WO2016185629A1 - 銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート、並びに銅粉の製造方法 - Google Patents

銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート、並びに銅粉の製造方法 Download PDF

Info

Publication number
WO2016185629A1
WO2016185629A1 PCT/JP2015/080263 JP2015080263W WO2016185629A1 WO 2016185629 A1 WO2016185629 A1 WO 2016185629A1 JP 2015080263 W JP2015080263 W JP 2015080263W WO 2016185629 A1 WO2016185629 A1 WO 2016185629A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper powder
ester
salt
coo
copper
Prior art date
Application number
PCT/JP2015/080263
Other languages
English (en)
French (fr)
Inventor
岡田 浩
雄 山下
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to US15/572,941 priority Critical patent/US10695830B2/en
Priority to CN201580079929.0A priority patent/CN107614156B/zh
Priority to EP15892628.7A priority patent/EP3296041A4/en
Priority to KR1020177032946A priority patent/KR20170137191A/ko
Publication of WO2016185629A1 publication Critical patent/WO2016185629A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to copper powder, and more specifically, copper powder having a novel shape that can be used as a material for conductive paste and the like, and can improve conductivity, and a copper paste using the copper powder.
  • a conductive paint, a conductive sheet, and a method for producing the copper powder are provided.
  • a metal filler paste of silver or copper is applied or printed on various substrates of an electronic device, and is subjected to heat curing or heat baking treatment to form a conductive film that becomes a wiring layer, an electrode, or the like.
  • a resin-type conductive paste is made of a metal filler and a resin, a curing agent, a solvent, etc., printed on a conductor circuit pattern or terminal, and heat-cured at 100 ° C. to 200 ° C. to form a conductive film. And forming electrodes.
  • the resin-type conductive paste since the thermosetting resin is cured and contracted by heat, the metal fillers are pressed and contacted with each other so that the metal fillers overlap each other, and as a result, an electrically connected current path is formed. Since this resin-type conductive paste is processed at a curing temperature of 200 ° C. or less, it is often used for a substrate using a heat-sensitive material such as a printed wiring board.
  • the firing type conductive paste is made of a metal filler, glass, solvent, etc., printed on a conductor circuit pattern or terminal, and heated and fired at 600 ° C. to 800 ° C. to form a conductive film.
  • the fired conductive paste is processed at a high temperature to sinter the metal fillers to ensure conductivity. Since this fired conductive paste is processed at such a high firing temperature, there is a point that it cannot be used for a printed wiring board that uses a resin material. There is a feature that resistance is easily obtained.
  • Such a fired conductive paste is used, for example, for an external electrode of a multilayer ceramic capacitor.
  • the powder of copper or the like used as the metal filler in order to connect the particles and conduct electricity, a shape such as granular shape, dendritic shape, flat plate shape and the like has been used in many cases.
  • the thin plate shape contributes to reducing the thickness of the wiring material by reducing the thickness.
  • tabular copper powder is particularly suitable for conductive paints and conductive pastes for which electrical conductivity is desired to be maintained.
  • Patent Document 1 discloses a method for obtaining a flaky copper powder suitable for a metal filler of a conductive paste. Specifically, spherical copper powder with an average particle size of 0.5 to 10 ⁇ m is used as a raw material, and it is mechanically processed into a flat plate shape by the mechanical energy of the media loaded in the mill using a ball mill or a vibration mill. is there.
  • Patent Document 2 discloses a technique relating to a copper powder for conductive paste, more specifically, a disk-shaped copper powder having high performance as a copper paste for through holes and external electrodes, and a method for producing the same. Specifically, the granular atomized copper powder is put into a medium agitating mill, and a steel ball having a diameter of 1/8 to 1/4 inch is used as a grinding medium. 1% is added and processed into a flat plate shape by grinding in air or in an inert atmosphere.
  • Patent Document 3 discloses a method for obtaining electrolytic copper powder that can be molded with high strength, with improved formability compared to conventional electrolytic copper powder, without developing the electrolytic copper powder more than necessary. .
  • the electrolytic solution is used for the purpose of reducing the size of the crystallites constituting the electrolytic copper powder.
  • One or two or more selected from tungstate, molybdate, and sulfur-containing organic compounds are added to a certain aqueous copper sulfate solution to deposit electrolytic copper powder.
  • the obtained granular copper powder is mechanically deformed (processed) using a medium such as a ball to form a flat plate.
  • a medium such as a ball
  • the average particle size is 1 to 30 ⁇ m
  • the technique of Patent Document 3 has an average particle diameter of 7 to 12 ⁇ m.
  • dendritic shape electrolytic copper powder deposited in a dendritic shape called dendritic shape is known, and since the shape is dendritic, it has a large surface area, excellent formability and sinterability, and is used for powder metallurgy applications Used as a raw material for oil-impregnated bearings and machine parts.
  • oil-impregnated bearings and the like have been reduced in size, and accordingly, have become porous, thin, and have complicated shapes.
  • Patent Document 4 discloses a metal powder injection molding copper powder having a complicated three-dimensional shape and high dimensional accuracy, and a method of manufacturing an injection molded product using the same. Specifically, it has been shown that by further developing the dendritic shape, the dendrites of the electrolytic copper powder adjacent to each other at the time of compression molding are intertwined and firmly connected to each other, so that it can be molded with high strength. Furthermore, when it is used as a conductive paste or a metal filler for electromagnetic wave shielding, since it has a dendritic shape, it can be used that it can have more contacts than a spherical shape.
  • the dendritic copper powder as described above when used as a metal filler such as a conductive paste or a resin for electromagnetic wave shielding, the dendritic copper powder has a shape in which the metal filler in the resin has developed into a dendritic shape. They are entangled with each other and agglomerate occurs, which causes a problem that they are not uniformly dispersed in the resin, and the viscosity of the paste increases due to agglomeration, resulting in problems in wiring formation by printing. Such a problem is pointed out in Patent Document 3, for example.
  • dendritic copper powder as a metal filler such as a conductive paste, which is a cause of difficulty in improving the conductivity of the paste.
  • a dendritic shape is easy to ensure a contact rather than granular, and can ensure high electroconductivity as a conductive paste or an electromagnetic wave shield.
  • the present invention has been proposed in view of such circumstances, and is suitably used as an application such as a conductive paste or an electromagnetic wave shield while ensuring excellent conductivity by increasing the number of contacts between copper powders.
  • An object is to provide a copper powder that can be used.
  • the present inventors have made extensive studies to solve the above-described problems. As a result, a dendritic shape having a main trunk and a plurality of branches separated from the main trunk is formed, and the main trunk and the branch are configured by aggregating tabular copper particles having a specific cross-sectional average thickness. It was found that the copper powder in which the growth in the vertical direction with respect to the surface was suppressed, the contact between the copper powders increased, and excellent conductivity was found, and the present invention was completed. That is, the present invention provides the following.
  • the first invention of the present invention has a dendritic shape having a main trunk that grows linearly and a plurality of branches separated from the main trunk, and the main trunk and the branches are made of a scanning electron microscope (SEM).
  • the copper average particle diameter (D50) of the copper powder is 1.0 ⁇ m to 100 ⁇ m, and is composed of flat copper particles having an average cross-sectional thickness of 0.02 ⁇ m to 5.0 ⁇ m determined by observation.
  • the copper powder has a maximum height in the vertical direction with respect to the flat plate-like surface of the particles, which is 1/10 or less of the maximum length in the horizontal direction of the flat plate-like surface.
  • a third invention of the present invention, in the first or second invention, BET specific surface area value of copper powder is 0.2m 2 /g ⁇ 5.0m 2 / g.
  • a fourth invention of the present invention is the copper powder according to any one of the first to third inventions, wherein the crystallite diameter in the Miller index of the (111) plane by X-ray diffraction is in the range of 80 nm to 300 nm. is there.
  • a fifth invention of the present invention is a metal filler containing the copper powder according to any one of the first to fourth inventions in a proportion of 20% by mass or more of the whole.
  • a sixth invention of the present invention is a copper paste obtained by mixing a metal filler according to the fifth invention with a resin.
  • the seventh invention of the present invention is a conductive paint for electromagnetic wave shielding using the metal filler according to the fifth invention.
  • the eighth invention of the present invention is a conductive sheet for electromagnetic wave shielding using the metal filler according to the fifth invention.
  • a ninth invention of the present invention is a method for producing copper powder according to the first to fourth inventions, comprising copper ions and a compound having a phenazine structure represented by the following formula (1). It is the manufacturing method of the copper powder electrolyzed using the electrolyte solution containing 1 or more types and 1 or more types of nonionic surfactant.
  • R 1 , R 2 , R 3 , R 4 , R 6 , R 7 , R 8 , R 9 are each independently hydrogen, halogen, amino, OH, ⁇ O, CN, SCN.
  • R 5 is hydrogen, halogen , Amino, OH, —O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, and aryl.
  • a ⁇ is a halide anion.
  • a tenth invention of the present invention is a method for producing copper powder according to the first to fourth inventions, comprising copper ions and a compound having an azobenzene structure represented by the following formula (2). It is the manufacturing method of the copper powder electrolyzed using the electrolyte solution containing 1 or more types and 1 or more types of nonionic surfactant.
  • the eleventh invention of the present invention is a method for producing copper powder according to the first to fourth inventions, wherein the phenazine structure and the azobenzene structure are represented by copper ions and the following formula (3): Is a method for producing copper powder that is electrolyzed using an electrolytic solution containing one or more types of compounds having a nonionic surfactant and one or more types of nonionic surfactants.
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 are each independently hydrogen, Selected from the group consisting of halogen, amino, OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl
  • R 3 is hydrogen, halogen, amino, OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, A group selected from the group consisting of lower alkyl and aryl, and A ⁇ is a halide anion.
  • a twelfth invention of the present invention is a method for producing copper powder according to the first to fourth inventions, wherein the compound has a copper ion and a phenazine structure represented by the following formula (1), Two or more types selected from the group consisting of a compound having an azobenzene structure represented by the following formula (2) and a compound having a phenazine structure and an azobenzene structure represented by the following formula (3); It is the manufacturing method of the copper powder electrolyzed using the electrolyte solution containing 1 or more types of agents.
  • R 1 , R 2 , R 3 , R 4 , R 6 , R 7 , R 8 , R 9 are each independently hydrogen, halogen, amino, OH, ⁇ O, CN, SCN. , SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl
  • R 5 is hydrogen, halogen , Amino, OH, —O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, and aryl.
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 are each independently hydrogen, Selected from the group consisting of halogen, amino, OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl
  • R 3 is hydrogen, halogen, amino, OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, A group selected from the group consisting of lower alkyl and aryl, and A ⁇ is a halide anion.
  • the copper powder according to the present invention it is possible to secure a large number of contacts and a large contact area, to ensure excellent conductivity, and to prevent aggregation, such as conductive paste and electromagnetic wave shield. It can utilize suitably for a use.
  • the present embodiment a various change is possible in the range which does not change the summary of this invention.
  • the notation “X to Y” (X and Y are arbitrary numerical values) means “X or more and Y or less”.
  • Dendritic copper powder shape >> The copper powder according to the present embodiment, when observed using a scanning electron microscope (SEM), has a dendritic shape having a main trunk that grows linearly and a plurality of branches separated from the main trunk.
  • the shape of the copper powder (hereinafter, the copper powder according to the present embodiment is also referred to as “dendritic copper powder”).
  • the main trunks and branches are composed of a collection of tabular copper particles having an average cross-sectional thickness of 0.02 ⁇ m to 5.0 ⁇ m determined by SEM observation.
  • the average particle diameter (D50) of the copper powder is 1 0.0 ⁇ m to 100 ⁇ m.
  • the height in the vertical direction with respect to the flat surface of the flat copper particles is 1/10 or less with respect to the maximum length in the horizontal direction, It has a smooth surface that suppresses growth in the vertical direction.
  • the anode and the cathode are immersed in a sulfuric acid electrolyte containing copper ions, and the cathode is electrolyzed by flowing a direct current. It can be obtained by depositing on top.
  • the dendritic copper powder 1 has a dendritic shape having a main trunk 2 that grows linearly and a plurality of branches 3 separated from the main trunk 2.
  • the branch 3 in the dendritic copper powder 1 means not only the branches 3a and 3b branched from the main trunk 2, but also both branches further branched from the branches 3a and 3b.
  • the main trunk 2 and the branch 3 are constituted by a collection of tabular copper particles having an average cross-sectional thickness of 0.02 ⁇ m to 5.0 ⁇ m determined by SEM observation.
  • the formation of such flat copper particles is caused by the fact that specific additives added to the electrolytic solution when electrolytically depositing copper powder are adsorbed on the surface of the copper particles, as will be described later. As a result, it is thought that it grows flat.
  • FIG. 3 is a photograph showing an example of an observation image when the copper powder grown in a direction perpendicular to such a flat surface is observed by SEM (magnification 5,000 times). In this photo, copper powder grows in the direction perpendicular to the plate-like surface to form protrusions, and some plate-like surfaces are bent to have a height in the vertical direction. ing.
  • the copper particles grow in the vertical direction as shown in the photograph of FIG. 3, for example, when the copper powder is used for an application such as a conductive paste or a conductive paint, the copper powder grows in the vertical direction.
  • the bulk density becomes high, the packing density cannot be obtained, and there is a problem that sufficient conductivity cannot be secured.
  • the dendritic copper powder 1 is a copper powder having a substantially smooth surface by suppressing the growth in a direction perpendicular to the flat surface.
  • the dendritic copper powder 1 has a maximum height in the vertical direction (symbol “5” in FIG. 2) with respect to the flat surface, and the horizontal length of the flat surface is long.
  • the maximum length (symbol “4” in FIG. 2) is 1/10 or less.
  • the maximum height 5 in the direction perpendicular to the flat surface is not the thickness of the flat surface, but, for example, when the protrusion is formed on the flat surface, the height of the protrusion. Yes, it means the “height” in the direction opposite to the thickness direction with respect to the flat “surface”.
  • the maximum length 4 in the horizontal direction with respect to the flat surface means the major axis length of the flat surface.
  • FIG. 4 and FIG. 5 are observation images when the dendritic copper powder 1 according to the present embodiment is observed by SEM, that is, a flat plate shape in which growth in a direction perpendicular to the flat plate surface is suppressed. It is a photograph figure which shows an example of the observation image of this dendritic copper powder. 4 is observed at a magnification of 1,000 times, and FIG. 5 is observed at a magnification of 5,000 times. As shown in these photographic diagrams, it can be seen that the growth in the vertical direction with respect to the flat surface is suppressed, and a dendritic and flat copper powder having a substantially smooth surface is obtained.
  • Such a flat copper powder in which the growth in the vertical direction is suppressed can ensure a large contact area between the dendritic copper powders. And since the contact area becomes large, low resistance, that is, high conductivity can be realized. Thereby, it is further excellent in electroconductivity, can maintain the electroconductivity favorably, and can be used suitably for the use of an electroconductive coating material or an electroconductive paste. Moreover, when the dendritic copper powder 1 is configured by aggregating flat copper particles, the dendritic copper powder 1 can also contribute to thinning of the wiring material and the like.
  • the average particle diameter (D50) is 1.0 ⁇ m to 100 ⁇ m.
  • the average particle diameter can be controlled by changing the electrolysis conditions described later. Further, if necessary, it can be further adjusted to a desired size by adding mechanical crushing or crushing such as a jet mill, a sample mill, a cyclone mill, or a bead mill.
  • an average particle diameter (D50) can be measured by the laser diffraction scattering type particle size distribution measuring method, for example.
  • the metal filler in the resin is When the shape is developed in a dendritic shape, the dendritic copper powders are entangled with each other to cause aggregation and are not uniformly dispersed in the resin. In addition, the agglomeration increases the viscosity of the paste and causes problems in wiring formation by printing. This is because the dendritic copper powder grows radially in a needle shape, and the dendritic copper powder is entangled and aggregated into a large lump.
