WO2017006868A1 - 積層磁芯及びその製造方法 - Google Patents

積層磁芯及びその製造方法 Download PDF

Info

Publication number
WO2017006868A1
WO2017006868A1 PCT/JP2016/069674 JP2016069674W WO2017006868A1 WO 2017006868 A1 WO2017006868 A1 WO 2017006868A1 JP 2016069674 W JP2016069674 W JP 2016069674W WO 2017006868 A1 WO2017006868 A1 WO 2017006868A1
Authority
WO
WIPO (PCT)
Prior art keywords
ribbon
heat treatment
magnetic core
heat
amorphous
Prior art date
Application number
PCT/JP2016/069674
Other languages
English (en)
French (fr)
Inventor
彰宏 牧野
信行 西山
佳生 竹中
西川 幸男
彰継 瀬川
Original Assignee
国立大学法人東北大学
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, パナソニック株式会社 filed Critical 国立大学法人東北大学
Priority to US15/738,710 priority Critical patent/US11232901B2/en
Priority to CN202210971433.6A priority patent/CN115376808A/zh
Priority to CN201680037664.2A priority patent/CN107849629B/zh
Priority to JP2017527427A priority patent/JP6444504B2/ja
Publication of WO2017006868A1 publication Critical patent/WO2017006868A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/04Cores, Yokes, or armatures made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15325Amorphous metallic alloys, e.g. glassy metals containing rare earths

