WO2016031639A1 - 高分子化合物およびそれを用いた発光素子 - Google Patents

高分子化合物およびそれを用いた発光素子 Download PDF

Info

Publication number
WO2016031639A1
WO2016031639A1 PCT/JP2015/073190 JP2015073190W WO2016031639A1 WO 2016031639 A1 WO2016031639 A1 WO 2016031639A1 JP 2015073190 W JP2015073190 W JP 2015073190W WO 2016031639 A1 WO2016031639 A1 WO 2016031639A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
substituent
compound
structural unit
Prior art date
Application number
PCT/JP2015/073190
Other languages
English (en)
French (fr)
Inventor
茉由 吉岡
大介 福島
美桜 白鳥
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55399534&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016031639(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201580045796.5A priority Critical patent/CN106795277B/zh
Priority to JP2016545454A priority patent/JP6819289B2/ja
Priority to US15/506,463 priority patent/US10301539B2/en
Priority to EP15836486.9A priority patent/EP3187522B1/en
Priority to EP19211909.7A priority patent/EP3674343A1/en
Priority to KR1020177007805A priority patent/KR102300261B1/ko
Publication of WO2016031639A1 publication Critical patent/WO2016031639A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/135Cross-linked structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to a polymer compound and a light emitting device using the same.
  • Organic electroluminescence elements (hereinafter also referred to as “light-emitting elements”) have high luminous efficiency and low driving voltage, and thus can be suitably used for display and lighting applications, and have recently attracted attention.
  • This light-emitting element includes organic layers such as a light-emitting layer and a hole transport layer.
  • an organic layer can be formed by a coating method typified by an ink jet printing method. Therefore, a polymer compound used for manufacturing a light-emitting element has been studied.
  • Patent Document 1 describes a polymer compound containing 90 mol% or more of arylamine constituent units with respect to the total content of constituent units contained in the polymer compound. ing. Note that any of the arylamine structural units is a structural unit in which the carbon atom adjacent to the carbon atom that forms a bond with the adjacent structural unit does not have a substituent.
  • Patent Document 2 discloses a polymer including an arylamine structural unit in which a carbon atom adjacent to a carbon atom forming a bond with an adjacent structural unit has a substituent. Compounds are described.
  • the arylamine structural unit is a structural unit in which the sp3 nitrogen atom constituting the arylamine structural unit has an aryl group consisting of one ring.
  • a light emitting device manufactured using the above polymer compound does not necessarily have an external quantum yield.
  • the present invention provides the following [1] to [15].
  • a polymer compound containing a structural unit represented by the formula (1) [Where: a 1 and a 2 each independently represents 0 or 1; Ar A1 and Ar A3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar A1 and Ar A3 each represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic ring, wherein at least one atom adjacent to an atom that forms a bond with an adjacent structural unit It has a group as a substituent, and these substituents may further have a substituent.
  • Ar A2 represents a phenylene group, and the phenylene group may have a substituent.
  • Ar A4 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, and these groups are substituted It may have a group.
  • R A1 , R A2 and R A3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R A1 is an aryl group in which two or more rings are condensed (the number of carbon atoms constituting the ring of the aryl group is 10 or more), or two or more rings Represents a condensed monovalent heterocyclic group (the total number of carbon atoms and heteroatoms constituting the ring of the monovalent heterocyclic group is 10 or more), and these groups have a substituent. Also good.
  • [2] The polymer compound according to [1], wherein Ar A1 and Ar A3 are phenylene groups.
  • Ar A1 and Ar A3 are phenylene groups.
  • At least one atom adjacent to an atom that forms a bond with an adjacent structural unit has an alkyl group or a cycloalkyl group as a substituent.
  • the high molecular compound in any one.
  • R A1 is a group selected from the aryl group AA group or a group selected from the monovalent heterocyclic group BB group. .
  • Aryl group AA group (Monovalent heterocyclic group BB group)
  • R and R a each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group.
  • a plurality of R and R a may be the same or different, and R a may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • [6] The polymer compound according to any one of [1] to [5], wherein the structural unit represented by the formula (1) is a structural unit represented by the formula (4). [Where: R A1 represents the same meaning as described above.
  • R 1a represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R 1a may be the same or different.
  • R 2a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a halogen atom, and these groups optionally have a substituent.
  • a plurality of R 2a may be the same or different.
  • Ar X1 and Ar X3 an atom adjacent to an atom that forms a bond with an adjacent structural unit is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group Not as a group.
  • Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded to each other. And these groups may have a substituent.
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R Z1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • 1z represents an integer of 0 to 3. A plurality of 1z may be the same or different.
  • R Z2 represents an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent. When a plurality of R Z2 are present, they may be the same or different.
  • X Z1 represents a single bond, an oxygen atom, a sulfur atom, a group represented by —CR Z11 R Z12 —, or a group represented by —SiR Z13 R Z14 —.
  • R Z11 , R Z12 , R Z13 and R Z14 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups have a substituent. Also good.
  • At least one selected from the group consisting of R A1, R A2 and R A3 excludes one hydrogen atom directly bonded to a carbon atom constituting the ring from a fluorene ring which may have a substituent.
  • Crosslinking group A group [Wherein R XL represents a methylene group, an oxygen atom or a sulfur atom, and n XL represents an integer of 0 to 5. When a plurality of R XL are present, they may be the same or different, and when a plurality of n XL are present, they may be the same or different. * Represents a bonding position.
  • crosslinking structural unit is a structural unit represented by the formula (5) or a structural unit represented by the formula (5 ′) (provided that the structural unit represented by the formula (1), the formula (1X) And the structural unit represented by formula (1Z).)
  • nA represents an integer of 0 to 5, and n represents 1 or 2. When a plurality of nA are present, they may be the same or different.
  • Ar 1 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
  • L A is an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, the group represented by -NR'-, an oxygen atom or a sulfur atom, these groups have a substituent Also good.
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • X represents a crosslinking group selected from the crosslinking group A group. When two or more X exists, they may be the same or different.
  • mA represents an integer of 0 to 5
  • m represents an integer of 1 to 4
  • c represents an integer of 0 or 1.
  • Ar 2 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent. It may be.
  • Ar 3 and Ar 4 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar 2 , Ar 3, and Ar 4 are each bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, directly or via an oxygen atom or sulfur atom, to form a ring.
  • K A is an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, the group represented by -NR'-, an oxygen atom or a sulfur atom, these groups have a substituent Also good.
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • two or more KA exists, they may be the same or different.
  • X ′ represents a bridging group selected from the bridging group A, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of X ′ may be the same or different. However, at least one X ′ is a crosslinking group selected from the crosslinking group A group.
  • [14] A group consisting of the polymer compound according to any one of [1] to [13], a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, an antioxidant, and a solvent.
  • the present invention it is possible to provide a polymer compound useful for producing a light emitting device having an excellent external quantum yield. Moreover, according to this invention, the light emitting element obtained using the composition containing this high molecular compound and this high molecular compound can be provided.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tert-butyl group.
  • the hydrogen atom may be a deuterium atom or a light hydrogen atom.
  • the solid line representing the bond with the central metal means a covalent bond or a coordinate bond.
  • the “polymer compound” means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • Low molecular weight compound means a compound having no molecular weight distribution and a molecular weight of 1 ⁇ 10 4 or less.
  • “Structural unit” means one or more units present in a polymer compound.
  • the “alkyl group” may be linear or branched.
  • the number of carbon atoms of the straight chain alkyl group is usually 1 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkyl group is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the alkyl group may have a substituent, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl group, Hexyl group, heptyl group, octyl group, 2-ethylhexyl group, 3-propylheptyl group, decyl group, 3,7-dimethyloctyl group, 2-ethyloctyl group, 2-hexyldecyl group, dodecyl group, and these Examples include groups in which the hydrogen atom in the group is substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc., for example, a trifluoromethyl group, a pentafluoroeth
  • the number of carbon atoms of the “cycloalkyl group” is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the cycloalkyl group may have a substituent, and examples thereof include a cyclohexyl group, a cyclohexylmethyl group, and a cyclohexylethyl group.
  • Aryl group means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, more preferably 6 to 10, not including the number of carbon atoms of the substituent.
  • the “alkoxy group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkoxy group is usually 1 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkoxy group is usually 3 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the alkoxy group may have a substituent, for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, Heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and the hydrogen atom in these groups is a cycloalkyl group, an alkoxy group, And a group substituted with a cycloalkoxy group, an aryl group, a fluorine atom, or the like.
  • a substituent for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-buty
  • the number of carbon atoms of the “cycloalkoxy group” is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the cycloalkoxy group may have a substituent, and examples thereof include a cyclohexyloxy group.
  • the number of carbon atoms of the “aryloxy group” is usually 6 to 60, preferably 7 to 48, not including the number of carbon atoms of the substituent.
  • the aryloxy group may have a substituent, for example, a phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1- Examples include a pyrenyloxy group and a group in which a hydrogen atom in these groups is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, or the like.
  • P-valent heterocyclic group (p represents an integer of 1 or more) is a p-group of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. This means the remaining atomic group excluding the hydrogen atom.
  • this is an atomic group obtained by removing p hydrogen atoms from an aromatic heterocyclic compound directly bonded to carbon atoms or heteroatoms constituting the ring.
  • a “p-valent aromatic heterocyclic group” is preferable.
  • Aromatic heterocyclic compounds '' are oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, etc.
  • a compound in which the ring itself exhibits aromaticity and a heterocyclic ring such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, and benzopyran itself does not exhibit aromaticity, but the aromatic ring is condensed to the heterocyclic ring.
  • the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the monovalent heterocyclic group may have a substituent, for example, thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, triazinyl group, and these And a group in which the hydrogen atom in the group is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or the like.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the “amino group” may have a substituent, and a substituted amino group is preferable.
  • a substituent which an amino group has an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is preferable.
  • the substituted amino group include a dialkylamino group, a dicycloalkylamino group, and a diarylamino group.
  • the amino group include dimethylamino group, diethylamino group, diphenylamino group, bis (4-methylphenyl) amino group, bis (4-tert-butylphenyl) amino group, bis (3,5-di-tert- Butylphenyl) amino group.
  • the “alkenyl group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkenyl group is usually 2-30, preferably 3-20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkenyl group is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the “cycloalkenyl group” is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the alkenyl group and the cycloalkenyl group may have a substituent, for example, a vinyl group, a 1-propenyl group, a 2-propenyl group, a 2-butenyl group, a 3-butenyl group, a 3-pentenyl group, a 4-pentenyl group, Examples include a pentenyl group, a 1-hexenyl group, a 5-hexenyl group, a 7-octenyl group, and a group in which these groups have a substituent.
  • the “alkynyl group” may be linear or branched.
  • the number of carbon atoms of the alkynyl group is usually 2 to 20, preferably 3 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the branched alkynyl group is usually from 4 to 30, and preferably from 4 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the “cycloalkynyl group” is usually 4 to 30, preferably 4 to 20, not including the carbon atom of the substituent.
  • the alkynyl group and cycloalkynyl group may have a substituent, for example, ethynyl group, 1-propynyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group, 3-pentynyl group, 4- Examples include a pentynyl group, 1-hexynyl group, 5-hexynyl group, and groups in which these groups have a substituent.
  • the “arylene group” means an atomic group remaining after removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent.
  • the arylene group may have a substituent. Examples include chrysenediyl groups and groups in which these groups have substituents, and groups represented by formulas (A-1) to (A-20) are preferable.
  • the arylene group includes a group in which a plurality of these groups are bonded.
  • R and R a each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group.
  • a plurality of R and R a may be the same or different, and R a may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • the number of carbon atoms of the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, and more preferably 4 to 15 excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group may have a substituent, for example, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine, acridine, Divalent acridine, furan, thiophene, azole, diazole, and triazole include divalent groups obtained by removing two hydrogen atoms from hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting the ring, and preferably Is a group represented by formula (B-1) to formula (B-34).
  • the divalent heterocyclic group includes a group in which a plurality
  • crosslinking group is a group capable of generating a new bond by being subjected to heat treatment, ultraviolet irradiation treatment, radical reaction or the like, and preferably the above-mentioned formula (XL- 1) to a crosslinking group represented by (XL-17).
  • “Substituent” means a halogen atom, cyano group, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, amino group, substituted amino group, alkenyl group. Represents a cycloalkenyl group, an alkynyl group or a cycloalkynyl group.
  • the substituent may be a crosslinking group.
  • the polymer compound of the present invention is a polymer compound containing a structural unit represented by the formula (1).
  • a 1 is preferably 0 because the luminance lifetime of the light emitting device using the polymer compound of the present invention is excellent.
  • a 2 is preferably 0 because the luminance lifetime of the light emitting device using the polymer compound of the present invention is excellent.
  • the arylene group represented by Ar A1 and Ar A3 is preferably a group represented by the formula (111-1) to the formula (111-10), more preferably the formula (111-1) to the formula (111- 3) or a group represented by formula (111-9), more preferably a group represented by formula (111-1) to formula (111-3).
  • at least one atom adjacent to an atom that forms a bond with an adjacent structural unit is an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or an aryl group.
  • it has a monovalent heterocyclic group as a substituent, and these substituents may further have a substituent.
  • R 111 and R 111a each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group.
  • a plurality of R 111 and R 111a may be the same or different, and R 111a may be bonded to each other to form a ring with the atoms to which they are bonded.
  • the divalent heterocyclic group represented by Ar A1 and Ar A3 is preferably a group represented by the formula (111-11) to the formula (111-23).
  • at least one atom adjacent to an atom that forms a bond with an adjacent structural unit is an alkyl group, a cycloalkyl group, an alkoxy group, or a cycloalkoxy group.
  • a group, an aryl group or a monovalent heterocyclic group as a substituent, and these substituents may further have a substituent.
  • R 111 represents the same meaning as described above.
  • Ar A1 and Ar A3 are preferably an arylene group, and more preferably a phenylene group, since the external quantum yield of the light emitting device of the present invention is more excellent.
  • the arylene group represented by Ar A1 and Ar A3 at least one atom adjacent to an atom that forms a bond with an adjacent structural unit is an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or an aryl group.
  • it has a monovalent heterocyclic group as a substituent, and these substituents may further have a substituent.
  • At least one atom adjacent to an atom that forms a bond with an adjacent structural unit is an alkyl group.
  • Ar A2 represents a phenylene group, and this phenylene group may have a substituent.
  • the arylene group represented by Ar A4 has the formula (A-1), the formula (A-6), the formula (A-7), the formula (A-9) to the formula (A-11) or the formula (A A-19), and these groups optionally have a substituent.
  • the divalent heterocyclic group represented by Ar A4 is more preferably a group represented by formula (B-1), formula (B-2), or formula (B-7) to formula (B-26). Yes, these groups may have a substituent.
  • More preferable ranges of the arylene group and the divalent heterocyclic group in the divalent group in which at least one kind of arylene group represented by Ar A4 and at least one kind of divalent heterocyclic group are directly bonded to each other are as follows: , Ar A2 and Ar A4 are the same as the more preferable ranges of the arylene group and the divalent heterocyclic group.
  • Examples of the divalent group in which at least one arylene group represented by Ar A4 and at least one divalent heterocyclic group are directly bonded include groups represented by the following formulas, It may have a substituent.
  • R XX represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R XX is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • Ar A4 is preferably an arylene group, and this arylene group may have a substituent.
  • R A1 , R A2 and R A3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group. It may have a substituent. However, when a 2 is 0, R A1 is an aryl group in which two or more rings are condensed (the number of carbon atoms constituting the ring of the aryl group is 10 or more.
  • the two or more rings are The number of carbon atoms constituting the condensed aryl group ring is 10 or more), or a monovalent heterocyclic group in which two or more rings are condensed (carbon atoms constituting the ring of the monovalent heterocyclic group) And the total number of heteroatoms is 10 or more, that is, the total number of carbon atoms and heteroatoms constituting a ring of a monovalent heterocyclic group in which the two or more rings are condensed is 10 or more) And these groups may have a substituent.
  • R A1 is preferably a group selected from the aryl group AA group or a group selected from the monovalent heterocyclic group BB group because the external quantum yield of the light emitting device using the polymer compound of the present invention is excellent.
  • Formula (AA-1) to Formula (AA-3), Formula (BB-1) to Formula (BB-4), Formula (BB-6), Formula (BB-9) or Formula (BB-10) Preferably, Formula (AA-1), Formula (AA-3), Formula (BB-1), Formula (BB-3), Formula (BB-4), or Formula (BB-10) is more preferable.
  • At least one selected from the group consisting of R A1, R A2 and R A3 may have a substituent.
  • a group obtained by removing one hydrogen atom directly bonded to the carbon atom constituting the ring from the ring is preferable.
  • substituent that the group represented by Ar A1 and Ar A3 may have (that is, a substituent that an atom other than an atom adjacent to an atom that forms a bond with an adjacent structural unit may have) Is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups may further have a substituent.
  • the substituent represented by the groups represented by Ar A2 , Ar A4 , R A1 , R A2 and R A3 is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups are further substituted. It may have a group.
  • the structural unit represented by the formula (1) is preferably a structural unit represented by the formula (2) because the external quantum yield of the light emitting device using the polymer compound of the present invention is more excellent.
  • the structural unit represented by the formula (2) is preferably a structural unit represented by the formula (3) because the external quantum yield of the light emitting device using the polymer compound of the present invention is more excellent.
  • R 1a represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R 1a may be the same or different.
  • R 2a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a halogen atom, and these groups optionally have a substituent.
  • a plurality of R 2a may be the same or different.
  • the structural unit represented by the formula (3) is preferably a structural unit represented by the formula (4) because the external quantum yield of the light emitting device using the polymer compound of the present invention is more excellent.
  • the content of the structural unit represented by the formula (1) is excellent in the hole transport property of the polymer compound of the present invention
  • the content of the structural unit is 0.1 to It is preferably 90 mol%, more preferably 30 to 80 mol%, and still more preferably 40 to 60 mol%.
  • Examples of the structural unit represented by the formula (1) include structural units represented by the formulas (1-1) to (1-16), preferably the formulas (1-1) to (1-6). ), A formula (1-10), a formula (1-11) or a formula (1-13).
  • the structural unit represented by the formula (1) may be included alone or in combination of two or more.
  • the polymer compound of the present invention may further contain at least one structural unit selected from the group consisting of a structural unit represented by the formula (1X) and a structural unit represented by the formula (1Z).
  • xa 1 is preferably an integer of 2 or less, more preferably 0 or 1, and even more preferably 0, since the external quantum yield of the light-emitting device using the polymer compound of the present invention is more excellent.
  • xa 2 is preferably an integer of 2 or less, more preferably 0 or 1, and even more preferably 0, since the external quantum yield of the light-emitting device using the polymer compound of the present invention is more excellent.
  • the arylene group represented by Ar X1 , Ar X2 , Ar X3 and Ar X4 is represented by formula (A-1), formula (A-6), formula (A-7), formula (A-9) to A group represented by formula (A-11) or formula (A-19), and these groups optionally have a substituent;
  • the arylene group represented by Ar X1 and Ar X3 is such that an atom adjacent to an atom that forms a bond with an adjacent structural unit is an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent group.
  • the heterocyclic group is not substituted.
  • the divalent heterocyclic group represented by Ar X1 , Ar X2 , Ar X3 and Ar X4 is more preferably a formula (AA-1), a formula (AA-2) or a formula (AA-7) to a formula (AA -26), and these groups may have a substituent.
  • an atom adjacent to an atom that forms a bond with an adjacent structural unit is an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl No substituent or monovalent heterocyclic group.
  • More preferable range of the arylene group and the divalent heterocyclic group in the divalent group in which at least one arylene group represented by Ar X2 and Ar X4 and the at least one divalent heterocyclic group are directly bonded to each other are the same as the more preferred ranges of the arylene group and divalent heterocyclic group represented by Ar X2 and Ar X4 , respectively.
  • the divalent group in which at least one arylene group represented by Ar X2 and Ar X4 and at least one divalent heterocyclic group are directly bonded to each other is at least represented by Ar A2 and Ar A4 described above. Examples thereof are the same as the examples of the divalent group in which one kind of arylene group and at least one kind of divalent heterocyclic group are directly bonded.
  • Ar X1 , Ar X2 , Ar X3 and Ar X4 are preferably an arylene group, and the arylene group may have a substituent.
  • R X1 , R X2 and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. Also good.
  • the substituent that the group represented by Ar X1 , Ar X2 , Ar X3 , Ar X4 , R X1 , R X2 and R X3 may have is preferably an alkyl group, a cycloalkyl group or an aryl group, These groups may further have a substituent.
  • the structural unit represented by the formula (1X) is preferably a structural unit represented by the formulas (1X-1) to (1X-11), more preferably the formulas (1X-1) to (1X-7).
  • the structural unit represented by formula (1X-1) to (1X-6) is more preferred.
  • R X4 and R X5 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a halogen atom, a monovalent heterocyclic group or cyano. Represents a group, and these groups may have a substituent.
  • a plurality of R X4 may be the same or different.
  • a plurality of R X5 may be the same or different, and adjacent R X5 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • the content of the structural unit represented by the formula (1X) is excellent in the external quantum yield of the light-emitting device using the polymer compound of the present invention, so that the total content of the structural units contained in the polymer compound is
  • the content is preferably 1 to 80 mol%, more preferably 1 to 60 mol%, still more preferably 1 to 50 mol%.
  • Examples of the structural unit represented by the formula (1X) include structural units represented by the formulas (11X-1) to (11X-28), preferably the formulas (11X-1) to (11X-18). ).
  • the structural unit represented by the formula (1X) may be included alone or in combination of two or more.
  • R Z1 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and more preferably an aryl group, because the external quantum yield of the light-emitting device using the polymer compound of the present invention is more excellent. These groups may have a substituent.
  • 1z is preferably 0 or 1, more preferably 0, because the external quantum yield of the light-emitting device using the polymer compound of the present invention is more excellent.
  • R Z2 is preferably an alkyl group, a cycloalkyl group or an aryl group, more preferably an alkyl group, since these facilitate the synthesis of the polymer compound of the present invention, and these groups have a substituent. May be.
  • X Z1 is more excellent in the external quantum yield of the light emitting device using the polymer compound of the present invention, and is preferably a single bond, an oxygen atom, a group represented by —CR Z11 R Z12 —, or —SiR Z13.
  • a group represented by R Z14 — more preferably a group represented by a single bond, an oxygen atom, or —CR Z11 R Z12 —.
  • R Z11 , R Z12 , R Z13 and R Z14 are preferably an alkyl group, a cycloalkyl group or an aryl group, more preferably an alkyl group or an aryl group.
  • the structural unit represented by the formula (1Z) is preferably a structural unit represented by the formulas (1Z-1) to (1Z-5).
  • R Z1 , 1z, R Z2 , R Z11 , R Z12 , R Z13 and R Z14 represent the same meaning as described above.
  • the content of the structural unit represented by the formula (1Z) is more excellent in the external quantum yield of the light-emitting device using the polymer compound of the present invention, and therefore the total content of the structural units contained in the polymer compound.
  • it is preferably from 0.1 to 99.8 mol%, more preferably from 0.1 to 60 mol%, still more preferably from 0.1 to 50 mol%.
  • Examples of the structural unit represented by the formula (1Z) include structural units represented by the formulas (11Z-1) to (11Z-9), preferably the formulas (11Z-1) to (11Z-5). ).
  • the structural unit represented by the formula (1Z) may be included alone or in combination of two or more.
  • the polymer compound of the present invention has excellent hole transportability, the total of the structural unit represented by the formula (1), the structural unit represented by the formula (1X), and the structural unit represented by the formula (1Z).
  • the content is preferably 40 to 100 mol% with respect to the total content of the structural units contained in the polymer compound.
  • the polymer compound of the present invention since the polymer compound of the present invention is excellent in the crosslinkability of the polymer compound of the present invention, the polymer compound of the present invention may be a polymer compound further comprising a crosslinked structural unit having at least one kind of crosslinking group selected from the crosslinking group A group. preferable.
  • cross-linking group selected from the cross-linking group A group since the cross-linking property of the polymer compound of the present invention is excellent, the formulas (XL-1), (XL-3), (XL-5), (XL-7), A crosslinking group represented by (XL-16) or (XL-17) is preferred, and a crosslinking group represented by formula (XL-1) or formula (XL-17) is preferred.
  • the structural unit having at least one crosslinking group selected from the crosslinking group A group is preferably a structural unit represented by the formula (5) or a structural unit represented by the formula (5 ′) described below. The structural unit represented by these may be sufficient.
  • the structural unit having at least one crosslinking group selected from the crosslinking group A group has a higher external quantum yield of the light-emitting device using the polymer compound of the present invention, and therefore the structural unit represented by the formula (5) Or it is preferable that it is a structural unit represented by Formula (5 ').
  • the structural unit represented by the formula (5 ′) is different from the structural unit represented by the formula (1), the structural unit represented by the formula (1X), and the structural unit represented by the formula (1Z). .
  • NA is preferably 0 or 1, more preferably 0, because the luminance life of the light emitting device using the polymer compound of the present invention is excellent.
  • N is preferably 2 because the luminance life of the light emitting device using the polymer compound of the present invention is excellent.
  • Ar 1 is preferably an aromatic hydrocarbon group which may have a substituent since the luminance lifetime of the light-emitting element using the polymer compound of the present invention is excellent.
  • the number of carbon atoms of the aromatic hydrocarbon group represented by Ar 1 is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent. is there.
  • the arylene group portion excluding n substituents of the aromatic hydrocarbon group represented by Ar 1 is preferably a group represented by the formula (A-1) to the formula (A-20), More preferably, groups represented by formula (A-1), formula (A-2), formula (A-6) to formula (A-10), formula (A-19) or formula (A-20) And more preferably a group represented by formula (A-1), formula (A-2), formula (A-7), formula (A-9) or formula (A-19), This group may have a substituent.
  • the number of carbon atoms of the heterocyclic group represented by Ar 1 is usually 6 to 60, preferably 6 to 30, more preferably 6 to 18, excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group moiety excluding n substituents of the heterocyclic group represented by Ar 1 is preferably a group represented by the formula (AA-1) to the formula (AA-34). is there.
  • the aromatic hydrocarbon group and heterocyclic group represented by Ar 1 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and an aryloxy group.
  • substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and an aryloxy group.
  • Alkylene group represented by L A is not including the carbon atom number of substituent is usually 1 to 10, preferably 1 to 5, more preferably 1 to 3. Cycloalkylene group represented by L A is not including the carbon atom number of substituent is usually 3 to 10.
  • the alkylene group and the cycloalkylene group may have a substituent, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, a cyclohexylene group, and an octylene group.
  • Alkylene group and cycloalkylene group represented by L A may have a substituent.
  • substituents that the alkylene group and the cycloalkylene group may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a halogen atom, and a cyano group.
  • Arylene group represented by L A may have a substituent.
  • the arylene group include o-phenylene, m-phenylene, and p-phenylene.
  • substituent that the aryl group may have include, for example, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a halogen atom, a cyano group, and a bridge. Examples thereof include a crosslinking group selected from the group A.
  • L A is preferably a phenylene group or an alkylene group because production of the polymer compound of the present invention is easy, and these groups may have a substituent.
  • cross-linking group represented by X since the cross-linking property of the polymer compound of the present invention is excellent, preferably the formula (XL-1), (XL-3), (XL-5), (XL-7), A crosslinking group represented by (XL-16) or (XL-17), more preferably a crosslinking group represented by formula (XL-1) or formula (XL-17).
  • the content of the structural unit represented by the formula (5) is 0.5% relative to the total content of the structural units contained in the polymer compound because the polymer compound of the present invention is excellent in stability and crosslinkability. It is preferably ⁇ 50 mol%, more preferably 3 to 30 mol%, still more preferably 3 to 20 mol%.
  • the structural unit represented by the formula (5) may be included alone or in combination of two or more.
  • MA is preferably 0 or 1, more preferably 0, because the luminance lifetime of the light emitting device using the polymer compound of the present invention is excellent.
  • M is preferably 2 because the luminance life of the light emitting device using the polymer compound of the present invention is excellent.
  • C is preferably 0 because the production of the polymer compound of the present invention is facilitated and the luminance life of the light emitting device using the polymer compound of the present invention is excellent.
  • Ar 3 is preferably an aromatic hydrocarbon group which may have a substituent since the luminance lifetime of the light-emitting element using the polymer compound of the present invention is excellent.
  • the definition and example of the arylene group part excluding m substituents of the aromatic hydrocarbon group represented by Ar 3 are the same as the definition and example of the arylene group represented by Ar X2 in the formula (1X) described above. It is.
  • divalent heterocyclic group part excluding m substituents of the heterocyclic group represented by Ar 3 are the divalent heterocyclic group represented by Ar X2 in the formula (1X) described above. Same as definition and example of part.
  • the definition and examples of the divalent group excluding m substituents of the group in which at least one aromatic hydrocarbon ring represented by Ar 3 and at least one heterocycle are directly bonded are defined by the formula ( The definition and examples of the divalent group in which at least one arylene group represented by Ar X2 and at least one divalent heterocyclic group directly bonded to each other in 1X) are the same.
  • Ar 2 and Ar 4 are preferably an arylene group which may have a substituent since the luminance lifetime of the light-emitting element using the polymer compound of the present invention is excellent.
  • the definitions and examples of the arylene group represented by Ar 2 and Ar 4 are the same as the definitions and examples of the arylene group represented by Ar X1 and Ar X3 in the above-described formula (1X).
  • the definitions and examples of the divalent heterocyclic group represented by Ar 2 and Ar 4 are the same as the definitions and examples of the divalent heterocyclic group represented by Ar X1 and Ar X3 in Formula (1X) described above. is there.
  • the groups represented by Ar 2 , Ar 3 and Ar 4 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, Examples thereof include a halogen atom, a monovalent heterocyclic group, and a cyano group.
  • L A the alkylene group represented by L A
  • a cycloalkylene group an arylene group
  • a divalent heterocyclic The definition and examples of the ring group are the same.
  • the crosslinking group represented by X ′ is preferably a compound of the formula (XL-1), (XL-3), (XL-5), (XL-7) because the crosslinking property of the polymer compound of the present invention is excellent. , (XL-16) or (XL-17), more preferably a crosslinking group represented by formula (XL-1) or (XL-17).
  • the content of the structural unit represented by the formula (5 ′) is 0. 0 relative to the total content of the structural units contained in the polymer compound because the polymer compound of the present invention is excellent in stability and crosslinkability. It is preferably 5 to 50 mol%, more preferably 3 to 30 mol%, still more preferably 3 to 20 mol%.
  • the structural unit represented by the formula (5 ′) may be included alone or in combination of two or more.
  • Examples of the structural unit represented by the formula (5) include structural units represented by the formula (5-1) to the formula (5-30), and the structural unit represented by the formula (5 ′) Examples include structural units represented by the formulas (5′-1) to (5′-9).
  • it is preferably a structural unit represented by the formula (5-1) to the formula (5-30), more preferably the formula (5-1).
  • the polymer compound of the present invention may further contain a structural unit represented by the following formula (Y). However, the structural unit represented by the formula (Y) is different from the structural unit represented by the formula (1Z).
  • Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, and these This group may have a substituent.
