을 참고하여 로봇 청소기(100)의 자세가 틀어짐을 판별할 수 있다.
즉, 의도한 동작과 다른 로봇 청소기(100)의 자세 변화가 일어나는 경우, 자이로 센서(813a)나 지자계 센서(813c)를 통해 오동작을 감지하여 로봇 자세 틀어짐을 판별할 수 있다.
도 20에서는 직진 주행시 수집된 센싱 데이터를 예시하고, 이를 이용하는 실시예를 설명하였으나, 본 발명은 이에 한정되지 않는다. 예를 들어, 회전 주행시 수집된 센싱 데이터 및/또는 회전 주행시 수집된 센싱 데이터에 기초하여 결정된 기준치 값들이 저장부(830)에 저장될 수 있고, 상기 제어부(20)는, 회전 주행시 측정되는 센싱 데이터와 기저장된 데이터를 비교하여 로봇 청소기(100)의 동작을 제어할 수 있다.
도 21은 본 발명의 실시예에 따른 로봇 청소기의 상태 판별에 관한 설명에 참조되는 도면이다.
도 21을 참조하면, 상기 제어부(20)는, 상기 센서부(810)에서 감지되는 데이터에 기초하여, 로봇 청소기(100)의 자세 변화 여부 및 상기 맙(120a, 120b, 130a)의 모터(124, 137d) 부하 전류값 변화 여부를 판별하고, 상기 자세 변화와 상기 전류값 변화가 있는 것으로 판별되면, 바닥의 소정 영역을 오염 지역으로 식별할 수 있다.
또한, 상기 제어부(20)는, 상기 자세 변화가 있는 것으로 판별되고, 상기 전류값 변화가 없는 것으로 판별되면, 상기 자세 변화는 외력에 의한 자세 변화로 판별할 수 있다.
또한, 상기 제어부(20)는, 상기 자세 변화가 없는 것으로 판별되고, 상기 전류값 변화가 있는 것으로 판별되면, 상기 바닥의 종류가 변경된 것으로 식별할 수 있다.
또한, 상기 제어부(20)는, 상기 자세 변화와 상기 전류값 변화가 없는 것으로 판별되면, 돌발 상황 없이 의도한 동작을 수행하고 있는 정상 상태로 판별할 수 있다.
한편, 이하에서는 상기 롤링맙(130a)의 모터(137d) 부하 전류값을 이용하는 실시예를 중심으로 설명한다. 하지만, 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)을 구비하는 실시예의 경우에, 상기 롤링맙(130a)의 모터(137d) 부하 전류값과 동일한 방식으로 상기 좌측 스핀맙(120a)과 상기 우측 스핀맙(120b)의 모터(124) 부하 전류값도 이용할 수 있을 것이다.
상기 제어부(20)는, 상기 센서부(810)에서 감지되는 자세 정보값이 제1 상한 기준치보다 크거나 제1 하한 기준치보다 작은 경우에 자세 변화가 있는 것으로 판별할 수 있다. 여기서, 상기 자세 정보값은, 방향각(heading angle) 정보값일 수 있다.
또한, 상기 제어부(20)는, 상기 센서부(810)에서 감지되는 롤링맙(130a)의 모터 부하 전류값이 제2 상한 기준치보다 크거나 제2 하한 기준치보다 작은 경우에, 상기 전류값 변화가 있는 것으로 판별할 수 있다.
실시예에 따라서는, 상기 제어부(20)는, 상기 좌측 스핀맙(120a)의 모터 부하 전류값 변화가 일정 크기 이상인 경우에, 상기 로봇 청소기(100)의 좌측 바닥 영역을 상기 오염 지역으로 식별하고, 상기 우측 스핀맙(120b)의 모터 부하 전류값 변화가 일정 크기 이상인 경우에, 상기 로봇 청소기(100)의 우측 바닥 영역을 상기 오염 지역으로 식별할 수 있다.
한편, 상기 제2 상한 기준치와 상기 제2 하한 기준치는, 상기 바닥의 종류별로 상이하게 설정될 수 있다.
한편, 상기 제어부(20)는 상기 롤링맙(130a)의 모터 부하 전류값의 변화 방향에 기초하여, 상기 오염 지역의 오염물 종류를 판별할 수 있다.
예를 들어, 상기 제어부(20)는, 상기 롤링맙(130a)의 모터 부하 전류값이 증가하여, 상기 제2 상한 기준치보다 커진 경우에, 상기 오염 지역을 끈적거리는(sticky) 오염 지역으로 판별하고, 상기 롤링맙(130a)의 모터 부하 전류값이 감소하여, 상기 제2 하한 기준치보다 작아진 경우에, 상기 오염 지역을 미끄러운(slippery) 오염 지역으로 판별할 수 있다.
실시예에 따라서는, 상기 제어부(20)는, 가속도 센서(813c)로 추정된 이동 거리와 상기 로봇 청소기(100)의 실제 이동거리를 비교하여 오염물에 의한 속도 변화를 판별할 수 있다.
한편, 상기 제어부(20)는, 상기 오염 지역에 대하여 회피 주행 또는 집중 청소 주행하도록 제어할 수 있다.
도 22는 본 발명의 일 실시예에 따른 로봇 청소기의 제어 방법에 관한 순서도이다.
도 23 내지 도 29는 본 발명의 일 실시예에 따른 로봇 청소기의 제어 방법에 관한 설명에 참조되는 도면이다.
도 22를 참조하면, 로봇 청소기(100)는 제어부(20)의 제어에 따라 주행할 수 있고(S2210), 센서부(810)는 주행 중 로봇 청소기(100)의 자세 정보값을 모니터링(monitoring)할 수 있다(S2220). 여기서, 상기 자세 정보값은, 방향각(heading angle) 정보값일 수 있다.
예를 들어, 관성 측정 유닛 센서(813)는, 자이로 센서(813a), 지자계 센서(813b), 및 가속도 센서(813c)를 포함할 수 있다. 자이로 센서(813a)는 정해진 기준 방향을 감지하고, 지자계 센서(813b)는 방향각(방위각)을 측정하고, 가속도 센서(813c)는 속도 변화를 측정할 수 있다. 이에 따라, 관성 측정 유닛 센서(813)는 로봇 청소기(100)의 이동 속도, 방향, 중력, 가속도를 측정할 수 있다.
또는, 상기 센서부(810)는, 자이로 센서(813a), 지자계 센서(813b), 및 가속도 센서(813c)를 각각 구비하는 것도 가능하다.
본 발명의 일 실시예에 따른 로봇 청소기(100)는, 전진, 후진 혹은 회전 등 의도한 모션(motion)과 다르게 오염 등의 영향에 따른 바닥조건 변화로 의도하지 않은 로봇 자세 변화가 일어나는 경우, 자이로 센서(813a)나 지자계 센서(813c)를 통해 로봇 자세(robot heading angle) 및 자세 변화량(△robot heading angle)을 참고하여 로봇 청소기(100)의 자세가 틀어짐을 판별할 수 있다.
즉, 의도한 동작과 다른 로봇 청소기(100)의 자세 변화가 일어나는 경우, 자이로 센서(813a)나 지자계 센서(813c)를 통해 오동작을 감지하여 로봇 자세 틀어짐을 판별할 수 있다.
제어부(20)는, 기존에 주행하며 측정된 자세 정보값을 기준으로 자세 변화 여부를 판별할 수 있다. 예를 들어, 제어부(20)는, 기존에 직진 주행하며 측정된 자세 정보값을 직진 주행 중 감지되는 자세 정보값과 비교하여, 유의미한 차이가 발생하면 자세가 틀어진 것으로 판단할 수 있다.
제어부(20)는, 상기 감지된 자세 정보값이 제1 상한 기준치보다 크거나 제1 하한 기준치보다 작은 경우에, 자세 변화가 있는 것으로 판별할 수 있다(S2230).
여기서, 제1 상한 기준치와 제1 하한 기준치는 기존에 주행하며 측정된 자세 정보값을 기준으로 설정된 기준 범위의 상한치와 하한치일 수 있다.
본 발명은 오염물질이 마찰력이 커지게 하거나 작아지게 하는 성질을 이용하여, 로봇 청소기(100)의 수평방향 가속도 정보 및 회전각 정보 등 자세변화량 정보를 통하여 오염물질 여부 추정할 수 있다(S2260).
기존의 주행으로 자세변화량의 임계치(예를 들어, 제1 상한 기준치와 제1 하한 기준치)를 기설정하여, 임계치를 벗어나는 자세 변화가 발생되면 오염물질이 있는 것으로 추정할 수 있다.
제어부(20)의 제어에 의해, 로봇 청소기(100)는, 오염물질이 있는 것으로 판단되는 소정 범위의 오염 지역을 집중 청소할 수 있다(S2270).
한편, 실시예에 따라서는, 롤링맙(130a)에 인가되는 전류를 측정하여, 최종적으로 오염물질의 유무 및 오염 물질이 좌우측 중 어느 측에 있는지 여부 등을 결정할 수 있다.
예를 들어, 제어부(20)는, 상기 감지된 자세 정보값이 제1 상한 기준치보다 크거나 제1 하한 기준치보다 작은 경우에,롤링맙(130a)의 모터 부하 전류값을 감지할 수 있다(S2240).
한편, 실시예에 따라서는, 좌측 스핀맙(120a)과 우측 스핀맙(120b)에 인가되는 전류를 측정하여, 최종적으로 오염물질의 유무 및 오염 물질이 좌우측 중 어느 측에 있는지 여부 등을 결정할 수 있다.
예를 들어, 제어부(20)는, 상기 감지된 자세 정보값이 제1 상한 기준치보다 크거나 제1 하한 기준치보다 작은 경우에, 좌측 스핀맙(120a)과 우측 스핀맙(120b)의 모터 부하 전류값을 감지할 수 있다(S2240).
즉, 제어부(20)는, 자세 변화가 있는 것으로 판별되면(S2230), 오염물에 의한 자세 변화인지 여부를 판별하기 위하여 모터 부하 전류값을 감지할 수 있다(S2240).
상기 모터 부하 전류값은, 센서부(810)에 구비되는 모터 감지 센서(815) 또는 제1,2 모터 구동부(821, 822)에 구비되는 전류 검출부에서 감지될 수 있다. 실시예에 따라서는, 상기 모터 감지 센서(815)가 상기 제1,2 모터 구동부(821, 822)에 구비되는 전류 검출부와 연결되거나 상기 전류 검출부를 포함할 수 있다.
본 발명에 따르면, 전방 스핀맙(120a, 120b)과 후방 롤링맙(130a)에 장착되어 있는 모터(124, 137d)의 전류량(모터 부하 전류값)과 전류 변화량을 감지하고, 일반 바닥 상태에서의 값을 기준(Reference)으로 하여 바닥 상태 변화에 따른 전류량(I)과 전류 변화량(△I)을 감지함으로써, 바닥 조건의 변화를 판별할 수 있다.
즉, 바닥과 마찰에 의해 모터(124, 137d)에서 발생하는 모터 부하 전류값의 변화를 감지하고 이를 통해 바닥 조건의 변화를 판별할 수 있다.
예를 들어, 상기 제어부(20)는, 상기 롤링맙(130a)의 모터 부하 전류값이 제2 상한 기준치보다 크거나 제2 하한 기준치보다 작은 경우에(S2250), 상기 바닥의 소정 영역을 오염 지역으로 식별할 수 있다(S2260).
여기서, 제2 상한 기준치와 제2 하한 기준치는 기존에 주행하며 측정된 모터 부하 전류값을 기준으로 설정된 기준 범위의 상한치와 하한치일 수 있다. 또한, 상기 제2 상한 기준치와 상기 제2 하한 기준치는, 상기 바닥의 종류별로 상이하게 설정될 수 있다.
도 23은 하드 플로어(hard floor) 바닥에서 끈적거리는(sticky) 오염이 발생한 경우, 직진 주행시 센싱 데이터를 예시한다.
더욱 상세하게는, 도 23의 (a)는 하드 플로어(hard floor) 바닥에서 끈적거리는(sticky) 오염이 발생한 경우, 직진 주행시 감지되는 자세 정보값을 도시하고, 도 23의 (b)는 하드 플로어(hard floor) 바닥에서 끈적거리는(sticky) 오염이 발생한 경우, 직진 주행시 감지되는 모터 부하 전류값을 도시한다.
도 23의 (a)를 참조하면, 하드 플로어(hard floor) 바닥에서 끈적거리는(sticky) 오염이 발생하면, 직진 주행시 감지되는 자세 정보값은, 제1 상한 기준치(RU1)와 제1 상한 기준치(RD1)의 범위를 벗어날 수 있다.
하드 플로어(hard floor) 바닥에서 끈적거리는(sticky) 오염이 발생하면, 끈적거리는(sticky) 오염물에 의해 특정 위치에서 마찰력이 증가할 수 있다. 이에 따라, 로봇 청소기(100)는 의도한 주행에 따른 정상 상태의 자세 정보값을 유지하지 못하고, 자세 정보값이 제1 상한 기준치(RU1)보다 커질 수 있다.
이 경우에, 제어부(20)는 자세 변화가 발생한 것으로 판별할 수 있다.
도 23의 (b)를 참조하면, 하드 플로어(hard floor) 바닥에서 끈적거리는(sticky) 오염이 발생하면, 직진 주행시 감지되는 모터 부하 전류값은, 제2 상한 기준치(RU2)와 제2 상한 기준치(RD2)의 범위를 벗어날 수 있다.
하드 플로어(hard floor) 바닥에서 끈적거리는(sticky) 오염이 발생하면, 끈적거리는(sticky) 오염물에 의해 특정 위치에서 마찰력이 증가할 수 있다. 이에 따라, 로봇 청소기(100)는 의도한 주행에 따른 정상 상태의 모터 부하 전류값을 유지하지 못하고, 모터 부하 전류값이 증가하여 제2 상한 기준치(RU2)보다 커질 수 있다.
반대로, 하드 플로어(hard floor) 바닥에서 미끄러운(slippery) 오염이 발생하면, 미끄러운(slippery) 오염물에 의해 특정 위치에서 마찰력이 감소할 수 있다. 이에 따라, 로봇 청소기(100)는 의도한 주행에 따른 정상 상태의 모터 부하 전류값을 유지하지 못하고, 모터 부하 전류값이 감소하여 제2 하한 기준치(RD2)보다 작아질 수 있다.