Definitions

  • the present invention relates to a laminated magnetic core and a manufacturing method thereof.
  • the present invention relates to a laminated magnetic core of an Fe-based nanocrystalline alloy ribbon suitable for use as a magnetic core of a motor and a method for manufacturing the same.
  • Patent Document 1 describes a method for manufacturing a core (magnetic core) using a ribbon (Fe-based amorphous ribbon) made of an Fe-based soft magnetic alloy. According to Patent Document 1, the heat treatment for precipitating nanocrystal grains (bccFe crystal grains) made of bccFe is divided into two or more times for either the ribbon or the core produced by winding the ribbon. This reduces the effect of self-heating in the heat treatment.
  • An Fe—B—Si—P—Cu—C alloy having an appropriate composition ratio has high amorphous forming ability.
  • the Fe-based amorphous ribbon produced from this alloy has excellent magnetic properties. Therefore, a magnetic core manufactured using such an Fe-based amorphous ribbon is expected to have excellent magnetic properties.
  • the Fe-based amorphous ribbon having such a composition is apt to become brittle when heat treatment is performed to deposit bccFe crystal grains. Therefore, when an attempt is made to process the ribbon after heat treatment, the ribbon is likely to be cracked or chipped. For example, even if an attempt is made to use a ribbon that has been heat-treated on a motor core having a complicated shape, it is difficult to cut the ribbon after the heat treatment into a desired complex shape. On the other hand, when heat treatment is performed after laminating shaped Fe-based amorphous ribbons, it becomes difficult to uniformly heat-treat the entire magnetic core as the magnetic core becomes larger. For this reason, the magnetic core cannot have a homogeneous structure, and the magnetic core may not have sufficient magnetic properties.
  • the present invention provides a method of manufacturing a laminated magnetic core using a ribbon made of an Fe—B—Si—P—Cu—C alloy, and a method of manufacturing a magnetic core having sufficient magnetic properties. With the goal.
  • One aspect of the present invention is a method for producing a laminated magnetic core, A shape processing step for processing an amorphous ribbon; A heat treatment step for heat-treating the shaped amorphous ribbon; A laminating step of laminating the heat-treated amorphous ribbon; The method for producing a laminated magnetic core is provided, wherein the heating rate in the heat treatment step is 80 ° C. or more per second.
  • Another aspect of the present invention is a method for producing a laminated magnetic core, A shape processing step for processing an amorphous ribbon; A heat treatment step for heat-treating the shaped amorphous ribbon; A laminating step of laminating the heat-treated amorphous ribbon; In the heat treatment step, there is provided a method of manufacturing a laminated magnetic core in which the amorphous ribbon is heated by substantially bringing both surfaces of the amorphous ribbon into contact with a heater.
  • shape processing is applied to the ribbon before it becomes brittle by heat treatment. For this reason, complicated shapes, such as a stator core of a motor, can be formed with sufficient accuracy. Thereafter, heat treatment is performed before laminating the shaped ribbons. Thereby, a thin ribbon with no variation in magnetic properties can be obtained by suppressing the temperature deviation of each part and uniformly depositing bccFe crystal grains. Furthermore, the magnetic core which has the outstanding magnetic characteristic is obtained by laminating
  • a ribbon having a homogeneous structure can be obtained by making the temperature rising rate considerably higher than in the conventional heat treatment. For example, when the temperature is raised at a relatively slow temperature rise rate such as 100 ° C. per minute, the crystal nuclei contained before the heat treatment grow into large crystals first, and the size of the crystal grains varies. It will occur. On the other hand, if the heating rate is increased, new crystal nuclei are generated before the crystallites contained before the heat treatment become larger, and they grow together. No variation in size. Accordingly, a ribbon having a homogeneous structure can be obtained. In addition, when the heating rate is increased, the manufacturing time can be shortened, and the productivity can be improved.
  • the heating rate in the heat treatment step is 80 ° C. or more per second, homogeneous crystal grains can be grown and the average grain diameter of the crystal grains can be reduced.
  • the criterion for homogeneity is, for example, that the grain size of the crystal grains that can be confirmed in the Fe-based nanocrystalline alloy ribbon obtained by heat treatment is within the range of an average grain size ⁇ 5 nm.
  • Such an Fe-based nanocrystalline alloy ribbon having a structure with little variation has good magnetic properties.
  • a motor including a laminated magnetic core obtained by laminating a plurality of such Fe-based nanocrystalline alloy ribbons has low iron loss and high motor efficiency.
  • the size of the amorphous ribbon to be heat-treated is relatively large.
  • heat-treating small amorphous ribbons such as experimental samples, it is relatively easy to control the temperature rise rate, but appropriately control the temperature rise rate during heat treatment of large amorphous ribbons. That is generally difficult.
  • the amorphous ribbon is heated by substantially bringing both sides of the amorphous ribbon into contact with the heater, it is possible to appropriately perform control such as increasing the heating rate, and to obtain a desired homogeneous structure.
  • Such a heating method that is, direct contact heating of the heater with respect to the amorphous ribbon allows easy temperature control as described above, and is suitable for mass production processing.
  • the amorphous ribbon and the heater are in direct contact.
  • the ribbon is supported by a support portion that is sufficiently thin and has high thermal conductivity, and the ribbon is interposed through the support portion. May be heated.
  • FIG. 1 is a diagram showing the results of differential scanning calorimetry (DSC) at a rate of temperature increase of 40 ° C./min of the alloy composition according to the present embodiment.
  • FIG. 2 is a flowchart schematically showing a method of manufacturing a magnetic core according to the embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing the temperature change of the ribbon in the heat treatment step according to the present embodiment, and the change in saturation magnetic flux density and coercive force associated therewith.
  • FIG. 4 is a schematic structural diagram of an apparatus constructed to embody the manufacturing method of the present invention.
  • FIG. 5 is an external view of a laminated state of motor magnetic cores manufactured in the example of the present invention.
  • the alloy composition according to the embodiment of the present invention is suitable as a starting material for an Fe-based nanocrystalline alloy and has a composition formula of Fe a B b Si C P x C y Cu z .
  • a composition formula of Fe a B b Si C P x C y Cu z 79 ⁇ a ⁇ 86 at%, 5 ⁇ b ⁇ 13 at%, 0 ⁇ c ⁇ 8 at%, 1 ⁇ x ⁇ 8 at%, 0 ⁇ y ⁇ 5 at%, 0.4 ⁇ z ⁇ 1.4 at%, and 0.08 ⁇ z / x ⁇ 0.8.
  • one or more elements may be substituted.
  • the Fe element is a main element and an essential element responsible for magnetism.
  • the ratio of Fe is large. If the Fe ratio is less than 79 at%, a desired saturation magnetic flux density cannot be obtained.
  • the proportion of Fe is more than 86 at%, formation of an amorphous phase under liquid quenching conditions becomes difficult, and the crystal grain size varies or becomes coarse. That is, when the proportion of Fe is more than 86 at%, a homogeneous nanocrystalline structure cannot be obtained, and the alloy composition has deteriorated soft magnetic properties.
  • the Fe ratio is desirably 79 at% or more and 86 at% or less. In particular, when a saturation magnetic flux density of 1.7 T or more is required, the proportion of Fe is preferably 81 at% or more.
  • the B element is an essential element for forming an amorphous phase.
  • the ratio of B is less than 5 at%, it becomes difficult to form an amorphous phase under liquid quenching conditions. If the ratio of B is more than 13 at%, ⁇ T decreases, a homogeneous nanocrystalline structure cannot be obtained, and the alloy composition has deteriorated soft magnetic properties. Therefore, the ratio of B is desirably 5 at% or more and 13 at% or less.
  • the ratio of B is preferably 10 at% or less.
  • Si element is an essential element responsible for amorphous formation, and contributes to the stabilization of the nanocrystal in the nanocrystallization. If Si is not contained, the ability to form an amorphous phase is lowered, and a more uniform nanocrystal structure cannot be obtained. As a result, soft magnetic properties are deteriorated.
  • the proportion of Si is more than 8 at%, the saturation magnetic flux density and the amorphous phase forming ability are lowered, and the soft magnetic characteristics are further deteriorated. Accordingly, the Si ratio is desirably 8 at% or less (not including 0). In particular, when the proportion of Si is 2 at% or more, the amorphous phase forming ability is improved, a continuous ribbon can be stably produced, and a homogeneous nanocrystal can be obtained by increasing ⁇ T.
  • the P element is an essential element responsible for amorphous formation.
  • the amorphous phase forming ability and the stability of nanocrystals are improved as compared with the case where only one of them is used.
  • the proportion of P is less than 1 at%, it becomes difficult to form an amorphous phase under liquid quenching conditions.
  • the ratio of P is more than 8 at%, the saturation magnetic flux density is lowered and the soft magnetic characteristics are deteriorated. Therefore, the ratio of P is desirably 1 at% or more and 8 at% or less. In particular, when the ratio of P is 2 at% or more and 5 at% or less, the amorphous phase forming ability is improved, and a continuous ribbon can be stably produced.
  • C element is an element responsible for amorphous formation.
  • the amorphous phase forming ability and the stability of nanocrystals are improved as compared with the case where only one of them is used. I am going to do that.
  • C since C is inexpensive, the amount of other metalloids is reduced by adding C, and the total material cost is reduced.
  • the proportion of C exceeds 5 at%, there is a problem that the alloy composition becomes brittle and soft magnetic properties are deteriorated. Therefore, the C ratio is desirably 5 at% or less. In particular, when the proportion of C is 3 at% or less, it is possible to suppress variation in composition due to evaporation of C during dissolution.
  • Cu element is an essential element contributing to nanocrystallization. It should be noted that Cu element is basically expensive and easily causes embrittlement and oxidation of the alloy composition when the proportion of Fe is 81 at% or more. If the Cu content is less than 0.4 at%, nanocrystallization becomes difficult. When the Cu content is higher than 1.4 at%, the precursor composed of the amorphous phase becomes inhomogeneous, so that a homogeneous nanocrystalline structure cannot be obtained when forming the Fe-based nanocrystalline alloy, and the soft magnetic properties deteriorate. To do. Therefore, it is desirable that the Cu ratio is 0.4 at% or more and 1.4 at% or less, and considering the embrittlement and oxidation of the alloy composition in particular, the Cu ratio is 1.1 at% or less. preferable.
  • the alloy composition contains a specific ratio of P element and Cu element, a cluster having a size of 10 nm or less is formed, and this nano-sized cluster forms a bccFe crystal when forming an Fe-based nanocrystalline alloy.
  • the specific ratio (z / x) of the ratio (x) of P and the ratio (z) of Cu is 0.08 or more and 0.8 or less. Outside this range, a homogeneous nanocrystalline structure cannot be obtained, and thus the alloy composition cannot have excellent soft magnetic properties.
  • the specific ratio (z / x) is preferably 0.08 or more and 0.55 or less in consideration of embrittlement and oxidation of the alloy composition.