  • the flat copper particles having an average cross-sectional thickness of 0.02 ⁇ m to 5.0 ⁇ m are assembled to form the copper powder. Aggregation due to entanglement can be prevented. That is, by growing the flat copper particles, the copper powders come into contact with each other on the surface, and aggregation due to the entanglement of the copper powders can be prevented and uniformly dispersed in the resin. Moreover, contact resistance can also be restrained low by the contact by a large area by making copper powder contact by a surface by making it grow flat like this.
  • the dendritic copper powder 1 is composed of flat copper particles, and as shown in the schematic diagram of FIG. 2 and the photographic diagrams of FIG. 4 and FIG.
  • the growth of copper particles in the direction perpendicular to the surface is suppressed.
  • the contact area between the copper powders can be further increased, aggregation can be prevented more effectively, and the copper powder can be uniformly dispersed in the resin.
  • Patent Document 1 and Patent Document 2 when a spherical copper powder is formed into a flat plate by a mechanical method, for example, it is necessary to prevent copper oxidation during mechanical processing. Fatty acid is added and processed into a flat plate shape by grinding in air or in an inert atmosphere. However, since it cannot completely prevent oxidation, and the fatty acid added at the time of processing may affect the dispersibility when it is made into a paste, it must be removed after the processing is finished. There is a problem that the fatty acid cannot be completely removed because it sometimes firmly adheres to the copper surface under the pressure of time.
  • the dendritic copper powder 1 according to the present embodiment can be grown by direct electrolysis to form a flat plate without performing mechanical processing. Oxidation problems and fatty acid residue problems that have been generated do not occur, the copper powder has a good surface state, and it can be in a very good state for electrical conductivity. Low resistance can be realized when used as a metal filler such as resin.
  • the manufacturing method of this dendritic copper powder 1 is explained in full detail later.
  • the filling rate of the metal filler becomes a problem.
  • the flatness of the tabular dendritic copper powder is required. That is, the form of the dendritic copper powder 1 according to the present embodiment is such that the maximum height in the direction perpendicular to the flat surface is the maximum length in the direction horizontal to the flat surface. 1/10 or less, the smoothness is high, the filling rate is increased, and the number of contacts on the surface of the copper powders is increased. Therefore, further low resistance can be realized.
  • the bulk density of the dendritic copper powder 1 is not particularly limited, but is preferably in the range of 0.5 g / cm 3 to 5.0 g / cm 3 . If the bulk density is less than 0.5 g / cm 3 , there is a possibility that sufficient contact between the copper powders cannot be ensured. On the other hand, if the bulk density exceeds 5.0 g / cm 3 , the average particle diameter of the dendritic copper powder also increases, and the surface area may decrease to deteriorate the moldability and sinterability.
  • dendritic copper powder 1 is not particularly limited, it is preferable the value of the BET specific surface area of 0.2m 2 /g ⁇ 5.0m 2 / g.
  • the BET specific surface area value is less than 0.2 m 2 / g, the copper particles constituting the dendritic copper powder 1 may not have the desired flat shape as described above, and high conductivity is obtained. It may not be possible.
  • the BET specific surface area value exceeds 5.0 m 2 / g, aggregation tends to occur and it becomes difficult to uniformly disperse in the resin during paste formation.
  • the BET specific surface area can be measured in accordance with JIS Z8830: 2013.
  • the dendritic copper powder 1 is not particularly limited, but the crystallite diameter preferably belongs to the range of 80 nm to 300 nm. If the crystallite diameter is less than 80 nm, the copper particles constituting the main trunk and branches tend to be a shape close to a sphere rather than a flat shape, and it becomes difficult to ensure a sufficiently large contact area, and the conductivity is low. May be reduced. On the other hand, if the crystallite diameter exceeds 300 nm, moldability and sinterability may be deteriorated.
  • the crystallite diameter is obtained from a diffraction pattern obtained by an X-ray diffraction measurement device based on Scherrer's calculation formula shown below, and is a (111) plane mirror by X-ray diffraction. It is the crystallite diameter in the index.
  • D 0.9 ⁇ / ⁇ cos ⁇ (D: crystallite diameter (nm), ⁇ : diffraction peak spread (rad) depending on crystallite size, ⁇ : X-ray wavelength [CuK ⁇ ] (nm), ⁇ : diffraction angle (°). .)
  • the dendritic copper powder 1 having the shape as described above is occupied at a predetermined ratio in the obtained copper powder when observed with an electron microscope, copper powder having other shapes is mixed. Even if it is, the effect similar to the copper powder which consists only of the dendritic copper powder 1 can be acquired.
  • the dendritic copper powder 1 having the shape described above is 80% by number or more, preferably 90% by number or more of the total copper powder. As long as it occupies the ratio, copper powder of other shapes may be included.
  • the dendritic copper powder according to the present embodiment can be produced, for example, by a predetermined electrolytic method using a sulfuric acid acidic solution containing copper ions as an electrolytic solution.
  • the above-described sulfuric acid-containing electrolytic solution containing copper ions is accommodated in an electrolytic cell in which metallic copper is used as an anode (anode) and a stainless steel plate or a titanium plate is used as a cathode (cathode).
  • the electrolytic solution is subjected to electrolytic treatment by applying a direct current at a predetermined current density. Thereby, a fine dendritic copper powder can be deposited (electrodeposited) on the cathode with energization.
  • a plate-like dendritic copper powder composed of copper particles can be deposited.
  • the water-soluble copper salt is a copper ion source that supplies copper ions, and examples thereof include copper sulfate such as copper sulfate pentahydrate and copper nitrate, but are not particularly limited.
  • copper oxide may be dissolved in a sulfuric acid solution to make a sulfuric acid acidic solution.
  • the copper ion concentration in the electrolytic solution can be about 1 g / L to 20 g / L, preferably about 5 g / L to 10 g / L.
  • Sulfuric acid is for making a sulfuric acid electrolyte.
  • concentration of sulfuric acid in the electrolytic solution can be about 20 g / L to 300 g / L, preferably about 50 g / L to 150 g / L, as the free sulfuric acid concentration. Since the sulfuric acid concentration affects the conductivity of the electrolyte, it affects the uniformity of the copper powder obtained on the cathode.
  • the additive includes one or more compounds selected from the group consisting of a compound having a phenazine structure, a compound having an azobenzene structure, and a compound having a phenazine structure and an azobenzene structure, or Two or more compounds having different molecular structures selected from the group are used in combination.
  • such an additive is added to the electrolyte together with a nonionic surfactant described later, thereby suppressing copper powder that suppresses growth in a direction perpendicular to the flat surface, that is, smooth. Copper powder having a surface can be produced.
  • the concentration of the additive selected from the group consisting of a compound having a phenazine structure, a compound having an azobenzene structure, and a compound having a phenazine structure and an azobenzene structure in the electrolyte solution is 1 to 1000 mg / L in total. It is preferable to set the degree.
  • a compound having a phenazine structure can be represented by the following formula (1).
  • one or more compounds having a phenazine structure represented by the following formula (1) can be contained as an additive.
  • R 1 , R 2 , R 3 , R 4 , R 6 , R 7 , R 8 , R 9 are each independently hydrogen, halogen, amino, OH, ⁇ O, It is a group selected from the group consisting of CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl.
  • R 5 is hydrogen, halogen, amino, OH, —O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, And a group selected from the group consisting of aryl.
  • a ⁇ is a halide anion.
  • examples of the compound having a phenazine structure include 5-methylphenazine-5-ium, eruginosine B, aeruginosine A, 5-ethylphenazine-5-ium, 3,7-diamino-5-phenylphenazine-5.
  • the compound having an azobenzene structure can be represented by the following formula (2).
  • one or more compounds having an azobenzene structure represented by the following formula (2) can be contained as an additive.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 are each independently hydrogen, halogen, amino A group selected from the group consisting of OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, and aryl. is there.
  • examples of the compound having an azobenzene structure include azobenzene, 4-aminoazobenzene-4'-sulfonic acid, 4- (dimethylamino) -4 '-(trifluoromethyl) azobenzene, C.I. I.
  • a compound having a phenazine structure and an azobenzene structure can be represented by the following formula (3).
  • one or more compounds having a phenazine structure and an azobenzene structure represented by the following formula (3) can be contained as an additive.
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 are each separately , Hydrogen, halogen, amino, OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, and C1-C8 alkyl
  • R 3 is hydrogen, halogen, amino, OH, ⁇ O, CN, SCN, SH, COOH, COO salt, COO ester, SO 3 H, SO 3 salt, SO 3 ester, benzenesulfonic acid, lower alkyl, And a group selected from the group consisting of aryl.
  • a ⁇ is a halide anion.
  • a compound having a phenazine structure and an azobenzene structure for example, 3- (diethylamino) -7-[(4-hydroxyphenyl) azo] -2,8-dimethyl-5-phenylphenazine-5-ium , 3-[[4- (dimethylamino) phenyl] azo] -7- (diethylamino) -5-phenylphenazine-5-ium, Janus Green B, 3-amino-7-[(2,4-diaminophenyl) Azo] -2,8-dimethyl-5-phenylphenazine-5-ium, 2,8-dimethyl-3-amino-5-phenyl-7- (2-hydroxy-1-naphthylazo) phenazine-5-ium, 3 -[[4- (dimethylamino) phenyl] azo] -7- (dimethylamino) -5-phenylphenazine-5-ium, 3-
  • a nonionic surfactant is contained as the surfactant.
  • a nonionic surfactant is added to the electrolytic solution together with the above-described additives, thereby suppressing the growth in the direction perpendicular to the flat surface, that is, having a smooth surface. Copper powder can be produced.
  • nonionic surfactant one kind can be used alone, or two or more kinds can be used in combination, and the total concentration in the electrolytic solution can be about 1 to 10,000 mg / L.
  • the number average molecular weight of the nonionic surfactant is not particularly limited, but is preferably 100 to 200000, more preferably 200 to 15000, and further preferably 1000 to 10,000.
  • the surfactant has a number average molecular weight of less than 100, fine electrolytic copper powder that does not exhibit a dendritic shape may be deposited.
  • the surfactant has a number average molecular weight of more than 200,000, electrolytic copper powder having a large average particle diameter may be precipitated, and only a dendritic copper powder having a specific surface area of less than 0.2 m 2 / g may be obtained.
  • the number average molecular weight is a molecular weight in terms of polystyrene determined by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.
  • nonionic surfactant is not particularly limited, but is preferably a surfactant having an ether group, for example, polyethylene glycol, polypropylene glycol, polyethyleneimine, pluronic surfactant, tetronic surfactant. , Polyoxyethylene glycol / glycerin ether, polyoxyethylene glycol / dialkyl ether, polyoxyethylene polyoxypropylene glycol / alkyl ether, aromatic alcohol alkoxylate, polymer compound represented by the following formula (x), and the like. These nonionic surfactants can be used alone or in combination of two or more.
  • n1 represents an integer of 1 to 120.
  • n1 represents an integer of 1 to 90.
  • n1 represents an integer of 1 to 120.
  • n2 and l2 represent an integer of 1 to 30, and m2 represents an integer of 10 to 100.
  • n3 represents an integer of 1 to 200
  • m3 represents an integer of 1 to 40.
  • polyoxyethylene glycol glyceryl ether what is represented, for example by following formula (vi) can be used.
  • n4, m4, and l4 each represent an integer of 1 to 200.
  • polyoxyethylene glycol dialkyl ether what is represented, for example by a following formula (vii) can be used.
  • R1 and R2 represent a hydrogen atom or a lower alkyl group having 1 to 5 carbon atoms, and n5 represents an integer of 2 to 200.
  • polyoxyethylene polyoxypropylene glycol alkyl ether what is represented, for example by a following formula (viii) can be used.
  • R3 represents a hydrogen atom or a lower alkyl group having 1 to 5 carbon atoms
  • m6 or n6 represents an integer of 2 to 100.
  • aromatic alcohol alkoxylate what is represented, for example by following formula (ix) can be used.
  • m7 represents an integer of 1 to 5
  • n7 represents an integer of 1 to 120.
  • R 1 is a residue of a higher alcohol having 5 to 30 carbon atoms, an alkylphenol residue having an alkyl group having 1 to 30 carbon atoms, or an alkyl naphthol having an alkyl group having 1 to 30 carbon atoms.
  • a residue of a fatty acid amide having 3 to 25 carbon atoms, a residue of an alkylamine having 2 to 5 carbon atoms, or a hydroxyl group, and R 2 and R 3 represent a hydrogen atom or a methyl group.
  • M and n represent an integer of 1 to 100.
  • Chloride ions As chloride ions, compounds that supply chloride ions such as hydrochloric acid and sodium chloride (chloride ion source) can be added to the electrolyte solution. Chloride ions contribute to the shape control of the precipitated copper powder together with the above-described additives and nonionic surfactants.
  • the chloride ion concentration in the electrolytic solution is not particularly limited, but can be about 1 mg / L to 500 mg / L.
  • the copper powder is deposited on the cathode to be produced by electrolysis using the electrolytic solution having the composition described above.
  • the electrolysis method a known method can be used.
  • the current density is preferably in the range of 3 A / dm 2 to 30 A / dm 2 for electrolysis using a sulfuric acid electrolytic solution, and the electrolyte is energized while stirring.
  • the liquid temperature (bath temperature) of the electrolytic solution can be, for example, about 20 ° C. to 60 ° C.
  • the dendritic copper powder 1 has a dendritic shape having a main trunk 2 and a plurality of branches 3 branched from the main trunk 2, and has an average cross-sectional thickness of 0.02 ⁇ m to 5. It is composed of flat copper particles having a size of 0 ⁇ m.
  • the average particle diameter (D50) of the dendritic copper powder is 1.0 ⁇ m to 100 ⁇ m.
  • a dendritic shape has a large surface area, an excellent moldability and sinterability, and a dendritic flat plate having a predetermined cross-sectional average thickness.
  • the dendritic copper powder 1 has a maximum height in the vertical direction with respect to the flat surface of the copper particles of 1/10 or less with respect to the maximum length in the horizontal direction of the flat surface. It is a copper powder having a smooth surface that suppresses growth in the vertical direction. According to such a dendritic copper powder 1, the contact points between the copper powders can be further increased, and the conductivity can be improved.
  • the dendritic copper powder 1 having such a predetermined structure, even when it is a copper paste or the like, it is possible to suppress agglomeration and to uniformly disperse in the resin, In addition, it is possible to suppress the occurrence of poor printability due to an increase in the viscosity of the paste. Therefore, the dendritic copper powder can be suitably used for applications such as conductive paste and conductive paint.
  • the dendritic copper powder 1 is included as a metal filler (copper powder), a binder resin, a solvent, and an antioxidant, a coupling agent, and the like as necessary. It can be produced by kneading with the additive.
  • the dendritic copper powder is configured to have a proportion of 20% by mass or more, preferably 30% by mass or more, more preferably 50% by mass or more in the metal filler. If the ratio of the dendritic copper powder in the metal filler is 20% by mass or more, for example, when the metal filler is used in the copper paste, it can be uniformly dispersed in the resin, and the viscosity of the paste excessively increases. As a result, it is possible to prevent printability defects. Further, the dendritic copper powder 1 according to the present embodiment is composed of an assembly of fine tabular copper particles, and has a substantially smooth surface that suppresses growth in a direction perpendicular to the flat surface. By having the copper powder, excellent conductivity can be exhibited as a conductive paste.
  • the metal filler may contain dendritic copper powder in a proportion of 20% by mass or more, and other components such as spherical copper powder of about 1 ⁇ m to 20 ⁇ m are mixed. Also good.
  • the binder resin is not particularly limited, but an epoxy resin, a phenol resin, or the like can be used.
  • organic solvents such as ethylene glycol, diethylene glycol, triethylene glycol, glycerol, and terpineol, can be used.
  • the amount of the organic solvent added is not particularly limited, but the amount added is adjusted in consideration of the particle size of the dendritic copper powder so that the viscosity is suitable for a conductive film forming method such as screen printing or a dispenser. be able to.
  • resin components can be added to adjust the viscosity.
  • a cellulose-based resin typified by ethyl cellulose can be used, which is added as an organic vehicle dissolved in an organic solvent such as terpineol.
  • an antioxidant or the like can be added in order to improve the conductivity after firing.
  • a hydroxycarboxylic acid etc. can be mentioned. More specifically, hydroxycarboxylic acids such as citric acid, malic acid, tartaric acid, and lactic acid are preferable, and citric acid or malic acid having a high adsorptive power to copper is particularly preferable.
  • the addition amount of the antioxidant can be set to, for example, about 1 to 15% by mass in consideration of the antioxidant effect and the viscosity of the paste.
  • the dendritic copper powder 1 according to the present embodiment is used as a metal filler as an electromagnetic wave shielding material, it is not limited to use under particularly limited conditions, but a general method, For example, a metal filler can be used by mixing with a resin.
  • the resin used for forming the electromagnetic wave shielding layer of the electromagnetic wave shielding conductive sheet is not particularly limited, and conventionally used vinyl chloride resin, vinyl acetate resin, vinylidene chloride resin, Thermoplastic resin, thermosetting resin, radiation curable type made of various polymers and copolymers such as acrylic resin, polyurethane resin, polyester resin, olefin resin, chlorinated olefin resin, polyvinyl alcohol resin, alkyd resin, phenol resin, etc. Resin etc. can be used suitably.
