WO2015047049A1 - 유기전자장치 - Google Patents

유기전자장치 Download PDF

Info

Publication number
WO2015047049A1
WO2015047049A1 PCT/KR2014/009232 KR2014009232W WO2015047049A1 WO 2015047049 A1 WO2015047049 A1 WO 2015047049A1 KR 2014009232 W KR2014009232 W KR 2014009232W WO 2015047049 A1 WO2015047049 A1 WO 2015047049A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
electronic device
organic electronic
organic
Prior art date
Application number
PCT/KR2014/009232
Other languages
English (en)
French (fr)
Inventor
최준례
이정형
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/888,287 priority Critical patent/US9755188B2/en
Priority to CN201480031357.4A priority patent/CN105247702B/zh
Priority to JP2016534546A priority patent/JP6345244B2/ja
Priority to EP14848913.1A priority patent/EP2983224B1/en
Publication of WO2015047049A1 publication Critical patent/WO2015047049A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to an organic electronic device and its use.
  • An organic electronic device is a device comprising one or more layers of organic materials capable of conducting current.
  • the organic electronic device includes an organic light emitting diode (OLED), an organic solar cell, an organic photoconductor (OPC), or an organic transistor.
  • An organic light emitting device typically includes a substrate, a transparent electrode layer, an organic layer, and a reflective electrode layer sequentially.
  • the transparent electrode layer may be formed of a transparent electrode layer
  • the reflective electrode layer may be formed of a reflective electrode layer.
  • the transparent electrode layer may be formed as a reflective electrode layer
  • the reflective electrode layer may be formed as a transparent electrode layer. Electrons and holes injected by the electrode layer may be recombined in the light emitting unit existing in the organic layer to generate light. Light may be emitted to the substrate side or the reflective electrode layer side.
  • Patent Documents 1 to 4 and the like propose a structure that can block the penetration of foreign substances. Problems related to such durability may also be more problematic in a flexible structure using a substrate which is typically less barrier-resistant than glass.
  • Patent Document 1 US Patent No. 6,226,890
  • Patent Document 2 US Patent No. 6,808,828
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-145627
  • Patent Document 4 Japanese Laid-Open Patent No. 2001-252505
  • an object of the present invention is to provide an organic electronic device having excellent durability, light extraction efficiency, etc. and its use when acting as a flexible organic light emitting device.
  • Exemplary organic electronic devices include a barrier film 101, a scattering pressure-sensitive adhesive layer 102, a base film 103, a transparent electrode layer 104, an organic layer 105, and a reflective electrode layer sequentially present in an upward direction as shown in FIG. 1. It may include. Each of the layers may be directly stacked without another layer between adjacent layers, or may be stacked via another layer.
  • the organic electronic device may include a base film 103 and a barrier film 101 attached to the lower portion of the base film 103 by a scattering pressure-sensitive adhesive layer 102.
  • the adhesive layer 102 may include an adhesive binder 1021 and scattering particles 1022, and the scattering particles may have a higher refractive index than the binder.
  • the refractive index is the refractive index for light of about 550 nm wavelength.
  • the term upward direction means a direction from the transparent electrode layer to the reflective electrode layer, unless otherwise specified, and the term downward direction means a direction from the reflective electrode layer toward the transparent electrode layer, unless otherwise specified.
  • a region including all elements (except the transparent electrode layer) existing under the transparent electrode layer in the structure will be referred to as a substrate region, and the transparent electrode layer, the reflective electrode layer, and all elements present therebetween.
  • the region including hereinafter is referred to as an element region, and the region including all elements (except the reflective electrode layer) existing on the reflective electrode layer is referred to as an upper region.
  • the kind of base film which can be included in an organic electronic device is not specifically limited.
  • a base film what is known in the art can be used for implementation of a flexible element can be used.
  • Representative examples of such a base film include a thin glass film or a polymer film.
  • a film formed of soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz, or the like can be exemplified, and as the polymer film, PI (polyimide) , A film including polyethylene naphthalate (PEN), polycarbonate (PC), acrylic resin, poly (ethylene terephthatle) (PET), poly (ether sulfide) (PES), or polysulfone (PS) may be exemplified, but is not limited thereto. It doesn't happen.
  • a translucent film can be used as a base film.
  • the term translucent film may refer to a film having a transmittance of 50% or more, 60% or more, 70% or more, or 80% or more, for example, light in any one of the visible regions or light in the entire visible region.
  • the base film may be a TFT base film in which a driving TFT (Thin Film Transistor) exists.
  • the base film may have a coefficient of thermal expansion (CTE) in the range of about 5 ppm / ° C to 70 ppm / ° C. This range may be advantageous for preventing defects such as interlayer peeling that may occur in a structure in which an organic layer and an inorganic layer are mixed.
  • CTE coefficient of thermal expansion
  • the base film may have a glass transition temperature of about 200 ° C. or more.
  • the glass transition temperature may be a glass transition temperature of the base film itself, or may be a glass transition temperature of the base film having a buffer layer described later. This range may be suitable for high temperature processes for deposition or patterning in the manufacture of organic electronic devices.
  • the glass transition temperature may be at least about 210 ° C, at least about 220 ° C, at least about 230 ° C, at least about 240 ° C, or at least about 250 ° C.
  • the upper limit of the glass transition temperature is not particularly limited, and may be, for example, about 400 ° C, 350 ° C, or about 300 ° C.
  • the base film may have a surface roughness (RMS) within a range of about 0.1 nm to 5 nm. Such surface roughness may be with respect to the surface of the base film itself, or may be with respect to the surface of the buffer layer of the base film on which the buffer layer described later is formed. Such a range of surface roughness may be advantageous for improving the performance of the layer formed thereon. For example, when the first inorganic material layer is formed to have a barrier property, when the first inorganic material layer is formed on the surface having the surface roughness in the above range, a layer having more excellent moisture barrier property or the like can be formed. have. The surface roughness may, in other examples, be about 4 nm or less, about 3 nm or less, about 2.5 nm or less, or about 2 nm or less.
  • the base film may have a refractive index of about 1.5 or more, about 1.6 or more, about 1.7 or more, or about 1.75 or more.
  • refractive index is a refractive index measured for light having a wavelength of about 550 nm, unless otherwise specified.
  • the range of the refractive index of the base film may be advantageous to increase the light efficiency of the device.
  • the upper limit of the refractive index of the base film is not particularly limited, and may be, for example, about 2.0.
  • the thickness of the base film is not particularly limited and may be selected in an appropriate range in consideration of desired performance, for example, flexibility, light extraction efficiency or barrier properties.
  • the thickness of the base film may be in the range of about 10 ⁇ m to about 50 ⁇ m or in the range of about 20 ⁇ m to about 30 ⁇ m.
  • the barrier film is affixed on the lower part of a base film by a scattering adhesive layer.
  • the kind of barrier film that can be used in the above is not particularly limited, and for example, a layer that is known to block moisture such as an oxide such as silicon, nitride or oxynitride on a substrate such as a plastic film, etc.
  • the film etc. which are formed can be used.
  • the barrier film may have a structure including a polymer substrate layer and an inorganic layer formed on one or both surfaces of the substrate layer.
  • an appropriate kind can be used among the above-mentioned base film (103 base film of FIG. 1).
  • the polymer substrate layer may have the same physical properties of at least one of transmittance, thermal expansion coefficient, glass transition temperature, surface roughness, and refractive index of the substrate film described above.
  • substrate area mentioned later can be used, for example.
  • the barrier film may be attached to the lower portion of the base film by the scattering pressure-sensitive adhesive layer.
  • the term scattering pressure-sensitive adhesive layer in the present application may mean an adhesive layer formed to scatter incident light.
  • the scattering pressure-sensitive adhesive layer may have a haze of 40% or more, 45% or more, or 50% or more. It is possible to improve the light extraction efficiency of the organic electronic device through the pressure-sensitive adhesive layer having a haze in this range.
  • the upper limit of the range of the haze is not particularly limited, but the haze may be 90% or less, 85% or less, 80% or less, 75% or less, or 70% or less.
  • the haze of an adhesive layer in this application is a range measured by the method as described in an Example.
  • a scattering adhesive can be manufactured by mix
  • scattering particles refers to all kinds of particles having a refractive index different from surrounding materials such as, for example, the adhesive binder, and having an appropriate size to scatter, refract, or diffract incident light. Can be.
  • any kind of binder known in the art as optically transparent can be used without particular limitation.
  • a non-crosslinkable binder or a crosslinkable binder may be used, and when the crosslinkable binder is used, the crosslinking type may be a thermosetting type, a moisture curing type, a room temperature curing type or an active energy ray (ex. Ultraviolet ray or electron beam) curing type.
  • An adhesive binder can be used.
  • optically transparent adhesive binders include acrylic adhesive binders, olefin-based adhesive binders or rubber-based adhesive binders, all of which may be used in the present application.
  • An acrylic adhesive binder can be used from the viewpoint of the availability and the ease of application, and the ease of controlling the relationship of the refractive index with the scattering particles described later.
  • an acryl-type adhesive binder the thing containing a normal kind, for example, a (meth) acrylic acid ester monomer as a main unit, and introduce
  • the adhesive binder may have a refractive index of about 1.2 to 1.5 or about 1.2 to 1.45 in terms of adjusting the haze of the pressure sensitive adhesive layer and controlling the relationship between the refractive index of the scattering particles described later.
  • scattering particles included in the pressure-sensitive adhesive layer particles having a refractive index different from that of the pressure-sensitive adhesive binder may be used. In consideration of appropriate light extraction efficiency according to the position at which the pressure-sensitive adhesive layer is included, it has a higher refractive index than the pressure-sensitive adhesive binder. Can be used. In the structure of the organic electronic device of the present application, when the pressure-sensitive adhesive layer includes scattering particles having a higher refractive index than that of the pressure-sensitive adhesive, light extraction is significantly superior even in the same haze range as the pressure-sensitive adhesive layer includes scattering particles having a lower refractive index than the pressure-sensitive adhesive binder. Efficiency can be seen.
  • the difference (A-B) between the refractive index (A) of the scattering particles and the refractive index (B) of the adhesive binder may be about 0.05 or more, about 0.1 or more, about 0.3 or more, or about 0.5 or more.
  • the upper limit of the difference in refractive index is not particularly limited, but may be about 1.5 or less, about 1.3 or less, or about 1 or less. In this range, the haze of the pressure-sensitive adhesive layer can be defined in an appropriate range, and at the same time, a much better light extraction efficiency can be ensured even at a similar level of haze range.
  • the size of the scattering particles can be appropriately adjusted and is not particularly limited. However, since the scattering effect may not be easily secured when it has a size that is too small compared to the wavelength of the incident light, the scattering particles may have, for example, an average particle diameter of 50 nm or more, 100 nm or more, 500 nm or more, or 1,000 nm or more. Can be. The average particle diameter of the scattering particles may be, for example, 10,000 nm or less.
  • alumina, aluminosilicate, titanium oxide or zirconium oxide and the like can be exemplified, but the specific kind is not particularly limited as long as the above-mentioned conditions are satisfied.
  • Rutile titanium oxide is exemplified as a high refractive index can be easily ensured, such particles can also be used in the present application.
  • the proportion of the scattering particles in the pressure-sensitive adhesive layer is not particularly limited as long as the above-mentioned haze can be achieved and adjusted in a range that does not impair the adhesive performance of the pressure-sensitive adhesive binder.
  • the pressure-sensitive adhesive layer may include other additional components such as a crosslinking agent such as a thermal crosslinking agent or an optical crosslinking agent that is crosslinking the adhesive binder.
  • a crosslinking agent such as a thermal crosslinking agent or an optical crosslinking agent that is crosslinking the adhesive binder.
  • the moisture barrier material may be exemplified as another component that may be included in the pressure-sensitive adhesive layer.
  • the term moisture barrier material may be used to mean a component that can adsorb or remove moisture or moisture introduced from the outside through a physical or chemical reaction.
  • the specific kind of the moisture barrier material that can be blended into the adhesive layer is not particularly limited, and examples thereof include one kind or a mixture of two or more kinds of metal oxides, organometallic oxides, metal salts, or phosphorus pentoxide (P 2 O 5 ). have.
  • Specific examples of the metal oxide may include lithium oxide (Li 2 O), sodium oxide (Na 2 O), barium oxide (BaO), calcium oxide (CaO), magnesium oxide (MgO), and the like.
  • Examples include lithium sulfate (Li 2 SO 4 ), sodium sulfate (Na 2 SO 4 ), calcium sulfate (CaSO 4 ), magnesium sulfate (MgSO 4 ), cobalt sulfate (CoSO 4 ), gallium sulfate (Ga 2 (SO 4 ) 3 ), sulfates such as titanium sulfate (Ti (SO 4 ) 2 ) or nickel sulfate (NiSO 4 ), etc., calcium chloride (CaCl 2 ), magnesium chloride (MgCl 2 ), strontium chloride (SrCl 2 ), yttrium chloride (YCl 3 ) , Copper chloride (CuCl 2 ), cesium fluoride (CsF), tantalum fluoride (TaF 5 ), niobium fluoride (NbF 5 ), lithium bromide (LiBr), calcium bromide (CaBr 2 ), cesium bro
  • the ratio of the moisture barrier material is not particularly limited, and the desired moisture barrier property can be secured and can be adjusted in a range that does not harm scattering property and adhesiveness.
  • the substrate region of the organic electronic device of the present application may include an inorganic layer formed on the base film as an additional configuration.
  • the configuration for the inorganic layer below may be applied to the inorganic layer of the barrier film described above.
  • the inorganic layer included in the following substrate region may be referred to as a first inorganic layer in order to distinguish it from the inorganic layer which may be formed on the reflective electrode layer, which will be described later.
  • the term inorganic layer may be, for example, a layer containing 50% or more or 60% of inorganic material by weight.
  • the inorganic layer may include only an inorganic material or may include other components such as an organic material if the inorganic material is included in the above range.
  • the first inorganic material layer may be, for example, a barrier layer.