  • the alloy composition according to the present embodiment has an amorphous phase as a main phase and has a continuous ribbon shape with a thickness of 15 to 40 ⁇ m.
  • the continuous ribbon-shaped alloy composition can be formed using a conventional apparatus such as a single roll manufacturing apparatus or a twin roll manufacturing apparatus used for manufacturing an Fe-based amorphous ribbon.
  • the alloy composition according to the present embodiment is heat-treated after the shape processing step.
  • the temperature of this heat treatment is equal to or higher than the crystallization temperature of the alloy composition according to the present embodiment.
  • These crystallization temperatures can be evaluated, for example, by performing thermal analysis at a rate of temperature increase of about 40 ° C./min using a DSC apparatus.
  • the volume fraction of bccFe crystals precipitated in the heat-treated alloy composition is 50% or more. This volume fraction can be evaluated by the change in the first peak area obtained by the DSC analysis result shown in FIG. 1 before and after the heat treatment.
  • the heat treatment method of the alloy composition according to the present embodiment defines the rate of temperature rise, the heat treatment temperature lower limit and the upper limit.
  • the alloy composition according to the present embodiment that has been shape-processed in advance is heat-treated in the order of temperature increase, retention, and temperature decrease.
  • the temperature rising process of the alloy composition according to the present embodiment is defined as a rate of 80 ° C. or more per second.
  • the rate of temperature increase is increased, the structure of the Fe-based nanocrystalline alloy ribbon obtained by heat treatment can be made homogeneous.
  • the rate of temperature increase is less than 80 ° C. per second, the average crystal grain size of the precipitated bccFe phase (the iron phase having a crystal structure of bcc) exceeds 20 nm, and the coercivity of the finally obtained magnetic core is 10 A /
  • the soft magnetic property suitable for the magnetic core is deteriorated exceeding m.
  • FIG. 3 is a diagram schematically showing the temperature change of the ribbon in the heat treatment step according to the present embodiment, and the change in saturation magnetic flux density and coercive force associated therewith.
  • the lower limit of the heat treatment temperature of the alloy composition is specified to be not less than the crystallization temperature of the alloy composition and not less than 430 ° C.
  • the heat treatment temperature is lower than 430 ° C.
  • the volume fraction of the precipitated bccFe crystal is less than 50%
  • the saturation magnetic flux density of the finally obtained magnetic core does not reach 1.75 T as shown in FIG.
  • the saturation magnetic flux density is 1.75 T or less, the force as a magnetic core is small, and the applicable motor is also restricted.
  • the upper limit of the heat treatment temperature of the alloy composition according to this embodiment is defined as 500 ° C. or less.
  • the heat treatment temperature exceeds 500 ° C., the bccFe phase that rapidly precipitates cannot be controlled and thermal runaway occurs due to crystallization heat generation, and the coercivity of the finally obtained magnetic core is 10 A / m will be exceeded.
  • the isothermal holding time of the alloy composition according to the present embodiment is determined by the heat treatment temperature, and is preferably 3 seconds to 5 minutes. Further, the cooling rate is preferably about 80 ° C./second obtained by furnace cooling. However, the present invention is not limited to these isothermal holding times and cooling rates.
  • the atmosphere in the heat treatment of the alloy composition according to the present embodiment for example, air, nitrogen, or an inert gas can be considered.
  • the present invention is not limited to these atmospheres.
  • the ribbon after the heat treatment that is, the Fe-based nanocrystalline alloy ribbon loses the metallic luster of the Fe-based amorphous ribbon before heat treatment, and both front and back surfaces are compared with those before the heat treatment. Discolored. This is probably because an oxide film was formed on the surface.
  • the visible color ranges from brown to blue and purple.
  • the color is slightly different between the front and back. This is considered due to the difference in the surface state of the ribbon.
  • a specific heating method in the heat treatment of the alloy composition according to the present embodiment for example, contact with a solid heat transfer body such as a heater having a sufficient heat capacity is preferable.
  • a solid heat transfer body such as a heater having a sufficient heat capacity
  • the present invention is not limited to these heating methods. As long as appropriate temperature rise control is possible, for example, as a specific heating method, other heat treatment methods such as non-contact heating by infrared rays or high frequency may be adopted.
  • FIG. 4 is a structural schematic diagram of an apparatus constructed to embody the manufacturing method of the present invention.
  • the ribbon 7 that has been processed in advance is moved to the heating unit 6 by the transport mechanism 1.
  • the heating unit 6 of the present embodiment includes an upper heater 2 and a lower heater 3.
  • the upper heater 2 and the lower heater 3 are heated to a desired temperature in advance, and the ribbon 7 moved to a predetermined position is sandwiched and heated from above and below. That is, in the present embodiment, the ribbon 7 is heated in a state where both surfaces of the ribbon 7 are in contact with the heater.
  • the rate of temperature rise at this time is determined by the heat capacity ratio between the ribbon 7 and the upper and lower heaters 2 and 3.
  • the ribbon 7 sandwiched between the upper heater 2 and the lower heater 3 and heated at a desired temperature increase rate is held for a predetermined period of time, then taken out by the discharge mechanism 4 and placed in the separately installed stacking jig 5. Automatically laminated. By repeating this series of operations, it is possible to obtain a heat-treated ribbon with uniform magnetic properties.
  • the thin ribbon 7 is sandwiched between the upper heater 2 and the lower heater 3, the heat treatment, temperature rise and cooling are performed, so that the temperature can be raised and cooled rapidly.
  • the heating rate can be 80 ° C. or more per second.
  • the heater is in contact with the ribbon, appropriate temperature increase control can be easily performed.
  • the support portion (the portion on which the thin strip 7 is placed) that supports the thin strip 7 is drawn to have a thickness.
  • the support portion is made of a material that is sufficiently thin and has high thermal conductivity so that heating is not hindered.
  • the ribbon 7 is heated and heated.
  • the magnetic core according to the present embodiment preferably manufactured as described above has a bccFe phase average crystal grain size of 20 nm or less, more preferably 17 nm or less, and a high saturation magnetic flux density of 1.75 T or more and 10 A / m. It has the following low coercivity.
  • Examples 1 to 8 and Comparative Examples 1 to 12 First, raw materials of Fe, Si, B, P, Cu, and C are weighed so as to have an alloy composition of Fe 84.3 Si 0.5 B 9.4 P 4 Cu 0.8 C 1, and by high-frequency induction melting treatment. Dissolved. Thereafter, the melted alloy composition was processed in the atmosphere by a single roll liquid quenching method to produce a thin strip-shaped alloy composition having a thickness of about 25 ⁇ m. These ribbon-shaped alloy compositions were cut into a width of 10 mm and a length of 50 mm (shape processing step), and the phases were identified by X-ray diffraction. All of these processed ribbon-shaped alloy compositions had an amorphous phase as a main phase.
  • heat treatment was performed under the heat treatment conditions shown in Table 1 using the apparatus shown in FIG. 4 under the conditions of Examples 1 to 8 and Comparative Examples 1 to 12 (heat treatment step).
  • the thin strip alloy composition before and after the heat treatment was subjected to thermal analysis evaluation at a temperature rising rate of about 40 ° C./min with a DSC apparatus, and the volume fraction of the bccFe crystals precipitated was calculated according to the obtained first peak area ratio.
  • Bs saturation magnetic flux density
  • Bs saturation magnetic flux density
  • Hc coercive force
  • the measurement results are also shown in Table 1.
  • the ribbon-shaped alloy compositions of the examples have an amorphous main phase, and the bcc-Fe phase structure of the sample heat-treated by the production method of the present invention has a volume of 50% or more. It had a fraction and an average particle size of 20 nm or less. Further, at least the confirmed crystal grain size was within the range of the average grain size ⁇ 5 nm. As a result of obtaining such a desired structure, a high saturation magnetic flux density of 1.75 T or more and a low coercive force of 10 A / m or less were exhibited.
  • the ribbon-shaped alloy compositions of Comparative Examples 1 and 2 were thick and had a mixed phase structure of an amorphous phase and a bcc-Fe phase as main phases. Even when this was heat-treated by the production method of the present invention, the average particle size of the precipitated bcc-Fe phase exceeded 21 nm. As a result, the coercive force deteriorated to more than 10 A / m.
  • the ribbon-shaped alloy compositions of Comparative Examples 3 and 4 were heat-treated at a temperature increase rate or less specified by the production method of the present invention. As a result, the average particle size of the precipitated bcc-Fe phase exceeded 21 nm. As a result, the coercive force deteriorated to more than 10 A / m.
  • Comparative Examples 5-12 show examples in which the same ribbon-like alloy composition as in Examples 2 and 3 was used and heat-treated at a temperature equal to or lower than the heat treatment temperature specified by the production method of the present invention.
  • the volume fraction of the precipitated bcc-Fe phase was less than 50%.
  • the saturation magnetic flux density was less than 1.75T. This is probably because the bcc-Fe phase is less precipitated because the heat treatment temperature is low.
  • the volume fraction of the precipitated bcc-Fe phase is at least 50% or more, preferably 70% or more.
  • Comparative Examples 13 and 14 show examples in which the same ribbon-shaped alloy composition as in Example 2 was used and heat-treated exceeding the temperature specified by the production method of the present invention.
  • the average particle size of the precipitated bcc-Fe phase exceeded 30 nm.
  • the coercive force significantly deteriorated to over 45 A / m.
  • Example 9 As a motor magnetic core, a ribbon-shaped alloy composition processed into a more practical shape is heat-treated under the conditions of Example 2 and Comparative Example 3 using the apparatus shown in FIG. 4 under the conditions specified in the present invention. A plurality of these are stacked according to the flowchart of the manufacturing method of FIG.
  • FIG. 5 is an external view of the laminated state of the motor magnetic core produced in the example of the present invention.
  • On the upper and lower sides there are end plates for temporary fixing, and a heat treated ribbon which is a magnetic core material is laminated between them.
  • the outer diameter is 70 mm.
  • the laminated ribbon is assembled on a fixing part and wound at a predetermined position protruding toward the inner diameter side to form a stator. Only the magnetic core material was changed, and the performance of the stator was evaluated.
  • Table 2 shows the alloy composition used for the magnetic core and the motor performance.
  • Example 9 As can be seen from Table 2, the motor of Example 9 using the ribbon-shaped alloy composition heat-treated under the conditions of Example 2 as the magnetic core has a lower iron loss of 0.4 W than motors of other materials. The motor efficiency was as high as 91%.
  • the present invention is based on Japanese Patent Application No. 2015-134309 filed with the Japan Patent Office on July 3, 2015, the contents of which are incorporated herein by reference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