이 경우에, 제어부(20)는 전류 변화가 발생한 것으로 판별할 수 있다.
도 24는 대리석 바닥에서 미끄러운(slippery) 오염이 발생한 경우, 직진 주행시 센싱 데이터를 예시한다.
더욱 상세하게는, 도 24의 (a)는 대리석 바닥에서 미끄러운(slippery) 오염이 발생한 경우, 직진 주행시 감지되는 자세 정보값을 도시하고, 도 23의 (b)는 대리석 바닥에서 미끄러운(slippery) 오염이 발생한 경우, 직진 주행시 감지되는 모터 부하 전류값을 도시한다.
도 24의 (a)를 참조하면, 대리석 바닥에서 미끄러운(slippery) 오염이 발생하면, 직진 주행시 감지되는 자세 정보값은, 제1 상한 기준치(RU1)와 제1 상한 기준치(RD1)의 범위를 벗어날 수 있다.
대리석 바닥에서 미끄러운(slippery) 오염이 발생하면, 미끄러운(slippery) 오염물에 의해 특정 위치에서 마찰력이 감소할 수 있다. 이에 따라, 로봇 청소기(100)는 의도한 주행에 따른 정상 상태의 자세 정보값을 유지하지 못하고, 자세 정보값이 제1 상한 기준치(RU1)보다 커질 수 있다.
이 경우에, 제어부(20)는 자세 변화가 발생한 것으로 판별할 수 있다.
도 24의 (b)를 참조하면, 대리석 바닥에서 미끄러운(slippery) 오염이 발생하면, 직진 주행시 감지되는 모터 부하 전류값은, 제2 상한 기준치(RU2)와 제2 상한 기준치(RD2)의 범위를 벗어날 수 있다.
대리석 바닥에서 미끄러운(slippery) 오염이 발생하면, 미끄러운(slippery) 오염물에 의해 특정 위치에서 마찰력이 감소할 수 있다. 이에 따라, 로봇 청소기(100)는 의도한 주행에 따른 정상 상태의 모터 부하 전류값을 유지하지 못하고, 모터 부하 전류값이 감소하여 제2 하한 기준치(RD2)보다 작아질 수 있다.
반대로, 대리석 바닥에서 끈적거리는(sticky) 오염이 발생하면,끈적거리는(sticky) 오염물에 의해 특정 위치에서 마찰력이 감소할 수 있다. 이에 따라, 로봇 청소기(100)는 의도한 주행에 따른 정상 상태의 모터 부하 전류값을 유지하지 못하고, 모터 부하 전류값이 증가하여 제2 상한 기준치(RU2)보다 커질 수 있다.
이 경우에, 제어부(20)는 전류 변화가 발생한 것으로 판별할 수 있다.
이후, 상기 제어부(20)는, 상기 오염 지역에 대하여 회피 주행 또는 집중 청소 주행하도록 로봇 청소기(100)를 제어할 수 있다(S2270).
본 발명에 따르면, 제어부(20)는 전방 스핀맙(120a, 120b)과 롤링맙(130a)의 동작을 조합하여 다양한 주행 모션 제어가 가능하다. 따라서, 제어부(20)는 상기 판별된 오염 지역에 따라 다양한 회피 주행을 수행하도록 제어할 수 있다.
또한, 본 발명에 따르면, 롤링맙(130a)은 스핀맙(120a, 120b)의 회전에 의한 주행 방향과 반대 방향으로 회전할 수 있고, 그 회전력의 조절에 따라, 힘의 평형을 이루어 로봇 청소기(100)가 제자리에 위치하게 함으로써 특정 위치의 집중 청소가 가능하다.
즉, 제어부(20)는 스핀맙(120a, 120b)의 회전과 롤링맙(130a)의 회전이 반대 방향을 향하도록 제어하고, 그 회전에 의한 힘을 평형 상태로 유지함으로써, 로봇 청소기(100)가 제자리 주행하도록 제어할 수 있다.
또한, 이 경우에도 스핀맙(120a, 120b)과 롤링맙(130a)은 회전을 계속 유지하고 있으므로 청소 동작은 끊김없이 수행될 수 있다.
한편, 가속도 센서(813c)로 추정된 이동 거리와 상기 로봇 청소기(100)의 실제 이동거리를 비교하여 오염물에 의한 속도 변화를 판별할 수 있다.
한편, 상기 제어부(20)는, 상기 좌측 스핀맙(120a)의 모터 부하 전류값이 상기 제2 상한 기준치보다 커지거나 상기 제2 하한 기준치보다 작아진 경우에, 상기 로봇 청소기(100)의 좌측 바닥 영역을 상기 오염 지역으로 식별하고, 상기 우측 스핀맙(120b)의 모터 부하 전류값이 상기 제2 상한 기준치보다 커지거나 상기 제2 하한 기준치보다 작아진 경우에, 상기 로봇 청소기(100)의 우측 바닥 영역을 상기 오염 지역으로 식별할 수 있다.
또한, 상기 제어부(20)는, 롤링맙(130a)의 모터 부하 전류값의 변화 방향에 기초하여, 상기 오염 지역의 오염물 종류를 판별할 수 있다.
예를 들어, 상기 제어부(20)는, 상기 롤링맙(130a)의 모터 부하 전류값이 증가하여, 상기 제2 상한 기준치보다 커진 경우에, 상기 오염 지역을 끈적거리는(sticky) 오염 지역으로 판별하고, 상기 롤링맙(130a)의 모터 부하 전류값이 감소하여, 상기 제2 하한 기준치보다 작아진 경우에, 상기 오염 지역을 미끄러운(slippery) 오염 지역으로 판별할 수 있다.
반대로, 상기 제어부(20)는, 상기 롤링맙(130a)의 모터 부하 전류값이 상기 제2 상한 기준치보다 크지 않거나 상기 제2 하한 기준치보다 작지 않은 경우에, 외력에 의한 자세 변화로 판별할 수 있다.
도 25 내지 도 27은 다양한 상황에서 오염물질의 존재 여부를 판별하는 예들을 도시한다.
도 25를 참조하면, 오염 물질이 롤링맙(130a) 및/또는 스핀맙(120a, 120b)과 바닥 사이의 마찰력을 증가시키는 종류의 것인 경우, 지시받은 진행 방향(T1)과 달리, 로봇 청소기(100)의 실제 진행방향(R1)이 달라질 수 있다.
예를 들면, 좌측 스핀맙(120a)이 있는 지역에 마찰력을 증가시키는 오염물질이 있는 경우, 로봇 청소기(100)의 실제 진행방향(R1)은 지시받은 진행 방향(T1)보다 우측으로 꺾이게 된다.
이 때, 롤링맙(130a) 및/또는 양측의 스핀맙(120a, 120b)에 인가되는 모터 부하 전류값을 측정하여, 좌측 스핀맙(120a)의 모터 부하 전류값이 기준치보다 클 경우, 제어부(20)는 좌측 스핀맙(120a)이 있는 지면에 마찰력을 증가시키는 오염물질이 있는 것으로 판단할 수 있다. 따라서, 제어부(20)는 좌측 스핀맙(120a)이 있는 지면을 오염 지역으로 식별할 수 있다.
도 26을 참조하면, 오염 물질이 롤링맙(130a) 및/또는 스핀맙(120a, 120b)과 바닥 사이의 마찰력을 감소시키는 종류의 것인 경우, 지시받은 진행 방향(T2)과 달리, 로봇 청소기(100)의 실제 진행방향(R2)이 달라질 수 있다.
예를 들면, 좌측 스핀맙(120a)이 있는 지역에 마찰력을 감소시키는 오염물질이 있는 경우, 지시받은 진행 방향보다 좌측으로 꺾이게 된다.
이 때, 롤링맙(130a) 및/또는 양측의 스핀맙120a, 120b)에 인가되는 모터 부하 전류값을 측정하여, 좌측 스핀맙(120a)의 모터 부하 전류값이 기준치보다 작을 경우, 제어부(20)는 좌측 스핀맙(120a)이 있는 지면에 마찰력을 감소시키는 오염물질이 있는 것으로 판단할 수 있다. 따라서, 제어부(20)는 좌측 스핀맙(120a)이 있는 지면을 오염 지역으로 식별할 수 있다.
도 27을 참조하면, 오염 물질이 롤링맙(130a) 및/또는 스핀맙(120a, 120b)과 바닥 사이에 없음에도 불구하고, 로봇 청소기(100)의 외부에서 좌우측 방향 중 어느 한 방향으로 로봇 청소기(100)에 외력(2700)이 가해질 수 있다. 예를 들면, 로봇 청소기(100)의 주행 중 사용자 또는 장애물이 부딪히거나 미는 동작으로 인해, 외력 작용 상황이 발생할 수 있다.
이 경우에도, 지시받은 진행 방향(T3)과 달리, 로봇 청소기(100)의 실제 진행방향(R3)이 달라질 수 있다.
예를 들면, 좌측에서 우측으로 로봇 청소기(100)에 외력(2700)이 가해진 경우, 로봇 청소기(100)의 실제 진행방향(R1)은 지시받은 진행 방향(T1)보다 우측으로 꺾이게 된다.
이 때, 롤링맙(130a) 및/또는 양측의 스핀맙120a, 120b)에 인가되는 모터 부하 전류값을 측정하여, 모든 값이 기준 범위(상하한 기준치 범위) 내에 있는 경우, 제어부(20)는 롤링맙(130a) 및/또는 스핀맙(120a, 120b) 있는 지면에 오염물질이 없는 것으로 판단할 수 있다.
한편, 도 20, 도 23, 및, 도 24에서는 센싱 데이터가 일정 상수값을 유지하는 것으로 예시하였으나, 이는 이상적인 경우로 실제 주행시 측정된 데이터는 소정 범위에서 변동하는 양상을 나타내는 경우가 많다.
따라서, 본 발명은, 자세 변화와 전류 변화의 판단 기준으로 소정 기준 범위를 설정하여 적용할 수 있다.
예를 들어, 자세 정보값에 대해서, 제1 상한 기준치(RU1)와 제1 상한 기준치(RD1)의 범위를 설정하고, 모터 부하 전류값에 대해서, 제2 상한 기준치(RU2)와 제2 상한 기준치(RD2)의 범위를 설정할 수 있다.
도 28과 도 29는 오염 감지시 센싱 데이터의 변화를 예시한다.
도 28을 참조하면, 정상 바닥에서 로봇 청소기(100)가, 의도한 모션(motion)을 정상적으로 수행하는 경우에, 감지되는 자세 정보값은 제1 상한 기준치(RU1)와 제1 상한 기준치(RD1) 사이의 정상 범위를 벗어나지 않는다.
하지만, 오염이 발생한 오염 바닥에서는 로봇 청소기(100)는 의도하지 않는 자세 변화가 발생할 수 있다. 이에 따라, 감지되는 자세 정보값은 제1 상한 기준치(RU1)와 제1 상한 기준치(RD1) 사이의 정상 범위를 벗어날 수 있다. 제어부(20)는 감지되는 자세 정보값이 제1 상한 기준치(RU1)와 제1 상한 기준치(RD1) 사이의 정상 범위를 벗어나면 자세 변화가 발생한 것으로 판별할 수 있다.
도 29를 참조하면, 정상 바닥에서 로봇 청소기(100)가, 의도한 모션(motion)을 정상적으로 수행하는 경우에, 감지되는 모터 부하 전류값은 제2 상한 기준치(RU2)와 제2 상한 기준치(RD2) 사이의 정상 범위를 벗어나지 않는다.
하지만, 오염이 발생한 오염 바닥에서는 로봇 청소기(100)는 바닥과의 마찰력 변화로 인하여 전류 변화가 발생할 수 있다. 이에 따라, 감지되는 모터 부하 전류값은 제2 상한 기준치(RU2)와 제2 상한 기준치(RD2) 사이의 정상 범위를 벗어날 수 있다. 제어부(20)는 감지되는 모터 부하 전류값은 제2 상한 기준치(RU2)와 제2 상한 기준치(RD2)를 벗어나면 전류 변화가 발생한 것으로 판별할 수 있다.
본 발명의 실시 예들 중 적어도 하나에 의하면, 한 쌍의 스핀맙과 하나의 롤링부재를 이용하여 로봇 청소기가 안정적으로 주행하다는 장점이 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 좌측 스핀맙과 우측 스핀맙의 회전 동작 및 롤링부재의 회전 동작을 조합하여 다양한 주행 모션을 구현할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 로봇 청소기가 다양한 주행 모션을 이용하여 상황에 적절한 주행을 수행할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 로봇 청소기가 제자리를 유지한 상태에서도 걸레질을 수행할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 로봇 청소기가 주행과 무관한 별도의 센서를 구비하지 않으면서도 오염물의 위치, 바닥의 종류를 판별할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 로봇 청소기가 오염물의 위치, 바닥의 종류에 따라 최적화된 주행을 수행할 수 있다.
본 발명은 구동 모터에 의하여 회전하는 맙(120a, 120b, 130a)의 마찰운동으로 이동 기능과 물걸레 청소 기능을 동시에 수행하는 물걸레 로봇 청소기(100)의 오염 감지 방법과 그 제어 방법에 관한 것이다.
본 발명에 따른 물걸레 로봇 청소기(100)는 바닥의 오염 상태를 인식하고, 오염 지역 집중 청소하기, 오염지역 회피 등의 더욱 스마트한 청소 주행을 수행할 수 있다.
본 발명에 따른 로봇 청소기 및 그 제어 방법은 상기한 바와 같이 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
한편, 본 발명의 실시예에 따른 로봇 청소기의 제어 방법은, 프로세서가 읽을 수 있는 기록매체에 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 기록매체는 프로세서에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 프로세서가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함한다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.

