JP7124589B2 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
JP7124589B2
JP7124589B2 JP2018174549A JP2018174549A JP7124589B2 JP 7124589 B2 JP7124589 B2 JP 7124589B2 JP 2018174549 A JP2018174549 A JP 2018174549A JP 2018174549 A JP2018174549 A JP 2018174549A JP 7124589 B2 JP7124589 B2 JP 7124589B2
Authority
JP
Japan
Prior art keywords
group
ring
formula
atom
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018174549A
Other languages
English (en)
Other versions
JP2019068060A (ja
Inventor
敏明 佐々田
義昭 津幡
太一 安倍
茉由 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of JP2019068060A publication Critical patent/JP2019068060A/ja
Application granted granted Critical
Publication of JP7124589B2 publication Critical patent/JP7124589B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、発光素子に関する。
有機エレクトロルミネッセンス素子等の発光素子は、ディスプレイ及び照明の用途に好適に使用することが可能であり、研究開発が行われている。例えば、特許文献1には、金属錯体C1、C2又はC3を含有する発光層を有する発光素子が記載されている。
Figure 0007124589000001
国際公開第2016/185183号
しかし、上述した発光素子は、発光効率が必ずしも十分ではなかった。
そこで、本発明は、発光効率が優れる発光素子を提供することを目的とする。
本発明は、以下の[1]~[8]を提供する。
[1]
陽極と、陰極と、前記陽極及び前記陰極の間に設けられた式(1)で表される金属錯体を含有する発光層とを有する発光素子。
Figure 0007124589000002
[式中、
1はロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
1は1以上の整数を表し、n2は0以上の整数を表す。但し、M1がロジウム原子又はイリジウム原子の場合、n1+n2は3であり、M1がパラジウム原子又は白金原子の場合、n1+n2は2である。
環R1Aは、ジアゾール環、トリアゾール環又はテトラゾール環を表す。但し、環R1Aの少なくとも1つは、ジアゾール環又はトリアゾール環である。
環R2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。前記置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環R2が複数存在する場合、それらは同一でも異なっていてもよい。
1、E2、E11A、E12A及びE13Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E1、E2、E11A、E12A及びE13Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。但し、E1及びE2の少なくとも一方は炭素原子である。
11A、R12A及びR13Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11A、R12A及びR13Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
但し、E11A、E12A及びE13Aの少なくとも1つは窒素原子であり、該窒素原子に結合するR11A、R12A及びR13Aの少なくとも1つは式(Ar-1A)で表される基であり、且つ、E11A、E12A及びE13Aの少なくとも1つは炭素原子であり、該炭素原子に結合するR11A、R12A及びR13Aの少なくとも1つは、炭素原子数nR1のアルキル基であり、該基は置換基を有していてもよい。nR1は、1以上15以下の整数を表す。
11AとR12Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R12AとR13Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環R2が有していてもよい置換基とR11Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
11Aが窒素原子の場合、R11Aは存在しても存在しなくてもよい。E12Aが窒素原子の場合、R12Aは存在しても存在しなくてもよい。E13Aが窒素原子の場合、R13Aは存在しても存在しなくてもよい。
1-G1-A2は、アニオン性の2座配位子を表す。A1及びA2は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。G1は、単結合、又は、A1及びA2とともに2座配位子を構成する原子団を表す。A1-G1-A2が複数存在する場合、それらは同一でも異なっていてもよい。]
Figure 0007124589000003
[式中、
環Aは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。前記置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
2は、炭素原子数nR2のアルキル基を表し、該基は置換基を有していてもよい。nR2は、1以上15以下の整数を表す。但し、nR1とnR2との和は、5以上30以下である。]
[2]
前記式(1)で表される金属錯体が、式(1-A1)又は式(1-A2)で表される金属錯体である、[1]に記載の発光素子。
Figure 0007124589000004
[式中、M1、n1、n2、R11A、R12A、R13A、E11A、E12A、E13A、E2、環R2及びA1-G1-A2は、前記と同じ意味を表す。
環R2Aは、ベンゼン環、フルオレン環、スピロビフルオレン環、ジヒドロフェナントレン環、ピリジン環、ジアザベンゼン環、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環であり、これらの環は置換基を有していてもよい。前記置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環R2Aが複数存在する場合、それらは同一でも異なっていてもよい。
環R2Aが有していてもよい置換基とR11Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
但し、式(1-A1)中、R11Aの少なくとも1つは前記式(Ar-1A)で表される基であり、且つ、E12A及びE13Aの少なくとも1つは炭素原子であり、該炭素原子に結合するR12A及びR13Aの少なくとも1つは、炭素原子数nR1のアルキル基であり、該基は置換基を有していてもよい。式(1-A2)中、R12Aの少なくとも1つは前記式(Ar-1A)で表される基であり、且つ、E11A及びE13Aの少なくとも1つは炭素原子であり、該炭素原子に結合するR11A及びR13Aの少なくとも1つは、炭素原子数nR1のアルキル基であり、該基は置換基を有していてもよい。]
[3]
前記式(1-A1)で表される金属錯体が、式(1-A1-1)、式(1-A1-2)又は式(1-A1-3)で表される金属錯体である、[2]に記載の発光素子。
Figure 0007124589000005
[式中、M1、n1、n2、R11A、R12A、R13A及びA1-G1-A2は、前記と同じ意味を表す。
21A、R22A、R23A及びR24Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R21A、R22A、R23A及びR24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R21AとR22A、R22AとR23A、R23AとR24A、及び、R11AとR21Aは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[4]
前記式(1-A2)で表される金属錯体が、式(1-A2-1)又は式(1-A2-2)で表される金属錯体である、[2]に記載の発光素子。
Figure 0007124589000006
[式中、M1、n1、n2、R11A、R12A、R13A及びA1-G1-A2は、前記と同じ意味を表す。
21A、R22A、R23A及びR24Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R21A、R22A、R23A及びR24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R21AとR22A、R22AとR23A、R23AとR24A、及び、R11AとR21Aは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[5]
前記式(Ar-1A)で表される基が、式(Ar-2A)で表される基である、[1]~[4]のいずれかに記載の発光素子。
Figure 0007124589000007
[式中、R2は、前記と同じ意味を表す。
環A1は、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。
1A、E2A及びE3Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E1Aが窒素原子の場合、R1Aは存在しない。E2Aが窒素原子の場合、R2Aは存在しない。E3Aが窒素原子の場合、R3Aは存在しない。
1A、R2A及びR3Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R1AとR2A、及び、R2AとR3Aは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[6]
前記式(Ar-2A)で表される基が、式(Ar-3A)で表される基である、[5]に記載の発光素子。
Figure 0007124589000008
[式中、R2、R1A、R2A及びR3Aは、前記と同じ意味を表す。]
[7]
前記発光層が、式(H-1)で表される化合物を更に含有する、[1]~[6]のいずれかに記載の発光素子。
Figure 0007124589000009
[式中、
ArH1及びArH2は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
H1及びnH2は、それぞれ独立に、0又は1を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnH2は、同一でも異なっていてもよい。
H3は、0以上10以下の整数を表す。
H1は、アリーレン基、2価の複素環基、又は、-[C(RH112]nH11-で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。nH11は、1以上10以下の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
H2は、-N(-LH21-RH21)-で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。LH21は、単結合、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RH21は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
[8]
前記発光層が、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群より選ばれる少なくとも1種を更に含有する、[1]~[7]のいずれかに記載の発光素子。
本発明によれば、発光効率が優れる発光素子を提供することができる。
以下、本発明の好適な実施形態について詳細に説明する。
<共通する用語の説明>
本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
水素原子は、重水素原子であっても、軽水素原子であってもよい。
金属錯体を表す式中、金属との結合を表す実線は、イオン結合、共有結合又は配位結合を意味する。
「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×103~1×108である重合体を意味する。
「低分子化合物」とは、分子量分布を有さず、分子量が1×104以下の化合物を意味する。
「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。
「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは3~30であり、より好ましくは4~20である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
アルキル基は、置換基を有していてもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基)が挙げられる。
「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
シクロアルキル基は、置換基を有していてもよく、例えば、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基が挙げられる。
「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。
アリール基は、置換基を有していてもよく、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは4~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
アルコキシ基は、置換基を有していてもよく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
シクロアルコキシ基は、置換基を有していてもよく、例えば、シクロヘキシルオキシ基が挙げられる。
「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
アリールオキシ基は、置換基を有していてもよく、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等で置換された基が挙げられる。
「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。
「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは4~20である。
1価の複素環基は、置換基を有していてもよく、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基等で置換された基が挙げられる。
「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。
「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましい。
置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基及びジアリールアミノ基が挙げられる。
アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
アルケニル基及びシクロアルケニル基は、置換基を有していてもよく、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基が置換基を有する基が挙げられる。
「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
アルキニル基及びシクロアルキニル基は、置換基を有していてもよく、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基が置換基を有する基が挙げられる。
「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常、6~60であり、好ましくは6~30であり、より好ましくは6~18である。
アリーレン基は、置換基を有していてもよく、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、及び、これらの基が置換基を有する基が挙げられ、好ましくは、式(A-1)~式(A-20)で表される基である。アリーレン基は、これらの基が複数結合した基を含む。
Figure 0007124589000010
Figure 0007124589000011
Figure 0007124589000012
Figure 0007124589000013
[式中、R及びRaは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。複数存在するR及びRaは、各々、同一でも異なっていてもよく、Ra同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは、3~20であり、より好ましくは、4~15である。
2価の複素環基は、置換基を有していてもよく、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾールから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられ、好ましくは、式(AA-1)~式(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
Figure 0007124589000014
Figure 0007124589000015
Figure 0007124589000016
Figure 0007124589000017
Figure 0007124589000018
Figure 0007124589000019
Figure 0007124589000020
[式中、R及びRaは、前記と同じ意味を表す。]
「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基であり、好ましくは、式(B-1)-式(B-17)のいずれかで表される基である。これらの基は、置換基を有していてもよい。
Figure 0007124589000021
「置換基」とは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基を表す。但し、アルキル基が有していてもよい置換基は、ハロゲン原子、シアノ基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基である。置換基は架橋基であってもよい。
<発光素子>
本発明の発光素子は、陽極と、陰極と、前記陽極及び前記陰極の間に設けられた式(1)で表される金属錯体を含有する発光層とを有する。
<発光層>
発光層は、式(1)で表される金属錯体の1種を単独で含有していてもよく、2種以上を含有していてもよい。
<式(1)で表される金属錯体>
式(1)で表される金属錯体は、通常、室温(25℃)で燐光発光性を示す金属錯体であり、好ましくは、室温で三重項励起状態からの発光を示す金属錯体である。
1は、本発明の発光素子の発光効率がより優れるので、イリジウム原子又は白金原子であることが好ましく、イリジウム原子であることがより好ましい。
1がロジウム原子又はイリジウム原子の場合、n1は2又は3であることが好ましく、3であることがより好ましい。
1がパラジウム原子又は白金原子の場合、n1は2であることが好ましい。
1及びE2は、炭素原子であることが好ましい。
環R1Aがジアゾール環である場合、環R1Aは、好ましくは、E11Aが窒素原子であるイミダゾール環、又は、E12Aが窒素原子であるイミダゾール環であり、より好ましくは、E11Aが窒素原子であるイミダゾール環である。
環R1Aがトリアゾール環である場合、環R1Aは、好ましくは、E11A及びE12Aが窒素原子であるトリアゾール環、又は、E11A及びE13Aが窒素原子であるトリアゾール環であり、より好ましくは、E11A及びE13Aが窒素原子であるトリアゾール環である。
環R1Aがテトラゾール環である場合、環R1Aは、好ましくは、E11A~E13Aが窒素原子であるテトラゾール環である。
環R1Aが複数存在する場合、複数存在する環R1Aの少なくとも1つが、ジアゾール環又はトリアゾール環であればよいが、式(1)で表される金属錯体の合成が容易になるので、複数存在する環R1Aの少なくとも2つが、ジアゾール環又はトリアゾール環であることが好ましく、複数存在する環R1Aのすべてがジアゾール環又はトリアゾール環であることがより好ましい。
環R1Aは、本発明の発光素子の発光効率がより優れるので、好ましくはジアゾール環又はトリアゾール環であり、より好ましくはトリアゾール環である。
11Aが窒素原子であり、且つ、R11Aが存在する場合、R11Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基又は1価の複素環基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