磁芯を製造するための工程を、合金組成物からなる薄帯を所望形状とする加工工程とbccFe結晶を析出させる熱処理工程を行った後に、磁芯形状を得る積層工程を備える磁芯の製造方法。ここで、合金組成物は、主相としてアモルファス相を有するFe-B-Si-P-Cu-Cであり、熱処理工程において、薄帯は、合金組成物の結晶化温度よりも高い温度まで高昇温速度で昇温される。

Description

積層磁芯及びその製造方法
 本発明は、積層磁芯及びその製造方法に関する。特に、モータの磁芯などの使用に好適であるFe基ナノ結晶合金薄帯の積層磁芯及びその製造方法に関する。
 特許文献1には、Fe基軟磁性合金からなる薄帯(Fe基アモルファス薄帯)を使用したコア(磁芯)の製造方法が記載されている。特許文献1によれば、薄帯及び薄帯を巻回して作製したコアのいずれかに対して、bccFeからなるナノ結晶粒(bccFe結晶粒)を析出するための熱処理が2回以上に分けて施され、これにより熱処理における自己発熱の影響が低減される。
特開2003-213331号公報
 適切な組成比のFe-B-Si-P-Cu-C合金は、高いアモルファス形成能を有する。また、この合金から作製したFe基アモルファス薄帯は、優れた磁気特性を有する。従って、このようなFe基アモルファス薄帯を用いて製造された磁心は優れた磁気特性を有するものと期待される。
 しかしながら、このような組成のFe基アモルファス薄帯は、熱処理を行ってbccFe結晶粒を析出すると脆くなり易い。そのため、熱処理後の薄帯を加工しようとすると、当該薄帯に割れ・欠けなどが生じ易い。例えば、形状が複雑なモータ用磁芯に熱処理された後の薄帯を使用しようとしても、熱処理後の薄帯を所望する複雑形状に切断することは困難である。一方、形状加工したFe基アモルファス薄帯を積層した後に熱処理を行う場合、磁芯が大型化するにつれ、磁芯全体を均一に熱処理することが困難になる。このため、均質な組織を磁芯に持たせることができず、磁芯が十分な磁気特性を有さないおそれがある。
 そこで、本発明は、Fe-B-Si-P-Cu-C合金からなる薄帯を使用した積層磁芯の製造方法であって、十分な磁気特性を有する磁芯の製造方法を提供することを目的とする。
 本発明の一の側面は、積層磁芯の製造方法として、
 アモルファス薄帯を形状加工する形状加工工程と、
 前記形状加工されたアモルファス薄帯を熱処理する熱処理工程と、
 前記熱処理されたアモルファス薄帯を積層する積層工程と、
を含み、前記熱処理工程における昇温速度は、毎秒80℃以上である積層磁芯の製造方法を提供する。
 また、本発明の他の側面は、積層磁芯の製造方法として、
 アモルファス薄帯を形状加工する形状加工工程と、
 前記形状加工されたアモルファス薄帯を熱処理する熱処理工程と、
 前記熱処理されたアモルファス薄帯を積層する積層工程と、
を含み、前記熱処理工程において、前記アモルファル薄帯の両面を実質的にヒータと接触させて、前記アモルファス薄帯を加熱する積層磁芯の製造方法を提供する。
 本発明によれば、熱処理により脆弱化する前の薄帯に形状加工を施す。このため、モータのステータコア等の複雑形状を精度良く形成することができる。この後、形状加工された薄帯を積層する前に夫々熱処理する。これにより、各部位の温度偏差を抑えてbccFe結晶粒を均質に析出させることで、磁気特性のばらつきの無い薄帯を得ることができる。さらに夫々熱処理された薄帯を積層することで優れた磁気特性を有する磁芯が得られる。
 詳しくは、熱処理において、昇温速度を従来よりもかなり速くすることにより、均質な組織を有する薄帯を得ることができる。例えば、毎分100℃のように比較的ゆっくりとした昇温速度で昇温すると、熱処理前から含まれていた結晶核が先に大粒の結晶に成長してしまい、結晶粒のサイズにバラつきが生じてしまう。これに対して、昇温速度を速くすると、熱処理前に含まれていた微結晶が大粒化する前に新たな結晶核が生成され、それらが共に成長していくことから、最終的に結晶粒のサイズにバラつきが生じない。従って、均質な組織を有する薄帯を得ることができる。加えて、昇温速度を速くすると、製造時間を短縮することができ、生産性の向上を図ることもできる。
 特に、熱処理工程における昇温速度を毎秒80℃以上とすると、均質な結晶粒を成長させることができると共に、結晶粒の平均粒径を小さくすることができる。ここで、均質であることの基準は、例えば、熱処理によって得られたFe基ナノ結晶合金薄帯内において確認できる結晶粒の粒径が平均粒径±5nmの範囲に収まっていることである。このようなバラつきの少ない組織を有するFe基ナノ結晶合金薄帯は、良好な磁気特性を有している。また、そのようなFe基ナノ結晶合金薄帯を複数積層して得られた積層磁芯を備えるモータは、低い鉄損と高いモータ効率を有する。
 モータなどの工業製品に本発明を適用する場合、熱処理の対象となるアモルファス薄帯のサイズは比較的大きい。実験試料のようなサイズの小さなアモルファス薄帯を熱処理するような場合、昇温速度を制御するのは比較的容易であるが、サイズの大きいアモルファス薄帯の熱処理において昇温速度を適切に制御することは一般的には困難である。しかし、アモルファス薄帯の両面を実質的にヒータと接触させてアモルファス薄帯を加熱することとすれば、昇温速度を速くするといった制御も適切に行うことができ、所望とする均質な組織を有する薄帯を得ることができる。このような加熱方法、即ち、アモルファス薄帯に対するヒータの直接接触加熱は、上述したような昇温制御を容易に可能とするものであり、量産処理に適している。なお、アモルファス薄帯とヒータが直接接触するように配置するのが好ましいが、量産においては、充分に薄く、熱伝導率が高い支持部で薄帯を支持し、その支持部を介して薄帯を加熱してもよい。
図1は、本実施の形態による合金組成物の昇温速度40℃/分での示差走査熱量分析(DSC)結果を示す図である。 図2は、本発明の実施の形態による磁芯の製造方法を模式的に示すフローチャートである。 図3は、本実施の形態による熱処理工程における薄帯の温度変化と、これに伴う飽和磁束密度と保磁力の変化を模式的に示す図である。 図4は、本発明の製造方法を具現化するために構築した装置の構造模式図である。 図5は、本発明の実施例で作製したモータ用磁芯の積層状態の外観図である。
 本発明については多様な変形や様々な形態にて実現することが可能であるが、その一例として、図面に示すような特定の実施の形態について、以下に詳細に説明する。図面及び実施の形態は、本発明をここに開示した特定の形態に限定するものではなく、添付の請求の範囲に明示されている範囲内においてなされる全ての変形例、均等物、代替例をその対象に含むものとする。
 本発明の実施の形態による合金組成物は、Fe基ナノ結晶合金の出発原料として好適であり、組成式FeSiCuのものである。ここで、79≦a≦86at%、5≦b≦13at%、0<c≦8at%、1≦x≦8at%、0≦y≦5at%、0.4≦z≦1.4at%、及び0.08≦z/x≦0.8。なお、Feの3at%以下を、Ti、Zr,Hf,Nb,Ta,Mo,W,Cr,Co,Ni,Al,Mn,Ag,Zn,Sn,As,Sb,Bi,Y,N,O及び希土類元素のうち、1種類以上の元素で置換しても良い。
 上記合金組成物において、Fe元素は主元素であり、磁性を担う必須元素である。飽和磁束密度の向上及び原料価格の低減のため、Feの割合が多いことが基本的には好ましい。Feの割合が79at%より少ないと、望ましい飽和磁束密度が得られない。Feの割合が86at%より多いと、液体急冷条件下におけるアモルファス相の形成が困難になり、結晶粒径がばらついたり、粗大化したりする。即ち、Feの割合が86at%より多いと、均質なナノ結晶組織が得られず、合金組成物は劣化した軟磁気特性を有することとなる。従って、Feの割合は、79at%以上、86at%以下であるのが望ましい。特に1.7T以上の飽和磁束密度が必要とされる場合、Feの割合が81at%以上であることが好ましい。