Claims (15)

  1. 좌측에서 바라볼 때 시계 방향 또는 반시계 방향으로 회전하면서 바닥에 접촉하게 구비되는 롤링부재를 포함하는 롤링 청소 모듈;
    복수의 센서를 포함하는 센서부; 및,
    상기 센서부에서 감지되는 데이터에 기초하여, 로봇 청소기의 자세 변화 여부 및 상기 롤링부재의 모터 부하 전류값 변화 여부를 판별하고, 상기 자세 변화와 상기 전류값 변화가 있는 것으로 판별되면, 바닥의 소정 영역을 오염 지역으로 식별하는 제어부;를 포함하는 로봇 청소기.
  2. 제1항에 있어서,
    상기 제어부는,
    상기 자세 변화가 있는 것으로 판별되고, 상기 전류값 변화가 없는 것으로 판별되면, 상기 자세 변화는 외력에 의한 자세 변화로 판별하는 것을 특징으로 하는 로봇 청소기.
  3. 제1항에 있어서,
    상기 제어부는,
    상기 자세 변화가 없는 것으로 판별되고, 상기 전류값 변화가 있는 것으로 판별되면, 상기 바닥의 종류가 변경된 것으로 식별하는 것을 특징으로 하는 로봇 청소기.
  4. 제1항에 있어서,
    상기 제어부는,
    상기 센서부에서 감지되는 자세 정보값이 제1 상한 기준치보다 크거나 제1 하한 기준치보다 작은 경우에 자세 변화가 있는 것으로 판별하고,
    상기 롤링부재의 모터 부하 전류값이 제2 상한 기준치보다 크거나 제2 하한 기준치보다 작은 경우에, 상기 전류값 변화가 있는 것으로 판별하는 것을 특징으로 하는 로봇 청소기.
  5. 제4항에 있어서,
    상기 제어부는,
    상기 롤링부재의 모터 부하 전류값이 증가하여, 상기 제2 상한 기준치보다 커진 경우에, 상기 오염 지역을 끈적거리는(sticky) 오염 지역으로 판별하고,
    상기 롤링부재의 모터 부하 전류값이 감소하여, 상기 제2 하한 기준치보다 작아진 경우에, 상기 오염 지역을 미끄러운(slippery) 오염 지역으로 판별하는 것을 특징으로 하는 로봇 청소기.
  6. 제4항에 있어서,
    상기 제2 상한 기준치와 상기 제2 하한 기준치는, 상기 바닥의 종류별로 상이하게 설정되는 것을 특징으로 하는 로봇 청소기.
  7. 제4항에 있어서,
    상기 자세 정보값은, 방향각(heading angle) 정보값인 것을 특징으로 하는 로봇 청소기.
  8. 제1항에 있어서,
    상기 제어부는, 가속도 센서로 추정된 이동 거리와 상기 로봇 청소기의 실제 이동거리를 비교하여 오염물에 의한 속도 변화를 판별하는 것을 특징으로 하는 로봇 청소기.
  9. 제1항에 있어서,
    상기 제어부는,
    상기 롤링부재의 모터 부하 전류값의 변화 방향에 기초하여, 상기 오염 지역의 오염물 종류를 판별하는 것을 특징으로 하는 로봇 청소기.
  10. 제1항에 있어서,
    상기 제어부는, 상기 오염 지역에 대하여 회피 주행 또는 집중 청소 주행하도록 제어하는 것을 특징으로 하는 로봇 청소기.
  11. 제1항에 있어서,
    상측에서 바라볼 때 시계 방향 또는 반시계 방향으로 회전하면서 바닥에 접촉하게 구비되는 좌측 스핀맙과 우측 스핀맙을 포함하는 스핀 모듈;을 더 포함하는 것을 특징으로 하는 로봇 청소기.
  12. 제11항에 있어서,
    상기 제어부는, 상기 좌측 스핀맙과 상기 우측 스핀맙의 모터 부하 전류값의 변화에 기초하여 상기 오염 지역의 방향을 식별하는 것을 특징으로 하는 로봇 청소기.
  13. 제1항에 있어서,
    상기 센서부는, 발광 소자와 수광 소자를 구비하는 하나 이상의 낭떠러지 감지센서를 포함하고,
    상기 제어부는, 상기 발광 소자에서 출력된 광이 반사되어 상기 수광 소자에서 수광되는 반사광의 광량에 기초하여 상기 바닥의 재질을 판별하는 것을 특징으로 하는 로봇 청소기.
  14. 제13항에 있어서,
    상기 제어부는, 상기 반사광의 광량이 소정 기준값 이상이면 상기 바닥의 재질을 하드 플로어(hard floor)로 판별하고, 상기 반사광의 광량이 상기 소정 기준값보다 작으면 상기 바닥의 재질을 카펫으로 판별하는 것을 특징으로 하는 로봇 청소기.
  15. 로봇 청소기의 자세 정보값을 모니터링(monitoring)하는 단계;
    상기 감지된 자세 정보값이 제1 상한 기준치보다 크거나 제1 하한 기준치보다 작은 경우에, 롤링부재의 모터 부하 전류값을 감지하는 단계; 및,
    상기 롤링부재의 모터 부하 전류값이 제2 상한 기준치보다 크거나 제2 하한 기준치보다 작은 경우에, 상기 바닥의 소정 영역을 오염 지역으로 식별하는 단계;를 포함하는 로봇 청소기의 제어 방법.
PCT/KR2017/007562 2016-07-14 2017-07-14 로봇 청소기 및 그 제어 방법 WO2018012923A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020187036041A KR102159972B1 (ko) 2016-07-14 2017-07-14 로봇 청소기 및 그 제어 방법
EP17827993.1A EP3485793B1 (en) 2016-07-14 2017-07-14 Robotic cleaner and controlling method therefor
CN202111353538.7A CN114224252B (zh) 2016-07-14 2017-07-14 机器人清洁器
US16/333,124 US10993598B2 (en) 2016-07-14 2017-07-14 Robot cleaner and method of controlling the same
CN201780056687.2A CN110087521B (zh) 2016-07-14 2017-07-14 机器人清洁器及其控制方法
AU2017296910A AU2017296910B2 (en) 2016-07-14 2017-07-14 Robotic cleaner and controlling method therefor
TW107101302A TWI679959B (zh) 2016-07-14 2018-01-12 清掃機器人及其控制方法
US17/222,070 US11864697B2 (en) 2016-07-14 2021-04-05 Robot cleaner and method of controlling the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662362358P 2016-07-14 2016-07-14
US62/362,358 2016-07-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/333,124 A-371-Of-International US10993598B2 (en) 2016-07-14 2017-07-14 Robot cleaner and method of controlling the same
US17/222,070 Continuation US11864697B2 (en) 2016-07-14 2021-04-05 Robot cleaner and method of controlling the same