  • the above-described metal filler and resin are dispersed or dissolved in a solvent to form a coating material, and the coating material is applied or printed on the substrate to form the electromagnetic shielding layer. It can be manufactured by forming and drying to such an extent that the surface solidifies.
  • a metal filler can also be utilized for the conductive adhesive layer of a conductive sheet.
  • the dendritic copper powder 1 according to the present embodiment is used as a metal filler to form a conductive paint for electromagnetic wave shielding, it is not limited to use under particularly limited conditions. It can be used as a conductive paint by mixing a method, for example, a metal filler with a resin and a solvent, and further mixing with an antioxidant, a thickener, an anti-settling agent and the like as necessary.
  • the binder resin and solvent used at this time are not particularly limited, and vinyl chloride resin, vinyl acetate resin, acrylic resin, polyester resin, fluororesin, silicon resin, phenol resin, and the like that have been used in the past are used. Can be used.
  • the solvent conventionally used alcohols such as isopropanol, aromatic hydrocarbons such as toluene, esters such as methyl acetate, ketones such as methyl ethyl ketone, and the like can be used.
  • the antioxidant as an additive, conventionally used fatty acid amides, higher fatty acid amines, phenylenediamine derivatives, titanate coupling agents and the like can be used.
  • the average particle size (D50) of the obtained copper powder was measured using a laser diffraction / scattering particle size distribution analyzer (manufactured by Nikkiso Co., Ltd., HRA9320 X-100).
  • the crystallite size was calculated from a diffraction pattern obtained by an X-ray diffraction measurement apparatus (manufactured by PANalytical, X'Pert PRO) using a known method generally known as Scherrer's equation.
  • BET specific surface area The BET specific surface area was measured using a specific surface area / pore distribution measuring apparatus (manufactured by Cantachrome, QUADRASORB SI).
  • the sheet resistance value was measured by a four-terminal method using a low resistivity meter (Loresta-GP MCP-T600, manufactured by Mitsubishi Chemical Corporation), while the surface roughness shape measuring instrument ( The film thickness of the coating film was measured by SURFCOM130A, manufactured by Tokyo Seimitsu Co., Ltd., and the sheet resistance value was determined by dividing the film thickness by the film thickness.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate of the samples obtained in the examples and comparative examples using an electromagnetic wave having a frequency of 1 GHz. Specifically, the level in Comparative Example 2 that does not use dendritic copper powder is set as “ ⁇ ”, and the level worse than the level in Comparative Example 2 is set as “X”. Was evaluated as “ ⁇ ”, and when it was excellent, “ ⁇ ”.
  • Example 1 In an electrolytic cell having a capacity of 100 L, an electrode plate made of titanium having an electrode area of 200 mm ⁇ 200 mm is used as a cathode, and a copper electrode plate having an electrode area of 200 mm ⁇ 200 mm is used as an anode, and an electrolytic solution is loaded in the electrolytic cell. Then, a direct current was applied thereto to deposit copper powder on the cathode plate.
  • the electrolytic solution a composition having a copper ion concentration of 12 g / L and a sulfuric acid concentration of 120 g / L was used. Further, a hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added to this electrolytic solution so that the chloride ion (chlorine ion) concentration in the electrolytic solution was 80 mg / L. In addition, safranin (manufactured by Kanto Chemical Co., Ltd.), which is a compound having a phenazine structure, is added as an additive to the electrolytic solution so that the concentration in the electrolytic solution is 100 mg / L, and a nonionic surfactant is further added. Polyethylene glycol (PEG) having a molecular weight of 600 (manufactured by Wako Pure Chemical Industries, Ltd.) was added to a concentration of 500 mg / L in the electrolytic solution.
  • PEG polyethylene glycol
  • the temperature is maintained at 25 ° C. and the current density of the cathode is 10 A / dm 2. Then, copper powder was deposited on the cathode plate.
  • the electrolytic copper powder deposited on the cathode plate was recovered by mechanically scraping it off the bottom of the electrolytic cell using a scraper, and the recovered copper powder was washed with pure water and then put in a vacuum dryer and dried. .
  • the cross-sectional average thickness of the flat copper particles, the maximum length grown in the direction perpendicular to the flat surface of the copper powder, and the flat plate-like copper powder The ratio of the long axis length in the horizontal direction to the surface was measured.
  • the copper particles constituting the obtained copper powder had a flat plate shape with a cross-sectional average thickness of 2.1 ⁇ m.
  • the average particle diameter (D50) of the dendritic copper powder was 78.9 ⁇ m.
  • the ratio of the maximum length of the copper powder grown in the vertical direction from the flat surface to the maximum length in the direction horizontal to the flat surface (flat plate direction) (vertical length / flat plate length) was 0.054 on average.
  • the bulk density of the obtained dendritic copper powder was 3.2 g / cm 3 .
  • the crystallite diameter of the dendritic copper powder was 243 nm.
  • the BET specific surface area was 1.29 m 2 / g.
  • a plate-like dendritic copper powder with suppressed growth in the vertical direction can be produced by adding a compound having a phenazine structure and a nonionic surfactant in the electrolyte. I understood.
  • Example 2 A hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) is added to the electrolyte so that the chloride ion concentration becomes 200 mg / L, and methyl orange (Kanto Chemical Industries, Ltd.), which is a compound having an azobenzene structure as an additive, is added. Manufactured) was added at a concentration of 200 mg / L in the electrolytic solution. Furthermore, polyoxyethylene polyoxypropylene butyl ether having a molecular weight of 1000 as a nonionic surfactant (manufactured by NOF Corporation, trade name: UNILOVE 50MB-11) is added to the electrolyte so that the concentration in the electrolyte is 750 mg / L. Added to. Otherwise, electrolytic treatment was performed under the same conditions as in Example 1 to produce a dendritic copper powder.
  • the cross-sectional average thickness of the flat copper particles, the maximum length grown in the direction perpendicular to the flat surface of the copper powder, and the flat plate-like copper powder The ratio of the long axis length in the horizontal direction to the surface was measured.
  • the copper particles constituting the obtained copper powder were in the form of a plate having a cross-sectional average thickness of 2.4 ⁇ m.
  • the average particle diameter (D50) of the dendritic copper powder was 52.6 ⁇ m.
  • the ratio of the maximum length of the copper powder grown in the vertical direction from the flat surface to the maximum length in the direction horizontal to the flat surface is 0 on average. .043.
  • the bulk density of the obtained dendritic copper powder was 2.8 g / cm 3 .
  • the crystallite diameter of the dendritic copper powder was 270 nm.
  • the BET specific surface area was 1.94 m 2 / g.
  • Example 2 From the results of Example 2, it is possible to produce a plate-like dendritic copper powder with suppressed growth in the vertical direction by adding a compound having an azobenzene structure and a nonionic surfactant to the electrolytic solution. I understood.
  • Example 3 To the electrolyte solution, a hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added so that the chloride ion concentration was 100 mg / L, and Janus Green B (a compound having a phenazine structure and an azobenzene structure as an additive) Kanto Chemical Co., Ltd.) was added at a concentration of 500 mg / L in the electrolytic solution. Furthermore, a nonionic surfactant polyoxyethylene polyoxypropylene butyl ether having a molecular weight of 3000 (manufactured by NOF Corporation, trade name: UNILOVE 50MB-72) is added to the electrolyte so that the concentration in the electrolyte is 1000 mg / L. Added to. Otherwise, electrolytic treatment was performed under the same conditions as in Example 1 to produce a dendritic copper powder.
  • a hydrochloric acid solution manufactured by Wako Pure Chemical Industries, Ltd.
  • Janus Green B a compound having a phena
  • the cross-sectional average thickness of the flat copper particles, the maximum length grown in the direction perpendicular to the flat surface of the copper powder, and the flat plate-like copper powder The ratio of the long axis length in the horizontal direction to the surface was measured.
  • the copper particles constituting the obtained copper powder were in the form of a plate having a cross-sectional average thickness of 1.8 ⁇ m.
  • the average particle diameter (D50) of the dendritic copper powder was 42.6 ⁇ m.
  • the ratio of the maximum length of the copper powder grown in the vertical direction from the flat surface to the maximum length in the direction horizontal to the flat surface is 0 on average. 0.049.
  • the bulk density of the obtained dendritic copper powder was 2.3 g / cm 3 .
  • the crystallite diameter of the dendritic copper powder was 184 nm.
  • the BET specific surface area was 2.13 m 2 / g.
  • Example 4 A hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) is added to the electrolyte so that the chloride ion concentration is 100 mg / L, and methyl orange (Kanto Chemical Industries, Ltd.), which is a compound having an azobenzene structure as an additive, is added.
  • methyl orange Koreano Chemical Industries, Ltd.
  • Manufactured at a concentration of 100 mg / L in the electrolyte solution and Janus Green B (manufactured by Kanto Chemical Co., Ltd.), a compound having a phenazine structure and an azobenzene structure, at a concentration of 100 mg in the electrolyte solution. / L was added.
  • a nonionic surfactant having a molecular weight of 600 polyethylene glycol (PEG) (manufactured by Wako Pure Chemical Industries, Ltd.) is further added to the electrolyte so that the concentration in the electrolyte is 1000 mg / L.
  • PEG polyethylene glycol
  • Polyoxyethylene polyoxypropylene butyl ether having a molecular weight of 3000 (manufactured by NOF Corporation, trade name: UNILOVE 50MB-72) was added so that the concentration in the electrolyte was 1000 mg / L. Otherwise, electrolytic treatment was performed under the same conditions as in Example 1 to produce a dendritic copper powder.
  • the cross-sectional average thickness of the flat copper particles, the maximum length grown in the direction perpendicular to the flat surface of the copper powder, and the flat plate-like copper powder The ratio of the long axis length in the horizontal direction to the surface was measured.
  • the copper particles constituting the obtained copper powder were in the form of a plate having an average cross-sectional thickness of 0.6 ⁇ m.
  • the average particle diameter (D50) of the dendritic copper powder was 22.5 ⁇ m.
  • the ratio of the maximum length of the copper powder grown in the vertical direction from the flat surface to the maximum length in the direction horizontal to the flat surface is 0 on average. 0.068.
  • the bulk density of the obtained dendritic copper powder was 1.0 g / cm 3 .
  • the crystallite diameter of the dendritic copper powder was 124 nm.
  • the BET specific surface area was 2.96 m 2 / g.
  • Example 4 From the results of Example 4, a compound having an azobenzene structure as an additive and a compound having a phenazine structure and an azobenzene structure were mixed and added to the electrolytic solution, and two or more kinds of nonionic surfactants were further added. It has been found that by adding, a plate-like dendritic copper powder with suppressed growth in the vertical direction can be produced.
  • Example 5 55 parts by mass of dendritic copper powder having a specific surface area of 1.29 m 2 / g obtained in Example 1, 15 parts by mass of phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211), butyl cellosolve (Kanto Chemical Co., Ltd.) 10 parts by mass (manufactured by Shika Special Grade) were mixed and paste-formed by repeating kneading at 1200 rpm for 3 minutes three times using a small kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1). The obtained conductive paste was printed on a glass with a metal squeegee and cured at 150 ° C. and 200 ° C. for 30 minutes in an air atmosphere.
  • the specific resistance values of the coatings obtained by curing were 7.6 ⁇ 10 ⁇ 5 ⁇ ⁇ cm (curing temperature 150 ° C.) and 2.6 ⁇ 10 ⁇ 5 ⁇ ⁇ cm (curing temperature 200 ° C.), respectively.
  • Example 6 55 parts by mass of dendritic copper powder having a specific surface area of 1.94 m 2 / g obtained in Example 2, 15 parts by mass of phenol resin (PL-2211, manufactured by Gunei Chemical Co., Ltd.), butyl cellosolve (Kanto Chemical Co., Ltd.) 10 parts by mass (manufactured by Shika Special Grade) were mixed and paste-formed by repeating kneading at 1200 rpm for 3 minutes three times using a small kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1). The obtained conductive paste was printed on a glass with a metal squeegee and cured at 150 ° C. and 200 ° C. for 30 minutes in an air atmosphere.
  • the specific resistance values of the coatings obtained by curing were 7.8 ⁇ 10 ⁇ 5 ⁇ ⁇ cm (curing temperature 150 ° C.) and 3.1 ⁇ 10 ⁇ 5 ⁇ ⁇ cm (curing temperature 200 ° C.), respectively.
  • Example 7 55 parts by mass of dendritic copper powder having a specific surface area of 2.13 m 2 / g obtained in Example 3, 15 parts by mass of phenol resin (PL-2211 manufactured by Gunei Chemical Co., Ltd.), butyl cellosolve (Kanto Chemical Co., Ltd.) 10 parts by mass (manufactured by Shika Special Grade) were mixed and paste-formed by repeating kneading at 1200 rpm for 3 minutes three times using a small kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1). The obtained conductive paste was printed on a glass with a metal squeegee and cured at 150 ° C. and 200 ° C. for 30 minutes in an air atmosphere.
  • the specific resistance values of the coatings obtained by curing were 5.5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm (curing temperature 150 ° C.) and 1.2 ⁇ 10 ⁇ 5 ⁇ ⁇ cm (curing temperature 200 ° C.), respectively.
  • Example 8 Different second and dendritic copper powder of specific surface area obtained in Example 1 1.29m 2 / g, and dendritic copper powder having a specific surface area obtained in Example 2 1.94 M 2 / g 55 parts by mass (total amount) of dendritic copper powder mixed at a ratio of 50:50, 15 parts by mass of phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211), butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., 10 parts by weight of deer (special grade) were mixed and paste-formed by repeating kneading at 1200 rpm for 3 minutes three times using a small kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1). The obtained conductive paste was printed on a glass with a metal squeegee and cured at 150 ° C. and 200 ° C. for 30 minutes in an air atmosphere.
  • the specific resistance values of the coatings obtained by curing were 5.5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm (curing temperature 150 ° C.) and 1.0 ⁇ 10 ⁇ 5 ⁇ ⁇ cm (curing temperature 200 ° C.), respectively.
  • Example 9 Dendritic copper powder having a specific surface area of 1.29 m 2 / g obtained in Example 1 was dispersed in a resin to obtain an electromagnetic wave shielding material.
  • Example 2 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone were mixed with 40 g of the dendritic copper powder obtained in Example 1, and kneading at 1200 rpm for 3 minutes was repeated three times using a small kneader. To make a paste. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried on a base material made of a transparent polyethylene terephthalate sheet having a thickness of 100 ⁇ m using a Mayer bar to form an electromagnetic wave shielding layer having a thickness of 25 ⁇ m.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 1 shows the results of the characteristic evaluation.
  • Example 10 Dendritic copper powder having a specific surface area of 1.94 m 2 / g obtained in Example 2 was dispersed in a resin to obtain an electromagnetic wave shielding material.
  • Example 2 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone were mixed with 40 g of the dendritic copper powder obtained in Example 2, and kneading at 1200 rpm for 3 minutes was repeated three times using a small kneader. To make a paste. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried on a base material made of a transparent polyethylene terephthalate sheet having a thickness of 100 ⁇ m using a Mayer bar to form an electromagnetic wave shielding layer having a thickness of 25 ⁇ m.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 1 shows the results of the characteristic evaluation.
  • Example 11 Dendritic copper powder having a specific surface area of 2.13 m 2 / g obtained in Example 3 was dispersed in a resin to obtain an electromagnetic wave shielding material.
  • Example 3 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone were mixed with 40 g of the dendritic copper powder obtained in Example 3, and kneading at 1200 rpm for 3 minutes was repeated three times using a small kneader. To make a paste. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried on a base material made of a transparent polyethylene terephthalate sheet having a thickness of 100 ⁇ m using a Mayer bar to form an electromagnetic wave shielding layer having a thickness of 25 ⁇ m.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 1 shows the results of the characteristic evaluation.
  • Example 1 Under the same conditions as in Example 1, except that safranin, which is a compound having a phenazine structure, and polyethylene glycol (PEG) having a molecular weight of 600, which is a nonionic surfactant, are not added as additives, copper powder is cathodized under the same conditions. It was deposited on a plate.
  • PEG polyethylene glycol
  • the copper powder had a dendritic shape, but was composed of aggregated granular copper particles, and was a flat dendritic shape. It was not copper powder. Moreover, the specific surface area of the obtained copper powder was 0.16 m ⁇ 2 > / g.
  • the obtained dendritic copper powder was mixed with 15 parts by mass of a phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 parts by mass of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade).
  • a small kneader manufactured by Nippon Seiki Seisakusho, non-bubbling kneader NBK-1
  • kneading at 1200 rpm for 3 minutes was repeated three times to form a paste.
  • the obtained conductive paste was printed on a glass with a metal squeegee and cured at 150 ° C. and 200 ° C. for 30 minutes in an air atmosphere.
  • the specific resistance values of the coatings obtained by curing were 14.5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm (curing temperature 150 ° C.) and 8.1 ⁇ 10 ⁇ 5 ⁇ ⁇ cm (curing temperature 200 ° C.), respectively.
  • Comparative Example 2 The dendritic copper powder obtained in Comparative Example 1 was dispersed in a resin to obtain an electromagnetic wave shielding material.
  • the electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 1 shows the results of the characteristic evaluation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Powder Metallurgy (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 銅粉同士の接点を多くして優れた導電性を確保しつつ、導電性ペーストや電磁波シールド等の用途として好適に利用することができる銅粉を提供する。 本発明に係る銅粉1は、直線的に成長した主幹2とその主幹2から分かれた複数の枝3とを有する樹枝状の形状をなし、主幹2及び枝3は、断面平均厚さが0.02μm~5.0μmの平板状の銅粒子が集合して構成され、当該銅粉1の平均粒子径(D50)が1.0μm~100μmであり、銅粒子の平板状の面に対して垂直方向への最大高さが、その平板状の面の水平方向への最大長さに対して1/10以下である。