11Aが炭素原子である場合、R11Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、水素原子又はアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
12Aが窒素原子であり、且つ、R12Aが存在する場合、R12Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基又は1価の複素環基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
12Aが炭素原子である場合、R12Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、水素原子又はアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
13Aが窒素原子であり、且つ、R13Aが存在する場合、R13Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基又は1価の複素環基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
13Aが炭素原子である場合、R13Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、水素原子又はアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
11A~R13Aにおけるアリール基としては、フェニル基、ナフチル基、フェナントレニル基、ジヒドロフェナントレニル基、フルオレニル基又はスピロビフルオレニル基が好ましく、フェニル基、フルオレニル基又はスピロビフルオレニル基がより好ましく、フェニル基が更に好ましく、これらの基は置換基を有していてもよい。
11A~R13Aにおける1価の複素環基としては、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基が好ましく、ピリジル基、ピリミジニル基、トリアジニル基、ジベンゾフラニル基、ジベンゾチエニル基又はカルバゾリル基がより好ましく、ピリジル基、ピリミジニル基又はトリアジニル基が更に好ましく、これらの基は置換基を有していてもよい。
11A~R13Aにおける置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲は、R11A~R13Aにおけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
11A~R13Aが有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、特に好ましくは、アルキル基であり、これらの基は更に置換基を有していてもよい。
11A~R13Aが有していてもよい置換基が更に有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基又はシクロアルキル基である。これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
11A~R13Aにおけるアリール基、1価の複素環基又は置換アミノ基は、本発明の発光素子の発光効率がより優れるので、好ましくは式(D-A)~式(D-C)で表される基であり、より好ましくは式(D-A)又は式(D-C)で表される基である。
[式(D-A)、式(D-B)又は式(D-C)で表される基]
DA1~mDA7は、通常10以下の整数であり、好ましくは5以下の整数であり、より好ましくは2以下の整数であり、更に好ましくは0又は1である。mDA2~mDA7が同一の整数であることが好ましく、mDA1~mDA7が同一の整数であることがより好ましい。
DAは、好ましくは芳香族炭化水素基又は複素環基であり、より好ましくはベンゼン環、ピリジン環、ピリミジン環、トリアジン環又はカルバゾール環から環を構成する炭素原子又は窒素原子に直接結合する水素原子3個を除いてなる基であり、これらの基は置換基を有していてもよい。
DAが有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、更に好ましくは、アルキル基又はシクロアルキル基である。これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
DAは、好ましくは式(GDA-11)~式(GDA-15)で表される基であり、より好ましくは式(GDA-11)~式(GDA-14)で表される基であり、更に好ましくは式(GDA-11)又は式(GDA-14)で表される基であり、特に式(GDA-11)で表される基である。
Figure 0007124589000022
[式中、
*は、式(D-A)におけるArDA1、式(D-B)におけるArDA1、式(D-B)におけるArDA2、又は、式(D-B)におけるArDA3との結合を表す。
**は、式(D-A)におけるArDA2、式(D-B)におけるArDA2、式(D-B)におけるArDA4、又は、式(D-B)におけるArDA6との結合を表す。
***は、式(D-A)におけるArDA3、式(D-B)におけるArDA3、式(D-B)におけるArDA5、又は、式(D-B)におけるArDA7との結合を表す。
DAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数ある場合、それらは同一でも異なっていてもよい。]
DAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、より好ましくは水素原子、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
ArDA1~ArDA7は、好ましくは、フェニレン基、フルオレンジイル基又はカルバゾールジイル基であり、より好ましくは式(ArDA-1)~式(ArDA-6)で表される基であり、更に好ましくは式(ArDA-1)~式(ArDA-3)で表される基であり、特に好ましくは式(ArDA-1)で表される基であり、これらの基は置換基を有していてもよい。
Figure 0007124589000023
[式中、
DAは前記と同じ意味を表す。
DBは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数ある場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
DBは、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
ArDA1~ArDA7、RDA及びRDBが有していてもよい置換基の例及び好ましい範囲は、GDAが有していてもよい置換基の例及び好ましい範囲と同じである。
DAは、好ましくは式(TDA-1)~式(TDA-4)で表される基であり、より好ましくは式(TDA-1)又は式(TDA-3)で表される基であり、更に好ましくは式(TDA-1)で表される基である。
Figure 0007124589000024
[式中、RDA及びRDBは、前記と同じ意味を表す。]
式(D-A)で表される基は、好ましくは式(D-A1)~式(D-A5)で表される基であり、より好ましくは式(D-A1)、式(D-A3)又は式(D-A5)で表される基であり、更に好ましくは式(D-A1)で表される基である。
Figure 0007124589000025
[式中、
p1~Rp4は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp1、Rp2及びRp4が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
np1は、0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表し、np4は0~4の整数を表す。複数あるnp1は、同一でも異なっていてもよい。]
式(D-B)で表される基は、好ましくは式(D-B1)~式(D-B3)で表される基であり、より好ましくは式(D-B1)で表される基である。
Figure 0007124589000026
[式中、
p1~Rp3は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp1及びRp2が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
np1は0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表す。np1及びnp2が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。]
式(D-C)で表される基は、好ましくは式(D-C1)~式(D-C4)で表される基であり、より好ましくは式(D-C1)~式(D-C3)で表される基であり、更に好ましくは式(D-C1)又は式(D-C2)で表される基である。
Figure 0007124589000027
[式中、
p4~Rp6は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp4~Rp6が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
np4は、0~4の整数を表し、np5は0~5の整数を表し、np6は0~5の整数を表す。]
np1は、好ましくは0又は1である。np2は、好ましくは0又は1であり、より好ましくは0である。np3は好ましくは0である。np4は、好ましくは0~2の整数である。np5は、好ましくは1~3の整数である。np6は、好ましくは0~2の整数である。
p1~Rp6は、好ましくはアルキル基又はシクロアルキル基であり、より好ましくはメチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基、シクロヘキシル基又はtert-オクチル基であり、更に好ましくはメチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基又はtert-オクチル基である。
環R1Aにおいて、本発明の発光素子の発光効率がより優れるので、E11A及びE12Aの少なくとも1つが窒素原子であり、且つ、該窒素原子に結合するR11A及びR12Aの少なくとも1つが式(Ar-1A)で表される基であることが好ましく、E11Aが窒素原子であり、且つ、該窒素原子に結合するR11Aが式(Ar-1A)で表される基であることがより好ましい。
環R1Aが複数存在する場合、複数存在する環R1Aの少なくとも1つにおいて、E11A~E13Aの少なくとも1つが窒素原子であり、且つ、該窒素原子に結合するR11A~R13Aの少なくとも1つが式(Ar-1A)で表される基であればよいが、式(1)で表される金属錯体の合成が容易になるので、複数存在する環R1Aの少なくとも2つにおいて、E11A~E13Aの少なくとも1つが窒素原子であり、且つ、該窒素原子に結合するR11A~R13Aの少なくとも1つが式(Ar-1A)で表される基であることが好ましく、複数存在する環R1Aのすべてにおいて、E11A~E13Aの少なくとも1つが窒素原子であり、且つ、該窒素原子に結合するR11A~R13Aの少なくとも1つが式(Ar-1A)で表される基であることがより好ましい。
環R1Aにおいて、E11Aが窒素原子であり、且つ、該窒素原子に結合するR11Aが式(Ar-1A)で表される基である場合、E12Aが炭素原子であり、且つ、該炭素原子に結合するR12Aが置換基を有していてもよい炭素原子数nR1のアルキル基であることが好ましい。
環R1Aにおいて、E12Aが窒素原子であり、且つ、該窒素原子に結合するR12Aが式(Ar-1A)で表される基である場合、E13Aが炭素原子であり、且つ、該炭素原子に結合するR13Aが置換基を有していてもよい炭素原子数nR1のアルキル基であることが好ましい。
環R1Aにおいて、E13Aが窒素原子であり、且つ、該窒素原子に結合するR13Aが式(Ar-1A)で表される基である場合、E12Aが炭素原子であり、且つ、該炭素原子に結合するR12Aが置換基を有していてもよい炭素原子数nR1のアルキル基であることが好ましい。
炭素原子数nR1のアルキル基において、nR1は、置換基の炭素原子数を含めない、アルキル基の炭素原子数を表す。炭素原子数nR1のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基及びドデシル基等の直鎖のアルキル基;並びに、イソプロピル基、sec-ブチル基、イソブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1,1-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、1,1-ジメチルペンチル基、1,1-ジエチルプロピル基、1,2-ジメチルペンチル基、1,1-ジメチルヘキシル基、1-エチル-1-メチルペンチル基、1,1,3,3-テトラメチルブチル基、1,2-ジメチルヘキシル基、1-プロピルペンチル基、2-エチルヘキシル基、1,1-ジメチルヘプチル基、1,1-ジプロピルブチル基、1-ブチルヘキシル基、1-プロピルヘプチル基、1,1,3,7-テトラメチルオクチル基及び1,1,2-トリエチルオクチル基等の分岐のアルキル基が挙げられる。
炭素原子数nR1のアルキル基は、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、ペンチル基、イソペンチル基、ネオペンチル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、デシル基及びドデシル基等の第一級のアルキル基であってよく、イソプロピル基、sec-ブチル基、1-エチルブチル基、1,2-ジメチルペンチル基、1,2-ジメチルヘキシル基、1-プロピルペンチル基、1-ブチルヘキシル基及び1-プロピルヘプチル基等の第二級のアルキル基であってもよく、tert-ブチル基、tert-ペンチル基、1,1-ジメチルブチル基、1,1-ジメチルペンチル基、1,1-ジエチルプロピル基、1,1-ジメチルヘキシル基、1-エチル-1-メチルペンチル基、1,1,3,3-テトラメチルブチル基、1,1-ジメチルヘプチル基、1,1-ジプロピルブチル基、1,1,3,7-テトラメチルオクチル基及び1,1,2-トリエチルオクチル基等の第三級のアルキル基であってもよい。
炭素原子数nR1のアルキル基が有していてもよい置換基としては、好ましくは、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であり、より好ましくは、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
炭素原子数nR1のアルキル基が有していてもよい置換基におけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲は、それぞれ、R11A~R13Aにおけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲と同じである。
炭素原子数nR1のアルキル基は、本発明の発光素子の発光効率がより優れるので、好ましくは、炭素原子数nR1の分岐のアルキル基であり、より好ましくは、炭素原子数nR1の第二級又は第三級のアルキル基であり、更に好ましくは、炭素原子数nR1の第三級のアルキル基であり、これらの基は置換基を有さないことが特に好ましい。
R1は、好ましくは2以上であり、より好ましくは3以上であり、更に好ましくは5以上であり、特に好ましくは7以上である。また、nR1は、好ましくは12以下であり、より好ましくは10以下であり、更に好ましくは8以下である。
環R2における芳香族炭化水素環の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。環R2における芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、インデン環、フルオレン環、スピロビフルオレン環、フェナントレン環、ジヒドロフェナントレン環及びこれらの環が1個以上5個以下縮合した縮合した環が挙げられ、本発明の発光素子の発光効率がより優れるので、好ましくは、ベンゼン環、ナフタレン環、フルオレン環、スピロビフルオレン環、フェナントレン環又はジヒドロフェナントレン環であり、より好ましくは、ベンゼン環、フルオレン環、スピロビフルオレン環又はジヒドロフェナントレン環であり、更に好ましくは、ベンゼン環又はフルオレン環であり、特に好ましくはベンゼン環であり、これらの環は置換基を有していてもよい。
環R2における芳香族複素環の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは3~30であり、より好ましくは4~15である。環R2における芳香族複素環としては、例えば、ピロール環、ジアゾール環、フラン環、チオフェン環、ピリジン環、ジアザベンゼン環及びこれらの環に芳香環が1個以上5個以下縮合した環が挙げられ、本発明の発光素子の発光効率がより優れるので、好ましくは、ピリジン環、ジアザベンゼン環、アザナフタレン環、ジアザナフタレン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環であり、より好ましくは、ピリジン環、ジアザベンゼン環、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環であり、更に好ましくは、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環であり、特に好ましくは、ジベンゾフラン環であり、これらの環は置換基を有していてもよい。環R2が6員の芳香族複素環である場合、E2は炭素原子であることが好ましい。
環R2は、本発明の発光素子の発光効率が更に優れるので、好ましくは、ベンゼン環、フルオレン環、スピロビフルオレン環、ジヒドロフェナントレン環、ピリジン環、ジアザベンゼン環、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環であり、より好ましくは、ベンゼン環、フルオレン環、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環であり、更に好ましくはベンゼン環又はジベンゾフラン環であり、これらの環は置換基を有していてもよい。
環R2が有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
環R2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、R11A~R13Aにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
環R2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲は、R11A~R13Aが有していてもよい置換基の例及び好ましい範囲と同じである。
式(1)で表される金属錯体の合成が容易になるので、R11AとR12A、R12AとR13A、及び、環R2が有していてもよい置換基とR11Aは、それぞれ結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
[式(Ar-1A)で表される基]
環Aにおける芳香族炭化水素環の例及び好ましい範囲は、環R2における芳香族炭化水素環の例及び好ましい範囲と同じである。環Aにおける芳香族複素環の例及び好ましい範囲は、環R2における芳香族複素環の例及び好ましい範囲と同じである。
環Aは、本発明の発光素子の発光効率がより優れるので、好ましくは、ベンゼン環、フルオレン環、スピロビフルオレン環、ジヒドロフェナントレン環、ピリジン環、ジアザベンゼン環、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環であり、より好ましくは、ベンゼン環、ピリジン環又はジアザベンゼン環であり、更に好ましくはベンゼン環であり、これらの環は置換基を有していてもよい。
環Aが有していてもよい置換基の例及び好ましい範囲は、環R2が有していてもよい置換基の例及び好ましい範囲と同じである。
式(1)で表される金属錯体の合成が容易になるので、環Aが有していてもよい置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
2における炭素原子数nR2のアルキル基としては、炭素原子数nR1のアルキル基の例と同じ基が例示できる。なお、nR2は、置換基の炭素原子数を含めない、アルキル基の炭素原子数を表す。
2が有していてもよい置換基の例及び好ましい範囲は、炭素原子数nR1のアルキル基が有していてもよい置換基の例及び好ましい範囲と同じである。
2は、合成が容易であるので、好ましくは、炭素原子数nR2の第一級又は第三級のアルキル基であり、より好ましくは、炭素原子数nR2の第一級のアルキル基であり、これらの基は置換基を有さないことが更に好ましい。
R2は、合成が容易であるので、好ましくは1以上10以下であり、より好ましくは1以上7以下であり、更に好ましくは1以上4以下であり、特に好ましくは1である。
「nR1とnR2との和(以下、「nR1+nR2」という。)は、5以上30以下」とは、nR1のうちの少なくとも1つと、nR2のうちの少なくとも1つとの和が、5以上30以下であることを意味する。例えば、nR1及びnR2が複数存在する場合、複数存在するnR1のうちの少なくとも1つと、複数存在するnR2のうちの少なくとも1つとの和が5以上30以下であればよい。
R1+nR2は、本発明の発光素子の発光効率がより優れるので、好ましくは5以上20以下であり、より好ましくは6以上15以下であり、更に好ましくは6以上12以下であり、更に好ましくは7以上10以下である。