Publications (1)

Publication Number Publication Date
WO2018012923A1 true WO2018012923A1 (ko) 2018-01-18

Family

ID=60951857

Family Applications (13)

Application Number Title Priority Date Filing Date
PCT/KR2017/007555 WO2018012917A1 (ko) 2016-07-14 2017-07-14 청소기
PCT/KR2017/007557 WO2018012918A1 (ko) 2016-07-14 2017-07-14 청소기
PCT/KR2017/007561 WO2018012922A1 (ko) 2016-07-14 2017-07-14 로봇 청소기
PCT/KR2017/007549 WO2018012912A1 (ko) 2016-07-14 2017-07-14 청소기 세척기구
PCT/KR2017/007551 WO2018012914A1 (ko) 2016-07-14 2017-07-14 청소기
PCT/KR2017/007560 WO2018012921A1 (ko) 2016-07-14 2017-07-14 청소기
PCT/KR2017/007552 WO2018012915A1 (ko) 2016-07-14 2017-07-14 로봇 청소기
PCT/KR2017/007550 WO2018012913A1 (ko) 2016-07-14 2017-07-14 로봇 청소기
PCT/KR2017/007562 WO2018012923A1 (ko) 2016-07-14 2017-07-14 로봇 청소기 및 그 제어 방법
PCT/KR2018/000898 WO2018135901A1 (en) 2016-07-14 2018-01-19 Moving robot
PCT/KR2018/000895 WO2018135900A1 (en) 2016-07-14 2018-01-19 Moving robot and method of controlling the same
PCT/KR2018/000888 WO2018135897A2 (en) 2016-07-14 2018-01-19 Robot cleaner and maintenance device for the same
PCT/KR2018/000891 WO2018135898A1 (en) 2016-07-14 2018-01-19 Robot cleaner and maintenance device for the same

Family Applications Before (8)

Application Number Title Priority Date Filing Date
PCT/KR2017/007555 WO2018012917A1 (ko) 2016-07-14 2017-07-14 청소기
PCT/KR2017/007557 WO2018012918A1 (ko) 2016-07-14 2017-07-14 청소기
PCT/KR2017/007561 WO2018012922A1 (ko) 2016-07-14 2017-07-14 로봇 청소기
PCT/KR2017/007549 WO2018012912A1 (ko) 2016-07-14 2017-07-14 청소기 세척기구
PCT/KR2017/007551 WO2018012914A1 (ko) 2016-07-14 2017-07-14 청소기
PCT/KR2017/007560 WO2018012921A1 (ko) 2016-07-14 2017-07-14 청소기
PCT/KR2017/007552 WO2018012915A1 (ko) 2016-07-14 2017-07-14 로봇 청소기
PCT/KR2017/007550 WO2018012913A1 (ko) 2016-07-14 2017-07-14 로봇 청소기

Family Applications After (4)

Application Number Title Priority Date Filing Date
PCT/KR2018/000898 WO2018135901A1 (en) 2016-07-14 2018-01-19 Moving robot
PCT/KR2018/000895 WO2018135900A1 (en) 2016-07-14 2018-01-19 Moving robot and method of controlling the same
PCT/KR2018/000888 WO2018135897A2 (en) 2016-07-14 2018-01-19 Robot cleaner and maintenance device for the same
PCT/KR2018/000891 WO2018135898A1 (en) 2016-07-14 2018-01-19 Robot cleaner and maintenance device for the same

Country Status (8)

Country Link
US (18) US11141034B2 (ko)
EP (17) EP4005458A1 (ko)
JP (2) JP7022137B2 (ko)
KR (14) KR101994691B1 (ko)
CN (11) CN109715025B (ko)
AU (9) AU2017297104B2 (ko)
TW (12) TWI682759B (ko)
WO (13) WO2018012917A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210030247A1 (en) * 2019-07-31 2021-02-04 Lg Electronics Inc. Mobile robot
US20210186293A1 (en) * 2019-12-24 2021-06-24 Everybot Inc. Robot Cleaner and Method For Controlling The Same