Description

銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート、並びに銅粉の製造方法
 本発明は、銅粉に関し、より詳しくは、導電性ペースト等の材料として用いられ、導電性を向上させることのできる新規な形状を有する銅粉及びその製造方法、その銅粉を用いた銅ペースト、導電性塗料、導電性シート、並びにその銅粉の製造方法に関する。
 電子機器における配線層や電極等の形成には、樹脂型ペーストや焼成型ペーストのような、銀粉や銅粉等の金属フィラーを使用したペーストが多く用いられている。銀や銅の金属フィラーペーストは、電子機器の各種基材上に塗布又は印刷され、加熱硬化や加熱焼成の処理を受けて、配線層や電極等となる導電膜を形成する。
 例えば、樹脂型導電性ペーストは、金属フィラーと、樹脂、硬化剤、溶剤等からなり、導電体回路パターン又は端子の上に印刷され、100℃~200℃で加熱硬化させて導電膜となり、配線や電極を形成する。樹脂型導電性ペーストは、熱によって熱硬化型樹脂が硬化収縮するために金属フィラーが圧着され相互に接触することで金属フィラー同士が重なり、その結果電気的に接続した電流パスが形成される。この樹脂型導電性ペーストは、硬化温度が200℃以下で処理されることから、プリント配線板等の熱に弱い材料を用いている基板に使用されていることが多い。
 一方、焼成型導電性ペーストは、金属フィラーと、ガラス、溶剤等からなり、導電体回路パターン又は端子の上に印刷され、600℃~800℃に加熱焼成して導電膜となり、配線や電極を形成する。焼成型導電性ペーストは、高い温度によって処理することで、金属フィラー同士が焼結して導通性が確保されるものである。この焼成型導電性ペーストは、このように高い焼成温度で処理されるため、樹脂材料を使用するようなプリント配線基板には使用できない点があるが、金属フィラーは焼結によって接続することから低抵抗が得られやすいという特長がある。このような焼成型導電性ペーストは、例えば、積層セラミックコンデンサの外部電極等に使用されている。
 さて、これらの樹脂型導電性ペーストや焼成型導電性ペーストに使用される金属フィラーとしては、従来から銀の粉末が多く用いられてきた。しかしながら、近年では、貴金属価格が高騰し、低コスト化のためにも、銀粉より安価な銅粉の使用が好まれてきた。
 ここで、金属フィラーとして用いられる銅等の粉末としては、上述したように、粒子同士が接続して導電するために、粒状や樹枝状、平板状等の形状が多く用いられてきた。特に、粒子を縦・横・厚さの3方向のサイズから評価したとき、厚さが薄い平板状の形状であることにより、厚さが減少することによる配線材の薄型化に貢献するとともに、一定の厚さがある立方体や球状の粒子よりも粒同士が接触する面積を大きく確保でき、それだけ低抵抗、すなわち高導電率が達成できるという利点がある。このため、平板状の形状の銅粉は、特に導電性を維持したい導電性塗料や導電性ペーストの用途に適している。なお、導電性ペーストを薄く塗布して用いる場合には、銅粉に含まれる不純物の影響も考慮することが好ましくなる。
 このような平板状の銅粉を作製するために、例えば特許文献1では、導電性ペーストの金属フィラーに適したフレーク状銅粉を得る方法が開示されている。具体的には、平均粒径0.5~10μmの球状銅粉を原料とし、ボールミルや振動ミルを用いて、ミル内に装填したメディアの機械的エネルギーにより機械的に平板状に加工するものである。
 また、特許文献2では、導電性ペースト用銅粉末、詳しくはスルーホール用及び外部電極用銅ペーストとして高性能が得られる円盤状銅粉末及びその製造方法に関する技術が開示されている。具体的には、粒状アトマイズ銅粉末を媒体攪拌ミルに投入し、粉砕媒体として1/8~1/4インチ径のスチールボールを使用して、銅粉末に対して脂肪酸を重量で0.5~1%添加し、空気中あるいは不活性雰囲気中で粉砕することによって平板状に加工するものである。
 さらに、特許文献3では、電解銅粉の樹枝を必要以上に発達させることなく、従来の電解銅粉よりも成形性が向上した、高い強度に成形できる電解銅粉を得る方法が開示されている。具体的には、電解銅粉自体の強度を増して高い強度に成形できる電解銅粉を析出させるために、電解銅粉を構成する結晶子のサイズを微細化させることを目的として、電解液である硫酸銅水溶液中にタングステン酸塩、モリブデン酸塩、及び硫黄含有有機化合物から選択される1種又は2種以上を添加して、電解銅粉を析出させるものである。
 これらの特許文献に開示された方法は、いずれも得られた粒状の銅粉をボール等の媒体を使用して機械的に変形(加工)させることによって平板状としており、加工してできた平板状の銅粉の大きさは、特許文献1の技術では平均粒径が1~30μmであり、特許文献3での技術は平均粒径が7~12μmとなる。
 一方、デンドライト状と呼ばれる樹枝状に析出した電解銅粉が知られており、形状が樹枝状になっていることから、表面積が大きく、成形性や焼結性が優れており、粉末冶金用途として含油軸受けや機械部品等の原料として使用されている。特に、含油軸受け等では、小型化が進み、それに伴って多孔質化や薄肉化、並びに複雑な形状が要求されるようになっている。
 それらの要求を満足するために、例えば特許文献4では、複雑3次元形状で寸法精度の高い金属粉末射出成形用銅粉末とそれを用いた射出成形品の製造方法が開示されている。具体的には、樹枝状の形状をより発達させることで、圧縮成形時に隣接する電解銅粉の樹枝が互いに絡み合って強固に連結するようになるため、高い強度に成形できることが示されている。さらに、導電性ペーストや電磁波シールド用の金属フィラーとして利用する場合には、樹枝状の形状であることから、球状と比べて接点を多くできることを利用することができるとしている。
 しかしながら、上述のような樹枝状の銅粉を導電性ペーストや電磁波シールド用樹脂等の金属フィラーとして利用する場合、樹脂中の金属フィラーが樹枝状に発達した形状であると、樹枝状の銅粉同士が絡み合って凝集が発生してしまい、樹脂中に均一に分散しないという問題や、凝集によりペーストの粘度が上昇して印刷による配線形成に問題が生じる。このような問題は、例えば特許文献3でも指摘されている。
 このように、樹枝状の銅粉を導電性ペースト等の金属フィラーとして用いるのは容易でなく、ペーストの導電性の改善がなかなか進まない原因ともなっている。なお、導電性を確保するためには、樹枝状の方が粒状よりも接点を確保しやすく、導電性ペーストや電磁波シールドとして高い導電性を確保することができる。
特開2005-200734号公報 特開2002-15622号公報 特開2011-58027号公報 特開平9-3510号公報
 本発明は、このような実情に鑑みて提案されたものであり、銅粉同士の接点を多くして優れた導電性を確保しつつ、導電性ペーストや電磁波シールド等の用途として好適に利用することができる銅粉を提供することを目的とする。
 本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、主幹とその主幹から分かれた複数の枝とを有する樹枝状の形状をなし、主幹及び枝が、特定の断面平均厚さの平板状の銅粒子が集合して構成され、平板状の面に対して垂直方向への成長が抑制された銅粉であることにより、銅粉同士の接点が多くなり優れた導電性を示すことを見出し、本発明を完成するに至った。すなわち、本発明は以下のものを提供する。
 (1)本発明の第1の発明は、直線的に成長した主幹と該主幹から分かれた複数の枝とを有する樹枝状の形状をなし、前記主幹及び前記枝は、走査電子顕微鏡(SEM)観察より求められる断面平均厚さが0.02μm~5.0μmの平板状の銅粒子が集合して構成され、当該銅粉の平均粒子径(D50)が1.0μm~100μmであり、前記銅粒子の平板状の面に対して垂直方向への最大高さが、該平板状の面の水平方向への最大長さに対して1/10以下である銅粉である。
 (2)本発明の第2の発明は、第1の発明において、嵩密度が0.5g/cm~5.0g/cmの範囲である銅粉である。
 (3)本発明の第3の発明は、第1又は第2の発明において、BET比表面積値が0.2m/g~5.0m/gである銅粉である。
 (4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、X線回折による(111)面のミラー指数における結晶子径が80nm~300nmの範囲に属する銅粉である。
 (5)本発明の第5の発明は、第1乃至第4のいずれかの発明に係る銅粉を、全体の20質量%以上の割合で含有している金属フィラーである。
 (6)本発明の第6の発明は、第5の発明に係る金属フィラーを樹脂に混合させてなる銅ペーストである。
 (7)本発明の第7の発明は、第5の発明に係る金属フィラーを用いた電磁波シールド用の導電性塗料である。
 (8)本発明の第8の発明は、第5の発明に係る金属フィラーを用いた電磁波シールド用の導電性シートである。
 (9)本発明の第9の発明は、第1乃至第4の発明に係る銅粉を製造する方法であって、銅イオンと、下記式(1)で表されるフェナジン構造を有する化合物の1種類以上と、ノニオン界面活性剤の1種類以上とを含有する電解液を用いて電解する銅粉の製造方法である。
Figure JPOXMLDOC01-appb-C000007
[式(1)中、R、R、R、R、R、R、R、Rは、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基であり、Rは、水素、ハロゲン、アミノ、OH、-O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択された基であり、Aがハライドアニオンである。]
 (10)本発明の第10の発明は、第1乃至第4の発明に係る銅粉を製造する方法であって、銅イオンと、下記式(2)で表されるアゾベンゼン構造を有する化合物の1種類以上と、ノニオン界面活性剤の1種類以上とを含有する電解液を用いて電解する銅粉の製造方法である。
Figure JPOXMLDOC01-appb-C000008
[式(2)中、R、R、R、R、R、R、R、R、R、R10は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基である。]
 (11)本発明の第11の発明は、第1乃至第4の発明に係る銅粉を製造する方法であって、銅イオンと、下記式(3)で表される、フェナジン構造とアゾベンゼン構造とを有する化合物の1種類以上と、ノニオン界面活性剤の1種類以上とを含有する電解液を用いて電解する銅粉の製造方法である。
Figure JPOXMLDOC01-appb-C000009
[式(3)中、R、R、R、R、R、R、R、R、R10、R11、R12、R13は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基であり、Rは、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基であり、Aがハライドアニオンである。]
 (12)本発明の第12の発明は、第1乃至第4の発明に係る銅粉を製造する方法であって、銅イオンと、下記式(1)で表されるフェナジン構造を有する化合物、下記式(2)で表されるアゾベンゼン構造を有する化合物、及び下記式(3)で表される、フェナジン構造とアゾベンゼン構造とを有する化合物からなる群から選択される2種類以上と、ノニオン界面活性剤の1種類以上とを含有する電解液を用いて電解する銅粉の製造方法である。
Figure JPOXMLDOC01-appb-C000010
[式(1)中、R、R、R、R、R、R、R、Rは、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基であり、Rは、水素、ハロゲン、アミノ、OH、-O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択された基であり、Aがハライドアニオンである。]
Figure JPOXMLDOC01-appb-C000011
[式(2)中、R、R、R、R、R、R、R、R、R、R10は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基である。]
Figure JPOXMLDOC01-appb-C000012
[式(3)中、R、R、R、R、R、R、R、R、R10、R11、R12、R13は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基であり、Rは、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基であり、Aがハライドアニオンである。]
 本発明に係る銅粉によれば、接点を多く確保することができるとともに接触面積を大きくとることができ、優れた導電性を確保し、また凝集を防止して導電性ペーストや電磁波シールド等の用途に好適に利用することができる。
樹枝状銅粉の具体的な形状を模式的に示した図である。 樹枝状銅粉の具体的な形状を模式的に示した図である。 従来の樹枝状銅粉を走査電子顕微鏡(SEM)により倍率5,000倍で観察したときの観察像を示す写真図である。 樹枝状銅粉を走査電子顕微鏡(SEM)により倍率1,000倍で観察したときの観察像を示す写真図である。 樹枝状銅粉を走査電子顕微鏡(SEM)により倍率5,000倍で観察したときの観察像を示す写真図である。
 以下、本発明に係る銅粉の具体的な実施形態(以下、「本実施の形態」という)について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。また、本明細書にて、「X~Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。
 ≪1.樹枝状銅粉の形状≫
 本実施の形態に係る銅粉は、走査型電子顕微鏡(SEM)を用いて観察したとき、直線的に成長した主幹とその主幹から分かれた複数の枝とを有する樹枝状の形状をなす樹枝状形状の銅粉(以下、本実施の形態に係る銅粉を「樹枝状銅粉」ともいう)である。その主幹及び枝は、SEM観察より求められる断面平均厚さが0.02μm~5.0μmの平板状の銅粒子が集合して構成されており、当該銅粉の平均粒子径(D50)が1.0μm~100μmである。そして、この樹枝状銅粉では、平板状の銅粒子のその平板状の面に対して垂直方向への高さが、水平方向への最大長さに対して1/10以下となっており、垂直方向への成長を抑制した平滑な面を有することを特徴としている。
 なお、本実施の形態に係る樹枝状銅粉は、詳しくは後述するが、例えば、銅イオンを含む硫酸酸性の電解液に陽極と陰極を浸漬し、直流電流を流して電気分解することにより陰極上に析出させて得ることができる。
 図1及び図2は、本実施の形態に係る樹枝状銅粉の具体的な形状を模式的に示した図である。図1に示すように、この樹枝状銅粉1は、直線的に成長した主幹2とその主幹2から分かれた複数の枝3とを有する樹枝状の形状をなす。なお、樹枝状銅粉1における枝3は、主幹2から分岐した枝3a、3bだけでなく、その枝3a、3bからさらに分岐した枝の両方を意味する。
 そして、上述したように、主幹2及び枝3は、SEM観察より求められる断面平均厚さが0.02μm~5.0μmの平板状の銅粒子が集合して構成されている。このような平板状の銅粒子が形成されることは、後述するように、銅粉を電解析出させるに際して電解液中に添加した特定の添加剤が銅粒子の表面に吸着することで成長を抑制され、その結果として平板状に成長するものと考えられる。