式(Ar-1A)で表される基は、本発明の発光素子の発光効率がより優れるので、好ましくは、式(Ar-2A)で表される基である。
1A~E3Aは、好ましくは、炭素原子である。
環A1がピリジン環である場合、E1Aが窒素原子であるピリジン環が好ましい。
環A1がジアザベンゼン環である場合、E1A及びE3Aが窒素原子であるピリミジン環が好ましい。
環A1は、ベンゼン環が好ましい。
1A~R3Aは、本発明の発光素子の発光効率がより優れるので、好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、水素原子、アルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
1A及びR3Aは、更に好ましくは、水素原子である。
2Aは、更に好ましくはアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
1A~R3Aにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、R11A~R13Aにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
1A~R3Aが有していてもよい置換基の例及び好ましい範囲は、R11A~R13Aが有していてもよい置換基の例及び好ましい範囲と同じである。
式(1)で表される金属錯体の合成が容易になるので、R1AとR2A、及び、R2AとR3Aは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
式(Ar-2A)で表される基は、本発明の発光素子の発光効率がより優れるので、好ましくは、式(Ar-3A)で表される基である。
[アニオン性の2座配位子]
1-G1-A2で表されるアニオン性の2座配位子としては、例えば、下記式で表される配位子が挙げられる。但し、A1-G1-A2で表されるアニオン性の2座配位子は、添え字n1でその数を定義されている配位子とは異なる。
Figure 0007124589000028
Figure 0007124589000029
[式中、
*は、M1と結合する部位を表す。
L1は、水素原子、アルキル基、シクロアルキル基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRL1は、同一でも異なっていてもよい。
L2は、アルキル基、シクロアルキル基、アリール基、1価の複素環基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。]
L1は、好ましくは、水素原子、アルキル基、シクロアルキル基又はフッ素原子であり、より好ましくは水素原子又はアルキル基であり、これらの基は置換基を有していてもよい。
L2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
式(1)で表される金属錯体は、本発明の発光素子の発光効率がより優れるので、好ましくは、式(1-A1)又は式(1-A2)で表される金属錯体であり、より好ましくは式(1-A1)で表される金属錯体である。
環R2Aは、好ましくはベンゼン環、フルオレン環、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環であり、より好ましくはベンゼン環又はジベンゾフラン環であり、これらの環は置換基を有していてもよい。
環R2Aが有していてもよい置換基の例及び好ましい範囲は、環R2が有していてもよい置換基の例及び好ましい範囲と同じである。
式(1-A1)又は式(1-A2)で表される金属錯体の合成が容易になるので、環R2Aが有していてもよい置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
式(1-A1)又は式(1-A2)で表される金属錯体の合成が容易になるので、環R2Aが有していてもよい置換基とR11Aとは、互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
式(1-A1)で表される金属錯体の合成が容易になるので、式(1-A1)中、R11Aが複数存在する場合、R11Aの少なくとも2つは式(Ar-1A)で表される基であることが好ましく、R11Aのすべてが式(Ar-1A)で表される基であることがより好ましい。
本発明の発光素子の発光効率がより優れるので、式(1-A1)中、E12Aが炭素原子であり、且つ、該炭素原子に結合するR12Aが置換基を有していてもよい炭素原子数nR1のアルキル基であることが好ましい。
式(1-A1)で表される金属錯体の合成が容易になり、且つ、本発明の発光素子の発光効率がより優れるので、式(1-A1)中、R12A及びE12Aが複数存在する場合、E12Aの少なくとも2つは炭素原子であり、且つ、これらの炭素原子に結合するR12Aが置換基を有していてもよい炭素原子数nR1のアルキル基であることが好ましく、E12Aのすべてが炭素原子であり、且つ、これらの炭素原子に結合するR12Aが置換基を有していてもよい炭素原子数nR1のアルキル基であることがより好ましい。
式(1-A1)中、E13Aは窒素原子であり、且つ、R13Aは存在していないことが好ましい。
式(1-A2)で表される金属錯体の合成が容易になるので、式(1-A2)中、R12Aが複数存在する場合、R12Aの少なくとも2つは式(Ar-1A)で表される基であることが好ましく、R12Aのすべてが式(Ar-1A)で表される基であることがより好ましい。
本発明の発光素子の発光効率がより優れるので、式(1-A1)中、E13Aが炭素原子であり、且つ、該炭素原子に結合するR13Aが置換基を有していてもよい炭素原子数nR1のアルキル基であることが好ましい。
式(1-A1)で表される金属錯体の合成が容易になり、且つ、本発明の発光素子の発光効率がより優れるので、式(1-A1)中、R13A及びE13Aが複数存在する場合、E13Aの少なくとも2つは炭素原子であり、且つ、これらの炭素原子に結合するR13Aが置換基を有していてもよい炭素原子数nR1のアルキル基であることが好ましく、E13Aのすべてが炭素原子であり、且つ、これらの炭素原子に結合するR13Aが置換基を有していてもよい炭素原子数nR1のアルキル基であることがより好ましい。
式(1-A2)中、E11Aは窒素原子であり、且つ、R11Aは存在していないことが好ましい。
式(1-A1)で表される金属錯体は、本発明の発光素子の発光効率がより優れるので、好ましくは、式(1-A1-1)~式(1-A1-3)で表される金属錯体であり、より好ましくは式(1-A1-1)又は式(1-A1-2)で表される金属錯体であり、更に好ましくは式(1-A1-2)で表される金属錯体である。
式(1-A2)で表される金属錯体は、本発明の発光素子の発光効率がより優れるので、好ましくは、式(1-A2-1)又は式(1-A2-2)で表される金属錯体であり、より好ましくは式(1-A2-2)で表される金属錯体である。
21A~R24Aは、好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、水素原子、アルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
21A及びR24Aは、更に好ましくは水素原子である。
21A~R24Aにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
式(1)で表される金属錯体の合成が容易になるので、R11AとR21Aとは互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
21AとR22A、R22AとR23A、又は、R23AとR24Aが、互いに結合して、それぞれが結合する原子とともに環を形成する場合、形成する環としては、例えば、芳香族炭化水素環又は芳香族複素環が挙げられ、好ましくは、べンゼン環、インデン環、ピリジン環、ジアザベンゼン環、ベンゾフラン環、ベンゾチオフェン環、又は、インドール環であり、より好ましくは、インデン環、ベンゾフラン環、ベンゾチオフェン環、又は、インドール環であり、更に好ましくは、ベンゾフラン環又はベンゾチオフェン環であり、特に好ましくは、ベンゾフラン環であり、これらの環は置換基を有していてもよい。
21AとR22A、R22AとR23A、又は、R23AとR24Aが、互いに結合して、それぞれが結合する原子とともに環を形成する場合、R21AとR22A、又は、R22AとR23Aが、互いに結合して、それぞれが結合する原子とともに環を形成することが好ましく、R22AとR23Aとが互いに結合して、それぞれが結合する原子とともに環を形成することが好ましい。
21A~R24Aが有していてもよい置換基の例及び好ましい範囲は、環R2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
式(1)で表される金属錯体としては、例えば、下記式で表される金属錯体が挙げられる。
Figure 0007124589000030
Figure 0007124589000031
Figure 0007124589000032
Figure 0007124589000033
Figure 0007124589000034
Figure 0007124589000035
Figure 0007124589000036
[式中、
Aは、-CH=で表される基又は-N=で表される基を表す。ZAが複数存在する場合、それらは同一でも異なっていてもよい。
Bは、-O-で表される基又は-S-で表される基を表す。ZBが複数存在する場合、それらは同一でも異なっていてもよい。]
Aは、好ましくは-N=で表される基である。ZBは、好ましくは-O-で表される基である。
<式(1)で表される金属錯体の製造方法>
式(1)で表される金属錯体は、例えば、配位子となる化合物と金属化合物とを反応させる方法により製造することができる。必要に応じて、金属錯体の配位子の官能基変換反応を行ってもよい。
式(1)で表される金属錯体は、例えば、式(M-1)で表される化合物と、金属化合物若しくはその水和物とを反応させる工程Aを含む方法により製造することができる。
Figure 0007124589000037
[式中、M1、n1、n2、環R1A、環R2、R11A~R13A、E1、E2、E11A~E13A及びA1-G1-A2は、前記と同じ意味を表す。]
工程Aにおいて、金属化合物としては、例えば、塩化イリジウム、トリス(アセチルアセトナト)イリジウム(III)、クロロ(シクロオクタジエン)イリジウム(I)ダイマー、酢酸イリジウム(III)等のイリジウム化合物;塩化白金酸カリウム等の白金化合物;塩化パラジウム、酢酸パラジウム等のパラジウム化合物;及び、塩化ロジウム等のロジウム化合物が挙げられる。金属化合物の水和物としては、例えば、塩化イリジウム・三水和物、塩化ロジウム・三水和物が挙げられる。
工程Aにおいて、式(M-1)で表される化合物の量は、金属化合物又はその水和物1モルに対して、通常、2~20モルである。
工程Aは、通常、溶媒中で行う。溶媒としては、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、2-メトキシエタノール、2-エトキシエタノール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン、シクロペンチルメチルエーテル、ジグライム等のエーテル系溶媒;塩化メチレン、クロロホルム等のハロゲン系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;ヘキサン、デカリン、トルエン、キシレン、メシチレン等の炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;アセトン、ジメチルスルホキシド、水等が挙げられる。
工程Aにおいて、反応時間は、通常、30分間~200時間であり、反応温度は、通常、反応系に存在する溶媒の融点から沸点の間である。
<式(1)で表される金属錯体の製造方法>で説明した反応において用いられる化合物、触媒及び溶媒は、各々、一種単独で用いても二種以上を併用してもよい。
[ホスト材料]
本発明の発光素子の発光効率が優れるので、発光層は、式(1)で表される金属錯体と、正孔注入性、正孔輸送性、電子注入性及び電子輸送性のうちの少なくとも1つの機能を有するホスト材料とを含有する層であることが好ましい。発光層は、ホスト材料の1種を単独で含有していてもよく、2種以上を含有していてもよい。
発光層が、式(1)で表される金属錯体とホスト材料とを含有する層である場合、式(1)で表される金属錯体の含有量は、式(1)で表される金属錯体とホスト材料との合計を100質量部として、通常、0.1~50質量部であり、好ましくは1~45質量部であり、より好ましくは5~40質量部であり、更に好ましくは10~35質量部である。
発光層が、式(1)で表される金属錯体とホスト材料とを含有する層である場合、ホスト材料の有する最低励起三重項状態(T1)は、本発明の発光素子の発光効率が優れるので、発光層に含有される式(1)で表される金属錯体の有するT1より高いエネルギー準位であることが好ましい。
ホスト材料としては、本発明の発光素子を湿式法で作製できるので、発光層に含有される式(1)で表される金属錯体を溶解することが可能な溶媒に対して溶解性を示すものであることが好ましい。
ホスト材料は、低分子化合物(低分子ホスト)と高分子化合物(高分子ホスト)とに分類され、発光層はいずれのホスト材料を含有していてもよい。発光層に含有されていてもよいホスト材料としては、低分子化合物が好ましく、式(H-1)で表される化合物がより好ましい。
ArH1及びArH2は、フェニル基、フルオレニル基、スピロビフルオレニル基、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、チエニル基、ベンゾチエニル基、ジベンゾチエニル基、フリル基、ベンゾフリル基、ジベンゾフリル基、ピロリル基、インドリル基、アザインドリル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基であることが好ましく、フェニル基、フルオレニル基、スピロビフルオレニル基、ピリジル基、ピリミジニル基、トリアジニル基、ジベンゾチエニル基、ジベンゾフリル基、カルバゾリル基又はアザカルバゾリル基であることがより好ましく、フルオレニル基、スピロビフルオレニル基、ジベンゾチエニル基、ジベンゾフリル基又はカルバゾリル基であることが更に好ましく、式(TDA-3)で表される基であることが特に好ましく、これらの基は置換基を有していてもよい。
ArH1及びArH2が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基が好ましく、アルキル基、シクロアルコキシ基、アルコキシ基又はシクロアルコキシ基がより好ましく、アルキル基又はシクロアルコキシ基が更に好ましく、これらの基は更に置換基を有していてもよい。
H1は、好ましくは1である。nH2は、好ましくは0である。
H3は、通常、0以上10以下の整数であり、好ましくは0以上5以下の整数であり、更に好ましくは1以上3以下の整数であり、特に好ましくは1である。
H11は、好ましくは1以上5以下の整数であり、より好ましく1以上3以下の整数であり、更に好ましく1である。
H11は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、水素原子、アルキル基又はシクロアルキル基であることがより好ましく、水素原子又はアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
H1は、アリーレン基又は2価の複素環基であることが好ましく、これらの基は更に置換基を有していてもよい。
H1は、式(A-1)~式(A-3)、式(A-8)~式(A-10)、式(AA-1)~式(AA-6)、式(AA-10)~式(AA-21)又は式(AA-24)~式(AA-34)で表される基であることが好ましく、式(A-1)、式(A-2)、式(A-8)、式(A-9)、式(AA-1)~式(AA-4)、式(AA-10)~式(AA-15)、式(AA-33)又は式(AA-34)で表される基であることがより好ましく、式(A-1)、式(A-2)、式(A-8)、式(AA-2)、式(AA-4)、式(AA-10)、式(AA-12)、式(AA-14)又は(AA-33)で表される基であることが更に好ましく、式(A-8)、式(AA-10)、式(AA-12)又は式(AA-14)で表される基であることが特に好ましく、式(AA-14)で表される基であることがとりわけ好ましい。
H1が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基が好ましく、アルキル基、アルコキシ基、アリール基又は1価の複素環基がより好ましく、アルキル基、アリール基又は1価の複素環基が更に好ましく、1価の複素環基が特に好ましく、これらの基は更に置換基を有していてもよい。
H21は、単結合又はアリーレン基であることが好ましく、単結合であることがより好ましく、このアリーレン基は置換基を有していてもよい。
H21で表されるアリーレン基又は2価の複素環基の定義及び例は、LH1で表されるアリーレン基又は2価の複素環基の定義及び例と同様である。
H21は、アリール基又は1価の複素環基であることが好ましく、これらの基は置換基を有していてもよい。
H21で表されるアリール基及び1価の複素環基の定義及び例は、ArH1及びArH2で表されるアリール基及び1価の複素環基の定義及び例と同様である。
H21が有していてもよい置換基の定義及び例は、ArH1及びArH2が有していてもよい置換基の定義及び例と同様である。
式(H-1)で表される化合物は、式(H-2)で表される化合物であることが好ましい。
Figure 0007124589000038
[式中、ArH1、ArH2、nH3及びLH1は、前記と同じ意味を表す。]
式(H-1)で表される化合物としては、下記式で表される化合物及び後述の化合物HM-1が例示される。
Figure 0007124589000039
Figure 0007124589000040
Figure 0007124589000041
ホスト材料に用いられる高分子化合物としては、例えば、後述の正孔輸送材料である高分子化合物、後述の電子輸送材料である高分子化合物が挙げられる。
[発光層の組成物]
発光層は、式(1)で表される金属錯体と、前述のホスト材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料(式(1)で表される金属錯体とは異なる。)及び酸化防止剤からなる群から選ばれる少なくとも1種とを含む組成物(以下、「発光層の組成物」ともいう。)を含有する層であってもよい。
[正孔輸送材料]
正孔輸送材料は、低分子化合物と高分子化合物とに分類され、好ましくは架橋基を有する高分子化合物である。
低分子化合物としては、例えば、トリフェニルアミン及びその誘導体、N,N’-ジ-1-ナフチル-N,N’-ジフェニルベンジジン(α-NPD)、並びに、N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン(TPD)等の芳香族アミン化合物が挙げられる。
高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン及びトリニトロフルオレノン等の電子受容性部位が結合された化合物でもよい。
発光層の組成物において、正孔輸送材料の含有量は、式(1)で表される金属錯体を100質量部とした場合、通常、1~400質量部である。
正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
[電子輸送材料]
電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、並びに、これらの誘導体が挙げられる。
高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
発光層の組成物において、電子輸送材料の含有量は、式(1)で表される金属錯体を100質量部とした場合、通常、1~400質量部である。
電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
[正孔注入材料及び電子注入材料]
正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。
低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。
発光層の組成物において、正孔注入材料及び電子注入材料の含有量は、各々、式(1)で表される金属錯体を100質量部とした場合、通常、1~400質量部である。
電子注入材料及び正孔注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
(イオンドープ)
正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm~1×103S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
ドープするイオンは、一種単独で用いても二種以上を併用してもよい。
[発光材料]
発光材料(式(1)で表される金属錯体とは異なる。)は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、並びに、イリジウム、白金又はユーロピウムを中心金属とする三重項発光錯体が挙げられる。
三重項発光錯体としては、例えば、以下に示す金属錯体が挙げられる。
Figure 0007124589000042
Figure 0007124589000043
Figure 0007124589000044
Figure 0007124589000045
Figure 0007124589000046