 上記合金組成物において、B元素はアモルファス相形成を担う必須元素である。Bの割合が5at%より少ないと、液体急冷条件下におけるアモルファス相の形成が困難になる。Bの割合が13at%より多いと、ΔTが減少し、均質なナノ結晶組織を得ることができず、合金組成物は劣化した軟磁気特性を有することとなる。従って、Bの割合は、5at%以上、13at%以下であることが望ましい。特に量産化のため合金組成物が低い融点を有する必要がある場合、Bの割合が10at%以下であることが好ましい。
 上記合金組成物において、Si元素はアモルファス形成を担う必須元素であり、ナノ結晶化にあたってはナノ結晶の安定化に寄与する。Siを含まないと、アモルファス相形成能が低下し、更に均質なナノ結晶組織が得られず、その結果、軟磁気特性が劣化する。Siの割合が8at%よりも多いと、飽和磁束密度とアモルファス相形成能が低下し、更に軟磁気特性が劣化する。従って、Siの割合は、8at%以下(0を含まない)であることが望ましい。特にSiの割合が2at%以上であると、アモルファス相形成能が改善され連続薄帯を安定して作製でき、また、ΔTが増加することで均質なナノ結晶を得ることができる。
 上記合金組成物において、P元素はアモルファス形成を担う必須元素である。本実施の形態においては、B元素、Si元素及びP元素の組み合わせを用いることで、いずれか一つしか用いない場合と比較して、アモルファス相形成能やナノ結晶の安定性を高めることとしている。Pの割合が1at%より少ないと、液体急冷条件下におけるアモルファス相の形成が困難になる。Pの割合が8at%より多いと、飽和磁束密度が低下し軟磁気特性が劣化する。従って、Pの割合は、1at%以上、8at%以下であることが望ましい。特にPの割合が2at%以上、5at%以下であると、アモルファス相形成能が向上し、連続薄帯を安定して作製することができる。
 上記合金組成物において、C元素はアモルファス形成を担う元素である。本実施の形態においては、B元素、Si元素、P元素、C元素の組み合わせを用いることで、いずれか一つしか用いない場合と比較して、アモルファス相形成能やナノ結晶の安定性を高めることとしている。また、Cは安価であるため、Cの添加により他の半金属量が低減され、総材料コストが低減される。但し、Cの割合が5at%を超えると、合金組成物が脆化し、軟磁気特性の劣化が生じるという問題がある。従って、Cの割合は、5at%以下が望ましい。特にCの割合が3at%以下であると、溶解時におけるCの蒸発に起因した組成のばらつきを抑えることができる。
 上記合金組成物において、Cu元素はナノ結晶化に寄与する必須元素である。Cu元素は基本的に高価であり、Feの割合が81at%以上である場合には、合金組成物の脆化や酸化を生じさせやすい点に注意すべきである。なお、Cuの割合が0.4at%より少ないと、ナノ結晶化が困難になる。Cuの割合が1.4at%より多いと、アモルファス相からなる前駆体が不均質になり、そのためFe基ナノ結晶合金の形成の際に均質なナノ結晶組織が得られず、軟磁気特性が劣化する。従って、Cuの割合は、0.4at%以上、1.4at%以下であることが望ましく、特に合金組成物の脆化及び酸化を考慮すると、Cuの割合は1.1at%以下であることが好ましい。
 P原子とCu原子との間には強い引力がある。従って、合金組成物が特定の比率のP元素とCu元素とを含んでいると、10nm以下のサイズのクラスターが形成され、このナノサイズのクラスターによってFe基ナノ結晶合金の形成の際にbccFe結晶は微細構造を有するようになる。本実施の形態において、Pの割合(x)とCuの割合(z)との特定の比率(z/x)は、0.08以上、0.8以下である。この範囲以外では、均質なナノ結晶組織が得られず、従って合金組成物は優れた軟磁気特性を有せない。なお、特定の比率(z/x)は、合金組成物の脆化及び酸化を考慮すると、0.08以上0.55以下であることが好ましい。
 本実施の形態による合金組成物は、主相としてアモルファス相を有しており、且つ、厚さ15~40μmの連続薄帯形状を有している。連続薄帯形状の合金組成物は、Fe基アモルファス薄帯などの製造に使用されている単ロール製造装置や双ロール製造装置のような従来の装置を使用して形成することができる。
 本実施の形態による合金組成物は、形状加工工程の後に熱処理される。この熱処理の温度は本実施の形態による合金組成物の結晶化温度以上である。これら結晶化温度は、例えば、DSC装置を用い、40℃/分程度の昇温速度で熱分析を行うことで評価可能である。また、熱処理された合金組成物に析出するbccFe結晶の体積分率は50%以上である。この体積分率は、図1に示すDSC分析結果で得られる第一ピーク面積の熱処理前後での変化により評価できる。
 アモルファス薄帯を熱処理すると脆化することが知られている。そのため、熱処理後に薄帯を磁芯形状に加工するのは困難である。そこで、本実施の形態においては、形状加工の後に熱処理を行う。詳しくは、図2に示されるように、本実施の形態による磁芯の製造方法においては、まず、アモルファス薄帯工程で、アモルファス薄帯を作製する。次に、形状加工工程で、アモルファス薄帯を形状加工する。次に、熱処理工程で、形状加工されたアモルファス薄帯を熱処理する。このようにして、形状加工されたFe基ナノ結晶合金薄帯を得る。次に、積層工程で、熱処理後の複数の薄帯、即ち、夫々に形状加工された複数のFe基ナノ結晶合金薄帯を積層して、積層磁芯を得る。
 以下、上述した熱処理工程について、詳しく説明する。本実施の形態による合金組成物の熱処理方法は、昇温速度、熱処理温度下限及び上限を規定している。
 予め形状加工された本実施の形態による合金組成物は、昇温、保持、降温の手順で熱処理される。本実施の形態による合金組成物の昇温過程は毎秒80℃以上の速度と規定される。このように昇温速度を速くすると、熱処理によって得られるFe基ナノ結晶合金薄帯の組織を均質なものとすることができる。なお、昇温速度が毎秒80℃未満の場合、析出するbccFe相(結晶構造がbccの鉄の相)の平均結晶粒径が20nm超となり、最終的に得られる磁芯の保磁力が10A/mを超え、磁芯に適した軟磁気特性が低下する。
 図3は、本実施の形態による熱処理工程における薄帯の温度変化と、これに伴う飽和磁束密度と保磁力の変化を模式的に示す図である。合金組成物の熱処理温度の下限は、合金組成物の結晶化温度以上であって430℃以上と規定される。熱処理温度が430℃未満の場合、析出するbccFe結晶の体積分率が50%未満となり、最終的に得られる磁芯の飽和磁束密度が図3に示すように1.75Tに達しない。飽和磁束密度が1.75T以下であると、磁芯としての力が小さく、適用できるモータも制約される。
 本実施の形態による合金組成物の熱処理温度の上限は、500℃以下と規定される。熱処理温度が500℃超の場合、急速に析出するbccFe相を制御することができず結晶化発熱による熱暴走が起こり、最終的に得られる磁芯の保磁力が図3に示すように10A/mを超えてしまう。
 本実施の形態による合金組成物の等温保持時間は熱処理温度により決まり、好ましくは3秒から5分である、さらに、降温速度についても炉冷で得られる毎秒80℃程度が好ましく用いられる。しかしながら、本発明は、これらの等温保持時間及び降温速度に限定されない。
 本実施の形態による合金組成物の熱処理における雰囲気としては、例えば、大気、窒素、不活性ガスが考えられる。しかしながら、本発明は、これらの雰囲気に限定されない。特に、大気中で熱処理すると、熱処理後の薄帯、即ちFe基ナノ結晶合金薄帯は熱処理前のFe基アモルファス薄帯の有していた金属光沢を失い、その表裏両面は熱処理前と比較して変色している。これは、表面に酸化膜が形成されたためと考えられる。上記の適切な条件で処理された薄帯について、肉眼で見える色は、褐色から青色、紫色の範囲である。また、表裏では若干色が異なる。これは、薄帯の表面状態の差異に起因したものと考えられる。このように、酸素を含む雰囲気、例えば大気中で熱処理すると、熱処理によって得られるFe基ナノ結晶合金薄帯の表裏表面には、視認可能な酸化膜が形成される。また、500℃超の場合には、白色または灰白色になる。これは、結晶化発熱による熱暴走により酸化膜の形成が進んだためと考えられる。