Families Citing this family (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101994691B1 (ko) 2016-07-14 2019-07-01 엘지전자 주식회사 로봇 청소기
KR101949278B1 (ko) * 2017-02-01 2019-02-18 엘지전자 주식회사 로봇 청소기
US10595698B2 (en) * 2017-06-02 2020-03-24 Irobot Corporation Cleaning pad for cleaning robot
KR102033936B1 (ko) 2017-08-07 2019-10-18 엘지전자 주식회사 로봇청소기
KR102014140B1 (ko) 2017-08-07 2019-08-26 엘지전자 주식회사 청소기
KR102021828B1 (ko) 2017-08-07 2019-09-17 엘지전자 주식회사 청소기
KR102024089B1 (ko) 2017-08-07 2019-09-23 엘지전자 주식회사 로봇 청소기
KR102014142B1 (ko) 2017-08-07 2019-08-26 엘지전자 주식회사 로봇 청소기
KR102000068B1 (ko) 2017-08-07 2019-07-15 엘지전자 주식회사 청소기
KR102014141B1 (ko) 2017-08-07 2019-10-21 엘지전자 주식회사 로봇청소기
KR102011827B1 (ko) 2017-08-07 2019-08-19 엘지전자 주식회사 로봇청소기 및 그 제어방법
KR102045003B1 (ko) * 2018-01-25 2019-11-14 엘지전자 주식회사 로봇청소기의 제어방법
KR102188798B1 (ko) * 2018-03-26 2020-12-11 에브리봇 주식회사 로봇 청소기 및 그 제어 방법
WO2019212195A1 (ko) 2018-04-30 2019-11-07 엘지전자 주식회사 청소기의 노즐
KR20190125912A (ko) * 2018-04-30 2019-11-07 엘지전자 주식회사 청소기의 노즐
WO2019212187A1 (ko) * 2018-04-30 2019-11-07 엘지전자 주식회사 청소기의 노즐
KR20190125911A (ko) * 2018-04-30 2019-11-07 엘지전자 주식회사 청소기의 노즐
WO2019212177A1 (ko) 2018-04-30 2019-11-07 엘지전자 주식회사 청소기의 노즐
CN114532897B (zh) * 2018-04-30 2023-12-15 Lg电子株式会社 清洁器
CN116269038A (zh) * 2018-04-30 2023-06-23 Lg电子株式会社 清洁器吸嘴
KR102559454B1 (ko) * 2018-04-30 2023-07-26 엘지전자 주식회사 청소기
KR102511617B1 (ko) * 2018-04-30 2023-03-20 엘지전자 주식회사 청소기
KR102170834B1 (ko) * 2018-04-30 2020-10-28 엘지전자 주식회사 청소기의 노즐
TWI745857B (zh) * 2018-05-29 2021-11-11 好樣科技有限公司 噴灑模組以及具有噴灑模組的機器人
CN108577696B (zh) * 2018-07-18 2020-09-04 江苏美的清洁电器股份有限公司 可往复直线运动的擦地装置
KR20200013505A (ko) * 2018-07-30 2020-02-07 엘지전자 주식회사 청소기의 노즐 및 그 제어방법
KR102625905B1 (ko) 2018-07-30 2024-01-18 엘지전자 주식회사 청소기의 노즐
JP7190335B2 (ja) * 2018-11-14 2022-12-15 シャープ株式会社 電気掃除機の吸込口体およびそれを備えた電気掃除機
CN109431389B (zh) * 2018-12-18 2020-12-08 阮巧鹭 一种多功能室内地面清洁装置
WO2020125758A1 (zh) * 2018-12-21 2020-06-25 苏州宝时得电动工具有限公司 一种清洁机器人及控制方法
CN109645893B (zh) * 2018-12-28 2021-07-06 云鲸智能科技(东莞)有限公司 一种清洁机器人
US11304581B2 (en) 2019-01-08 2022-04-19 Bissell Inc. Surface cleaning apparatus
TWI698211B (zh) * 2019-01-15 2020-07-11 燕成祥 清潔機器人之全浮動式接觸變向裝置
CN111466833A (zh) * 2019-01-24 2020-07-31 燕成祥 清洁机器人的全浮动式接触变向装置
CN109730588B (zh) * 2019-01-31 2024-04-09 深圳和而泰智能控制股份有限公司 擦地机器人
JP2020185304A (ja) * 2019-05-17 2020-11-19 東芝ライフスタイル株式会社 電気掃除装置
WO2020241929A1 (ko) * 2019-05-30 2020-12-03 엘지전자 주식회사 청소 로봇
AU2020100731A4 (en) * 2019-06-19 2020-06-18 Zhejiang Jiaxing Jesun Digital Technology Co., Ltd. Floor scrubber and self-cleaning device matched with same
KR102171453B1 (ko) * 2019-06-21 2020-10-29 엘지전자 주식회사 모터 어셈블리 및 그 제조 방법
US20210000317A1 (en) * 2019-07-02 2021-01-07 Mark Jeffery Giarritta Four-direction scrubbing carpet shampooer
KR102305206B1 (ko) * 2019-07-11 2021-09-28 엘지전자 주식회사 인공 지능을 통해 바닥 상황을 고려하여 청소하는 로봇 청소기 및 그 방법
CN110480679A (zh) * 2019-07-19 2019-11-22 山东康威通信技术股份有限公司 一种轨道巡检机器人外壳防水结构及轨道巡检机器人
CN114174014B (zh) * 2019-07-31 2023-12-15 Lg电子株式会社 移动机器人
KR20210015598A (ko) * 2019-07-31 2021-02-10 엘지전자 주식회사 이동로봇의 도킹장치
EP4005749A4 (en) * 2019-07-31 2023-10-04 LG Electronics Inc. MOBILE ROBOT
WO2021020678A1 (ko) * 2019-07-31 2021-02-04 엘지전자 주식회사 청소기
EP3771395B1 (en) 2019-07-31 2023-11-01 LG Electronics Inc. Docking apparatus for mobile robot
KR102314535B1 (ko) 2019-07-31 2021-10-18 엘지전자 주식회사 이동로봇
KR102224638B1 (ko) * 2019-07-31 2021-03-05 엘지전자 주식회사 이동 로봇 및 그 제어방법
KR20210015599A (ko) * 2019-07-31 2021-02-10 엘지전자 주식회사 이동로봇 및 이동로봇의 이동거리 산출방법
KR102279788B1 (ko) 2019-07-31 2021-07-19 엘지전자 주식회사 로봇청소기
KR102286287B1 (ko) * 2019-07-31 2021-08-04 엘지전자 주식회사 로봇청소기
CN114174011B (zh) * 2019-07-31 2024-04-19 Lg电子株式会社 移动机器人
KR102308775B1 (ko) * 2019-07-31 2021-10-01 엘지전자 주식회사 청소기
KR20210015124A (ko) * 2019-07-31 2021-02-10 엘지전자 주식회사 인공지능 로봇청소기 및 그를 포함하는 로봇 시스템
KR102269273B1 (ko) 2019-07-31 2021-06-29 엘지전자 주식회사 로봇청소기
KR20210015122A (ko) * 2019-07-31 2021-02-10 엘지전자 주식회사 인공지능 로봇청소기 및 그를 포함하는 로봇 시스템
AU2020321758B2 (en) 2019-07-31 2024-03-14 Lg Electronics Inc. Mobile robot
WO2021020674A1 (ko) * 2019-07-31 2021-02-04 엘지전자 주식회사 이동로봇 및 이동로봇의 이동거리 산출방법
TWI716957B (zh) * 2019-08-07 2021-01-21 陳水石 清潔機器人及其材質辨識方法
CN110477820B (zh) * 2019-08-16 2021-11-16 云鲸智能科技(东莞)有限公司 清洁机器人的沿障碍物清洁方法、清洁机器人以及存储介质
CN110403539B (zh) * 2019-08-16 2022-06-03 云鲸智能科技(东莞)有限公司 清洁机器人的清洁控制方法、清洁机器人以及存储介质
WO2021040160A1 (ko) * 2019-08-27 2021-03-04 엘지전자 주식회사 인공지능 로봇청소기 및 그를 포함하는 로봇 시스템
KR20210033109A (ko) * 2019-09-17 2021-03-26 엘지전자 주식회사 청소기
TWI705788B (zh) * 2019-09-17 2020-10-01 奇鋐科技股份有限公司 多功能清潔裝置
CN211749338U (zh) * 2019-09-19 2020-10-27 嘉兴福特塑料电器有限公司 升降式擦地机清洁装置
KR20210036736A (ko) * 2019-09-26 2021-04-05 엘지전자 주식회사 로봇청소기 및 로봇청소기의 제어방법
KR20210037802A (ko) * 2019-09-27 2021-04-07 엘지전자 주식회사 로봇 청소기
US11395568B2 (en) 2019-10-14 2022-07-26 Asia Vital Components Co., Ltd. Multifunctional cleaning device
CN110811448A (zh) * 2019-11-04 2020-02-21 段属光 扫地机器人拖地模块自动拆装方法、扫地机器人和基座
TWI722641B (zh) * 2019-11-07 2021-03-21 福機裝股份有限公司 自動清潔裝置
CN110916569B (zh) * 2019-11-27 2022-01-04 珠海一微半导体股份有限公司 一种自清洁机器人系统及其自清洁控制方法
KR102262726B1 (ko) 2019-11-29 2021-06-09 엘지전자 주식회사 로봇 청소기
CN111035324B (zh) * 2019-12-18 2022-01-04 上海高仙自动化科技发展有限公司 传动机构、清洁装置及具有其的清洁机器人
KR20210080022A (ko) * 2019-12-20 2021-06-30 엘지전자 주식회사 이동 로봇 및 그 제어방법
CN114829083B (zh) * 2019-12-20 2024-04-09 Lg电子株式会社 移动机器人
USD927105S1 (en) * 2019-12-23 2021-08-03 Samsung Electronics Co., Ltd. Robot cleaner
CN113017505A (zh) * 2019-12-25 2021-06-25 燕成祥 自动清洁机的改良型清洁机构
EP4085812A1 (en) * 2019-12-30 2022-11-09 LG Electronics, Inc. Robot cleaner
KR20210100518A (ko) * 2020-02-06 2021-08-17 엘지전자 주식회사 로봇 청소기 및 그 제어 방법
KR102303546B1 (ko) * 2020-02-06 2021-09-17 엘지전자 주식회사 로봇 청소기 및 그 제어 방법
CN113495502A (zh) * 2020-03-18 2021-10-12 深圳赤马人工智能有限公司 自动摇晃的清洁机器人
KR20210131747A (ko) * 2020-04-24 2021-11-03 엘지전자 주식회사 로봇 청소기 및 로봇 청소기의 제어방법
KR20210131749A (ko) * 2020-04-24 2021-11-03 엘지전자 주식회사 로봇 청소기 및 로봇 청소기의 제어방법
KR20210131748A (ko) * 2020-04-24 2021-11-03 엘지전자 주식회사 로봇 청소기 및 로봇 청소기의 제어방법
US20210349462A1 (en) * 2020-05-08 2021-11-11 Robust Al, Inc. Ultraviolet end effector
KR20230043144A (ko) * 2020-07-01 2023-03-30 엘지전자 주식회사 로봇 청소기와 이를 구비하는 로봇 청소기 시스템 및 로봇 청소기 시스템의 제어 방법
KR20220003339A (ko) * 2020-07-01 2022-01-10 엘지전자 주식회사 로봇 청소기 및 로봇 청소기의 제어방법
KR20220005173A (ko) * 2020-07-06 2022-01-13 엘지전자 주식회사 로봇 청소기
KR20220010136A (ko) * 2020-07-17 2022-01-25 엘지전자 주식회사 로봇 청소기
KR20220010135A (ko) * 2020-07-17 2022-01-25 엘지전자 주식회사 로봇 청소기
CN111870185A (zh) * 2020-07-23 2020-11-03 吉安英佳电子科技有限公司 一种自动扫地杀菌一体机
CN111973046B (zh) * 2020-08-20 2022-08-16 科沃斯机器人股份有限公司 清洁装置及清洁机器人系统
CN112021185A (zh) * 2020-10-08 2020-12-04 康新峰 一种牛羊养殖消毒清洗装置
KR20210030301A (ko) * 2020-10-23 2021-03-17 (주)쓰리엠탑 협업 멀티 로봇청소기
CN114431797B (zh) * 2020-10-30 2023-12-19 添可智能科技有限公司 一种清洁设备基站、清洁设备及清洁设备系统
CN112603203B (zh) * 2020-12-10 2024-01-23 云鲸智能创新(深圳)有限公司 清洁方法、清洁机器人及计算机可读存储介质
CN114098550B (zh) * 2020-12-26 2023-06-16 曲阜信多达智能科技有限公司 清洁机系统的控制方法
KR102481190B1 (ko) * 2020-12-29 2022-12-26 에브리봇 주식회사 로봇청소기
US20220233046A1 (en) * 2021-01-22 2022-07-28 John Mortensen Robotic mop
CN112826382B (zh) * 2021-01-22 2021-11-16 深圳市无限动力发展有限公司 升降拖布板结构及清洁机器人
CN114098551B (zh) * 2021-02-06 2023-08-04 曲阜信多达智能科技有限公司 一种清洁机系统
CN112720536A (zh) * 2021-02-08 2021-04-30 吉林大学盐城智能终端产业研究中心 一种多功能机器人
CN112869648A (zh) * 2021-02-10 2021-06-01 云鲸智能科技(东莞)有限公司 清洁组件及清洁机器人
EP4042919B1 (en) 2021-02-10 2023-08-09 Yunjing Intelligence Innovation (Shenzhen) Co., Ltd. Cleaning assembly and cleaning robot
CN113102409B (zh) * 2021-03-05 2022-06-03 河南省远洋粉体科技股份有限公司 一种铝基合金粉真空气雾化除尘回收装置
CN114098564B (zh) * 2021-04-14 2023-04-07 曲阜信多达智能科技有限公司 清洁机的控制方法
CN113180560B (zh) * 2021-05-12 2022-11-11 深圳市伽利略机器人有限公司 一种两盘驱动式的全向行走装置及行走方法
CN113243837B (zh) * 2021-05-28 2022-09-20 北京蔚蓝君成科技产业发展有限公司 一种间断供水以减少浪费的车间用拖地机
CN113208511B (zh) * 2021-05-31 2022-11-11 云鲸智能(深圳)有限公司 一种清洁控制方法、装置、清洁机器人及计算机存储介质
CN113974506B (zh) * 2021-09-23 2024-03-19 云鲸智能(深圳)有限公司 清洁控制方法、装置、清洁机器人以及存储介质
WO2023079253A1 (en) * 2021-11-05 2023-05-11 Numatic International Limited Floor treatment machine
GB2615080A (en) * 2022-01-26 2023-08-02 Numatic Int Ltd Floor treatment machine
WO2023204383A1 (ko) * 2022-04-18 2023-10-26 삼성전자주식회사 청소 로봇 및 그 제어 방법
CN114938926A (zh) * 2022-04-19 2022-08-26 安克创新科技股份有限公司 一种基站及清洁系统
CN114788664B (zh) * 2022-05-11 2024-04-16 深圳市无限动力发展有限公司 具有倾斜旋转抹布的扫地机
KR20230171310A (ko) * 2022-06-13 2023-12-20 삼성전자주식회사 습식 청소 로봇 및 이에 사용되는 오염 방지 모듈
CN115254717B (zh) * 2022-07-06 2024-02-09 国网山东省电力公司经济技术研究院 一种用于电力配电箱的清理装置
CN115177187B (zh) * 2022-07-29 2024-04-16 佛山市银星智能制造有限公司 一种基站及清洁基站的方法
CN115390570B (zh) * 2022-10-26 2023-01-17 深圳市思傲拓科技有限公司 一种基于人工智能的泳池机器人管控系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056216A (ja) * 2007-09-03 2009-03-19 Panasonic Corp 電気掃除機
KR20090119638A (ko) * 2008-05-16 2009-11-19 엘지전자 주식회사 로봇 청소기 및 이를 이용한 바닥면 종류 감지 방법
KR20120055891A (ko) * 2010-11-24 2012-06-01 삼성전자주식회사 로봇청소기 및 그 제어방법
KR101303159B1 (ko) * 2011-07-25 2013-09-17 엘지전자 주식회사 로봇 청소기 및 이의 자가 진단 방법
KR20150057959A (ko) * 2013-11-20 2015-05-28 삼성전자주식회사 청소 로봇 및 그 제어 방법