高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、アントラセンジイル基及びピレンジイル基等のアリーレン基;芳香族アミンから2個の水素原子を取り除いてなる基等の芳香族アミン残基;並びに、カルバゾールジイル基、フェノキサジンジイル基及びフェノチアジンジイル基等の2価の複素環基を含む高分子化合物が挙げられる。
発光材料は、好ましくは、三重項発光錯体又は高分子化合物であり、より好ましくは三重項発光錯体である。
発光層の組成物において、発光材料の含有量は、式(1)で表される金属錯体を100質量部とした場合、通常、0.01~400質量部であり、好ましくは0.1~100質量部であり、より好ましくは0.5~50質量部であり、更に好ましくは1~10質量部である。
発光材料は、一種単独で用いても二種以上を併用してもよい。
[酸化防止剤]
酸化防止剤は、式(1)で表される金属錯体と同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
発光層の組成物において、酸化防止剤の含有量は、式(1)で表される金属錯体を100質量部とした場合、通常、0.001~10質量部である。
酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
<発光層のインク>
式(1)で表される金属錯体と、溶媒と、を含有する組成物(以下、「発光層のインク」ともいう。)は、インクジェットプリント法、ノズルプリント法等の湿式法を用いた発光素子の作製に好適である。発光層のインクの粘度は、湿式法の種類によって調整すればよいが、好ましくは25℃において1~20mPa・sである。
発光層のインクに含有される溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。溶媒としては、例えば、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。
発光層のインクにおいて、溶媒の含有量は、式(1)で表される金属錯体を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。
溶媒は、一種単独で用いても二種以上を併用してもよい。
<膜>
膜は、式(1)で表される金属錯体を含有するものであり、発光素子の発光層として好適である。
膜は、発光層のインクを用いて、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリーコート法、ノズルコート法等の湿式法により作製することができる。
膜の厚さは、通常、1nm~10μmである。
<発光素子の層構成>
本発明の発光素子は、陽極と、陰極と、陽極及び陰極の間に設けられた発光層とを有する。本発明の発光素子は、更に、基板を有していてもよい。
本発明の発光素子は、陽極、陰極及び発光層以外の層(例えば、正孔輸送層、電子輸送層、正孔注入層、電子注入層等)を有していてもよい。
本発明の発光素子の好ましい一態様は、基板上に陽極が設けられ、その上層に発光層が積層され、更にその上層に陰極が積層された発光素子である。また、本発明の発光素子の好ましい他の一態様は、基板上に陰極が設けられ、その上層に発光層が積層され、更にその上層に陽極が積層された発光素子である。これらの態様において、更に、保護層、バッファー層、反射層、封止層(封止膜、封止基板等)等の他の機能を有する層を設けてもよい。
本発明の発光素子は、ボトムエミッションタイプ、トップエミッションタイプ、両面採光型のいずれであってもよい。
本発明の発光素子は、正孔注入性及び正孔輸送性の観点からは、陽極と発光層との間に、正孔注入層及び正孔輸送層の少なくとも1層を有することが好ましい。
本発明の発光素子は、電子注入性及び電子輸送性の観点からは、陰極と発光層の間に、電子注入層及び電子輸送層の少なくとも1層を有することが好ましい。
本発明の発光素子の好ましい層構成としては、例えば、下記の構成が挙げられる。
(a)陽極-正孔輸送層-発光層-陰極
(b)陽極-発光層-電子輸送層-陰極
(c)陽極-正孔注入層-正孔輸送層-発光層-陰極
(d)陽極-発光層-電子輸送層-電子注入層-陰極
(e)陽極-正孔輸送層-発光層-電子注入層-陰極
(f)陽極-正孔注入層-発光層-電子輸送層-陰極
(g)陽極-正孔注入層-正孔輸送層-発光層-電子注入層-陰極
(h)陽極-正孔注入層-発光層-電子輸送層-電子注入層-陰極
(i)陽極-正孔注入層-正孔輸送層-発光層-電子輸送層-電子注入層-陰極
(j)陽極-正孔輸送層-発光層-電子輸送層-陰極
(k)陽極-正孔注入層-正孔輸送層-発光層-電子輸送層-陰極
(l)陽極-正孔輸送層-発光層-電子輸送層-電子注入層-陰極
本発明の発光素子は、電極と他の層との密着性向上や電極からの電荷注入の改善のために、電極に隣接して絶縁層を設けてもよい。また、本発明の発光素子では、界面の密着性向上や隣接する2層の成分の混合防止等のために、各層の界面に薄いバッファー層を挿入してもよい。積層する層の順番及び数、並びに各層の厚さは、外部量子効率、素子寿命等を勘案して調整すればよい。
[基板]
本発明の発光素子は、陽極の発光層側とは反対側、又は陰極の発光層側とは反対側に基板を有していてもよい。基板は、電極の形成及び有機層(例えば、発光層、正孔輸送層、正孔注入層、電子輸送層、電子注入層等)の形成の際に、化学的に変化しない基板であることが好ましい。基板は、例えば、ガラス、プラスチック、高分子フィルム、金属フィルム、シリコン等の基板であってよく、これらを積層した基板であってもよい。
本発明の発光素子において、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極は、それぞれ、必要に応じて、2層以上設けられていてもよい。
陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極が複数存在する場合、それらを構成する材料はそれぞれ同一でも異なっていてもよい。
陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極の厚さは、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~150nmである。
正孔注入層、発光層、正孔輸送層、電子輸送層及び電子注入層は、各々、隣接する層の形成時に使用される溶媒に、各層を構成する材料が溶解しないことが望ましい。材料の溶解を回避する方法としては、i)架橋基を有する材料を用いる方法、又は、ii)隣接する層の溶解性に差を設ける方法が好ましい。上記i)の方法では、架橋基を有する材料を用いて層を形成した後、該架橋基を架橋させることにより、該層を不溶化させることができる。
[正孔注入層及び電子注入層]
正孔注入層は、正孔注入材料を含有する層である。正孔注入材料としては、例えば、前述の発光層の組成物が含有していてもよい正孔注入材料が挙げられる。正孔注入材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
電子注入層は、電子注入材料を含有する層である。電子注入材料としては、例えば、前述の発光層の組成物が含有していてもよい電子注入材料が挙げられる。電子注入材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
[正孔輸送層]
正孔輸送層は、正孔輸送材料を含有する層である。正孔輸送材料としては、例えば、前述の発光層の組成物が含有していてもよい正孔輸送材料が挙げられる。正孔輸送材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
[電子輸送層]
電子輸送層は、電子輸送材料を含有する層である。電子輸送材料としては、例えば、前述の発光層の組成物が含有していてもよい電子輸送材料が挙げられる。電子輸送材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
[電極]
陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
本発明の発光素子において、陽極及び陰極の少なくとも一方は、通常、透明又は半透明であるが、陽極が透明又は半透明であることが好ましい。
陽極及び陰極の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法及びラミネート法が挙げられる。
[発光素子の製造方法]
本発明の発光素子において、発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、例えば、真空蒸着法、並びに、スピンコート法及びインクジェット印刷法に代表される湿式法等が挙げられ、湿式法が好ましい。低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、及び、溶液又は溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法が挙げられる。
発光層は発光層のインクを用いて、正孔輸送層、電子輸送層、正孔注入層及び電子注入層は、上述した正孔輸送材料、電子輸送材料、正孔注入材料及び電子注入材料をそれぞれ含有するインクを用いて、スピンコート法、インクジェット印刷法に代表される湿式法により形成することができる。
本発明の発光素子は、例えば、基板上に各層を順次積層することにより製造することができる。具体的には、例えば、基板上に陽極を設け、その上に正孔注入層、正孔輸送層等の層を設け、その上に発光層を設け、その上に電子輸送層、電子注入層等の層を設け、更にその上に、陰極を積層することにより、発光素子を製造することができる。他の製造方法としては、例えば、基板上に陰極を設け、その上に電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層等の層を設け、更にその上に、陽極を積層することにより、発光素子を製造することができる。更に他の製造方法としては、例えば、陽極又は陽極上に各層を積層した陽極側基材と陰極又は陰極上に各層を積層させた陰極側基材とを、対向させて接合することにより製造することができる。
[発光素子の用途]
発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極若しくは陰極、又は両方の電極をパターン状に形成する方法がある。
これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、又は、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源及び表示装置としても使用できる。
以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、移動相にテトラヒドロフランを用い、下記のサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。
測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、1.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(東ソー製、商品名:UV-8320GPC)を用いた。
LC-MSは、下記の方法で測定した。
測定試料を約2mg/mLの濃度になるようにクロロホルム又はテトラヒドロフランに溶解させ、LC-MS(Agilent製、商品名:1290 Infinity LC及び6230 TOF LC/MS)に約1μL注入した。LC-MSの移動相には、アセトニトリル及びテトラヒドロフランの比率を変化させながら用い、1.0mL/分の流量で流した。カラムは、SUMIPAX ODS Z-CLUE(住化分析センター製、内径:4.6mm、長さ:250mm、粒径3μm)を用いた。
TLC-MSは、下記の方法で測定した。
測定試料をトルエン、テトラヒドロフラン又はクロロホルムのいずれかの溶媒に任意の濃度で溶解させ、DART用TLCプレート(テクノアプリケーションズ社製、商品名:YSK5-100)上に塗布し、TLC-MS(日本電子製、商品名:JMS-T100TD(The AccuTOF TLC))を用いて測定した。測定時のヘリウムガス温度は、200~400℃の範囲で調節した。
NMRは、下記の方法で測定した。
5~10mgの測定試料を約0.5mLの重クロロホルム(CDCl3)、重テトラヒドロフラン、重ジメチルスルホキシド、重アセトン、重N,N-ジメチルホルムアミド、重トルエン、重メタノール、重エタノール、重2-プロパノール又は重塩化メチレンに溶解させ、NMR装置(JEOL RESONANCE製、商品名:JNM-ECZ400S/L1、又は、ブルカー製、商品名:AVANCE600)を用いて測定した。
化合物の純度の指標として、高速液体クロマトグラフィー(HPLC)面積百分率の値を用いた。この値は、特に記載がない限り、HPLC(島津製作所製、商品名:LC-20A)でのUV=254nmにおける値とする。この際、測定する化合物は、0.01~0.2質量%の濃度になるようにテトラヒドロフラン又はクロロホルムに溶解させ、濃度に応じてHPLCに1~10μL注入した。HPLCの移動相には、アセトニトリル/テトラヒドロフランの比率を100/0~0/100(容積比)まで変化させながら用い、1.0mL/分の流量で流した。カラムは、SUMIPAX ODS Z-CLUE(住化分析センター製、内径:4.6mm、長さ:250mm、粒径3μm)又は同等の性能を有するODSカラムを用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD-M20A)を用いた。
<合成例M1> 化合物M1~M5及び金属錯体RM1の合成
化合物M1は、国際公開第2015/145871号に記載の方法に従って合成した。
化合物M2、化合物M4及び化合物M5は、国際公開第2013/146806号に記載の方法に従って合成した。
化合物M3は、国際公開第2005/049546号に記載の方法に従って合成した。
金属錯体RM1は、国際公開第2009/157424号に記載の方法に従って合成した。
Figure 0007124589000047
Figure 0007124589000048
<金属錯体G1、金属錯体R1及び化合物HM-1> 金属錯体G1及び金属錯体R1の合成並びに化合物HM-1の入手
金属錯体G1は、国際公開第2009/131255号に記載の方法に準じて合成した。
金属錯体R1は、特開2006-188673号公報に記載の方法に準じて合成した。
化合物HM-1はLuminescence Technology社より購入した。
Figure 0007124589000049
<合成例HTL1> 高分子化合物HTL-1の合成
高分子化合物HTL-1は、化合物M1、化合物M2及び化合物M3を用いて、国際公開第2015/145871号に記載の方法に従って合成した。高分子化合物HTL-1は、Mn=2.3×104及びMw=1.2×105であった。
高分子化合物HTL-1は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M3から誘導される構成単位とが、45:5:50のモル比で構成された共重合体である。
<合成例HTL2> 高分子化合物HTL-2の合成
反応容器内を不活性ガス雰囲気とした後、化合物M4(2.52g)、化合物M2(0.470g)、化合物M5(4.90g)、金属錯体RM1(0.530g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(4.2mg)及びトルエン(158mL)を加え、100℃に加熱した。反応液に、20質量%水酸化テトラエチルアンモニウム水溶液(16mL)を滴下し、8時間還流させた。反応後、そこに、フェニルボロン酸(116mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(4.2mg)を加え、15時間還流させた。その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、85℃で2時間撹拌した。冷却後、反応液を、3.6質量%塩酸、2.5質量%アンモニア水、水で洗浄し、得られた溶液をメタノールに滴下したところ、沈澱が生じた。沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物HTL-2を6.02g得た。高分子化合物HTL-2のMnは3.8×104であり、Mwは4.5×105であった。
高分子化合物HTL-2は、仕込み原料の量から求めた理論値では、化合物M4から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M5から誘導される構成単位と、金属錯体RM1から誘導される構成単位とが、40:10:47:3のモル比で構成されてなる共重合体である。
<合成例ET1> 高分子化合物ET1の合成
(高分子化合物ET1aの合成)
特開2012-33845号公報に記載の方法に従って、化合物ET1-1及び化合物ET1-2を合成し、それを用いて、高分子化合物ET1aを合成した。
Figure 0007124589000050
高分子化合物ET1aのMnは5.2×104であった。
高分子化合物ET1aは、仕込み原料の量から求めた理論値では、化合物ET1-1から誘導される構成単位と、化合物ET1-2から誘導される構成単位とが、50:50のモル比で構成された共重合体である。
(高分子化合物ET1の合成)
反応容器内を不活性ガス雰囲気とした後、高分子化合物ET1a(200mg)、テトラヒドロフラン(20mL)及びエタノール(20mL)を加え、55℃に加熱した。その後、そこへ、水(2mL)に溶解させた水酸化セシウム(200mg)を加え、55℃で6時間撹拌した。その後、室温まで冷却した後、減圧濃縮することにより、固体を得た。得られた固体を水で洗浄した後、減圧乾燥させることにより、高分子化合物ET1(150mg、薄黄色固体)を得た。得られた高分子化合物ET1のNMRスペクトルにより、高分子化合物ET1aのエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。
Figure 0007124589000051
<合成例BC1> 金属錯体BC1~BC6の合成
金属錯体BC1~BC3は国際公開第2016/185183号に記載の方法に従って合成した。
金属錯体BC4~BC6は国際公開第2016/185183号に記載の方法に準じて合成した。
Figure 0007124589000052
Figure 0007124589000053
<合成例B1> 金属錯体B1の合成
Figure 0007124589000054
反応容器内を窒素ガス雰囲気とした後、2,4-ジメチルアニリン(200g)とシクロペンチルメチルエーテル(400mL)を加え、撹拌した。その後、反応容器を氷浴を用いて冷却した後、そこへ、16質量%塩化水素シクロペンチルメチルエーテル溶液(357g)を滴下した。滴下後、室温で1時間撹拌を継続し、析出した固体をろ取し、得られた固体をヘキサン(150mL)で洗浄した。得られた固体を2-プロパノールを用いて晶析し、更に、室温で減圧乾燥させることで、化合物1a(220g、薄赤色固体)を得た。
反応容器内を窒素ガス雰囲気とした後、化合物1a(140g)、クロロホルム(2100mL)及びトリエチルアミン(267mL)を加え、撹拌した。その後、反応容器を氷浴を用いて冷却した後、そこへ、2,2-ジメチルブチリルクロリド(113mL)を滴下した。滴下後、室温で1時間撹拌を継続した後、そこへ、飽和炭酸ナトリウム水溶液(400mL)を加え、室温で撹拌した。得られた反応混合物を分液し、得られた有機層を飽和炭酸ナトリウム水溶液及びイオン交換水で順次洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を濃縮した後、そこへ、ヘプタンを加え、1時間撹拌し、得られた固体をろ取した。その後、得られた固体を40℃で減圧乾燥させることで、化合物1b(164g、白色固体)を得た。化合物1bのHPLC面積百分率値は99.5%以上であった。
化合物1bのNMR測定結果は、以下のとおりであった。
1H-NMR(CDCl3,400MHz) δ(ppm):0.94(3H,t),1.29(6H,s),1.67(2H,q),2.21(3H,s),2.28(3H,s),6.99(1H,s),7.00(1H,d),7.12(1H,br),7.65(1H,d).
反応容器内をアルゴンガス雰囲気とした後、化合物1b(60g)、モノクロロベンゼン(480mL)、2-フルオロピリジン(26mL)及びトリフルオロメタンスルホン酸無水物(50mL)を加え、室温下で30分撹拌した。その後、そこへ、ベンズヒドラジド(41g)を加え、90℃で3時間撹拌した。その後、得られた反応液を室温まで冷却した後、そこへ、炭酸水素ナトリウム水溶液(500mL)を加え、有機層を抽出した。その後、得られた有機層をイオン交換水で洗浄した。得られた有機層を減圧濃縮することで固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(クロロホルム及びテトラヒドロフランの混合溶媒)で精製した後、2-プロパノール及びヘプタンの混合溶媒を用いて晶析した。その後、得られた固体を50℃で減圧乾燥させることにより、化合物1c(70g、収率80%)を白色固体として得た。化合物1cのHPLC面積百分率値は99.5%以上であった。
化合物1cのLC-MS及びNMRの測定結果は、以下のとおりであった。
LC-MS(APCI,positive):m/z=320[M+H]+
1H-NMR(600MHz、CD2Cl2) δ(ppm):7.42-7.37(m,2H),7.35-7.31(m,2H),7.29-7.25(m,2H),7.19(d,1H),7.07(s,1H),2.40(s,3H),1.79-1.72(m,4H),1.57-1.45(m,1H),1.34(s,3H),1.15(s,3H),0.89(t,3H).