 ところが、例えば図2に示す平板状の面に対して垂直方向(図2中のZ方向)にも銅粉の成長が生じると、それぞれ成長した枝の銅粒子自体は平板状となるものの、垂直方向にも銅粒子が突起のように成長した銅粉が形成される。ここで、図3は、そのような平板状の面に対して垂直方向にも成長した銅粉をSEM(倍率5,000倍)により観察したときの観察像の一例を示す写真図である。この写真図に銅粉では、平板状の面に対して垂直方向に銅粒子が成長して突起が形成され、また一部の平板状の面が折れ曲がって垂直方向に高さを有する形状となっている。
 図3の写真図に示すように銅粒子が垂直方向に成長すると、例えばその銅粉を導電性ペーストや導電塗料等の用途に利用した場合に、その垂直方向への銅粒子の成長により銅粉が嵩高くなるために充填密度が得られなくなり、導電性を十分に確保できなくなる問題が発生する。
 これに対して、本実施の形態に係る樹枝状銅粉1では、平板状の面に対して垂直方向への成長を抑制して、ほぼ平滑な面を有する銅粉となっている。具体的に、この樹枝状銅粉1は、平板状の面に対して垂直方向への最大高さ(図2中の符号「5」)が、平板状の面の水平方向への長尺となる最大長さ(図2中の符号「4」)に対して1/10以下になることを特徴とする。なお、平板状の面に対して垂直方向への最大高さ5とは、平板状の面の厚さではなく、例えば平板状の面に突起が形成されている場合はその突起の高さであり、平板状の「面」を基準として厚さ方向とは逆方向の“高さ”のことを意味する。また、平板状の面に対して水平方向への最大長さ4とは、平板状の面の長軸長さを意味する。
 ここで、図4及び図5は、本実施の形態に係る樹枝状銅粉1についてSEMにより観察したときの観察像、つまり、平板状の面に対して垂直方向への成長を抑制した平板状の樹枝状銅粉の観察像の一例を示す写真図である。なお、図4は倍率1,000倍で観察したものであり、図5は倍率5,000倍で観察したものである。これらの写真図に示されるように、平板状の面に対して垂直方向への成長が抑制されて、ほぼ平滑な面を有する樹枝状であって平板な銅粉となっていることが分かる。
 このような垂直方向への成長が抑制された平板な銅粉であることにより、樹枝状銅粉同士の接触面積を大きく確保することができる。そして、その接触面積が大きくなることで、低抵抗、すなわち高導電率を実現することができる。このことにより、より一層に導電性に優れ、またその導電性を良好に維持することができ、導電性塗料や導電性ペーストの用途に好適に用いることができる。また、樹枝状銅粉1が平板状の銅粒子が集合して構成されていることにより、配線材等の薄型化にも貢献することができる。
 また、本実施の形態に係る樹枝状銅粉1においては、その平均粒子径(D50)が1.0μm~100μmである。平均粒子径は、後述する電解条件を変更することで制御可能である。また、必要に応じて、ジェットミル、サンプルミル、サイクロンミル、ビーズミル等の機械的な粉砕や解砕を付加することによって、所望とする大きさにさらに調整することが可能である。なお、平均粒子径(D50)は、例えば、レーザー回折散乱式粒度分布測定法により測定することができる。
 ここで、例えば特許文献1でも指摘されているように、樹枝状銅粉の問題点としては、導電性ペーストや電磁波シールド用の樹脂等の金属フィラーとして利用する場合に、樹脂中の金属フィラーが樹枝状に発達した形状であると、樹枝状の銅粉同士が絡み合って凝集が発生し、樹脂中に均一に分散しないことが挙げられる。また、その凝集により、ペーストの粘度が上昇して印刷による配線形成に問題が生じる。このことは、樹枝状銅粉が針状の形状で放射状に成長するために、その樹枝状銅粉同士が絡まりあって大きな塊に凝集することよる。
 この点において、本実施の形態に係る樹枝状銅粉1では、断面平均厚さが0.02μm~5.0μmの平板状の銅粒子が集合して構成されていることにより、銅粉同士の絡まりによる凝集を防止することができる。つまり、平板状の銅粒子を成長させてなることで、銅粉同士が面で接触するようになり、銅粉同士の絡み合いによる凝集を防止し、樹脂中に均一に分散させることができる。また、このように平板状に成長させることで銅粉同士を面で接触させることにより、広い面積による接触で接点抵抗を低く抑えることもできる。
 特に、本実施の形態に係る樹枝状銅粉1は、平板状の銅粒子から構成されていることに加え、図2の模式図並びに図4及び図5の写真図に示したように、平板状の面に対して垂直方向への銅粒子の成長が抑制されている。このような樹枝状銅粉1によれば、銅粉同士の接触面積をさらに大きく確保することができ、より効果的に凝集を防ぐことができ、樹脂中に均一に分散させることができる。
 また、特許文献1や特許文献2に記載されているように機械的な方法で例えば球状銅粉を平板状にする場合には、機械的加工時に銅の酸化を防止する必要があるために、脂肪酸を添加し、空気中あるいは不活性雰囲気中で粉砕することによって平板状に加工している。しかしながら、完全に酸化を防止することができないことや、加工時に添加している脂肪酸がペースト化するときに分散性に影響を及ぼす場合があるために加工終了後除去が必要であるが、機械加工時の圧力で銅表面に強固に固着することがあり、脂肪酸を完全に除去できないという問題が発生する。そして、導電性ペーストや電磁波シールド用の樹脂等の金属フィラーとして利用する場合に、金属フィラー表面に電気の導電性を阻害する酸化被膜や脂肪酸が存在すると、電気的な抵抗が大きくなり金属フィラーの特性を十分に発揮することができなくなる。
 この点、本実施の形態に係る樹枝状銅粉1においては、機械的な加工を行うことなく直接電解によって成長させて平板の形状にすることができるため、これまでの機械的な方法で問題となっていた酸化の問題や脂肪酸の残留による問題は発生せず、表面状態が良好な銅粉となり、電気導電性としては極めて良好な状態とすることができ、導電性ペーストや電磁波シールド用の樹脂等の金属フィラーとして利用する場合に低抵抗を実現できる。なお、この樹枝状銅粉1の製造方法については後で詳述する。
 また、さらに低抵抗を実現するためには、金属フィラーの充填率が問題となる。より充填率を高めるためには平板状の樹枝状銅粉の平滑性が必要となる。つまり、本実施の形態に係る樹枝状銅粉1の形態は、平板状の面に対して垂直方向への最大高さが、平板状の面に対して水平な方向への最大長さに対して1/10以下であることにより、平滑性が高く充填率が上昇するとともに、銅粉同士の面での接点が増加するため、さらに低抵抗が実現できる。
 また、樹枝状銅粉1の嵩密度としては、特に限定されないが、0.5g/cm~5.0g/cmの範囲であることが好ましい。嵩密度が0.5g/cm未満であると、銅粉同士の接点を十分に確保することができない可能性がある。一方で、嵩密度が5.0g/cmを超えると、樹枝状銅粉の平均粒子径も大きくなってしまい、すると表面積が小さくなって成形性や焼結性が悪化することがある。
 また、樹枝状銅粉1は、特に限定されないが、そのBET比表面積の値が0.2m/g~5.0m/gであることが好ましい。BET比表面積値が0.2m/g未満であると、樹枝状銅粉1を構成する銅粒子が、上述したような所望の平板状の形状とはならないことがあり、高い導電性が得られないことがある。一方で、BET比表面積値が5.0m/gを超えると、凝集が生じやすくなってペースト化に際して樹脂中に均一に分散させることが困難となる。なお、BET比表面積は、JIS Z8830:2013に準拠して測定することができる。
 また、樹枝状銅粉1は、特に限定されないが、その結晶子径が80nm~300nmの範囲に属することが好ましい。結晶子径が80nm未満であると、その主幹や枝を構成する銅粒子が平板状ではなく球状に近い形状となる傾向があり、接触面積を十分に大きく確保することが困難となり、導電性が低下する可能性がある。一方で、結晶子径が300nmを超えると、成形性や焼結性が悪化することがある。
 なお、ここでの結晶子径とは、X線回折測定装置により得られる回折パターンから下記数式で示されるScherrerの計算式に基づいて求められるものであり、X線回折による(111)面のミラー指数における結晶子径である。
  D=0.9λ/βcosθ
(なお、D:結晶子径(nm)、β:結晶子の大きさによる回折ピークの拡がり(rad)、λ:X線の波長[CuKα](nm)、θ:回折角(°)である。)
 なお、電子顕微鏡で観察したときに、得られた銅粉のうちに、上述したような形状の樹枝状銅粉1が所定の割合で占められていれば、それ以外の形状の銅粉が混じっていても、その樹枝状銅粉1のみからなる銅粉と同様の効果を得ることができる。具体的には、電子顕微鏡(例えば500倍~20,000倍)で観察したときに、上述した形状の樹枝状銅粉1が全銅粉のうちの80個数%以上、好ましくは90個数%以上の割合を占めていれば、その他の形状の銅粉が含まれていてもよい。
 ≪2.樹枝状銅粉の製造方法≫
 本実施の形態に係る樹枝状銅粉は、例えば、銅イオンを含有する硫酸酸性溶液を電解液として用いて所定の電解法により製造することができる。
 電解に際しては、例えば、金属銅を陽極(アノード)とし、ステンレス板やチタン板等を陰極(カソード)として設置した電解槽中に、上述した銅イオンを含有する硫酸酸性の電解液を収容し、その電解液に所定の電流密度で直流電流を通電することによって電解処理を施す。これにより、通電に伴って陰極上に微細な樹枝状銅粉を析出(電析)させることができる。特に、本実施の形態においては、銅イオン源となる水溶性銅塩を含有する硫酸酸性の電解液に特定の添加剤とノニオン界面活性剤と塩化物イオンとを添加することで、平板状の銅粒子が集合して構成された平板状の樹枝状銅粉を析出させることができる。
 (1)銅イオン
 水溶性銅塩は、銅イオンを供給する銅イオン源であり、例えば硫酸銅五水和物等の硫酸銅、硝酸銅等が挙げられるが特に限定されない。また、酸化銅を硫酸溶液で溶解して硫酸酸性溶液にしてもよい。電解液中での銅イオン濃度としては、1g/L~20g/L程度、好ましくは5g/L~10g/L程度とすることができる。
 (2)硫酸
 硫酸は、硫酸酸性の電解液とするためのものである。電解液中の硫酸の濃度としては、遊離硫酸濃度として20g/L~300g/L程度、好ましくは50g/L~150g/L程度とすることができる。この硫酸濃度は、電解液の電導度に影響するため、カソード上に得られる銅粉の均一性に影響する。
 (3)添加剤
 添加剤としては、フェナジン構造を有する化合物、アゾベンゼン構造を有する化合物、及びフェナジン構造とアゾベンゼン構造とを有する化合物からなる群から選択されるいずれかの化合物を1種類以上、あるいはその群から選択される分子構造の異なる化合物を2種類以上併せて用いる。本実施の形態においては、このような添加剤を、後述するノニオン界面活性剤と共に電解液に添加することによって、平板状の面に対して垂直方向への成長を抑えた銅粉、すなわち平滑な面を有する銅粉を製造することができる。
 フェナジン構造を有する化合物、アゾベンゼン構造を有する化合物、フェナジン構造とアゾベンゼン構造とを有する化合物からなる群から選択される添加剤の電解液中の濃度としては、添加する化合物の合計で1~1000mg/L程度とすることが好ましい。
 (フェナジン構造を有する化合物)
 フェナジン構造を有する化合物は、下記式(1)によって表わすことができる。本実施の形態においては、下記式(1)で表されるフェナジン構造を有する化合物の1種類又は2種類以上を添加剤として含有させることができる。
Figure JPOXMLDOC01-appb-C000013
 ここで、式(1)中において、R、R、R、R、R、R、R、Rは、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基である。また、Rは、水素、ハロゲン、アミノ、OH、-O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択された基である。また、Aは、ハライドアニオンである。
 具体的に、フェナジン構造を有する化合物としては、例えば、5-メチルフェナジン-5-イウム、エルギノシンB、アエルギノシンA、5-エチルフェナジン-5-イウム、3,7-ジアミノ-5-フェニルフェナジン-5-イウム、5-エチルフェナジン-5-イウム、5-メチルフェナジン-5-イウム、3-アミノ-5-フェニル-7-(ジエチルアミノ)フェナジン-5-イウム、2,8-ジメチル-3,7-ジアミノ-5-フェニルフェナジン-5-イウム、1-メトキシ-5-メチルフェナジン-5-イウム、3-アミノ-7-(ジメチルアミノ)-1,2-ジメチル-5-(3-スルホナトフェニル)フェナジン-5-イウム、1,3-ジアミノ-5-メチルフェナジン-5-イウム、1,3-ジアミノ-5-フェニルフェナジン-5-イウム、3-アミノ-7-(ジエチルアミノ)-2-メチル-5-フェニルフェナジン-5-イウム、3,7-ビス(ジエチルアミノ)-5-フェニルフェナジン-5-イウム、2,8-ジメチル-3,7-ジアミノ-5-(4-メチルフェニル)フェナジン-5-イウム、3-(メチルアミノ)-5-メチルフェナジン-5-イウム、3-ヒドロキシ-7-(ジエチルアミノ)-5-フェニルフェナジン-5-イウム、5-アゾニアフェナジン、1-ヒドロキシ-5-メチルフェナジン-5-イウム、4H,6H-5-フェニル-3,7-ジオキソフェナジン-5-イウム、アニリノアポサフラニン、フェノサフラニン、ニュートラルレッド等が挙げられる。
 (アゾベンゼン構造を有する化合物)
 アゾベンゼン構造を有する化合物は、下記式(2)によって表わすことができる。本実施の形態においては、下記式(2)で表されるアゾベンゼン構造を有する化合物の1種類又は2種類以上を添加剤として含有させることができる。
Figure JPOXMLDOC01-appb-C000014
 ここで、式(2)中において、R、R、R、R、R、R、R、R、R、R10は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基である。
 具体的に、アゾベンゼン構造を有する化合物としては、例えば、アゾベンゼン、4-アミノアゾベンゼン-4’-スルホン酸、4-(ジメチルアミノ)-4’-(トリフルオロメチル)アゾベンゼン、C.I.アシッドレッド13、マーキュリーオレンジ、2’,4’-ジアミノ-5’-メチルアゾベンゼン-4-スルホン酸ナトリウム、メチルレッド、メチルイエロー、メチルオレンジ、アゾベンゼン-2,4-ジアミン、アリザリンイエローGG、4-ジメチルアミノアゾベンゼン、オレンジI、サラゾスルファピリジン、4-(ジエチルアミノ)アゾベンゼン、オレンジOT、3-メトキシ-4-アミノアゾベンゼン、4-アミノアゾベンゼン、N,N,2-トリメチルアゾベンゼン-4-アミン、4-ヒドロキシアゾベンゼン、スダンI、4-アミノ-3,5-ジメチルアゾベンゼン、N,N-ジメチル-4-[(キノリン-6-イル)アゾ]ベンゼンアミン、o-アミノアゾトルエン、アリザリンイエローR、4’-(アミノスルホニル)-4-ヒドロキシアゾベンゼン-3-カルボン酸、コンゴーレッド、バイタルレッド、メタニルイエロー、オレンジII、ディスパースオレンジ3、C.I.ダイレクトオレンジ39、2,2’-ジヒドロキシアゾベンゼン、アゾベンゼン-4,4’-ジオール、ナフチルレッド、5-フェニルアゾベンゼン-2-オール、2,2’-ジメチルアゾベンゼン、C.I.モルダントイエロー12、モルダントイエロー10、アシッドイエロー、ディスパースブルー、ニューイエローRMF、ビストラミンブラウンG等が挙げられる。
 (フェナジン構造とアゾベンゼン構造とを有する化合物)