  • the term barrier layer may be a layer capable of blocking, inhibiting or mitigating the penetration of external factors that may adversely affect the performance of devices such as organic layers such as moisture or moisture.
  • the barrier layer may be a layer having a water vapor transmission rate (WVTR) of 10 ⁇ 4 g / m 2 / day or less. WVTR herein may be a value to be measured using a meter (eg, PERMATRAN-W3 / 31, MOCON, Inc.) at 40 C and 90% relative humidity conditions.
  • the barrier layer can be formed using a material known to be able to mitigate, prevent or inhibit the penetration of external factors such as moisture and oxygen.
  • materials include metals such as In, Sn, Pb, Au, Cu, Ag, Al, Ti, and Ni; TiO, TiO 2 , Ti 3 O 3, Al 2 O 3 , MgO, SiO, SiO 2 , GeO, NiO, CaO, BaO, Fe 2 O 3 , Y2O 3 , ZrO 2 , Nb 2 O 3 and CeO 2 and Metal oxides such as; Metal nitrides such as SiN; Metal oxynitrides such as SiON; Or metal fluorides such as MgF 2 , LiF, AlF 3, and CaF 2 , or other materials known as absorbent materials having an absorption rate of 1% or more, or moisture-proof materials having an absorption coefficient of 0.1% or less.
  • the first inorganic layer may be a single layer structure or a multilayer structure.
  • the multilayer structure may include a structure in which the same or different types of inorganic layers are stacked, or a structure in which the inorganic layers and the organic layers are stacked.
  • each layer is not necessarily formed of a material having barrier properties, and if the finally formed multilayer structure can exhibit a desired barrier property, the multilayer structure
  • Some of the layers may be formed of a barrier-free layer. It may be advantageous to have a multilayer structure of the inorganic material layer in terms of preventing the propagation of defects such as pin holes or the like, which may occur in the process of forming the inorganic material layer.
  • the barrier layer having a multilayer structure may be advantageous in forming a barrier layer having a refractive index as described later.
  • the first inorganic layer may be suitable as small as possible the difference in refractive index with the base film.
  • the absolute value of the difference in refractive index between the first inorganic material layer and the base film may be about 1 or less, about 0.7 or less, about 0.5 or less, or about 0.3 or less. Therefore, when the base film has a high refractive index as described above, the same level of refractive index can be ensured even in the inorganic layer.
  • the refractive index of the inorganic layer may be about 1.5 or more, about 1.6 or more, about 1.7 or more, or about 1.75 or more.
  • the range of the refractive index of the base film may be advantageous to increase the light efficiency of the device.
  • the upper limit of the refractive index of the inorganic layer is not particularly limited, and may be, for example, about 2.0.
  • the first inorganic material layer may include, for example, a laminated structure of the first sublayer and the second sublayer.
  • the laminated structure may be repeated two or more times.
  • the first sublayer may have a first refractive index
  • the second sublayer may have a second refractive index.
  • the absolute value of the difference between the first and second refractive indices may be, for example, in the range of 0.1 to 1.2.
  • the range of each of the first and second refractive indices is not particularly limited as long as the range of the refractive indices is secured.
  • the refractive index of the first sublayer is in the range of 1.4 to 1.9
  • the refractive index of the second sublayer is 2.0 to May be in the range of 2.6.
  • the first and second sublayers may each be a metal oxide layer.
  • suitable materials for the first sublayer having the above refractive index include Al 2 O 3 and the like, and suitable materials for the second sublayer include TiO 2 and the like.
  • various materials may be applied in addition to this.
  • the first sublayer may be a metal layer
  • the second sublayer may be an organic silicon layer.
  • metal layer is a layer comprising 40% or more, 50% or more, or 60% or more of the metal by weight, and such metals may be included alone or in the form of metal oxides or alloys.
  • Such a laminated structure can secure an appropriate decoupling effect, and can form a layer excellent in desired performance, for example, barrier property.
  • the metal layer may be, for example, a metal oxide layer, and the refractive index may be in the range of about 1.4 to 2.6, for example.
  • the metal layer may be formed of a metal oxide, for example, Al 2 O 3 , TiO 2 , or the like, which may be used as the material of the aforementioned barrier layer.
  • the organic silicon layer may include, for example, a polymer including the compound of Formula 1 or the compound of Formula 2, or including a polymer unit of the compound.
  • R 1 are each independently and are hydrogen, a hydroxy group, an epoxy group, an alkoxy group or a hydrocarbon group number 1, n may be a number in the range of 1 to 10, 1 to 8, 1 to 6 or 1 to 4.
  • R d and R e may each independently be a hydrogen, a hydroxy group, an epoxy group, an alkoxy group, or a monovalent hydrocarbon group, and o may be a number within the range of 3 to 10, 3 to 8, 3 to 6, or 3 to 4 have.
  • the term "monohydric hydrocarbon group” may refer to a compound consisting of carbon and hydrogen or a monovalent moiety derived from a derivative of such a compound.
  • the monovalent hydrocarbon group may contain 1 to 25 carbon atoms.
  • an alkyl group, an alkenyl group, an alkynyl group, an aryl group, etc. can be illustrated.
  • alkyl group may mean an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • the alkyl group may be optionally substituted with one or more substituents.
  • alkoxy group may mean an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkoxy group may be linear, branched or cyclic.
  • the alkoxy group may be optionally substituted with one or more substituents.
  • alkenyl group may refer to an alkenyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms.
  • the alkenyl group may be linear, branched, or cyclic, and may be optionally substituted with one or more substituents.
  • alkynyl group may mean an alkynyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified.
  • the alkynyl group may be linear, branched, or cyclic, and may be optionally substituted with one or more substituents.
  • aryl group may mean a monovalent moiety derived from a compound or a derivative thereof including a structure in which a benzene ring or a structure in which two or more benzene rings are condensed or bonded.
  • the range of the aryl group may include a functional group commonly referred to as an aryl group as well as a so-called aralkyl group or an arylalkyl group.
  • the aryl group may be, for example, an aryl group having 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 12 carbon atoms.
  • aryl group examples include phenyl group, dichlorophenyl, chlorophenyl, phenylethyl group, phenylpropyl group, benzyl group, tolyl group, xylyl group or naphthyl group.
  • the term epoxy group may mean a cyclic ether having three ring constituent atoms or a monovalent moiety derived from a compound containing the cyclic ether.
  • the epoxy group include glycidyl group, epoxyalkyl group, glycidoxyalkyl group or alicyclic epoxy group.
  • the alicyclic epoxy group may mean a monovalent moiety derived from a compound containing an aliphatic hydrocarbon ring structure, wherein the two carbon atoms forming the aliphatic hydrocarbon ring also include an epoxy group.
  • an alicyclic epoxy group having 6 to 12 carbon atoms can be exemplified, for example, a 3,4-epoxycyclohexylethyl group or the like can be exemplified.
  • Examples of the substituent that may be optionally substituted with an epoxy group, an alkoxy group or a monovalent hydrocarbon group include epoxy groups such as halogen, glycidyl group, epoxyalkyl group, glycidoxyalkyl group or alicyclic epoxy group such as chlorine or fluorine, acryloyl group, Methacryloyl group, isocyanate group, thiol group or monovalent hydrocarbon group and the like can be exemplified, but is not limited thereto.
  • Examples of the compound of Formula 1 or 2 include trivinyltrimethylcyclosiloxane, hexamethyldisiloxane, 1,3,5-trivinyl-1,1,3,5,5-pentamethyltrisiloxane, and the like. It is not limited to this.
  • the thickness of the first inorganic layer is not particularly limited and may be appropriately selected depending on the intended use.
  • the thickness of the inorganic layer may be in the range of about 5 nm to about 60 nm or in the range of about 10 nm to about 55 nm.
  • the thickness range of each sublayer in the multilayer structure may be in the range of about 0.5 nm to about 10 nm or about 0.5 nm to about 5 nm, for example.
  • the inorganic layer has a flat surface, for example, a root mean square (RMS) of 5 nm or less, 4.5 nm or less, 4.0 nm or less, 3.5 nm or less, 3.0 nm or less, 2.5 nm or less, 2.0 It may be formed on the surface which is below nm, 1.5 nm or below, 1.0 nm or below, or 0.5 nm or below.
  • RMS root mean square
  • the surface roughness may be adjusted using a material having excellent flatness in itself, or may be adjusted through a buffer layer or the like as described below.
  • Another method of securing the target performance, for example, barrier property is a method of controlling the temperature during the formation of the inorganic layer.
  • the inorganic layer can be formed using a physical or chemical vapor deposition method, in this process can be ensured excellent barrier properties when the deposition temperature is adjusted to a high temperature, for example, 200 °C or more.
  • the inorganic layer may be formed by physical vapor deposition (PVD) or MOCVD, such as sputtering, pulsed laser deposition, electron beam evaporation, thermal evaporation, or laser molecular beam epitaxy (L-MBE).
  • PVD physical vapor deposition
  • MOCVD metalorganic chemical vapor deposition
  • sputtering pulsed laser deposition
  • electron beam evaporation thermal evaporation
  • L-MBE laser molecular beam epitaxy
  • MOCVD Metal Organic Chemical Vapor Deposition
  • HVPE Hydride Vapor Phase Epitaxy
  • Initiated Chemical Vapor Deposition iCVD
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • ALD Atomic Layer Deposition
  • the CVD method may be applied to the formation of the layer using the material described in the present application, and in particular, the ALD or iCVD method may be applied.
  • the layer formed of the metal or the metal oxide may be formed by the ALD method
  • the organic silicon layer may be formed by the iCVD method.
  • ALD layer refers to a layer formed by ALD
  • iCVD layer refers to a layer formed by iCVD.
  • the substrate region including the above configuration may have a haze in a range of 3% to 90%, 3% to 85%, 3% to 50%, or 3% to 30%. Such a haze range may be advantageous, for example, to increase the light extraction efficiency.
  • the haze of the scattering pressure-sensitive adhesive layer of the substrate region may be adjusted, or if necessary, the haze of the base film may be adjusted, or the scattering layer may be further applied.
  • the thing with a haze can be used as said base film.
  • the base film does not necessarily have a haze when the haze of the substrate region is secured only by the scattering pressure-sensitive adhesive layer or the like.
  • the haze of the base film may be in the range of 3% to 90%.
  • Another lower limit of the haze may be, for example, about 5% or 10%.
  • another upper limit of haze may be, for example, about 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, or 30%. .
  • the method for causing the substrate to have haze is not particularly limited, and a method commonly applied to generate haze may be applied.
  • a method commonly applied to generate haze may be applied.
  • a method of adding scattering particles having a refractive index different from the surrounding polymer matrix and having an appropriate average particle diameter, or a monomer such as a main chain of a polymer that allows haze to appear in the polymer itself may be applied.
  • a method of polymerizing a monomer having a refractive index different from that of a polymer and forming a film using such a polymer may be applied.
  • the substrate region may include a buffer layer as an additional layer.
  • the buffer layer may be formed to secure interlayer adhesion or to adjust the surface roughness of the substrate film described above.
  • the buffer layer may be formed on, for example, an upper portion of the base film or a scattering layer, or between the first inorganic material layer and the transparent electrode layer, but is not limited thereto. If necessary, as described below, a buffer layer may be formed in the upper region, and in the present specification, a buffer layer formed in the substrate region is referred to as a first buffer layer, and a buffer layer formed in the upper region is referred to as a second buffer layer. It can be called.
  • the buffer layer may be formed of a high refractive layer.
  • the term high refractive index layer may mean a layer having a refractive index of at least about 1.6, at least about 1.65, at least about 1.7, or at least about 1.75.
  • the upper limit of the refractive index of the high refractive index layer is not particularly limited, and may be, for example, about 2.5 or about 2.0. Such a refractive index may be advantageous for improving light extraction efficiency, for example.
  • the buffer layer can be formed using an appropriate material without particular limitation as long as it can be efficiently formed and can secure appropriate interlayer adhesion and flatness.
  • the buffer layer may be, for example, a metal such as Al, an inorganic material such as SiOx, SiOxNv, SiNx, AlOx, ZnSnOx, ITO, ZnO, IZO, ZnS, MgO or SnOx, a cardo-based resin having a polyimide or fluorene ring ( caldo resin), urethane, epoxide, polyester, polyamic acid, polyimide, polyethyleneimine, polyvinyl alcohol, polyamide, polythiol, poly ((meth) acrylate) or organic materials such as organic silicone, etc.
  • a metal such as Al
  • an inorganic material such as SiOx, SiOxNv, SiNx, AlOx, ZnSnOx, ITO, ZnO, IZO, ZnS, MgO
  • the organic silicon may be exemplified by the compound mentioned in the item of the inorganic layer or a polymer including the same as a polymerization unit.
  • the buffer layer may be formed using a material in which a compound such as alkoxide or acylate of a metal such as zirconium, titanium or cerium is combined with a binder having a polar group such as a carboxyl group or a hydroxy group.
  • Compounds such as alkoxides or acylates may be condensed with the polar groups in the binder, and the high refractive index may be realized by including the metal in the binder.
  • alkoxide or acylate compound examples include titanium alkoxides such as tetra-n-butoxy titanium, tetraisopropoxy titanium, tetra-n-propoxy titanium or tetraethoxy titanium, titanium stearate and the like.
  • Zirconium such as zirconium alkoxides such as titanium acylate, titanium chelates, tetra-n-butoxy zirconium, tetra-n-propoxy zirconium, tetraisopropoxy zirconium or tetraethoxy zirconium and zirconium tributoxy stearate
  • Acylate, zirconium chelates, etc. can be illustrated.
  • the buffer layer may be formed by selecting an appropriate material from the above materials.
  • a material having a high refractive index may be selected from the above materials, or a suitable material selected from the above may be blended with high refractive particles, or a Ti precursor may be used in the material.
  • Materials incorporating high refractive materials can be used.
  • the term "high refractive particles” may mean, for example, particles having a refractive index of 1.5 or more, 2.0 or more, 2.5 or more, 2.6 or more, or 2.7 or more.