  • the arylene group represented by Ar Y1 is represented by formula (A-1), formula (A-6), formula (A-7), formula (A-9) to formula (A-11), formula (A) A-13) or a group represented by formula (A-19), more preferably in formula (A-1), formula (A-7), formula (A-9) or formula (A-19). And these groups may have a substituent.
  • the divalent heterocyclic group represented by Ar Y1 is more preferably a group represented by the formula (B-4), the formula (B-13) or the formula (B-15), and more preferably a formula (B B-4), and these groups may have a substituent.
  • the ranges are the same as the more preferable ranges and further preferable ranges of the above-mentioned arylene group and divalent heterocyclic group represented by Ar Y1 .
  • the divalent group in which at least one arylene group represented by Ar Y1 and at least one divalent heterocyclic group are directly bonded to each other is represented by Ar X2 and Ar X4 in the above formula (X). And the same divalent groups as those obtained by directly bonding at least one kind of arylene group and at least one kind of divalent heterocyclic group.
  • the substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups may further have a substituent.
  • Examples of the structural unit represented by the formula (Y) include structural units represented by the formulas (Y-1) to (Y-4), and brightness of a light emitting device using the polymer compound of the present invention. From the viewpoint of lifetime, it is preferably a structural unit represented by the formula (Y-1) or (Y-2), and from the viewpoint of electron transport properties, preferably the formula (Y-3) or (Y-4) ).
  • R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • R Y1 represents the same meaning as described above.
  • X Y1 is, -C (R Y2) 2 -
  • R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y2 may be the same or different, and R Y2 may be bonded to each other to form a ring together with the carbon atom to which each is bonded. ]
  • R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent. May be.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) 2 — is preferably an alkyl group or a cycloalkyl group, both are aryl groups, and both are monovalent complex A cyclic group, or one is an alkyl group or a cycloalkyl group and the other is an aryl group or a monovalent heterocyclic group, more preferably one is an alkyl group or a cycloalkyl group and the other is an aryl group. May have a substituent.
  • Two R Y2 s may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R Y2 forms a ring
  • the group represented by —C (R Y2 ) 2 — Is preferably a group represented by formulas (Y-A1) to (Y-A5), more preferably a group represented by formula (Y-A4), and these groups have a substituent. It may be.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) ⁇ C (R Y2 ) — is preferably such that both are alkyl groups or cycloalkyl groups, or one is an alkyl group Alternatively, a cycloalkyl group and the other is an aryl group, and these groups may have a substituent.
  • R Y2 in the group represented by —C (R Y2 ) 2 —C (R Y2 ) 2 — are preferably an alkyl group or a cycloalkyl group which may have a substituent. It is. A plurality of R Y2 may be bonded to each other to form a ring together with the atoms to which each is bonded. When R Y2 forms a ring, —C (R Y2 ) 2 —C (R Y2 ) 2 —
  • the group represented is preferably a group represented by the formula (Y-B1) to (Y-B5), more preferably a group represented by the formula (Y-B3). These groups are substituted It may have a group.
  • R Y2 represents the same meaning as described above.
  • R Y1 represents the same meaning as described above.
  • R Y3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R Y3 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. May be.
  • Examples of the structural unit represented by the formula (Y) include structural units represented by the formulas (Y-11) to (Y-51).
  • the content of the structural unit represented by the formula (Y), in which Ar Y1 is an arylene group, is excellent in the luminance life of the light emitting device using the polymer compound of the present invention.
  • the content is preferably from 0.5 to 80 mol%, more preferably from 5 to 30 mol%, based on the total content of the constituent units contained.
  • the content of the structural unit that is a group of the light-emitting device using the polymer compound of the present invention is excellent in charge transporting property, so that the content of the structural unit is from 0.5 to the total content of the structural units contained in the polymer compound. It is preferably 30 mol%, more preferably 3 to 30 mol%.
  • the structural unit represented by the formula (Y) may be included alone or in combination of two or more.
  • Examples of the polymer compound of the present invention include polymer compounds P-1 to P-24 shown in Tables 1 and 2.
  • p, q, r, s, t, u, and v represent the molar ratio of each constituent unit.
  • p + q + r + s + t + u + v 100 and 70 ⁇ p + q + r + s + t ⁇ 100.
  • the other structural unit means a structural unit other than the structural units represented by Formula (1), Formula (1X), Formula (1Z), Formula (5), Formula (5 ′), and Formula (Y). . ]
  • the terminal group of the polymer compound of the present invention preferably has a polymerization active group as it is, because when the polymer compound is used for the production of a light emitting device, the light emission characteristics and the luminance life may be lowered. It is a stable group.
  • the terminal group is preferably a group conjugated to the main chain, and includes a group bonded to an aryl group or a monovalent heterocyclic group via a carbon-carbon bond.
  • the polymer compound of the present invention may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, and may be in other embodiments, but a plurality of types of raw materials A copolymer obtained by copolymerizing monomers is preferred.
  • the polymer compound of the present invention includes, for example, a compound represented by the formula (M-1) and another compound (for example, a compound represented by the formula (M-1X), a formula (M-1Z) At least one compound selected from the group consisting of a compound represented by formula (M-5), a compound represented by formula (M-5 ′), and a compound represented by formula (MY) ) With a condensation polymerization.
  • the compounds used for the production of the polymer compound of the present invention are sometimes collectively referred to as “raw material monomers”.
  • Z C1 to Z C12 each independently represents a group selected from the group consisting of the substituent group A and the substituent group B.
  • Z C1 and Z C2 are a group selected from the substituent group A
  • Z C3 to Z C12 select a group selected from the substituent group B.
  • Z C1 and Z C2 are a group selected from the substituent group B
  • Z C33 to Z C12 select a group selected from the substituent group A.
  • R C1 represents an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substitu
  • a group represented by BF 3 Q ′ (wherein Q ′ represents Li, Na, K, Rb or Cs); -A group represented by MgY '(wherein Y' represents a chlorine atom, a bromine atom or an iodine atom); A group represented by —ZnY ′′ (wherein Y ′′ represents a chlorine atom, a bromine atom or an iodine atom); and -Sn (R C3) 3 (wherein, R C3 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent. More existing R C3 is The groups may be the same or different and may be linked to each other to form a ring structure together with the tin atoms to which they are bonded.
  • Examples of the group represented by —B (OR C2 ) 2 include groups represented by the following formulae.
  • the compound having a group selected from the substituent group A and the compound having a group selected from the substituent group B are subjected to condensation polymerization by a known coupling reaction, and the group selected from the substituent group A and the substituent group B Carbon atoms bonded to a group selected from are bonded to each other. Therefore, if a compound having two groups selected from Substituent Group A and a compound having two groups selected from Substituent Group B are subjected to a known coupling reaction, condensation of these compounds by condensation polymerization A polymer can be obtained.
  • the condensation polymerization is usually carried out in the presence of a catalyst, a base and a solvent, but may be carried out in the presence of a phase transfer catalyst if necessary.
  • the catalyst examples include dichlorobis (triphenylphosphine) palladium, dichlorobis (tris-o-methoxyphenylphosphine) palladium, palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate and the like.
  • transition metal complexes such as palladium complexes of nickel, nickel [tetrakis (triphenylphosphine)], [1,3-bis (diphenylphosphino) propane] dichloronickel, [bis (1,4-cyclooctadiene)] nickel Metal complexes; these transition metal complexes may further include complexes having ligands such as triphenylphosphine, tri-o-tolylphosphine, tri-tert-butylphosphine, tricyclohexylphosphine, diphenylphosphinopropane, bipyridyl, etc. .
  • a catalyst may be used individually by 1 type, or may use 2 or more types together.
  • the amount of catalyst used is usually 0.00001 to 3 molar equivalents as the amount of transition metal relative to the total number of moles of raw material monomers.
  • Examples of the base and phase transfer catalyst include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, and tripotassium phosphate; organics such as tetrabutylammonium fluoride and tetrabutylammonium hydroxide.
  • Examples of the base include phase transfer catalysts such as tetrabutylammonium chloride and tetrabutylammonium bromide. Each of the base and the phase transfer catalyst may be used alone or in combination of two or more.
  • the amount of base and phase transfer catalyst used is usually 0.001 to 100 molar equivalents relative to the total number of moles of raw material monomers.
  • the solvent examples include organic solvents such as toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and water.
  • organic solvents such as toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and water.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • the amount of solvent used is usually 10 to 100000 parts by weight with respect to 100 parts by weight of the total amount of raw material monomers.
  • the reaction temperature of the condensation polymerization is usually -100 to 200 ° C.
  • the reaction time of the condensation polymerization is usually 1 hour or more.
  • Post-treatment of the polymerization reaction is a known method, for example, a method of removing water-soluble impurities by liquid separation, adding the reaction solution after polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and then drying. These methods are carried out alone or in combination.
  • a lower alcohol such as methanol
  • filtering the deposited precipitate and then drying.
  • these methods are carried out alone or in combination.
  • the purity of the polymer compound is low, it can be purified by a usual method such as recrystallization, reprecipitation, continuous extraction with a Soxhlet extractor, column chromatography, or the like.
  • the compound represented by the formula (1m-1), which is an embodiment of the compound represented by the formula (M-1), can be synthesized, for example, by the method represented by the following.
  • R A1 represents the same meaning as described above.
  • Ar A11 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar A11 at least one of the neighboring atoms of the atoms that form the bond with the group represented by bromine atom or a -B (OR C2) 2, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group , An aryl group or a monovalent heterocyclic group as a substituent, and these substituents may further have a substituent.
  • the compound represented by the formula (1m-5) is reacted with lithium bis (trimethylsilyl) amide using a palladium catalyst to induce the compound represented by the formula (1m-5).
  • the compound represented by the formula (1m-3) is reacted with the compound represented by the formula (1m-4) by the Buchwald-Hartwig reaction to obtain the compound represented by the formula (1m-3). Is synthesized.
  • the compound represented by the formula (1m-2) is reacted with the brominating agent to synthesize the compound represented by the formula (1m-2).
  • a compound represented by the formula (1m-1) can be synthesized by reacting a compound represented by the formula (1m-2) with bispinacolatodiboron using a palladium catalyst. it can.
  • the compound represented by the formula (2m-1), which is an embodiment of the compound represented by the formula (M-1), can be synthesized, for example, by the method represented by the following.
  • Ar A12 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar A12 is a group in which at least one atom adjacent to a bromine atom or an atom that forms a bond with the group represented by —B (OR C2 ) 2 is an alkyl group, a cycloalkyl group, an alkoxy group, or a cycloalkoxy group.
  • An aryl group or a monovalent heterocyclic group as a substituent, and these substituents may further have a substituent.
  • Ar A2 represents the same meaning as described above.
  • R A11 represents the same meaning as R A1 . ]
  • the compound represented by the formula (2m-7) is induced by reacting the compound represented by the formula (2m-8) with lithium bis (trimethylsilyl) amide using a palladium catalyst.
  • a compound represented by the formula (2m-5) is obtained by subjecting a compound represented by the formula (2m-7) and a compound represented by the formula (2m-6) to Buchwald-Hartwig reaction. Is synthesized.
  • the compound represented by the formula (2m-3) is reacted with the compound represented by the formula (2m-4) by a Buchwald-Hartwig reaction to thereby obtain a compound represented by the formula (2m-3). Is synthesized.
  • the compound represented by the formula (2m-2) is reacted with the brominating agent to synthesize the compound represented by the formula (2m-2).
  • the compound represented by the formula (2m-1) can be synthesized by reacting the compound represented by the formula (2m-2) with bispinacolatodiboron using a palladium catalyst. it can.
  • composition of the present invention comprises at least one material selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, an antioxidant, and a solvent, Containing molecular compounds.
  • composition containing the polymer compound of the present invention and a solvent (hereinafter sometimes referred to as “ink”) is suitable for production of a light-emitting element using a printing method such as an inkjet printing method or a nozzle printing method.
  • the viscosity of the ink may be adjusted according to the type of printing method, but when applying a printing method such as an inkjet printing method to a printing method that passes through a discharge device, in order to prevent clogging and flight bending at the time of discharge.
  • the pressure is preferably 1 to 20 mPa ⁇ s at 25 ° C.
  • the solvent contained in the ink is preferably a solvent that can dissolve or uniformly disperse the solid content in the ink.
  • the solvent include chlorine solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as tetrahydrofuran, dioxane, anisole and 4-methylanisole; toluene, Aromatic hydrocarbon solvents such as xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene; cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n- Aliphatic hydrocarbon solvents such as decane, n-dodecane, and bicyclohexyl;
  • the blending amount of the solvent is usually 1000 to 100,000 parts by weight, preferably 2000 to 20000 parts by weight with respect to 100 parts by weight of the polymer compound of the present invention.
  • the hole transport material is classified into a low molecular compound and a high molecular compound, and a high molecular compound is preferable, and a high molecular compound having a crosslinking group is more preferable.
  • polymer compound examples include polyvinyl carbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof.
  • the polymer compound may be a compound to which an electron accepting site is bonded. Examples of the electron accepting site include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, trinitrofluorenone, and fullerene is preferable.
  • the compounding amount of the hole transport material is usually 1 to 400 parts by weight, preferably 5 to 150 parts by weight with respect to 100 parts by weight of the polymer compound of the present invention.
  • the hole transport material may be used alone or in combination of two or more.
  • Electron transport materials are classified into low molecular compounds and high molecular compounds.
  • the electron transport material may have a crosslinking group.
  • Examples of the low molecular weight compound include a metal complex having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene, and , Diphenoquinone, and derivatives thereof.
  • polymer compound examples include polyphenylene, polyfluorene, and derivatives thereof.
  • the polymer compound may be doped with a metal.
  • the compounding amount of the electron transport material is usually 1 to 400 parts by weight, preferably 5 to 150 parts by weight with respect to 100 parts by weight of the polymer compound of the present invention.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole injection material and the electron injection material are each classified into a low molecular compound and a high molecular compound.
  • the hole injection material and the electron injection material may have a crosslinking group.
  • low molecular weight compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • metal phthalocyanines such as copper phthalocyanine
  • carbon such as carbon
  • metal oxides such as molybdenum and tungsten
  • metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • polymer compound examples include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline, and polyquinoxaline, and derivatives thereof; polymers containing an aromatic amine structure in the main chain or side chain, etc.
  • the conductive polymer is mentioned.
  • the compounding amounts of the hole injection material and the electron injection material are each usually 1 to 400 parts by weight, preferably 5 to 150 parts per 100 parts by weight of the polymer compound of the present invention. Parts by weight.
  • the hole injection material and the electron injection material may be used alone or in combination of two or more.
  • the electrical conductivity of the conductive polymer is preferably 1 ⁇ 10 ⁇ 5 S / cm to 1 ⁇ 10 3 S / cm.
  • the conductive polymer can be doped with an appropriate amount of ions.
  • the kind of ions to be doped is an anion for a hole injection material and a cation for an electron injection material.
  • the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion.
  • the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion.
  • the ion to be doped may be one kind or two or more kinds.
  • Luminescent materials are classified into low molecular compounds and high molecular compounds.
  • the light emitting material may have a crosslinking group.
  • low molecular weight compound examples include naphthalene and derivatives thereof, anthracene and derivatives thereof, perylene and derivatives thereof, and triplet light-emitting complexes having iridium, platinum, or europium as a central metal.
  • Examples of the polymer compound include a phenylene group, a naphthalenediyl group, a fluorenediyl group, a phenanthrene diyl group, a dihydrophenanthrene diyl group, a group represented by the formula (1), a group represented by the formula (1X), and a carbazole.
  • High molecular compounds containing a diyl group, a phenoxazine diyl group, a phenothiazine diyl group, an anthracene diyl group, a pyrenediyl group, and the like can be given.
  • the light emitting material may contain a low molecular compound and a high molecular compound, and preferably contains a triplet light emitting complex and a high molecular compound.
  • iridium complexes such as metal complexes represented by the formulas Ir-1 to Ir-5 are preferable.
  • R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryl It represents an oxy group, a monovalent heterocyclic group or a halogen atom, and these groups optionally have a substituent.
  • R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 may be the same or different.
  • a D1 ——A D2 — represents an anionic bidentate ligand, and A D1 and A D2 each independently represent a carbon atom, an oxygen atom or a nitrogen atom bonded to an iridium atom, The atom may be an atom constituting a ring. When a plurality of -A D1 --- A D2 -are present, they may be the same or different. n D1 represents 1, 2 or 3, and n D2 represents 1 or 2. ]
  • R D1 to R D8 is a group represented by the formula (DA).
  • R D11 to R D20 is a group represented by the formula (DA).
  • R D1 to R D8 and R D11 to R D20 is a group represented by the formula (DA).
  • R D21 to R D26 is a group represented by the formula (DA).
  • R D31 to R D37 is a group represented by the formula (DA).
  • m DA1 , m DA2 and m DA3 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
  • Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • TDA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the plurality of TDAs may be the same or different.
  • m DA1 , m DA2 and m DA3 are usually an integer of 10 or less, preferably an integer of 5 or less, more preferably 0 or 1.
  • m DA1 , m DA2 and m DA3 are preferably the same integer.
  • G DA is preferably a group represented by the formula (GDA-11) ⁇ (GDA -15), these groups may have a substituent.
  • R DA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent.
  • RDA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent.
  • RDA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent.
  • RDA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an
  • R DA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups have a substituent. May be.
  • Ar DA1 , Ar DA2 and Ar DA3 are preferably groups represented by the formulas (ArDA-1) to (ArDA-3).
  • R DA represents the same meaning as described above.
  • R DB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are a plurality of RDBs , they may be the same or different. ]
  • T DA is preferably a group represented by the formula (TDA-1) ⁇ (TDA -3).
  • R DA and R DB represent the same meaning as described above.
  • the group represented by the formula (D-A) is preferably a group represented by the formulas (D-A1) to (D-A3).
  • R p1 , R p2 and R p3 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom.
  • R p1 and R p2 may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1.
  • a plurality of np1 may be the same or different.
  • Np1 is preferably 0 or 1, more preferably 1.
  • np2 is preferably 0 or 1, more preferably 0.
  • np3 is preferably 0.
  • R p1 , R p2 and R p3 are preferably an alkyl group or a cycloalkyl group.
  • Examples of the anionic bidentate ligand represented by —A D1 ——A D2 — include a ligand represented by the following formula.
  • the metal complex represented by the formula Ir-1 is preferably a metal complex represented by the formulas Ir-11 to Ir-13.
  • the metal complex represented by the formula Ir-2 is preferably a metal complex represented by the formula Ir-21.
  • the metal complex represented by the formula Ir-3 is preferably a metal complex represented by the formula Ir-31 to Ir-33.
  • the metal complex represented by the formula Ir-4 is preferably a metal complex represented by the formula Ir-41 to Ir-43.
  • the metal complex represented by the formula Ir-5 is preferably a metal complex represented by the formula Ir-51 to Ir-53.
  • D represents a group represented by the formula (DA).
  • a plurality of D may be the same or different.
  • R DC represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R DCs may be the same or different.
  • R DD represents an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R DD may be the same or different.
  • triplet light-emitting complex examples include the metal complexes shown below.
  • the content of the light emitting material is usually 0.1 to 400 parts by weight with respect to 100 parts by weight of the polymer compound of the present invention.
  • the antioxidant may be any compound that is soluble in the same solvent as the polymer compound of the present invention and does not inhibit light emission and charge transport. Examples thereof include phenol-based antioxidants and phosphorus-based antioxidants.
  • the blending amount of the antioxidant is usually 0.001 to 10 parts by weight with respect to 100 parts by weight of the polymer compound of the present invention.
  • Antioxidants may be used alone or in combination of two or more.
  • the membrane may contain the polymer compound of the present invention as it is, or the polymer compound of the present invention contained within a molecule or between molecules, or in a state crosslinked within a molecule and between molecules (crosslinked product). May be.
  • the crosslinked product of the polymer compound of the present invention may be a crosslinked product of the polymer compound of the present invention and another compound crosslinked between molecules.
  • the film containing the crosslinked product of the polymer compound of the present invention is a film obtained by crosslinking the film containing the polymer compound of the present invention by external stimulation such as heating and light irradiation. Since the film containing the crosslinked product of the polymer compound of the present invention is substantially insolubilized with respect to the solvent, it can be suitably used for laminating light-emitting elements described later.
  • the heating temperature for crosslinking the film is usually 25 to 300 ° C., and since the external quantum yield is good, it is preferably 50 to 250 ° C., more preferably 150 to 200 ° C.
  • the type of light used for light irradiation for crosslinking the film is, for example, ultraviolet light, near ultraviolet light, or visible light.
  • the film is suitable as a hole transport layer or a hole injection layer in the light emitting element.
  • the film is made of ink, for example, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method. , Flexographic printing, offset printing, ink jet printing, capillary coating, and nozzle coating.
  • the thickness of the film is usually 1 nm to 10 ⁇ m.
  • the light-emitting element of the present invention is a light-emitting element such as organic electroluminescence obtained using the polymer compound of the present invention.
  • the light-emitting element includes, for example, a light-emitting element containing the polymer compound of the present invention, There is a light-emitting element including a state in which a high molecular compound is cross-linked in a molecule, between molecules, or both (cross-linked body).
  • a structure of the light emitting element of this invention it has an electrode which consists of an anode and a cathode, and a layer obtained using the polymer compound of this invention provided between this electrode, for example.
  • the layer obtained using the polymer compound of the present invention is usually one or more of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer and an electron injection layer, preferably a hole. It is a transport layer.
  • Each of these layers includes a light emitting material, a hole transport material, a hole injection material, an electron transport material, and an electron injection material.
  • Each of these layers is the same as the above-described film production, in which a light-emitting material, a hole transport material, a hole injection material, an electron transport material, and an electron injection material are dissolved in the above-described solvent and ink is prepared and used. It can be formed using a method.
  • the light emitting element has a light emitting layer between an anode and a cathode.
  • the light-emitting element of the present invention preferably has at least one of a hole injection layer and a hole transport layer between the anode and the light-emitting layer from the viewpoint of hole injection and hole transport. From the viewpoint of injection property and electron transport property, it is preferable to have at least one of an electron injection layer and an electron transport layer between the cathode and the light emitting layer.
  • the above-described hole transport material, electron transport material, and light emission respectively. Examples include materials, hole injection materials, and electron injection materials.
  • the material of the hole transport layer, the material of the electron transport layer, and the material of the light emitting layer are used when forming the hole transport layer, the electron transport layer, and the layer adjacent to the light emitting layer, respectively, in the production of the light emitting device.
  • the material When dissolved in a solvent, it is preferable that the material has a crosslinking group in order to avoid dissolution of the material in the solvent. After forming each layer using a material having a crosslinking group, the layer can be insolubilized by crosslinking the crosslinking group.
  • each layer such as a light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer
  • a low molecular compound for example, vacuum deposition from powder
  • a method using a film formation from a solution or a molten state may be used.
  • the order, number, and thickness of the layers to be stacked may be adjusted in consideration of the external quantum yield and device lifetime.
  • the substrate in the light-emitting element may be any substrate that can form electrodes and does not change chemically when the organic layer is formed.
  • the substrate is made of a material such as glass, plastic, or silicon.
  • the electrode farthest from the substrate is preferably transparent or translucent.
  • Examples of the material for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • conductive metal oxides and translucent metals preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • Examples of the material of the cathode include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, indium; two or more kinds of alloys thereof; Alloys of one or more species with one or more of silver, copper, manganese, titanium, cobalt, nickel, tungsten, tin; and graphite and graphite intercalation compounds.
  • the alloy include a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
  • Each of the anode and the cathode may have a laminated structure of two or more layers.
  • the planar anode and the cathode may be arranged so as to overlap each other.
  • a method of forming an anode or a cathode, or both electrodes in a pattern is a method.
  • a segment type display device capable of displaying numbers, characters, and the like can be obtained.
  • both the anode and the cathode may be formed in stripes and arranged orthogonally. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors, or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively, or can be driven active in combination with a TFT or the like. These display devices can be used for displays of computers, televisions, portable terminals and the like.
  • the planar light emitting element can be suitably used as a planar light source for backlight of a liquid crystal display device or a planar illumination light source. If a flexible substrate is used, it can also be used as a curved light source and a display device.
  • the polystyrene-equivalent number average molecular weight (Mn) and polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound are size exclusion chromatography (SEC) (manufactured by Shimadzu Corporation, trade name: LC-10Avp). Determined by The SEC measurement conditions are as follows.
  • the polymer compound to be measured was dissolved in THF at a concentration of about 0.05% by weight, and 10 ⁇ L was injected into SEC. THF was used as the mobile phase of SEC and flowed at a flow rate of 2.0 mL / min.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • a UV-VIS detector manufactured by Shimadzu Corporation, trade name: SPD-10Avp was used as the detector.
  • LC-MS Liquid chromatograph mass spectrometry
  • NMR measurement was performed by the following method. 5 to 10 mg of a measurement sample was dissolved in about 0.5 mL of deuterated chloroform (CDCl 3 ), deuterated tetrahydrofuran (THF-d 8 ), or methylene dichloride (CD 2 Cl 2 ), and an NMR apparatus (Varian, Inc.) was used. The product name was measured using a product name: MERCURY 300).
  • HPLC high performance liquid chromatography
  • Kaseisorb LC-ODS 2000 manufactured by Tokyo Chemical Industry
  • ODS column having equivalent performance was used as the column.
  • a photodiode array detector manufactured by Shimadzu Corporation, trade name: SPD-M20A was used as the detector.
  • the obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water.
  • the obtained washing liquid was dried over anhydrous magnesium sulfate and then filtered, and the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • Toluene and activated carbon were added to the obtained solid and stirred for 30 minutes.
  • the obtained toluene solution was filtered with a filter covered with silica gel and celite, and the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was purified by silica gel column chromatography (a mixed solvent of hexane and ethyl acetate), recrystallized using isopropanol, and then dried under reduced pressure at 50 ° C. to obtain compound 2 (81 g, white solid). It was.
  • the HPLC area percentage value of Compound 2 was 97.2%. The required amount of Compound 2 was obtained by repeating this operation.
  • reaction vessel was filled with an argon gas atmosphere, then compound 3 (83.0 g), tris (dibenzylideneacetone) dipalladium (0) (2.6 g), (2-biphenyl) dicyclohexylphosphine (2.4 g) and tetrahydrofuran (800 mL) was added and stirred. Thereafter, a lithium bis (trimethylsilyl) amide tetrahydrofuran solution (1.3 mol / mL, 334 mL) was added thereto over 30 minutes. The resulting reaction solution was heated to 65 ° C. and then stirred at 65 ° C. for 4 hours.
  • reaction vessel was cooled using an ice bath, an aqueous hydrochloric acid solution (2 mol / L, 800 mL) was added, and the reaction vessel was stirred for 1.5 hours while being cooled using an ice bath. Then, it neutralized by adding sodium hydroxide aqueous solution (6 mol / L, 600 mL) there.
  • the obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water.
  • the obtained washing liquid was separated, and the obtained organic layer was dried over magnesium sulfate and filtered.
  • the obtained filtrate was concentrated under reduced pressure, hexane was added, and the mixture was suspended and stirred for 1 hour, followed by filtration to obtain a yellow solid.
  • the obtained yellow solid was suspended and stirred with hexane, and then filtered.
  • the operation of recrystallizing the obtained residue using a mixed solution of hexane and toluene was repeated, followed by drying at 50 ° C. under reduced pressure to obtain Compound 4 (40 g, pale yellow solid).
  • the HPLC area percentage value of Compound 4 was 99.1%.
  • the obtained filtrate was washed successively with ion-exchanged water and 15% by weight saline. After separating the obtained washing liquid, the obtained organic layer was concentrated under reduced pressure to obtain a crude product. Hexane and activated carbon were added to the resulting crude composition and stirred for 1 hour. The obtained solution was filtered with a filter covered with silica gel and celite, and the obtained filtrate was concentrated under reduced pressure to obtain an oily substance. The obtained oil was purified by silica gel column chromatography (a mixed solvent of hexane and ethyl acetate) to obtain Compound 6 (22 g, colorless oil). Compound 6 had an HPLC area percentage value of 99.5%.
  • the obtained washing liquid was separated, and the obtained organic layer was washed with ion-exchanged water.
  • the obtained washing liquid was dried over magnesium sulfate and then filtered, and the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • Hexane, toluene and activated carbon were added to the resulting solid and stirred for 1 hour.
  • the obtained solution was filtered with a filter coated with silica gel and celite, and the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was purified by silica gel column chromatography (a mixed solvent of hexane and toluene) and then dried under reduced pressure at 50 ° C. to obtain Compound 8 (8.1 g, white solid).
  • the HPLC area percentage value of Compound 8 was 99.5% or more.
  • the obtained washing liquid was separated, and the obtained organic layer was dried over magnesium sulfate and filtered.
  • the obtained filtrate was concentrated, hexane and activated carbon were added, and the mixture was stirred at room temperature for 30 minutes, and then filtered through a filter with celite.
  • the obtained filtrate was concentrated under reduced pressure, hexane and activated clay were added, and the mixture was stirred at room temperature for 30 minutes, and then filtered through a filter covered with silica gel and celite.
  • the obtained filtrate was concentrated under reduced pressure to obtain an oily substance.
  • the obtained oil was purified by silica gel column chromatography (mixed solvent of hexane and ethyl acetate) and dried under reduced pressure at 50 ° C. to obtain compound 11-a (43.0 g, oil).
  • the HPLC area percentage value of Compound 11-a was 99.4%.
  • reaction vessel was filled with a nitrogen gas atmosphere, then compound 11-b (34.0 g), tris (dibenzylideneacetone) dipalladium (0) (0.9 g), (2-biphenyl) dicyclohexylphosphine (0.8 g) And tetrahydrofuran (136 mL) were added, and the mixture was stirred at room temperature. Thereafter, a lithium bis (trimethylsilyl) amide tetrahydrofuran solution (1.3 mol / L, 108 mL) was added dropwise thereto over 1 hour, followed by stirring at 65 ° C. for 4 hours.
  • an aqueous hydrochloric acid solution (2M, 240 mL) was added, and the reaction vessel was stirred for 30 minutes while cooling using an ice bath, whereby a solid was precipitated. The precipitated solid was filtered, and the resulting residue was dissolved in a mixed solvent of toluene and hexane. Thereafter, an aqueous sodium hydroxide solution (2M, 200 mL) was added thereto for neutralization. The obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water. The obtained washing solution was separated, the obtained organic layer was dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated.
  • the obtained oil was purified by silica gel column chromatography (a mixed solvent of hexane and ethyl acetate) and dried under reduced pressure at 50 ° C. to obtain compound 11-d (24.0 g, orange oil).
  • the HPLC area percentage value of compound 11-d was 97.6%.
  • the resulting reaction mixture was cooled to room temperature and then washed with ion exchange water (100 mL).
  • the obtained washing liquid was separated, and the obtained organic layer was washed with ion-exchanged water.
  • the obtained washing solution was separated, and the obtained organic layer was dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated. Thereafter, toluene and activated carbon were added thereto, and the mixture was stirred at room temperature for 30 minutes, followed by filtration with a filter covered with celite.
  • the obtained filtrate was concentrated under reduced pressure to obtain a white solid.
  • the obtained white solid was recrystallized using a mixed solvent of toluene and methanol, and then dried under reduced pressure at 50 ° C. to obtain Compound 12-a (12.0 g, white solid).
  • the HPLC area percentage value of Compound 12-a was 99.5% or more.
  • the reaction vessel was filled with a nitrogen gas atmosphere, magnesium (100.9 g), tetrahydrofuran (2500 mL) and iodine (0.1 g) were added and stirred. Thereafter, 1-bromohexane (604.0 g) was added thereto and stirred at 60 ° C. for 3 hours to prepare a Grignard reagent. After making the inside of another reaction vessel a nitrogen gas atmosphere, 2-bromo-9,9′-dimethylfluorene (250.0 g), dichloro [1,3-bis (diphenylphosphino) propane] nickel (37.2 g) And tetrahydrofuran (2500 mL) were added and stirred.