 フェナジン構造とアゾベンゼン構造とを有する化合物は、下記式(3)によって表わすことができる。本実施の形態においては、下記式(3)で表されるフェナジン構造とアゾベンゼン構造とを有する化合物の1種類又は2種類以上を添加剤として含有させることができる。
Figure JPOXMLDOC01-appb-C000015
 ここで、式(3)中において、R、R、R、R、R、R、R、R、R10、R11、R12、R13は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基である。また、Rは、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基である。また、Aは、ハライドアニオンである。
 具体的に、フェナジン構造とアゾベンゼン構造とを有する化合物としては、例えば、3-(ジエチルアミノ)-7-[(4-ヒドロキシフェニル)アゾ]-2,8-ジメチル-5-フェニルフェナジン-5-イウム、3-[[4-(ジメチルアミノ)フェニル]アゾ]-7-(ジエチルアミノ)-5-フェニルフェナジン-5-イウム、ヤヌスグリーンB、3-アミノ-7-[(2,4-ジアミノフェニル)アゾ]-2,8-ジメチル-5-フェニルフェナジン-5-イウム、2,8-ジメチル-3-アミノ-5-フェニル-7-(2-ヒドロキシ-1-ナフチルアゾ)フェナジン-5-イウム、3-[[4-(ジメチルアミノ)フェニル]アゾ]-7-(ジメチルアミノ)-5-フェニルフェナジン-5-イウム、3-アミノ-7-[[4-(ジメチルアミノ)フェニル]アゾ]-5-フェニルフェナジン-5-イウム、2-(ジエチルアミノ)-7-[4-(メチルプロパルギルアミノ)フェニルアゾ]-9-フェニル-9-アゾニア-10-アザアントラセン、2-(ジエチルアミノ)-7-[4-(メチル4-ペンチニルアミノ)フェニルアゾ]-9-フェニル-9-アゾニア-10-アザアントラセン、2-(ジエチルアミノ)-7-[4-(メチル2,3-ジヒドロキシプロピルアミノ)フェニルアゾ]-9-フェニル-9-アゾニア-10-アザアントラセン等が挙げられる。
 (4)界面活性剤
 界面活性剤としては、ノニオン界面活性剤を含有させる。本実施の形態においては、上述した添加剤と共にノニオン界面活性剤を電解液中に添加することによって、平板状の面に対して垂直方向への成長を抑えた銅粉、すなわち平滑な面を有する銅粉を製造することができる。
 ノニオン界面活性剤としては、1種類単独で又は2種類以上を併せて用いることができ、電解液中の濃度としては合計で1~10000mg/L程度とすることができる。
 ノニオン界面活性剤の数平均分子量としては、特に限定されないが、100~200000であることが好ましく、200~15000であることがより好ましく、1000~10000であることがさらに好ましい。数平均分子量が100未満の界面活性剤であると、樹枝状を呈しない微細な電解銅粉が析出される可能性がある。一方で、数平均分子量が200000を超える界面活性剤であると、平均粒子径の大きな電解銅粉が析出して、比表面積が0.2m/g未満の樹枝状銅粉しか得られない可能性がある。なお、本実施の形態において、数平均分子量は、テトラヒドロフラン(THF)を溶媒とするゲル浸透クロマトグラフィー(GPC)によって求めたポリスチレン換算の分子量とする。
 ノニオン界面活性剤の種類としては、特に限定されないが、エーテル基を有する界面活性剤であることが好ましく、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンイミン、プルロニック型界面活性剤、テトロニック型界面活性剤、ポリオキシエチレングリコール・グリセリンエーテル、ポリオキシエチレングリコール・ジアルキルエーテル、ポリオキシエチレンポリオキシプロピレングリコール・アルキルエーテル、芳香族アルコールアルコキシレート、下記(x)式で表される高分子化合物等が挙げられ、これらのノニオン界面活性剤を1種単独で、又は2種以上を併せて用いることができる。
 より具体的に、ポリエチレングリコールとしては、例えば下記式(i)で表されるものを用いることができる。
Figure JPOXMLDOC01-appb-C000016
(式(i)中、n1は、1~120の整数を示す。)
 また、ポリプロピレングリコールとしては、例えば下記式(ii)で表されるものを用いることができる。
Figure JPOXMLDOC01-appb-C000017
(式(ii)中、n1は、1~90の整数を示す。)
 また、ポリエチレンイミンとしては、例えば下記式(iii)で表されるものを用いることができる。
Figure JPOXMLDOC01-appb-C000018
(式(iii)中、n1は、1~120の整数を示す。)
 また、プルロニック型界面活性剤としては、例えば下記式(iv)で表されるものを用いることができる。
Figure JPOXMLDOC01-appb-C000019
(式(iv)中、n2及びl2は1~30の整数を、m2は10~100の整数を示す。)
 また、テトロニック型界面活性剤としては、例えば下記式(v)で表されるものを用いることができる。
Figure JPOXMLDOC01-appb-C000020
(式(v)中、n3は1~200の整数を、m3は1~40の整数を示す。)
 また、ポリオキシエチレングリコール・グリセリルエーテルとしては、例えば下記式(vi)で表されるものを用いることができる。
Figure JPOXMLDOC01-appb-C000021
(式(vi)中、n4、m4、及びl4はそれぞれ1~200の整数を示す。)
 また、ポリオキシエチレングリコール・ジアルキルエーテルとしては、例えば下記式(vii)で表されるものを用いることができる。
Figure JPOXMLDOC01-appb-C000022
(式(vii)中、R1及びR2は水素原子又は炭素数1~5の低級アルキル基を示し、n5は2~200の整数を示す。)
 また、ポリオキシエチレンポリオキシプロピレングリコール・アルキルエーテルとしては、例えば下記式(viii)で表されるものを用いることができる。
Figure JPOXMLDOC01-appb-C000023
(式(viii)中、R3は水素原子又は炭素数1~5の低級アルキル基を示し、m6又はn6は2~100の整数を示す。)
 また、芳香族アルコールアルコキシレートとしては、例えば下記式(ix)で表されるものを用いることができる。
Figure JPOXMLDOC01-appb-C000024
(式(ix)中、m7は1~5の整数、n7は1~120の整数を示す。)
 また、下記(x)式で表される高分子化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000025
(式(x)中、Rは、炭素数5~30の高級アルコールの残基、炭素数1~30のアルキル基を有するアルキルフェノールの残基、炭素数1~30のアルキル基を有するアルキルナフトールの残基、炭素数3~25の脂肪酸アミドの残基、炭素数2~5のアルキルアミンの残基、又は水酸基を示す。また、R及びRは、水素原子又はメチル基を示す。また、m及びnは、1~100の整数を示す。)
 (5)塩化物イオン
 塩化物イオンとしては、塩酸、塩化ナトリウム等の塩化物イオンを供給する化合物(塩化物イオン源)を電解液中に添加することによって含有させることができる。塩化物イオンは、上述した添加剤やノニオン界面活性剤と共に、析出する銅粉の形状制御に寄与する。電解液中の塩化物イオン濃度としては、特に限定されないが、1mg/L~500mg/L程度とすることができる。
 本実施の形態に係る樹枝状銅粉1の製造方法においては、例えば、上述したような組成の電解液を用いて電解することによって陰極上に銅粉を析出生成させて製造する。電解方法としては、公知の方法を用いることができる。例えば、電流密度としては、硫酸酸性の電解液を用いて電解するにあたっては3A/dm~30A/dmの範囲とすることが好ましく、電解液を攪拌しながら通電させる。また、電解液の液温(浴温)としては、例えば20℃~60℃程度とすることができる。
 ≪3.導電性ペースト、導電塗料等の用途≫
 本実施の形態に係る樹枝状銅粉1は、上述したように、主幹2及びその主幹2から分岐した複数の枝3とを有する樹枝状を呈し、断面平均厚さが0.02μm~5.0μmである平板状の銅粒子が集合して構成されている。そして、当該樹枝状銅粉の平均粒子径(D50)は、1.0μm~100μmである。このような樹枝状銅粉では、樹枝状の形状であることにより表面積が大きくなり、成形性や焼結性に優れたものとなり、また樹枝状であって且つ所定の断面平均厚さを有する平板状の銅粒子から構成されていることにより、接点の数を多く確保することができ、優れた導電性を発揮する。
 しかも、この樹枝状銅粉1は、銅粒子の平板状の面に対して垂直方向への最大高さが、その平板状の面の水平方向への最大長さに対して1/10以下となっており、垂直方向への成長を抑制した平滑な面を有する銅粉である。このような樹枝状銅粉1によれば、より一層に銅粉同士の接点を増やすことができ、導電性を向上させることができる。
 また、このような所定の構造を有する樹枝状銅粉1によれば、銅ペースト等とした場合であっても、凝集を抑制することができ、樹脂中に均一に分散させることが可能となり、またペーストの粘度上昇等による印刷性不良等の発生を抑制することができる。したがって、樹枝状銅粉は、導電性ペーストや導電塗料等の用途に好適に用いることができる。
 例えば導電性ペースト(銅ペースト)としては、本実施の形態に係る樹枝状銅粉1を金属フィラー(銅粉)として含み、バインダ樹脂、溶剤、さらに必要に応じて酸化防止剤やカップリング剤等の添加剤と混練することによって作製することができる。
 本実施の形態においては、金属フィラー中に、上述した樹枝状銅粉が20質量%以上、好ましくは30質量%以上、より好ましくは50質量%以上の量の割合となるよう構成する。金属フィラー中の樹枝状銅粉の割合を20質量%以上とすれば、例えばその金属フィラーを銅ペーストに用いた場合、樹脂中に均一に分散させることができ、またペーストの粘度が過度に上昇して印刷性不良が生じることを防ぐことができる。また、本実施の形態に係る樹枝状銅粉1は、平板状の微細な銅粒子の集合体からなり、またその平板状の面に対して垂直方向への成長を抑制したほぼ平滑な面を有する銅粉であることにより、導電性ペーストとして優れた導電性を発揮させることができる。
 なお、金属フィラーとしては、上述したように樹枝状銅粉が20質量%以上の量の割合となるように含んでいればよく、その他は例えば1μm~20μm程度の球状銅粉等を混ぜ合わせてもよい。
 具体的に、バインダ樹脂としては、特に限定されないが、エポキシ樹脂、フェノール樹脂等を用いることができる。また、溶剤としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、ターピネオール等の有機溶剤を用いることができる。また、その有機溶剤の添加量としては、特に限定されないが、スクリーン印刷やディスペンサー等の導電膜形成方法に適した粘度となるように、樹枝状銅粉の粒度を考慮して添加量を調整することができる。
 さらに、粘度調整のために他の樹脂成分を添加することもできる。例えば、エチルセルロースに代表されるセルロース系樹脂等が挙げられ、ターピネオール等の有機溶剤に溶解した有機ビヒクルとして添加される。なお、その樹脂成分の添加量としては、焼結性を阻害しない程度に抑える必要があり、好ましくは全体の5質量%以下とする。
 また、添加剤としては、焼成後の導電性を改善するために酸化防止剤等を添加することができる。酸化防止剤としては、特に限定されないが、例えばヒドロキシカルボン酸等を挙げることができる。より具体的には、クエン酸、リンゴ酸、酒石酸、乳酸等のヒドロキシカルボン酸が好ましく、銅への吸着力が高いクエン酸又はリンゴ酸が特に好ましい。酸化防止剤の添加量としては、酸化防止効果やペーストの粘度等を考慮して、例えば1~15質量%程度とすることができる。
 次に、電磁波シールド用材料として、本実施の形態に係る樹枝状銅粉1を金属フィラーとして利用する場合においても、特に限定された条件での使用に限られるものではなく、一般的な方法、例えば金属フィラーを樹脂と混合して使用することができる。
 例えば、電磁波シールド用導電性シートの電磁波シールド層を形成するために使用される樹脂としては、特に限定されるものではなく、従来使用されている、塩化ビニル樹脂、酢酸ビニル樹脂、塩化ビニリデン樹脂、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、オレフィン樹脂、塩素化オレフィン樹脂、ポリビニルアルコール系樹脂、アルキッド樹脂、フェノール樹脂などの各種重合体及び共重合体からなる熱可塑性樹脂、熱硬化性樹脂、放射線硬化型樹脂等を適宜使用することができる。
 電磁波シールド材を製造する方法としては、例えば、上述したような金属フィラーと樹脂とを、溶媒に分散又は溶解して塗料とし、その塗料を基材上に塗布又は印刷することによって電磁波シールド層を形成し、表面が固化する程度に乾燥することで製造することができる。また、金属フィラーを導電性シートの導電性接着剤層に利用することもできる。
 また、本実施の形態に係る樹枝状銅粉1を金属フィラーとして利用して電磁波シールド用導電性塗料とする場合においても、特に限定された条件での使用に限られるものではなく、一般的な方法、例えば金属フィラーを樹脂及び溶剤と混合し、さらに必要に応じて酸化防止剤、増粘剤、沈降防止剤等と混合して混練することで導電性塗料として利用することができる。
 このときに使用するバインダ樹脂及び溶剤についても、特に限定されるものではなく、従来使用されている、塩化ビニル樹脂、酢酸ビニル樹脂、アクリル樹脂、ポリエステル樹脂、フッ素樹脂、シリコン樹脂やフェノール樹脂等を利用することができる。また、溶剤についても、従来使用されている、イソプロパノール等のアルコール類、トルエン等の芳香族炭化水素類、酢酸メチル等のエステル類、メチルエチルケトン等のケトン類等を利用することができる。また、添加剤としての酸化防止剤についても、従来使用されている、脂肪酸アミド、高級脂肪酸アミン、フェニレンジアミン誘導体、チタネート系カップリング剤等を利用することができる。
 以下、本発明の実施例を比較例と共に示してさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 <評価方法>
 下記実施例及び比較例にて得られた銅粉について、以下の方法により、形状の観察、平均粒子径の測定、結晶子径、比表面積等の測定を行った。
  (形状の観察)
 走査型電子顕微鏡(日本電子株式会社製,JSM-7100F型)により、所定の倍率の視野で任意に20視野を観察し、その視野内に含まれる銅粉を観察した。
  (平均粒子径の測定)
 得られた銅粉の平均粒子径(D50)については、レーザー回折・散乱法粒度分布測定器(日機装株式会社製,HRA9320 X-100)を用いて測定した。
  (結晶子径の測定)
 結晶子径については、X線回折測定装置(PANanalytical社製,X‘Pert PRO)により得られた回折パターンから、一般にScherrerの式として知られる公知の方法を用いて算出した。
  (BET比表面積)
 BET比表面積については、比表面積・細孔分布測定装置(カンタクローム社製,QUADRASORB SI)を用いて測定した。
  (比抵抗値測定)