  • the upper limit of the refractive index of the high refractive particles may be selected, for example, in a range capable of satisfying the desired refractive index.
  • the high refractive particles may be, for example, about 1 nm to 100 nm, 10 nm to 90 nm, 10 nm to 80 nm, 10 nm to 70 nm, 10 nm to 60 nm, 10 nm to 50 nm or about 10 nm to 45 nm. It may have an average particle diameter of.
  • alumina, aluminosilicate, titanium oxide or zirconium oxide and the like can be exemplified.
  • rutile titanium oxide can be used, for example, as particles having a refractive index of 2.5 or more. Titanium oxide of the rutile type has a high refractive index compared to other particles, and therefore can be adjusted to the desired refractive index in a relatively small proportion.
  • the manner of forming the buffer layer is not particularly limited, and for example, an appropriate method may be applied among the above-described PVD or CVD, and in particular, an iCVD method may be suitable.
  • the buffer layer may be prepared by mixing a metal alkoxide such as titanium alkoxide or zirconium alkoxide and a solvent such as alcohol or water to prepare a coating solution, and various wet types including a sol-gel coating method for baking at an appropriate temperature after applying the same.
  • it may be formed by a dry coating method.
  • the thickness of the buffer layer is not particularly limited, and may be appropriately selected in consideration of the position where the buffer layer is formed, its required function, and the like. For example, when the buffer layer is formed on the scattering layer to secure the flat surface, a somewhat higher thickness may be required than when the buffer layer is formed on the base film to secure the flat surface.
  • the substrate region may further include a scattering layer.
  • the term scattering layer may refer to any kind of layer formed to be able to scatter, refract or diffract light incident on the layer.
  • the scattering layer is not particularly limited as long as the scattering layer is implemented to exhibit the above functions.
  • a carrier substrate that may be temporarily or permanently attached to the bottom of the base film or the barrier film.
  • a rigid substrate such as a glass substrate may be applied to the carrier substrate.
  • the device region existing on top of the substrate region may include a transparent electrode layer and a reflective electrode layer, and may also include an organic layer existing between the transparent and reflective electrode layers.
  • the transparent and reflective electrode layers may be hole injection or electron injection electrode layers commonly used in organic electronic devices.
  • One of the transparent and reflective electrode layers may be formed of a hole injection electrode layer, and the other may be formed of an electron injection electrode layer.
  • the hole injection electrode layer may be formed using a material having a relatively high work function, for example, and may be formed using a transparent or reflective material if necessary.
  • the hole injection electrode layer may comprise a metal, alloy, electrically conductive compound, or a mixture of two or more thereof, having a work function of about 4.0 eV or more.
  • Such materials include metals such as gold, CuI, Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), Zinc Tin Oxide (ZTO), zinc oxide doped with aluminum or indium, magnesium indium oxide, nickel tungsten oxide, Oxide materials such as ZnO, SnO 2 or In 2 O 3 , metal nitrides such as gallium nitride, metal serenides such as zinc serenides, metal sulfides such as zinc sulfides, and the like.
  • the transparent hole injection electrode layer can also be formed using a laminate of a metal thin film such as Au, Ag or Cu, and a high refractive transparent material such as ZnS, TiO 2 or ITO.
  • the hole injection electrode layer may be formed by any means such as vapor deposition, sputtering, chemical vapor deposition, or electrochemical means.
  • the electrode layer formed as needed may be patterned through a process using known photolithography, shadow mask, or the like.
  • the electron injection electrode layer may be formed using, for example, a material having a relatively small work function.
  • a material having a relatively small work function For example, an appropriate transparent or reflective material may be used among materials used for forming the hole injection electrode layer. It may be formed by, but is not limited thereto.
  • the electron injection electrode layer can also be formed using, for example, a vapor deposition method or a sputtering method, and can be appropriately patterned if necessary.
  • the thickness of the electrode layer may be formed to have a thickness of, for example, about 90 nm to 200 nm, 90 nm to 180 nm, or about 90 nm to 150 nm.
  • the organic layer exists between the transparent and reflective electrode layers.
  • the organic layer may include at least two light emitting units. In such a structure, light generated in the light emitting unit may be emitted to the transparent electrode layer through a process of being reflected by the reflective electrode layer.
  • the organic layer may include one or more light emitting units.
  • the organic layer may include two, if necessary, a first light emitting unit having a first light emitting center wavelength and a second light emitting unit having a second light emitting center wavelength, and in some cases, may also include three or more light emitting units.
  • the first emission center wavelength may be in a range different from the second emission center wavelength.
  • the first emission center wavelength may be longer than the second emission center wavelength.
  • the ratio ⁇ 1 / ⁇ 2 between the first emission center wavelength ⁇ 1 and the second emission center wavelength ⁇ 2 may be in the range of 1.1 to 2. Within this range, the desired color can be realized by mixing the light emission of each light emitting unit.
  • the ratio ⁇ 1 / ⁇ 2 may be 1.2 or more, 1.3 or more, or 1.4 or more in another example. In addition, the ratio ⁇ 1 / ⁇ 2 may be 1.9 or less or 1.85 or less in another example.
  • the distance between each light emitting unit and the reflective electrode layer may be adjusted.
  • the first light emitting unit and the reflective electrode layer for example, the reflective electrode layer
  • ratio between the interval (L 1) and wherein the distance between the second light emitting unit and the reflective electrode layer (L 2) (L 1 / L 2 ) may be in the range of about 1.5 to 20.
  • the ratio L 1 / L 2 may in another example be at least about 2 or at least about 2.5.
  • the ratio L 1 / L 2 may be about 15 or less.
  • an organic layer including each light emitting unit having the adjusted interval and each light emission center wavelength may be formed on the substrate region having the above described haze to improve light extraction efficiency of the organic electronic device.
  • the distance between the emission center wavelength of each light emitting unit and the reflective electrode layer is not particularly limited as long as it is adjusted to satisfy the above ratio.
  • the first emission center wavelength may be in the range of about 500 to 700 nm and the second emission center wavelength may be in the range of about 380 to 500 nm.
  • the distance between the first light emitting unit and the reflective electrode layer may be in the range of 150 nm to 200 nm, and the distance between the second light emitting unit and the reflective electrode layer may be in the range of 20 nm to 80 nm.
  • An intermediate electrode layer or charge generating layer may further be present between the first light emitting unit and the second light emitting unit for proper light emission. Therefore, the light emitting units may have a structure divided by an intermediate electrode layer or a charge generating layer (CGL) having charge generation characteristics.
  • CGL charge generating layer
  • the material constituting the light emitting unit is not particularly limited. Fluorescent or phosphorescent organic materials having various emission center wavelengths are known in the art, and an appropriate kind may be selected from these known materials to form the light emitting unit. Examples of the material of the light emitting unit include tris (4-methyl-8-quinolinolate) aluminum (III) (tris (4-methyl-8-quinolinolate) aluminum (III)) (Alg3), 4-MAlq3, Gaq3 and the like.
  • the light emitting unit includes the material as a host, and further includes perylene, distyrylbiphenyl, DPT, quinacridone, rubrene, BTX, ABTX, DCJTB, and the like. It may have a host-dopant system including a as a dopant.
  • the light emitting unit can also be formed by appropriately adopting a kind exhibiting light emission characteristics among the electron-accepting organic compound or electron donating organic compound described later.
  • the organic layer may be formed in various structures further including various other functional layers known in the art, as long as it includes a light emitting unit.
  • Examples of the layer that may be included in the organic layer may include an electron injection layer, a hole blocking layer, an electron transport layer, a hole transport layer, a hole injection layer, and the like.
  • the electron injection layer or the electron transport layer can be formed using, for example, an electron accepting organic compound.
  • an electron accepting organic compound any compound known without particular limitation may be used.
  • organic compounds include polycyclic compounds such as p-terphenyl or quaterphenyl or derivatives thereof, naphthalene, tetratracene, pyrene and coronene.
  • Polycyclic hydrocarbon compounds or derivatives thereof such as chrysene, anthracene, diphenylanthracene, naphthacene or phenanthrene, phenanthroline, vasophenanthrol Heterocyclic compounds or derivatives thereof, such as lean (bathophenanthroline), phenanthridine, acridine (acridine), quinoline (quinoline), quinoxaline or phenazine (phenazine) and the like.
  • fluoroceine perylene, phthaloperylene, naphthaloperylene, naphthaloperylene, perynone, phthaloperinone, naphtharoferinone, diphenylbutadiene ( diphenylbutadiene, tetraphenylbutadiene, oxadiazole, ardazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene , Oxine, aminoquinoline, imine, diphenylethylene, vinylanthracene, diaminocarbazole, pyrane, thiopyrane, polymethine, mero Cyanine (merocyanine), quinacridone or rubrene, or derivatives thereof, JP-A-1988-295695, JP-A-1996-22557, JP-A-1996-81472, Japanese Patent Laid-Open Publication No.
  • Metal chelate complex compounds disclosed in Japanese Patent Application Publication No. 017764 for example, tris (8-quinolinolato) aluminium, which is a metal chelated oxanoid compound, and bis (8-quinolin) Norato) magnesium, bis [benzo (f) -8-quinolinolato] zinc ⁇ bis [benzo (f) -8-quinolinolato] zinc ⁇ , bis (2-methyl-8-quinolinolato) aluminum, Tris (8-quinolinolato) indium, tris (5-methyl-8-quinolinolato) aluminum, 8-quinolinolatorium, tris (5-chloro- Metal complex having one or more 8-quinolinolato or derivatives thereof, such as 8-quinolinolato) gallium, bis (5-chloro-8-quinolinolato) calcium, as derivatives, Japanese Patent Application Laid-Open No.
  • Fluorescent brighteners such as a benzooxazole compound, a benzothiazole compound or a benzoimidazole compound; 1,4-bis (2-methylstyryl) benzene, 1,4-bis (3-methylstyryl) benzene, 1,4-bis (4-methylstyryl) benzene, distyrylbenzene, 1,4- Bis (2-ethylstyryl) benzyl, 1,4-bis (3-ethylstyryl) benzene, 1,4-bis (2-methylstyryl) -2-methylbenzene or 1,4-bis (2- Distyrylbenzene compounds such as methylstyryl) -2-ethylbenzene and the like; 2,5-bis (4-methylstyryl) pyrazine, 2,5-bis (4-ethylstyryl) pyrazine, 2,5-bis [2- (1-naphthyl) vinyl
  • Namin (silanamine) derivative disclosed in Japanese Patent Laid-Open No. 194-279322 or Japanese Patent Laid-Open No. 194-279323 Polyfunctional styryl compound, an oxadiazole derivative disclosed in Japanese Patent Application Laid-Open No. 194-107648 or Japanese Patent Application Laid-Open No. 194-092947, an anthracene compound disclosed in Japanese Patent Application Laid-Open No. 194-206865, Japanese Patent Oxynate derivative disclosed in Japanese Patent Application Laid-Open No. 194-145146, tetraphenylbutadiene compound disclosed in Japanese Patent Application Laid-Open No. 1992-96990, organic trifunctional compound disclosed in Japanese Patent Application Laid-Open No.
  • the electron injection layer may be formed using, for example, a material such as LiF or CsF.
  • the hole blocking layer is a layer capable of preventing the injected holes from entering the electron injecting electrode layer through the light emitting unit and improving the life and efficiency of the device. If necessary, a light blocking unit and an electron It can be formed in an appropriate part between the granular electrode layers.
  • the hole injection layer or hole transport layer may comprise, for example, an electron donating organic compound.
  • the electron donating organic compound include N, N ', N'-tetraphenyl-4,4'-diaminophenyl, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4, 4'-diaminobiphenyl, 2,2-bis (4-di-p-tolylaminophenyl) propane, N, N, N ', N'-tetra-p-tolyl-4,4'-diamino ratio Phenyl, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N, N'-di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N , N, N ', N'-tetraphenyl-4,4'-diaminodiphenylether
  • the hole injection layer or the hole transport layer may be formed by dispersing an organic compound in a polymer or using a polymer derived from the organic compound. Also, such as polyparaphenylenevinylene and derivatives thereof, hole transporting non-conjugated polymers such as ⁇ -conjugated polymers, poly (N-vinylcarbazole), or ⁇ -conjugated polymers of polysilane may also be used. Can be.
  • the hole injection layer is formed by using electrically conductive polymers such as metal phthalocyanine such as copper phthalocyanine, non-metal phthalocyanine, carbon film and polyaniline, or by reacting the aryl amine compound with Lewis acid as an oxidizing agent. You may.
  • electrically conductive polymers such as metal phthalocyanine such as copper phthalocyanine, non-metal phthalocyanine, carbon film and polyaniline, or by reacting the aryl amine compound with Lewis acid as an oxidizing agent. You may.
  • the specific structure of the organic layer is not particularly limited.
  • various materials for forming a hole or an electron injection electrode layer and an organic layer for example, a light emitting unit, an electron injection or transport layer, a hole injection or transport layer, and a method of forming the same are known. All of these methods can be applied.
  • the upper region of the organic electronic device may include a second inorganic material layer and a cover film sequentially formed in an upward direction.
  • the second inorganic material layer is present in order to block, suppress or mitigate the penetration of the foreign material to ensure durability, and the specific material and formation method may be similar to those mentioned in the item of the first inorganic material layer.
  • the second inorganic material layer does not need to be formed to have a high refractive index like the first inorganic material layer.
  • the cover film present on the upper portion of the second inorganic material layer may be a structure that protects the organic electronic device.
  • a known barrier film, a metal sheet, a conductive film, or the like may be a laminate structure of two or more of the above.
  • the cover film may be attached to the top of the second inorganic material layer through an adhesive layer, for example, the barrier adhesive layer described above.
  • an upper region there may be more than one buffer layer, ie a second buffer layer.
  • the location where the buffer layer may be present in the upper region may be illustrated between the reflective electrode layer and the second inorganic layer.
  • the upper region may include a structure including two or more second buffer layers and two or more second barriers, and the layers are alternately stacked.