  • reaction vessel After making the inside of the reaction vessel a nitrogen gas atmosphere, compound 13-a (354.0 g) and dichloromethane (3540 mL) were added, and the reaction vessel was cooled using an ice bath. Thereafter, bromine (213.6 g) dissolved in dichloromethane (1770 mL) was added dropwise thereto over 2 hours, and the reaction vessel was stirred for 16 hours while cooling using an ice bath. Thereafter, a 10 wt% aqueous sodium sulfite solution was added thereto and stirred. The obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water and brine.
  • the obtained washing liquid was separated, and the obtained organic layer was dried over sodium sulfate, filtered, and the obtained filtrate was concentrated.
  • the obtained concentrate was purified by silica gel column chromatography (a mixed solvent of hexane and ethyl acetate) and then dried under reduced pressure at 50 ° C. to obtain compound 13-b (250.0 g).
  • the HPLC area percentage value of compound 13-b was 97.6%.
  • reaction vessel was filled with a nitrogen gas atmosphere, then compound 13-b (250.0 g), diphenylamine (148.1 g), tri-tert-butylphosphine tetrafluoroborate salt (8.1 g), sodium-tert-butoxide ( 168.2 g) and toluene (2500 mL) were added, and the mixture was stirred at 50 ° C. Thereafter, tris (dibenzylideneacetone) dipalladium (0) (12.8 g) was added thereto, and the mixture was stirred at 115 ° C. for 16 hours. The resulting reaction mixture was cooled to room temperature and then filtered through a filter with celite.
  • the obtained concentrate was purified by silica gel column chromatography (hexane) to obtain a solid.
  • the obtained solid was recrystallized using methanol and then dried under reduced pressure at 50 ° C. to obtain Compound 13 (54.0 g, white solid).
  • the HPLC area percentage value of Compound 13 was 99.5% or more.
  • the obtained concentrate was purified by silica gel column chromatography (hexane) to obtain a solid. Toluene and activated clay were added to the obtained solid and shaken at 50 ° C. for 30 minutes. The obtained reaction mixture was cooled to room temperature, and then filtered through a laminated glass filter covered with silica gel. The obtained filtrate was concentrated under reduced pressure and then dried under reduced pressure at 50 ° C. to obtain compound 14-b (193.0 g, white solid). The HPLC area percentage value of compound 14-b was 80.6%.
  • the obtained washing solution was separated, and the obtained organic layer was dried over anhydrous magnesium sulfate and then filtered.
  • the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • Toluene and activated carbon were added to the obtained solid, and the mixture was stirred at room temperature for 1 hour, filtered through a filter with silica gel and celite, and the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was recrystallized from isopropanol and then dried under reduced pressure at 50 ° C. to obtain Compound 14-c (44.5 g, white solid).
  • the HPLC area percentage value of compound 14-c was 99.4%.
  • reaction vessel was filled with a nitrogen gas atmosphere, then compound 14-c (44.5 g) and dichloromethane (705 mL) were added, and the mixture was cooled using an ice bath containing sodium chloride. Thereafter, bromine (26 g) dissolved in dichloromethane (26 mL) was added dropwise thereto over 2 hours, and the reaction vessel was stirred for 5 hours while cooling using an ice bath to which sodium chloride was added. Thereafter, a 10 wt% aqueous sodium sulfite solution was added dropwise thereto and stirred. The obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water.
  • the obtained washing solution was separated, and the obtained organic layer was dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated.
  • Toluene and activated carbon were added to the resulting concentrate, and the mixture was stirred at room temperature for 1 hour, filtered through a filter with silica gel and celite, and the resulting filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was recrystallized using a mixed solution of toluene and isopropanol and then dried under reduced pressure at 50 ° C. to obtain Compound 14-d (51.8 g, white solid).
  • the HPLC area percentage value of compound 14-d was 98.9%. By repeating this operation, the required amount of compound 14-d was obtained.
  • reaction vessel was filled with a nitrogen gas atmosphere, then compound 14-d (55.0 g), tris (dibenzylideneacetone) dipalladium (0) (1.4 g), (2-biphenyl) dicyclohexylphosphine (1.3 g) And tetrahydrofuran (220 mL) were added and stirred. Thereafter, a lithium bis (trimethylsilyl) amide tetrahydrofuran solution (1.3 mol / L, 180 mL) was added dropwise thereto over 1 hour, followed by stirring at 65 ° C. for 5 hours.
  • the reaction vessel was cooled using an ice bath, an aqueous hydrochloric acid solution (2M, 400 mL) was added, and the reaction vessel was stirred for 1 hour while cooling using an ice bath. Thereafter, an aqueous sodium hydroxide solution (2M, 400 mL) was added thereto for neutralization.
  • the obtained reaction solution was separated, and the obtained organic layer was washed with ion-exchanged water. The obtained washing solution was separated, and the obtained organic layer was dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated.
  • the obtained concentrate was dissolved in a mixed solvent of acetonitrile and toluene, an aqueous hydrochloric acid solution (12 M, 30 mL) was added, and the mixture was stirred and concentrated to obtain a hydrochloride. Hexane was added to the obtained hydrochloride, and the mixture was suspended and stirred for 30 minutes and filtered. Tetrahydrofuran was added to the obtained residue and suspended and stirred for 30 minutes, followed by filtration. A sodium hydroxide aqueous solution (2M, 150 mL) and methanol were added to the obtained residue, and the mixture was stirred and extracted with chloroform. The obtained organic layer was dried over magnesium sulfate and filtered, and the obtained filtrate was concentrated.
  • Compound 14-e (33.0 g, pale yellow solid).
  • Compound 14-e had an HPLC area percentage value of 99.5% or more.
  • reaction vessel was filled with a nitrogen gas atmosphere, then compound 14-e (30.7 g), 3-bromohexylbenzene (56.2 g), tris (dibenzylideneacetone) dipalladium (0) (1.0 g), -Tert-Butylphosphine tetrafluoroborate salt (0.6 g) and toluene (580 mL) were added, and the mixture was stirred at 50 ° C. Thereafter, sodium-tert-butoxide (30.5 g) was added thereto, followed by stirring at 110 ° C. for 8 hours.
  • the obtained oil was purified by silica gel column chromatography (a mixed solvent of hexane and ethyl acetate) to give compound 14-f (44.0 g, colorless transparent oil).
  • the HPLC area percentage value of Compound 14-f was 99.4%.
  • the obtained washing liquid was separated, and the obtained organic layer was washed with ion-exchanged water.
  • the obtained washing solution was separated, and the obtained organic layer was dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated. Thereafter, hexane, toluene and activated carbon were added thereto, and the mixture was stirred at room temperature for 30 minutes, and then filtered through a filter with celite.
  • the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was purified by silica gel column chromatography (mixed solvent of hexane and toluene) and dried under reduced pressure at 50 ° C. to obtain Compound 14 (5.9 g, white solid).
  • the HPLC area percentage value of Compound 14 was 99.5% or more.
  • the reaction vessel was cooled using an ice bath, and an aqueous hydrochloric acid solution (2.4M, 475 mL) was added dropwise. Thereafter, the ice bath was removed from the reaction vessel, and the mixture was stirred at room temperature for 1 hour.
  • the obtained reaction mixture was separated to obtain an organic layer (hereinafter referred to as “organic layer 1”) and an aqueous layer (hereinafter referred to as “aqueous layer 1”).
  • the aqueous layer 1 was washed twice with heptane (90 mL).
  • the obtained cleaning liquid was separated to obtain an organic layer (hereinafter referred to as “organic layer 2”).
  • the organic layer 1 and the organic layer 2 were combined, dried over magnesium sulfate, filtered, and the obtained filtrate was concentrated to obtain an oil.
  • the obtained oil was purified by silica gel column chromatography (a mixed solvent of hexane and ethyl acetate) to give compound 15-a (32.0 g, brown oil).
  • the HPLC area percentage value of compound 15-a was 98.6%.
  • the obtained solid was purified by silica gel column chromatography (a mixed solvent of hexane and ethyl acetate) to obtain Compound 15-b (14.6 g).
  • the HPLC area percentage value of compound 15-b was 98.4%.
  • the obtained reaction mixture was cooled to room temperature, toluene (20 mL), hexane (20 mL) and activated carbon (2.8 g) were added, and the mixture was stirred at room temperature for 1 hour, and then filtered through a filter covered with silica gel and celite. .
  • the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was recrystallized using a mixed solvent of toluene and methanol, and then dried under reduced pressure at 50 ° C. to obtain Compound 15-e (4.8 g, white crystals).
  • the HPLC area percentage value of Compound 15-e was 99.5% or more.
  • the obtained solid was dissolved in toluene (50 mL) and then washed with ion-exchanged water. The obtained washing solution was separated, activated carbon (2.5 g) was added to the obtained organic layer, and the mixture was stirred and then filtered through a filter with celite. The obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was purified by silica gel column chromatography (a mixed solvent of hexane and toluene), then recrystallized using a mixed solvent of toluene and acetonitrile, and then dried at 50 ° C. under reduced pressure to give compound 15 (3 0.9 g) was obtained.
  • the HPLC area percentage value of Compound 15 was 99.5% or more.
  • Compounds CM1 to CM6, Compounds CM8 to CM10, Compounds CM12 to CM16, and CM20 to CM21 were synthesized according to the method described in the following literature, and those showing an HPLC area percentage value of 99.5% or more were used.
  • Compounds CM26 to CM27 were synthesized according to the method described in the following literature, and those showing an HPLC area percentage value of 99.5% or more were used.
  • Compound CM7 is the same as Compound 8 synthesized above, Compound CM11 is the same as Compound 10 synthesized above, Compound CM18 is the same as Compound 14 synthesized above, and Compound CM19 is The compound CM22 is the same as the compound 11 synthesized above, the compound CM22 is the same as the compound 12 synthesized above, the compound CM23 is the same as the compound 15 synthesized above, and the compound CM24 was synthesized above.
  • Compound 7 is the same as compound 7, and compound CM25 is the same as compound 13 synthesized above.
  • Compounds CM1 and CM4 JP 2010-189630 A Compound CM2 and CM3: International Publication No. 2012/088671 Compound CM5: JP 2004-143419 A Compound CM6: International Publication No. 2002/045184 Compound CM8: Journal of Polymer Science, PartA: Polymer Chemistry, 2011, vol.49, # 2 p.352-360 Compound CM9: JP 2008-106241 A Compound CM10: JP 2010-215886 A Compound CM12: JP 2007-511636 A Compound CM13: JP 2011-140661 A Compound CM14 and CM15: JP 2011-174062 Compound CM16: International Publication No. 2007/071957 Compound CM20 and CM21: International Publication No. 2013/201188 Compound CM26 and CM27: Journal of Polymer Science, Part A: Polymer Chemistry, 2011, vol.49, # 2 p.352 -360
  • Step 1 After making the inside of the reaction vessel an inert gas atmosphere, Compound CM7 (0.9870 g), Compound CM8 (0.4602 g), Compound CM9 (0.0669 g), Compound CM10 (0.0578 g), Dichlorobis ( Tris-o-methoxyphenylphosphine) palladium (1.1 mg) and toluene (49 mL) were added and heated to 105 ° C. (Step 2) Thereafter, a 20% by weight tetrabutylammonium hydroxide aqueous solution (9.2 g) was added dropwise thereto and stirred at 105 ° C. for 6 hours.
  • tetrabutylammonium hydroxide aqueous solution 9.2 g
  • Step 3 Thereafter, phenylboronic acid (15.2 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.1 mg) were added thereto, followed by stirring at 105 ° C. for 16 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. The obtained reaction solution was cooled, then washed twice with water, twice with a 3% by weight aqueous acetic acid solution and twice with water. The obtained solution was added dropwise to methanol, and a precipitate was formed.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. When the obtained solution was added dropwise to methanol and stirred, a precipitate was formed. The obtained precipitate was collected by filtration and dried to obtain 0.75 g of polymer compound 1.
  • the Mn of the polymer compound 1 was 7.1 ⁇ 10 4 and the Mw was 3.7 ⁇ 10 5 .
  • the polymer compound 1 has a theoretical value obtained from the amount of charged raw materials, a structural unit derived from the compound CM7, a structural unit derived from the compound CM8, a structural unit derived from the compound CM9, and a compound CM10.
  • the derived structural unit is a copolymer having a molar ratio of 50: 40: 5: 5.
  • Step 1 After the inside of the reaction vessel is filled with an inert gas atmosphere, compound CM11 (0.8134 g), compound CM8 (0.5523 g), compound CM9 (0.0803 g), compound CM10 (0.0693 g), dichlorobis ( Tris-o-methoxyphenylphosphine) palladium (1.3 mg) and toluene (42 mL) were added and heated to 105 ° C.
  • Step 2 Thereafter, a 20% by weight tetrabutylammonium hydroxide aqueous solution (9.2 g) was added dropwise thereto and stirred at 105 ° C. for 6 hours.
  • Step 3 Thereafter, phenylboronic acid (18.3 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.3 mg) were added thereto, followed by stirring at 105 ° C. for 16 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. The obtained reaction solution was cooled, then washed twice with water, twice with a 3% by weight aqueous acetic acid solution and twice with water. The obtained solution was added dropwise to methanol, and a precipitate was formed.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. When the obtained solution was added dropwise to methanol and stirred, a precipitate was formed. The obtained precipitate was collected by filtration and dried to obtain 0.75 g of polymer compound 2.
  • the Mn of the polymer compound 1 was 1.9 ⁇ 10 4 and the Mw was 2.5 ⁇ 10 5 .
  • the theoretical value obtained from the amount of charged raw material for polymer compound 2 is that the structural unit derived from compound CM11, the structural unit derived from compound CM8, the structural unit derived from compound CM9, and the compound CM10
  • the derived structural unit is a copolymer having a molar ratio of 50: 40: 5: 5.
  • Polymer compound 3 was synthesized according to the synthesis method described in JP 2012-36388 A using the compounds shown in Table 3 below.
  • the Mn of the polymer compound 3 was 8.2 ⁇ 10 4 and the Mw was 2.1 ⁇ 10 5 .
  • the polymer compound 3 is a copolymer in which the structural units derived from the respective compounds are composed of the molar ratios shown in Table 3 below according to the theoretical values obtained from the charged raw materials.
  • the polymer compound 4 was synthesized according to the synthesis method described in JP2012-216815A using the compounds shown in Table 4 below.
  • the Mn of the polymer compound 4 was 1.0 ⁇ 10 4 and the Mw was 2.6 ⁇ 10 5 .
  • the polymer compound 4 is a copolymer in which the structural units derived from the respective compounds are composed of the molar ratios shown in Table 4 below according to the theoretical values obtained from the charged raw materials.
  • Step 1 After making the inside of the reaction vessel an inert gas atmosphere, Compound CM7 (1.1807 g), Compound CM14 (0.9810 g), Compound CM9 (0.0803 g), Compound CM10 (0.0693 g) and Toluene ( 34 mL) was added and heated to 90 ° C.
  • Step 2 Dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.3 mg) was added thereto, and then a 20 wt% aqueous tetrabutylammonium hydroxide solution (22.9 g) was added dropwise thereto. Stir for hours.
  • Step 3 Thereafter, phenylboronic acid (73.2 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.3 mg) were added thereto, and the mixture was stirred at 90 ° C. for 15 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. The obtained reaction solution was cooled, then washed twice with water, twice with a 3% by weight aqueous acetic acid solution and twice with water. The obtained solution was added dropwise to methanol, and a precipitate was formed.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. When the obtained solution was added dropwise to methanol and stirred, a precipitate was formed. The obtained precipitate was collected by filtration and dried to obtain 1.22 g of polymer compound 5.
  • the Mn of the polymer compound 5 was 5.3 ⁇ 10 4
  • the Mw was 2.0 ⁇ 10 5 .
  • the theoretical value obtained from the amount of raw materials used for the polymer compound 5 is that the structural unit derived from the compound CM7, the structural unit derived from the compound CM14, the structural unit derived from the compound CM9, and the compound CM10
  • the derived structural unit is a copolymer having a molar ratio of 50: 40: 5: 5.
  • Step 1 After making the inside of the reaction vessel an inert gas atmosphere, Compound CM18 (1.0625 g), Compound CM14 (0.8175 g), Compound CM9 (0.0669 g), Compound CM10 (0.0578 g) and Toluene ( 30 mL) was added and heated to 90 ° C.
  • Step 2 Dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.1 mg) was added thereto, and then a 20 wt% aqueous tetrabutylammonium hydroxide solution (20.2 g) was added dropwise thereto. Stir for hours.
  • Step 3 Thereafter, phenylboronic acid (61.0 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.1 mg) were added thereto, followed by stirring at 90 ° C. for 17 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. The obtained reaction solution was cooled, then washed twice with water, twice with a 3% by weight aqueous acetic acid solution and twice with water. The obtained solution was added dropwise to methanol, and a precipitate was formed.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. When the obtained solution was added dropwise to methanol and stirred, a precipitate was formed. The obtained precipitate was collected by filtration and dried to obtain 1.06 g of polymer compound 6.
  • the Mn of the polymer compound 6 was 5.2 ⁇ 10 4 and the Mw was 2.2 ⁇ 10 5 .
  • the polymer compound 6 has theoretical values determined from the amounts of raw materials charged. From the compound CM18, a structural unit derived from the compound CM14, a structural unit derived from the compound CM14, a structural unit derived from the compound CM9, and the compound CM10.
  • the derived structural unit is a copolymer having a molar ratio of 50: 40: 5: 5.
  • Step 1 After setting the inside of the reaction vessel to an inert gas atmosphere, Compound CM15 (0.8866 g), Compound CM20 (0.0780 g), Compound CM21 (0.0698 g), Compound CM19 (1.0041 g) and Toluene ( 31 mL) was added and heated to 90 ° C.
  • Step 2 Dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.1 mg) was added thereto, followed by dropwise addition of 20 wt% tetrabutylammonium hydroxide aqueous solution (20.4 g). Stir for hours.
  • Step 3 Thereafter, phenylboronic acid (61.0 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.1 mg) were added thereto, followed by stirring at 90 ° C. for 18 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. The obtained reaction solution was cooled, then washed twice with water, twice with a 3% by weight aqueous acetic acid solution and twice with water. The obtained solution was added dropwise to methanol, and a precipitate was formed.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. When the obtained solution was added dropwise to methanol and stirred, a precipitate was formed. The obtained precipitate was collected by filtration and dried to obtain 1.10 g of polymer compound 7.
  • the Mn of the polymer compound 7 was 4.8 ⁇ 10 4 and the Mw was 2.1 ⁇ 10 5 .
  • the theoretical value obtained from the amount of charged raw materials for the polymer compound 7 is that the structural unit derived from the compound CM15, the structural unit derived from the compound CM20, the structural unit derived from the compound CM21, and the compound CM19
  • the derived structural unit is a copolymer composed of a molar ratio of 40: 5: 5: 50.
  • Step 1 After making the inside of the reaction vessel an inert gas atmosphere, Compound CM15 (1.0640 g), Compound CM20 (0.0936 g), Compound CM21 (0.0837 g), Compound CM22 (0.9419 g) and Toluene ( 32 mL) was added and heated to 90 ° C.
  • Step 2 Dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.3 mg) was added thereto, and then a 20 wt% aqueous tetrabutylammonium hydroxide solution (21.4 g) was added dropwise thereto. Stir for hours.
  • Step 3 Thereafter, phenylboronic acid (73.2 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.3 mg) were added thereto, and the mixture was stirred at 90 ° C. for 15 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. The obtained reaction solution was cooled, then washed twice with water, twice with a 3% by weight aqueous acetic acid solution and twice with water. The obtained solution was added dropwise to methanol, and a precipitate was formed.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. When the obtained solution was added dropwise to methanol and stirred, a precipitate was formed. The obtained precipitate was collected by filtration and dried to obtain 1.13 g of polymer compound 8.
  • the Mn of the polymer compound 8 was 5.1 ⁇ 10 4
  • the Mw was 2.0 ⁇ 10 5 .
  • the theoretical value obtained from the amount of raw materials used for the polymer compound 8 is that the structural unit derived from the compound CM15, the structural unit derived from the compound CM20, the structural unit derived from the compound CM21, and the compound CM22
  • the derived structural unit is a copolymer composed of a molar ratio of 40: 5: 5: 50.
  • Step 1 After making the inside of the reaction vessel an inert gas atmosphere, Compound CM23 (0.9939 g), Compound CM20 (0.0780 g), Compound CM21 (0.0698 g), Compound CM14 (1.022 g) and Toluene ( 34 mL) was added and heated to 90 ° C.
  • Step 2 Dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.1 mg) was added thereto, followed by dropwise addition of 20 wt% tetrabutylammonium hydroxide aqueous solution (22.4 g). Stir for hours.
  • Step 3 Thereafter, phenylboronic acid (61.0 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.1 mg) were added thereto, and the mixture was stirred at 90 ° C. for 15 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. The obtained reaction solution was cooled, then washed twice with water, twice with a 3% by weight aqueous acetic acid solution and twice with water. The obtained solution was added dropwise to methanol, and a precipitate was formed.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. When the obtained solution was added dropwise to methanol and stirred, a precipitate was formed. The obtained precipitate was collected by filtration and dried to obtain 1.01 g of polymer compound 9.
  • the Mn of the polymer compound 9 was 4.9 ⁇ 10 4 and the Mw was 2.3 ⁇ 10 5 .
  • the theoretical value obtained from the amount of raw materials used for the polymer compound 9 is that the structural unit derived from the compound CM23, the structural unit derived from the compound CM20, the structural unit derived from the compound CM21, and the compound CM14
  • the derived structural unit is a copolymer composed of a molar ratio of 40: 5: 5: 50.
  • Step 1 After making the inside of the reaction vessel an inert gas atmosphere, Compound CM1 (0.9841 g), Compound CM12 (0.1730 g), Compound CM24 (0.9850 g), Compound CM10 (0.0925 g) and Toluene ( 29 mL) was added and heated to 90 ° C.
  • Step 2 Dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.8 mg) was added thereto, and then a 20 wt% aqueous tetrabutylammonium hydroxide solution (19.1 g) was added dropwise thereto. Stir for hours.
  • Step 3 Thereafter, phenylboronic acid (97.5 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.8 mg) were added thereto, and the mixture was stirred at 90 ° C. for 15 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. The obtained reaction solution was cooled, then washed twice with water, twice with a 3% by weight aqueous acetic acid solution and twice with water. The obtained solution was added dropwise to methanol, and a precipitate was formed.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. When the obtained solution was added dropwise to methanol and stirred, a precipitate was formed. The obtained precipitate was collected by filtration and dried to obtain 0.96 g of polymer compound 10.
  • the Mn of the polymer compound 10 was 4.6 ⁇ 10 4 and the Mw was 2.1 ⁇ 10 5 .
  • the theoretical value obtained from the amount of the raw material used for the polymer compound 10 is that the structural unit derived from the compound CM1, the structural unit derived from the compound CM12, the structural unit derived from the compound CM24, and the compound CM10
  • the derived structural unit is a copolymer having a molar ratio of 50: 10: 35: 5.
  • Step 1 After making the inside of the reaction vessel an inert gas atmosphere, Compound CM11 (0.8790 g), Compound CM21 (0.1117 g), Compound CM20 (0.1336 g), Compound CM25 (1.2069 g) and Toluene ( 30 mL) was added and heated to 90 ° C.
  • Step 2 A 20 wt% tetraethylammonium hydroxide aqueous solution (13.8 g) was added dropwise thereto, and then dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.8 mg) was added, followed by stirring at 90 ° C. for 7 hours. did.
  • Step 3 Thereafter, phenylboronic acid (97.5 mg), 20 wt% tetraethylammonium hydroxide aqueous solution (6.9 g), and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.8 mg) were added thereto. In addition, the mixture was stirred at 90 ° C. for 15 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. The obtained reaction solution was cooled, then washed twice with water, twice with a 3% by weight aqueous acetic acid solution and twice with water.
  • the obtained solution was added dropwise to methanol, and a precipitate was formed.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order.
  • a precipitate was formed.
  • the obtained precipitate was collected by filtration and dried to obtain 1.22 g of polymer compound 11.
  • the Mn of the polymer compound 11 was 3.3 ⁇ 10 4
  • the Mw was 2.2 ⁇ 10 5 .
  • the polymer compound 11 has a theoretical value obtained from the amount of charged raw materials, a structural unit derived from the compound CM11, a structural unit derived from the compound CM21, a structural unit derived from the compound CM20, and a compound CM25.
  • the derived structural unit is a copolymer composed of a molar ratio of 40: 5: 5: 50.
  • Step 1 After making the inside of the reaction vessel an inert gas atmosphere, Compound CM15 (1.0512 g), Compound CM21 (0.0838 g), Compound CM20 (0.1001 g), Compound CM26 (0.7730 g) and Toluene ( 29 mL) was added and heated to 90 ° C.
  • Step 2 A 20 wt% tetraethylammonium hydroxide aqueous solution (10.4 g) was added dropwise thereto, and then dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.3 mg) was added, followed by stirring at 90 ° C. for 8 hours. did.
  • Step 3 Thereafter, phenylboronic acid (73.2 mg), 20 wt% tetraethylammonium hydroxide aqueous solution (5.2 g) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.3 mg) were added thereto. , And stirred at 90 ° C. for 16 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. The obtained reaction solution was cooled, then washed twice with water, twice with a 3% by weight aqueous acetic acid solution and twice with water.
  • the obtained solution was added dropwise to methanol, and a precipitate was formed.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order.
  • a precipitate was formed.
  • the obtained precipitate was collected by filtration and dried to obtain 1.14 g of polymer compound 12.
  • the Mn of the polymer compound 12 was 4.3 ⁇ 10 4 and the Mw was 1.3 ⁇ 10 5 .
  • the polymer compound 12 has theoretical values determined from the amounts of raw materials charged. From the compound CM15, the structural unit derived from the compound CM15, the structural unit derived from the compound CM21, the structural unit derived from the compound CM20, and the compound CM26.
  • the derived structural unit is a copolymer composed of a molar ratio of 40: 5: 5: 50.
  • the polymer compound 13 was synthesized according to the method described in JP 2014-111765 A using the compounds shown in Table 5 below.
  • the Mn of the polymer compound 13 was 1.7 ⁇ 10 5 and the Mw was 3.3 ⁇ 10 5 .
  • the polymer compound 13 is a copolymer in which the structural units derived from the respective compounds are composed of the molar ratios shown in Table 5 below according to the theoretical values determined from the amount of the raw materials charged.
  • Step 1 After making the inside of the reaction vessel an inert gas atmosphere, Compound CM15 (1.0717 g), Compound CM21 (0.0868 g), Compound CM20 (0.1001 g), Compound CM25 (0.9051 g) and Toluene ( 31 mL) was added and heated to 90 ° C.
  • Step 2 A 20 wt% tetraethylammonium hydroxide aqueous solution (10.4 g) was added dropwise thereto, and then dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.3 mg) was added, followed by stirring at 90 ° C. for 7 hours. did.
  • Step 3 Thereafter, phenylboronic acid (73.2 mg), 20 wt% tetraethylammonium hydroxide aqueous solution (5.2 g), and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.3 mg) were added thereto. In addition, the mixture was stirred at 90 ° C. for 15 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. The obtained reaction solution was cooled, then washed twice with water, twice with a 3% by weight aqueous acetic acid solution and twice with water.
  • the obtained solution was added dropwise to methanol, and a precipitate was formed.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order.
  • a precipitate was formed.
  • the obtained precipitate was collected by filtration and dried to obtain 1.26 g of polymer compound 14.
  • the Mn of the polymer compound 14 was 5.8 ⁇ 10 4
  • the Mw was 2.0 ⁇ 10 5 .
  • the theoretical value obtained from the amount of the raw material used for the polymer compound 14 is that the structural unit derived from the compound CM15, the structural unit derived from the compound CM21, the structural unit derived from the compound CM20, and the compound CM25
  • the derived structural unit is a copolymer composed of a molar ratio of 40: 5: 5: 50.
  • Step 1 After making the inside of the reaction vessel an inert gas atmosphere, Compound CM14 (0.8988 g), Compound CM10 (0.0698 g), Compound CM9 (0.0835 g), Compound CM16 (0.8532 g) and Toluene ( 29 mL) was added and heated to 90 ° C.
  • Step 2 A 20 wt% tetraethylammonium hydroxide aqueous solution (8.7 g) was added dropwise thereto, and then dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.1 mg) was added, followed by stirring at 90 ° C. for 6 hours. did.
  • Step 3 Thereafter, phenylboronic acid (61.0 mg), 20 wt% tetraethylammonium hydroxide aqueous solution (4.3 g), and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.3 mg) were added thereto. In addition, the mixture was stirred at 90 ° C. for 16 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. The obtained reaction solution was cooled, then washed twice with water, twice with a 3% by weight aqueous acetic acid solution and twice with water.
  • the obtained solution was added dropwise to methanol, and a precipitate was formed.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order.
  • a precipitate was formed.
  • the obtained precipitate was collected by filtration and dried to obtain 1.20 g of polymer compound 15.
  • the Mn of the polymer compound 15 was 5.8 ⁇ 10 4
  • the Mw was 2.2 ⁇ 10 5 .
  • the theoretical value obtained from the amount of raw materials used for the polymer compound 15 is that the structural unit derived from the compound CM15, the structural unit derived from the compound CM21, the structural unit derived from the compound CM20, and the compound CM16
  • the derived structural unit is a copolymer composed of a molar ratio of 40: 5: 5: 50.
  • Step 1 After making the inside of the reaction vessel an inert gas atmosphere, Compound CM13 (1.477 g), Compound CM5 (1.1818 g), Compound CM10 (0.0920 g), Compound CM9 (0.1057 g) and Toluene ( 44 mL) and heated to 90 ° C.
  • Step 2 Palladium acetate (0.4 mg) and tris-o-methoxyphenylphosphine (2.8 mg) were added thereto, and 20 wt% tetraethylammonium hydroxide aqueous solution (7.7 g) was added dropwise, and then 105 ° C. For 3 hours.
  • Step 3 Thereafter, phenylboronic acid (450.0 mg), palladium acetate (0.4 mg) and tris-o-methoxyphenylphosphine (2.8 mg) were added thereto, and the mixture was stirred at 105 ° C. for 16 hours. Thereafter, phenyl bromide (247.0 mg), palladium acetate (0.4 mg) and tris-o-methoxyphenylphosphine (2.8 mg) were added thereto, followed by stirring at 105 ° C. for 4 hours. (Step 4) Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours.
  • the obtained reaction solution was cooled, then washed twice with water, twice with a 3% by weight aqueous acetic acid solution and twice with water.
  • the obtained solution was added dropwise to methanol, and a precipitate was formed.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. When the obtained solution was added dropwise to methanol and stirred, a precipitate was formed.
  • the obtained precipitate was collected by filtration and dried to obtain 1.46 g of polymer compound 16.
  • the Mn of the polymer compound 16 was 8.9 ⁇ 10 4 and the Mw was 3.6 ⁇ 10 5 .
  • the polymer compound 16 has theoretical values determined from the amounts of raw materials charged. From the compound CM9, a structural unit derived from the compound CM13, a structural unit derived from the compound CM5, a structural unit derived from the compound CM10, and the compound CM9.
  • the derived structural unit is a copolymer having a molar ratio of 50: 40: 5: 5.
  • Example D1 Fabrication and evaluation of light-emitting element D1 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a film having a thickness of 65 nm was formed on the anode by spin coating using AQ-1200 (manufactured by Plextronics), which is a polythiophene / sulfonic acid-based hole injecting agent. Then, a hole injection layer was formed by heating at 170 ° C. for 15 minutes.
  • AQ-1200 manufactured by Plextronics
  • Example D2 Production and Evaluation of Light-Emitting Element D2
  • a light-emitting element D2 was produced in the same manner as in Example D1, except that the polymer compound 5 was used instead of the polymer compound 1 in Example D1.
  • Example D3 Production and Evaluation of Light-Emitting Element D3
  • a light-emitting element D3 was produced in the same manner as in Example D1, except that the polymer compound 6 was used instead of the polymer compound 1 in Example D1.
  • Example D4 Production and Evaluation of Light-Emitting Element D4
  • a light-emitting element D4 was produced in the same manner as in Example D1, except that the polymer compound 7 was used instead of the polymer compound 1 in Example D1.
  • Example D5 Production and Evaluation of Light-Emitting Element D5
  • a light-emitting element D5 was produced in the same manner as in Example D1, except that the polymer compound 8 was used instead of the polymer compound 1 in Example D1.
  • Example D6 Production and Evaluation of Light-Emitting Element D6
  • a light-emitting element D6 was produced in the same manner as in Example D1, except that the polymer compound 9 was used instead of the polymer compound 1 in Example D1.
  • Example CD2 Production and Evaluation of Light-Emitting Element CD2
  • a light-emitting element CD2 was produced in the same manner as in Example D1, except that polymer compound 11 was used instead of polymer compound 1 in Example D1.
  • Example CD3 Production and Evaluation of Light Emitting Element CD3
  • a light emitting element CD3 was produced in the same manner as in Example D1, except that the polymer compound 14 was used instead of the polymer compound 1 in Example D1.
  • Example D1 with Comparative Example CD1 and Comparative Example CD2, Example D2, Example D3, Example D4 and Example D5 with Comparative Example CD3 and Comparative Example CD4, Example D6 with Comparative Example CD5 From these comparisons, it can be seen that a light-emitting element manufactured using the polymer compound of the present invention is excellent in external quantum yield.
  • Example D7 Fabrication and evaluation of light-emitting element D7 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a film having a thickness of 35 nm is formed on the anode by spin coating using AQ-1200 (manufactured by Spectronics), which is a polythiophene / sulfonic acid-based hole injecting agent. Then, a hole injection layer was formed by heating at 170 ° C. for 15 minutes.
  • AQ-1200 manufactured by Spectronics
  • Polymer compound 4 was dissolved in xylene at a concentration of 1.2% by weight. Using the obtained xylene solution, a film having a thickness of 60 nm is formed on the hole transport layer by a spin coating method, and heated at 150 ° C. for 10 minutes on a hot plate in a nitrogen gas atmosphere, thereby emitting a light emitting layer Formed.
  • the substrate on which the light emitting layer was formed was depressurized to 1.0 ⁇ 10 ⁇ 4 Pa or less in a vapor deposition machine, and then, as a cathode, about 7 nm of sodium fluoride and then about 120 nm of aluminum were deposited on the light emitting layer. . After vapor deposition, the light emitting element D7 was produced by sealing using a glass substrate.
  • Example D8 Production and Evaluation of Light-Emitting Element D8 A light-emitting element D8 was produced in the same manner as in Example D7, except that the polymer compound 5 was used instead of the polymer compound 1 in Example D7.
  • Example D9 Production and Evaluation of Light-Emitting Element D9 A light-emitting element D9 was produced in the same manner as in Example D7, except that polymer compound 6 was used instead of polymer compound 1 in Example D7.
  • Example D10 Production and Evaluation of Light-Emitting Element D10 A light-emitting element D10 was produced in the same manner as in Example D7, except that the polymer compound 7 was used instead of the polymer compound 1 in Example D7.
  • Example D11 Production and Evaluation of Light-Emitting Element D11
  • a light-emitting element D11 was produced in the same manner as in Example D7 except that the polymer compound 10 was used instead of the polymer compound 1 in Example D7.
  • Example D12 Production and evaluation of light-emitting device D12 A light-emitting device D12 was produced in the same manner as in Example D7, except that polymer compound 8 was used instead of polymer compound 1 in Example D7.
  • Example D13 Production and evaluation of light-emitting device D13 A light-emitting device D13 was produced in the same manner as in Example D7, except that polymer compound 9 was used instead of polymer compound 1 in Example D7.
  • Example CD11 Production and Evaluation of Light Emitting Element CD11
  • a light emitting element CD11 was produced in the same manner as in Example D7 except that the polymer compound 15 was used instead of the polymer compound 1 in Example D7.
  • Example D7 with Comparative Example CD6 and Comparative Example CD7, Example D8, Example D9, Example D10 and Example D12 with Comparative Example CD8, Comparison with Comparative Example CD10 and Comparative Example CD11, Example D11 From the comparison with Comparative Example CD9 and the comparison between Example D13 and Comparative Example CD12, it can be seen that the light-emitting device produced using the polymer compound of the present invention has an excellent external quantum yield.
  • the present invention it is possible to provide a polymer compound useful for producing a light emitting device having an excellent external quantum yield. Moreover, according to this invention, the light emitting element obtained using the composition containing this high molecular compound and this high molecular compound can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 外部量子収率に優れる発光素子の製造に有用な高分子化合物を提供する。 式(1)で表される構成単位を含む高分子化合物。[式中、a1およびa2は、0または1を表す。ArA1およびArA3は、アリーレン基等を表す。但し、ArA1およびArA3は、隣接する構成単位と結合を形成する原子の隣の原子の少なくとも1つが、アルキル基等を置換基として有する。ArA2は、フェニレン基を表す。ArA4は、アリーレン基等を表す。RA1、RA2およびRA3は、アリール基等を表す。但し、a2が0である場合、RA1は2つ以上の環が縮合したアリール基(該アリール基の環を構成する炭素原子数は10以上である)等を表す。]