 なお、Fe基ナノ結晶合金薄帯の両面に積極的に酸化膜を形成すると、Fe基ナノ結晶合金薄帯の表面抵抗が大きくなる。表面抵抗の大きいFe基ナノ結晶合金薄帯を積層すると薄帯間の層間絶縁が高くなり、渦電流損失が小さくなる。結果、最終製品であるモータの効率が高くなる。
 また、製造の面では、上記酸化により、薄帯の結晶化状態の良否を目視(非破壊)で簡易的に判断できる。例えば、色が薄かったり、金属光沢が残っていると温度が低いと判断できる。
 本実施の形態による合金組成物の熱処理における具体的な加熱方法としては、例えば、充分な熱容量をもったヒータのような固体伝熱体への接触が好ましい。特に、Fe基アモルファス薄帯の両面に固体伝導体を接触させて固体伝導体によりFe基アモルファス薄帯を挟み込むことにより加熱することが好ましい。このような加熱方法によれば、工業製品用のアモルファス薄帯のようにサイズの大きなものも適切に昇温制御することが容易に可能となる。しかしながら、本発明は、これらの加熱方法に限定されない。適切な昇温制御が可能である限り、例えば、具体的な加熱方法として、赤外線や高周波による非接触加熱など他の熱処理方法を採用することとしてもよい。
<熱処理装置>
 本実施の形態による合金組成物の熱処理方法を具現化した装置の模式図を用いて熱処理工程の手順を説明する。
 図4は、本発明の製造方法を具現化するために構築した装置の構造模式図である。予め形状加工された薄帯7は、搬送機構1により加熱部6に移動する。
 本実施の形態の加熱部6は、上側ヒータ2及び下側ヒータ3を備えている。上側ヒータ2及び下側ヒータ3は予め所望温度に昇温されており、所定の位置に移動した薄帯7を上下から挟み込み加熱する。即ち、本実施の形態においては、薄帯7の両面をヒータと接触させた状態で薄帯7を加熱する。このときの昇温速度は薄帯7と上側ヒータ2,下側ヒータ3の熱容量比で決まる。上側ヒータ2と下側ヒータ3とで挟まれ、所望昇温速度で加熱された薄帯7は、そのまま所定時間保持され、その後、排出機構4により取り出され、別に設置された積層治具5内に自動積層される。この一連動作を繰り返すことで規定の磁気特性の揃った熱処理薄帯を得ることができる。
 特に、上側ヒータ2,下側ヒータ3で薄帯7を挟んで、熱処理、昇温、冷却をするので、急速に昇温、冷却ができる。具体的には、昇温速度を1秒間に80℃以上にできる。上述したように、昇温速度を速くすることで、結晶粒のサイズのバラつきの少ない薄帯を得ることができる共に、製造時間が短縮でき、生産性が上がる。特に、この装置では、薄帯にヒータを接触させているので、適切な昇温制御を容易に行うことができる。なお、図4に示される搬送機構1のうち、薄帯7を支持する支持部(薄帯7が載置されている部分)は、厚みを有するように描かれているが、実施に際しては、支持部は、加熱に支障がない程度に、充分に薄く、且つ、熱伝導率の高い材質で構成されており、上側ヒータ2と下側ヒータ3とで薄帯7と支持部とを挟み込むようにして薄帯7を昇温加熱している。
 以上のようにして好ましく作製された本実施の形態による磁芯は、20nm以下、より好ましくは17nm以下のbccFe相平均結晶粒径を有すると共に、1.75T以上の高い飽和磁束密度と10A/m以下の低い保磁力を有する。
 以下、本発明の実施の形態について、複数の実施例及び複数の比較例を参照しながら、更に詳細に説明する。
 (実施例1~8及び比較例1~12)
 まず、Fe,Si,B,P,Cu,Cの原料を合金組成Fe84.3Si0.59.4Cu0.8となるように秤量し、高周波誘導溶解処理により溶解した。その後、溶解した合金組成物を大気中において単ロール液体急冷法にて処理し、厚さ約25μm程度の厚さを持つ薄帯状合金組成物を作製した。これらの薄帯状合金組成物を幅10mm、長さ50mmに切り出し(形状加工工程)、X線回折法により相を同定した。これらの加工された薄帯状合金組成物は、いずれも主相としてアモルファス相を有していた。次に、表1記載の熱処理条件の下で、実施例1~8及び比較例1~12の条件で図4に示す装置を用いて熱処理した(熱処理工程)。熱処理前後での薄帯状合金組成物をDSC装置により40℃/分程度の昇温速度で熱分析評価し、得られた第一ピーク面積比により析出したbccFe結晶の体積分率を算出した。さらに、加工・熱処理された薄帯状合金組成物夫々の飽和磁束密度(Bs)は振動試料型磁力計(VMS)を用いて800kA/mの磁場にて測定した。各合金組成物の保磁力(Hc)は直流BHトレーサーを用い2kA/mの磁場にて測定した。測定結果を表1に併せて示す。
Figure JPOXMLDOC01-appb-T000001
 表1から理解されるように、実施例の薄帯状合金組成物はすべてアモルファスを主相とするものであり、本発明の製造方法で熱処理した試料のbcc-Fe相組織は50%以上の体積分率と20nm以下の平均粒径を有していた。また、少なくとも確認できた結晶粒の粒径は平均粒径±5nmの範囲に収まっていた。このような所望組織が得られた結果、1.75T以上の高い飽和磁束密度と10A/m以下の低い保磁力を示した。
 比較例1及び2の薄帯状合金組成物は厚みが厚く、主相としてアモルファス相とbcc-Fe相の混相組織であった。これを本発明の製造方法で熱処理しても、析出bcc-Fe相の平均粒径が21nm超となった。この結果、保磁力が10A/m超と劣化した。
 比較例3及び4の薄帯状合金組成物を、本発明の製造方法で規定する昇温速度以下で熱処理した。この結果、析出bcc-Fe相の平均粒径が21nm超となった。この結果、保磁力が10A/m超と劣化した。
 実施例2及び3と同一の薄帯状合金組成物を用い、本発明の製造方法で規定する熱処理温度以下で熱処理した例を比較例5~12に示す。何れの比較例も析出bcc-Fe相の体積分率が50%未満となった。この結果、飽和磁束密度が1.75T未満であった。熱処理温度が低いため、bcc-Fe相の析出が少なくなったためと考えられる。析出bcc-Fe相の体積分率は、少なくとも50%以上、好ましくは、70%以上がよい。
 同様に、実施例2と同一の薄帯状合金組成物を用い、本発明の製造方法で規定する温度を超えて熱処理した例を比較例13及び14に示す。この結果、析出bcc-Fe相の平均粒径が30nm超となった。この結果、保磁力が45A/m超と著しく劣化した。
 (実施例9及び比較例15及び16)
 モータ用磁芯として、より実用的な形状に加工した薄帯状合金組成物を、本発明で規定する条件で図4に示した装置を用いて実施例2及び比較例3の条件で熱処理する。図2の製造方法のフローチャートに従い、これらを複数積層する。
 図5は、本発明の実施例で作製したモータ用磁芯の積層状態の外観図である。上下には、仮固定用の端板があり、その間に磁芯材料である熱処理された薄帯が積層されている。外周の直径は70mmである。この積層された薄帯を固定用部品上に組付け、内径側に突き出た所定位置に巻線することでステータとなる。磁芯材料のみを変え、ステータの性能評価を行った。磁芯に使用した合金組成物とモータ性能を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から理解されるように、実施例2の条件で熱処理した薄帯状合金組成物を磁芯として使用した実施例9のモータは、他の材料のモータに比べ、0.4Wの低い鉄損と91%もの高いモータ効率を示した。
 本発明は2015年7月3日に日本国特許庁に提出された日本特許出願第2015-134309号に基づいており、その内容は参照することにより本明細書の一部をなす。
 本発明の最良の実施の形態について説明したが、当業者には明らかなように、本発明の精神を逸脱しない範囲で実施の形態を変形することが可能であり、そのような実施の形態は本発明の範囲に属するものである。
 1     搬送機構
 2     上側ヒータ
 3     下側ヒータ
 4     排出機構
 5     積層治具
 6     加熱部
 7     薄帯