  • This buffer layer serves to alleviate stress (strss) generated in the structure of the upper region, to prevent the pressing of the device when the cover film is formed on the second inorganic layer, and / or the second inorganic layer is formed It is possible to reduce the limit of the temperature to be provided, and also to provide an appropriate flat surface so that the second inorganic material layer can exhibit an excellent effect.
  • the second buffer layer may be similar to those mentioned in the item of the first buffer layer. However, when the light is designed to be emitted toward the substrate region, the second buffer layer does not necessarily have to be formed to have a high refractive index like the first inorganic layer.
  • the second buffer layer may be an iCVD layer formed in an iCVD manner so that the second buffer layer exhibits proper performance and exhibits the desired action in the overall device structure.
  • the second buffer layer may include, for example, poly ((meth) acrylate) or organic silicon.
  • the poly ((meth) acrylate) may include, for example, polymerized units of a compound of Formula 3.
  • the term polymerized unit of a compound herein refers to a form in which the compound is polymerized and included in a polymer.
  • the poly ((meth) acrylate) may be a homopolymer of the compound of Formula 3 or a copolymer including other comonomers together with the compound of Formula 3.
  • R 1 may be hydrogen or an alkyl group having 1 to 4 carbon atoms
  • A may be an epoxy group-containing group or an alicyclic monovalent hydrocarbon group.
  • the epoxy group-containing group examples include glycidyl group, glycidyloxy group, glycidylalkyl group, glycidoxyalkyl group or alicyclic epoxy group.
  • the alicyclic monovalent hydrocarbon group in the above means the compound which the carbon atom couple
  • the alicyclic monovalent hydrocarbon group may be an alicyclic monovalent hydrocarbon group having 3 to 20 carbon atoms, 5 to 15 carbon atoms, or 5 to 12 carbon atoms.
  • an isobornyl group, cyclohexyl group, norbornanyl group ( norbornanyl), norbornenyl group (norbornenyl), dicyclopentadienyl group, ethynylcyclohexane group, ethynylcyclohexene group or ethynyl decahydronaphthalene group and the like may be included, but is not limited thereto.
  • the material described in the item of the buffer layer in the substrate region can be used as the organic silicon.
  • the second buffer layer formed by the iCVD method can perform an excellent function in the overall device structure.
  • the second buffer layer may be formed to an appropriate thickness in consideration of the desired function, and may have a thickness within a range of about 200 nm to 1,000 nm or about 200 nm to 500 nm, for example.
  • the present application also relates to the use of such organic electronic devices, for example organic light emitting devices.
  • the organic light emitting device may be, for example, a backlight of a liquid crystal display (LCD), a light source, a light source such as various sensors, a printer, a copier, a vehicle instrument light source, a signal lamp, an indicator light, a display device, a planar light emitting body, and the like. It can be effectively applied to a light source, a display, a decoration or various lights.
  • the present application relates to a lighting device including the organic light emitting device.
  • the organic light emitting device When the organic light emitting device is applied to the lighting device or other uses, other components constituting the device or the like or a method of constituting the device are not particularly limited, and are known in the art as long as the organic light emitting device is used. Any material or method can be employed.
  • an organic electronic device for example, a flexible device, which exhibits excellent light extraction efficiency and durability may be provided.
  • the organic electronic device may be applied to a light source for illumination or display.
  • 1 is a schematic diagram illustrating an exemplary organic electronic device.
  • the haze of the adhesive layer applied in the Example or the comparative example was evaluated in accordance with ASTM D1003 using Haze Meter HM-150.
  • Quantum efficiency of the organic electronic device manufactured in Example or Comparative Example was evaluated according to a conventional method using an integrating sphere or an integrating hemisphere.
  • An organic electronic device was manufactured in the following manner.
  • a PI (polyimide) film having a refractive index of about 1.7 was used as the base film.
  • TCTA 4,4 ', 4' '-tris (N-carbazolyl) -triphenylamine), which is an electron transporting compound, and LiF (refractive index: about 1.39), which are low refractive materials
  • the low refractive organic layer was formed to a thickness of about 70 nm by vacuum deposition to about 1.66.
  • an aluminum (Al) electrode as an electron injecting reflective electrode was formed on the low refractive organic layer by vacuum deposition.
  • the carrier substrate was peeled off and the element was manufactured by sticking a barrier film using a scattering adhesive layer in the lower part of PI film.
  • Scattering pressure-sensitive adhesives are known transparent acrylic pressure-sensitive adhesives having a refractive index of about 1.47 and titanium oxide particles having a refractive index of about 1.9 as scattering particles and an average particle diameter of about 200 nm.
  • the pressure-sensitive adhesive prepared by blending in an amount indicating haze of was used.
  • the thickness of the adhesive layer was adjusted to about 30 micrometers at the time of sticking of a barrier film.
  • a pressure-sensitive adhesive layer prepared by mixing the same titanium oxide particles as in Example 1 with an amount of haze of about 64% by the pressure-sensitive adhesive layer to a known transparent acrylic pressure-sensitive adhesive (refractive index: about 1.47) as applied in Example 1
  • An organic electronic device was manufactured in the same manner as in Example 1, except for using.
  • An organic electronic device was manufactured in the same manner as in Example 1, except that the scattering particles (rutile titanium oxide particles) were not used in a known transparent acrylic pressure-sensitive adhesive (refractive index: about 1.47) same as that applied in Example 1 It was.
  • the scattering particles rutile titanium oxide particles
  • the adhesive layer exhibits about 60% haze of silica particles having a refractive index of about 1.4 and an average particle diameter of about 200 nm in a known transparent acrylic pressure-sensitive adhesive (refractive index: about 1.47) similar to that applied in Example 1.
  • An organic electronic device was manufactured in the same manner as in Example 1, except that the pressure-sensitive adhesive layer prepared in a blended amount was used.
  • the adhesive layer exhibits about 70% haze of silica particles having a refractive index of about 1.4 and an average particle diameter of about 200 nm in a known transparent acrylic pressure-sensitive adhesive (refractive index: about 1.47) similar to that applied in Example 1.
  • An organic electronic device was manufactured in the same manner as in Example 1, except that the pressure-sensitive adhesive layer prepared in a blended amount was used.
  • the organic electronic device to which the scattering pressure sensitive adhesive according to the present application was applied showed an excellent effect compared to the case where the pressure sensitive adhesive without scattering was applied.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 출원은 유기전자장치 및 그 용도에 관한 것이다. 본 출원에서는, 우수한 광추출 효율 및 내구성을 나타내는 유기전자장치, 예를 들면, 플렉서블 소자가 제공될 수 있다. 이러한 유기전자장치는 조명 또는 디스플레이용 광원 등에 적용될 수 있다.

Description

유기전자장치
본 출원은, 유기전자장치 및 그 용도에 관한 것이다.
유기전자장치(OED; Organic Electronic Device)는, 전류를 전도할 수 있는 유기 재료의 층을 하나 이상 포함하는 소자이다. 유기전자장치의 종류에는 유기발광소자(OLED), 유기태양전지, 유기 감광체(OPC) 또는 유기 트랜지스터 등이 포함된다.
대표적인 유기전자소자인 유기발광소자는, 통상적으로 기판, 투명 전극층, 유기층 및 반사 전극층을 순차로 포함한다. 소위 하부 발광형 소자(bottom emitting device)로 호칭되는 구조에서는, 투명 전극층이 투명 전극층으로 형성되고, 반사 전극층이 반사 전극층으로 형성될 수 있다. 또한, 소위 상부 발광형 소자(top emitting device)로 호칭되는 구조에서는 투명 전극층이 반사 전극층으로 형성되고, 반사 전극층이 투명 전극층으로 형성되기도 한다. 전극층에 의해서 주입된 전자(electron)와 정공(hole)이 유기층에 존재하는 발광 유닛에서 재결합(recombination)되어 광이 생성될 수 있다. 광은 기판측 또는 반사 전극층측으로 방출될 수 있다. 유기발광소자의 구조에서 투명 전극층으로 일반적으로 사용되는 ITO(Indium Tin Oxide), 유기층 및 기판간의 굴절률의 차이에 의해 발광 유닛에서 생성된 광은 유기층과 투명 전극층의 계면 또는 기판 내에서 전반사(total internal reflection) 현상 등에 의해 트랩(trap)되고, 매우 소량의 광만이 방출되는 문제가 있다. 이에 따라 이를 해결하기 위한 몇 가지 방법들이 제안되어 있으나, 현재까지 제안된 방식은 소위 리지드(rigid) 기판인 유리 기판을 사용한 구조에 대한 것이고, 플렉서블 소자 구조에 대하여는 연구가 많이 이루어지지 않고 있다.
유기전자소자에서 고려되어야 하는 중요한 문제로는 내구성도 존재한다. 유기층이나 전극 등은 수분이나 산소 등의 외래 물질에 매우 쉽게 산화될 수 있어서, 환경적 요인에 대한 내구성의 확보가 중요하다. 이를 위해 예를 들면, 특허문헌 1 내지 4 등은 외래 물질의 침투를 차단할 수 있는 구조를 제안하고 있다. 이러한 내구성과 관련된 문제 역시 통상적으로 유리에 비하여 배리어성이 떨어지는 기재를 사용하는 플렉서블 구조에서 더욱 문제가 될 수 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 미국특허 제6,226,890호
(특허문헌 2) 미국특허 제6,808,828호
(특허문헌 3) 일본공개특허 제2000-145627호
(특허문헌 4) 일본공개특허 제2001-252505호
본 출원은, 유기전자장치 및 그 용도를 제공한다. 본 출원에서는, 예를 들어서, 플렉서블 유기발광장치로서 작용할 때에 우수한 내구성과 광추출 효율 등을 가지는 유기전자장치 및 그 용도를 제공하는 것을 하나의 주요한 목적으로 한다.
예시적인 유기전자장치는, 도 1과 같이 상부 방향으로 순차 존재하는 배리어 필름(101), 산란성 점착제층(102), 기재 필름(103), 투명 전극층(104), 유기층(105) 및 반사 전극층을 포함할 수 있다. 상기 각 층들은 인접하는 층과의 사이에 다른 층이 존재하지 않은 상태로 직접 적층되어 있거나, 혹은 다른 층을 매개로 적층되어 있을 수 있다.
도 1에 나타난 것처럼 상기 유기전자장치는, 기재 필름(103)과 상기 기재 필름(103)의 하부에 산란성 점착제층(102) 에 의해 부착되어 있는 배리어 필름(101)을 포함할 수 있다. 상기에서 점착제층(102)은 점착 바인더(1021)와 산란 입자(1022)를 포함할 수 있고, 상기 산란 입자는 상기 바인더에 비하여 높은 굴절률을 가질 수 있다. 본 명세서에서 특별히 달리 규정하지 않는 한, 굴절률은 약 550 nm 파장의 광에 대한 굴절률이다.
본 명세서에서 용어 상부 방향은 특별히 달리 규정하지 않는 한, 투명 전극층에서 반사 전극층을 향한 방향을 의미하고, 용어 하부 방향은 특별히 달리 규정하지 않는 한, 반사 전극층에서 투명 전극층을 향한 방향을 의미한다.
이하 명세서에서는 설명의 편의를 위하여 상기 구조에서 투명 전극층의 하부에 존재하는 모든 요소(투명 전극층은 제외)를 포함하는 영역을 기판 영역으로 호칭하고, 투명 전극층과 반사 전극층 및 그 사이에 존재하는 모든 요소를 포함하는 영역을 소자 영역으로 호칭하며, 반사 전극층의 상부에 존재하는 모든 요소(반사 전극층은 제외)를 포함하는 영역을 상부 영역으로 호칭한다.
유기전자장치에 포함될 수 있는 기재 필름의 종류는 특별히 제한되지 않는다. 예를 들면, 기재 필름으로 업계에서 통상 플렉서블 소자의 구현에 사용될 수 있는 것으로 알려져 있는 것을 사용할 수 있다. 이러한 기재 필름의 대표적인 예로는 박막 유리 필름이나 고분자 필름 등이 있다. 유리 필름으로는, 소다석회 유리, 바륨/스트론튬 함유 유리, 납 유리, 알루미노 규산 유리, 붕규산 유리, 바륨 붕규산 유리 또는 석영 등으로 형성된 필름이 예시될 수 있고, 고분자 필름으로는, PI(polyimide), PEN(Polyethylene naphthalate), PC(polycarbonate), 아크릴 수지, PET(poly(ethylene terephthatle)), PES(poly(ether sulfide)) 또는 PS(polysulfone) 등을 포함하는 필름이 예시될 수 있으나, 이에 제한되는 것은 아니다.
기재 필름으로는 투광성 필름을 사용할 수 있다. 본 명세서에서 용어 투광성 필름은, 예를 들면, 가시광 영역 중 어느 하나의 광 또는 전체 가시광 영역의 광에 대한 투과율이 50% 이상, 60% 이상, 70% 이상 또는 80% 이상인 필름을 의미할 수 있다. 기재 필름은, 구동용 TFT(Thin Film Transistor)가 존재하는 TFT 기재 필름일 수도 있다.
기재 필름은 열팽창계수(CTE)가 약 5 ppm/℃ 내지 70ppm/℃의 범위 내에 있을 수 있다. 이러한 범위는 유기층과 무기물층이 혼재되어 있는 구조에서 발생할 수 있는 층간 박리 등의 결함의 방지에 유리할 수 있다.
기재 필름은 유리전이온도가 약 200℃ 이상일 수 있다. 이러한 유리전이온도는 기재 필름 자체의 유리전이온도이거나, 후술하는 버퍼층이 형성되어 있는 기재 필름의 유리전이온도일 수 있다. 이러한 범위는 유기전자장치의 제조 과정에서의 증착 또는 패턴을 위한 고온 공정에서 적합할 수 있다. 유리전이온도는, 다른 예시에서 약 210℃ 이상, 약 220℃ 이상, 약 230℃ 이상, 약 240℃ 이상 또는 약 250℃ 이상일 수 있다. 유리전이온도의 상한은 특별히 제한되는 것은 아니며, 예를 들면, 400℃, 350℃ 또는 300℃ 정도일 수 있다.