Description

高分子化合物およびそれを用いた発光素子
 本発明は、高分子化合物およびそれを用いた発光素子に関する。
 有機エレクトロルミネッセンス素子(以下、「発光素子」ともいう。)は、発光効率が高く、駆動電圧が低いことから、ディスプレイおよび照明の用途に好適に使用することが可能であり、近年注目されている。この発光素子は、発光層、正孔輸送層等の有機層を備える。高分子化合物を用いることで、インクジェット印刷法に代表される塗布法により有機層を形成することができるため、発光素子の製造に用いる高分子化合物が検討されている。
 発光素子の正孔輸送層に用いる材料として、特許文献1には、高分子化合物に含まれる構成単位の合計含有量に対して、アリールアミン構成単位を90モル%以上含む高分子化合物が記載されている。なお、該アリールアミン構成単位はいずれも、隣接する構成単位と結合を形成する炭素原子の隣の炭素原子が置換基を有していない構成単位である。
 また、発光素子の正孔輸送層に用いる材料として、特許文献2には、隣接する構成単位と結合を形成する炭素原子の隣の炭素原子が置換基を有する、アリールアミン構成単位を含む高分子化合物が記載されている。なお、該アリールアミン構成単位はいずれも、アリールアミン構成単位を構成するsp3窒素原子が、1つの環からなるアリール基を有する構成単位である。
国際公開第2013/114976号 特開2014-111765号公報
 しかしながら、上記の高分子化合物を用いて製造される発光素子は、その外部量子収率が必ずしも十分ではない。
 そこで、本発明は、外部量子収率に優れる発光素子の製造に有用な高分子化合物を提供することを目的とする。本発明はまた、該高分子化合物を含有する組成物および該高分子化合物を用いて得られる発光素子を提供することを目的とする。
 本発明は、下記の[1]~[15]を提供する。
[1]式(1)で表される構成単位を含む高分子化合物。
Figure JPOXMLDOC01-appb-C000010
[式中、
 a1およびa2は、それぞれ独立に、0または1を表す。
 ArA1およびArA3は、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。但し、ArA1およびArA3は、隣接する構成単位と結合を形成する原子の隣の原子の少なくとも1つが、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を置換基として有し、これらの置換基は更に置換基を有していてもよい。
 ArA2は、フェニレン基を表し、このフェニレン基は置換基を有していてもよい。
 ArA4は、アリーレン基、2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。
 RA1、RA2およびRA3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。
 但し、a2が0である場合、RA1は2つ以上の環が縮合したアリール基(該アリール基の環を構成する炭素原子数は10以上である)、または、2つ以上の環が縮合した1価の複素環基(該1価の複素環基の環を構成する炭素原子数およびヘテロ原子数の合計は10以上である)を表し、これらの基は置換基を有していてもよい。]
[2]前記ArA1およびArA3が、フェニレン基である、[1]に記載の高分子化合物。
[3]前記a2が、0である、[1]または[2]に記載の高分子化合物。
[4]前記ArA1およびArA3において、隣接する構成単位と結合を形成する原子の隣の原子の少なくとも1つが、アルキル基またはシクロアルキル基を置換基として有する、[1]~[3]のいずれかに記載の高分子化合物。
[5]前記RA1が、アリール基AA群から選ばれる基、または、1価の複素環基BB群から選ばれる基である、[1]~[4]のいずれかに記載の高分子化合物。
(アリール基AA群)
Figure JPOXMLDOC01-appb-C000011
(1価の複素環基BB群)
Figure JPOXMLDOC01-appb-C000012
[式中、RおよびRaは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表す。複数存在するRおよびRaは、各々、同一でも異なっていてもよく、Ra同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
[6]前記式(1)で表される構成単位が、式(4)で表される構成単位である、[1]~[5]のいずれかに記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000013
[式中、
 RA1は、前記と同じ意味を表す。
 R1aは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するR1aは、同一でも異なっていてもよい。
 R2aは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基またはハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するR2aは、同一でも異なっていてもよい。]
[7]更に、式(1X)で表される構成単位および式(1Z)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む、[1]~[6]のいずれかに記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000014
[式中、
 xa1およびxa2は、それぞれ独立に、0以上の整数を表す。
 ArX1およびArX3は、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。但し、ArX1およびArX3は、隣接する構成単位と結合を形成する原子の隣の原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を置換基として有さない。
 ArX2およびArX4は、それぞれ独立に、アリーレン基、2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。
 RX1、RX2およびRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000015
[式中、
 RZ1は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。
 1zは、0~3の整数を表す。複数存在する1zは、同一でも異なっていてもよい。
 RZ2は、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。RZ2が複数存在する場合、それらは同一でも異なっていてもよい。
 XZ1は、単結合、酸素原子、硫黄原子、-CRZ11Z12-で表される基、または、―SiRZ13Z14-で表される基を表す。RZ11、RZ12、RZ13およびRZ14は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
[8]前記RA1およびRA2およびRA3からなる群から選ばれる少なくとも1つが、置換基を有していてもよいフルオレン環から環を構成する炭素原子に直接結合する水素原子1個を除いた基である、[7]に記載の高分子化合物。
[9]前記式(1)で表される構成単位と、前記式(1X)で表される構成単位および前記式(1Z)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位とが、隣り合う構成連鎖を含む、[7]または[8]に記載の高分子化合物。
[10]前記式(1)で表される構成単位、前記式(1X)で表される構成単位および前記(1Z)で表される構成単位の合計含有量が、高分子化合物に含まれる構成単位の合計含有量に対して、50~100モル%である、[7]~[9]のいずれかに記載の高分子化合物。
[11]更に、架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位を含む、[1]~[10]のいずれかに記載の高分子化合物。
(架橋基A群)
Figure JPOXMLDOC01-appb-C000016
[式中、RXLは、メチレン基、酸素原子または硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*は結合位置を表す。これらの架橋性基は置換基を有していてもよい。]
[12]前記架橋構成単位が、式(5)で表される構成単位、または、式(5’)で表される構成単位(但し、式(1)で表される構成単位、式(1X)で表される構成単位および式(1Z)で表される構成単位とは異なる。)である、[11]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000017
[式中、
 nAは0~5の整数を表し、nは1または2を表す。nAが複数存在する場合、それらは同一でも異なっていてもよい。
 Arは、芳香族炭化水素基または複素環基を表し、これらの基は置換基を有していてもよい。
 Lは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
 Xは、架橋基A群から選ばれる架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000018
[式中、
 mAは0~5の整数を表し、mは1~4の整数を表し、cは0または1の整数を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
 Arは、芳香族炭化水素基、複素環基、または、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
 ArおよびArは、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。
 Ar、ArおよびArはそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接または酸素原子もしくは硫黄原子を介して結合して、環を形成していてもよい。
 Kは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。KAが複数存在する場合、それらは同一でも異なっていてもよい。
 X’は、架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するX’は、同一でも異なっていてもよい。但し、少なくとも1つのX’は、架橋基A群から選ばれる架橋基である。]
[13]前記架橋基が、前記式(XL-1)または(XL-17)で表される架橋基である、[11]または[12]に記載の高分子化合物。
[14][1]~[13]のいずれかに記載の高分子化合物と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤および溶媒からなる群より選ばれる少なくとも1種の材料とを含有する組成物。
[15][1]~[13]のいずれかに記載の高分子化合物を用いて得られる発光素子。
 本発明によれば、外部量子収率に優れる発光素子の製造に有用な高分子化合物を提供することができる。また、本発明によれば、該高分子化合物を含有する組成物および該高分子化合物を用いて得られる発光素子を提供することができる。
 以下、本発明の好適な実施形態について詳細に説明する。
 <共通する用語の説明>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
 水素原子は、重水素原子であっても、軽水素原子であってもよい。
 金属錯体を表す式中、中心金属との結合を表す実線は、共有結合または配位結合を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×103~1×108である重合体を意味する。
 「低分子化合物」とは、分子量分布を有さず、分子量が1×104以下の化合物を意味する。
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。
 「アルキル基」は、直鎖および分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは3~30であり、より好ましくは4~20である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 アルキル基は、置換基を有していてもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基、および、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられ、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基が挙げられる。
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 シクロアルキル基は、置換基を有していてもよく、例えば、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基が挙げられる。
 「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。
 アリール基は、置換基を有していてもよく、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、および、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「アルコキシ基」は、直鎖および分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは4~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、および、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 シクロアルコキシ基は、置換基を有していてもよく、例えば、シクロヘキシルオキシ基が挙げられる。
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは7~48である。
 アリールオキシ基は、置換基を有していてもよく、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、および、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等で置換された基が挙げられる。
 「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子またはヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子またはヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。
 「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、および、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
 1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは4~20である。
 1価の複素環基は、置換基を有していてもよく、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、および、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基等で置換された基が挙げられる。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を示す。
 「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基または1価の複素環基が好ましい。
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基およびジアリールアミノ基が挙げられる。
 アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
 「アルケニル基」は、直鎖および分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 アルケニル基およびシクロアルケニル基は、置換基を有していてもよく、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、および、これらの基が置換基を有する基が挙げられる。
 「アルキニル基」は、直鎖および分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 アルキニル基およびシクロアルキニル基は、置換基を有していてもよく、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、および、これらの基が置換基を有する基が挙げられる。
 「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常、6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 アリーレン基は、置換基を有していてもよく、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、および、これらの基が置換基を有する基が挙げられ、好ましくは、式(A-1)~式(A-20)で表される基である。アリーレン基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
[式中、RおよびRaは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表す。複数存在するRおよびRaは、各々、同一でも異なっていてもよく、Ra同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは、3~20であり、より好ましくは、4~15である。
 2価の複素環基は、置換基を有していてもよく、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾールから、環を構成する炭素原子またはヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられ、好ましくは、式(B-1)~式(B-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
[式中、RおよびRaは、前記と同じ意味を表す。]
 「架橋基」とは、加熱処理、紫外線照射処理、ラジカル反応等に供することにより、新たな結合を生成することが可能な基であり、好ましくは、前述の架橋基A群の式(XL-1)~(XL-17)で表される架橋基である。
 「置換基」とは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基またはシクロアルキニル基を表す。置換基は架橋基であってもよい。
 <高分子化合物>
 本発明の高分子化合物は、式(1)で表される構成単位を含む高分子化合物である。
 [式(1)で表される構成単位]
 a1は、本発明の高分子化合物を用いた発光素子の輝度寿命が優れるので、好ましくは0である。
 a2は、本発明の高分子化合物を用いた発光素子の輝度寿命が優れるので、好ましくは0である。
 ArA1およびArA3で表されるアリーレン基は、好ましくは式(111-1)~式(111-10)で表される基であり、より好ましくは式(111-1)~式(111-3)または式(111-9)で表される基であり、更に好ましくは式(111-1)~式(111-3)で表される基である。但し、ArA1およびArA3で表されるアリーレン基は、隣接する構成単位と結合を形成する原子の隣の原子の少なくとも1つが、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を置換基として有し、これらの置換基は更に置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000030
[式中、R111およびR111aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表す。複数存在するR111およびR111aは、各々、同一でも異なっていてもよく、R111a同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
 ArA1およびArA3で表される2価の複素環基は、好ましくは式(111-11)~式(111-23)で表される基である。但し、ArA1およびArA3で表される2価の複素環基は、隣接する構成単位と結合を形成する原子の隣の原子の少なくとも1つが、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を置換基として有し、これらの置換基は更に置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
[式中、R111は、前記と同じ意味を表す。]
 ArA1およびArA3は、本発明の発光素子の外部量子収率がより優れるので、好ましくはアリーレン基であり、より好ましくはフェニレン基である。但し、ArA1およびArA3で表されるアリーレン基は、隣接する構成単位と結合を形成する原子の隣の原子の少なくとも1つが、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を置換基として有し、これらの置換基は更に置換基を有していてもよい。
 本発明の高分子化合物を用いた発光素子の外部量子収率がより優れるので、ArA1およびArA3において、隣接する構成単位と結合を形成する原子の隣の原子の少なくとも1つは、アルキル基またはシクロアルキル基を置換基として有することが好ましく、アルキル基を置換基として有することがより好ましい。
 ArA2は、フェニレン基を表し、このフェニレン基は置換基を有していてもよい。
 ArA4で表されるアリーレン基は、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)~式(A-11)または式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 ArA4で表される2価の複素環基は、より好ましくは式(B-1)、式(B-2)または式(B-7)~式(B-26)で表される基であり、これらの基は置換基を有していてもよい。
 ArA4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基および2価の複素環基のより好ましい範囲は、それぞれ、ArA2およびArA4で表されるアリーレン基および2価の複素環基のより好ましい範囲と同じである。
 ArA4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、例えば、下記式で表される基が挙げられ、これらは置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000035
[式中、RXXは、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RXXは、好ましくはアルキル基、シクロアルキル基またはアリール基であり、これらの基は置換基を有していてもよい。
 ArA4は、好ましくはアリーレン基であり、このアリーレン基は置換基を有していてもよい。
 RA1、RA2およびRA3は、好ましくはアルキル基、シクロアルキル基、アリール基または1価の複素環基であり、より好ましくはアリール基または1価の複素環基であり、これらの基は置換基を有していてもよい。但し、a2が0である場合、RA1は2つ以上の環が縮合したアリール基(該アリール基の環を構成する炭素原子数は10以上である。すなわち、該2つ以上の環が縮合したアリール基の環を構成する炭素原子数は10以上である)、または、2つ以上の環が縮合した1価の複素環基(該1価の複素環基の環を構成する炭素原子数およびヘテロ原子数の合計は10以上である。すなわち、該2つ以上の環が縮合した1価の複素環基の環を構成する炭素原子数およびヘテロ原子数の合計は10以上である)であり、これらの基は置換基を有していてもよい。
 RA1は、本発明の高分子化合物を用いた発光素子の外部量子収率が優れるので、アリール基AA群から選ばれる基、または、1価の複素環基BB群から選ばれる基が好ましく、式(AA-1)~式(AA-3)、式(BB-1)~式(BB-4)、式(BB-6)、式(BB-9)または式(BB-10)がより好ましく、式(AA-1)、式(AA-3)、式(BB-1)、式(BB-3)、式(BB-4)または式(BB-10)が更に好ましい。
 本発明の高分子化合物を用いた発光素子の外部量子収率がより優れるので、RA1およびRA2およびRA3からなる群から選ばれる少なくとも1つは、置換基を有していてもよいフルオレン環から環を構成する炭素原子に直接結合する水素原子1個を除いた基であることが好ましい。
 ArA1およびArA3で表される基が有していてもよい置換基(すなわち、隣接する構成単位と結合を形成する原子の隣の原子以外の原子が有していてもよい置換基)としては、好ましくはアルキル基、シクロアルキル基またはアリール基であり、これらの基は更に置換基を有していてもよい。
 ArA2、ArA4、RA1、RA2およびRA3で表される基が有してもよい置換基としては、好ましくはアルキル基、シクロアルキル基またはアリール基であり、これらの基は更に置換基を有していてもよい。
 式(1)で表される構成単位は、本発明の高分子化合物を用いた発光素子の外部量子収率がより優れるので、式(2)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000036
[式中、a1、ArA1、ArA2、ArA3、RA1およびRA2は、前記と同じ意味を表す。]
 式(2)で表される構成単位は、本発明の高分子化合物を用いた発光素子の外部量子収率がより優れるので、式(3)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000037
[式中、
 a1、ArA2、RA1およびRA2は、前記と同じ意味を表す。
 R1aは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するR1aは、同一でも異なっていてもよい。
 R2aは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基またはハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するR2aは、同一でも異なっていてもよい。]
 式(3)で表される構成単位は、本発明の高分子化合物を用いた発光素子の外部量子収率がより優れるので、式(4)で表される構成単位であることが好ましい。
 式(1)で表される構成単位の含有量は、本発明の高分子化合物の正孔輸送性が優れるので、高分子化合物に含まれる構成単位の合計含有量に対して、0.1~90モル%であることが好ましく、30~80モル%であることがより好ましく、40~60モル%であることが更に好ましい。
 式(1)で表される構成単位としては、例えば、式(1-1)~(1-16)で表される構成単位が挙げられ、好ましくは式(1-1)~(1-6)、式(1-10)、式(1-11)または式(1-13)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
 本発明の高分子化合物において、式(1)で表される構成単位は、1種のみ含まれていても、2種以上含まれていてもよい。
 本発明の高分子化合物は、更に、式(1X)で表される構成単位および式(1Z)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含んでいてもよい。
 [式(1X)で表される構成単位]
 xa1は、本発明の高分子化合物を用いた発光素子の外部量子収率がより優れるので、好ましくは2以下の整数であり、より好ましくは0または1であり、さらに好ましくは0である。
 xa2は、本発明の高分子化合物を用いた発光素子の外部量子収率がより優れるので、好ましくは2以下の整数であり、より好ましくは0または1であり、さらに好ましくは0である。
 ArX1、ArX2、ArX3およびArX4で表されるアリーレン基は、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)~式(A-11)または式(A-19)で表される基であり、これらの基は置換基を有していてもよい。但し、ArX1およびArX3で表されるアリーレン基は、隣接する構成単位と結合を形成する原子の隣の原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を置換基として有さない。
 ArX1、ArX2、ArX3およびArX4で表される2価の複素環基は、より好ましくは式(AA-1)、式(AA-2)または式(AA-7)~式(AA-26)で表される基であり、これらの基は置換基を有していてもよい。但し、ArX1およびArX3で表される2価の複素環基は、隣接する構成単位と結合を形成する原子の隣の原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を置換基として有さない。
 ArX2およびArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基および2価の複素環基のより好ましい範囲は、それぞれ、ArX2およびArX4で表されるアリーレン基および2価の複素環基のより好ましい範囲と同じである。
 ArX2およびArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、前述のArA2およびArA4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基の例と同じ例が挙げられる。
 ArX1、ArX2、ArX3およびArX4は、好ましくはアリーレン基であり、このアリーレン基は置換基を有していてもよい。
 RX1、RX2およびRX3は、好ましくはアルキル基、シクロアルキル基、アリール基または1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 ArX1、ArX2、ArX3、ArX4、RX1、RX2およびRX3で表される基が有してもよい置換基としては、好ましくはアルキル基、シクロアルキル基またはアリール基であり、これらの基は更に置換基を有していてもよい。
 式(1X)で表される構成単位としては、好ましくは式(1X-1)~(1X-11)で表される構成単位であり、より好ましくは式(1X-1)~(1X-7)で表される構成単位であり、更に好ましくは式(1X-1)~(1X-6)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
[式中、RX4およびRX5は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基またはシアノ基を表し、これらの基は置換基を有していてもよい。複数存在するRX4は、同一でも異なっていてもよい。複数存在するRX5は、同一でも異なっていてもよく、隣接するRX5同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 式(1X)で表される構成単位の含有量は、本発明の高分子化合物を用いた発光素子の外部量子収率が優れるので、高分子化合物に含まれる構成単位の合計含有量に対して、1~80モル%であることが好ましく、1~60モル%であることがより好ましく、1~50モル%であることが更に好ましい。
 式(1X)で表される構成単位としては、例えば、式(11X-1)~(11X-28)で表される構成単位が挙げられ、好ましくは式(11X-1)~(11X-18)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
 本発明の高分子化合物において、式(1X)で表される構成単位は、1種のみ含まれていても、2種以上含まれていてもよい。
 [式(1Z)で表される構成単位]
 RZ1は、本発明の高分子化合物を用いた発光素子の外部量子収率がより優れるので、好ましくはアルキル基、シクロアルキル基、アリール基または1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 1zは、本発明の高分子化合物を用いた発光素子の外部量子収率がより優れるので、好ましくは0または1であり、より好ましくは0である。
 RZ2は、本発明の高分子化合物の合成が容易になるため、好ましくはアルキル基、シクロアルキル基またはアリール基であり、より好ましくはアルキル基であり、これらの基は置換基を有していてもよい。
 XZ1は、本発明の高分子化合物を用いた発光素子の外部量子収率がより優れるので、好ましくは単結合、酸素原子、-CRZ11Z12-で表される基、または、―SiRZ13Z14-で表される基であり、より好ましくは単結合、酸素原子または-CRZ11Z12-で表される基である。RZ11、RZ12、RZ13およびRZ14は、好ましくはアルキル基、シクロアルキル基またはアリール基であり、より好ましくはアルキル基またはアリール基である。
 式(1Z)で表される構成単位としては、好ましくは式(1Z-1)~(1Z-5)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000055
[式中、RZ1、1z、RZ2、RZ11、RZ12、RZ13およびRZ14は、前記と同じ意味を表す。]
 式(1Z)で表される構成単位の含有量は、本発明の高分子化合物を用いた発光素子の外部量子収率がより優れるので、高分子化合物に含まれる構成単位の合計含有量に対して、0.1~99.8モル%であることが好ましく、0.1~60モル%であることがより好ましく、0.1~50モル%であることが更に好ましい。
 式(1Z)で表される構成単位としては、例えば、式(11Z-1)~(11Z-9)で表される構成単位が挙げられ、好ましくは式(11Z-1)~(11Z-5)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000056
 本発明の高分子化合物において、式(1Z)で表される構成単位は、1種のみ含まれていても、2種以上含まれていてもよい。
 [式(1)で表される構成単位、式(1X)で表される構成単位および式(1Z)で表される構成単位の構成連鎖、モル比等]
 本発明の高分子化合物は、本発明の高分子化合物を用いた発光素子の外部量子収率がより優れるので、式(1)で表される構成単位と、式(1X)で表される構成単位および式(1Z)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位とが、隣り合う構成連鎖を含むことが好ましく、式(1)で表される構成単位と、式(1X)で表される構成単位とが、隣り合う構成連鎖を含むことがより好ましい。
 本発明の高分子化合物は、正孔輸送性が優れるので、式(1)で表される構成単位、式(1X)で表される構成単位および式(1Z)で表される構成単位の合計含有量が、高分子化合物に含まれる構成単位の合計含有量に対して、40~100モル%であることが好ましい。
 [架橋構成単位]
 本発明の高分子化合物は、本発明の高分子化合物の架橋性が優れるので、更に、架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位を含む高分子化合物であることが好ましい。
 架橋基A群から選ばれる架橋基としては、本発明の高分子化合物の架橋性が優れるので、式(XL-1)、(XL-3)、(XL-5)、(XL-7)、(XL-16)または(XL-17)で表される架橋基が好ましく、式(XL-1)または式(XL-17)で表される架橋基が好ましい。架橋基A群から選ばれる少なくとも一種の架橋基を有する構成単位は、後述する式(5)で表される構成単位または式(5’)で表される構成単位であることが好ましいが、下記で表される構成単位であってもよい。
Figure JPOXMLDOC01-appb-C000057
 架橋基A群から選ばれる少なくとも1種の架橋基を有する構成単位は、本発明の高分子化合物を用いた発光素子の外部量子収率がより優れるので、式(5)で表される構成単位または式(5’)で表される構成単位であることが好ましい。但し、式(5’)で表される構成単位は、式(1)で表される構成単位、式(1X)で表される構成単位、式(1Z)で表される構成単位とは異なる。
 [式(5)で表される構成単位]
 nAは、本発明の高分子化合物を用いた発光素子の輝度寿命が優れるので、好ましくは0または1であり、より好ましくは0である。
 nは、本発明の高分子化合物を用いた発光素子の輝度寿命が優れるので、好ましくは2である。
 Arは、本発明の高分子化合物を用いた発光素子の輝度寿命が優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
 Arで表される芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 Arで表される芳香族炭化水素基のn個の置換基を除いたアリーレン基部分としては、好ましくは、式(A-1)~式(A-20)で表される基であり、より好ましくは、式(A-1)、式(A-2)、式(A-6)~式(A-10)、式(A-19)または式(A-20)で表される基であり、さらに好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)または式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 Arで表される複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 Arで表される複素環基のn個の置換基を除いた2価の複素環基部分としては、好ましくは、式(AA-1)~式(AA-34)で表される基である。
 Arで表される芳香族炭化水素基および複素環基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基およびシアノ基が挙げられる。
 Lで表されるアルキレン基は、置換基の炭素原子数を含めないで、通常1~10であり、好ましくは1~5であり、より好ましくは1~3である。Lで表されるシクロアルキレン基は、置換基の炭素原子数を含めないで、通常3~10である。
 アルキレン基およびシクロアルキレン基は、置換基を有していてもよく、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、シクロヘキシレン基、オクチレン基が挙げられる。
 Lで表されるアルキレン基およびシクロアルキレン基は、置換基を有していてもよい。アルキレン基およびシクロアルキレン基が有していてもよい置換基としては、例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ハロゲン原子およびシアノ基が挙げられる。
 Lで表されるアリーレン基は、置換基を有していてもよい。アリーレン基としては、o-フェニレン、m-フェニレン、p-フェニレンが挙げられる。アリール基が有してもよい置換基としては、例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子、シアノ基および架橋基A群から選ばれる架橋基が挙げられる。
 Lは、本発明の高分子化合物の製造が容易になるため、好ましくはフェニレン基またはアルキレン基であり、これらの基は置換基を有していてもよい。
 Xで表される架橋基としては、本発明の高分子化合物の架橋性が優れるので、好ましくは式(XL-1)、(XL-3)、(XL-5)、(XL-7)、(XL-16)または(XL-17)で表される架橋基であり、より好ましくは式(XL-1)または式(XL-17)で表される架橋基である。
 式(5)で表される構成単位の含有量は、本発明の高分子化合物の安定性および架橋性が優れるので、高分子化合物に含まれる構成単位の合計含有量に対して、0.5~50モル%であることが好ましく、3~30モル%であることがより好ましく、3~20モル%であることが更に好ましい。
 本発明の高分子化合物において、式(5)で表される構成単位は、1種のみ含まれていても、2種以上含まれていてもよい。
 [式(5’)で表される構成単位]
 mAは、本発明の高分子化合物を用いた発光素子の輝度寿命が優れるので、好ましくは0または1であり、より好ましくは0である。
 mは、本発明の高分子化合物を用いた発光素子の輝度寿命が優れるので、好ましくは2である。
 cは、本発明の高分子化合物の製造が容易になり、かつ、本発明の高分子化合物を用いた発光素子の輝度寿命が優れるので、好ましくは0である。
 Arは、本発明の高分子化合物を用いた発光素子の輝度寿命が優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
 Arで表される芳香族炭化水素基のm個の置換基を除いたアリーレン基部分の定義や例は、前述した式(1X)におけるArX2で表されるアリーレン基の定義や例と同じである。
 Arで表される複素環基のm個の置換基を除いた2価の複素環基部分の定義や例は、前述した式(1X)におけるArX2で表される2価の複素環基部分の定義や例と同じである。
 Arで表される少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環が直接結合した基のm個の置換基を除いた2価の基の定義や例は、前述した式(1X)におけるArX2で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基の定義や例と同じである。
 ArおよびArは、本発明の高分子化合物を用いた発光素子の輝度寿命が優れるので、好ましくは置換基を有していてもよいアリーレン基である。
 ArおよびArで表されるアリーレン基の定義や例は、前述した式(1X)におけるArX1およびArX3で表されるアリーレン基の定義や例と同じである。
 ArおよびArで表される2価の複素環基の定義や例は、前述した式(1X)におけるArX1およびArX3で表される2価の複素環基の定義や例と同じである。
 Ar、ArおよびArで表される基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基およびシアノ基が挙げられる。
 Kで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例は、それぞれ、Lで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例と同じである。
 Kは、本発明の高分子化合物の製造が容易になるので、フェニレン基またはメチレン基であることが好ましい。
 X’で表される架橋基としては、本発明の高分子化合物の架橋性が優れるので、好ましくは式(XL-1)、(XL-3)、(XL-5)、(XL-7)、(XL-16)または(XL-17)で表される架橋基であり、より好ましくは式(XL-1)または式(XL-17)で表される架橋基である。
 式(5’)で表される構成単位の含有量は、本発明の高分子化合物の安定性および架橋性が優れるので、高分子化合物に含まれる構成単位の合計含有量に対して、0.5~50モル%であることが好ましく、3~30モル%であることがより好ましく、3~20モル%であることが更に好ましい。
 本発明の高分子化合物において、式(5’)で表される構成単位は、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 [式(5)または(5')で表される構成単位の好ましい態様]
 式(5)で表される構成単位としては、例えば、式(5-1)~式(5-30)で表される構成単位が挙げられ、式(5')で表される構成単位としては、例えば、式(5'-1)~式(5'-9)で表される構成単位が挙げられる。これらの中でも、本発明の高分子化合物の架橋性が優れるので、好ましくは式(5-1)~式(5-30)で表される構成単位であり、より好ましくは式(5-1)~式(5-15)、式(5-19)、式(5-20)、式(5-23)、式(5-25)または式(5-30)で表される構成単位であり、更に好ましくは式(5-1)~式(5-9)または式(5-30)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
 [その他の構成単位]
 本発明の高分子化合物は、更に、下記式(Y)で表される構成単位を含んでいてもよい。但し、式(Y)で表される構成単位は、式(1Z)で表される構成単位とは異なる。
Figure JPOXMLDOC01-appb-C000061
[式中、ArY1は、アリーレン基、2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
 ArY1で表されるアリーレン基は、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)~式(A-11)、式(A-13)または式(A-19)で表される基であり、更に好ましくは式(A-1)、式(A-7)、式(A-9)または式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 ArY1で表される2価の複素環基は、より好ましくは式(B-4)、式(B-13)または式(B-15)で表される基であり、更に好ましくは式(B-4)で表される基であり、これらの基は置換基を有していてもよい。
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基および2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基および2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、前述した式(X)のArX2およびArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基と同様のものが挙げられる。
 ArY1で表される基が有してもよい置換基は、好ましくはアルキル基、シクロアルキル基またはアリール基であり、これらの基は更に置換基を有していてもよい。
 式(Y)で表される構成単位としては、例えば、式(Y-1)~(Y-4)で表される構成単位が挙げられ、本発明の高分子化合物を用いた発光素子の輝度寿命の観点からは、好ましくは式(Y-1)または(Y-2)で表される構成単位であり、電子輸送性の観点からは、好ましくは式(Y-3)または(Y-4)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000062
[式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 RY1は、好ましくは水素原子、アルキル基、シクロアルキル基またはアリール基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000063
[式中、RY1は前記と同じ意味を表す。XY1は、-C(RY2)2-、-C(RY2)=C(RY2)-または-C(RY2)2-C(RY2)2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 RY2は、好ましくはアルキル基、シクロアルキル基、アリール基または1価の複素環基であり、より好ましくはアルキル基、シクロアルキル基またはアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2)2-で表される基中の2個のRY2の組み合わせは、好ましくは双方がアルキル基もしくはシクロアルキル基、双方がアリール基、双方が1価の複素環基、または、一方がアルキル基もしくはシクロアルキル基で他方がアリール基もしくは1価の複素環基であり、より好ましくは一方がアルキル基もしくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-で表される基としては、好ましくは式(Y-A1)~(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000064
 XY1において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは双方がアルキル基もしくはシクロアルキル基、または、一方がアルキル基もしくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2)2-C(RY2)2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基またはシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-C(RY2)2-で表される基は、好ましくは式(Y-B1)~(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000065
[式中、RY2は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000066
[式中、RY1は前記と同じ意味を表す。RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RY3は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 式(Y)で表される構成単位としては、例えば、式(Y-11)~(Y-51)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
 式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位の含有量は、本発明の高分子化合物を用いた発光素子の輝度寿命が優れるので、高分子化合物に含まれる構成単位の合計含有量に対して、0.5~80モル%であることが好ましく、5~30モル%であることがより好ましい。
 式(Y)で表される構成単位であって、ArY1が2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である構成単位の含有量は、本発明の高分子化合物を用いた発光素子の電荷輸送性が優れるので、高分子化合物に含まれる構成単位の合計含有量に対して、0.5~30モル%であることが好ましく、3~30モル%であることがより好ましい。
 本発明の高分子化合物において、式(Y)で表される構成単位は、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 本発明の高分子化合物としては、例えば、表1および表2に示す高分子化合物P-1~P-24が挙げられる。
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080