反応容器内をアルゴンガス雰囲気とした後、トリスアセチルアセトナトイリジウム(15.3g)、化合物1c(40.0g)及びペンタデカン(40mL)を加え、加熱還流下で50時間攪拌した。その後、そこへ、トルエンを加え、シリカゲルを敷いたろ過器でろ過した後、得られたシリカゲルから、トルエン及び酢酸エチルの混合溶媒を用いて、金属錯体B1を含む黄色溶液を抽出した。得られた溶液を減圧濃縮することで固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(トルエン溶媒)で精製した後、トルエン及びメタノールの混合溶媒を用いて晶析した。その後、得られた固体を50℃で減圧乾燥させることにより、金属錯体B1(30.5g)を得た。金属錯体B1のHPLC面積百分率値は99.3%であった。
金属錯体B1のLC-MSの測定結果は、以下のとおりであった。
LC-MS(APCI,positive):m/z=1149[M+H]+
<合成例B2> 金属錯体B2の合成
Figure 0007124589000055
反応容器内をアルゴンガス雰囲気とした後、2,2’-ジメチルヘキサン酸(40g)、クロロホルム(240mL)、N,N’-ジメチルホルムアミド(0.21mL)及び塩化チオニル(20mL)を加え、45℃で3時間撹拌した。その後、反応容器を水浴を用いて冷却することにより、2,2’-ジメチルヘキサノイルクロライドを含む反応液を得た。
別途用意した反応容器内をアルゴンガス雰囲気とした後、化合物1a(41.5g)、クロロホルム(400mL)及びトリエチルアミン(75mL)を加え、反応容器を氷浴を用いて冷却した。その後、そこへ、上記で得られた化合物2,2’-ジメチルヘキサノイルクロライドを含む反応液を滴下した。滴下後、室温で1時間撹拌を継続した後、そこへ、2mol/L炭酸ナトリウム水溶液(280mL)を加え、室温で撹拌した。得られた反応混合物を分液し、有機層を得た。得られた有機層をイオン交換水(280mL)で洗浄した。その後、得られた有機層を無水硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮することにより、化合物2b(60g、収率88%)を薄黄色の油状物として得た。上記操作を繰り返すことにより、必要量の化合物2bを確保した。化合物2bのHPLC面積百分率値は99.5%以上であった。
化合物2bのTLC-MS測定結果は、以下のとおりであった。
TLC/MS(DART,positive):m/z=248[M+H]+
反応容器内をアルゴンガス雰囲気とした後、化合物2b(40g)、モノクロロベンゼン(320mL)、2-フルオロピリジン(14mL)及びトリフルオロメタンスルホン酸無水物(27mL)を加え、室温下で30分撹拌した。その後、そこへ、3-ブロモベンズヒドラジド(35g)を加え、90℃で7時間撹拌した。その後、そこへ、2mol/L炭酸水素ナトリウム水溶液(160mL)を加え、攪拌した後、有機層を抽出した。得られた有機層をイオン交換水で洗浄した。その後、得られた有機層を減圧濃縮することで油状物を得た。得られた油状物をシリカゲルカラムクロマトグラフィー(クロロホルム及びエタノールの混合溶媒)で精製した後、ヘプタンを用いて晶析した。その後、得られた固体を50℃で減圧乾燥させることにより、化合物2c(48g、収率77%)を白色固体として得た。化合物2cのHPLC面積百分率値は99.5%以上であった。
化合物2cのLC-MS及びNMRの測定結果は、以下のとおりであった。
LC/MS(APPI,positive):m/z=426[M+H]+
1H-NMR(400MHz、CD2Cl2) δ(ppm)=7.60-7.55(m,1H),7.41(d,1H),7.25(d,1H),7.21-7.13(m,2H),7.09-7.03(m,2H),2.36(s,3H),1.76-1.59(m,4H),1.43-1.07(m,11H),0.84(t,3H).
反応容器内をアルゴンガス雰囲気とした後、化合物2c(2.2g)、4-tert-ブチルフェニルボロン酸(1.0g)、トルエン(22mL)及び(ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)(18mg)を加え、80℃に昇温した。その後、そこへ、20質量%のテトラブチルアンモニウムヒドロキシド水溶液(16mL)を加え、加熱還流下で18時間攪拌した。その後、得られた反応液を室温まで冷却した後、そこへ、トルエンを加え、有機層を抽出した。得られた有機層をイオン交換水で洗浄した。その後、得られた有機層を無水硫酸マグネシウムで乾燥させた後、シリカゲル及びセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することで、固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(クロロホルム及びエタノールの混合溶媒)で精製した後、ヘプタンを用いて晶析した。その後、得られた固体を50℃で減圧乾燥させることにより、化合物2d(2.2g、収率85%)を白色固体として得た。化合物2dのHPLC面積百分率値は99.5%以上であった。
化合物2dのLC-MS及びNMRの測定結果は、以下のとおりであった。
LC-MS(APPI,positive):m/z=480[M+H]+
1H-NMR(400MHz、CD2Cl2)δ(ppm)=7.53-7.48(m,1H),7.46-7.39(m,2H),7.40-7.37(m,2H),7.34-7.29(m,2H),7.26-7.19(m,3H),7.07(s,1H),2.40(s,3H),1.74(s,3H),1.70-1.61(m,1H),1.47-1.36(m,1H),1.34-1.30(m,12H),1.29-1.14(m,4H),1.12(s,3H),0.86(t,3H)
反応容器内をアルゴンガス雰囲気とした後、トリスアセチルアセトナトイリジウム(1.0g)、化合物2d(2.0g)及びペンタデカン(3mL)を加え、加熱還流下で46時間攪拌した。その後、そこへ、トルエンを加え、シリカゲルを敷いたろ過器でろ過した後、得られたシリカゲルから、トルエン及び酢酸エチルの混合溶媒を用いて、金属錯体B2を含む黄色溶液を抽出した。得られた溶液を減圧濃縮することで固体を得た後、得られた固体をアセトニトリル及びヘプタンで洗浄し、更に、シリカゲルカラムクロマトグラフィー(トルエン及び酢酸エチルの混合溶媒)で精製した。その後、得られた固体をトルエン及びアセトニトリルの混合溶媒を用いて晶析した後、更に、50℃で減圧乾燥させることにより、金属錯体B2(1.0g)を黄色固体として得た。金属錯体B2のHPLC面積百分率値は98.8%であった。
金属錯体B2のLC-MS及びNMRの測定結果は、以下のとおりであった。
LC-MS(APCI,positive):m/z=1629[M+H]+
1H-NMR(400MHz、CD2Cl2)δ(ppm)=7.41-7.16(m,15H),7.10-6.64(m,12H),6.19-6.04(m,3H),2.54-2.43(m,9H),2.16-1.67(m,9H),1.62-1.03(m,63H),0.85-0.63(m,9H).
<合成例B3> 金属錯体B3の合成
(合成例B3-1) 化合物3dの合成
Figure 0007124589000056
反応容器内をアルゴンガス雰囲気とした後、2-フェニル-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(50g)、2-メチル-4-ブロモアニリン(46g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(3g)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(4g)及びトルエン(1L)を加え、室温で撹拌した。その後、そこへ、20質量%テトラエチルアンモニウムヒドロキシド水溶液を室温で滴下した後、70℃で5時間撹拌した。得られた反応液を室温まで冷却後、得られた反応液を分液し、有機層を得た。得られた有機層をイオン交換水で洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を濃縮した後、そこへ、テトラヒドロフラン及び活性白土を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過する操作を2回繰り返した。得られたろ液を減圧濃縮した後、そこへ、トルエン及び活性炭を加え、室温で30分間撹拌した。その後、セライトを敷いたろ過器でろ過し、得られたろ液を濃縮した。上記操作を繰り返すことで、化合物3a(92g、赤茶色油状物)を得た。化合物3aのGC面積百分率値は99.5%以上であった。
反応容器内を窒素ガス雰囲気とした後、化合物3a(92g)とシクロペンチルメチルエーテル(214mL)を加え、撹拌した。その後、反応容器を氷浴を用いて冷却し、そこへ、16質量%塩化水素シクロペンチルメチルエーテル溶液(114g)を滴下し、次いで、ヘプタン(649mL)を滴下した。滴下後、室温で1時間撹拌を継続した後、析出した固体をろ取し、得られた固体をヘプタン及びアセトンで洗浄した。得られた固体を2-プロパノール、メタノール、エタノール及びヘプタンを用いて複数回晶析した後、得られた固体を室温で減圧乾燥させることで、化合物3b(37g、薄赤色固体)を得た。上記操作を繰り返すことにより、必要量の化合物3bを確保した。
化合物3bのNMRの測定結果は、以下のとおりであった。
1H-NMR(400MHz、CDCl3)δ(ppm)=7.33-7.65(8H,m),4.85(3H,s),2.46(3H,s).
反応容器内をアルゴン雰囲気とした後、2,2’-ジメチルヘキサン酸(29g)、クロロホルム(174mL)及びN,N’-ジメチルホルムアミド(0.14g)を加え、50℃で撹拌した。その後、そこへ、塩化チオニル(24g)を滴下した後、50℃で4時間撹拌した。その後、反応容器を水浴を用いて冷却することにより、2,2’-ジメチルヘキサノイルクロライドを含む反応液を調製した。
別途用意した反応容器内を窒素ガス雰囲気とした後、化合物3b(39g)、クロロホルム(290mL)及びトリエチルアミン(47mL)を加え、撹拌した。その後、反応容器を氷浴を用いて冷却した後、そこへ、上記で調製した2,2’-ジメチルヘキサノイルクロライドを含む反応液を滴下した。滴下後、室温で2時間撹拌を継続した後、そこへ、飽和炭酸ナトリウム水溶液(300mL)を加え、室温で撹拌した。得られた反応混合物を分液することにより、有機層を得た。得られた有機層を飽和炭酸ナトリウム水溶液及びイオン交換水で順次洗浄した。その後、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮した後、シリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)で分取精製することにより、油状物を得た。得られた油状物にヘキサンを加えた後、得られた混合物を、ドライアイスを加えたアセトンバスを用いて冷却しながら、1時間撹拌することにより、固体が析出した。その後、得られた固体をろ取し、得られた固体を50℃で減圧乾燥させることで、化合物3c(40g、白色固体)を得た。上記操作を繰り返すことにより、必要量の化合物3cを確保した。化合物3cのHPLC面積百分率値は99.5%以上であった。
化合物3cのNMRの測定結果は、以下のとおりであった。
1H-NMR(400MHz、CDCl3)δ(ppm)=7.98(1H,d),7.55(1H,d),7.42(1H,t),7.41(4H,m),7.31(1H,t),2.32(3H,s),1.62(2H,s),1.35(10H,s),0.91(3H,s).
反応容器内をアルゴンガス雰囲気とした後、化合物3c(30g)、モノクロロベンゼン(300mL)、2-フルオロピリジン(9mL)及びトリフルオロメタンスルホン酸無水物(18mL)を加え、室温下で30分撹拌した。その後、そこへ、2-ブロモベンゾイルヒドラジン(23g)を加え、90℃で3時間撹拌した後、得られた反応液を室温まで冷却した。その後、そこへ、炭酸水素ナトリウム水溶液(300mL)を加えた後、有機層を抽出した。得られた有機層をイオン交換水で洗浄した。その後、得られた有機層を減圧濃縮することで固体を得た。得られた固体をヘキサンで洗浄した後、更に、2-プロパノール、ヘプタン及びアセトニトリルを用いて複数回晶析した。その後、得られた固体を50℃で減圧乾燥させることにより、化合物3d(31g)を白色固体として得た。化合物3dのHPLC面積百分率値は99.5%以上であった。
化合物3dのLC-MS及びNMRの測定結果は、以下のとおりであった。
LC-MS(APCI,positive):m/z=488[M+H]+
1H-NMR(400MHz、CDCl3)δ(ppm)=7.57-7.64(m,4H),7.38-7.49(m,6H),7.28-7.30(d,1H),7.07(t,1H),1.85(3H,s),1.67-1.74(2H,m),1.42-1.50(1H,m),1.39(3H,s),1.14-1.36(3H,m),1.17(3H,s),0.88(3H,t).
(合成例B3-2) 金属錯体B3の合成
Figure 0007124589000057
反応容器内をアルゴンガス雰囲気とした後、化合物3d(10g)、4-tert-ブチルフェニルボロン酸(4g)及びトルエンを加え、室温で撹拌した。その後、そこへ、ビス(ジ-tert-ブチル(4-ジメチルアミノビフェニル)ホスフィン)ジクロロパラジウム(72mg)を加えた後、90℃に加熱した。その後、そこへ、20質量%テトラブチルアンモニウムヒドロキシド水溶液(64g)を滴下した後、90℃で3時間撹拌した。その後、反応容器を室温まで冷却した後、得られた反応混合物を分液した。得られた有機層をイオン交換水で2回洗浄した。その後、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液に活性炭を加え、室温で30分間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮した後、そこへ、ヘキサンを加え、固体をろ取した。得られた固体をヘキサン及び2-プロパノールを用いて複数回晶析した後、得られた固体を50℃で減圧乾燥させることで化合物3e(9g、白色固体)得た。化合物3eのHPLC面積百分率値は99.5%以上であった。
化合物3eのLC-MS及びNMRの測定結果は、以下のとおりであった。
LC-MS(APCI,positive):m/z=542[M+H]+
1H-NMR(400MHz、CDCl3)δ(ppm)=7.63-7.68(m,4H),7.31-7.52(m,8H),7.25(d,2H),7.15-7.17(d,2H),1.88(s,3H),1.43(s,3H),1.28(s,9H),1.21(s,3H),1.45-1.78(m,1H),1.17-1.39(m,5H),0.88(3H,t)
反応容器内をアルゴンガス雰囲気とした後、トリスアセチルアセトナトイリジウム(1.1g)、化合物3e(5.0g)及びペンタデカン(13mL)を加え、加熱還流下で48時間攪拌した。その後、そこへ、トルエンを加え、シリカゲルを敷いたろ過器でろ過した後、得られたシリカゲルから、トルエン及び酢酸エチルの混合溶媒を用いて、金属錯体B3を含む黄色溶液を抽出した。得られた溶液を減圧濃縮することで固体を得た後、得られた固体をシリカゲルカラムクロマトグラフィー(トルエン及び酢酸エチルの混合溶媒)で精製することにより、固体を得た。得られた固体をトルエン及びアセトニトリルの混合溶媒を用いた晶析、並びに、トルエン及びヘキサンの混合溶媒を用いた晶析を、それぞれ、複数回繰り返した。その後、得られた固体を50℃で減圧乾燥させることにより、金属錯体B3(1.7g、黄色固体)を得た。金属錯体B3のHPLC面積百分率値は98.3%であった。
金属錯体B3のNMRの測定結果は、以下のとおりであった。
1H-NMR(400MHz、CD2Cl2)δ(ppm)=7.42-7.73(24H,m),6.97-7.11(18H,m),6.13-6.26(3H,m),2.23-2.27(4H,m),2.01(1H,s)1.94(1H,s),0.97-1.89(34H,m),1.88(2H,d),1.56(3H,s),1.20(27H,s),0.70-0.84(9H,m)
<合成例B4> 金属錯体B4の合成
Figure 0007124589000058
反応容器内をアルゴンガス雰囲気とした後、化合物2c(7.0g)、フェニルボロン酸(2.1g)、トルエン(70mL)及び(ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)(58mg)を加え、80℃に昇温した。その後、そこへ、20質量%のテトラブチルアンモニウムヒドロキシド水溶液(51g)を加え、加熱還流下で18時間攪拌した。その後、得られた反応液を室温まで冷却した後、そこへ、トルエンを加え、有機層を抽出した。得られた有機層をイオン交換水で洗浄し、無水硫酸マグネシウムで乾燥させた後、シリカゲル及びセライトを敷いたろ過器でろ過した。その後、得られたろ液を減圧濃縮することで粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(クロロホルム及びエタノールの混合溶媒)で精製した後、更に、50℃で減圧乾燥させることにより、化合物4d(4.7g、収率48%)を無色油状物として得た。化合物4dのHPLC面積百分率値は99.5%以上であった。
化合物4dのLC-MS及びNMRの測定結果は、以下のとおりであった。
LC-MS(APPI,positive):m/z=480[M+H]+
1H-NMR(400MHz、CD2Cl2-d2)δ(ppm)=7.54-7.46(m,2H),7.43-7.39(m,1H),7.39-7.27(m,7H),7.21(d,1H),7.07(s,1H),2.39(s,3H),1.75(s,3H),1.71-1.62(m,1H),1.46-1.36(m,1H),1.33(s,3H),1.32-1.14(m,4H),1.13(s,3H),0.86(t,3H).