기재 필름은 표면 거칠기(RMS, Root Mean Square)가 약 0.1 nm 내지 5 nm의 범위 내로 조절될 수 있다. 이러한 표면 거칠기는 기재 필름 자체의 표면에 대한 것이거나, 후술하는 버퍼층이 형성되어 있는 기재 필름의 상기 버퍼층의 표면에 대한 것일 수 있다. 이러한 표면 거칠기의 범위는 상부에 형성되는 층의 성능의 개선에 유리할 수 있다. 예를 들어, 상기 제 1 무기물층이 배리어성을 가지도록 형성되는 경우에 상기 범위의 표면 거칠기를 가지는 표면에 상기 제 1 무기물층을 형성하면, 보다 탁월한 수분 차단성 등을 가지는 층을 형성할 수 있다. 표면 거칠기는, 다른 예시에서 약 4 nm 이하, 약 3 nm 이하, 약 2.5 nm 이하 또는 약 2 nm 이하일 수 있다.
기재 필름은, 굴절률이 약 1.5 이상, 약 1.6 이상, 약 1.7 이상 또는 약 1.75 이상일 수 있다. 본 명세서에서 용어 굴절률은, 특별히 달리 규정하지 않는 한, 약 550 nm 파장의 광에 대하여 측정한 굴절률이다. 유기전자장치가 유기발광장치인 경우, 기재 필름의 상기 굴절률의 범위는 장치의 광효율을 높이는 것에 유리할 수 있다. 기재 필름의 굴절률의 상한은 특별히 제한되는 것은 아니며, 예를 들면, 약 2.0 정도일 수 있다.
기재 필름의 두께는 특별히 제한되지 않으며, 목적하는 성능, 예를 들면, 가요성이나 광추출 효율 또는 배리어성을 고려하여 적정 범위에서 선택될 수 있다. 예를 들면, 기재 필름의 두께는 약 10 ㎛ 내지 약 50 ㎛의 범위 내 또는 약 20 ㎛ 내지 약 30 ㎛의 범위 내일 수 있다.
기재 필름의 하부에는 배리어 필름이 산란성 점착제층에 의해 부착되어 있다. 상기에서 사용될 수 있는 배리어 필름의 종류는 특별히 제한되는 것은 아니며, 예를 들면, 플라스틱 필름 등과 같이 기재에 규소 등의 산화물, 질화물 또는 산질화물(oxynitride)와 같이 수분 등을 차단할 수 있는 것으로 알려져 있는 층이 형성되어 있는 필름 등을 사용할 수 있다. 하나의 예시에서 상기 배리어 필름은, 고분자 기재층 및 상기 기재층의 일면 또는 양면에 형성되는 무기물층을 포함하는 구조를 가질 수 있다. 상기에서 배리어 필름에 포함되는 고분자 기재층으로는, 전술한 기재 필름(도 1의 103의 기재 필름) 중에서 적절한 종류를 사용할 수 있다. 따라서, 상기 고분자 기재층은, 전술한 기재 필름의 투과율, 열팽창계수, 유리전이온도, 표면 거칠기 및 굴절률 중에서 하나 이상의 물성을 동일하게 가질 수 있다. 한편 상기 무기물층으로는, 예를 들면, 후술하는 기판 영역에 포함되는 제 1 무기물층과 동일한 무기물층을 사용할 수 있다.
상기 배리어 필름은 산란성 점착제층에 의해 기재 필름의 하부에 부착되어 있을 수 있다. 본 출원에서 용어 산란성 점착제층은, 입사광을 산란시킬 수 있도록 형성된 점착제층을 의미할 수 있다. 상기 산란성 점착제층은, 예를 들면, 헤이즈가 40% 이상, 45% 이상, 또는 50% 이상일 수 있다. 이러한 범위의 헤이즈를 가지는 점착제층을 통해 유기전자장치의 광추출 효율을 개선할 수 있다. 상기 헤이즈의 범위의 상한은 특별히 제한되는 것은 아니지만, 상기 헤이즈는 90% 이하, 85% 이하, 80% 이하, 75% 이하 또는 70% 이하일 수 있다. 본 출원에서 점착제층의 헤이즈는 실시예에 기재된 방식으로 측정하는 범위이다.
산란성 점착제는, 점착 바인더에 산란 입자를 배합하여 제조할 수 있다. 본 명세서에서 용어 산란 입자는, 예를 들면, 상기 점착 바인더 등과 같은 주위 물질과는 다른 굴절률을 가지고, 또한 적절한 크기를 가져서 입사되는 광을 산란, 굴절 또는 회절시킬 수 있는 모든 종류의 입자를 의미할 수 있다.
점착 바인더로는, 특별한 제한 없이 업계에서 광학적으로 투명한 것으로 공지된 모든 종류의 바인더가 사용될 수 있다. 점착 바인더로는 비가교형 바인더를 사용하거나 가교형 바인더를 사용할 수 있고, 가교형 바인더의 사용 시에 그 가교 유형은 열경화형, 습기 경화형, 상온 경화형 또는 활성 에너지선(ex. 자외선 또는 전자선 등) 경화형 점착 바인더를 사용할 수 있다.
광학적으로 투명한 점착 바인더로서 대표적으로 알려져 있는 것은 아크릴 점착 바인더, 올레핀계 점착 바인더 또는 고무계 점착 바인더 등이 있고, 이러한 바인더는 모두 본 출원에서 사용될 수 있다. 입수 및 적용의 용이성 등의 측면, 그리고 후술하는 산란 입자와의 굴절률의 관계 조절의 용이성 등의 관점에서 아크릴계 점착 바인더가 사용될 수 있다. 아크릴계 점착 바인더로는 통상의 종류, 예를 들면, (메타)아크릴산 에스테르 단량체를 주요 단위로 포함하고, 필요한 경우에 다양한 가교성 관능기가 도입되어 있는 것을 사용할 수 있다. 또한, 점착제층의 헤이즈의 조절과 후술하는 산란 입자와의 굴절률의 관계의 조절 등의 측면에서 상기 점착 바인더로는 굴절률이 약 1.2 내지 1.5 또는 약 1.2 내지 1.45의 범위 내에 있는 것을 사용할 수 있다.
점착제층에 포함되는 산란 입자로는, 상기 점착 바인더와는 다른 굴절률을 가지는 입자를 사용할 수 있는데, 점착제층이 포함되는 위치에 따른 적절한 광추출 효율을 고려하여, 상기 점착 바인더에 비하여 높은 굴절률을 가지는 것을 사용할 수 있다. 본 출원의 유기전자장치의 구조에서 점착제층이 점착 바인더 대비 높은 굴절률의 산란 입자를 포함하는 경우, 상기 점착제층이 점착 바인더 대비 낮은 굴절률의 산란 입자를 포함하는 경우 대비 동일 헤이즈 범위에서도 현격히 우수한 광추출 효율을 나타날 수 있다. 하나의 예시에서 상기 산란 입자의 굴절률(A)과 상기 점착 바인더의 굴절률(B)의 차이(A-B)는 약 0.05 이상, 약 0.1 이상, 약 0.3 이상 또는 약 0.5 이상일 수 있다. 또한, 상기 굴절률의 차이의 상한은 특별히 제한되는 것은 아니나, 약 1.5 이하, 약 1.3 이하 또는 약 1 이하일 수 있다. 이러한 범위에서 점착제층의 헤이즈를 적정 범위로 규정할 수 있고, 동시에 유사 수준의 헤이즈 범위에서도 훨씬 더 우수한 광추출 효율이 확보될 수 있다.
산란 입자의 크기는 적절히 조절될 수 있고, 특별히 제한되는 것은 아니다. 다만, 입사광의 파장 대비 지나치게 작은 크기를 가질 경우 산란 효과의 확보가 용이하지 않을 수 있으므로, 상기 산란 입자는, 예를 들면, 평균 입경이 50 nm 이상, 100 nm 이상, 500 nm 이상 또는 1,000 nm 이상일 수 있다. 산란 입자의 평균 입경은, 예를 들면, 10,000 nm 이하일 수 있다.
이러한 산란 입자로는, 알루미나, 알루미노 실리케이트, 산화 티탄 또는 산화 지르코늄 등이 예시될 수 있는데, 상기 언급한 조건을 만족하는 한 구체적인 종류는 특별히 제한되지 않는다. 높은 굴절률이 용이하게 확보될 수 있는 것으로는 루틸형 산화 티탄이 예시되어 있고, 이러한 입자도 본 출원에서 사용될 수 있다.
점착제층 내에서 산란 입자의 비율은 상기 언급한 헤이즈가 달성될 수 있고, 점착 바인더의 점착 성능을 해치지 않는 범위로 조절된다면 특별히 제한되지 않는다.
점착제층은 상기 성분 외에도, 예를 들면, 상기 점착 바인더를 가교시키고 있는 열 가교제 또는 광 가교제 등의 가교제 등과 같은 다른 추가적인 성분을 포함할 수 있다.
점착제층에는 포함될 수 있는 다른 성분으로 수분 차단 소재가 예시될 수 있다. 본 명세서에서 용어 수분 차단 소재는 물리적 또는 화학적 반응 등을 통해, 외부로부터 유입되는 수분 또는 습기 등을 흡착 또는 제거할 수 있는 성분을 총칭하는 의미로 사용될 수 있다. 점착층에 배합될 수 있는 수분 차단 소재의 구체적인 종류는 특별히 제한되지 않으며, 예를 들면, 금속 산화물, 유기금속산화물, 금속염 또는 오산화인(P2O5) 등의 일종 또는 이종 이상의 혼합물을 들 수 있다. 상기에서 금속 산화물의 구체적인 예로는, 산화리튬(Li2O), 산화나트륨(Na2O), 산화바륨(BaO), 산화칼슘(CaO) 또는 산화마그네슘(MgO) 등을 들 수 있고, 금속염의 예로는, 황산리튬(Li2SO4), 황산나트륨(Na2SO4), 황산칼슘(CaSO4), 황산마그네슘(MgSO4), 황산코발트(CoSO4), 황산갈륨(Ga2(SO4)3), 황산티탄(Ti(SO4)2) 또는 황산니켈(NiSO4) 등과 같은 황산염, 염화칼슘(CaCl2), 염화마그네슘(MgCl2), 염화스트론튬(SrCl2), 염화이트륨(YCl3), 염화구리(CuCl2), 불화세슘(CsF), 불화탄탈륨(TaF5), 불화니오븀(NbF5), 브롬화리튬(LiBr), 브롬화칼슘(CaBr2), 브롬화세슘(CeBr3), 브롬화셀레늄(SeBr4), 브롬화바나듐(VBr3), 브롬화마그네슘(MgBr2), 요오드화바륨(BaI2) 또는 요오드화마그네슘(MgI2) 등과 같은 금속할로겐화물; 또는 과염소산바륨(Ba(ClO4)2) 또는 과염소산마그네슘(Mg(ClO4)2) 등과 같은 금속염소산염 등을 들 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 수분 차단 소재의 비율도 특별히 제한되지 않고, 목적하는 수분 차단성을 확보할 수 있고, 산란성과 점착성 등을 해치지 않는 범위에서 조절될 수 있다.
본 출원의 유기전자장치의 기판 영역은 추가적인 구성으로서 상기 기재 필름의 상부에 형성되어 있는 무기물층을 포함할 수 있다. 전술한 바와 같이 이하 무기물층에 대한 구성은, 전술한 배리어 필름의 무기물층에도 적용될 수 있다. 또한, 후술하는 반사 전극층의 상부에 형성될 수도 있는 무기물층과 구별을 위하여 이하 기판 영역에 포함되는 무기물층은 제 1 무기물층으로 호칭될 수 있다.
본 명세서에서 용어 무기물층은, 예를 들면, 중량을 기준으로 무기물을 50% 이상 또는 60% 포함하는 층일 수 있다. 무기물층은, 무기물만을 포함하거나, 상기 범위 내로 무기물을 포함한다면 유기물과 같은 다른 성분을 포함할 수도 있다. 제 1 무기물층은, 예를 들면, 배리어층일 수 있다. 본 명세서에서 용어 배리어층은, 수분 또는 습기와 같이 유기층 등의 소자의 성능에 나쁜 영향을 줄 수 있는 외부 인자의 침투를 차단, 억제 또는 완화할 수 있는 층일 수 있다. 예를 들어, 배리어층은, WVTR(water vapor transmission rate, WVTR)이 10-4 g/m2/day 이하인 층일 수 있다. 본 명세서에서 WVTR은, 40 C 및 90% 상대 습도 조건에서 측정기(예를 들면, PERMATRAN-W3/31, MOCON, Inc.)를 사용하여 측정될 수치일 수 있다.
배리어층은 수분 및 산소 등의 외부 인자의 침투를 완화, 방지 또는 억제할 수 있는 것으로 알려진 소재를 사용하여 형성할 수 있다. 이러한 소재로는, In, Sn, Pb, Au, Cu, Ag, Al, Ti 및 Ni 등의 금속; TiO, TiO2, Ti3O3, Al2O3, MgO, SiO, SiO2, GeO, NiO, CaO, BaO, Fe2O3, Y2O3, ZrO2, Nb2O3 및, CeO2및 등의 금속 산화물; SiN 등의 금속 질화물; SiON 등의 금속 산질화물; 또는 MgF2, LiF, AlF3 및 CaF2 등의 금속 불화물 등이나 기타 흡수율 1% 이상인 흡수성 재료나 흡수 계수 0.1% 이하인 방습성 재료 등으로 알려진 재료들이 포함될 수 있다.