[表中、p、q、r、s、t、uおよびvは、各構成単位のモル比率を表す。p+q+r+s+t+u+v=100であり、かつ、70≦p+q+r+s+t≦100である。その他の構成単位とは、式(1)、式(1X)、式(1Z)、式(5)、式(5’)および式(Y)で表される構成単位以外の構成単位を意味する。]
 高分子化合物P-1~P-24における、式(1)、式(1X)、式(1Z)、式(5)、式(5’)および式(Y)で表される構成単位の例および好ましい範囲は、上述のとおりである。
 本発明の高分子化合物の末端基は、重合活性基がそのまま残っていると、高分子化合物を発光素子の作製に用いた場合に発光特性や輝度寿命が低下する可能性があるので、好ましくは安定な基である。この末端基としては、主鎖と共役結合している基が好ましく、炭素-炭素結合を介してアリール基または1価の複素環基と結合している基が挙げられる。
 本発明の高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合してなる共重合体であることが好ましい。
 <高分子化合物の製造方法>
 次に、本発明の高分子化合物の製造方法について説明する。
 本発明の高分子化合物は、例えば、式(M-1)で表される化合物と、他の化合物(例えば、式(M-1X)で表される化合物、式(M-1Z)で表される化合物、式(M-5)で表される化合物、式(M-5’)で表される化合物および式(M-Y)で表される化合物からなる群から選ばれる少なくとも1種の化合物)とを縮合重合させることにより製造することができる。本明細書において、本発明の高分子化合物の製造に使用される化合物を総称して、「原料モノマー」ということがある。
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
[式中、
 a1、a2、ArA1、ArA2、ArA3、ArA4、RA1、RA2、RA3、xa1、xa2、ArX1、ArX2、ArX3、ArX4、RX1、RX2、RX3、RZ1、RZ2、XZ1、nA、n、Ar、L、X、mA、m、c、Ar、Ar、Ar、KおよびX’は、前記と同じ意味を表す。
 ZC1~ZC12は、それぞれ独立に、置換基A群および置換基B群からなる群から選ばれる基を表す。]
 例えば、ZC1およびZC2が置換基A群から選ばれる基である場合、ZC3~ZC12は、置換基B群から選ばれる基を選択する。
 例えば、ZC1およびZC2が置換基B群から選ばれる基である場合、ZC33~ZC12は置換基A群から選ばれる基を選択する。
 <置換基A群>
 塩素原子、臭素原子、ヨウ素原子、-O-S(=O)2C1(式中、RC1は、アルキル基、シクロアルキル基またはアリール基を表し、これらの基は置換基を有していてもよい。)で表される基。
 <置換基B群>
 -B(ORC2)2(式中、RC2は、水素原子、アルキル基、シクロアルキル基またはアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC2は同一でも異なっていてもよく、互いに連結して、それぞれが結合する酸素原子とともに環構造を形成していてもよい。)で表される基;
 -BF3Q'(式中、Q'は、Li、Na、K、RbまたはCsを表す。)で表される基;
 -MgY'(式中、Y'は、塩素原子、臭素原子またはヨウ素原子を表す。)で表される基;
 -ZnY''(式中、Y''は、塩素原子、臭素原子またはヨウ素原子を表す。)で表される基;および、
 -Sn(RC3)3(式中、RC3は、水素原子、アルキル基、シクロアルキル基またはアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC3は同一でも異なっていてもよく、互いに連結して、それぞれが結合するスズ原子とともに環構造を形成していてもよい。)で表される基。
 -B(ORC2)2で表される基としては、下記式で表される基が例示される。
Figure JPOXMLDOC01-appb-C000085
 置換基A群から選ばれる基を有する化合物と置換基B群から選ばれる基を有する化合物とは、公知のカップリング反応により縮合重合して、置換基A群から選ばれる基および置換基B群から選ばれる基と結合する炭素原子同士が結合する。そのため、置換基A群から選ばれる基を2個有する化合物と、置換基B群から選ばれる基を2個有する化合物を公知のカップリング反応に供すれば、縮合重合により、これらの化合物の縮合重合体を得ることができる。
 縮合重合は、通常、触媒、塩基および溶媒の存在下で行なわれるが、必要に応じて、相間移動触媒を共存させて行ってもよい。
 触媒としては、例えば、ジクロロビス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム、パラジウム[テトラキス(トリフェニルホスフィン)]、[トリス(ジベンジリデンアセトン)]ジパラジウム、パラジウムアセテート等のパラジウム錯体、ニッケル[テトラキス(トリフェニルホスフィン)]、[1,3-ビス(ジフェニルホスフィノ)プロパン]ジクロロニッケル、[ビス(1,4-シクロオクタジエン)]ニッケル等のニッケル錯体等の遷移金属錯体;これらの遷移金属錯体が、更にトリフェニルホスフィン、トリ-o-トリルホスフィン、トリ-tert-ブチルホスフィン、トリシクロヘキシルホスフィン、ジフェニルホスフィノプロパン、ビピリジル等の配位子を有する錯体が挙げられる。触媒は、一種単独で用いても二種以上を併用してもよい。
 触媒の使用量は、原料モノマーのモル数の合計に対する遷移金属の量として、通常、0.00001~3モル当量である。
 塩基および相間移動触媒としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化カリウム、フッ化セシウム、リン酸三カリウム等の無機塩基;フッ化テトラブチルアンモニウム、水酸化テトラブチルアンモニウム等の有機塩基;塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム等の相間移動触媒が挙げられる。塩基および相間移動触媒は、それぞれ、一種単独で用いても二種以上を併用してもよい。
 塩基および相間移動触媒の使用量は、それぞれ、原料モノマーの合計モル数に対して、通常0.001~100モル当量である。
 溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等の有機溶媒、水が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。
 溶媒の使用量は、通常、原料モノマーの合計100重量部に対して、10~100000重量部である。
 縮合重合の反応温度は、通常-100~200℃である。縮合重合の反応時間は、通常1時間以上である。
 重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過した後、乾燥させる方法等を単独、または組み合わせて行う。高分子化合物の純度が低い場合、例えば、再結晶、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。
 式(M-1)で表される化合物の一実施形態である式(1m-1)で表される化合物は、例えば、下記で表される方法で合成することができる。
Figure JPOXMLDOC01-appb-C000086