反応容器内をアルゴンガス雰囲気とした後、トリスアセチルアセトナトイリジウム(1.5g)、化合物4d(4.5g)及びペンタデカン(14mL)を加え、加熱還流下で46時間攪拌した。その後、そこへ、トルエンを加え、シリカゲルを敷いたろ過器でろ過した後、得られたシリカゲルから、トルエン及び酢酸エチルの混合溶媒を用いて、金属錯体B4を含む黄色溶液を抽出した。得られた溶液を減圧濃縮することで固体を得た後、得られた固体をアセトニトリル及びヘプタンで洗浄し、次いで、シリカゲルカラムクロマトグラフィー(トルエン及び酢酸エチルの混合溶媒)で精製した。得られた固体をトルエン及びアセトニトリルの混合溶媒を用いて晶析した後、得られた固体を50℃で減圧乾燥させることにより、金属錯体B4(3.2g)を黄色固体として得た。金属錯体B4のHPLC面積百分率値は96.3%であった。
金属錯体B4のLC-MS及びNMRの測定結果は、以下のとおりであった。
LC-MS(APCI,positive):m/z=1629[M+H]+
1H-NMR(400MHz、CD2Cl2)δ(ppm)=7.41-7.17(m,15H),7.15-6.67(m,15H),6.21-6.06(m,3H),2.53-2.43(m,9H),2.16-2.05(m,5H),1.90-1.67(m,4H),1.62-0.99(m,36H),0.83-0.62(m,9H).
<合成例B5> 金属錯体B5の合成
Figure 0007124589000059
反応容器をアルゴンガス雰囲気とした後、化合物2b(25.2g)、2-フルオロピリジン(10.8g)、クロロベンゼン(202mL)及びトリフルオロ酢酸無水物(31.3g)を加え、撹拌した。その後、反応容器を水浴を用いて冷却した後、そこへ、2-ブロモ3-メチルベンゾイルヒドラジン(25.4g)を加え、室温で10分間撹拌した。得られた反応液を少量取り出し、クロロホルムで希釈した後、HPLC測定を実施した。化合物2bの残存量が2%未満(HPLC面積百分率値)になったことを確認後、90℃で7時間撹拌した。反応容器を室温まで冷却後、そこへ、炭酸水素ナトリウム水溶液(100mL)を加え、有機層を抽出した。得られた有機層をイオン交換水で洗浄した。その後、得られた有機層に硫酸マグネシウムを加え、乾燥させた。その後、乾燥させた有機層に、活性炭12.6gを加えて、撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体に、クロロホルム及びテトラヒドロフランを加えた後、シリカゲル及びセライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体を、トルエン及びヘプタンの混合溶媒を用いて晶析した。その後、得られた固体を50℃で減圧乾燥させることにより、化合物5c(36.2g)を白色固体として得た。化合物5cのHPLC面積百分率値は99.5%以上であった。
化合物5cのNMRの測定結果は、以下のとおりであった。
1H-NMR(400MHz、CD2Cl2-d2)δ(ppm)=7.61-7.53(m,1H),7.28-7.21(m,1H),7.21-7.12(m,1H),7.12-7.01(m,3H),2.34(s,3H),2.30(s,3H),1.75-1.60(m,5H),1.42-1.08(m,10H),85(t,3H).
Figure 0007124589000060
反応容器内を窒素ガス雰囲気とした後、3-ブロモスピロフルオレン(5.0g)、ビスピナコラートジボロン(4.1g)、酢酸カリウム(4.9g)及びシクロペンチルメチルエーテル(125mL)を加え、撹拌した。その後、そこへ、[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン(0.3g)を加え、90℃で16時間撹拌を継続した。その後、反応容器を室温まで冷却した後、得られた反応液を分液した。得られた有機層をイオン交換水(50mL)で2回洗浄した。その後、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することで固体を得た。得られた固体に、トルエン及び活性炭(1.4g)を加え、室温で1時間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を濃縮することで、白色固体を得た。得られた白色固体をトルエン及びアセトニトリルを用いて晶析し、次いで、得られた固体を50℃で減圧乾燥させることで、化合物5d(4.5g、白色固体)を得た。
化合物5dの1H-NMR測定結果は、以下のとおりであった。
1H-NMR(CD2Cl2、400MHz):δ(ppm)= 1.33(12H,m),6.64(4H,m),7.06-7.23(3H,m),7.35(3H,t),7.51(1H,d),7.86(2H,d),7.91(1H,d),8.26(1H,s).
反応容器内をアルゴンガス雰囲気とした後、化合物5c(1.7g)、化合物5d(2.0g)、40質量%テトラブチルアンモニウムヒドロキシド水溶液(5.9g)、イオン交換水(5.9g)及びトルエン(19.9g)を加え、室温で撹拌した。その後、そこへ、ビス(ジ-tert-ブチル(4-ジメチルアミノビフェニル)ホスフィン)ジクロロパラジウム(0.03g)を加え、80℃で19時間撹拌した。その後、反応容器を室温まで冷却した後、得られた反応液を分液した。得られた有機層をイオン交換水(27.0g)で2回洗浄した。その後、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液に活性炭(0.5g)を加え、室温で1時間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)で分取精製することにより、固体を得た。得られた固体をトルエン及びヘプタンの混合溶媒、並びに、トルエン及びアセトニトリルの混合溶媒を用いて複数回晶析した。その後、得られた固体を50℃で減圧乾燥させた。上記の操作を繰り返すことにより、化合物5e(2.6g、白色固体)を得た。化合物5eのHPLC面積百分率値は99.5%以上であった。
化合物5eの1H-NMR測定結果は、以下のとおりであった。
1H-NMR(CD2Cl2,400MHz):δ(ppm)=7.89-7.85(m,2H),7.84-7.80(m,1H),7.60-7.57(m,1H),7.40-7.35(m,3H),7.30-7.26(m,2H),7.23(d,1H),7.18-7.08(m,5H),7.05(br,1H),6.82(dd,1H),6.74-6.63(m,4H),2.32(s,3H),2.27(s,3H),1.76(s,3H),1.69-1.59(m,1H),1.44-1.37(m,1H),1.32(s,3H),1.29-1.15(m,4H),1.09(s,3H),0.85(t,3H).
反応容器内をアルゴンガス雰囲気とした後、トリスアセチルアセトナトイリジウム(0.5g)、化合物5e(2.5g)及びペンタデカン(7.2g)を加え、加熱還流下で46時間攪拌した。その後、そこへ、トルエン(9.0g)を加え、シリカゲル(22.6g)を敷いたろ過器でろ過した後、得られたシリカゲルから、トルエン及び酢酸エチルの混合溶媒を用いて、金属錯体B5を含む黄色溶液を抽出した。得られた溶液を減圧濃縮することで固体を得た後、得られた固体をシリカゲルカラムクロマトグラフィー(トルエン及び酢酸エチルの混合溶媒)で精製することにより、固体を得た。得られた固体をトルエン及びアセトニトリルの混合溶媒を用いて晶析し、次いで、50℃で減圧乾燥させることにより、金属錯体B5(0.7g、黄色固体)を得た。金属錯体B5のHPLC面積百分率値は99.0%であった。
金属錯体B5のLC/MS及び1H-NMR測定結果は、以下のとおりであった。
LC/MS(APCI,positive):m/z=2218[M+H]+
1H-NMR(CD2Cl2,400MHz):δ(ppm)=7.90-7.82(m,9H),7.51-7.34(m,15H),7.27-7.09(m,15H),6.90-6.78(m,3H),6.75-6.59(m,12H),6.57-6.51(m,3H),5.88-5.78(m,3H),2.25-2.05(m,27H),2.01-1.83(m,6H),1.47-1.06(m,30H),0.89-0.72(m,9H).
<合成例B6> 金属錯体B6の合成
Figure 0007124589000061
反応容器内をアルゴンガス雰囲気とした後、化合物2c(13.0g)、5’-m-テルフェニルボロン酸(9.2g)、ビス(ジ-t-ブチル(4-ジメチルアミノビフェニル)ホスフィン)ジクロロパラジウム(0.1g)及びトルエン(100mL)を加え、室温で撹拌した。その後、そこへ、40質量%テトラブチルアンモニウムヒドロキシド水溶液(49mL)を加え、90℃で21時間撹拌した。その後、反応容器を室温まで冷却した後、得られた反応液を分液した。得られた有機層をイオン交換水で洗浄した。その後、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液に活性炭(3.0g)を加え、室温で1時間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物を、シリカゲルカラムクロマトグラフィー(クロロホルム及びエタノールの混合溶媒)で分取精製することにより、油状物を得た。得られた油状物にメタノール及び活性炭を加え、室温で1時間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、白色固体を得た。得られた固体をヘプタン及び2-プロパノールの混合溶媒を用いて晶析し、得られた固体を50℃で減圧乾燥することにより、化合物6a(11.3g、白色固体)を得た。化合物6aのHPLC面積百分率値は99.5%以上であった。
化合物6aの1H-NMR測定結果は、以下のとおりであった。
1H-NMR(400MHz、CD2Cl2)δ(ppm)=7.80-7.25(m,18H),7.20-7.07(m,1H),7.01(t,1H),2.19-2.09(t,3H),1.84-1.56(m,5H),1.45-1.06(m,10H),0.94-0.86(m,3H).
反応容器内をアルゴンガス雰囲気とした後、トリスアセチルアセトナトイリジウム(2.1g)、化合物6a(10g)及びペンタデカン(50mL)を加え、加熱還流下で63時間攪拌した。その後、反応容器を室温まで冷却し、そこへ、2-プロパノール(100mL)を加え、析出した固体をろ取した。得られた固体をジクロロメタン及びアセトニトリルの混合溶媒で洗浄することにより、黄色固体(5.5g)を得た。得られた固体をシリカゲルカラムクロマトグラフィー(トルエン及び酢酸エチルの混合溶媒)で分取精製した後、ジクロロメタン及びエタノールの混合溶媒、トルエン及びアセトニトリルの混合溶媒、並びに、トルエン及びヘプタンの混合溶媒を用いて晶析した。更に、得られた固体を逆相シリカゲルカラムクロマトグラフィー(塩化メチレン及びアセトニトリルの混合溶媒)で分取精製した後、トルエン及びエタノールの混合溶媒を用いて晶析した。得られた固体を50℃で減圧乾燥させることにより、金属錯体B6(3.0g、黄色固体)を得た。金属錯体B6のHPLC面積百分率値は99.5%以上であった。
金属錯体B6の1H-NMR測定結果は、以下のとおりであった。
1H-NMR(400MHz、CD2Cl2)δ(ppm)=7.66-7.56(m,15H),7.51-7.19(m,27H),7.17-6.80(m,12H),6.41-6.26(m,3H),2.34-2.49(m,6H),1.96-1.80(m,12H),1.63-1.00(m,36H),0.89-0.65(m,9H).
<合成例B7> 金属錯体B7の合成
Figure 0007124589000062
反応容器内をアルゴンガス雰囲気とした後、2-ジベンゾフランカルボン酸(20.0g)、硫酸(1.8g)及びエタノール(600mL)を加え、80℃で45時間撹拌した後、得られた反応液を室温にした。上記の操作を二回繰り返した後、得られた2回の反応液を合一した。得られた合一した反応液を濃縮した後、そこへ、酢酸エチル(400mL)を加え、濃縮した。得られた濃縮物に、酢酸エチル(200mL)及びイオン交換水(200mL)を加え、抽出した。得られた有機層を炭酸ナトリウム水溶液(200mL)で洗浄した後、得られた有機層をイオン交換水(200mL)で洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、セライト及びシリカゲルを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、油状物を得た。その後、得られた油状物を50℃で減圧乾燥させることにより、化合物7a(39.4g、黄色油状物)を得た。化合物7aのHPLC面積百分率値は99.0%であった。
化合物7aの1H-NMR測定結果は、以下のとおりであった。
1H-NMR(400MHz、CD2Cl2)δ(ppm)=1.40(3H,t),4.39(2H,q),7.38(1H,dt),7.50(1H,dt),7.59(2H,d),8.02(1H,dd),8.16(1H,dd),8.67(1H,d).
反応容器をアルゴン雰囲気下とした後、化合物7a(40.0g)、エタノール(360mL)、イオン交換水(40mL)及びヒドラジン一水和物(125.0g)を加え、80℃で6時間撹拌した。その後、反応液を室温まで冷却した後、そこへ、イオン交換水(300mL)を加え、0℃で1時間撹拌したところ、固体が生じた。得られた固体をろ取した後、得られた固体をイオン交換水(200mL)で2回洗浄し、更に、50%エタノール水(200mL)で1回洗浄した。得られた固体に、2-プロパノール(565mL)を加えた後、懸濁撹拌した。その後、固体をろ取し、得られた固体を50℃で減圧乾燥させることにより、化合物7b(34.5g)を白色固体として得た。化合物7bのHPLC面積百分率値は97.1%であった。
化合物7bの1H-NMR測定結果は、以下のとおりであった。
1H-NMR(400MHz、CD3OD)δ(ppm)=4.84(2H,s),7.39(1H,dt),7.52(1H,dt),7.60(1H,dd),7.64(1H,d),7.93(1H,dd),8.07(1H,dd),8.48(1H,d).
反応容器をアルゴン雰囲気下とした後、化合物3c(22.0g)、モノクロロベンゼン(220mL)、2-フルオロピリジン(6.7mL)及びトリフルオロメタンスルホン酸無水物(12.8mL)を加え、室温で撹拌した。その後、そこへ、化合物7b(17.7g)を加え、85℃で3時間撹拌した。その後、得られた反応液を室温まで冷却した後、そこへ、炭酸水素ナトリウム水溶液(78mL)を加え、有機層を抽出した。得られた有機層をイオン交換水(88mL)で洗浄した。その後、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮した後、得られた固体をヘキサンで洗浄した。得られた固体を、アセトニトリルを用いて晶析した後、更に、50℃で減圧乾燥させることにより、化合物7c(28.2g)を白色固体として得た。化合物7cのHPLC面積百分率値は99.5%以上であった。
化合物7cの1H-NMR測定結果は、以下のとおりであった。
1H-NMR(400MHz、CD2Cl2)δ(ppm)=0.89(3H,t),1.18(3H,s),1.20-1.35(3H,m),1.39(3H,m),1.46(1H,dt),1.63(1H,m),1.66-1.75(1H,m),1.83(3H,s),7.29(1H,dt),7.34-7.66(12H,m),7.80(1H,dd),8.02(1H,d).