제 1 무기물층은 단층 구조이거나 다층 구조일 수 있다. 다층 구조는, 동종 또는 이종의 무기물층이 적층된 구조이거나, 혹은 무기물층과 유기층이 적층된 구조를 포함할 수 있다. 예를 들어, 제 1 무기물층을 배리어층으로서 다층 구조로 하는 경우에 각층이 모두 배리어성을 가지는 재료로 형성되어야 하는 것은 아니며, 최종적으로 형성된 다층 구조가 목적하는 배리어성을 나타낼 수 있다면, 다층 구조 중 일부의 층은 배리어성이 없는 층으로 형성될 수도 있다. 무기물층의 형성 과정에서 발생할 수 있는 핀홀(pin hole) 등과 같은 결함(defect)의 증식(propargation)을 방지하는 측면에서 무기물층을 다층 구조로 하는 것이 유리할 수 있다. 또한, 다층 구조의 배리어층은, 후술하는 굴절률이 확보되는 배리어층의 형성에도 유리할 수 있다.
제 1 무기물층은 상기 기재 필름과의 굴절률의 차이가 가능한 작은 것이 적절할 수 있다. 예를 들면, 제 1 무기물층과 기재 필름과의 굴절률의 차이의 절대값은, 약 1 이하, 약 0.7 이하, 약 0.5 이하 또는 약 0.3 이하일 수 있다. 따라서, 기재 필름이 전술한 바와 같은 높은 굴절률을 가지는 경우에는 무기물층에도 그와 동등한 수준의 굴절률이 확보될 수 있다. 예를 들면, 무기물층의 굴절률은, 약 1.5 이상, 약 1.6 이상, 약 1.7 이상 또는 약 1.75 이상일 수 있다. 유기전자장치가 유기발광장치인 경우, 기재 필름의 상기 굴절률의 범위는 장치의 광효율을 높이는 것에 유리할 수 있다. 무기물층의 굴절률의 상한은 특별히 제한되는 것은 아니며, 예를 들면, 약 2.0 정도일 수 있다.
제 1 무기물층은, 예를 들면, 제 1 서브층과 제 2 서브층의 적층 구조를 포함할 수 있다. 상기 적층 구조는 2회 이상 반복될 수 있다.
하나의 예시에서 상기 제 1 서브층은 제 1 굴절률을 가지고, 제 2 서브층은 제 2 굴절률을 가질 수 있다. 이러한 층을 적층하면, 디커플링(decoupling) 효과를 확보하면서 무기물층의 굴절률을 상기 언급한 범위로 조절하는 것에 유리할 수 있다. 상기 제 1 굴절률과 제 2 굴절률의 차이의 절대값은, 예를 들면, 0.1 내지 1.2의 범위 내에 있을 수 있다. 제 1 및 제 2 굴절률 각각의 범위는 상기 굴절률의 범위가 확보된다면 특별히 제한되지 않으나, 예를 들면 제 1 서브층의 굴절률은, 1.4 내지 1.9의 범위 내이고, 제 2 서브층의 굴절률은 2.0 내지 2.6의 범위 내일 수 있다. 제 1 및 제 2 서브층은, 각각 금속 산화물층일 수 있다. 예를 들어, 상기와 같은 굴절률을 가지는 제 1 서브층의 적합한 소재로는, Al2O3 등이 있고, 제 2 서브층에 적합한 소재로는 TiO2 등이 있지만, 각각 전술한 굴절률을 가지면서, 최종적인 적층 구조가 배리어성을 가질 수 있다면, 이 외에도 다양한 소재가 적용될 수 있다.
다른 예시에서 상기에서 제 1 서브층은, 금속층이고, 제 2 서브층은 유기 실리콘층일 수 있다. 본 명세서에서 용어 금속층은, 금속을 중량을 기준으로 40% 이상, 50% 이상 또는 60% 이상 포함하는 층이고, 이러한 금속은 단독으로 포함되거나, 금속 산화물 또는 합금의 형태로 포함될 수 있다. 이러한 적층 구조에 의해 적절한 디커플링 효과를 확보하여, 목적하는 성능, 예를 들면 배리어성이 우수한 층을 형성할 수 있다. 상기 금속층은, 예를 들면, 금속 산화물층일 수 있고, 굴절률은, 예를 들면, 약 1.4 내지 2.6의 범위 내에 있을 수 있다. 하나의 예시에서 금속층은, 상기 언급한 배리어층의 소재로 사용될 수 있는 금속 산화물, 예를 들면, Al2O3, 또는 TiO2 등의 소재로 형성할 수 있다.
유기 실리콘층은, 예를 들면, 하기 화학식 1의 화합물 또는 화학식 2의 화합물을 포함하거나, 그 화합물의 중합 단위를 포함하는 고분자를 포함할 수 있다.
[화학식 1]
R1(R1 2SiO)nR1
[화학식 2]
Figure PCTKR2014009232-appb-I000001
화학식 1에서 R1은 각각 독립적으로 수소, 히드록시기, 에폭시기, 알콕시기 또는 1가 탄화수소기일 수 있고, n은 1 내지 10, 1 내지 8, 1 내지 6 또는 1 내지 4의 범위 내의 수일 수 있다.
화학식 2에서 Rd 및 Re는 각각 독립적으로 수소, 히드록시기, 에폭시기, 알콕시기 또는 1가 탄화수소기일 수 있고, o은 3 내지 10, 3 내지 8, 3 내지 6 또는 3 내지 4의 범위 내의 수일 수 있다.
본 명세서에서 용어 「1가 탄화수소기」는, 특별히 달리 규정하지 않는 한, 탄소와 수소로 이루어진 화합물 또는 그러한 화합물의 유도체로부터 유도되는 1가 잔기를 의미할 수 있다. 예를 들면, 상기 1가 탄화수소기는, 1개 내지 25개의 탄소 원자를 포함할 수 있다. 1가 탄화수소기로는, 알킬기, 알케닐기, 알키닐기 또는 아릴기 등이 예시될 수 있다.
본 명세서에서 용어 「알킬기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 상기 알킬기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알킬기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 명세서에서 용어 「알콕시기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기를 의미할 수 있다. 상기 알콕시기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알콕시기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 명세서에서 용어 「알케닐기」는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기를 의미할 수 있다. 상기 알케닐기는 직쇄형, 분지쇄형 또는 고리형일 수 있고, 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 명세서에서 용어 「알키닐기」는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알키닐기를 의미할 수 있다. 상기 알키닐기는 직쇄형, 분지쇄형 또는 고리형일 수 있고, 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 명세서에서 용어 「아릴기」는, 특별히 달리 규정하지 않는 한, 벤젠 고리 또는 2개 이상의 벤젠 고리가 축합 또는 결합된 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 잔기를 의미할 수 있다. 아릴기의 범위에는 통상적으로 아릴기로 호칭되는 관능기는 물론 소위 아르알킬기(aralkyl group) 또는 아릴알킬기 등도 포함될 수 있다. 아릴기는, 예를 들면, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 12의 아릴기일 수 있다. 아릴기로는, 페닐기, 디클로로페닐, 클로로페닐, 페닐에틸기, 페닐프로필기, 벤질기, 톨릴기, 크실릴기(xylyl group) 또는 나프틸기 등이 예시될 수 있다.
본 명세서에서 용어 에폭시기는, 특별히 달리 규정하지 않는 한, 3개의 고리 구성 원자를 가지는 고리형 에테르(cyclic ether) 또는 상기 고리형 에테르를 포함하는 화합물로부터 유도된 1가 잔기를 의미할 수 있다. 에폭시기로는 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등이 예시될 수 있다. 상기에서 지환식 에폭시기는, 지방족 탄화수소 고리 구조를 포함하고, 상기 지방족 탄화수소 고리를 형성하고 있는 2개의 탄소 원자가 또한 에폭시기를 형성하고 있는 구조를 포함하는 화합물로부터 유래되는 1가 잔기를 의미할 수 있다. 지환식 에폭시기로는, 6개 내지 12개의 탄소 원자를 가지는 지환식 에폭시기가 예시될 수 있고, 예를 들면, 3,4-에폭시시클로헥실에틸기 등이 예시될 수 있다.
에폭시기, 알콕시기 또는 1가 탄화수소기에 임의적으로 치환되어 있을 수 있는 치환기로는, 염소 또는 불소 등의 할로겐, 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등의 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 티올기 또는 1가 탄화수소기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
화학식 1 또는 2의 화합물로는, 트리비닐트리메틸사이클로실록산, 헥사메틸디실록산, 1,3,5-트리비닐-1,1,3,5,5-펜타메틸트리실록산 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
제 1 무기물층의 두께는 특별히 한정되지 않으며, 의도된 용도에 따라서 적합하게 선택될 수 있다. 예를 들면, 무기물층의 두께는 약 5 nm 내지 약 60 nm의 범위 내 또는 약 10 nm 내지 약 55 nm의 범위 내에 있을 수 있다. 다층 구조인 경우에 다층 구조 내의 각 서브층의 두께 범위는, 예를 들면 약 약 0.5 nm 내지 약 10 nm 또는 약 0.5 nm 내지 약 5 nm의 범위 내일 수 있다.
목적하는 성능, 예를 들면, 우수한 배리어성이나 굴절률의 달성을 위하여 무기물층을 형성하는 조건이 조절될 수 있다. 예를 들면, 무기물층은, 평탄면, 예를 들면, 표면 거칠기(RMS, Root Mean Square)가 5 nm 이하, 4.5 nm 이하, 4.0 nm 이하, 3.5 nm 이하, 3.0 nm 이하, 2.5 nm 이하, 2.0 nm 이하, 1.5 nm 이하, 1.0 nm 이하 또는 0.5 nm 이하인 면에 형성될 수 있다. 이러한 평탄면에 무기물층을 형성하면 형성되는 층의 막질이 보다 개선될 수 있다. 상기 표면 거칠기는, 자체적으로 평탄도가 우수한 소재를 사용하여 조절하거나, 혹은 후술하는 바와 같이 버퍼층 등을 통해 조절할 수 있다. 목적 성능, 예를 들면 배리어성을 확보하는 또 다른 방식으로는 무기물층의 형성 과정에서의 온도를 조절하는 방식이 있다. 일반적으로 무기물층은, 물리적 또는 화학적 증착 방식을 사용하여 형성할 수 있는데, 이 과정에서 증착 온도를 고온, 예를 들면, 200℃ 이상의 수준으로 조절할 경우에 우수한 배리어성이 확보될 수 있다.
무기물층은, 스퍼터링(sputtering), PLD(Pulsed Laser Deposition), 전자빔 증착(Electron beam evaporation), 열증착(thermal evaporation) 또는 L-MBE(Laser Molecular Beam Epitaxy) 등과 같은 PVD(physical Vapor Deposition) 또는 MOCVD(Metal Organic Chemical Vapor Deposition), HVPE(Hydride Vapor Phase Epitaxy), iCVD(initiated chemical vapor deposition), PECVD(Plasma Enhanced Chemical Vapor Deposition) 또는 ALD(Atomic Layer Deposition) 등의 CVD(Chemical Vapor Deposition) 등의 방식으로 형성할 수 있다. 상기 방식 중에서 사용 소재에 따라 적절한 방식을 선택함으로써 무기물층의 성능을 극대화할 수 있다. 상기 본 출원에서 기술한 재료를 사용한 층의 형성에는 CVD 방식이 적용될 수 있고, 특히 ALD 또는 iCVD 방식이 적용될 수 있다. 예를 들면, 상기 금속 또는 금속 산화물로 형성되는 층은, ALD 방식으로 형성될 수 있고, 유기 실리콘층 등은 iCVD 방식으로 형성될 수 있다. 이하 본 명세서에서 용어 ALD층은 ALD 방식으로 형성된 층을 지칭하고, iCVD층은 iCVD 방식으로 형성된 층을 지칭한다.
상기와 같은 구성을 포함하는 기판 영역은, 헤이즈가 3% 내지 90%, 3% 내지 85%, 3% 내지 50% 또는 3% 내지 30%의 범위 내에 있을 수 있다. 이러한 헤이즈 범위는, 예를 들어, 광추출 효율을 높이는 것에 유리할 수 있다. 기판 영역의 헤이즈를 조절하기 위하여, 기판 영역의 상기 산란성 점착제층의 헤이즈를 조절하거나, 그에 추가로 필요하다면 기재 필름의 헤이즈를 조절하거나, 산란층 등이 추가로 적용될 수도 있다.
예를 들면, 기판 영역의 헤이즈의 조절을 위하여 전술한 기재 필름으로는 헤이즈(haze)가 있는 것을 사용할 수 있다. 다만, 산란성 점착제층 등만에 의해서도 기판 영역의 헤이즈가 확보되는 경우에 반드시 기재 필름이 헤이즈를 가져야 하는 것은 아니다. 헤이즈를 가지는 경우에 기재 필름의 헤이즈는 3% 내지 90%의 범위 내에 있을 수 있다. 헤이즈의 다른 하한은, 예를 들면, 5% 또는 10% 정도일 수 있다. 또한, 헤이즈의 다른 상한은, 예를 들면, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35% 또는 30% 정도일 수 있다. 기판이 헤이즈를 가지도록 하는 방법은 특별히 제한되는 것은 아니며, 헤이즈를 발생시키기 위해 통상 적용되고 있는 방식이 적용될 수 있다. 예를 들면, 고분자 필름의 경우, 주변 고분자 매트릭스와는 상이한 굴절률을 가지고, 적절한 평균 입경을 가지는 산란 입자를 첨가하는 방식이나, 고분자 자체에 헤이즈를 나타낼 수 있도록 하는 단량체, 예를 들면, 고분자의 주쇄와는 상이한 범위의 굴절률을 나타내는 단량체를 중합시키고, 이러한 고분자를 사용하여 필름을 형성하는 방법 등이 적용될 수 있다.
기판 영역은, 추가적인 층으로서 버퍼층을 포함할 수 있다. 버퍼층은, 층간 밀착성을 확보하거나, 전술한 기재 필름의 표면 거칠기의 조절을 위해 형성될 수 있다. 버퍼층은, 예를 들면, 기재 필름의 상부, 산란층이 형성되는 경우에 그 상부 또는 제 1 무기물층과 투명 전극층의 사이 등에 형성될 수 있으나, 이에 제한되는 것은 아니다. 후술하는 바와 같이 필요한 경우에는 상부 영역도 버퍼층이 형성될 수 있으며, 본 명세서에서는 구별의 편의를 위하여 기판 영역에 형성되는 버퍼층은 제 1 버퍼층으로 호칭하고, 상부 영역에 형성되는 버퍼층은 제 2 버퍼층으로 호칭할 수 있다.