[式中、RA1は、前記と同じ意味を表す。ArA11は、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。但し、ArA11は、臭素原子または前記-B(ORC2)2で表される基と結合を形成する原子の隣の原子の少なくとも1つが、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を置換基として有し、これらの置換基は更に置換基を有していてもよい。]
 まず、式(1m-6)で表される化合物と、リチウムビス(トリメチルシリル)アミドとを、パラジウム触媒を用いて反応させることにより、式(1m-5)で表される化合物に誘導する。次に、式(1m-5)で表される化合物と、式(1m-4)で表される化合物とを、ブッフバルト・ハートウィッグ反応させることにより、式(1m-3)で表される化合物を合成する。次に、式(1m-3)で表される化合物と、臭素化剤とを反応させることにより、式(1m-2)で表される化合物を合成する。次に、式(1m-2)で表される化合物と、ビスピナコラートジボロンとを、パラジウム触媒を用いて反応させることにより、式(1m-1)で表される化合物を合成することができる。
 式(M-1)で表される化合物の一実施形態である式(2m-1)で表される化合物は、例えば、下記で表される方法で合成することができる。
Figure JPOXMLDOC01-appb-C000087
[式中、
 ArA12は、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。但し、ArA12は、臭素原子または前記-B(ORC2)2で表される基と結合を形成する原子の隣の原子の少なくとも1つが、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を置換基として有し、これらの置換基は更に置換基を有していてもよい。
 ArA2は、前記と同じ意味を表す。RA11は、前記RA1と同じ意味を表す。]
 まず、式(2m-8)で表される化合物と、リチウムビス(トリメチルシリル)アミドとを、パラジウム触媒を用いて反応させることによりにより、式(2m-7)で表される化合物に誘導する。次に、式(2m-7)で表される化合物と、式(2m-6)で表される化合物とを、ブッフバルト・ハートウィッグ反応させることにより、式(2m-5)で表される化合物を合成する。次に、式(2m-5)で表される化合物と、式(2m-4)で表される化合物とを、ブッフバルト・ハートウィッグ反応させることにより、式(2m-3)で表される化合物を合成する。次に、式(2m-3)で表される化合物と、臭素化剤とを反応させることにより、式(2m-2)で表される化合物を合成する。次に、式(2m-2)で表される化合物と、ビスピナコラートジボロンとを、パラジウム触媒を用いて反応させることにより、式(2m-1)で表される化合物を合成することができる。
 <組成物>
 本発明の組成物は、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤および溶媒からなる群から選ばれる少なくとも1種の材料と、本発明の高分子化合物とを含有する。
 本発明の高分子化合物および溶媒を含有する組成物(以下、「インク」ということがある。)は、インクジェットプリント法、ノズルプリント法等の印刷法を用いた発光素子の作製に好適である。
 インクの粘度は、印刷法の種類によって調整すればよいが、インクジェットプリント法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまりと飛行曲がりを防止するために、好ましくは25℃において1~20mPa・sである。
 インクに含まれる溶媒は、該インク中の固形分を溶解または均一に分散できる溶媒が好ましい。溶媒としては、例えば、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。
 インクにおいて、溶媒の配合量は、本発明の高分子化合物100重量部に対して、通常、1000~100000重量部であり、好ましくは2000~20000重量部である。
 [正孔輸送材料]
 正孔輸送材料は、低分子化合物と高分子化合物とに分類され、高分子化合物が好ましく、架橋基を有する高分子化合物がより好ましい。
 高分子化合物としては、例えば、ポリビニルカルバゾールおよびその誘導体;側鎖または主鎖に芳香族アミン構造を有するポリアリーレンおよびその誘導体が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノン等が挙げられ、好ましくはフラーレンである。
 本発明の組成物において、正孔輸送材料の配合量は、本発明の高分子化合物100重量部に対して、通常、1~400重量部であり、好ましくは5~150重量部である。
 正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
 [電子輸送材料]
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン、および、ジフェノキノン、並びに、これらの誘導体が挙げられる。
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、および、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
 本発明の組成物において、電子輸送材料の配合量は、本発明の高分子化合物100重量部に対して、通常、1~400重量部であり、好ましくは5~150重量部である。
 電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
 [正孔注入材料および電子注入材料]
 正孔注入材料および電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料および電子注入材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン、および、ポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖または側鎖に含む重合体等の導電性高分子が挙げられる。
 本発明の組成物において、正孔注入材料および電子注入材料の配合量は、各々、本発明の高分子化合物100重量部に対して、通常、1~400重量部であり、好ましくは5~150重量部である。
 正孔注入材料および電子注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
 [イオンドープ]
 正孔注入材料または電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm~1×103S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
 ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
 ドープするイオンは、一種のみでも二種以上でもよい。
 [発光材料]
 発光材料は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、ナフタレンおよびその誘導体、アントラセンおよびその誘導体、ペリレンおよびその誘導体、並びに、イリジウム、白金またはユーロピウムを中心金属とする三重項発光錯体が挙げられる。
 高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、式(1)で表される基、式(1X)で表される基、カルバゾールジイル基、フェノキサジンジイル基、フェノチアジンジイル基、アントラセンジイル基、ピレンジイル基等を含む高分子化合物が挙げられる。
 発光材料は、低分子化合物および高分子化合物を含んでいてもよく、好ましくは、三重項発光錯体および高分子化合物を含む。
 三重項発光錯体としては、式Ir-1~Ir-5で表される金属錯体等のイリジウム錯体が好ましい。
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
[式中、
 RD1~RD8、RD11~RD20、RD21~RD26およびRD31~RD37は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基またはハロゲン原子を表し、これらの基は置換基を有していてもよい。RD1~RD8、RD11~RD20、RD21~RD26およびRD31~RD37が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 -AD1---AD2-は、アニオン性の2座配位子を表し、AD1およびAD2は、それぞれ独立に、イリジウム原子と結合する炭素原子、酸素原子または窒素原子を表し、これらの原子は環を構成する原子であってもよい。-AD1---AD2-が複数存在する場合、それらは同一でも異なっていてもよい。
 nD1は、1、2または3を表し、nD2は、1または2を表す。]
 式Ir-1で表される金属錯体において、好ましくはRD1~RD8の少なくとも1つは式(D-A)で表される基である。
 式Ir-2で表される金属錯体において、好ましくはRD11~RD20の少なくとも1つは式(D-A)で表される基である。
 式Ir-3で表される金属錯体において、好ましくはRD1~RD8およびRD11~RD20の少なくとも1つは式(D-A)で表される基である。
 式Ir-4で表される金属錯体において、好ましくはRD21~RD26の少なくとも1つは式(D-A)で表される基である。
 式Ir-5で表される金属錯体において、好ましくはRD31~RD37の少なくとも1つは式(D-A)で表される基である。
Figure JPOXMLDOC01-appb-C000091
[式中、
 mDA1、mDA2およびmDA3は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基または複素環基を表し、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2およびArDA3は、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2およびArDA3が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
 mDA1、mDA2およびmDA3は、通常10以下の整数であり、好ましくは5以下の整数であり、より好ましくは0または1である。mDA1、mDA2およびmDA3は、同一の整数であることが好ましい。
 GDAは、好ましくは式(GDA-11)~(GDA-15)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000092
[式中、
 *、**および***は、各々、ArDA1、ArDA2、ArDA3との結合を表す。
 RDAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数ある場合、それらは同一でも異なっていてもよい。]
 RDAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基またはシクロアルコキシ基であり、より好ましくは水素原子、アルキル基またはシクロアルキル基であり、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2およびArDA3は、好ましくは式(ArDA-1)~(ArDA-3)で表される基である。
Figure JPOXMLDOC01-appb-C000093
[式中、
 RDAは前記と同じ意味を表す。
 RDBは、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数ある場合、それらは同一でも異なっていてもよい。]
 TDAは、好ましくは式(TDA-1)~(TDA-3)で表される基である。
Figure JPOXMLDOC01-appb-C000094
[式中、RDAおよびRDBは前記と同じ意味を表す。]
 式(D-A)で表される基は、好ましくは式(D-A1)~(D-A3)で表される基である。
Figure JPOXMLDOC01-appb-C000095
[式中、
 Rp1、Rp2およびRp3は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基またはハロゲン原子を表す。Rp1およびRp2が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np1は、0~5の整数を表し、np2は0~3の整数を表し、np3は0または1を表す。複数あるnp1は、同一でも異なっていてもよい。]
 np1は、好ましくは0または1であり、より好ましくは1である。np2は、好ましくは0または1であり、より好ましくは0である。np3は好ましくは0である。
 Rp1、Rp2およびRp3は、好ましくはアルキル基またはシクロアルキル基である。
 -AD1---AD2-で表されるアニオン性の2座配位子としては、例えば、下記式で表される配位子が挙げられる。
Figure JPOXMLDOC01-appb-C000096
[式中、*は、Irと結合する部位を表す。]
 式Ir-1で表される金属錯体としては、好ましくは式Ir-11~Ir-13で表される金属錯体である。式Ir-2で表される金属錯体としては、好ましくは式Ir-21で表される金属錯体である。式Ir-3で表される金属錯体としては、好ましくは式Ir-31~Ir-33で表される金属錯体である。式Ir-4で表される金属錯体としては、好ましくは式Ir-41~Ir-43で表される金属錯体である。式Ir-5で表される金属錯体としては、好ましくは式Ir-51~Ir-53で表される金属錯体である。
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
[式中、
 nD2は、1または2を表す。
 Dは、式(D-A)で表される基を表す。複数存在するDは、同一でも異なっていてもよい。
 RDCは、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRDCは、同一でも異なっていてもよい。
 RDDは、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRDDは、同一でも異なっていてもよい。]
 三重項発光錯体としては、例えば、以下に示す金属錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
 本発明の組成物において、発光材料の含有量は、本発明の高分子化合物100重量部に対して、通常、0.1~400重量部である。
 [酸化防止剤]
 酸化防止剤は、本発明の高分子化合物と同じ溶媒に可溶であり、発光および電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
 本発明の組成物において、酸化防止剤の配合量は、本発明の高分子化合物100重量部に対して、通常、0.001~10重量部である。
 酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
 <膜>
 膜は、本発明の高分子化合物をそのまま含有していてもよいし、本発明の高分子化合物が、分子内もしくは分子間、または、分子内および分子間で架橋した状態(架橋体)で含有されていてもよい。本発明の高分子化合物の架橋体は、本発明の高分子化合物と、他の化合物とが、分子間で架橋した架橋体であってもよい。本発明の高分子化合物の架橋体を含有する膜は、本発明の高分子化合物を含有する膜を、加熱、光照射等の外部刺激により架橋させて得られる膜である。本発明の高分子化合物の架橋体を含有する膜は、溶媒に対して実質的に不溶化されているため、後述する発光素子の積層化に好適に使用することができる。
 膜を架橋させるための加熱の温度は、通常、25~300℃であり、外部量子収率が良好になるので、好ましくは50~250℃であり、より好ましくは150~200℃である。
 膜を架橋させるための光照射に用いられる光の種類は、例えば、紫外光、近紫外光、可視光である。
 膜は、発光素子における正孔輸送層または正孔注入層として好適である。
 膜は、インクを用いて、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法により作製することができる。
 膜の厚さは、通常、1nm~10μmである。
 <発光素子>
 本発明の発光素子は、本発明の高分子化合物を用いて得られる有機エレクトロルミネッセンス等の発光素子であり、該発光素子には、例えば、本発明の高分子化合物を含む発光素子、本発明の高分子化合物が分子内、分子間、または、それらの両方で架橋した状態(架橋体)を含む発光素子がある。
 本発明の発光素子の構成としては、例えば、陽極および陰極からなる電極と、該電極間に設けられた本発明の高分子化合物を用いて得られる層とを有する。
 [層構成]
 本発明の高分子化合物を用いて得られる層は、通常、発光層、正孔輸送層、正孔注入層、電子輸送層、電子注入層の1種以上の層であり、好ましくは、正孔輸送層である。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を含む。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を、上述した溶媒に溶解させ、インクを調製して用い、上述した膜の作製と同じ方法を用いて形成することができる。
 発光素子は、陽極と陰極の間に発光層を有する。本発明の発光素子は、正孔注入性および正孔輸送性の観点からは、陽極と発光層との間に、正孔注入層および正孔輸送層の少なくとも1層を有することが好ましく、電子注入性および電子輸送性の観点からは、陰極と発光層の間に、電子注入層および電子輸送層の少なくとも1層を有することが好ましい。
 正孔輸送層、電子輸送層、発光層、正孔注入層、および、電子注入層の材料としては、本発明の高分子化合物の他、各々、上述した正孔輸送材料、電子輸送材料、発光材料、正孔注入材料、および、電子注入材料が挙げられる。
 正孔輸送層の材料、電子輸送層の材料、および、発光層の材料は、発光素子の作製において、各々、正孔輸送層、電子輸送層、および、発光層に隣接する層の形成時に使用される溶媒に溶解する場合、該溶媒に該材料が溶解することを回避するために、該材料が架橋基を有することが好ましい。架橋基を有する材料を用いて各層を形成した後、該架橋基を架橋させることにより、該層を不溶化させることができる。
 本発明の発光素子において、発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液または溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液または溶融状態からの成膜による方法が挙げられる。
 積層する層の順番、数、および、厚さは、外部量子収率および素子寿命を勘案して調整すればよい。
 [基板/電極]
 発光素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板の場合には、基板から最も遠くにある電極が透明または半透明であることが好ましい。
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイトおよびグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
 陽極および陰極は、各々、2層以上の積層構造としてもよい。
 [用途]
 発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極もしくは陰極、または両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルターまたは蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、または、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源、および、表示装置としても使用できる。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)およびポリスチレン換算の重量平均分子量(Mw)は、サイズエクスクルージョンクロマトグラフィー(SEC)(島津製作所製、商品名:LC-10Avp)により求めた。なお、SECの測定条件は、次のとおりである。
 [測定条件]
 測定する高分子化合物を約0.05重量%の濃度でTHFに溶解させ、SECに10μL注入した。SECの移動相としてTHFを用い、2.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(島津製作所製、商品名:SPD-10Avp)を用いた。
 液体クロマトグラフ質量分析(LC-MS)は、下記の方法で行った。
 測定試料を約2mg/mLの濃度になるようにクロロホルムまたはTHFに溶解させ、LC-MS(アジレントテクノロジー製、商品名:1100LCMSD)に約1μL注入した。LC-MSの移動相には、アセトニトリルおよびTHFの比率を変化させながら用い、0.2mL/分の流量で流した。カラムは、L-column 2 ODS(3μm)(化学物質評価研究機構製、内径:2.1mm、長さ:100mm、粒径3μm)を用いた。
 NMRの測定は、下記の方法で行った。
 5~10mgの測定試料を約0.5mLの重クロロホルム(CDCl3)、重テトラヒドロフラン(THF-d8)または重塩化メチレン(CD2Cl2)に溶解させ、NMR装置(バリアン(Varian, Inc.)製、商品名:MERCURY 300)を用いて測定した。
 化合物の純度の指標として、高速液体クロマトグラフィー(HPLC)面積百分率の値を用いた。この値は、特に記載がない限り、HPLC(島津製作所製、商品名:LC-20A)での254nmにおける値とする。この際、測定する化合物は、0.01~0.2重量%の濃度になるようにTHFまたはクロロホルムに溶解させ、HPLCに、濃度に応じて1~10μL注入した。HPLCの移動相には、アセトニトリルおよびTHFを用い、1mL/分の流速で、アセトニトリル/THF=100/0~0/100(容積比)のグラジエント分析で流した。カラムは、Kaseisorb LC ODS 2000(東京化成工業製)または同等の性能を有するODSカラムを用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD-M20A)を用いた。
 <合成例1> 化合物2の合成
Figure JPOXMLDOC01-appb-C000108
 反応容器内をアルゴンガス雰囲気とした後、化合物1(199.0g)、ジクロロ[1,3-ビス(ジフェニルホスフィノ)プロパン]ニッケル(15.4g)およびシクロペンチルメチルエーテル(1460mL)を加え、撹拌した。その後、そこへ、メチルマグネシウムブロマイドエーテル溶液(3mol/L、292mL)を1時間かけて加えた。得られた反応液を40℃まで昇温し、40℃で4時間撹拌した。得られた反応液を室温まで冷却した後、塩酸水溶液(1mol/L、200mL)を加えた。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を無水硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体に、トルエンおよび活性炭を加え、30分間攪拌した。得られたトルエン溶液を、シリカゲルおよびセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサンおよび酢酸エチルの混合溶媒)で精製し、イソプロパノールを用いて再結晶した後、50℃で減圧乾燥させることにより、化合物2(81g、白色固体)を得た。化合物2のHPLC面積百分率値は97.2%であった。この操作を繰り返し行うことによって、化合物2の必要量を得た。
 LC-MS(APPI, positive):[M]208.
 <合成例2> 化合物3の合成
Figure JPOXMLDOC01-appb-C000109
 反応容器内を窒素ガス雰囲気とした後、化合物2(96g)およびジクロロメタン(1200mL)を加え、反応容器を氷浴を用いて冷却した。その後、そこへ、臭素(74g)を2時間かけて滴下し、反応容器を氷浴を用いて冷却しながら3時間撹拌した。その後、10重量%亜硫酸ナトリウム水溶液(150mL)を加え、撹拌した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体に、ヘキサン、トルエンおよび活性炭を加え、1時間撹拌した。得られた溶液を、シリカゲルおよびセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体を、トルエンおよびイソプロパノールの混合溶液を用いて再結晶した後、50℃で減圧乾燥させることにより、化合物3(83g、白色固体)を得た。化合物3のHPLC面積百分率値は98.9%であった。
 LC-MS(APPI, positive):[M]286.
 <合成例3> 化合物4の合成
Figure JPOXMLDOC01-appb-C000110
 反応容器内をアルゴンガス雰囲気とした後、化合物3(83.0g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(2.6g)、(2-ビフェニル)ジシクロヘキシルホスフィン(2.4g)およびテトラヒドロフラン(800mL)を加え、攪拌した。その後、そこへ、リチウムビス(トリメチルシリル)アミドテトラヒドロフラン溶液(1.3mol/mL、334mL)を30分間かけて加えた。得られた反応液を65℃に昇温させた後、65℃で4時間攪拌した。その後、反応容器を氷浴を用いて冷却し、塩酸水溶液(2mol/L、800mL)を加え、反応容器を氷浴を用いて冷却しながら1.5時間撹拌した。その後、そこへ、水酸化ナトリウム水溶液(6mol/L、600mL)を加えることで中和した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮した後、ヘキサンを加え、1時間懸濁撹拌した後、ろ過し、黄色固体を得た。得られた黄色固体をヘキサンを用いて懸濁撹拌した後、ろ過した。得られた残渣を、ヘキサンおよびトルエンの混合溶液を用いて再結晶する操作を繰り返した後、50℃で減圧乾燥させることにより、化合物4(40g、淡黄色固体)を得た。化合物4のHPLC面積百分率値は99.1%であった。
 H-NMR(CDCl、300MHz):δ(ppm)=1.43(6H,s),2.40(3H,s),3.72(2H,s),6.64(1H,dd),6.743(1H,d),7.09(1H,d),7.17(1H,d),7.46(2H,d).
 <合成例4> 化合物6の合成
Figure JPOXMLDOC01-appb-C000111
 反応容器内をアルゴンガス雰囲気とした後、化合物4(34.0g)、化合物5(80.8g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(1.4g)、トリ-tert-ブチルホスフィンテトラフルオロボレート塩(0.9g)およびトルエン(680mL)を加え、50℃に昇温し、50℃で攪拌した。その後、そこへ、ナトリウム-tert-ブトキシド(43.9g)を加え、110℃に昇温させた後、110℃で4時間攪拌した。その後、そこへ、トルエンを加え、セライトを敷いたろ過器でろ過した。得られたろ液を、イオン交換水、15重量%の食塩水で順次洗浄した。得られた洗浄液を分液した後、得られた有機層を減圧濃縮することにより粗生成物を得た。得られた粗組成物に、ヘキサンおよび活性炭を加え、1時間撹拌した。得られた溶液を、シリカゲルおよびセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより油状物を得た。得られた油状物をシリカゲルカラムクロマトグラフィー(ヘキサンおよび酢酸エチルの混合溶媒)で精製することにより、化合物6(22g、無色油状物)を得た。化合物6のHPLC面積百分率値は99.5%であった。
 LC-MS(APCI,positive):[M+H]544.
 <合成例5> 化合物7の合成
Figure JPOXMLDOC01-appb-C000112
 反応容器内を窒素ガス雰囲気とした後、化合物6(22g)およびクロロホルム(360mL)を加え、反応容器を氷浴を用いて冷却した。その後、そこへ、N―ブロモスクシイミド(84g)を加え、反応容器を氷浴を用いて冷却しながら6時間撹拌した。その後、10重量%亜硫酸ナトリウム水溶液(50mL)を加え、撹拌した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体に、ヘキサンおよび活性炭を加え、1時間撹拌した。得られた溶液を、シリカゲルおよびセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン)で精製し、アセトンを用いて再結晶した後、50℃で減圧乾燥させることにより、化合物7(12g、白色固体)を得た。化合物7のHPLC面積百分率値は99.5%以上であった。この操作を繰り返し行うことによって、化合物7の必要量を得た。
 LC-MS(APCI,positive):[M+H]700.
 <合成例6> 化合物8の合成
Figure JPOXMLDOC01-appb-C000113
 反応容器内をアルゴンガス雰囲気とした後、ビスピナコールジボロン(14.0g)、シクロペンチルメチルエーテル(60mL)、酢酸カリウム(10.6g)および[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウムジクロライド(0.4g)を加え、100℃に昇温した。その後、そこへ、シクロペンチルメチルエーテル(69mL)に溶解させた化合物7(12.9g)を1時間かけて加え、100℃で5時間攪拌した。得られた反応液を室温まで冷却した後、イオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体に、ヘキサン、トルエンおよび活性炭を加え、1時間撹拌した。得られた溶液を、シリカゲルおよびセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサンおよびトルエンの混合溶媒)で精製した後、50℃で減圧乾燥させることにより、化合物8(8.1g、白色固体)を得た。化合物8のHPLC面積百分率値は99.5%以上であった。
 LC-MS(ESI, positive):[M+K]795.
 H-NMR(CDCl,300MHz):δ(ppm)=0.86(6H,s),1.23-1.53(46H,m),2.42(3H,s),2.74(4H,t),6.88-6.92(4H,m),6.99(1H,d),7.12(1H,d),7.19(2H,d),7.50(1H,d),7.53(1H,d),7.63(2H,d).
 <合成例7> 化合物10の合成
Figure JPOXMLDOC01-appb-C000114
 反応容器内をアルゴンガス雰囲気とした後、化合物9(12.9g)、ビスピナコールジボロン(25.4g)、ジメトキシエタン(280mL)、酢酸カリウム(25.6g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウムジクロライド(3.2g)およびジフェニルホスフィノフェロセン(2.2g)を加え、85℃で7時間攪拌した。その後、そこへ、トルエンを加え、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液した後、得られた有機層を減圧濃縮した。得られた固体に、ヘキサン、トルエンおよび活性炭を加え、1時間撹拌した。得られた溶液を、シリカゲルおよびセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮する操作を3回繰り返すことにより固体を得た。得られた固体を、トルエンおよびアセトニトリルの混合溶媒を用いて再結晶し、次いで、トルエンを用いて再結晶した後、減圧乾燥させることにより、化合物10(11g、白色固体)を得た。化合物10のHPLC面積百分率値は99.5%以上であった。
 LC-MS(apci,positive):[M+H]554.4.
 H-NMR(CDCl,300MHz):δ(ppm)=0.84(3H,t),1.23(3H,d),1.33(24H,s),1.60(2H,dq),2.56(1H,tq),7.07(8H,m),7.66(4H,d).
 <合成例8> 化合物11の合成
Figure JPOXMLDOC01-appb-C000115
 反応容器内をアルゴンガス雰囲気とした後、4-ブロモトルエン(31.5g)、3-エチルカルバゾール(30.0g)、キシレン(1200mL)、酢酸カリウム(1.0g)およびトリ-tert-ブチルホスフィンテトラフルオロボレート塩(2.9g)を加え、攪拌した。その後、そこへ、ナトリウム-tert-ブトキシド(44.3g)を加え、130℃で13時間攪拌した。その後、反応容器を氷浴を用いて冷却し、イオン交換水(200mL)を加えて洗浄した。得られた洗浄液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を濃縮した後、ヘキサンおよび活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮した後、ヘキサンおよび活性白土を加え、室温で30分間撹拌した後、シリカゲルおよびセライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、油状物を得た。得られた油状物を、シリカゲルカラムクロマトグラフィー(ヘキサンおよび酢酸エチルの混合溶媒)で精製し、50℃で減圧乾燥させることにより、化合物11-a(43.0g、油状物)を得た。化合物11-aのHPLC面積百分率値は99.4%であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):1.32(3H,t), 2.48(3H,s), 2.85(2H,q), 7.25-7.41(9H,m), 7.95(1H, s), 8.12(d, 1H).
 反応容器内を窒素ガス雰囲気とした後、化合物11-a(42.0g)およびクロロホルム(330mL)を加え、-10℃に冷却した。その後、そこへ、ベンジルトリメチルアンモニウムトリブロミド(57.4g)を加え、-10℃で10時間撹拌した。その後、そこへ、10重量%亜硫酸ナトリウム水溶液を加え、攪拌した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮することにより白色固体を得た。その後、そこへ、ヘキサン、トルエンおよび活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体にヘキサンを加え、懸濁撹拌した後、ろ過した。得られた固体を、トルエン、メタノールおよびエタノールの混合溶媒を用いて再結晶した後、50℃で減圧乾燥させることにより、化合物11-b(35.0g、白色固体)を得た。化合物11-bのHPLC面積百分率値は99.5%以上であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):1.34(3H,t), 2.48(3H,s), 2.83(2H,q), 7.20(1H,d), 7.28(2H,s),7.39(4H,s), 7.44(dd,1H), 7.89(s,1H), 8.22(d, 1H).
 反応容器内を窒素ガス雰囲気とした後、化合物11-b(34.0g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.9g)、(2-ビフェニル)ジシクロヘキシルホスフィン(0.8g)およびテトラヒドロフラン(136mL)を加え、室温で攪拌した。その後、そこへ、リチウムビス(トリメチルシリル)アミドテトラヒドロフラン溶液(1.3mol/L、108mL)を1時間かけて滴下した後、65℃で4時間攪拌した。反応容器を氷浴を用いて冷却した後、塩酸水溶液(2M、240mL)を加え、反応容器を氷浴を用いて冷却しながら、30分間撹拌したところ、固体が析出した。析出した固体をろ過し、得られた残渣を、トルエンおよびヘキサンの混合溶媒に溶解させた。その後、そこへ、水酸化ナトリウム水溶液(2M、200mL)を加え、中和した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させ、ろ過し、得られたろ液を濃縮した。その後、そこへ、ヘキサン、トルエンおよび活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより、油状物を得た。得られた油状物を、シリカゲルカラムクロマトグラフィー(ヘキサンおよび酢酸エチルの今後溶媒)で精製し、50℃で減圧乾燥させることにより、化合物11-c(19.0g、赤色固体)を得た。化合物11-cのHPLC面積百分率値は99.5%以上であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):1.33(t,3H),2.46(s,3H),2.81(q,2H),6.81(dd,1H),7.18(s,1H),7.21(s,1H),7.25-7.43(m,6H),7.84(s,1H).
 反応容器内をアルゴンガス雰囲気とした後、化合物11-c(17.5g)、3-ブロモヘキシルベンゼン(30.9g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.5g)、トリ-tert-ブチルホスフィンテトラフルオロボレート塩(0.3g)およびトルエン(350mL)を加え、50℃で攪拌した。その後、そこへ、ナトリウム-tert-ブトキシド(16.8g)を加え、110℃で4時間攪拌した。得られた反応混合物を室温まで冷却した後、イオン交換水(100mL)加えて洗浄し、得られた洗浄液を分液した。得られた有機層をイオン交換水で洗浄し、得られた洗浄液を分液した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮した。その後、そこへ、ヘキサンおよび活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、油状物を得た。得られた油状物を、シリカゲルカラムクロマトグラフィー(ヘキサンおよび酢酸エチルの混合溶媒)で精製し、50℃で減圧乾燥させることにより、化合物11-d(24.0g、橙色油状物)を得た。化合物11-dのHPLC面積百分率値は97.6%であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):0.85(6H,t), 1.18-1.36(16H,m), 1.54(4H,m), 2.47(4H,s), 2.48-2.60(2H,m), 2.78(2H,q), 6.77(2H,d), 6.89(2H,d), 6.96(2H,s), 7.07-7.48(10H,m), 7.81(1H,s), 7.90(1H,s).
 反応容器内を窒素ガス雰囲気とした後、化合物11-d(23.3g)およびジクロロメタン(396mL)を加え、-10℃に冷却した。その後、そこへ、ベンジルトリメチルアンモニウムトリブロミド(29.3g)を加え、-10℃で13時間撹拌した。その後、そこへ、10重量%亜硫酸ナトリウム水溶液を加え、攪拌した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮した。その後、そこへ、ヘプタンおよび活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより油状物を得た。得られた油状物を、シリカゲルカラムクロマトグラフィー(ヘキサンおよび酢酸エチルの混合溶媒)で複数回精製し、50℃で減圧乾燥させることにより、化合物11(17.0g、油状物)を得た。化合物11のHPLC面積百分率値は99.5%以上であった。
 LC-MS(APCI,positive):[M+H]+ 777.
 1H-NMR(CDCl3, 300MHz) δ(ppm):0.85(6H,t), 1.19-1.37(15H,m), 1.46-1.69(4H,m), 2.48(3H,s), 2.59(4H,t), 2.79(2H,q), 6.75(2H,dd), 6.96(2H,s), 7.12(1H,d), 7.28-7.46(9H,m),7.82(1H,s), 7.85(1H,s).
 <合成例9> 化合物12の合成
Figure JPOXMLDOC01-appb-C000116
 反応容器内を窒素ガス雰囲気とした後、4-ブロモ-4’,4’’-ジメチルトリフェニルアミン(14.0g)、3,3’-ジメチルジフェニルアミン(7.2g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.3g)、トリ-tert-ブチルホスフィンテトラフルオロボレート塩(0.2g)およびトルエン(143mL)を加え、50℃で攪拌した。その後、そこへ、ナトリウム-tert-ブトキシド(10.5g)を加え、80℃で4時間攪拌した。得られた反応混合物を室温まで冷却した後、イオン交換水(100mL)で洗浄した。得られた洗浄液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮した。その後、そこへ、トルエンおよび活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより白色固体を得た。得られた白色固体を、トルエンおよびメタノールの混合溶媒を用いて再結晶する操作を繰り返した後、50℃で減圧乾燥させることにより、化合物12-a(12.0g、白色固体)を得た。化合物12-aのHPLC面積百分率値は99.5%以上であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):2.26(12H,s), 6.57-7.23(20H,br).
 反応容器内を窒素ガス雰囲気とした後、化合物12-a(11.6g)およびクロロホルム(198mL)を加え、-10℃まで冷却した。その後、そこへ、N-ブロモスクシイミド(8.8g)を加え、-10℃で8時間撹拌した。その後、そこへ、10重量%亜硫酸ナトリウム水溶液を加え、攪拌した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮することにより白色固体を得た。その後、そこへ、ヘキサンおよび活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮した。得られた固体をアセトンを用いて再結晶し、次いで、トルエンおよびメタノールの混合溶媒を用いて再結晶した。その後、そこへ、ヘキサンおよび活性白土を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮した。さらに、得られた固体をトルエンおよびメタノールの混合溶媒を用いて再結晶した後、50℃で減圧乾燥させることにより、化合物12(10.0g、白色固体)を得た。化合物12のHPLC面積百分率値は99.5%以上であった。
 LC-MS(APCI,positive):[M+H]+.625
 1H-NMR(CDCl3, 300MHz) δ(ppm):2.29(s,12H), 6.75(s,2H), 6.91-7.05(br,14H), 7.35(d,2H).
 <合成例10> 化合物13の合成
Figure JPOXMLDOC01-appb-C000117
 反応容器内を窒素ガス雰囲気とした後、マグネシウム(100.9g)、テトラヒドロフラン(2500mL)およびヨウ素(0.1g)を加え、撹拌した。その後、そこへ、1-ブロモヘキサン(604.0g)を加え、60℃で3時間撹拌し、グリニャール試薬を調製した。
 別の反応容器内を窒素ガス雰囲気とした後、2-ブロモ-9,9’-ジメチルフルオレン(250.0g)、ジクロロ[1,3-ビス(ジフェニルホスフィノ)プロパン]ニッケル(37.2g)およびテトラヒドロフラン(2500mL)を加え、撹拌した。その後、そこへ、上記で調製したグリニャール試薬を室温で滴下し、80℃で16時間撹拌した。得られた反応混合物を室温まで冷却した後、塩酸水溶液(1.5M、3000mL)を加え、次いで、酢酸エチルを加えた。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄し、無水硫酸ナトリウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することで油状物を得た。得られた油状物を減圧蒸留することで、化合物13-a(195g、黄色油状物)を得た。化合物13-aのHPLC面積百分率値は98.8%であった。この操作を繰り返し行うことによって、化合物13-aの必要量を得た。
 1H-NMR(CDCl3, 300MHz) δ(ppm):0.91 (t, J = 6.93 Hz, 3H), 1.31-1.42 (m, 6H), 1.49 (s, 6H), 1.63-1.73 (m, 2H), 2.67-2.72 (m, 2H), 7.17 (dd, J = 1.38, 7.71 Hz, 1H), 7.25-7.36 (m, 3H), 7.42-7.44 (m, 1H), 7.64 (d, J = 7.71 Hz, 1H), 7.68-7.71 (m, 1H).
 反応容器内を窒素ガス雰囲気とした後、化合物13-a(354.0g)およびジクロロメタン(3540mL)を加え、反応容器を氷浴を用いて冷却した。その後、そこへ、ジクロロメタン(1770mL)に溶解させた臭素(213.6g)を2時間かけて滴下し、反応容器を氷浴を用いて冷却しながら16時間撹拌した。その後、そこへ、10重量%亜硫酸ナトリウム水溶液を加え、攪拌した。得られた反応液を分液し、得られた有機層をイオン交換水および食塩水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸ナトリウムで乾燥させた後、ろ過し、得られたろ液を濃縮した。得られた濃縮物をシリカゲルカラムクロマトグラフィー(ヘキサンおよび酢酸エチルの混合溶媒)で精製した後、50℃で減圧乾燥させることにより、化合物13-b(250.0g)を得た。化合物13-bのHPLC面積百分率値は97.6%であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):0.90 (t, J = 7.20 Hz, 3H), 1.32-1.40 (m, 6H), 1.48 (s, 6H), 1.63-1.68 (m, 2H), 2.66-2.70 (m, 2H), 7.17 (dd, J = 0.80, 7.80 Hz, 1H), 7.23 (s, 1H), 7.44 (dd, J = 1.60, 8.40 Hz, 1H), 7.54 (s, 1H), 7.55 (d, J = 7.60 Hz, 1H), 7.60 (d, J = 7.60 Hz, 1H).
 反応容器内を窒素ガス雰囲気とした後、化合物13-b(250.0g)、ジフェニルアミン(148.1g)、トリ-tert-ブチルホスフィンテトラフルオロボレート塩(8.1g)、ナトリウム-tert-ブトキシド(168.2g)およびトルエン(2500mL)を加え、50℃で攪拌した。その後、そこへ、トリス(ジベンジリデンアセトン)ジパラジウム(0)(12.8g)を加え、115℃で16時間攪拌した。得られた反応混合物を室温まで冷却した後、セライトを敷いたろ過器でろ過した。得られたろ液に酢酸エチルおよびイオン交換水を加えた後、分液し、得られた有機層をイオン交換水および食塩水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸ナトリウムで乾燥させた後、ろ過し、得られたろ液を濃縮した。得られた濃縮物をさらにシリカゲルカラムクロマトグラフィー(石油エーテルおよび酢酸エチルの混合溶媒)で精製した後、50℃で減圧乾燥させることにより、化合物13-c(166.0g)を得た。化合物13-cのHPLC面積百分率値は99.0%であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):0.92 (t, J = 7.00 Hz, 3H), 1.34-1.39 (m, 6H), 1.42 (s, 6H), 1.64-1.69 (m, 2H), 2.69 (br s, 2H), 7.00-7.05 (m, 3H), 7.14-7.16 (m, 5H), 7.19-7.21 (m, 2H), 7.26-7.29 (m, 4H), 7.55 (d, J = 8.12 Hz, 2H).
 反応容器内を窒素ガス雰囲気とした後、化合物13-c(83.0g)およびクロロホルム(830mL)を加え、-30℃に冷却した。その後、そこへ、N,N-ジメチルホルムアミド(415mL)に溶解させたN-ブロモスクシイミド(66.7g)を45分間かけて滴下した後、室温まで昇温した後、16時間撹拌した。その後、そこへ、イオン交換水を加え、洗浄した。得られた洗浄液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸ナトリウムで乾燥させた後、ろ過し、得られたろ液を濃縮した。得られた濃縮物をシリカゲルカラムクロマトグラフィー(ヘキサン)で精製することにより固体を得た。得られた固体をメタノールを用いて再結晶した後、50℃で減圧乾燥させることにより、化合物13(54.0g、白色固体)を得た。化合物13のHPLC面積百分率値は99.5%以上であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):0.91 (t, J = 7.00 Hz, 3H), 1.34-1.39 (m, 6H), 1.42 (s, 6H), 1.65-1.69 (m, 2H), 2.69 (t, J = 7.60 Hz, 2H), 6.99-7.01 (m, 5H), 7.14-7.17 (m, 2H), 7.22 (s, 1H), 7.35-7.38 (m, 4H), 7.56-7.58 (m, 2H).
 <合成例11> 化合物14の合成
Figure JPOXMLDOC01-appb-C000118
 反応容器内を窒素ガス雰囲気とした後、化合物14-a(154.0g)、トリフルオロ酢酸(200mL)およびクロロホルム(1200mL)を加え、撹拌した。その後、そこへ、クロロホルム(990mL)に溶解させた臭素(99g)を3時間かけて滴下した。その後、そこへ、10重量%亜硫酸ナトリウム水溶液を加え、攪拌した。得られた反応液を分液し、得られた有機層をイオン交換水および飽和炭酸水素ナトリウム水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮した。得られた濃縮物をシリカゲルカラムクロマトグラフィー(ヘキサン)で精製することにより固体を得た。得られた固体に、トルエンおよび活性白土を加え、50℃で30分振とうした。得られた反応混合物を室温まで冷却した後、シリカゲルを敷いた積層ガラスフィルターでろ過した。得られたろ液を減圧濃縮した後、50℃で減圧乾燥させることにより、化合物14-b(193.0g、白色固体)を得た。化合物14-bのHPLC面積百分率値は80.6%であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):1.41-1.92(4H,m), 1.95-2.16(8H,m), 7.04(1H,d), 7.18-7.27(3H,m), 7.36(1H,dd), 7.79(1H,d), 7.87(1H,d).
 反応容器内を窒素ガス雰囲気とした後、化合物14-b(73.0g)、ジクロロ[1,3-ビス(ジフェニルホスフィノ)プロパン]ニッケル(7.0g)およびシクロペンチルメチルエーテル(861mL)を加え、撹拌した。その後、そこへ、メチルマグネシウムブロマイドエーテル溶液(3mol/L、108mL)を1時間かけて滴下し、55℃で6時間撹拌した。得られた反応液を室温まで冷却した後、塩酸水溶液(1M、100mL)を加えた。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を無水硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体に、トルエンおよび活性炭を加え、室温で1時間攪拌した後、シリカゲルおよびセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体をイソプロパノールを用いて再結晶した後、50℃で減圧乾燥させることにより、化合物14-c(44.5g、白色固体)を得た。化合物14-cのHPLC面積百分率値は99.4%であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):1.38-1.71(4H,m), 1.94-2.18(8H,m), 2.36(3H,s), 7.04(1H,d), 7.18-7.27(3H,m), 7.36(1H,dd), 7.79(1H,d), 7.87(1H,d).
 反応容器内を窒素ガス雰囲気とした後、化合物14-c(44.5g)およびジクロロメタン(705mL)を加え、塩化ナトリウムを加えた氷浴を用いて冷却した。その後、そこへ、ジクロロメタン(26mL)に溶解させた臭素(26g)を2時間かけて滴下し、反応容器を塩化ナトリウムを加えた氷浴を用いて冷却しながら5時間撹拌した。その後、そこへ、10重量%亜硫酸ナトリウム水溶液を滴下し、撹拌した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮した。得られた濃縮物に、トルエンおよび活性炭を加え、室温で1時間撹拌した後、シリカゲルおよびセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体を、トルエンおよびイソプロパノールの混合溶液を用いて再結晶した後、50℃で減圧乾燥させることにより、化合物14-d(51.8g、白色固体)を得た。化合物14-dのHPLC面積百分率値は98.9%であった。この操作を繰り返し行うことによって、化合物14-dの必要量を得た。