反応容器内をアルゴンガス雰囲気とした後、トリスアセチルアセトナトイリジウム(4.4g)、化合物7c(18.0g)及びペンタデカン(90mL)を加え、加熱還流下で66時間攪拌した。その後、得られた反応液を室温まで冷却した後、そこへ、2-プロパノール(90mL)を加えたところ、固体が生じた。得られた固体をろ取した後、得られた固体にトルエン(15mL)を加え、シリカゲル(76g)を敷いたろ過器でろ過した。その後、得られたシリカゲルから、トルエン及び酢酸エチルの混合溶媒を用いて、金属錯体B7を含む黄色溶液を抽出した。得られた溶液を減圧濃縮した後、得られた固体をシリカゲルカラムクロマトグラフィー(トルエン及び酢酸エチルの混合溶媒)で分取精製することで、固体を得た。得られた固体をトルエン及びエタノールの混合溶媒で晶析した後、更に、50℃で減圧乾燥させることにより、金属錯体B7(7.0g、黄色固体)を得た。金属錯体B7のHPLC面積百分率値は98.3%であった。
金属錯体B7のLC/MS及び1H-NMR測定結果は、以下のとおりであった。
LC/MS(APCI,positive):m/z=1688.8[M+H]+
1H-NMR(400MHz、CD2Cl2)δ(ppm)=0.49-0.86(10H,m),0.94-1.70(35H,m),1.81-1.91(4H,m),2.23-2.32(5H,m),6.51-6.59(3H,m),6.78-7.27(15H,m),7.43-7.81(24H,m).
<合成例B8> 金属錯体B8の合成
Figure 0007124589000063
反応容器内を窒素ガス雰囲気とした後、化合物8a(27.5g)及びシクロペンチルメチルエーテル(55g)を加え、撹拌した。その後、反応容器を氷浴を用いて冷却した後、そこへ、16質量%塩化水素シクロペンチルメチルエーテル溶液(27.8g)を滴下した。その後、そこへ、ヘプタン(110g)を滴下した後、室温で1時間撹拌を継続し、析出した固体をろ取した。得られた固体を、ヘプタン及びシクロペンチルメチルエーテルで洗浄した後、更に、減圧乾燥させることで、化合物8b(29g)を得た。
反応容器内を窒素ガス雰囲気とした後、2,2’-ジメチルヘキサン酸(17.3g)、クロロホルム(114g)、N,N’-ジメチルホルムアミド(0.04g)を加え、50℃で撹拌した。その後、そこへ、塩化チオニル(15.0g)を滴下した後、40℃で3時間撹拌することにより、2,2’-ジメチルヘキサノイルクロライドを発生させた。その後、反応容器を水浴を用いて冷却し、2,2’-ジメチルヘキサノイルクロライドを含む反応液を得た。
別途用意した反応容器内を窒素ガス雰囲気とした後、化合物8b(28.5g)、クロロホルム(114g)及びトリエチルアミン(39.7g)を加え、撹拌した。その後、反応容器を氷浴を用いて冷却した後、そこへ、上記で調製した2,2’-ジメチルヘキサノイルクロライドを含む反応液を滴下した後、40℃で5時間撹拌した。その後、得られた反応液を室温まで冷却した後、そこへ、イオン交換水を滴下した。その後、水層を除去した後、得られた有機層をイオン交換水で洗浄し、更に、減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン及び酢酸エチルの混合溶媒)で分取精製した後、ヘプタンを用いて晶析した。その後、得られた固体を50℃で減圧乾燥させることで、化合物8c(26.4g)を得た。化合物8cのHPLC面積百分率値は99.5%以上であった。
化合物8cのNMRの測定結果は、以下のとおりであった。
1H-NMR(CD2Cl2,400MHz):δ(ppm)=7.64-7.60(m,2H),7.59-7.55(m,2H),7.44-7.39(m,3H),7.36(br,1H),7.34-7.29(m,1H),1.65-1.57(m,2H),1.43(s,9H),1.36-1.27(m,10H),0.92-0.87(m,3H).
反応容器内をアルゴンガス雰囲気とした後、化合物8c(5.5g)、モノクロロベンゼン(28g)、2-フルオロピリジン(1.7g)及びトリフルオロメタンスルホン酸無水物(4.9g)を加え、室温下で1時間撹拌した。そこへ、3-ブロモベンズヒドラジド(3.7g)を加え、110℃で17時間撹拌した。その後、得られた反応液を室温まで冷却した後、そこへ、2mol/L炭酸水素ナトリウム水溶液(30g)を加えた。その後、水層を除去した後、得られた有機層をイオン交換水で洗浄し、減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)で分取精製した後、更に、50℃で減圧乾燥させることで、化合物8d(5.3g)を得た。化合物8dのHPLC面積百分率値は99.1%であった。
化合物8dのNMRの測定結果は、以下のとおりであった。
1H-NMR(CD2Cl2,400MHz):δ(ppm)=7.79(d,1H),7.69-7.64(m,2H),7.61(dd,1H),7.55(dd,1H),7.53-7.47(m,2H),7.46-7.39(m,2H),7.35(d,1H),7.34-7.27(m,1H),7.12(t,1H),2.00-1.86(m,1H),1.59-1.50(m,1H),1.44-1.26(m,6H),1.25-1.13(m,4H),0.99-0.88(m,12H).
Figure 0007124589000064
反応容器内をアルゴンガス雰囲気とした後、化合物8d(5.2g)、4-tert-ブチルフェニルボロン酸(2.1g)、トルエン(52g)及び(ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)(67mg)を加え、80℃に昇温した。その後、そこへ、20質量%のテトラブチルアンモニウムヒドロキシド水溶液(30mL)を加え、加熱還流下で70時間攪拌した。その後、得られた反応液を室温まで冷却した後、そこへ、トルエンを加え、シリカゲル及びセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することで固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン及びクロロホルムの混合溶媒)で精製し、更に、トルエン及びヘプタンの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物8e(3.9g)を得た。化合物8eのHPLC面積百分率値は99.5%以上であった。
化合物8eのNMRの測定結果は、以下のとおりであった。
1H-NMR(CD2Cl2,400MHz):δ(ppm)=7.82(d,1H),7.73-7.66(m,3H),7.64(dd,1H),7.55-7.47(m,3H),7.47-7.35(m,3H),7.23-7.16(m,3H),7.09-7.03(m,2H),2.01-1.90(m,1H),1.60-1.50(m,1H),1.44-1.16(m,19H),0.95-0.84(m,12H).
反応容器内をアルゴンガス雰囲気とした後、トリスアセチルアセトナトイリジウム(0.86g)、化合物8e(3.6g)及びペンタデカン(10g)を加え、加熱還流下で67時間攪拌した。反応液を室温まで冷却した後、トルエンを加え、シリカゲルを敷いたろ過器でろ過した後、得られたろ液を減圧濃縮することで固体を得た。得られた固体をアシリカゲルカラムクロマトグラフィー(トルエン及び酢酸エチルの混合溶媒)で精製し、更に、トルエン及びアセトニトリルの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、金属錯体B8(1.0g)を得た。金属錯体B8のHPLC面積百分率値は95.3%であった。
金属錯体B8のLC-MS及びNMRの測定結果は、以下のとおりであった。
LC-MS(APCI,positive):m/z=1941[M+H]+
1H-NMR(CD2Cl2,400MHz):δ(ppm)=8.05-7.93(m,3H),7.77-7.31(m,21H),7.17-6.81(m,18H),6.29-6.16(m,3H),2.00-1.77(m,2H),1.75-1.52(m,2H),1.50-1.15(m,64H),1.12-0.80(m,28H),0.54-0.42(m,3H).
<合成例B9> 金属錯体B9の合成
Figure 0007124589000065
反応容器内を窒素ガス雰囲気とした後、1,2,3-トリメチルベンゼン(168g)、ビスピナコラートジボロン(384g)、(1,5-シクロオクタジエン)(メトキシ)イリジウム(I) (ダイマー)(8g)及びシクロペンチルメチルエーテル(1681mL)を加え、撹拌した。その後、そこへ、(1,5-シクロオクタジエン)(メトキシ)イリジウム(I) (ダイマー)(10g)を加えた後、95℃で6時間撹拌を継続した。その後、反応容器を室温まで冷却し、反応混合物を得た。
窒素ガス雰囲気とした反応容器を別途用意し、そこへ、メタノール(2391g)を加え、氷浴で冷却し、撹拌した。その後、そこへ、上記で得られた反応混合物をゆっくりと加えた。その後、そこへ、活性白土(336g)を加え、30分間撹拌した後、ろ過器でろ過した。得られたろ液を濃縮することにより、固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(トルエン及びヘキサンの混合溶媒)で分取精製し、更に、アセトニトリルを用いて晶析した。その後、得られた固体を50℃で減圧乾燥させることで、化合物9a(165g、白色固体)を得た。
化合物9aの1H-NMR測定結果は、以下のとおりであった。
1H-NMR(400MHz、CDCl3)δ(ppm)=7.46(s,2H),2.29(s,6H),2.19(s,3H),1.34(s,12H).
反応容器内をアルゴンガス雰囲気とした後、化合物2c(9.0g)、化合物9a(6.2g)、40質量%テトラブチルアンモニウムヒドロキシド水溶液(32.9g)、イオン交換水(32.9g)及びトルエン(108.0g)を加え、室温で撹拌した。その後、そこへ、ビス(ジ-tert-ブチル(4-ジメチルアミノビフェニル)ホスフィン)ジクロロパラジウム(0.2g)を加えた後、80℃で2時間撹拌した。その後、反応容器を室温まで冷却した後、得られた反応液を分液した。得られた有機層をイオン交換水(91.0g)で2回洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液に活性炭(1.6g)を加え、室温で1時間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、トルエン溶液を得た。
反応容器内をアルゴンガス雰囲気とした後、上記で得られたトルエン溶液(49.9g)、化合物9a(5.2g)、40質量%テトラブチルアンモニウムヒドロキシド水溶液(32.9g)、イオン交換水(32.9g)及びトルエン(108.0g)を加え、室温で撹拌した。その後、そこへ、ビス(ジ-tert-ブチル(2-ブテニル)ホスフィン)ジクロロパラジウム(0.2g)を加えた後、80℃で27時間撹拌した。その後、反応容器を室温まで冷却した後、得られた反応液を分液した。得られた有機層をイオン交換水で2回洗浄した。その後、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液に活性炭を加え、室温で1時間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を濃縮した後、そこへ、ヘプタンを加え、1時間撹拌した後、固体をろ取した。得られた固体を、トルエン及びヘプタンの混合溶媒を用いて晶析し、更に、50℃で減圧乾燥させることで、化合物9b(6.2g、白色固体)を得た。化合物9bのHPLC面積百分率値は99.5%以上であった。
化合物9bのLC/MS及び1H-NMR測定結果は、以下のとおりであった。
LC/MS(APCI,positive):m/z=466[M+H]+
1H-NMR(CD2Cl2,400MHz):δ(ppm)=7.51-7.45(m,2H),7.40(t,1H),7.35-7.28(m,2H),7.24-7.19(m,1H),7.09-7.06(m,1H),6.91(s,2H),2.40(s,3H),2.28(s,6H),2.16(s,3H),1.75(s,3H),1.70-1.61(m,1H),1.45-1.35(m,1H),1.33(s,3H),1.30-1.16(m,4H),1.11(s,3H),0.89-0.83(m,3H).
反応容器内をアルゴンガス雰囲気とした後、トリスアセチルアセトナトイリジウム(1.6g)、化合物9b(6.0g)及びペンタデカン(14.2g)を加え、加熱還流下で45時間攪拌した。その後、そこへ、トルエン(31.6g)を加え、シリカゲル(18.9g)を敷いたろ過器でろ過した後、得られたシリカゲルから、トルエン及び酢酸エチルの混合溶媒を用いて、金属錯体B9を含む黄色溶液を抽出した。得られた溶液を減圧濃縮することで、固体を得た後、得られた固体をシリカゲルカラムクロマトグラフィー(トルエン及び酢酸エチルの混合溶媒)で分取精製することにより、固体を得た。得られた固体をトルエン及びアセトニトリルの混合溶媒を用いて晶析し、更に、50℃で減圧乾燥させることにより、金属錯体B9(3.2g、黄色固体)を得た。金属錯体B9のHPLC面積百分率値は99.1%であった。
金属錯体B9のLC/MS及び1H-NMR測定結果は、以下のとおりであった。
LC/MS(APCI,positive):m/z=1585[M+H]+
1H-NMR(CD2Cl2,400MHz):δ(ppm)=7.42-7.16(m,9H),6.99-6.62(m,12H),6.31-6.12(m,3H),2.53-2.41(m,9H),2.31-2.00(m,36H),1.86-1.77(m,3H),1.44-0.98(m,33H),0.85-0.62(m,9H).
<合成例B10> 金属錯体B10の合成
Figure 0007124589000066
反応容器内をアルゴンガス雰囲気とした後、化合物2b(28.0g)、クロロベンゼン(360mL)、2-フルオロピリジン(11mL)及びトリフルオロメタンスルホン酸無水物(21mL)を加え、90℃で撹拌した。その後、そこへ、3,4-ジクロロベンゼンカルボヒドラジド(25.5g)を加えた後、90℃で9時間撹拌した。その後、得られた反応液を室温まで冷却した後、そこへ、炭酸水素ナトリウム水溶液を加え、有機層を抽出した。得られた有機層をイオン交換水(100mL)で洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより、固体を得た。得られた固体をヘキサンで洗浄した後、アセトニトリルを用いて晶析した。その後、得られた固体を50℃で減圧乾燥することにより、化合物10a(37.8g)を白色固体として得た。化合物10aのHPLC面積百分率値は99.5%以上であった。
化合物10aのH-NMR測定結果は、以下のとおりであった。
H-NMR(400MHz、CDCl)δ(ppm)=0.86(t,3H),
1.04-1.50(m, 11H), 1.58-1.90(m, 4H), 2.40(s, 3H), 6.98-7.36(m,5H),7.50(s,1H).
反応容器内をアルゴンガス雰囲気とした後、化合物10a(35.0g)、2,4-ジメチルフェニルボロン酸(26.0g)、トルエン(700mL)、トリス(ジベンジリデンアセトン)ジパラジウム(2.3g)及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(2.8g)を加え、90℃で加熱撹拌した。その後、そこへ、40質量%テトラブチルアンモニウムヒドロキシド水溶液(409mL)を加えた後、90℃で9時間撹拌した。その後、反応容器を室温まで冷却した後、得られた反応混合物を分液した。得られた有機層をイオン交換水(150mL)で2回洗浄した。その後、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液に活性炭(4.0g)を加え、室温で1時間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮し、更に、シリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)で分取精製することにより、油状物を得た。
反応容器内をアルゴンガス雰囲気とした後、上記で得られた油状物(30.0g)、2,4-ジメチルフェニルボロン酸(2.2g)、トルエン(450mL)、トリス(ジベンジリデンアセトン)ジパラジウム(1.0g)及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(1.2g)を加え、90℃で加熱撹拌した。その後、そこへ、40質量%テトラブチルアンモニウムヒドロキシド水溶液(234mL)を加え、90℃で5時間撹拌した。その後、反応容器を室温まで冷却した後、得られた反応混合物を分液した。得られた有機層をイオン交換水(150mL)で2回洗浄した。その後、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液に活性炭(4.0g)を加え、室温で1時間撹拌した後、セライトを敷いたろ過器でろ過した。得られたろ液を濃縮することにより、赤茶色油状物を得た。得られた赤茶色油状物を逆相シリカゲルカラムクロマトグラフィー(アセトニトリル)で分取精製し、次いで、シリカゲルカラムクロマトグラフィー(クロロホルム及びエタノールの混合溶媒)で分取精製した。その後、得られた油状物をリサイクル分取GPCにより、分取精製した。その後、得られた油状物を50℃で減圧乾燥させることで、化合物10b(2.2g、無色透明油状物)を得た。化合物10bのHPLC面積百分率値は99.5%以上であった。
化合物10bのLC/MS及びH-NMR測定結果は、以下のとおりであった。
LC/MS(APCI,positive):m/z=556[M+H]
H-NMR(400MHz、CDCl)δ(ppm)=0.86(t,3H),1.12-1.44(m,11H),1.58-2.04(m,10H),2.20(s,6H),2.37(s,3H),6.46-7.25(m,12H).