버퍼층은 고굴절층으로 형성될 수 있다. 본 명세서에서 용어 고굴절층은, 굴절률이 약 1.6 이상, 약 1.65 이상, 약 1.7 이상 또는 약 1.75 이상인 층을 의미할 수 있다. 고굴절층의 굴절률의 상한은 특별히 제한되지 않으며, 예를 들면, 약 2.5 또는 약 2.0 정도일 수 있다. 이러한 굴절률은, 예를 들면 광추출 효율을 개선하는 것에 유리할 수 있다.
버퍼층은, 효율적인 형성이 가능하고, 층간 밀착성이나 평탄도를 적절하게 확보할 수 있는 소재라면 특별히 제한없이 적절한 소재를 사용하여 형성할 수 있다. 버퍼층은, 예를 들면, Al 등의 금속, SiOx, SiOxNv, SiNx, AlOx, ZnSnOx, ITO, ZnO, IZO, ZnS, MgO 또는 SnOx등의 무기 소재, 폴리이미드, 플루오렌 고리를 가지는 카도계 수지(caldo resin), 우레탄, 에폭시드, 폴리에스테르, 폴리아믹산, 폴리이미드, 폴리에틸렌이민, 폴리비닐알코올, 폴리아미드, 폴리티올, 폴리((메타)아크릴레이트) 또는 유기 실리콘 등과 같은 유기 소재 등을 사용하여 형성할 수 있다. 상기에서 유기 실리콘으로는 상기 무기물층의 항목에서 언급한 화합물 또는 그를 중합 단위로 포함하는 고분자가 예시될 수 있다. 다른 예시에서 버퍼층은, 지르코늄, 티탄 또는 세륨 등의 금속의 알콕시드 또는 아실레이트(acylate) 등의 화합물을 카복실기 또는 히드록시기 등의 극성기를 가지는 바인더와 배합한 소재를 사용하여 형성할 수도 있다. 상기 알콕시드 또는 아실레이트 등의 화합물은 바인더에 있는 극성기와 축합 반응하고, 바인더의 골격 내에 상기 금속을 포함시켜 고굴절률을 구현할 수 있다. 상기 알콕시드 또는 아실레이트 화합물의 예로는, 테트라-n-부톡시 티탄, 테트라이소프로폭시 티탄, 테트라-n-프로폭시 티탄 또는 테트라에톡시 티탄 등의 티탄 알콕시드, 티탄 스테아레이트(stearate) 등의 티탄 아실레이트, 티탄 킬레이트류, 테트라-n-부톡시지르코늄, 테트라-n-프로폭시 지르코늄, 테트라이소프로폭시 지르코늄 또는 테트라에톡시 지르코늄 등의 지르코늄 알콕시드, 지르코늄 트리부톡시스테아레이트 등의 지르코늄 아실레이트, 지르코늄 킬레이트류 등이 예시될 수 있다.
버퍼층을 전술한 소재 중에서 적절한 소재를 선택하여 형성할 수 있다. 버퍼층이 높은 굴절률을 가지는 것이 요구되는 경우에, 전술한 소재 중에서 자체적으로 굴절률이 높은 소재를 선택하거나, 혹은 상기에서 선택된 적절한 소재와 고굴절 입자를 배합하거나, 혹은 소재 중에 Ti 전구체(Ti precursor) 등과 같은 고굴절 물질을 도입한 소재를 사용할 수 있다. 본 명세서에서 용어 「고굴절 입자」는, 예를 들면, 굴절률이 1.5 이상, 2.0 이상 2.5 이상, 2.6 이상 또는 2.7 이상인 입자를 의미할 수 있다. 고굴절 입자의 굴절률의 상한은, 예를 들면, 목적하는 굴절률을 만족시킬 수 있는 범위에서 선택될 수 있다. 고굴절 입자는, 예를 들면, 1 nm 내지 100 nm, 10 nm 내지 90 nm, 10 nm 내지 80 nm, 10 nm 내지 70 nm, 10 nm 내지 60 nm, 10 nm 내지 50 nm 또는 10 nm 내지 45 nm 정도의 평균 입경을 가질 수 있다. 고굴절 입자로는, 알루미나, 알루미노 실리케이트, 산화 티탄 또는 산화 지르코늄 등이 예시될 수 있다. 고굴절 입자로는, 예를 들면, 굴절률이 2.5 이상인 입자로서, 루틸형 산화 티탄을 사용할 수 있다. 루틸형의 산화 티탄은 여타의 입자에 비하여 높은 굴절률을 가지고, 따라서 상대적으로 적은 비율로도 목적하는 굴절률로의 조절이 가능할 수 있다.
버퍼층을 형성하는 방식은 특별히 제한되지 않으며, 예를 들면, 전술한 PVD 또는 CVD 중에서 적절한 방식이 적용될 수 있고, 특히 iCVD 방식이 적합할 수 있다. 다른 예시에서 버퍼층은, 티탄 알콕시드 또는 지르코늄 알콕시드 등의 금속 알콕시드 및 알코올 또는 물 등의 용매를 배합하여 코팅액을 제조하고, 이를 도포한 후에 적정한 온도에서 소성하는 졸겔 코팅 방식 등을 포함한 다양한 습식 또는 건식 코팅 방식으로도 형성할 수도 있다.
버퍼층의 두께는 특별히 제한되지 않고, 버퍼층이 형성되는 위치 및 그 요구 기능 등을 고려하여 적절하게 선택될 수 있다. 예를 들어, 버퍼층이 평탄면을 확보하기 위하여 산란층상에 형성되는 경우에는 평탄면의 확보를 위해 기재 필름상에 형성되는 경우에 비하여 다소 높은 두께가 요구될 수 있다.
기판 영역의 적절한 헤이즈의 확보를 위하여, 기판 영역은 산란층을 추가로 포함할 수 있다. 본 명세서에서 용어 산란층은, 예를 들면, 그 층으로 입사되는 광을 산란, 굴절 또는 회절시킬 수 있도록 형성되는 모든 종류의 층을 의미할 수 있다. 산란층은 상기와 같은 기능이 나타나도록 구현되는 한 구현 형태는 특별히 제한되지 않는다
기판 영역에 존재할 수 있는 다른 층으로는 또한 상기 기재 필름 또는 상기 배리어 필름의 하부에 일시적 또는 영구적으로 부착되어 있을 수 있는 캐리어 기판이 예시될 수 있다. 통상 캐리어 기판으로는 유리 기판과 같은 강성 기판이 적용될 수 있다.
기판 영역의 상부에 존재하는 소자 영역은 투명 전극층과 반사 전극층을 포함하고, 상기 투명 및 반사 전극층의 사이에 존재하는 유기층을 또한 포함할 수 있다. 투명 및 반사 전극층은, 유기전자장치에서 통상 사용되는 정공 주입성 또는 전자 주입성 전극층일 수 있다. 투명 및 반사 전극층 중 어느 하나는 정공 주입성 전극층으로 형성되고, 다른 하나는 전자 주입성 전극층으로 형성될 수 있다.
정공 주입성인 전극층은, 예를 들면, 상대적으로 높은 일 함수(work function)를 가지는 재료를 사용하여 형성할 수 있고, 필요한 경우에 투명 또는 반사 재료를 사용하여 형성할 수 있다. 예를 들면, 정공 주입성 전극층은, 일 함수가 약 4.0 eV 이상인 금속, 합금, 전기 전도성 화합물 또는 상기 중 2종 이상의 혼합물을 포함할 수 있다. 이러한 재료로는, 금 등의 금속, CuI, ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), ZTO(Zinc Tin Oxide), 알루미늄 또는 인듐이 도핑된 아연 옥사이드, 마그네슘 인듐 옥사이드, 니켈 텅스텐 옥사이드, ZnO, SnO2 또는 In2O3 등의 산화물 재료나, 갈륨 니트라이드와 같은 금속 니트라이드, 아연 세레나이드 등과 같은 금속 세레나이드, 아연 설파이드와 같은 금속 설파이드 등이 예시될 수 있다. 투명한 정공 주입성 전극층은, 또한, Au, Ag 또는 Cu 등의 금속 박막과 ZnS, TiO2 또는 ITO 등과 같은 고굴절의 투명 물질의 적층체 등을 사용하여서도 형성할 수 있다.
정공 주입성 전극층은, 증착, 스퍼터링, 화학 증착 또는 전기화학적 수단 등의 임의의 수단으로 형성될 수 있다. 또한, 필요에 따라서 형성된 전극층은 공지된 포토리소그래피나 새도우 마스크 등을 사용한 공정을 통하여 패턴화될 수도 있다.
전자 주입성 전극층은, 예를 들면, 상대적으로 작은 일 함수를 가지는 재료를 사용하여 형성할 수 있으며, 예를 들면, 상기 정공 주입성 전극층의 형성을 위해 사용되는 소재 중에서 적절한 투명 또는 반사 소재를 사용하여 형성할 수 있으나, 이에 제한되는 것은 아니다. 전자 주입성 전극층도, 예를 들면, 증착법 또는 스퍼터링법 등을 사용하여 형성할 수 있으며, 필요한 경우에 적절히 패터닝될 수 있다.
전극층의 두께는, 예를 들면, 약 90 nm 내지 200 nm, 90 nm 내지 180 nm 또는 약 90 nm 내지 150 nm 정도의 두께를 가지도록 형성될 수 있다.
투명 및 반사 전극층의 사이에는 유기층이 존재한다. 상기 유기층은 적어도 2개의 발광 유닛을 포함할 수 있다. 이와 같은 구조에서 발광 유닛에서 발생한 광은 반사 전극층에 의해 반사되는 과정 등을 거쳐서 투명 전극층측으로 방출될 수 있다.
유기층은, 하나 이상의 발광 유닛을 포함할 수 있다. 유기층은 필요한 경우 2개, 즉 제 1 발광 중심 파장을 가지는 제 1 발광 유닛과 제 2 발광 중심 파장을 가지는 제 2 발광 유닛을 포함할 수 있으며, 경우에 따라서는 3개 이상의 발광 유닛도 포함할 수 있다. 상기에서 제 1 발광 중심 파장은 제 2 발광 중심 파장과 상이한 범위에 있을 수 있다. 예를 들면, 제 1 발광 중심 파장은 제 2 발광 중심 파장보다 장파장일 수 있다. 예를 들어, 제 1 발광 중심 파장(λ1)과 제 2 발광 중심 파장(λ2)의 비율(λ12)은 1.1 내지 2의 범위 내일 수 있다. 이러한 범위에서 각 발광 유닛의 발광의 혼합을 통해 목적하는 컬러를 구현할 수 있다. 상기 비율(λ12)은 다른 예시에서 1.2 이상, 1.3 이상 또는 1.4 이상일 수 있다. 또한, 상기 비율(λ12)은 다른 예시에서 1.9 이하 또는 1.85 이하일 수 있다. 광추출 효율을 고려하여 상기 각 발광 유닛과 반사 전극층의 간격은 조절될 수 있다. 예를 들면, 상기 제 1 발광 유닛과 상기 반사 전극층(예를 들면, 상기 반사 전극층)간의 간격(L1)과 상기 제 2 발광 유닛과 상기 반사 전극층간의 간격(L2)의 비율(L1/L2)은 약 1.5 내지 20의 범위 내일 수 있다. 상기 비율(L1/L2)은 다른 예시에서 약 2 이상 또는 약 2.5 이상일 수 있다. 또한, 다른 예시에서 상기 비율(L1/L2)은 약 15 이하일 수 있다. 예를 들면, 이와 같이 조절된 간격과 각 발광 중심 파장을 가지는 각 발광 유닛을 포함하는 유기층이 상기 기술한 헤이즈를 가지는 기판 영역상에 형성되어 유기전자장치의 광추출 효율을 개선될 수 있다.
각 발광 유닛의 발광 중심 파장과 반사 전극층과의 간격은 상기 비율을 만족하도록 조절되는 한 구체적인 범위가 특별히 제한되는 것은 아니다. 예를 들면, 제 1 발광 중심 파장은, 약 500 내지 700 nm의 범위 내이고 제 2 발광 중심 파장은 약 380 내지 500 nm의 범위 내일 수 있다. 또한, 제 1 발광 유닛과 반사 전극층간의 간격은 150 nm 내지 200 nm의 범위 내이고, 제 2 발광 유닛과 반사 전극층간의 간격이 20 nm 내지 80 nm의 범위 내에 있을 수 있다.
적절한 발광을 위하여 제 1 발광 유닛과 제 2 발광 유닛의 사이에 중간 전극층 또는 전하발생층이 추가로 존재할 수 있다. 따라서 발광 유닛들은 전하 발생 특성을 가지는 중간 전극층이나 전하 발생층(CGL; Charge Generating Layer) 등에 의해 분할되어 있는 구조를 가질 수도 있다.