 被膜の比抵抗値については、低抵抗率計(三菱化学株式会社製,Loresta-GP MCP-T600)を用いて四端子法によりシート抵抗値を測定し、一方で、表面粗さ形状測定器(東京精密株式会社製,SURFCOM130A)により被膜の膜厚を測定して、シート抵抗値を膜厚で除することによって求めた。
  (電磁波シールド特性)
 電磁波シールド特性の評価は、各実施例及び比較例にて得られた試料について、周波数1GHzの電磁波を用いて、その減衰率を測定して評価した。具体的には、樹枝状銅粉を使用していない比較例2の場合のレベルを『△』として、その比較例2のレベルよりも悪い場合を『×』とし、その比較例2のレベルよりも良好な場合を『○』とし、さらに優れている場合を『◎』として評価した。
 また、電磁波シールドの可撓性についても評価するために、作製した電磁波シールドを折り曲げて電磁波シールド特性が変化するか否かを確認した。
 <実施例、比較例>
 [実施例1]
 容量が100Lの電解槽に、電極面積が200mm×200mmのチタン製の電極板を陰極とし、電極面積が200mm×200mmの銅製の電極板を陽極として用いて、その電解槽中に電解液を装入し、これに直流電流を通電して銅粉を陰極板に析出させた。
 このとき、電解液としては、銅イオン濃度が12g/L、硫酸濃度が120g/Lの組成のものを用いた。また、この電解液に、塩酸溶液(和光純薬工業株式会社製)を電解液中の塩化物イオン(塩素イオン)濃度として80mg/Lとなるように添加した。また、この電解液には、添加剤としてフェナジン構造を有する化合物であるサフラニン(関東化学工業株式会社製)を電解液中の濃度で100mg/Lとなるように添加し、さらに、ノニオン界面活性剤である分子量600のポリエチレングリコール(PEG)(和光純薬工業株式会社製)を電解液中の濃度で500mg/Lとなるように添加した。
 そして、上述したような濃度に調整した電解液を、ポンプを用いて15L/minの流量で循環しながら、温度を25℃に維持し、陰極の電流密度が10A/dmになるように通電して陰極板上に銅粉を析出させた。
 陰極板上に析出した電解銅粉を、スクレーパーを用いて機械的に電解槽の槽底に掻き落として回収し、回収した銅粉を純水で洗浄した後、減圧乾燥器に入れて乾燥した。
 得られた電解銅粉の形状を、上述した走査型電子顕微鏡(SEM)による方法で観察した結果、析出した銅粉において、少なくとも90個数%以上の銅粉は、平板状の銅粒子が密集して集合し、それが樹枝状の形状に成長した樹枝状形状を呈した銅粉であった。
 また、得られた樹枝状銅粉について、SEMにより観察しながら、平板状の銅粒子の断面平均厚さと、当該銅粉の平板状の面に対して垂直方向に成長した最大長さと平板状の面に対して水平方向の長軸長さとの比を測定した。その結果、得られた銅粉を構成する銅粒子は、断面平均厚さが2.1μmである平板状であった。また、その樹枝状銅粉の平均粒子径(D50)は78.9μmであった。そして、その銅粉の平板状の面から垂直方向に成長した最大長さと平板状の面に水平な方向(平板方向)の最大長さの比(垂直方向長さ/平板方向長軸長さ)は平均で0.054であった。
 また、得られた樹枝状銅粉の嵩密度は3.2g/cmであった。また、樹枝状銅粉の結晶子径は243nmであった。また、BET比表面積は1.29m/gであった。
 この実施例1の結果から、電解液中にフェナジン構造を有する化合物とノニオン界面活性剤とを添加することによって、垂直方向への成長を抑えた平板状の樹枝状銅粉を作製することができることが分かった。
 [実施例2]
 電解液に、塩化物イオン濃度が200mg/Lとなるように塩酸溶液(和光純薬工業株式会社製)を添加し、また添加剤としてアゾベンゼン構造を有する化合物であるメチルオレンジ(関東化学工業株式会社製)を電解液中の濃度で200mg/Lとなるように添加した。さらに、電解液に、ノニオン界面活性剤である分子量1000のポリオキシエチレンポリオキシプロピレンブチルエーテル(日油株式会社製,商品名:ユニルーブ50MB-11)を電解液中の濃度で750mg/Lとなるように添加した。それ以外は実施例1と同じ条件で電解処理を行い、樹枝状銅粉を作製した。
 得られた銅粉を上述した走査型電子顕微鏡(SEM)による方法で観察した結果、析出した銅粉において、少なくとも90個数%以上の銅粉は、平板状の銅粒子が密集して集合し、それが樹枝状の形状に成長した樹枝状形状を呈した銅粉であった。
 また、得られた樹枝状銅粉について、SEMにより観察しながら、平板状の銅粒子の断面平均厚さと、当該銅粉の平板状の面に対して垂直方向に成長した最大長さと平板状の面に対して水平方向の長軸長さとの比を測定した。その結果、得られた銅粉を構成する銅粒子は、断面平均厚さが2.4μmの平板状であった。また、その樹枝状銅粉の平均粒子径(D50)は52.6μmであった。そして、その銅粉の平板状の面から垂直方向に成長した最大長さと平板状の面に水平な方向の最大長さの比(垂直方向長さ/平板方向長軸長さ)は平均で0.043であった。
 また、得られた樹枝状銅粉の嵩密度は2.8g/cmであった。また、樹枝状銅粉の結晶子径は270nmであった。また、BET比表面積は1.94m/gであった。
 この実施例2の結果から、電解液中にアゾベンゼン構造を有する化合物とノニオン界面活性剤とを添加することによって、垂直方向への成長を抑えた平板状の樹枝状銅粉を作製することができることが分かった。
 [実施例3]
 電解液に、塩化物イオン濃度が100mg/Lとなるように塩酸溶液(和光純薬工業株式会社製)を添加し、また添加剤としてフェナジン構造とアゾベンゼン構造とを有する化合物であるヤヌスグリーンB(関東化学工業株式会社製)を電解液中の濃度で500mg/Lとなるように添加した。さらに、電解液に、ノニオン界面活性剤である分子量3000のポリオキシエチレンポリオキシプロピレンブチルエーテル(日油株式会社製,商品名:ユニルーブ50MB-72)を電解液中の濃度で1000mg/Lとなるように添加した。それ以外は実施例1と同じ条件で電解処理を行い、樹枝状銅粉を作製した。
 得られた銅粉を上述した走査型電子顕微鏡(SEM)による方法で観察した結果、析出した銅粉において、少なくとも90個数%以上の銅粉は、平板状の銅粒子が密集して集合し、それが樹枝状の形状に成長した樹枝状形状を呈した銅粉であった。
 また、得られた樹枝状銅粉について、SEMにより観察しながら、平板状の銅粒子の断面平均厚さと、当該銅粉の平板状の面に対して垂直方向に成長した最大長さと平板状の面に対して水平方向の長軸長さとの比を測定した。その結果、得られた銅粉を構成する銅粒子は、断面平均厚さが1.8μmの平板状であった。また、その樹枝状銅粉の平均粒子径(D50)は42.6μmであった。そして、その銅粉の平板状の面から垂直方向に成長した最大長さと平板状の面に水平な方向の最大長さの比(垂直方向長さ/平板方向長軸長さ)は平均で0.049であった。
 また、得られた樹枝状銅粉の嵩密度は2.3g/cmであった。また、樹枝状銅粉の結晶子径は184nmであった。また、BET比表面積は2.13m/gであった。
 この実施例3の結果から、電解液中にフェナジン構造とアゾベンゼン構造とを有する化合物と、ノニオン界面活性剤とを添加することによって、垂直方向への成長を抑えた平板状の樹枝状銅粉を作製することができることが分かった。
 [実施例4]
 電解液に、塩化物イオン濃度が100mg/Lとなるように塩酸溶液(和光純薬工業株式会社製)を添加し、また添加剤としてアゾベンゼン構造を有する化合物であるメチルオレンジ(関東化学工業株式会社製)を電解液中の濃度で100mg/Lとなるように添加し、さらにフェナジン構造とアゾベンゼン構造とを有する化合物であるヤヌスグリーンB(関東化学工業株式会社製)を電解液中の濃度で100mg/Lとなるように添加した。また、電解液に、ノニオン界面活性剤である分子量600のポリエチレングリコール(PEG)(和光純薬工業株式会社製)を電解液中の濃度で1000mg/Lとなるように、さらにノニオン界面活性剤である分子量3000のポリオキシエチレンポリオキシプロピレンブチルエーテル(日油株式会社製,商品名:ユニルーブ50MB-72)を電解液中の濃度で1000mg/Lとなるように添加した。それ以外は実施例1と同じ条件で電解処理を行い、樹枝状銅粉を作製した。
 得られた銅粉を上述した走査型電子顕微鏡(SEM)による方法で観察した結果、析出した銅粉において、少なくとも90個数%以上の銅粉は、平板状の銅粒子が密集して集合し、それが樹枝状の形状に成長した樹枝状形状を呈した銅粉であった。
 また、得られた樹枝状銅粉について、SEMにより観察しながら、平板状の銅粒子の断面平均厚さと、当該銅粉の平板状の面に対して垂直方向に成長した最大長さと平板状の面に対して水平方向の長軸長さとの比を測定した。その結果、得られた銅粉を構成する銅粒子は、その断面平均厚さが0.6μmの平板状であった。また、その樹枝状銅粉の平均粒子径(D50)は22.5μmであった。そして、その銅粉の平板状の面から垂直方向に成長した最大長さと平板状の面に水平な方向の最大長さの比(垂直方向長さ/平板方向長軸長さ)は平均で0.068であった。
 また、得られた樹枝状銅粉の嵩密度は1.0g/cmであった。また、樹枝状銅粉の結晶子径は124nmであった。また、BET比表面積は2.96m/gであった。
 この実施例4の結果から、電解液中に、添加剤としてアゾベンゼン構造を有する化合物と、フェナジン構造とアゾベンゼン構造とを有する化合物とを混合して添加し、さらに2種類以上のノニオン界面活性剤を添加することによって、垂直方向への成長を抑えた平板状の樹枝状銅粉を作製することができることが分かった。
 [実施例5]
 実施例1にて得られた比表面積が1.29m/gの樹枝状銅粉55質量部に、フェノール樹脂(群栄化学株式会社製,PL-2211)15質量部、ブチルセロソルブ(関東化学株式会社製,鹿特級)10質量部を混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて150℃、200℃でそれぞれ30分間硬化させた。
 硬化により得られた被膜の比抵抗値は、それぞれ7.6×10-5Ω・cm(硬化温度150℃)、2.6×10-5Ω・cm(硬化温度200℃)であった。
 [実施例6]
 実施例2にて得られた比表面積が1.94m/gの樹枝状銅粉55質量部に、フェノール樹脂(群栄化学株式会社製,PL-2211)15質量部、ブチルセロソルブ(関東化学株式会社製,鹿特級)10質量部を混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて150℃、200℃でそれぞれ30分間硬化させた。
 硬化により得られた被膜の比抵抗値は、それぞれ7.8×10-5Ω・cm(硬化温度150℃)、3.1×10-5Ω・cm(硬化温度200℃)であった。
 [実施例7]
 実施例3にて得られた比表面積が2.13m/gの樹枝状銅粉55質量部に、フェノール樹脂(群栄化学株式会社製,PL-2211)15質量部、ブチルセロソルブ(関東化学株式会社製,鹿特級)10質量部を混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて150℃、200℃でそれぞれ30分間硬化させた。
 硬化により得られた被膜の比抵抗値は、それぞれ5.5×10-5Ω・cm(硬化温度150℃)、1.2×10-5Ω・cm(硬化温度200℃)であった。
 [実施例8]
 実施例1にて得られた比表面積が1.29m/gの樹枝状銅粉と、実施例2にて得られた比表面積が1.94m/gの樹枝状銅粉との異なる2種類を50:50の割合で混合させた樹枝状銅粉55質量部(合計量)に、フェノール樹脂(群栄化学株式会社製,PL-2211)15質量部、ブチルセロソルブ(関東化学株式会社製,鹿特級)10質量部を混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて150℃、200℃でそれぞれ30分間硬化させた。
 硬化により得られた被膜の比抵抗値は、それぞれ5.5×10-5Ω・cm(硬化温度150℃)、1.0×10-5Ω・cm(硬化温度200℃)であった。
 [実施例9]
 実施例1にて得られた比表面積が1.29m/gの樹枝状銅粉を樹脂に分散させて電磁波シールド材とした。
 すなわち、実施例1にて得られた樹枝状銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを、100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表1に、特性評価の結果を示す。
 [実施例10]
 実施例2にて得られた比表面積が1.94m/gの樹枝状銅粉を樹脂に分散させて電磁波シールド材とした。
 すなわち、実施例2にて得られた樹枝状銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを、100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表1に、特性評価の結果を示す。
 [実施例11]
 実施例3にて得られた比表面積が2.13m/gの樹枝状銅粉を樹脂に分散させて電磁波シールド材とした。
 すなわち、実施例3にて得られた樹枝状銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを、100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表1に、特性評価の結果を示す。
 [比較例1]
 実施例1の条件において、添加剤としてフェナジン構造を有する化合物であるサフラニンと、ノニオン界面活性剤である分子量600のポリエチレングリコール(PEG)を添加しないこと以外は、同一の条件にて銅粉を陰極板上に析出させた。
 得られた電解銅粉の形状を、SEMによる方法で観察した結果、その銅粉は樹枝状の形状を呈していたものの、粒状の銅粒子が集合して構成されており、平板状の樹枝状銅粉ではなかった。また、得られた銅粉の比表面積は0.16m/gであった。
 次に、得られた樹枝状銅粉55質量部に、フェノール樹脂(群栄化学株式会社製,PL-2211)15質量部、ブチルセロソルブ(関東化学株式会社製,鹿特級)10質量部を混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK-1)を用いて、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて150℃、200℃でそれぞれ30分間硬化させた。
 硬化により得られた被膜の比抵抗値は、それぞれ14.5×10-5Ω・cm(硬化温度150℃)、8.1×10-5Ω・cm(硬化温度200℃)であった。
 [比較例2]
 比較例1にて得られた樹枝状銅粉を樹脂に分散させて電磁波シールド材とした。
 すなわち、実施例1において添加剤としてサフラニンとノニオン界面活性剤を添加しない条件とした、比較例1にて得られた樹枝状銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを、100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。
 電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表1に、特性評価の結果を示す。
Figure JPOXMLDOC01-appb-T000026
 1  (樹枝状)銅粉
 2  主幹
 3,3a,3b  枝
 4  平板状の面に対して水平方向(X-Y方向)への最大長さ
 5  平板状の面(X-Y面)に対して垂直方向への最大高さ
 