反応容器内をアルゴンガス雰囲気とした後、トリスアセチルアセトナトイリジウム(0.4g)、化合物10b(2.0g)及びペンタデカン(6mL)を加え、加熱還流下で54時間攪拌した。その後、そこへ、トルエン(30mL)を加え、シリカゲル(20.0g)を敷いたろ過器でろ過した後、得られたシリカゲルから、トルエン及び酢酸エチルの混合溶媒を用いて、金属錯体B10を含む黄色溶液を抽出した。得られた溶液を減圧濃縮することにより、油状物を得た。得られた油状物をシリカゲルカラムクロマトグラフィー(トルエン及び酢酸エチルの混合溶媒)で分取精製することにより、固体を得た。得られた固体を逆相シリカゲルカラムクロマトグラフィー(アセトニトリル及び酢酸エチルの混合溶媒)で分取精製し、更に、トルエン及びエタノールの混合溶媒で晶析した。その後、得られた固体を50℃で減圧乾燥することにより、金属錯体B10(0.6g、黄色固体)を得た。金属錯体B10のHPLC面積百分率値は99.5%以上であった。
金属錯体B10のLC/MS及びH-NMR測定結果は、以下のとおりであった。
LC/MS(APCI,positive):m/z=1858[M+H]
H-NMR(400MHz、CDCl)δ(ppm)=0.82-2.30(m,99H),5.69-7.27(m,33H).
<実施例D1> 発光素子D1の作製と評価
(陽極及び正孔注入層の形成)
ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、ポリチオフェン・スルホン酸系の正孔注入剤であるAQ-1200(Plextronics社製)をスピンコート法により35nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で170℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
キシレンに、高分子化合物HTL-1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。
(発光層の形成)
トルエンに、化合物HM-1及び金属錯体B3(化合物HM-1/金属錯体B3=75質量%/25質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、正孔輸送層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより発光層を形成した。
(電子輸送層の形成)
2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物ET1を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(陰極の形成)
電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D1を作製した。
(発光素子の評価)
発光素子D1に電圧を印加することによりEL発光が観測された。100cd/m2における発光効率及びCIE色度座標(x,y)を測定した。結果を表1に示す。
<実施例D2及び比較例CD1~CD4> 発光素子D2及びCD1~CD4の作製と評価
実施例D1の(発光層の形成)における「化合物HM-1及び金属錯体B3(化合物HM-1/金属錯体B3=75質量%/25質量%)」に代えて、表1に記載の材料を用いた以外は、実施例D1と同様にして、発光素子D2及びCD1~CD4を作製した。
発光素子D2及びCD1~CD4に電圧を印加することによりEL発光が観測された。100cd/m2における発光効率及びCIE色度座標(x,y)を測定した。結果を表1に示す。
Figure 0007124589000067
<実施例D3> 発光素子D3の作製と評価
(陽極及び正孔注入層の形成)
ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、ポリチオフェン・スルホン酸系の正孔注入剤であるAQ-1200(Plextronics社製)をスピンコート法により35nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で170℃、15分間加熱することにより正孔注入層を形成した。
(第2の発光層の形成)
キシレンに、高分子化合物HTL-2を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。
(発光層の形成)
トルエンに、化合物HM-1、金属錯体B1及び金属錯体G1(化合物HM-1/金属錯体B1/金属錯体G1=74質量%/25質量%/1質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより発光層を形成した。
(電子輸送層の形成)
2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物ET1を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(陰極の形成)
電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D3を作製した。
(発光素子の評価)
発光素子D3に電圧を印加することによりEL発光が観測された。200cd/m2における発光効率及びCIE色度座標(x,y)を測定した。結果を表1に示す。
<実施例D4~D11及び比較例CD5~CD6> 発光素子D4~D11、CD5及びCD6の作製と評価
実施例D3の(発光層の形成)における「化合物HM-1、金属錯体B1及び金属錯体G1(化合物HM-1/金属錯体B1/金属錯体G1=74質量%/25質量%/1質量%)」に代えて、表2に記載の材料を用いた以外は、実施例D3と同様にして、発光素子D4~D11、CD5及びCD6を作製した。
発光素子D4~D11、CD5及びCD6に電圧を印加することによりEL発光が観測された。200cd/m2における発光効率及びCIE色度座標(x,y)を測定した。結果を表1に示す。
Figure 0007124589000068
<実施例D12及び比較例CD7> 発光素子D12及びCD7の作製と評価
実施例D3の(発光層の形成)における「化合物HM-1、金属錯体B1及び金属錯体G1(化合物HM-1/金属錯体B1/金属錯体G1=74質量%/25質量%/1質量%)」に代えて、表3に記載の材料を用いた以外は、実施例D3と同様にして、発光素子D12及びCD7を作製した。
発光素子D12及びCD7に電圧を印加することによりEL発光が観測された。1000cd/m2における発光効率及びCIE色度座標(x,y)を測定した。結果を表3に示す。
Figure 0007124589000069
<実施例D13~D18及び比較例CD8~CD9> 発光素子D13~D18、CD8及びCD9の作製と評価
実施例D1の(発光層の形成)における「化合物HM-1及び金属錯体B3(化合物HM-1/金属錯体B3=75質量%/25質量%)」に代えて、表4に記載の材料を用いた以外は、実施例D1と同様にして、発光素子D13~D18、CD8及びCD9を作製した。
発光素子D13~D18、CD8及びCD9に電圧を印加することによりEL発光が観測された。10000cd/m2における発光効率及びCIE色度座標(x,y)を測定した。結果を表4に示す。
Figure 0007124589000070

Claims (7)

  1. 陽極と、陰極と、前記陽極及び前記陰極の間に設けられた式(1)で表される金属錯体を含有する発光層とを有する発光素子。
    Figure 0007124589000071
    [式中、
    1はロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
    1は1以上の整数を表し、n2は0以上の整数を表す。但し、M1がロジウム原子又はイリジウム原子の場合、n1+n2は3であり、M1がパラジウム原子又は白金原子の場合、n1+n2は2である。
    環R1Aは、ジアゾール環、トリアゾール環又はテトラゾール環を表す。但し、環R1Aの少なくとも1つは、ジアゾール環又はトリアゾール環である。
    環R2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。前記置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環R2が複数存在する場合、それらは同一でも異なっていてもよい。
    1、E2、E11A びE13Aは、それぞれ独立に、窒素原子又は炭素原子を表す。 12A は、炭素原子を表す。1、E2、E11A びE13Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。但し、E1及びE2の少なくとも一方は炭素原子である。
    11A、R12A及びR13Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11A、R12A及びR13Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
    但し、E11A びE13Aの少なくとも1つは窒素原子であり、該窒素原子に結合するR11A びR13Aの少なくとも1つは式(Ar-1A)で表される基であり、且つ、E11A、E12A 又は13A で表される炭素原子に結合するR11A、R12A及びR13Aの少なくとも1つは、炭素原子数nR1のアルキル基であり、該基は置換基を有していてもよい。nR1は、1以上15以下の整数を表す。
    11AとR12Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R12AとR13Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環R2が有していてもよい置換基とR11Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
    11Aが窒素原子の場合、R11Aは存在しても存在しなくてもよい。E 13Aが窒素原子の場合、R13Aは存在しても存在しなくてもよい。
    1-G1-A2は、アニオン性の2座配位子を表す。A1及びA2は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。G1は、単結合、又は、A1及びA2とともに2座配位子を構成する原子団を表す。A1-G1-A2が複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure 0007124589000072
    [式中、
    環Aは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。前記置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
    2は、炭素原子数nR2のアルキル基を表し、該基は置換基を有していてもよい。nR2は、1以上15以下の整数を表す。但し、nR1とnR2との和は、5以上30以下である。]
  2. 前記式(1)で表される金属錯体が、式(1-A1)で表される金属錯体である、請求項1に記載の発光素子。
    Figure 0007124589000073
    [式中、M1、n1、n2、R11A、R12A、R13A 、E 12A、E13A びA1-G1-A2は、前記と同じ意味を表す。
    環R2Aは、ベンゼン環、フルオレン環、スピロビフルオレン環、ジヒドロフェナントレン環、ピリジン環、ジアザベンゼン環、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環であり、これらの環は置換基を有していてもよい。前記置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環R2Aが複数存在する場合、それらは同一でも異なっていてもよい。
    環R2Aが有していてもよい置換基とR11Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
    但し、式(1-A1)中、R11Aの少なくとも1つは前記式(Ar-1A)で表される基であり、且つ、E12A 又は13A で表される炭素原子に結合するR12A及びR13Aの少なくとも1つは、炭素原子数nR1のアルキル基であり、該基は置換基を有していてもよい。]
  3. 前記式(1-A1)で表される金属錯体が、式(1-A1-1)又は式(1-A1-2)で表される金属錯体である、請求項2に記載の発光素子。
    Figure 0007124589000074
    [式中、M1、n1、n2、R11A、R12A、R13A及びA1-G1-A2は、前記と同じ意味を表す。
    21A、R22A、R23A及びR24Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R21A、R22A、R23A及びR24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R21AとR22A、R22AとR23A、R23AとR24A、及び、R11AとR21Aは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  4. 前記式(Ar-1A)で表される基が、式(Ar-2A)で表される基である、請求項1~のいずれか一項に記載の発光素子。
    Figure 0007124589000075
    [式中、R2は、前記と同じ意味を表す。
    環A1は、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。
    1A、E2A及びE3Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E1Aが窒素原子の場合、R1Aは存在しない。E2Aが窒素原子の場合、R2Aは存在しない。E3Aが窒素原子の場合、R3Aは存在しない。
    1A、R2A及びR3Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R1AとR2A、及び、R2AとR3Aは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  5. 前記式(Ar-2A)で表される基が、式(Ar-3A)で表される基である、請求項に記載の発光素子。
    Figure 0007124589000076
    [式中、R2、R1A、R2A及びR3Aは、前記と同じ意味を表す。]
  6. 前記発光層が、式(H-1)で表される化合物を更に含有する、請求項1~のいずれか一項に記載の発光素子。
    Figure 0007124589000077
    [式中、
    ArH1及びArH2は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
    H1及びnH2は、それぞれ独立に、0又は1を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnH2は、同一でも異なっていてもよい。
    H3は、0以上10以下の整数を表す。
    H1は、アリーレン基、2価の複素環基、又は、-[C(RH112]nH11-で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。nH11は、1以上10以下の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
    H2は、-N(-LH21-RH21)-で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。LH21は、単結合、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RH21は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
  7. 前記発光層が、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群より選ばれる少なくとも1種を更に含有する、請求項1~のいずれか一項に記載の発光素子。
JP2018174549A 2017-09-29 2018-09-19 発光素子 Active JP7124589B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017189920 2017-09-29
JP2017189920 2017-09-29

Publications (2)

Publication Number Publication Date
JP2019068060A JP2019068060A (ja) 2019-04-25
JP7124589B2 true JP7124589B2 (ja) 2022-08-24

Family

ID=66338424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018174549A Active JP7124589B2 (ja) 2017-09-29 2018-09-19 発光素子

Country Status (1)

Country Link
JP (1) JP7124589B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107497A1 (ja) 2008-02-27 2009-09-03 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、照明装置及び表示装置
JP2013010752A (ja) 2011-06-03 2013-01-17 Semiconductor Energy Lab Co Ltd 有機金属錯体、有機発光素子、発光装置、電子機器、及び照明装置
JP2013040159A (ja) 2010-11-26 2013-02-28 Semiconductor Energy Lab Co Ltd 有機金属錯体、発光素子、発光装置、電子機器、及び照明装置
JP2014131021A (ja) 2012-11-30 2014-07-10 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、電子機器、及び照明装置
JP2013147449A5 (ja) 2012-01-18 2015-02-12
JP2015113283A (ja) 2013-12-09 2015-06-22 コニカミノルタ株式会社 金属錯体、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5905270B2 (ja) 2012-01-18 2016-04-20 住友化学株式会社 金属錯体及び該金属錯体を含む発光素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107497A1 (ja) 2008-02-27 2009-09-03 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、照明装置及び表示装置
JP2013040159A (ja) 2010-11-26 2013-02-28 Semiconductor Energy Lab Co Ltd 有機金属錯体、発光素子、発光装置、電子機器、及び照明装置
JP2013010752A (ja) 2011-06-03 2013-01-17 Semiconductor Energy Lab Co Ltd 有機金属錯体、有機発光素子、発光装置、電子機器、及び照明装置
JP2013147449A5 (ja) 2012-01-18 2015-02-12
JP2014131021A (ja) 2012-11-30 2014-07-10 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、電子機器、及び照明装置
JP2015113283A (ja) 2013-12-09 2015-06-22 コニカミノルタ株式会社 金属錯体、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置

Also Published As

Publication number Publication date
JP2019068060A (ja) 2019-04-25

Similar Documents

Publication Publication Date Title
JP6610536B2 (ja) 発光素子およびそれに用いる組成物
WO2016031639A1 (ja) 高分子化合物およびそれを用いた発光素子
WO2015159744A1 (ja) 組成物およびそれを用いた発光素子
JP6614370B2 (ja) 組成物及びそれを用いた発光素子
JP5880679B2 (ja) 発光素子の製造方法
JP2018083941A (ja) 組成物及びそれを用いた発光素子
WO2017170916A1 (ja) 金属錯体、組成物及び発光素子
JP6642428B2 (ja) 高分子化合物およびそれを用いた発光素子
JP6531386B2 (ja) 発光素子およびそれに用いる高分子化合物
WO2019065388A1 (ja) 組成物及びそれを用いた発光素子
JP6372204B2 (ja) 金属錯体およびそれを用いた発光素子
JP6877976B2 (ja) 発光素子
JP7298187B2 (ja) 金属錯体及び前記金属錯体を含む組成物
JP7194072B2 (ja) 発光素子
JP2015174824A (ja) 金属錯体およびそれを用いた発光素子
JP6631508B2 (ja) 金属錯体およびそれを用いた発光素子
JP6851189B2 (ja) 発光素子及び金属錯体
JP6708214B2 (ja) 組成物及びそれを用いた発光素子
JP7192339B2 (ja) 発光素子
JP7124589B2 (ja) 発光素子
JPWO2017099012A1 (ja) 発光素子
JP7215957B2 (ja) ブロック共重合体及び組成物、並びにそれらを用いた発光素子
JP6506888B2 (ja) 発光素子、並びに、それに用いる金属錯体及び組成物
JP6804465B2 (ja) 組成物及びそれを用いた発光素子
JPWO2019065389A1 (ja) 発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R151 Written notification of patent or utility model registration

Ref document number: 7124589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151