Family Cites Families (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL85919C (ko) * 1951-03-14
US3381334A (en) 1967-04-12 1968-05-07 Iroka A. Redmond Household cleaning implement
US3793665A (en) 1972-03-13 1974-02-26 Minnesota Mining & Mfg Shower feed assembly
US3795932A (en) 1972-10-02 1974-03-12 Beatrice Foods Co Versatile flow-through foam carpet cleaning apparatus
US3827099A (en) 1972-11-29 1974-08-06 E Allaire Disposable mop head
DE2826133C2 (de) * 1978-06-15 1986-04-17 Vorwerk & Co Interholding Gmbh, 5600 Wuppertal Schaltungsanordnung zur Kenntlichmachung der für optimalen Betrieb richtigen, aus dem Gerätegehäuse herausragenden Borstenlänge von Borstenwalzen in Bodenpflegegeräten
JPH0779790B2 (ja) * 1988-07-22 1995-08-30 松下電器産業株式会社 電気掃除機
JPH03123522A (ja) 1989-10-06 1991-05-27 Matsushita Electric Ind Co Ltd 床面判別器及びこれを有する電気掃除機
US5249325A (en) 1990-10-18 1993-10-05 Wilen Manufacturing Co., Inc. Brush and bonnet carpet cleaning assembly
JP3134485B2 (ja) 1992-04-27 2001-02-13 株式会社豊田自動織機製作所 床面清掃車のサイドブラシ支持構造
JPH09215644A (ja) * 1996-02-07 1997-08-19 Johnson Kk 自動床洗浄機
JP3493539B2 (ja) 1996-06-03 2004-02-03 ミノルタ株式会社 走行作業ロボット
US6493896B1 (en) 1998-10-22 2002-12-17 Alto U.S. Inc. Brush head positioning system
JPH11178764A (ja) 1997-12-22 1999-07-06 Honda Motor Co Ltd 移動ロボット
TW463028B (en) * 1998-04-21 2001-11-11 Hitachi Shipbuilding Eng Co Working robot for heat exchangers and operating method thereof
JP3540170B2 (ja) 1998-08-07 2004-07-07 アマノ株式会社 床面艶出し清掃機
JP3665486B2 (ja) 1998-08-28 2005-06-29 東京オートマック株式会社 床清掃機
JP4232332B2 (ja) * 1999-11-10 2009-03-04 末藏 岩田 タンク付電動床磨機用ブラシ台
JP2001299656A (ja) * 2000-02-18 2001-10-30 Suezo Iwata 電動床磨機用回転ブラシ
KR200195057Y1 (ko) * 2000-03-30 2000-09-01 김종빈 물걸레 자동 청소기
US6883201B2 (en) 2002-01-03 2005-04-26 Irobot Corporation Autonomous floor-cleaning robot
DE10113789B4 (de) * 2001-03-21 2006-09-14 BSH Bosch und Siemens Hausgeräte GmbH Anordnung zur Entsorgung von Schmutz mit einem beweglichen Schmutzsauger
KR20020074985A (ko) 2001-03-23 2002-10-04 장병학 자동 물 청소세트
TW537326U (en) 2001-05-22 2003-06-11 Kou Sheng Feng Entpr Co Ltd Sweeper
ATE309736T1 (de) 2001-09-14 2005-12-15 Vorwerk Co Interholding Selbsttätig verfahrbares bodenstaub- aufsammelgerät, sowie kombination eines derartigen aufsammelgerätes und einer basisstaton
JP2003190064A (ja) 2001-12-25 2003-07-08 Duskin Co Ltd 自走式掃除機
KR20030093625A (ko) * 2002-06-04 2003-12-11 삼성광주전자 주식회사 터빈을 이용한 걸레가 부착된 진공청소기의 브러시
DE10231388A1 (de) * 2002-07-08 2004-02-05 Alfred Kärcher Gmbh & Co. Kg Bodenbearbeitungssystem
US20040031113A1 (en) 2002-08-14 2004-02-19 Wosewick Robert T. Robotic surface treating device with non-circular housing
US7320149B1 (en) 2002-11-22 2008-01-22 Bissell Homecare, Inc. Robotic extraction cleaner with dusting pad
US7346428B1 (en) * 2002-11-22 2008-03-18 Bissell Homecare, Inc. Robotic sweeper cleaner with dusting pad
US20040163199A1 (en) 2003-02-20 2004-08-26 Bill Hsu Steam cleaner
AU2003900779A0 (en) * 2003-02-21 2003-03-13 Joseph Deleo Polishing vacuum cleaner for hard surfaces
KR200322361Y1 (ko) * 2003-04-28 2003-08-06 김동환 스팀청소기의 걸레 착탈구조
US7168274B2 (en) 2003-05-05 2007-01-30 American Dryer Corporation Combination washer/dryer having common heat source
KR101026003B1 (ko) * 2003-05-07 2011-03-30 엘지전자 주식회사 로봇 진공청소기의 완충 및 감지장치
JP4163554B2 (ja) * 2003-05-27 2008-10-08 株式会社東芝 電気掃除機
JP2005006816A (ja) * 2003-06-18 2005-01-13 Matsushita Electric Ind Co Ltd 清掃機
KR20050012047A (ko) 2003-07-24 2005-01-31 삼성광주전자 주식회사 회전 물걸레 청소유닛을 구비한 로봇청소기
KR100470320B1 (ko) 2003-07-30 2005-03-14 한경희 진공 청소 기능을 갖는 스팀 청소기
TWM247170U (en) * 2003-10-09 2004-10-21 Cheng-Shiang Yan Self-moving vacuum floor cleaning device
KR100982121B1 (ko) 2003-12-23 2010-09-14 엘지디스플레이 주식회사 액정표시장치 및 그 구동방법
JP2005211368A (ja) 2004-01-30 2005-08-11 Funai Electric Co Ltd 自走式掃除機
US20050183230A1 (en) 2004-01-30 2005-08-25 Funai Electric Co., Ltd. Self-propelling cleaner
ES2270218T3 (es) 2004-05-07 2007-04-01 Johnsondiversey, Inc. Sistema de limpieza por tratamiento del suelo.
JP2005345328A (ja) 2004-06-04 2005-12-15 Sharp Corp 光学式物体識別装置
EP1759045B1 (en) 2004-06-23 2016-03-23 LG Electronics Inc. Washing machine and method thereof
CN1988837B (zh) 2004-07-26 2010-09-01 宝洁公司 清洁工具、包括清洁工具的清洁系统,以及清洁硬质表面的方法
JP4278591B2 (ja) * 2004-08-31 2009-06-17 三洋電機株式会社 自走装置
KR100631536B1 (ko) * 2004-09-22 2006-10-09 엘지전자 주식회사 공기정화 로봇 및 그의 운전방법
KR100619750B1 (ko) * 2004-10-13 2006-09-12 엘지전자 주식회사 로봇청소기의 위치오차 보정장치 및 방법
WO2006046049A1 (en) * 2004-10-29 2006-05-04 Reckitt Benckiser Inc. Autonomous robot for the cleaning of a flooring surface
JP2006217949A (ja) * 2005-02-08 2006-08-24 Funai Electric Co Ltd 自走型掃除機のバンパー装置
JP2006212201A (ja) * 2005-02-03 2006-08-17 Azuma Industrial Co Ltd 清掃用アタッチメント
KR100661339B1 (ko) 2005-02-24 2006-12-27 삼성광주전자 주식회사 로봇 청소기
CN2817718Y (zh) 2005-08-24 2006-09-20 郑明珠 用水抹布擦地清洁机
KR101073102B1 (ko) 2005-09-13 2011-11-03 (주)케이에스텍 로봇청소기
DE102005045310B3 (de) 2005-09-16 2007-03-22 Alfred Kärcher Gmbh & Co. Kg Fahrbare Bodenreinigungsmaschine
KR200412179Y1 (ko) 2005-10-24 2006-03-23 김선희 전기청소기
KR100669889B1 (ko) 2005-10-26 2007-01-19 엘지전자 주식회사 이동로봇의 걸레 청소장치
KR200413777Y1 (ko) 2006-01-16 2006-04-13 한경희 스팀청소기용 트레이
KR101253639B1 (ko) * 2006-04-10 2013-04-10 엘지전자 주식회사 로봇 청소기
JP4231882B2 (ja) * 2006-08-10 2009-03-04 株式会社東芝 吸込口体及びこれを備える電気掃除機
KR200435111Y1 (ko) 2006-09-30 2007-01-09 김영희 회전식 스팀 청소기
KR100799947B1 (ko) * 2006-12-05 2008-01-31 주식회사 한울로보틱스 이동로봇의 충돌감지장치
EP1980188B1 (en) 2007-03-27 2012-11-14 Samsung Electronics Co., Ltd. Robot cleaner with improved dust collector
KR101000178B1 (ko) 2007-04-06 2010-12-10 조진호 자동 청소기
KR101160393B1 (ko) 2007-05-09 2012-06-26 아이로보트 코퍼레이션 소형 자율 커버리지 로봇
FR2916152B1 (fr) * 2007-05-14 2010-03-05 Robosoft Robot polyvalent
KR101408733B1 (ko) 2007-05-15 2014-06-19 삼성전자주식회사 스팀겸용 진공청소기의 흡입브러시
KR101361562B1 (ko) 2007-05-31 2014-02-13 삼성전자주식회사 청소로봇
JP5012224B2 (ja) * 2007-06-05 2012-08-29 パナソニック株式会社 電気掃除機
KR100822785B1 (ko) 2007-06-27 2008-04-17 김광현 물청소장치
KR20090008665A (ko) 2007-07-18 2009-01-22 김효광 맨홀 거푸집
US20090064447A1 (en) 2007-09-07 2009-03-12 Samsung Gwangju Electronics Co., Ltd. Steam vacuum cleaner
KR100864697B1 (ko) 2007-10-30 2008-10-23 안봉주 물걸레 청소기
JP2009118995A (ja) * 2007-11-14 2009-06-04 Panasonic Corp 自律走行装置
KR100962121B1 (ko) 2008-02-11 2010-06-10 신정영 물걸레 로봇청소기 및 이의 자동세탁 기능을 가지는 충전기
CN104248395B (zh) 2008-04-24 2018-06-22 艾罗伯特公司 用于机器人使能的移动产品的定位、位置控制和导航系统的应用
US8961695B2 (en) * 2008-04-24 2015-02-24 Irobot Corporation Mobile robot for cleaning
KR20100001717U (ko) 2008-08-07 2010-02-18 조규범 청소기 시스템
US8281451B2 (en) 2008-08-08 2012-10-09 Unger Marketing International, Llc Cleaning sheets
KR101397103B1 (ko) 2009-06-12 2014-05-20 삼성전자주식회사 로봇청소기 및 그 주행 제어 방법
KR20110010530A (ko) * 2009-07-24 2011-02-01 김규천 위치추적용 레이저 발생기 및 이를 구비한 위치추적용 목걸이
JP2011045484A (ja) * 2009-08-26 2011-03-10 Takayuki Nakano 床面清掃具
JP5421461B2 (ja) * 2009-10-30 2014-02-19 ユージン ロボット シーオー., エルティーディー. 移動ロボットのスリップ感知装置および方法
KR20100006151A (ko) 2009-12-04 2010-01-18 한종현 세탁기 일체형 물걸레 청소기
KR100985376B1 (ko) 2009-12-30 2010-10-04 안정섭 대걸레의 세척수단과 탈수수단이 구비된 세척통
KR20110080322A (ko) * 2010-01-05 2011-07-13 삼성전자주식회사 로봇의 슬립 감지 장치 및 방법
US8892251B1 (en) 2010-01-06 2014-11-18 Irobot Corporation System and method for autonomous mopping of a floor surface
KR20110105305A (ko) * 2010-03-18 2011-09-26 김정옥 청소기
CN201710284U (zh) * 2010-05-05 2011-01-19 泰怡凯电器(苏州)有限公司 智能变功率吸尘器
KR101135312B1 (ko) 2010-06-29 2012-04-19 삼성에스디에스 주식회사 사용자 가상머신 상에 설치된 모듈을 보호할 수 있는 단말장치 및 그 방법
KR101483541B1 (ko) * 2010-07-15 2015-01-19 삼성전자주식회사 로봇청소기, 메인터넌스 스테이션 그리고 이들을 가지는 청소시스템
KR101217366B1 (ko) * 2010-08-12 2012-12-31 김선형 로봇청소기
KR200462514Y1 (ko) 2010-09-28 2012-09-13 주식회사 에코프롬 저염수 또는 담수를 이용한 살균수 생성 장치
CN201840418U (zh) 2010-10-11 2011-05-25 洋通工业股份有限公司 自走吸尘器的可拆式滚刷装置
KR101230147B1 (ko) 2010-10-25 2013-02-05 이재하 물걸레 청소용 청소로봇
EP2494900B1 (en) 2011-03-04 2014-04-09 Samsung Electronics Co., Ltd. Debris detecting unit and robot cleaning device having the same