 反応容器内を窒素ガス雰囲気とした後、化合物14-d(55.0g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(1.4g)、(2-ビフェニル)ジシクロヘキシルホスフィン(1.3g)およびテトラヒドロフラン(220mL)を加え、攪拌した。その後、そこへ、リチウムビス(トリメチルシリル)アミドテトラヒドロフラン溶液(1.3mol/L、180mL)を1時間かけて滴下した後、65℃で5時間攪拌した。反応容器を氷浴を用いて冷却した後、塩酸水溶液(2M、400mL)を加え、反応容器を氷浴を用いて冷却しながら1時間撹拌した。その後、そこへ、水酸化ナトリウム水溶液(2M、400mL)を加え、中和した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮した。得られた濃縮物をアセトニトリルおよびトルエンの混合溶媒に溶解させた後、塩酸水溶液(12M、30mL)を加え、撹拌させた後、濃縮することにより塩酸塩を得た。得られた塩酸塩にヘキサンを加え、30分間懸濁撹拌後、ろ過した。得られた残渣にテトラヒドロフランを加え30分間懸濁撹拌後、ろ過した。得られた残渣に水酸化ナトリウム水溶液(2M、150mL)およびメタノールを加え、撹拌した後、クロロホルムを用いて抽出した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮した。得られた固体をヘキサンおよびトルエンの混合溶液を用いて再結晶した後、50℃で減圧乾燥させることにより、化合物14-e(33.0g、淡黄色固体)を得た。化合物14-eのHPLC面積百分率値は99.5%以上であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):1.39-1.69(4H,m), 1.93-2.15(8H,m), 2.34(3H,s), 3.66(2H,s), 6.57(1H,dd), 6.67(1H,d), 6.99(1H,d), 7.13(1H,s), 7.66(1H,d), 7.69(1H,d).
 反応容器内を窒素ガス雰囲気とした後、化合物14-e(30.7g)、3-ブロモヘキシルベンゼン(56.2g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(1.0g)、トリ-tert-ブチルホスフィンテトラフルオロボレート塩(0.6g)およびトルエン(580mL)を加え、50℃で攪拌した。その後、そこへ、ナトリウム-tert-ブトキシド(30.5g)を加えた後、110℃で8時間攪拌した。その後、そこへ、トルエンを加え、セライトを敷いたろ過器でろ過し、得られたろ液をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を減圧濃縮することにより粗生成物を得た。その後、そこへ、ヘキサンおよびメタノールを加え、分液した。得られたヘキサン層を、メタノールで洗浄した。得られた洗浄液を分液し、得られたヘキサン層を減圧濃縮した。その後、そこへ、ヘキサンおよび活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、油状物を得た。得られた油状物をシリカゲルカラムクロマトグラフィー(ヘキサンおよび酢酸エチルの混合溶媒)で精製することにより、化合物14-f(44.0g、無色透明油状物)を得た。化合物14-fのHPLC面積百分率値は99.4%であった。
 LC-MS(APCI,positive):[M+H]+610.
 1H-NMR(CDCl3, 300MHz) δ(ppm):0.87(6H,t), 1.20-1.66(20H,m), 1.84-2.18(8H,m), 2.35(3H,s), 2.51(4H,t), 6.80-7.19(12H,m), 7.70(2H,t).
 反応容器内を窒素ガス雰囲気とした後、化合物14-f(43.0g)およびジクロロメタン(731mL)を加え、反応容器を氷浴を用いて冷却した。その後、そこへ、ベンジルトリメチルアンモニウムトリブロミド(55.0g)を加え、反応容器を氷浴を用いて冷却しながら12時間撹拌した。その後、そこへ、10重量%亜硫酸ナトリウム水溶液を滴下し、撹拌した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮した。その後、そこへ、ヘキサンおよび活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、油状物を得た。得られた油状物をシリカゲルカラムクロマトグラフィー(ヘキサンおよび酢酸エチルの混合溶媒)を用いてで複数回精製し、40℃で減圧乾燥させることにより、化合物14-g(12.5g、白色固体)を得た。化合物14-gのHPLC面積百分率値は99.5%以上であった。
 LC-MS(APCI,positive):[M+H]+766.
 1H-NMR(CDCl3, 300MHz) δ(ppm):0.86(6H,t), 1.20-1.69(20H,m), 1.80-2.19(8H,m), 2.36(3H,s), 2.60(4H,t), 6.77(1H,d),6.79(1H,d), 6.83(1H,dd), 6.97(2H,d), 7.01(1H,d), 7.04(1H,d), 7.15(1H,s), 7.35(1H,s), 7.38(1H,s), 7.69(1H,d), 7.73(1H,d).
 反応容器内を窒素ガス雰囲気とした後、ビスピナコールジボロン(12.4g)、シクロペンチルメチルエーテル(100mL)、酢酸カリウム(9.4g)および[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウムジクロライド(0.4g)を加え、100℃に昇温した。その後、そこへ、シクロペンチルメチルエーテル(25mL)に溶解させた化合物14-g(12.5g)を2時間かけて滴下し、還流下で4日間攪拌した。得られた反応混合物を室温まで冷却した後、イオン交換水を加え、洗浄した。得られた洗浄液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮した。その後、そこへ、ヘキサン、トルエンおよび活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサンおよびトルエンの混合溶媒)で精製し、50℃で減圧乾燥させることにより、化合物14(5.9g、白色固体)を得た。化合物14のHPLC面積百分率値は99.5%以上であった。
 LC-MS(APCI,positive):[M+H]+862.
 1H-NMR(CDCl3, 300MHz) δ(ppm):0.86(6H,t), 1.18-1.68(44H,m), 1.83-2.19(8H,m), 2.35(3H,s), 2.75(4H,t), 6.83-6.94(5H,m), 7.00(1H,dd), 7.12(1H,d), 7.15(1H,d), 7.62(1H,s), 7.65(1H,s), 7.69(1H,d), 7.72(1H,d).
 <合成例12> 化合物15の合成
Figure JPOXMLDOC01-appb-C000119
 反応容器内をアルゴンガス雰囲気とした後、3-ブロモヘキシルベンゼン(45.0g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(1.7g)、トリ-tert-ブチルホスフィンテトラフルオロボレート塩(1.0g)およびテトラヒドロフラン(225mL)を加え、次いで、リチウムビス(トリメチルシリル)アミドのテトラヒドロフラン溶液(1.3mol/L、179mL)を滴下した後、65℃で2時間攪拌した。反応容器を氷浴を用いて冷却した後、塩酸水溶液(2.4M、475mL)を滴下した。その後、反応容器から氷浴を外し、室温で1時間攪拌した。得られた反応混合物を分液し、有機層(以下、「有機層その1」という)と水層(以下、「水層その1」という)とを得た。水層その1をヘプタン(90mL)で2回洗浄した。得られた洗浄液を分液し、有機層(以下、「有機層その2」という)を得た。有機層その1と有機層その2とを合一し、硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮することにより油状物を得た。得られた油状物をシリカゲルカラムクロマトグラフィー(ヘキサンおよび酢酸エチルの混合溶媒)で精製することにより、化合物15-a(32.0g、褐色油状物)を得た。化合物15-aのHPLC面積百分率値は、98.6%であった。
 1H-NMR(CDCl3,300Hz)δ(ppm):0.82-0.96(3H, m), 1.10-1.65(8H, m), 2.45-2.57(2H, m), 3.60(2H, br.s), 6.45-6.62(3H, m), 7.00-7.10(1H, m).
 反応容器内をアルゴンガス雰囲気とした後、化合物15-a(17.7g)およびクロロホルム(177mL)を加え、-20℃~-25℃に冷却した。その後、そこへ、N-ブロモスクシンイミド(17.77g)を加えた。その後、反応容器を氷浴を用いて冷却し、飽和亜硫酸ナトリウム水溶液(15mL)を加え、攪拌した。得られた反応液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮することにより固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサンおよび酢酸エチルの混合溶媒)で精製することにより、化合物15-b(14.6g)を得た。化合物15-bのHPLC面積百分率値は、98.4%であった。
 1H-NMR(CDCl3,300Hz)δ(ppm):0.80-0.96(3H, m), 1.22-1.65(8H, m), 2.55-2.64(2H, m), 3.58(2H, br.s), 6.35-6.60(2H, m), 7.18-7.28(1H, m).
 反応容器内をアルゴンガス雰囲気とした後、欧州特許出願公開第2594573号明細書に記載の方法に従って合成した化合物15-c(13.0g)、[1、1’-ビス(ジフェニルホスフィン)フェロセン]パラジウムジクロライド(0.72g)、ナトリウム-tert--ブトキシド(8.5g)およびトルエン(195mL)を加え、次いで、化合物15-b(13.0g)をトルエン(10mL)に溶解させたトルエン溶液を滴下し、110℃で7時間撹拌した。得られた反応混合物を室温まで冷却した後、トルエン(50mL)およびイオン交換水(50mL)を加え、洗浄した。得られた洗浄液を分液し、得られた有機層をイオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を濃縮することにより固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサンおよびトルエンの混合溶媒)で精製することにより、化合物15-d(14.6g、白色結晶)を得た。化合物15-dのHPLC面積百分率値は、99.4%であった。
 反応容器内をアルゴンガス雰囲気とした後、ヨウ化銅(I)(0.72g)、trans-1,2-ジアミノシクロヘキサン(0.86g)、キシレン(50ml)、化合物15-d(8.0g)、1、4-ジヨードベンゼン(2.5g)およびナトリウム-tert-アモキシド(5.0g)を加え、85℃で12時間撹拌した。得られた反応混合物を室温まで冷却した後、トルエン(20mL)、ヘキサン(20mL)および活性炭(2.8g)を加え、室温で1時間撹拌した後、シリカゲルおよびセライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより固体を得た。得られた固体をトルエンおよびメタノールの混合溶媒を用いて再結晶した後、50℃で減圧乾燥させることにより、化合物15-e(4.8g、白色結晶)を得た。化合物15-eのHPLC面積百分率値は、99.5%以上であった。
 LC-MS(APCl, positive):[M+H]+916.
 反応容器内をアルゴンガス雰囲気とした後、ビスピナコールジボラン(3.31g)、ジメトキシエタン(72mL)、酢酸カリウム(3.08g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウムジクロライド(0.72g)および化合物15-e(4.8g)を加え、加熱還流(6時間)させた。得られた反応混合物を室温まで冷却した後、トルエン(72mL)を加え、シリカゲルおよびセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体をトルエン(50mL)に溶解させた後、イオン交換水で洗浄した。得られた洗浄液を分液し、得られた有機層に活性炭(2.5g)を加え、攪拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサンおよびトルエンの混合溶媒)で精製し、次いで、トルエンおよびアセトニトリルの混合溶媒を用いて再結晶した後、50℃で減圧乾燥させることにより、化合物15(3.9g)を得た。化合物15のHPLC面積百分率値は、99.5%以上であった。
 1H-NMR(CDCl3,300Hz)δ(ppm):0.78-0.85(6H, m), 1.12-1.50(40H, m), 2.73 (4H, t), 6.80(6H, br,s), 7.05(6H, br.s), 7.22-7.40(6H, m), 7.58-7.80(4H,m), 7.94(2H, d).
 <合成例13> イリジウム錯体1の合成
 下記で表されるイリジウム錯体1は、WO2009/131255号に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000120
 <合成例14> 化合物CM1~CM6、化合物CM8~CM10、化合物CM12~CM16、化合物CM20~CM21および化合物CM26~CM27の合成
 化合物CM1~CM6、化合物CM8~CM10、化合物CM12~CM16およびCM20~CM21は、下記文献に記載された方法に従って合成し、99.5%以上のHPLC面積百分率値を示したものを用いた。化合物CM26~CM27は、下記文献に記載された方法に準じて合成し、99.5%以上のHPLC面積百分率値を示したものを用いた。
 なお、化合物CM7は、上記で合成した化合物8と同一であり、化合物CM11は、上記で合成した化合物10と同一であり、化合物CM18は、上記で合成した化合物14と同一であり、化合物CM19は、上記で合成した化合物11と同一であり、化合物CM22は、上記で合成した化合物12と同一であり、化合物CM23は、上記で合成した化合物15と同一であり、化合物CM24は、上記で合成した化合物7と同一であり、化合物CM25は、上記で合成した化合物13と同一である。
 化合物CM1およびCM4:特開2010-189630号公報
 化合物CM2およびCM3:国際公開第2012/086671号
 化合物CM5:特開2004-143419号公報
 化合物CM6:国際公開第2002/045184号
 化合物CM8:Journal of Polymer Science, PartA : Polymer Chemistry, 2011, vol.49, #2 p.352-360
 化合物CM9:特開2008-106241号公報
 化合物CM10:特開2010-215886号公報
 化合物CM12:特開2007-511636号公報
 化合物CM13:特開2011-174061号公報
 化合物CM14およびCM15:特開2011-174062号公報
 化合物CM16:国際公報第2007/071957号
 化合物CM20およびCM21:国際公報第2013/191088号
 化合物CM26およびCM27:Journal of Polymer Science, PartA : Polymer Chemistry, 2011, vol.49, #2 p.352-360
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
 <実施例1> 高分子化合物1の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM7(0.9870g)、化合物CM8(0.4602g)、化合物CM9(0.0669g)、化合物CM10(0.0578g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.1mg)およびトルエン(49mL)を加え、105℃に加熱した。
(工程2)その後、そこに、20重量%水酸化テトラブチルアンモニウム水溶液(9.2g)を滴下し、105℃で6時間攪拌した。
(工程3)その後、そこに、フェニルボロン酸(15.2mg)およびジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.1mg)を加え、105℃で16時間攪拌した。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却した後、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱物が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿物が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物1を0.75g得た。高分子化合物1のMnは7.1×10であり、Mwは3.7×10であった。
 高分子化合物1は、仕込み原料の量から求めた理論値では、化合物CM7から誘導される構成単位と、化合物CM8から誘導される構成単位と、化合物CM9から誘導される構成単位と、化合物CM10から誘導される構成単位とが、50:40:5:5のモル比で構成されてなる共重合体である。
 <比較例1> 高分子化合物2の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM11(0.8134g)、化合物CM8(0.5523g)、化合物CM9(0.0803g)、化合物CM10(0.0693g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)およびトルエン(42mL)を加え、105℃に加熱した。
(工程2)その後、そこに、20重量%水酸化テトラブチルアンモニウム水溶液(9.2g)を滴下し、105℃で6時間攪拌した。
(工程3)その後、そこに、フェニルボロン酸(18.3mg)およびジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、105℃で16時間攪拌した。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却した後、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱物が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿物が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物2を0.75g得た。高分子化合物1のMnは1.9×10であり、Mwは2.5×10であった。
 高分子化合物2は、仕込み原料の量から求めた理論値では、化合物CM11から誘導される構成単位と、化合物CM8から誘導される構成単位と、化合物CM9から誘導される構成単位と、化合物CM10から誘導される構成単位とが、50:40:5:5のモル比で構成されてなる共重合体である。
 <合成例15> 高分子化合物3の合成
 高分子化合物3は、下記表3に示される化合物を用いて、特開2012-36388号公報記載の合成方法に従って合成した。高分子化合物3のMnは8.2×10であり、Mwは2.1×10であった。高分子化合物3は、仕込み原料から求めた理論値では、それぞれの化合物から誘導される構成単位が、下記表3に示されるモル比で構成されてなる共重合体である。
Figure JPOXMLDOC01-appb-T000129
 <合成例16> 高分子化合物4の合成
 高分子化合物4は、下記表4に示される化合物を用いて、特開2012-216815号公報記載の合成方法に従って合成した。高分子化合物4のMnは1.0×10であり、Mwは2.6×10であった。高分子化合物4は、仕込み原料から求めた理論値では、それぞれの化合物から誘導される構成単位が、下記表4に示されるモル比で構成されてなる共重合体である。
Figure JPOXMLDOC01-appb-T000130
 <実施例2> 高分子化合物5の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM7(1.1807g)、化合物CM14(0.9810g)、化合物CM9(0.0803g)、化合物CM10(0.0693g)およびトルエン(34mL)を加え、90℃に加熱した。
(工程2)そこに、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、その後、20重量%水酸化テトラブチルアンモニウム水溶液(22.9g)を滴下し、90℃で6時間攪拌した。
(工程3)その後、そこに、フェニルボロン酸(73.2mg)およびジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、90℃で15時間攪拌した。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却した後、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱物が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿物が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物5を1.22g得た。高分子化合物5のMnは5.3×10であり、Mwは2.0×10であった。
 高分子化合物5は、仕込み原料の量から求めた理論値では、化合物CM7から誘導される構成単位と、化合物CM14から誘導される構成単位と、化合物CM9から誘導される構成単位と、化合物CM10から誘導される構成単位とが、50:40:5:5のモル比で構成されてなる共重合体である。
 <実施例3> 高分子化合物6の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM18(1.0625g)、化合物CM14(0.8175g)、化合物CM9(0.0669g)、化合物CM10(0.0578g)およびトルエン(30mL)を加え、90℃に加熱した。
(工程2)そこに、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.1mg)を加え、その後、20重量%水酸化テトラブチルアンモニウム水溶液(20.2g)を滴下し、90℃で7時間攪拌した。
(工程3)その後、そこに、フェニルボロン酸(61.0mg)およびジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.1mg)を加え、90℃で17時間攪拌した。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却した後、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱物が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿物が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物6を1.06g得た。高分子化合物6のMnは5.2×10であり、Mwは2.2×10であった。
 高分子化合物6は、仕込み原料の量から求めた理論値では、化合物CM18から誘導される構成単位と、化合物CM14から誘導される構成単位と、化合物CM9から誘導される構成単位と、化合物CM10から誘導される構成単位とが、50:40:5:5のモル比で構成されてなる共重合体である。
 <実施例4> 高分子化合物7の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM15(0.8866g)、化合物CM20(0.0780g)、化合物CM21(0.0698g)、化合物CM19(1.0041g)およびトルエン(31mL)を加え、90℃に加熱した。
(工程2)そこに、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.1mg)を加え、その後、20重量%水酸化テトラブチルアンモニウム水溶液(20.4g)を滴下し、90℃で7時間攪拌した。
(工程3)その後、そこに、フェニルボロン酸(61.0mg)およびジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.1mg)を加え、90℃で18時間攪拌した。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却した後、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱物が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿物が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物7を1.10g得た。高分子化合物7のMnは4.8×10であり、Mwは2.1×10であった。
 高分子化合物7は、仕込み原料の量から求めた理論値では、化合物CM15から誘導される構成単位と、化合物CM20から誘導される構成単位と、化合物CM21から誘導される構成単位と、化合物CM19から誘導される構成単位とが、40:5:5:50のモル比で構成されてなる共重合体である。
 <実施例5> 高分子化合物8の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM15(1.0640g)、化合物CM20(0.0936g)、化合物CM21(0.0837g)、化合物CM22(0.9419g)およびトルエン(32mL)を加え、90℃に加熱した。
(工程2)そこに、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、その後、20重量%水酸化テトラブチルアンモニウム水溶液(21.4g)を滴下し、90℃で6時間攪拌した。
(工程3)その後、そこに、フェニルボロン酸(73.2mg)およびジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、90℃で15時間攪拌した。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却した後、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱物が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿物が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物8を1.13g得た。高分子化合物8のMnは5.1×10であり、Mwは2.0×10であった。
 高分子化合物8は、仕込み原料の量から求めた理論値では、化合物CM15から誘導される構成単位と、化合物CM20から誘導される構成単位と、化合物CM21から誘導される構成単位と、化合物CM22から誘導される構成単位とが、40:5:5:50のモル比で構成されてなる共重合体である。
 <実施例6> 高分子化合物9の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM23(0.9939g)、化合物CM20(0.0780g)、化合物CM21(0.0698g)、化合物CM14(1.022g)およびトルエン(34mL)を加え、90℃に加熱した。
(工程2)そこに、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.1mg)を加え、その後、20重量%水酸化テトラブチルアンモニウム水溶液(22.4g)を滴下し、90℃で7時間攪拌した。
(工程3)その後、そこに、フェニルボロン酸(61.0mg)およびジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.1mg)を加え、90℃で15時間攪拌した。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却した後、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱物が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿物が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物9を1.01g得た。高分子化合物9のMnは4.9×10であり、Mwは2.3×10であった。
 高分子化合物9は、仕込み原料の量から求めた理論値では、化合物CM23から誘導される構成単位と、化合物CM20から誘導される構成単位と、化合物CM21から誘導される構成単位と、化合物CM14から誘導される構成単位とが、40:5:5:50のモル比で構成されてなる共重合体である。
 <実施例7> 高分子化合物10の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM1(0.9841g)、化合物CM12(0.1730g)、化合物CM24(0.9850g)、化合物CM10(0.0925g)およびトルエン(29mL)を加え、90℃に加熱した。
(工程2)そこに、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.8mg)を加え、その後、20重量%水酸化テトラブチルアンモニウム水溶液(19.1g)を滴下し、90℃で7時間攪拌した。
(工程3)その後、そこに、フェニルボロン酸(97.5mg)、およびジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.8mg)を加え、90℃で15時間攪拌した。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却した後、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱物が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿物が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物10を0.96g得た。高分子化合物10のMnは4.6×10であり、Mwは2.1×10であった。
 高分子化合物10は、仕込み原料の量から求めた理論値では、化合物CM1から誘導される構成単位と、化合物CM12から誘導される構成単位と、化合物CM24から誘導される構成単位と、化合物CM10から誘導される構成単位とが、50:10:35:5のモル比で構成されてなる共重合体である。
 <比較例2> 高分子化合物11の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM11(0.8790g)、化合物CM21(0.1117g)、化合物CM20(0.1336g)、化合物CM25(1.2069g)およびトルエン(30mL)を加え、90℃に加熱した。
(工程2)そこに、20重量%水酸化テトラエチルアンモニウム水溶液(13.8g)を滴下し、その後ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.8mg)を加え、90℃で7時間攪拌した。
(工程3)その後、そこに、フェニルボロン酸(97.5mg)、20重量%水酸化テトラエチルアンモニウム水溶液(6.9g)、およびジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.8mg)を加え、90℃で15時間攪拌した。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却した後、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱物が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿物が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物11を1.22g得た。高分子化合物11のMnは3.3×10であり、Mwは2.2×10であった。
 高分子化合物11は、仕込み原料の量から求めた理論値では、化合物CM11から誘導される構成単位と、化合物CM21から誘導される構成単位と、化合物CM20から誘導される構成単位と、化合物CM25から誘導される構成単位とが、40:5:5:50のモル比で構成されてなる共重合体である。
 <比較例3> 高分子化合物12の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM15(1.0512g)、化合物CM21(0.0838g)、化合物CM20(0.1001g)、化合物CM26(0.7730g)およびトルエン(29mL)を加え、90℃に加熱した。
(工程2)そこに、20重量%水酸化テトラエチルアンモニウム水溶液(10.4g)を滴下し、その後ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、90℃で8時間攪拌した。
(工程3)その後、そこに、フェニルボロン酸(73.2mg)、20重量%水酸化テトラエチルアンモニウム水溶液(5.2g)およびジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、90℃で16時間攪拌した。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却した後、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱物が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿物が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物12を1.14g得た。高分子化合物12のMnは4.3×10であり、Mwは1.3×10であった。
 高分子化合物12は、仕込み原料の量から求めた理論値では、化合物CM15から誘導される構成単位と、化合物CM21から誘導される構成単位と、化合物CM20から誘導される構成単位と、化合物CM26から誘導される構成単位とが、40:5:5:50のモル比で構成されてなる共重合体である。
 <比較例4> 高分子化合物13の合成
 高分子化合物13は、下記表5に示される化合物を用いて、特開2014-111765号公報記載の方法に従って合成した。高分子化合物13のMnは1.7×10であり、Mwは3.3×10であった。高分子化合物13は、仕込み原料の量から求めた理論値では、それぞれの化合物から誘導される構成単位が、下記表5に示されるモル比で構成されてなる共重合体である。
Figure JPOXMLDOC01-appb-T000131
 <比較例5> 高分子化合物14の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM15(1.0717g)、化合物CM21(0.0868g)、化合物CM20(0.1001g)、化合物CM25(0.9051g)およびトルエン(31mL)を加え、90℃に加熱した。
(工程2)そこに、20重量%水酸化テトラエチルアンモニウム水溶液(10.4g)を滴下し、その後ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、90℃で7時間攪拌した。
(工程3)その後、そこに、フェニルボロン酸(73.2mg)、20重量%水酸化テトラエチルアンモニウム水溶液(5.2g)、およびジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、90℃で15時間攪拌した。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却した後、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱物が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿物が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物14を1.26g得た。高分子化合物14のMnは5.8×10であり、Mwは2.0×10であった。
 高分子化合物14は、仕込み原料の量から求めた理論値では、化合物CM15から誘導される構成単位と、化合物CM21から誘導される構成単位と、化合物CM20から誘導される構成単位と、化合物CM25から誘導される構成単位とが、40:5:5:50のモル比で構成されてなる共重合体である。
 <比較例6> 高分子化合物15の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM14(0.8988g)、化合物CM10(0.0698g)、化合物CM9(0.0835g)、化合物CM16(0.8532g)およびトルエン(29mL)を加え、90℃に加熱した。
(工程2)そこに、20重量%水酸化テトラエチルアンモニウム水溶液(8.7g)を滴下し、その後ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.1mg)を加え、90℃で6時間攪拌した。
(工程3)その後、そこに、フェニルボロン酸(61.0mg)、20重量%水酸化テトラエチルアンモニウム水溶液(4.3g)、およびジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、90℃で16時間攪拌した。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却した後、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱物が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿物が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物15を1.20g得た。高分子化合物15のMnは5.8×10であり、Mwは2.2×10であった。
 高分子化合物15は、仕込み原料の量から求めた理論値では、化合物CM15から誘導される構成単位と、化合物CM21から誘導される構成単位と、化合物CM20から誘導される構成単位と、化合物CM16から誘導される構成単位とが、40:5:5:50のモル比で構成されてなる共重合体である。
 <比較例7> 高分子化合物16の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM13(1.477g)、化合物CM5(1.1818g)、化合物CM10(0.0920g)、化合物CM9(0.1057g)およびトルエン(44mL)を加え、90℃に加熱した。
(工程2)そこに、酢酸パラジウム(0.4mg)とトリス-o-メトキシフェニルホスフィン(2.8mg)を加え、20重量%水酸化テトラエチルアンモニウム水溶液(7.7g)を滴下し、その後105℃で3時間攪拌した。
(工程3)その後、そこに、フェニルボロン酸(450.0mg)、酢酸パラジウム(0.4mg)およびトリス-o-メトキシフェニルホスフィン(2.8mg)を加え、105℃で16時間攪拌した。その後そこに、フェニルブロマイド(247.0mg)、酢酸パラジウム(0.4mg)およびトリス-o-メトキシフェニルホスフィン(2.8mg)を加え、105℃で4時間攪拌した。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却した後、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱物が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿物が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物16を1.46g得た。高分子化合物16のMnは8.9×10であり、Mwは3.6×10であった。
 高分子化合物16は、仕込み原料の量から求めた理論値では、化合物CM13から誘導される構成単位と、化合物CM5から誘導される構成単位と、化合物CM10から誘導される構成単位と、化合物CM9から誘導される構成単位とが、50:40:5:5のモル比で構成されてなる共重合体である。
 <実施例D1> 発光素子D1の作製および評価
(陽極および正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、ポリチオフェン・スルホン酸系の正孔注入剤であるAQ-1200(Plextronics社製)を用いて、スピンコート法により65nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で170℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 キシレンに、高分子化合物1を0.7重量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱することにより正孔輸送層を形成した。
(発光層の形成)
 キシレンに、高分子化合物3およびイリジウム錯体1をそれぞれ1.8重量%の濃度で溶解させた。そして、高分子化合物3とイリジウム錯体1との固形分比が70重量%:30重量%となるように、各キシレン溶液を混合した。得られたキシレン溶液を用いて、正孔輸送層の上に、スピンコート法により80nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分加熱することにより発光層を形成した。
(陰極の形成)
 発光層が形成された基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、発光層の上にフッ化ナトリウムを約7nm、次いで、フッ化ナトリウム層の上にアルミニウムを約120nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D1を作製した。
(発光素子の評価)
 発光素子D1に電圧を印加したところ、520nmにピークを有するEL発光が観測された。発光素子D1の1000cd/mでの外部量子収率は22.8%であった。結果を表6に示す。
 <実施例D2> 発光素子D2の作製と評価
 実施例D1における高分子化合物1に代えて高分子化合物5を用いたこと以外は、実施例D1と同様にして発光素子D2を作製した。
 得られた発光素子D2に電圧を印加したところ、520nmにピークを有するEL発光が観測された。発光素子D2の1000cd/mでの外部量子収率は22.5%であった。結果を表6に示す。
 <実施例D3> 発光素子D3の作製と評価
 実施例D1における高分子化合物1に代えて高分子化合物6を用いたこと以外は、実施例D1と同様にして発光素子D3を作製した。
 得られた発光素子D3に電圧を印加したところ、520nmにピークを有するEL発光が観測された。発光素子D3の1000cd/mでの外部量子収率は25.4%であった。結果を表6に示す。
 <実施例D4> 発光素子D4の作製と評価
 実施例D1における高分子化合物1に代えて高分子化合物7を用いたこと以外は、実施例D1と同様にして発光素子D4を作製した。
 得られた発光素子D4に電圧を印加したところ、520nmにピークを有するEL発光が観測された。発光素子D4の1000cd/mでの外部量子収率は24.8%であった。結果を表6に示す。
 <実施例D5> 発光素子D5の作製と評価
 実施例D1における高分子化合物1に代えて高分子化合物8を用いたこと以外は、実施例D1と同様にして発光素子D5を作製した。
 得られた発光素子D5に電圧を印加したところ、520nmにピークを有するEL発光が観測された。発光素子D5の1000cd/mでの外部量子収率は22.3%であった。結果を表6に示す。
 <実施例D6> 発光素子D6の作製と評価
 実施例D1における高分子化合物1に代えて高分子化合物9を用いたこと以外は、実施例D1と同様にして発光素子D6を作製した。
 得られた発光素子D6に電圧を印加したところ、520nmにピークを有するEL発光が観測された。発光素子D6の1000cd/mでの外部量子収率は23.3%であった。結果を表6に示す。
<比較例CD1> 発光素子CD1の作製および評価
 実施例D1における、高分子化合物1に代えて、高分子化合物2を用いたこと以外は、実施例D1と同様にして、発光素子CD1を作製した。
 発光素子CD1に電圧を印加したところ、520nmにピークを有するEL発光が観測された。発光素子CD1の1000cd/mでの外部量子収率は9.9%であった。結果を表6に示す。
 <比較例CD2> 発光素子CD2の作製と評価
 実施例D1における高分子化合物1に代えて高分子化合物11を用いたこと以外は、実施例D1と同様にして発光素子CD2を作製した。
 得られた発光素子CD2に電圧を印加したところ、520nmにピークを有するEL発光が観測された。発光素子CD2の1000cd/mでの外部量子収率は7.5%であった。結果を表6に示す。
 <比較例CD3> 発光素子CD3の作製と評価
 実施例D1における高分子化合物1に代えて高分子化合物14を用いたこと以外は、実施例D1と同様にして発光素子CD3を作製した。
 得られた発光素子CD3に電圧を印加したところ、520nmにピークを有するEL発光が観測された。発光素子CD3の1000cd/mでの外部量子収率は12.0%であった。結果を表6に示す。
 <比較例CD4> 発光素子CD4の作製と評価
 実施例D1における高分子化合物1に代えて高分子化合物15を用いたこと以外は、実施例D1と同様にして発光素子CD4を作製した。
 得られた発光素子CD4に電圧を印加したところ、520nmにピークを有するEL発光が観測された。発光素子CD4の1000cd/mでの外部量子収率は9.2%であった。結果を表6に示す。
 <比較例CD5> 発光素子CD5の作製と評価
 実施例D1における高分子化合物1に代えて高分子化合物16を用いたこと以外は、実施例D1と同様にして発光素子CD5を作製した。
 得られた発光素子CD5に電圧を印加したところ、520nmにピークを有するEL発光が観測された。発光素子CD5の1000cd/mでの外部量子収率は5.8%であった。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000132
 実施例D1と比較例CD1および比較例CD2との比較、実施例D2、実施例D3、実施例D4および実施例D5と比較例CD3および比較例CD4との比較、実施例D6と比較例CD5との比較から、本発明の高分子化合物を用いて作製される発光素子は、外部量子収率に優れていることが分かる。
 <実施例D7> 発光素子D7の作製および評価
(陽極および正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、ポリチオフェン・スルホン酸系の正孔注入剤であるAQ-1200(Plectronics社製)を用いて、スピンコート法により35nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で170℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 キシレンに、高分子化合物1を0.7重量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱することにより正孔輸送層を形成した。
(発光層の形成)
 キシレンに、高分子化合物4を1.2重量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分加熱することにより発光層を形成した。
(陰極の形成)
 発光層が形成された基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、発光層の上にフッ化ナトリウムを約7nm、次いで、アルミニウムを約120nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D7を作製した。
(発光素子の評価)
 発光素子D7に電圧を印加したところ、455nmにピークを有するEL発光が観測された。発光素子D7の1000cd/mでの外部量子収率は7.2%であった。結果を表7に示す。
 <実施例D8> 発光素子D8の作製と評価
 実施例D7における高分子化合物1に代えて、高分子化合物5を用いた以外は実施例D7と同様にして、発光素子D8を作製した。
 得られた発光素子D8に電圧を印加したところ、455nmにピークを有するEL発光が観測された。発光素子D8の1000cd/mでの外部量子収率は9.7%であった。結果を表7に示す。
 <実施例D9> 発光素子D9の作製と評価
 実施例D7における高分子化合物1に代えて、高分子化合物6を用いた以外は実施例D7と同様にして、発光素子D9を作製した。
 得られた発光素子D9に電圧を印加したところ、455nmにピークを有するEL発光が観測された。発光素子D9の1000cd/mでの外部量子収率は9.7%であった。結果を表7に示す。
 <実施例D10> 発光素子D10の作製と評価
 実施例D7における高分子化合物1に代えて、高分子化合物7を用いた以外は実施例D7と同様にして、発光素子D10を作製した。
 得られた発光素子D10に電圧を印加したところ、455nmにピークを有するEL発光が観測された。発光素子D10の1000cd/mでの外部量子収率は8.9%であった。結果を表7に示す。
 <実施例D11> 発光素子D11の作製と評価
 実施例D7における高分子化合物1に代えて、高分子化合物10を用いた以外は実施例D7と同様にして、発光素子D11を作製した。
 得られた発光素子D11に電圧を印加したところ、450nmにピークを有するEL発光が観測された。発光素子D11の1000cd/mでの外部量子収率は8.2%であった。結果を表7に示す。
 <実施例D12> 発光素子D12の作製と評価
 実施例D7における高分子化合物1に代えて、高分子化合物8を用いた以外は実施例D7と同様にして、発光素子D12を作製した。
 得られた発光素子D12に電圧を印加したところ、455nmにピークを有するEL発光が観測された。発光素子D12の1000cd/mでの外部量子収率は8.9%であった。結果を表7に示す。
 <実施例D13> 発光素子D13の作製と評価
 実施例D7における高分子化合物1に代えて、高分子化合物9を用いた以外は実施例D7と同様にして、発光素子D13を作製した。
 得られた発光素子D13に電圧を印加したところ、455nmにピークを有するEL発光が観測された。発光素子D13の1000cd/mでの外部量子収率は8.5%であった。結果を表7に示す。
 <比較例CD6> 発光素子CD6の作製および評価
 実施例D7における、高分子化合物1に代えて、高分子化合物2を用いたこと以外は、実施例D7と同様にして、発光素子CD6を作製した。
 発光素子CD6に電圧を印加したところ、455nmにピークを有するEL発光が観測された。発光素子CD6の1000cd/mでの外部量子収率は6.3%であった。結果を表7に示す。
 <比較例CD7> 発光素子CD7の作製と評価
 実施例D7における高分子化合物1に代えて、高分子化合物11を用いた以外は実施例D7と同様にして、発光素子CD7を作製した。
 得られた発光素子CD7に電圧を印加したところ、455nmにピークを有するEL発光が観測された。発光素子CD7の1000cd/mでの外部量子収率は6.4%であった。結果を表7に示す。
 <比較例CD8> 発光素子CD8の作製と評価
 実施例D7における高分子化合物1に代えて、高分子化合物12を用いた以外は実施例D7と同様にして、発光素子CD8を作製した。
 得られた発光素子CD8に電圧を印加したところ、455nmにピークを有するEL発光が観測された。発光素子CD8の1000cd/mでの外部量子収率は7.2%であった。結果を表7に示す。
 <比較例CD9> 発光素子CD9の作製と評価
 実施例D7における高分子化合物1に代えて、高分子化合物13を用いた以外は実施例D7と同様にして、発光素子CD9を作製した。
 得られた発光素子CD9に電圧を印加したところ、450nmにピークを有するEL発光が観測された。発光素子CD9の1000cd/mでの外部量子収率は4.2%であった。結果を表7に示す。
<比較例CD10> 発光素子CD10の作製と評価
 実施例D7における高分子化合物1に代えて、高分子化合物14を用いた以外は実施例D7と同様にして、発光素子CD10を作製した。
 得られた発光素子CD10に電圧を印加したところ、455nmにピークを有するEL発光が観測された。発光素子CD10の1000cd/mでの外部量子収率は6.7%であった。結果を表7に示す。
 <比較例CD11> 発光素子CD11の作製と評価
 実施例D7における高分子化合物1に代えて、高分子化合物15を用いた以外は実施例D7と同様にして、発光素子CD11を作製した。
 得られた発光素子CD11に電圧を印加したところ、460nmにピークを有するEL発光が観測された。発光素子CD11の1000cd/mでの外部量子収率は5.8%であった。結果を表7に示す。
 <比較例CD12> 発光素子CD12の作製と評価
 実施例D7における高分子化合物1に代えて、高分子化合物16を用いた以外は実施例D7と同様にして、発光素子CD12を作製した。
 得られた発光素子CD12に電圧を印加したところ、455nmにピークを有するEL発光が観測された。発光素子CD12の1000cd/mでの外部量子収率は5.7%であった。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000133
 実施例D7と比較例CD6および比較例CD7との比較、実施例D8、実施例D9、実施例D10および実施例D12と比較例CD8、比較例CD10および比較例CD11との比較、実施例D11と比較例CD9との比較し、実施例D13と比較例CD12との比較から、本発明の高分子化合物を用いて作製される発光素子は、外部量子収率に優れていることが分かる。
 本発明によれば、外部量子収率に優れる発光素子の製造に有用な高分子化合物を提供することができる。また、本発明によれば、該高分子化合物を含有する組成物および該高分子化合物を用いて得られる発光素子を提供することができる。