Claims (5)

  1.  アモルファス薄帯を形状加工する形状加工工程と、
     前記形状加工されたアモルファス薄帯を熱処理する熱処理工程と、
     前記熱処理されたアモルファス薄帯を積層する積層工程と、
    を含み、前記熱処理工程における昇温速度は、毎秒80℃以上である積層磁芯の製造方法。
  2.  アモルファス薄帯を形状加工する形状加工工程と、
     前記形状加工されたアモルファス薄帯を熱処理する熱処理工程と、
     前記熱処理されたアモルファス薄帯を積層する積層工程と、
    を含み、前記熱処理工程において、前記アモルファル薄帯の両面をヒータと接触させて、前記アモルファス薄帯を加熱する積層磁芯の製造方法。
  3.  請求項2記載の積層磁芯の製造方法であって、
     前記熱処理工程における昇温速度は、毎秒80℃以上である
    積層磁芯の製造方法。
  4.  請求項1又は請求項3記載の積層磁芯の製造方法であって、
     前記熱処理工程において、前記アモルファス薄帯は、結晶化温度より高い温度で熱処理される
    積層磁芯の製造方法。
  5.  積層された複数のFe基ナノ結晶合金薄帯を備える積層磁芯であって、前記Fe基ナノ結晶合金薄帯は、表裏表面に視認可能な酸化膜を有している積層磁芯。
PCT/JP2016/069674 2015-07-03 2016-07-01 積層磁芯及びその製造方法 WO2017006868A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/738,710 US11232901B2 (en) 2015-07-03 2016-07-01 Method for producing laminated magnetic core
CN202210971433.6A CN115376808A (zh) 2015-07-03 2016-07-01 层叠磁芯
CN201680037664.2A CN107849629B (zh) 2015-07-03 2016-07-01 层叠磁芯的制造方法
JP2017527427A JP6444504B2 (ja) 2015-07-03 2016-07-01 積層磁芯及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-134309 2015-07-03
JP2015134309 2015-07-03

Publications (1)

Publication Number Publication Date
WO2017006868A1 true WO2017006868A1 (ja) 2017-01-12

Family

ID=57685175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069674 WO2017006868A1 (ja) 2015-07-03 2016-07-01 積層磁芯及びその製造方法

Country Status (4)