KR101880087B1 (ko) 2011-03-04 2018-07-20 삼성전자주식회사 먼지 감지 유닛 및 이를 포함하는 로봇 청소기
KR200458863Y1 (ko) 2011-03-22 2012-03-15 어수곤 물걸레 로봇청소기
KR101513828B1 (ko) 2011-04-28 2015-04-20 가부시끼가이샤 도시바 전기 청소기
US8898844B1 (en) * 2011-07-08 2014-12-02 Irobot Corporation Mopping assembly for a mobile robot
KR101324166B1 (ko) * 2011-07-25 2013-11-08 엘지전자 주식회사 로봇 청소기 및 이의 자가 진단 방법
WO2013017167A1 (de) 2011-08-02 2013-02-07 Alfred Kärcher Gmbh & Co. Kg Fahrbare bodenreinigungsmaschine und verfahren zum betreiben einer bodenreinigungsmaschine
GB2494442B (en) 2011-09-09 2013-12-25 Dyson Technology Ltd Autonomous vacuum cleaner
KR101331719B1 (ko) * 2011-09-23 2013-11-20 엘지전자 주식회사 청소 키트 및 이를 포함하는 자동 청소기
CN203736119U (zh) * 2011-09-29 2014-07-30 夏普株式会社 清扫机器人
JP5357946B2 (ja) * 2011-10-14 2013-12-04 シャープ株式会社 掃除ロボット
US9173539B2 (en) 2011-10-18 2015-11-03 Samsung Electronics Co., Ltd. Robot cleaner and method for controlling the same
KR101970582B1 (ko) 2011-10-18 2019-04-22 삼성전자주식회사 로봇 청소기 및 그 제어 방법
CN202341952U (zh) 2011-12-02 2012-07-25 朱凌锋 擦扫一体机器人
CN102934968B (zh) * 2012-01-20 2015-05-27 广东新宝电器股份有限公司 一种电动蒸汽拖把
KR101970541B1 (ko) * 2012-04-06 2019-04-22 삼성전자주식회사 로봇 청소기 및 그 제어 방법
US8899845B2 (en) 2012-05-15 2014-12-02 Panduit Corp. Fiber optic connector
JP5809104B2 (ja) 2012-05-15 2015-11-10 有限会社アクセス 清掃装置用連結具及び清掃装置
KR20130129059A (ko) 2012-05-17 2013-11-27 코웨이 주식회사 걸레부를 포함하는 청소기
JP2013244225A (ja) 2012-05-25 2013-12-09 Unicharm Corp 清掃ロボット
KR101373300B1 (ko) 2012-06-28 2014-03-11 부산대학교 산학협력단 수소를 이용한 산화아연계 p 형 반도체 박막 및 그 제조방법
JP2014045898A (ja) 2012-08-30 2014-03-17 Sharp Corp 掃除装置
US8972061B2 (en) * 2012-11-02 2015-03-03 Irobot Corporation Autonomous coverage robot
EP2730204B1 (en) * 2012-11-09 2016-12-28 Samsung Electronics Co., Ltd. Robot cleaner
KR20140070250A (ko) * 2012-11-30 2014-06-10 삼성테크윈 주식회사 로봇 청소기
TWM455464U (zh) 2012-12-03 2013-06-21 Univ Taipei Chengshih Science 清潔機器人殺菌改良裝置
CN103006153A (zh) 2012-12-14 2013-04-03 向桂南 智能擦地机
CN203113255U (zh) 2012-12-18 2013-08-07 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 具有预设和校准倾角功能的扫盘
KR102015319B1 (ko) * 2013-01-16 2019-08-29 삼성전자주식회사 로봇 청소기
JP6166047B2 (ja) 2013-01-16 2017-07-19 シャープ株式会社 自走式電子機器
KR102054689B1 (ko) 2013-01-31 2020-01-22 삼성전자주식회사 청소 로봇 및 그 제어 방법
TWI508692B (zh) 2013-02-08 2015-11-21 Self-propelled trailing machine
KR101342567B1 (ko) 2013-03-28 2013-12-17 노승환 스팀 청소기
CN203296009U (zh) 2013-05-31 2013-11-20 珠海亿华电动车辆有限公司 电动地面清扫机的举升倾倒机构
CN203987872U (zh) 2013-06-03 2014-12-10 碧洁家庭护理有限公司 自主式地板清洁器
CN203314896U (zh) * 2013-06-08 2013-12-04 中船重工(武汉)凌久高科有限公司 一种智能化清洁除尘设备
KR20150007809A (ko) 2013-07-12 2015-01-21 주식회사 실리콘웍스 디스플레이 구동회로 및 디스플레이 장치
KR101520043B1 (ko) 2013-07-24 2015-05-14 에브리봇 주식회사 물걸레 로봇청소기 및 청소제어방법
KR101522177B1 (ko) 2013-08-22 2015-05-28 경성오토비스 주식회사 청소기
CN103418127B (zh) * 2013-09-16 2014-12-17 太仓市车中宝休闲用品有限公司 转盘式后踏板摆脚式滑板
KR101522926B1 (ko) 2013-09-17 2015-05-29 김재현 롤 브러시 청소기
KR20150048490A (ko) 2013-10-28 2015-05-07 삼성전자주식회사 로봇청소기
US9814364B1 (en) 2013-11-10 2017-11-14 Sharkninja Operating Llc Cleaning apparatus with larger debris pick up
US9427127B2 (en) * 2013-11-12 2016-08-30 Irobot Corporation Autonomous surface cleaning robot
US9504367B2 (en) 2013-11-20 2016-11-29 Samsung Electronics Co., Ltd. Cleaning robot and method for controlling the same
KR102083193B1 (ko) 2013-11-25 2020-03-02 삼성전자주식회사 로봇 청소기
KR101523848B1 (ko) 2013-11-28 2015-05-28 울산대학교 산학협력단 이동 로봇의 슬립 추정 장치 및 그 방법
US9480380B2 (en) 2013-12-04 2016-11-01 Samsung Electronics Co., Ltd. Cleaning robot and control method thereof
KR102117263B1 (ko) * 2013-12-30 2020-06-01 삼성전자주식회사 로봇 청소기
CN104757906A (zh) 2014-01-03 2015-07-08 燕成祥 自动清洁机
WO2015108977A1 (en) 2014-01-15 2015-07-23 Tennant Company Surface maintenance machine with a head adjustment mechanism
CN103792944A (zh) * 2014-02-26 2014-05-14 曾光 物联网多媒体净化吸尘智能机器人
KR101578879B1 (ko) 2014-03-11 2015-12-18 에브리봇 주식회사 로봇 청소기 및 그의 제어 방법
KR101622740B1 (ko) 2014-03-14 2016-05-19 에브리봇 주식회사 로봇 청소기 및 그의 제어 방법
KR101609444B1 (ko) * 2014-04-07 2016-04-05 노승환 물 청소기
KR101558509B1 (ko) * 2014-05-20 2015-10-07 엘지전자 주식회사 로봇청소기
CN203947323U (zh) * 2014-05-22 2014-11-19 宁波华彩电器有限公司 洗衣机波轮
DE102015101587B3 (de) 2014-05-30 2015-07-09 Wessel-Werk Gmbh Robotsauger mit Mehrfachanordnung von Seitenbürsten
KR101689133B1 (ko) * 2014-06-02 2016-12-26 에브리봇 주식회사 로봇 청소기 및 그의 제어 방법
KR20150143208A (ko) * 2014-06-13 2015-12-23 삼성전자주식회사 로봇청소기
KR20160003361A (ko) 2014-06-30 2016-01-11 (주)지앤티솔루션 택시 통합 콜센터 관리 방법 및 장치
WO2016002186A1 (ja) * 2014-06-30 2016-01-07 パナソニックIpマネジメント株式会社 自律走行型掃除機
KR102138724B1 (ko) * 2014-07-01 2020-07-28 삼성전자주식회사 청소 로봇 및 그 제어 방법
KR102306709B1 (ko) 2014-08-19 2021-09-29 삼성전자주식회사 청소 로봇, 청소 로봇의 제어 장치, 제어 시스템, 및 제어 방법
CN104172993B (zh) 2014-08-21 2018-01-16 广东宝乐机器人股份有限公司 一种在智能扫地机上具有多种清洁方式的方法及其装置
KR101578887B1 (ko) 2014-09-05 2015-12-21 에브리봇 주식회사 습식 청소 장치, 로봇 청소기 및 그의 제어 방법
KR101779667B1 (ko) 2014-09-16 2017-09-20 성균관대학교산학협력단 태양광 패널용 세척 로봇 및 이를 이용한 태양광 패널의 세척방법
KR101622713B1 (ko) 2014-09-24 2016-05-19 엘지전자 주식회사 로봇 청소기
JP2017213009A (ja) * 2014-10-10 2017-12-07 パナソニックIpマネジメント株式会社 自律走行型掃除機
KR102266928B1 (ko) * 2014-12-02 2021-06-18 엘지전자 주식회사 걸레 모듈 및 이를 구비하는 로봇 청소기
KR101750944B1 (ko) * 2014-12-31 2017-06-28 한국산업기술대학교산학협력단 전동 휠체어의 슬립 제어방법
CN104586324A (zh) * 2015-01-16 2015-05-06 惠州市鑫沛科技有限公司 实现自动导航、擦地、充电和抹布清洗的智能清洁机器人
KR20160090570A (ko) 2015-01-22 2016-08-01 주식회사 파인로보틱스 로봇 청소기 및 로봇 청소기 제어 방법
KR102318295B1 (ko) * 2015-01-22 2021-10-27 에브리봇 주식회사 로봇 청소기 및 로봇 청소기 제어 방법
KR101613446B1 (ko) 2015-02-06 2016-04-19 에브리봇 주식회사 로봇 청소기 및 그의 제어 방법
US9993129B2 (en) * 2015-02-13 2018-06-12 Irobot Corporation Mobile floor-cleaning robot with floor-type detection
KR20160104429A (ko) 2015-02-26 2016-09-05 에브리봇 주식회사 로봇 청소기 및 그의 제어 방법
KR101602790B1 (ko) 2015-02-26 2016-03-11 에브리봇 주식회사 로봇 청소기 및 그의 제어 방법
US9907449B2 (en) * 2015-03-16 2018-03-06 Irobot Corporation Autonomous floor cleaning with a removable pad
US9918605B2 (en) * 2015-04-09 2018-03-20 Irobot Corporation Wall following robot
KR102307777B1 (ko) 2015-04-14 2021-10-05 엘지전자 주식회사 로봇 청소기 및 그의 제어방법
KR102343513B1 (ko) 2015-04-17 2021-12-28 에이비 엘렉트로룩스 로봇 청소 장치 및 로봇 청소 장치의 제어 방법
KR101569058B1 (ko) 2015-05-21 2015-11-13 김종란 전동식 물걸레 청소기용 물걸레 세탁기
CN204654801U (zh) * 2015-05-23 2015-09-23 沈伟国 智能擦窗机
CN204797752U (zh) * 2015-06-12 2015-11-25 朱德青 多功能扫地机器人
KR101595727B1 (ko) 2015-06-16 2016-02-19 김종란 회전식 물걸레 진공청소기
KR20150107693A (ko) 2015-06-16 2015-09-23 에브리봇 주식회사 로봇 청소기 및 그의 제어 방법
JP2015192878A (ja) * 2015-06-17 2015-11-05 ユニ・チャーム株式会社 清掃ロボットおよび当該清掃ロボットに使用する清掃シート
US9462920B1 (en) 2015-06-25 2016-10-11 Irobot Corporation Evacuation station
CN205411088U (zh) 2015-07-28 2016-08-03 广州市俪阳机械设备有限公司 吸风道过滤网后设置洗除尘装置的扫地机
KR101678443B1 (ko) 2015-09-23 2016-12-06 엘지전자 주식회사 로봇 청소기
CN205181248U (zh) * 2015-11-04 2016-04-27 东莞市智科智能科技有限公司 具有杀菌功能的保洁机器人
US20180003265A1 (en) * 2016-07-01 2018-01-04 HONORS Co., Ltd. Rotary mop with durable gear drive unit
KR101994691B1 (ko) 2016-07-14 2019-07-01 엘지전자 주식회사 로봇 청소기
CN110168659A (zh) 2016-11-14 2019-08-23 科塔公司 用于改善临床结果并降低总护理费用的cna引导的护理
KR101923814B1 (ko) 2017-03-13 2018-11-29 재단법인목포수산식품지원센터 젓갈을 이용한 분말용 천연조미료 및 이의 제조방법
KR102011827B1 (ko) * 2017-08-07 2019-08-19 엘지전자 주식회사 로봇청소기 및 그 제어방법
KR102014142B1 (ko) 2017-08-07 2019-08-26 엘지전자 주식회사 로봇 청소기
KR102021824B1 (ko) 2018-09-17 2019-09-17 엘지전자 주식회사 로봇 청소기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056216A (ja) * 2007-09-03 2009-03-19 Panasonic Corp 電気掃除機
KR20090119638A (ko) * 2008-05-16 2009-11-19 엘지전자 주식회사 로봇 청소기 및 이를 이용한 바닥면 종류 감지 방법
KR20120055891A (ko) * 2010-11-24 2012-06-01 삼성전자주식회사 로봇청소기 및 그 제어방법
KR101303159B1 (ko) * 2011-07-25 2013-09-17 엘지전자 주식회사 로봇 청소기 및 이의 자가 진단 방법
KR20150057959A (ko) * 2013-11-20 2015-05-28 삼성전자주식회사 청소 로봇 및 그 제어 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210030247A1 (en) * 2019-07-31 2021-02-04 Lg Electronics Inc. Mobile robot
US20210186293A1 (en) * 2019-12-24 2021-06-24 Everybot Inc. Robot Cleaner and Method For Controlling The Same