Claims (15)

  1.  式(1)で表される構成単位を含む高分子化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     a1およびa2は、それぞれ独立に、0または1を表す。
     ArA1およびArA3は、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。但し、ArA1およびArA3は、隣接する構成単位と結合を形成する原子の隣の原子の少なくとも1つが、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を置換基として有し、これらの置換基は更に置換基を有していてもよい。
     ArA2は、フェニレン基を表し、このフェニレン基は置換基を有していてもよい。
     ArA4は、アリーレン基、2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。
     RA1、RA2およびRA3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。
     但し、a2が0である場合、RA1は2つ以上の環が縮合したアリール基(該アリール基の環を構成する炭素原子数は10以上である)、または、2つ以上の環が縮合した1価
    の複素環基(該1価の複素環基の環を構成する炭素原子数およびヘテロ原子数の合計は10以上である)を表し、これらの基は置換基を有していてもよい。]
  2.  前記ArA1およびArA3が、フェニレン基である、請求項1に記載の高分子化合物。
  3.  前記a2が、0である、請求項1または2に記載の高分子化合物。
  4.  前記ArA1およびArA3において、隣接する構成単位と結合を形成する原子の隣の原子の少なくとも1つが、アルキル基またはシクロアルキル基を置換基として有する、請求項1~3のいずれか一項に記載の高分子化合物。
  5.  前記RA1が、アリール基AA群から選ばれる基、または、1価の複素環基BB群から選ばれる基である、請求項1~4のいずれか一項に記載の高分子化合物。
    (アリール基AA群)
    Figure JPOXMLDOC01-appb-C000002
    (1価の複素環基BB群)
    Figure JPOXMLDOC01-appb-C000003
    [式中、RおよびRaは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表す。複数存在するRおよびRaは、各々、同一でも異なっていてもよく、Ra同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
  6.  前記式(1)で表される構成単位が、式(4)で表される構成単位である、請求項1~5のいずれか一項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     RA1は、前記と同じ意味を表す。
     R1aは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するR1aは、同一でも異なっていてもよい。
     R2aは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基またはハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するR2aは、同一でも異なっていてもよい。]
  7.  更に、式(1X)で表される構成単位および式(1Z)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む、請求項1~6のいずれか一項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、
     xa1およびxa2は、それぞれ独立に、0以上の整数を表す。
     ArX1およびArX3は、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。但し、ArX1およびArX3は、隣接する構成単位と結合を形成する原子の隣の原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を置換基として有さない。
     ArX2およびArX4は、それぞれ独立に、アリーレン基、2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。
     RX1、RX2およびRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
    Figure JPOXMLDOC01-appb-C000006
    [式中、
     RZ1は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。
     1zは、0~3の整数を表す。複数存在する1zは、同一でも異なっていてもよい。
     RZ2は、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。RZ2が複数存在する場合、それらは同一でも異なっていてもよい。
     XZ1は、単結合、酸素原子、硫黄原子、-CRZ11Z12-で表される基、または、―SiRZ13Z14-で表される基を表す。RZ11、RZ12、RZ13およびRZ14は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
  8.  前記RA1およびRA2およびRA3からなる群から選ばれる少なくとも1つが、置換基を有していてもよいフルオレン環から環を構成する炭素原子に直接結合する水素原子1個を除いた基である、請求項7に記載の高分子化合物。
  9.  前記式(1)で表される構成単位と、前記式(1X)で表される構成単位および前記式(1Z)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位とが、隣り合う構成連鎖を含む、請求項7または8に記載の高分子化合物。
  10.  前記式(1)で表される構成単位、前記式(1X)で表される構成単位および前記(1Z)で表される構成単位の合計含有量が、高分子化合物に含まれる構成単位の合計含有量に対して、50~100モル%である、請求項7~9のいずれか一項に記載の高分子化合物。
  11.  更に、架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位を含む、請求項1~10のいずれか一項に記載の高分子化合物。
    (架橋基A群)
    Figure JPOXMLDOC01-appb-C000007
    [式中、RXLは、メチレン基、酸素原子または硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*は結合位置を表す。これらの架橋性基は置換基を有していてもよい。]
  12.  前記架橋構成単位が、式(5)で表される構成単位、または、式(5’)で表される構成単位(但し、式(1)で表される構成単位、式(1X)で表される構成単位および式(1Z)で表される構成単位とは異なる。)である、請求項11に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000008
    [式中、
     nAは0~5の整数を表し、nは1または2を表す。nAが複数存在する場合、それらは同一でも異なっていてもよい。
     Arは、芳香族炭化水素基または複素環基を表し、これらの基は置換基を有していてもよい。
     Lは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
     Xは、架橋基A群から選ばれる架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000009
    [式中、
     mAは0~5の整数を表し、mは1~4の整数を表し、cは0または1の整数を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
     Arは、芳香族炭化水素基、複素環基、または、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
     ArおよびArは、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。
     Ar、ArおよびArはそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接または酸素原子もしくは硫黄原子を介して結合して、環を形成していてもよい。
     Kは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。KAが複数存在する場合、それらは同一でも異なっていてもよい。
     X’は、架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するX’は、同一でも異なっていてもよい。但し、少なくとも1つのX’は、架橋基A群から選ばれる架橋基である。]
  13.  前記架橋基が、前記式(XL-1)または(XL-17)で表される架橋基である、請求項11または12に記載の高分子化合物。
  14.  請求項1~13のいずれか一項に記載の高分子化合物と、
     正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤および溶媒からなる群より選ばれる少なくとも1種の材料とを含有する組成物。
  15.  請求項1~13のいずれか一項に記載の高分子化合物を用いて得られる発光素子。
PCT/JP2015/073190 2014-08-28 2015-08-19 高分子化合物およびそれを用いた発光素子 WO2016031639A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580045796.5A CN106795277B (zh) 2014-08-28 2015-08-19 高分子化合物和使用该高分子化合物的发光元件
JP2016545454A JP6819289B2 (ja) 2014-08-28 2015-08-19 高分子化合物およびそれを用いた発光素子
US15/506,463 US10301539B2 (en) 2014-08-28 2015-08-19 Polymer compound and light-emitting device using the same
EP15836486.9A EP3187522B1 (en) 2014-08-28 2015-08-19 Polymer compound and light-emitting element using same
EP19211909.7A EP3674343A1 (en) 2014-08-28 2015-08-19 Polymer compound and light-emitting element using same
KR1020177007805A KR102300261B1 (ko) 2014-08-28 2015-08-19 고분자 화합물 및 그것을 사용한 발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014173564 2014-08-28
JP2014-173564 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016031639A1 true WO2016031639A1 (ja) 2016-03-03

Family

ID=55399534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073190 WO2016031639A1 (ja) 2014-08-28 2015-08-19 高分子化合物およびそれを用いた発光素子

Country Status (7)

Country Link
US (1) US10301539B2 (ja)
EP (2) EP3674343A1 (ja)
JP (2) JP6819289B2 (ja)
KR (1) KR102300261B1 (ja)
CN (1) CN106795277B (ja)
TW (1) TWI683834B (ja)
WO (1) WO2016031639A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062278A1 (ja) 2016-09-29 2018-04-05 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
JP2018061030A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
JP2018061029A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
JP2018061028A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
WO2019004248A1 (ja) 2017-06-30 2019-01-03 住友化学株式会社 高分子化合物及びそれを用いた発光素子
WO2019049225A1 (ja) 2017-09-06 2019-03-14 住友化学株式会社 発光素子
WO2019177175A1 (ja) 2018-03-16 2019-09-19 三菱ケミカル株式会社 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法
WO2020115971A1 (ja) 2018-12-06 2020-06-11 住友化学株式会社 高分子化合物の製造方法
JP2020524737A (ja) * 2017-06-21 2020-08-20 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 電子素子のための材料
WO2020171190A1 (ja) * 2019-02-20 2020-08-27 三菱ケミカル株式会社 重合体、有機電界発光素子、有機el表示装置及び有機el照明
WO2021075183A1 (ja) * 2019-10-15 2021-04-22 住友化学株式会社 組成物及びそれを含有する発光素子
JPWO2020009069A1 (ja) * 2018-07-03 2021-08-02 保土谷化学工業株式会社 分子主鎖にターフェニル構造を含むトリアリールアミン高分子量化合物およびこれらの高分子量化合物を含む有機エレクトロルミネッセンス素子
WO2021166921A1 (ja) * 2020-02-20 2021-08-26 保土谷化学工業株式会社 高分子量化合物および該高分子量化合物を含む発光ダイオード
WO2022065098A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065102A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065100A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065099A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065101A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
US12133453B2 (en) 2018-03-16 2024-10-29 Mitsubishi Chemical Corporation Polymer, composition for organic electroluminescent element, organic electroluminescent element, organic EL display device, organic EL lighting, and manufacturing method for organic electroluminescent element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3512307B1 (en) 2018-01-10 2021-04-21 Samsung Electronics Co., Ltd. Polymer material, material for electroluminescence device, composition, thin film, and electroluminescence device comprising the same
WO2023213759A1 (de) * 2022-05-04 2023-11-09 Merck Patent Gmbh Polymere enthaltend speziell substituierte triarylamin-einheiten sowie elektrolumineszenzvorrichtungen enthaltend diese polymere

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179682A (ja) * 2008-01-30 2009-08-13 Wakayama Univ 有機電界発光素子用重合体、有機電界発光素子および有機elディスプレイ
WO2009110360A1 (ja) * 2008-03-05 2009-09-11 出光興産株式会社 高分子化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2010062442A (ja) * 2008-09-05 2010-03-18 Canon Inc 有機発光素子
JP2010287767A (ja) * 2009-06-12 2010-12-24 Hitachi Chem Co Ltd 有機光電変換素子及びその製造方法
WO2013146806A1 (ja) * 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2594573A (en) 1949-11-09 1952-04-29 Howard K Marlin Corn rake attachment
GB0028867D0 (en) 2000-11-28 2001-01-10 Avecia Ltd Field effect translators,methods for the manufacture thereof and materials therefor
WO2004003053A1 (ja) * 2002-06-26 2004-01-08 Sumitomo Chemical Company, Limited 高分子化合物及びそれを用いた高分子発光素子
JP4273856B2 (ja) 2002-08-28 2009-06-03 住友化学株式会社 高分子化合物およびそれを用いた高分子発光素子
JP5025074B2 (ja) * 2003-02-13 2012-09-12 株式会社リコー 有機薄膜トランジスタ及び有機薄膜トランジスタの製造方法
US7166689B2 (en) 2003-02-13 2007-01-23 Ricoh Company, Ltd. Aryl amine polymer, thin film transistor using the aryl amine polymer, and method of manufacturing the thin film transistor
TW201219350A (en) 2003-11-17 2012-05-16 Sumitomo Chemical Co Crosslinkable arylamine compounds
GB0526185D0 (en) 2005-12-22 2006-02-01 Cambridge Display Tech Ltd Electronic device
JP5446079B2 (ja) 2006-09-25 2014-03-19 住友化学株式会社 高分子化合物及びそれを用いた高分子発光素子
JP2009043896A (ja) * 2007-08-08 2009-02-26 Canon Inc 有機発光素子及びディスプレイ
EP2275469A4 (en) 2008-04-25 2012-11-28 Sumitomo Chemical Co POLYMER COMPOUND HAVING A FUNCTIONAL GROUP THAT REMAINS A NITROGENIC HETEROCYCLIC COMPOUND
JP2010034496A (ja) * 2008-06-25 2010-02-12 Hitachi Chem Co Ltd 有機エレクトロルミネセンス素子、並びにこれを備えた表示素子、照明装置、及び表示装置
JP5625271B2 (ja) 2008-07-29 2014-11-19 住友化学株式会社 高分子化合物及びそれを用いた発光素子
JP5343832B2 (ja) 2008-12-04 2013-11-13 三菱化学株式会社 アリールアミンポリマー、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5720097B2 (ja) 2009-01-20 2015-05-20 住友化学株式会社 メタフェニレン系高分子化合物及びそれを用いた発光素子
JP5434288B2 (ja) * 2009-06-12 2014-03-05 豊田合成株式会社 半導体発光素子、半導体発光素子の製造方法、半導体発光素子を備えたランプ、照明装置および電子機器
JP5710994B2 (ja) 2010-01-28 2015-04-30 住友化学株式会社 高分子化合物及びそれを用いてなる発光素子
US8617724B2 (en) 2010-01-28 2013-12-31 Sumitomo Chemical Company, Limited Polymer compound and light emitting device using the same
GB2484253B (en) 2010-05-14 2013-09-11 Cambridge Display Tech Ltd Organic light-emitting composition and device
WO2012008550A1 (ja) 2010-07-16 2012-01-19 住友化学株式会社 高分子化合物、該高分子化合物を含有する組成物、液状組成物、薄膜及び素子、並びに該素子を備える面状光源及び表示装置
CN103270077B (zh) 2010-12-21 2017-02-08 住友化学株式会社 高分子化合物及使用其的有机el元件
CN103270111B (zh) 2010-12-21 2016-07-20 住友化学株式会社 组合物和嵌段型共聚物
CN103270079B (zh) 2010-12-21 2017-02-08 住友化学株式会社 高分子化合物及使用其的发光元件
TW201307424A (zh) 2011-03-28 2013-02-16 Sumitomo Chemical Co 電子裝置及高分子化合物
JP6033795B2 (ja) 2012-01-30 2016-11-30 住友化学株式会社 高分子化合物および組成物、並びにこれらを用いた発光素子
GB201223369D0 (en) * 2012-12-24 2013-02-06 Cambridge Display Tech Ltd Polymer and device
US9431803B2 (en) 2012-02-02 2016-08-30 Siemens Aktiengesellschaft Cable assembly curvature limiter
US9644070B2 (en) * 2012-04-17 2017-05-09 Merck Patent Gmbh Cross-linkable and cross-linked polymers, process for the preparation thereof, and the use thereof
US9905767B2 (en) 2012-06-19 2018-02-27 Sumitomo Chemical Company, Limited High-molecular compound and light-emitting element using same
JP5955660B2 (ja) 2012-06-20 2016-07-20 住友化学株式会社 組成物、高分子化合物およびそれらを用いた発光素子
GB2508410A (en) * 2012-11-30 2014-06-04 Cambridge Display Tech Ltd Polymer and organic electronic device
WO2014157016A1 (ja) 2013-03-28 2014-10-02 住友化学株式会社 高分子化合物およびそれを用いた発光素子
US9599052B2 (en) 2014-01-09 2017-03-21 Ford Global Technologies, Llc Methods and system for catalyst reactivation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179682A (ja) * 2008-01-30 2009-08-13 Wakayama Univ 有機電界発光素子用重合体、有機電界発光素子および有機elディスプレイ
WO2009110360A1 (ja) * 2008-03-05 2009-09-11 出光興産株式会社 高分子化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2010062442A (ja) * 2008-09-05 2010-03-18 Canon Inc 有機発光素子
JP2010287767A (ja) * 2009-06-12 2010-12-24 Hitachi Chem Co Ltd 有機光電変換素子及びその製造方法
WO2013146806A1 (ja) * 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3187522A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062278A1 (ja) 2016-09-29 2018-04-05 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
JP2018061030A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
JP2018061029A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
JP2018061028A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
JP7262404B2 (ja) 2017-06-21 2023-04-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 電子素子のための材料
JP2020524737A (ja) * 2017-06-21 2020-08-20 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 電子素子のための材料
WO2019004248A1 (ja) 2017-06-30 2019-01-03 住友化学株式会社 高分子化合物及びそれを用いた発光素子
WO2019049225A1 (ja) 2017-09-06 2019-03-14 住友化学株式会社 発光素子
WO2019177175A1 (ja) 2018-03-16 2019-09-19 三菱ケミカル株式会社 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法
US12133453B2 (en) 2018-03-16 2024-10-29 Mitsubishi Chemical Corporation Polymer, composition for organic electroluminescent element, organic electroluminescent element, organic EL display device, organic EL lighting, and manufacturing method for organic electroluminescent element
KR20200133760A (ko) 2018-03-16 2020-11-30 미쯔비시 케미컬 주식회사 중합체, 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 유기 el 표시 장치, 유기 el 조명 및 유기 전계 발광 소자의 제조 방법
KR20240111808A (ko) 2018-03-16 2024-07-17 미쯔비시 케미컬 주식회사 중합체, 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 유기 el 표시 장치, 유기 el 조명 및 유기 전계 발광 소자의 제조 방법
US11943997B2 (en) 2018-03-16 2024-03-26 Mitsubishi Chemical Corporation Polymer, composition for organic electroluminescent element, organic electroluminescent element, organic EL display device, organic EL lighting, and manufacturing method for organic electroluminescent element
JPWO2020009069A1 (ja) * 2018-07-03 2021-08-02 保土谷化学工業株式会社 分子主鎖にターフェニル構造を含むトリアリールアミン高分子量化合物およびこれらの高分子量化合物を含む有機エレクトロルミネッセンス素子
US11999818B2 (en) 2018-07-03 2024-06-04 Hodogaya Chemical Co., Ltd. High molecular weight triarylamine compound comprising terphenyl structure in molecular main chain and organic electroluminescent element comprising said high molecular weight compound
JP7421476B2 (ja) 2018-07-03 2024-01-24 保土谷化学工業株式会社 分子主鎖にターフェニル構造を含むトリアリールアミン高分子量化合物およびこれらの高分子量化合物を含む有機エレクトロルミネッセンス素子
WO2020115971A1 (ja) 2018-12-06 2020-06-11 住友化学株式会社 高分子化合物の製造方法
JPWO2020171190A1 (ja) * 2019-02-20 2021-12-23 三菱ケミカル株式会社 重合体、有機電界発光素子、有機el表示装置及び有機el照明
KR20210127956A (ko) 2019-02-20 2021-10-25 미쯔비시 케미컬 주식회사 중합체, 유기 전계 발광 소자, 유기 el 표시 장치 및 유기 el 조명
JP7501517B2 (ja) 2019-02-20 2024-06-18 三菱ケミカル株式会社 重合体、有機電界発光素子、有機el表示装置及び有機el照明
WO2020171190A1 (ja) * 2019-02-20 2020-08-27 三菱ケミカル株式会社 重合体、有機電界発光素子、有機el表示装置及び有機el照明
WO2021075183A1 (ja) * 2019-10-15 2021-04-22 住友化学株式会社 組成物及びそれを含有する発光素子
WO2021166921A1 (ja) * 2020-02-20 2021-08-26 保土谷化学工業株式会社 高分子量化合物および該高分子量化合物を含む発光ダイオード
WO2022065102A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065100A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065099A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065101A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065098A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物

Also Published As

Publication number Publication date
US20170253795A1 (en) 2017-09-07
EP3674343A1 (en) 2020-07-01
CN106795277B (zh) 2020-04-10
EP3187522A4 (en) 2018-04-18
KR102300261B1 (ko) 2021-09-09
JP7019017B2 (ja) 2022-02-14
EP3187522B1 (en) 2019-12-04
TW201630964A (zh) 2016-09-01
KR20170046715A (ko) 2017-05-02
CN106795277A (zh) 2017-05-31
JP6819289B2 (ja) 2021-01-27
JPWO2016031639A1 (ja) 2017-06-15
JP2021073326A (ja) 2021-05-13
EP3187522A1 (en) 2017-07-05
TWI683834B (zh) 2020-02-01
US10301539B2 (en) 2019-05-28

Similar Documents

Publication Publication Date Title
JP7019017B2 (ja) 高分子化合物およびそれを用いた発光素子
JP6500891B2 (ja) 高分子化合物およびそれを用いた発光素子
JP6323093B2 (ja) 高分子化合物およびそれを用いた発光素子
WO2015163174A1 (ja) 発光素子
JP6881430B2 (ja) 発光素子及び該発光素子に用いる高分子化合物
JP2018083941A (ja) 組成物及びそれを用いた発光素子
JP6642428B2 (ja) 高分子化合物およびそれを用いた発光素子
JP2017125087A (ja) 高分子化合物及びそれを用いた発光素子
JP6332557B2 (ja) 発光素子の駆動方法および発光装置
JP6468928B2 (ja) 高分子化合物およびそれを用いた発光素子
JP2015174824A (ja) 金属錯体およびそれを用いた発光素子
JP6417785B2 (ja) 高分子化合物およびそれを用いた発光素子
JP7192339B2 (ja) 発光素子
JP7215957B2 (ja) ブロック共重合体及び組成物、並びにそれらを用いた発光素子
WO2017038613A1 (ja) 組成物及びそれを用いた発光素子
JP7124589B2 (ja) 発光素子
WO2018088573A1 (ja) 発光素子、並びに、それに用いる金属錯体及び組成物
JP7354557B2 (ja) 高分子化合物及びそれを用いた発光素子
JP6327019B2 (ja) 高分子化合物およびそれを用いた発光素子
WO2017099013A1 (ja) 組成物及びそれを用いた発光素子
JP2016176063A (ja) 高分子化合物およびそれを用いた発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545454

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15506463

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015836486

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836486

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177007805

Country of ref document: KR

Kind code of ref document: A