Claims (12)

  1.  直線的に成長した主幹と該主幹から分かれた複数の枝とを有する樹枝状の形状をなし、
     前記主幹及び前記枝は、走査電子顕微鏡(SEM)観察より求められる断面平均厚さが0.02μm~5.0μmの平板状の銅粒子が集合して構成され、当該銅粉の平均粒子径(D50)が1.0μm~100μmであり、
     前記銅粒子の平板状の面に対して垂直方向への最大高さが、該平板状の面の水平方向への最大長さに対して1/10以下である
     ことを特徴とする銅粉。
  2.  嵩密度が0.5g/cm~5.0g/cmの範囲であることを特徴とする請求項1に記載の銅粉。
  3.  BET比表面積値が0.2m/g~5.0m/gであることを特徴とする請求項1又は2に記載の銅粉。
  4.  X線回折による(111)面のミラー指数における結晶子径が80nm~300nmの範囲に属することを特徴とする請求項1乃至3のいずれかに記載の銅粉。
  5.  請求項1又は乃至4のいずれかに記載の銅粉を、全体の20質量%以上の割合で含有していることを特徴とする金属フィラー。
  6.  請求項5に記載の金属フィラーを樹脂に混合させてなることを特徴とする銅ペースト。
  7.  請求項5に記載の金属フィラーを用いたことを特徴とする電磁波シールド用の導電性塗料。
  8.  請求項5に記載の金属フィラーを用いたことを特徴とする電磁波シールド用の導電性シート。
  9.  請求項1乃至4のいずれかに記載の銅粉を製造する方法であって、
     銅イオンと、
     下記式(1)で表されるフェナジン構造を有する化合物の1種類以上と、
     ノニオン界面活性剤の1種類以上と
     を含有する電解液を用いて電解することを特徴とする銅粉の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R、R、R、R、R、R、R、Rは、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基であり、Rは、水素、ハロゲン、アミノ、OH、-O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択された基であり、Aがハライドアニオンである。]
  10.  請求項1乃至4のいずれかに記載の銅粉を製造する方法であって、
     銅イオンと、
     下記式(2)で表されるアゾベンゼン構造を有する化合物の1種類以上と、
     ノニオン界面活性剤の1種類以上と
     を含有する電解液を用いて電解することを特徴とする銅粉の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R、R、R、R、R、R、R、R、R、R10は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基である。]
  11.  請求項1乃至4のいずれかに記載の銅粉を製造する方法であって、
     銅イオンと、
     下記式(3)で表される、フェナジン構造とアゾベンゼン構造とを有する化合物の1種類以上と、
     ノニオン界面活性剤の1種類以上と
     を含有する電解液を用いて電解することを特徴とする銅粉の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、R、R、R、R、R、R、R、R、R10、R11、R12、R13は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基であり、Rは、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基であり、Aがハライドアニオンである。]
  12.  請求項1乃至4のいずれかに記載の銅粉を製造する方法であって、
     銅イオンと、
     下記式(1)で表されるフェナジン構造を有する化合物、下記式(2)で表されるアゾベンゼン構造を有する化合物、及び下記式(3)で表される、フェナジン構造とアゾベンゼン構造とを有する化合物からなる群から選択される2種類以上と、
     ノニオン界面活性剤の1種類以上と
     を含有する電解液を用いて電解することを特徴とする銅粉の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    [式(1)中、R、R、R、R、R、R、R、Rは、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基であり、Rは、水素、ハロゲン、アミノ、OH、-O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択された基であり、Aがハライドアニオンである。]
    Figure JPOXMLDOC01-appb-C000005
    [式(2)中、R、R、R、R、R、R、R、R、R、R10は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基である。]
    Figure JPOXMLDOC01-appb-C000006
    [式(3)中、R、R、R、R、R、R、R、R、R10、R11、R12、R13は、それぞれ別個に、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、及びC1~C8アルキルからなる群から選択される基であり、Rは、水素、ハロゲン、アミノ、OH、=O、CN、SCN、SH、COOH、COO塩、COOエステル、SOH、SO塩、SOエステル、ベンゼンスルホン酸、低級アルキル、及びアリールからなる群から選択される基であり、Aがハライドアニオンである。]
PCT/JP2015/080263 2015-05-15 2015-10-27 銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート、並びに銅粉の製造方法 WO2016185629A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/572,941 US10695830B2 (en) 2015-05-15 2015-10-27 Copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing copper powder
CN201580079929.0A CN107614156B (zh) 2015-05-15 2015-10-27 铜粉及使用其的铜膏、导电性涂料、导电性片以及铜粉的制造方法
EP15892628.7A EP3296041A4 (en) 2015-05-15 2015-10-27 Copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing copper powder
KR1020177032946A KR20170137191A (ko) 2015-05-15 2015-10-27 동분 및 그것을 이용한 구리 페이스트, 도전성 도료, 도전성 시트, 및 동분의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-099808 2015-05-15
JP2015099808A JP5907302B1 (ja) 2015-05-15 2015-05-15 銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート、並びに銅粉の製造方法

Publications (1)

Publication Number Publication Date
WO2016185629A1 true WO2016185629A1 (ja) 2016-11-24

Family

ID=55793212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080263 WO2016185629A1 (ja) 2015-05-15 2015-10-27 銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート、並びに銅粉の製造方法

Country Status (7)

Country Link
US (1) US10695830B2 (ja)
EP (1) EP3296041A4 (ja)
JP (1) JP5907302B1 (ja)
KR (1) KR20170137191A (ja)
CN (1) CN107614156B (ja)
TW (1) TWI565838B (ja)
WO (1) WO2016185629A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907302B1 (ja) 2015-05-15 2016-04-26 住友金属鉱山株式会社 銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート、並びに銅粉の製造方法
JP5907301B1 (ja) * 2015-05-15 2016-04-26 住友金属鉱山株式会社 銀コート銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート、並びに銀コート銅粉の製造方法
JP6350475B2 (ja) * 2015-09-29 2018-07-04 住友金属鉱山株式会社 銅粉の製造方法、及びそれを用いた導電性ペーストの製造方法
JP7003668B2 (ja) * 2018-01-05 2022-02-04 住友電気工業株式会社 銅ナノインクの製造方法及び銅ナノインク
CN109900654B (zh) * 2019-04-08 2021-05-18 西北师范大学 水溶性吩嗪染料在识别和吸附去除水样中铜离子的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214032A (ja) * 2010-03-31 2011-10-27 Jx Nippon Mining & Metals Corp ブレーキパッド用銅粉
JP2013019034A (ja) * 2011-07-13 2013-01-31 Mitsui Mining & Smelting Co Ltd デンドライト状銅粉
JP2013053347A (ja) * 2011-09-05 2013-03-21 Mitsui Mining & Smelting Co Ltd デンドライト状銅粉
JP2013168375A (ja) * 2013-04-03 2013-08-29 Mitsui Mining & Smelting Co Ltd デンドライト状銅粉
WO2015115139A1 (ja) * 2014-01-29 2015-08-06 三井金属鉱業株式会社 銅粉
JP5790900B1 (ja) * 2014-09-12 2015-10-07 住友金属鉱山株式会社 銀コート銅粉及びそれを用いた導電性ペースト、導電性塗料、導電性シート

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469564A (en) 1982-08-11 1984-09-04 At&T Bell Laboratories Copper electroplating process
US4652465A (en) 1984-05-14 1987-03-24 Nissan Chemical Industries Ltd. Process for the production of a silver coated copper powder and conductive coating composition
US4891068A (en) * 1988-05-12 1990-01-02 Teikoku Piston Ring Co., Ltd. Additive powders for coating materials or plastics
US4944797A (en) 1989-01-03 1990-07-31 Gte Products Corporation Low oxygen content fine spherical copper particles and process for producing same by fluid energy milling and high temperature processing
CN1049622A (zh) * 1990-03-06 1991-03-06 北京市印刷技术研究所 导电铜粉的表面处理方法
JPH0768562B2 (ja) * 1992-11-25 1995-07-26 三井金属鉱業株式会社 半田付け可能な導電性塗料用銅粉の製造方法
JPH06240464A (ja) 1993-02-19 1994-08-30 Showa Denko Kk 銀被覆銅粉およびこれを用いた導電性組成物
JPH093510A (ja) 1995-06-22 1997-01-07 Fukuda Metal Foil & Powder Co Ltd 金属粉末射出成形用銅粉末及びそれを用いた射出 成形品の製造方法
US5945158A (en) 1996-01-16 1999-08-31 N.V. Union Miniere S.A. Process for the production of silver coated particles
US6036839A (en) * 1998-02-04 2000-03-14 Electrocopper Products Limited Low density high surface area copper powder and electrodeposition process for making same
WO2004101201A1 (ja) * 1998-08-31 2004-11-25 Kenzo Hanawa 微小銅粉及びその製造方法
JP4168108B2 (ja) 1999-03-03 2008-10-22 Dowaエレクトロニクス株式会社 銀被覆銅粉の製法
JP3945956B2 (ja) 2000-03-06 2007-07-18 独立行政法人科学技術振興機構 複合めっき方法
JP2002015622A (ja) 2000-06-30 2002-01-18 Fukuda Metal Foil & Powder Co Ltd 導電ペースト用銅粉末及びその製造方法
US7799408B2 (en) 2001-01-24 2010-09-21 Kaken Tech Co. Ltd. Conductive powder, conductive composition, and producing method of the same
US20030201427A1 (en) * 2001-01-24 2003-10-30 Kaken Tech Co., Ltd. Conductiv powder and conductive composition
JP2003258490A (ja) 2002-03-06 2003-09-12 Tomoegawa Paper Co Ltd 電磁波シールド材及びその製造方法
DE10354860B4 (de) 2003-11-19 2008-06-26 Atotech Deutschland Gmbh Halogenierte oder pseudohalogenierte monomere Phenaziniumverbindungen, Verfahren zu deren Herstellung sowie diese Verbindungen enthaltendes saures Bad und Verfahren zum elektrolytischen Abscheiden eines Kupferniederschlages
JP4296347B2 (ja) 2004-01-19 2009-07-15 Dowaエレクトロニクス株式会社 フレーク状銅粉およびその製造法
JP4660701B2 (ja) 2004-12-03 2011-03-30 Dowaエレクトロニクス株式会社 銀被覆銅粉およびその製造方法並びに導電ペースト
JP4613362B2 (ja) * 2005-01-31 2011-01-19 Dowaエレクトロニクス株式会社 導電ペースト用金属粉および導電ペースト
JP4697643B2 (ja) 2009-09-07 2011-06-08 福田金属箔粉工業株式会社 電解銅粉の集合体及び該電解銅粉の製造方法
JP6166012B2 (ja) 2011-01-28 2017-07-19 三井金属鉱業株式会社 導電性粉末及び導電性ペースト
WO2012157701A1 (ja) 2011-05-18 2012-11-22 戸田工業株式会社 導電性塗膜の製造方法及び導電性塗膜
EP2537962A1 (en) 2011-06-22 2012-12-26 Atotech Deutschland GmbH Method for copper plating
JP5631841B2 (ja) 2011-10-21 2014-11-26 三井金属鉱業株式会社 銀被覆銅粉
JP5631910B2 (ja) 2011-10-21 2014-11-26 三井金属鉱業株式会社 銀被覆銅粉
JP2013136818A (ja) * 2011-12-28 2013-07-11 Mitsui Mining & Smelting Co Ltd 銅粉
JP2013144829A (ja) * 2012-01-13 2013-07-25 Sumitomo Electric Ind Ltd 樹枝状金属粉、樹枝状金属粉を含む導電ペースト、電磁波シールド材、放熱材、および樹枝状金属粉の製造方法
US10062473B2 (en) 2012-01-17 2018-08-28 Dowa Electronics Materials Co., Ltd. Silver-coated copper alloy powder and method for producing same
KR102017121B1 (ko) 2012-03-06 2019-09-02 토요잉크Sc홀딩스주식회사 도전성 미립자 및 그 제조 방법, 도전성 수지 조성물, 도전성 시트 및 전자파 차폐 시트
CN103305022A (zh) * 2012-03-16 2013-09-18 上海汇友精密化学品有限公司 一种偶氮型直接染料及其制备方法
JP2014019877A (ja) * 2012-07-12 2014-02-03 Furukawa Electric Co Ltd:The 銅微粒子の製造方法
JP5503813B1 (ja) 2012-08-02 2014-05-28 三井金属鉱業株式会社 導電性フィルム
EP2923781A4 (en) * 2012-11-26 2016-07-13 Mitsui Mining & Smelting Co COPPER POWDER AND PROCESS FOR PRODUCING THE SAME
WO2015060258A1 (ja) 2013-10-24 2015-04-30 三井金属鉱業株式会社 銀被覆銅粉
JP6271231B2 (ja) 2013-11-29 2018-01-31 Dowaエレクトロニクス株式会社 銀被覆銅粉および導電ペースト
JP2014159646A (ja) 2014-06-11 2014-09-04 Mitsui Mining & Smelting Co Ltd 銀被覆銅粉
JP5858201B1 (ja) * 2014-06-25 2016-02-10 住友金属鉱山株式会社 銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート
CN107075265A (zh) 2014-07-31 2017-08-18 拓自达电线株式会社 导电性组成物及含有该组成物的导电片
CN106663880B (zh) * 2014-08-29 2019-07-30 三井金属矿业株式会社 导电体的连接结构及其制造方法、导电性组合物以及电子部件模块
WO2016038914A1 (ja) 2014-09-12 2016-03-17 住友金属鉱山株式会社 銀コート銅粉及びそれを用いた導電性ペースト、導電性塗料、導電性シート
CN107405683A (zh) 2015-03-26 2017-11-28 住友金属矿山株式会社 铜粉及使用该铜粉的铜膏、导电性涂料、导电性片
CN107427912A (zh) * 2015-03-26 2017-12-01 住友金属矿山株式会社 覆银铜粉及使用该覆银铜粉的导电性膏、导电性涂料、导电性片
JP5907301B1 (ja) * 2015-05-15 2016-04-26 住友金属鉱山株式会社 銀コート銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート、並びに銀コート銅粉の製造方法
JP5907302B1 (ja) 2015-05-15 2016-04-26 住友金属鉱山株式会社 銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート、並びに銅粉の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214032A (ja) * 2010-03-31 2011-10-27 Jx Nippon Mining & Metals Corp ブレーキパッド用銅粉
JP2013019034A (ja) * 2011-07-13 2013-01-31 Mitsui Mining & Smelting Co Ltd デンドライト状銅粉
JP2013053347A (ja) * 2011-09-05 2013-03-21 Mitsui Mining & Smelting Co Ltd デンドライト状銅粉
JP2013168375A (ja) * 2013-04-03 2013-08-29 Mitsui Mining & Smelting Co Ltd デンドライト状銅粉
WO2015115139A1 (ja) * 2014-01-29 2015-08-06 三井金属鉱業株式会社 銅粉
JP5790900B1 (ja) * 2014-09-12 2015-10-07 住友金属鉱山株式会社 銀コート銅粉及びそれを用いた導電性ペースト、導電性塗料、導電性シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3296041A4 *

Also Published As

Publication number Publication date
JP2016216761A (ja) 2016-12-22
US10695830B2 (en) 2020-06-30
CN107614156A (zh) 2018-01-19
TW201639988A (zh) 2016-11-16
JP5907302B1 (ja) 2016-04-26
CN107614156B (zh) 2019-10-25
TWI565838B (zh) 2017-01-11
EP3296041A4 (en) 2018-12-19
US20180111190A1 (en) 2018-04-26
KR20170137191A (ko) 2017-12-12
EP3296041A1 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
JP5858201B1 (ja) 銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート
JP5907301B1 (ja) 銀コート銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート、並びに銀コート銅粉の製造方法
JP5920540B1 (ja) 銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート
JP5907302B1 (ja) 銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート、並びに銅粉の製造方法
JP2017071819A (ja) 銀粉及びそれを用いた導電性ペースト、導電性塗料、導電性シート
JP6274076B2 (ja) 銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シート
JP6350475B2 (ja) 銅粉の製造方法、及びそれを用いた導電性ペーストの製造方法
JP2017071824A (ja) 銀粉の製造方法、及びそれを用いた導電性ペーストの製造方法
WO2017057231A1 (ja) Niコート銅粉、及びそれを用いた導電性ペースト、導電性塗料、導電性シート、並びにNiコート銅粉の製造方法
JP2016138301A (ja) 樹枝状銅粉の製造方法、及びそれを用いた導電性銅ペースト、導電性塗料、導電性シート
JP6332058B2 (ja) 銅粉、及びそれを用いた銅ペースト、導電性塗料、導電性シート
JP2016008333A (ja) 銅粉及びそれを用いた銅ペースト
JP2019218590A (ja) 銅粉の製造方法及び銅粉
JP2017066462A (ja) 銀コート銅粉の製造方法、及びそれを用いた導電性ペーストの製造方法
JP6332124B2 (ja) 銅粉及びそれを用いた導電性ペースト、導電性塗料、導電性シート
JP2018197379A (ja) 銅粉の製造方法
JP5994897B1 (ja) 樹枝状銅粉の製造方法、及びその樹枝状銅粉を用いた銅ペースト、導電性塗料、導電性シート
TWI541305B (zh) Copper powder and the use of its copper paste, conductive paint, conductive film
JP2018154856A (ja) 銀コート銅粉の製造方法
JP2017066445A (ja) ニッケルコート銅粉及びそれを用いた導電性ペースト、導電性塗料、導電性シート、並びにニッケルコート銅粉の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15572941

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177032946

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015892628

Country of ref document: EP