Country Link
US (1) US11232901B2 (ja)
JP (2) JP6444504B2 (ja)
CN (2) CN115376808A (ja)
WO (1) WO2017006868A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105473A1 (ja) * 2016-12-07 2018-06-14 パナソニック株式会社 鉄心及びモータ
EP3366790A1 (en) * 2017-02-27 2018-08-29 TDK Corporation Soft magnetic alloy and magnetic device
CN109642265A (zh) * 2017-02-14 2019-04-16 松下电器产业株式会社 薄带零件及其制造方法、以及使用薄带零件的电动机
JP2019099888A (ja) * 2017-12-06 2019-06-24 トヨタ自動車株式会社 軟磁性材料の製造方法
JP2019206746A (ja) * 2018-05-30 2019-12-05 トヨタ自動車株式会社 軟磁性材料及びその製造方法
CN112531937A (zh) * 2019-09-18 2021-03-19 丰田自动车株式会社 磁体嵌入式马达及其制造方法
WO2021132254A1 (ja) 2019-12-25 2021-07-01 株式会社東北マグネットインスティテュート ナノ結晶軟磁性合金
WO2021132272A1 (ja) 2019-12-25 2021-07-01 株式会社東北マグネットインスティテュート 合金
JP2021126672A (ja) * 2020-02-13 2021-09-02 トヨタ自動車株式会社 被打ち抜き材の製造方法
US11352677B2 (en) 2016-08-04 2022-06-07 Toyota Jidosha Kabushiki Kaisha Method of producing soft magnetic material
JP7457815B2 (ja) 2020-01-16 2024-03-28 コーロン インダストリーズ インク 合金組成物、合金粉末、合金リボン、インダクタ及びモータ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11975377B2 (en) 2019-03-01 2024-05-07 Proterial, Ltd. Amorphous metal thin strip, laminated core, and amorphous metal thin ribbon punching method
CN111910054B (zh) * 2020-08-03 2022-10-25 东莞理工学院 一种高性能铁基非晶纳米晶带材的热处理方法
CN114141467A (zh) * 2021-11-09 2022-03-04 中国科学院宁波材料技术与工程研究所 一种纳米晶传感器及其复合磁芯结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057306A (ja) * 1999-08-17 2001-02-27 Toshiba Corp プレス打ち抜きされた磁性合金薄帯、積層磁心、および積層磁心の製造方法
WO2008133301A1 (ja) * 2007-04-25 2008-11-06 Hitachi Metals, Ltd. 軟磁性合金、その製造方法、および磁性部品
WO2008133302A1 (ja) * 2007-04-25 2008-11-06 Hitachi Metals, Ltd. 軟磁性薄帯、その製造方法、磁性部品、およびアモルファス薄帯
JP2013511617A (ja) * 2009-11-19 2013-04-04 イドロ−ケベック アモルファス合金リボンを処理するためのシステム及び方法
JP2014240516A (ja) * 2013-06-12 2014-12-25 日立金属株式会社 ナノ結晶軟磁性合金及びこれを用いた磁性部品
JP2015090892A (ja) * 2013-11-05 2015-05-11 Necトーキン株式会社 積層磁性体、積層磁心およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3569886A (en) * 1969-09-24 1971-03-09 Westinghouse Electric Corp Magnetic core structures
WO1992009091A1 (en) * 1990-11-08 1992-05-29 Sony Corporation Amorphous soft magnetic material
CN1171247C (zh) 1997-06-26 2004-10-13 株式会社新王磁材 制造叠层永磁体的方法
JP2003213331A (ja) 2002-01-25 2003-07-30 Alps Electric Co Ltd Fe基軟磁性合金の製造方法及びFe基軟磁性合金
US20070109086A1 (en) * 2003-12-02 2007-05-17 Adelaide Research & Innovation Pty Ltd Method for forming and testing the formation of amorphous metal objects
JP4703987B2 (ja) * 2004-08-23 2011-06-15 日産自動車株式会社 希土類磁石用合金薄帯、その製造方法、および希土類磁石用合金
US8277579B2 (en) * 2006-12-04 2012-10-02 Tohoku Techno Arch Co., Ltd. Amorphous alloy composition
CN101030468B (zh) 2007-01-12 2011-07-27 同济大学 非晶纳米晶块体磁元件的制备方法
JP5316920B2 (ja) * 2007-03-16 2013-10-16 日立金属株式会社 軟磁性合金、アモルファス相を主相とする合金薄帯、および磁性部品
KR101516936B1 (ko) 2008-08-22 2015-05-04 아키히로 마키노 합금 조성물, Fe계 나노 결정 합금 및 그 제조 방법, 및 자성 부품
JP5203890B2 (ja) * 2008-10-28 2013-06-05 株式会社日立産機システム アモルファス鉄心変圧器及びその製造方法
JP5697131B2 (ja) 2010-06-11 2015-04-08 Necトーキン株式会社 Fe基ナノ結晶合金の製造方法、Fe基ナノ結晶合金、磁性部品、Fe基ナノ結晶合金の製造装置
JP5656114B2 (ja) 2011-02-21 2015-01-21 日立金属株式会社 超急冷Fe基軟磁性合金薄帯および磁心
JP2013046032A (ja) 2011-08-26 2013-03-04 Nec Tokin Corp 積層磁心
DE102012218657A1 (de) 2012-10-12 2014-05-22 Vacuumschmelze Gmbh & Co. Kg Magnetkern, Verfahren und Vorrichtung zu dessen Herstellung und Verwendung eines solchen Magnetkerns
JP6313956B2 (ja) 2013-11-11 2018-04-18 株式会社トーキン ナノ結晶合金薄帯およびそれを用いた磁心
JP6459154B2 (ja) * 2015-06-19 2019-01-30 株式会社村田製作所 磁性体粉末とその製造方法、磁心コアとその製造方法、及びコイル部品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057306A (ja) * 1999-08-17 2001-02-27 Toshiba Corp プレス打ち抜きされた磁性合金薄帯、積層磁心、および積層磁心の製造方法
WO2008133301A1 (ja) * 2007-04-25 2008-11-06 Hitachi Metals, Ltd. 軟磁性合金、その製造方法、および磁性部品
WO2008133302A1 (ja) * 2007-04-25 2008-11-06 Hitachi Metals, Ltd. 軟磁性薄帯、その製造方法、磁性部品、およびアモルファス薄帯
JP2013511617A (ja) * 2009-11-19 2013-04-04 イドロ−ケベック アモルファス合金リボンを処理するためのシステム及び方法
JP2014240516A (ja) * 2013-06-12 2014-12-25 日立金属株式会社 ナノ結晶軟磁性合金及びこれを用いた磁性部品
JP2015090892A (ja) * 2013-11-05 2015-05-11 Necトーキン株式会社 積層磁性体、積層磁心およびその製造方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352677B2 (en) 2016-08-04 2022-06-07 Toyota Jidosha Kabushiki Kaisha Method of producing soft magnetic material
JPWO2018105473A1 (ja) * 2016-12-07 2018-12-20 パナソニック株式会社 鉄心及びモータ
WO2018105473A1 (ja) * 2016-12-07 2018-06-14 パナソニック株式会社 鉄心及びモータ
CN109642265B (zh) * 2017-02-14 2021-06-18 松下电器产业株式会社 薄带零件及其制造方法、以及使用薄带零件的电动机
CN109642265A (zh) * 2017-02-14 2019-04-16 松下电器产业株式会社 薄带零件及其制造方法、以及使用薄带零件的电动机
EP3584332A4 (en) * 2017-02-14 2019-12-25 Panasonic Corporation THINBAND COMPONENT, METHOD FOR PRODUCING THEREOF AND MOTOR USING A THINBAND COMPONENT
US10862354B2 (en) 2017-02-14 2020-12-08 Panasonic Corporation Thin strip component, method for manufacturing same, and motor using thin strip component
EP3366790A1 (en) * 2017-02-27 2018-08-29 TDK Corporation Soft magnetic alloy and magnetic device
CN108511144A (zh) * 2017-02-27 2018-09-07 Tdk株式会社 软磁性合金以及磁性部件
US10943718B2 (en) 2017-02-27 2021-03-09 Tdk Corporation Soft magnetic alloy and magnetic device
JP2019099888A (ja) * 2017-12-06 2019-06-24 トヨタ自動車株式会社 軟磁性材料の製造方法
JP2019206746A (ja) * 2018-05-30 2019-12-05 トヨタ自動車株式会社 軟磁性材料及びその製造方法
JP7143635B2 (ja) 2018-05-30 2022-09-29 トヨタ自動車株式会社 軟磁性材料及びその製造方法
US11078561B2 (en) 2018-05-30 2021-08-03 Toyota Jidosha Kabushiki Kaisha Soft magnetic material and method for producing the same
CN112531937A (zh) * 2019-09-18 2021-03-19 丰田自动车株式会社 磁体嵌入式马达及其制造方法
JP7131516B2 (ja) 2019-09-18 2022-09-06 トヨタ自動車株式会社 磁石埋込型モータおよびその製造方法
JP2021048674A (ja) * 2019-09-18 2021-03-25 トヨタ自動車株式会社 磁石埋込型モータおよびその製造方法
CN112531937B (zh) * 2019-09-18 2024-02-09 丰田自动车株式会社 磁体嵌入式马达及其制造方法
WO2021132272A1 (ja) 2019-12-25 2021-07-01 株式会社東北マグネットインスティテュート 合金
WO2021132254A1 (ja) 2019-12-25 2021-07-01 株式会社東北マグネットインスティテュート ナノ結晶軟磁性合金
KR20220093218A (ko) 2019-12-25 2022-07-05 가부시키가이샤 토호쿠 마그네토 인스티튜트 나노 결정 연자성 합금
KR20220115577A (ko) 2019-12-25 2022-08-17 가부시키가이샤 무라타 세이사쿠쇼 합금
JP7457815B2 (ja) 2020-01-16 2024-03-28 コーロン インダストリーズ インク 合金組成物、合金粉末、合金リボン、インダクタ及びモータ
JP2021126672A (ja) * 2020-02-13 2021-09-02 トヨタ自動車株式会社 被打ち抜き材の製造方法
JP7207347B2 (ja) 2020-02-13 2023-01-18 トヨタ自動車株式会社 被打ち抜き材の製造方法

Also Published As

Publication number Publication date
JP6790043B2 (ja) 2020-11-25
JP2019065398A (ja) 2019-04-25
CN115376808A (zh) 2022-11-22
CN107849629A (zh) 2018-03-27
JP6444504B2 (ja) 2018-12-26
JPWO2017006868A1 (ja) 2018-05-24
US11232901B2 (en) 2022-01-25
CN107849629B (zh) 2022-08-30
US20180166213A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6444504B2 (ja) 積層磁芯及びその製造方法
JP7028290B2 (ja) ナノ結晶合金磁心の製造方法
KR101147571B1 (ko) Fe 기재의 연자성 합금, 비정질 합금 박대, 및 자성 부품
US8007600B2 (en) Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip
JP5455040B2 (ja) 軟磁性合金、その製造方法、および磁性部品
KR101162080B1 (ko) 연자성 박대, 자심, 자성 부품, 및 연자성 박대의 제조 방법
JP5339192B2 (ja) 非晶質合金薄帯、ナノ結晶軟磁性合金、磁心、ならびにナノ結晶軟磁性合金の製造方法
JP5445889B2 (ja) 軟磁性合金、その製造方法、ならびに磁性部品
JP5316920B2 (ja) 軟磁性合金、アモルファス相を主相とする合金薄帯、および磁性部品
JP5429613B2 (ja) ナノ結晶軟磁性合金ならびに磁心
JP5697131B2 (ja) Fe基ナノ結晶合金の製造方法、Fe基ナノ結晶合金、磁性部品、Fe基ナノ結晶合金の製造装置
JP5445891B2 (ja) 軟磁性薄帯、磁心、および磁性部品
JP7003046B2 (ja) 磁心
JP2016145373A (ja) Fe基ナノ結晶合金の製造方法
JP2008231534A5 (ja)
JP2023098924A (ja) 磁性コアとその製造方法、およびコイル部品
TWI639706B (zh) 磁芯之製造方法
JP7034519B2 (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP2021105212A (ja) 軟磁性合金、軟磁性合金薄帯およびその製造方法、磁心、ならびに部品
JP5445924B2 (ja) 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
JP2008150637A (ja) 磁性合金、アモルファス合金薄帯、および磁性部品
JPH04280949A (ja) 磁性薄帯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527427

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15738710

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821337

Country of ref document: EP

Kind code of ref document: A1