Also Published As

Publication number Publication date
TWI663948B (zh) 2019-07-01
CN109715027B (zh) 2021-05-18
EP3570718A1 (en) 2019-11-27
EP3485787A1 (en) 2019-05-22
US20190307305A1 (en) 2019-10-10
AU2017297110B2 (en) 2020-06-25
US20190216285A1 (en) 2019-07-18
US11930973B2 (en) 2024-03-19
TW201832713A (zh) 2018-09-16
EP3485793A4 (en) 2020-06-24
CN113876237A (zh) 2022-01-04
TW201834604A (zh) 2018-10-01
US20210259497A1 (en) 2021-08-26
KR20200063259A (ko) 2020-06-04
CN109715026A (zh) 2019-05-03
WO2018012915A4 (ko) 2018-05-11
KR102137459B1 (ko) 2020-07-24
WO2018135897A2 (en) 2018-07-26
AU2018210706A1 (en) 2019-09-12
EP3485791A1 (en) 2019-05-22
TWI735730B (zh) 2021-08-11
EP3571022A1 (en) 2019-11-27
US20190270124A1 (en) 2019-09-05
EP4144275A1 (en) 2023-03-08
KR102227373B1 (ko) 2021-03-11
TWI682757B (zh) 2020-01-21
EP3570718A4 (en) 2020-09-09
AU2018209866A1 (en) 2019-09-12
EP3570716A4 (en) 2020-09-09
EP4140378A1 (en) 2023-03-01
WO2018012918A1 (ko) 2018-01-18
US10993598B2 (en) 2021-05-04
US11109731B2 (en) 2021-09-07
CN109688884B (zh) 2022-05-03
EP3485790A4 (en) 2020-09-16
CN109715025A (zh) 2019-05-03
EP3485786A4 (en) 2020-06-24
US11864697B2 (en) 2024-01-09
EP3571024A4 (en) 2020-11-25
KR101903022B1 (ko) 2018-10-01
WO2018135901A1 (en) 2018-07-26
US11071429B2 (en) 2021-07-27
CN113876237B (zh) 2023-04-11
US20190223676A1 (en) 2019-07-25
CN110087521B (zh) 2022-01-18
EP3485792A1 (en) 2019-05-22
AU2018209863A1 (en) 2019-09-12
AU2017297106B2 (en) 2020-06-25
TWI679959B (zh) 2019-12-21
CN110461202B (zh) 2022-04-26
KR20190002702A (ko) 2019-01-08
US20230148818A1 (en) 2023-05-18
KR20180008251A (ko) 2018-01-24
CN110430796A (zh) 2019-11-08
KR101925965B1 (ko) 2019-02-26
EP3570716B1 (en) 2022-11-23
CN113951775B (zh) 2023-06-23
TWI682759B (zh) 2020-01-21
US11051671B2 (en) 2021-07-06
WO2018012922A1 (ko) 2018-01-18
WO2018012914A4 (ko) 2018-03-15
AU2017297104A1 (en) 2019-05-02
CN109715027A (zh) 2019-05-03
EP3571024B1 (en) 2023-08-09
WO2018012914A1 (ko) 2018-01-18
EP3571022A4 (en) 2020-11-18
EP3571024A1 (en) 2019-11-27
US20190231161A1 (en) 2019-08-01
EP3485793A1 (en) 2019-05-22
US20190223678A1 (en) 2019-07-25
TW201831132A (zh) 2018-09-01
KR20190000895A (ko) 2019-01-03
WO2018012921A1 (ko) 2018-01-18
US20190328198A1 (en) 2019-10-31
EP3485786B1 (en) 2022-11-09
TW201907854A (zh) 2019-03-01
KR102159972B1 (ko) 2020-09-25
TW201907852A (zh) 2019-03-01
JP2020518299A (ja) 2020-06-25
TWI686163B (zh) 2020-03-01
CN110087521A (zh) 2019-08-02
AU2017297106A1 (en) 2019-05-02
US11291343B2 (en) 2022-04-05
EP3485792B1 (en) 2022-10-12
EP3485789A4 (en) 2020-06-24
AU2018209865A1 (en) 2019-09-12
US20200129029A1 (en) 2020-04-30
EP3485785A1 (en) 2019-05-22
TW201838578A (zh) 2018-11-01
US20190335969A1 (en) 2019-11-07
EP4005458A1 (en) 2022-06-01
EP3485788A1 (en) 2019-05-22
KR20190003776A (ko) 2019-01-09
TWI671054B (zh) 2019-09-11
WO2018012918A4 (ko) 2018-03-15
CN109715025B (zh) 2021-11-05
KR102137457B1 (ko) 2020-07-24
TWI747592B (zh) 2021-11-21
WO2018135898A1 (en) 2018-07-26
TWI732091B (zh) 2021-07-01
EP3485789B1 (en) 2022-09-21
CN109688884A (zh) 2019-04-26
WO2018012912A1 (ko) 2018-01-18
TW201907853A (zh) 2019-03-01
KR102147943B1 (ko) 2020-08-25
CN113951775A (zh) 2022-01-21
TW201834603A (zh) 2018-10-01
EP3485785A4 (en) 2020-04-29
US11253126B2 (en) 2022-02-22
EP3571022B1 (en) 2023-08-09
US20190223681A1 (en) 2019-07-25
TW202108065A (zh) 2021-03-01
AU2017297107B2 (en) 2020-05-14
KR20190000893A (ko) 2019-01-03
KR20190000892A (ko) 2019-01-03
US20200046191A1 (en) 2020-02-13
KR102110529B1 (ko) 2020-05-13
KR20180008250A (ko) 2018-01-24
EP3485790A1 (en) 2019-05-22
TWI687194B (zh) 2020-03-11
CN113951763A (zh) 2022-01-21
US20220071465A1 (en) 2022-03-10
EP3485793B1 (en) 2022-10-19
AU2017297110A1 (en) 2019-05-02
EP3485789A1 (en) 2019-05-22
US20230111570A1 (en) 2023-04-13
JP7054702B2 (ja) 2022-04-14
CN110461202A (zh) 2019-11-15
EP3485788A4 (en) 2020-06-03
TWI712388B (zh) 2020-12-11
WO2018012915A1 (ko) 2018-01-18
KR101979760B1 (ko) 2019-05-17
TW201907850A (zh) 2019-03-01
TWI663949B (zh) 2019-07-01
KR102137458B1 (ko) 2020-07-24
US20210228043A1 (en) 2021-07-29
EP3570716A2 (en) 2019-11-27
KR20180008248A (ko) 2018-01-24
AU2018209863B2 (en) 2020-10-22
KR101994691B1 (ko) 2019-07-01
US11284766B2 (en) 2022-03-29
KR20180008249A (ko) 2018-01-24
EP3570718B1 (en) 2022-10-26
KR102306433B1 (ko) 2021-09-28
KR20190004349A (ko) 2019-01-11
EP3485786A1 (en) 2019-05-22
US11141034B2 (en) 2021-10-12
WO2018135900A1 (en) 2018-07-26
AU2017297104B2 (en) 2020-02-27
AU2017297107A1 (en) 2019-05-02
EP3485792A4 (en) 2020-05-06
KR20180008252A (ko) 2018-01-24
CN110430796B (zh) 2022-04-19
US11202547B2 (en) 2021-12-21
AU2018209865B2 (en) 2020-12-24
KR20190003775A (ko) 2019-01-09
AU2017296910A1 (en) 2019-05-02
AU2018210706B2 (en) 2021-01-07
EP3485788B1 (en) 2023-04-05
TW201907851A (zh) 2019-03-01
KR101918228B1 (ko) 2019-01-29
US20190384306A1 (en) 2019-12-19
WO2018135897A3 (en) 2018-09-13
WO2018012917A1 (ko) 2018-01-18
JP7022137B2 (ja) 2022-02-17
CN113951763B (zh) 2023-12-12
AU2017296910B2 (en) 2020-05-28
KR102155000B1 (ko) 2020-09-11
WO2018012913A1 (ko) 2018-01-18
US11564546B2 (en) 2023-01-31
US11571102B2 (en) 2023-02-07
EP3485791A4 (en) 2020-05-27
TW201907845A (zh) 2019-03-01
CN114224252B (zh) 2023-06-02
EP3485785B1 (en) 2022-10-26
KR20190000894A (ko) 2019-01-03
US11019975B2 (en) 2021-06-01
CN109715026B (zh) 2021-10-22
JP2020506751A (ja) 2020-03-05
CN114224252A (zh) 2022-03-25
AU2018209866B2 (en) 2021-01-21
EP3485787A4 (en) 2020-09-16
US20190223675A1 (en) 2019-07-25
EP4140383A1 (en) 2023-03-01
EP3485791B1 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
WO2018012923A1 (ko) 로봇 청소기 및 그 제어 방법
WO2015084078A1 (en) Cleaning robot and control method thereof
WO2021020930A1 (ko) 이동 로봇 및 그 제어방법
WO2015076593A1 (en) Cleaning robot and method for controlling the same
EP3076845A1 (en) Cleaning robot and control method thereof
WO2016003077A1 (en) Cleaning robot and controlling method thereof
WO2017200350A1 (ko) 로봇 청소기
WO2018124546A2 (ko) 충전 스테이션을 포함하는 로봇 청소기 시스템
WO2017200344A1 (ko) 로봇 청소기
WO2019031795A1 (ko) 청소기
WO2019143172A1 (ko) 청소기
WO2017200349A1 (ko) 로봇 청소기
WO2021060661A1 (ko) 로봇 청소기
WO2017200343A1 (ko) 로봇 청소기
WO2016028021A1 (ko) 청소 로봇 및 그 제어 방법
WO2017200347A1 (ko) 로봇 청소기
EP3829408A1 (en) Robot cleaner, charging device and charging system
EP3068277A1 (en) Dishwasher and method of controlling the same
WO2017200351A1 (ko) 로봇 청소기
WO2021187723A1 (ko) 로봇 청소기
WO2017200345A1 (ko) 로봇 청소기
WO2021172932A1 (en) Moving robots and method for controlling the same
WO2015068990A1 (en) Dishwasher and method of controlling the same
WO2021040160A1 (ko) 인공지능 로봇청소기 및 그를 포함하는 로봇 시스템
WO2017200348A1 (ko) 로봇 청소기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036041

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017827993

Country of ref document: EP

Effective date: 20190214

ENP Entry into the national phase

Ref document number: 2017296910

Country of ref document: AU

Date of ref document: 20170714

Kind code of ref document: A