발광 유닛을 구성하는 재료는 특별히 제한되지 않는다. 업계에서는 다양한 발광 중심 파장을 가지는 형광 또는 인광 유기 재료가 공지되어 있으며, 이러한 공지의 재료 중에서 적절한 종류를 선택하여 상기 발광 유닛을 형성할 수 있다. 발광 유닛의 재료로는, 트리스(4-메틸-8-퀴놀리놀레이트)알루미늄(III)(tris(4-methyl-8-quinolinolate)aluminum(III))(Alg3), 4-MAlq3 또는 Gaq3 등의 Alq 계열의 재료, C-545T(C26H26N2O2S), DSA-아민, TBSA, BTP, PAP-NPA, 스피로-FPA, Ph3Si(PhTDAOXD), PPCP(1,2,3,4,5-pentaphenyl-1,3-cyclopentadiene) 등과 같은 시클로페나디엔(cyclopenadiene) 유도체, DPVBi(4,4'-bis(2,2'-diphenylyinyl)-1,1'-biphenyl), 디스티릴 벤젠 또는 그 유도체 또는 DCJTB(4-(Dicyanomethylene)-2-tert-butyl-6-(1,1,7,7,-tetramethyljulolidyl-9-enyl)-4H-pyran), DDP, AAAP, NPAMLI, ; 또는 Firpic, m-Firpic, N-Firpic, bon2Ir(acac), (C6)2Ir(acac), bt2Ir(acac), dp2Ir(acac), bzq2Ir(acac), bo2Ir(acac), F2Ir(bpy), F2Ir(acac), op2Ir(acac), ppy2Ir(acac), tpy2Ir(acac), FIrppy(fac-tris[2-(4,5'-difluorophenyl)pyridine-C'2,N] iridium(III)) 또는 Btp2Ir(acac)(bis(2-(2'-benzo[4,5-a]thienyl)pyridinato-N,C3') iridium(acetylactonate)) 등과 같은 인광 재료 등이 예시될 수 있지만, 이에 제한되는 것은 아니다. 발광 유닛은, 상기 재료를 호스트(host)로 포함하고, 또한 페릴렌(perylene), 디스티릴비페닐(distyrylbiphenyl), DPT, 퀴나크리돈(quinacridone), 루브렌(rubrene), BTX, ABTX 또는 DCJTB 등을 도펀트로 포함하는 호스트-도펀트 시스템(Host-Dopant system)을 가질 수도 있다.
발광 유닛은 또한 후술하는 전자 수용성 유기 화합물 또는 전자 공여성 유기 화합물 중에서 발광 특성을 나타내는 종류를 적절히 채용하여 형성할 수도 있다.
유기층은, 발광 유닛을 포함하는 한, 이 분야에 공지된 다른 다양한 기능성층을 추가로 포함하는 다양한 구조로 형성될 수 있다. 유기층에 포함될 수 있는 층으로는, 전자 주입층, 정공 저지층, 전자 수송층, 정공 수송층 및 정공 주입층 등이 예시될 수 있다.
전자 주입층 또는 전자 수송층은, 예를 들면, 전자 수용성 유기 화합물(electron accepting organic compound)을 사용하여 형성할 수 있다. 상기에서 전자 수용성 유기 화합물로는, 특별한 제한 없이 공지된 임의의 화합물이 사용될 수 있다. 이러한 유기 화합물로는, p-테르페닐(p-terphenyl) 또는 쿠아테르페닐(quaterphenyl) 등과 같은 다환 화합물 또는 그 유도체, 나프탈렌(naphthalene), 테트라센(tetracene), 피렌(pyrene), 코로넨(coronene), 크리센(chrysene), 안트라센(anthracene), 디페닐안트라센(diphenylanthracene), 나프타센(naphthacene) 또는 페난트렌(phenanthrene) 등과 같은 다환 탄화수소 화합물 또는 그 유도체, 페난트롤린(phenanthroline), 바소페난트롤린(bathophenanthroline), 페난트리딘(phenanthridine), 아크리딘(acridine), 퀴놀린(quinoline), 키노사린(quinoxaline) 또는 페나진(phenazine) 등의 복소환화합물 또는 그 유도체 등이 예시될 수 있다. 또한, 플루오르세인(fluoroceine), 페리렌(perylene), 프타로페리렌(phthaloperylene), 나프타로페리렌(naphthaloperylene), 페리논(perynone), 프타로페리논, 나프타로페리논, 디페닐부타디엔(diphenylbutadiene), 테트라페닐부타디엔(tetraphenylbutadiene), 옥사디아졸(oxadiazole), 아르다진(aldazine), 비스벤조옥사조린(bisbenzoxazoline), 비스스티릴(bisstyryl), 피라진(pyrazine), 사이크로펜타디엔(cyclopentadiene), 옥신(oxine), 아미노퀴놀린(aminoquinoline), 이민(imine), 디페닐에틸렌, 비닐안트라센, 디아미노카르바졸(diaminocarbazole), 피란(pyrane), 티오피란(thiopyrane), 폴리메틴(polymethine), 메로시아닌(merocyanine), 퀴나크리돈(quinacridone) 또는 루부렌(rubrene) 등이나 그 유도체, 일본특허공개 제1988-295695호, 일본특허공개 제1996-22557호, 일본특허공개 제1996-81472호, 일본특허공개 제1993-009470호 또는 일본특허공개 제1993-017764호 등의 공보에서 개시하는 금속 킬레이트 착체 화합물, 예를 들면, 금속 킬레이트화 옥사노이드화합물인 트리스(8-퀴놀리노라토)알루미늄[tris(8-quinolinolato)aluminium], 비스(8-퀴놀리노라토)마그네슘, 비스[벤조(에프)-8-퀴놀뤼노라토]아연{bis[benzo(f)-8-quinolinolato]zinc}, 비스(2-메틸-8-퀴놀리노라토)알루미늄, 트리스(8-퀴놀리노라토)인디엄[tris(8-quinolinolato)indium], 트리스(5-메틸-8-퀴놀리노라토)알루미늄, 8-퀴놀리노라토리튬, 트리스(5-클로로-8-퀴놀리노라토)갈륨, 비스(5-클로로-8-퀴놀리노라토)칼슘 등의 8-퀴놀리노라토 또는 그 유도체를 배립자로 하나 이상 가지는 금속 착체, 일본특허공개 제1993-202011호, 일본특허공개 제1995-179394호, 일본특허공개 제1995-278124호 또는 일본특허공개 제1995-228579호 등의 공보에 개시된 옥사디아졸(oxadiazole) 화합물, 일본특허공개 제1995-157473호 공보 등에 개시된 트리아진(triazine) 화합물, 일본특허공개 제1994-203963호 공보 등에 개시된 스틸벤(stilbene) 유도체나, 디스티릴아릴렌(distyrylarylene) 유도체, 일본특허공개 제1994-132080호 또는 일본특허공개 제1994-88072호 공보 등에 개시된 스티릴 유도체, 일본특허공개 제1994-100857호나 일본특허공개 제1994-207170호 공보 등에 개시된 디올레핀 유도체; 벤조옥사졸(benzooxazole) 화합물, 벤조티아졸(benzothiazole) 화합물 또는 벤조이미다졸(benzoimidazole) 화합물 등의 형광 증백제; 1,4-비스(2-메틸스티릴)벤젠, 1,4-비스(3-메틸스티릴)벤젠, 1,4-비스(4-메틸스티릴)벤젠, 디스티릴벤젠, 1,4-비스(2-에틸스티릴)벤질, 1,4-비스(3-에틸스티릴)벤젠, 1,4-비스(2-메틸스티릴)-2-메틸벤젠 또는 1,4-비스(2-메틸스티릴)-2-에틸벤젠 등과 같은 디스티릴벤젠(distyrylbenzene) 화합물; 2,5-비스(4-메틸스티릴)피라진, 2,5-비스(4-에틸스티릴)피라진, 2,5-비스[2-(1-나프틸)비닐]피라진, 2,5-비스(4-메톡시스티릴)피라진, 2,5-비스[2-(4-비페닐)비닐]피라진 또는 2,5-비스[2-(1-피레닐)비닐]피라진 등의 디스티릴피라진(distyrylpyrazine) 화합물, 1,4-페닐렌디메틸리딘, 4,4'-페닐렌디메틸리딘, 2,5-크실렌디메틸리딘, 2,6-나프틸렌디메틸리딘, 1,4-비페닐렌디메틸리딘, 1,4-파라-테레페닐렌디메텔리딘, 9,10-안트라센디일디메틸리딘(9,10-anthracenediyldimethylidine) 또는 4,4'-(2,2-디-티-부틸페닐비닐)비페닐, 4,4'-(2,2-디페닐비닐)비페닐 등과 같은 디메틸리딘(dimethylidine) 화합물 또는 그 유도체, 일본특허공개 제1994-49079호 또는 일본특허공개 제1994-293778호 공보 등에 개시된 실라나민(silanamine) 유도체, 일본특허공개 제1994-279322호 또는 일본특허공개 제1994-279323호 공보 등에 개시된 다관능 스티릴 화합물, 일본특허공개 제1994-107648호 또는 일본특허공개 제1994-092947호 공보 등에 개시되어 있는 옥사디아졸 유도체, 일본특허공개 제1994-206865호 공보 등에 개시된 안트라센 화합물, 일본특허공개 제1994-145146호 공보 등에 개시된 옥시네이트(oxynate) 유도체, 일본특허공개 제1992-96990호 공보 등에 개시된 테트라페닐부타디엔 화합물, 일본특허공개 제1991-296595호 공보 등에 개시된 유기 삼관능 화합물, 일본특허공개 제1990-191694호 공보 등에 개시된 쿠마린(coumarin)유도체, 일본특허공개 제1990-196885호 공보 등에 개시된 페리렌(perylene) 유도체, 일본특허공개 제1990-255789호 공보 등에 개시된 나프탈렌 유도체, 일본특허공개 제1990-289676호나 일본특허공개 제1990-88689호 공보 등에 개시된 프탈로페리논(phthaloperynone) 유도체 또는 일본특허공개 제1990-250292호 공보 등에 개시된 스티릴아민 유도체 등도 저굴절층에 포함되는 전자 수용성 유기 화합물로서 사용될 수 있다. 또한, 상기에서 전자 주입층은, 예를 들면, LiF 또는 CsF 등과 같은 재료를 사용하여 형성할 수도 있다.
정공 저지층은, 주입된 정공이 발광 유닛을 지나 전자 주입성 전극층으로 진입하는 것을 방지하여 소자의 수명과 효율을 향상시킬 수 있는 층이고, 필요한 경우에 공지의 재료를 사용하여 발광 유닛과 전자 주입성 전극층의 사이에 적절한 부분에 형성될 수 있다.
정공 주입층 또는 정공 수송층은, 예를 들면, 전자 공여성 유기 화합물(electron donating organic compound)을 포함할 수 있다. 전자 공여성 유기 화합물로는, N,N',N'-테트라페닐-4,4'-디아미노페닐, N,N'-디페닐-N,N'-디(3-메틸페닐)-4,4'-디아미노비페닐, 2,2-비스(4-디-p-톨릴아미노페닐)프로판, N,N,N',N'-테트라-p-톨릴-4,4'-디아미노비페닐, 비스(4-디-p-톨릴아미노페닐)페닐메탄, N,N'-디페닐-N,N'-디(4-메톡시페닐)-4,4'-디아미노비페닐, N,N,N',N'-테트라페닐-4,4'-디아미노디페닐에테르, 4,4'-비스(디페닐아미노)쿠아드리페닐[4,4'-bis(diphenylamino)quadriphenyl], 4-N,N-디페닐아미노-(2-디페닐비닐)벤젠, 3-메톡시-4'-N,N-디페닐아미노스틸벤젠, N-페닐카르바졸, 1,1-비스(4-디-p-트리아미노페닐)시크로헥산, 1,1-비스(4-디-p-트리아미노페닐)-4-페닐시크로헥산, 비스(4-디메틸아미노-2-메틸페닐)페닐메탄, N,N,N-트리(p-톨릴)아민, 4-(디-p-톨릴아미노)-4'-[4-(디-p-톨릴아미노)스티릴]스틸벤, N,N,N',N'-테트라페닐-4,4'-디아미노비페닐 N-페닐카르바졸, 4,4'-비스[N-(1-나프틸)-N-페닐-아미노]비페닐, 4,4'-비스[N-(1-나프틸)-N-페닐아미노]p-테르페닐, 4,4'-비스[N-(2-나프틸)-N-페닐아미노]비페닐, 4,4'-비스[N-(3-아세나프테닐)-N-페닐아미노]비페닐, 1,5-비스[N-(1-나프틸)-N-페닐아미노]나프탈렌, 4,4'-비스[N-(9-안트릴)-N-페닐아미노]비페닐페닐아미노]비페닐, 4,4'-비스[N-(1-안트릴)-N-페닐아미노]-p-테르페닐, 4,4'-비스[N-(2-페난트릴)-N-페닐아미노]비페닐, 4,4'-비스[N-(8-플루오란테닐)-N-페닐아미노]비페닐, 4,4'-비스[N-(2-피레닐)-N-페닐아미노]비페닐, 4,4'-비스[N-(2-페릴레닐)-N-페닐아미노]비페닐, 4,4'-비스[N-(1-코로네닐)-N-페닐아미노]비페닐(4,4'-bis[N-(1-coronenyl)-N-phenylamino]biphenyl), 2,6-비스(디-p-톨릴아미노)나프탈렌, 2,6-비스[디-(1-나프틸)아미노]나프탈렌, 2,6-비스[N-(1-나프틸)-N-(2-나프틸)아미노]나프탈렌, 4,4'-비스[N,N-디(2-나프틸)아미노]테르페닐, 4,4'-비스{N-페닐-N-[4-(1-나프틸)페닐]아미노}비페닐, 4,4'-비스[N-페닐-N-(2-피레닐)아미노]비페닐, 2,6-비스[N,N-디-(2-나프틸)아미노]플루오렌 또는 4,4'-비스(N,N-디-p-톨릴아미노)테르페닐, 및 비스(N-1-나프틸)(N-2-나프틸)아민 등과 같은 아릴 아민 화합물이 대표적으로 예시될 수 있으나, 이에 제한되는 것은 아니다.
정공 주입층이나 정공 수송층은, 유기화합물을 고분자 중에 분산시키거나, 상기 유기 화합물로부터 유래한 고분자를 사용하여 형성할 수도 있다. 또한, 폴리파라페닐렌비닐렌 및 그 유도체 등과 같이 소위 π-공역 고분자(π-conjugated polymers), 폴리(N-비닐카르바졸) 등의 정공 수송성 비공역 고분자 또는 폴리실란의 σ-공역 고분자 등도 사용될 수 있다.
정공 주입층은, 구리프탈로시아닌과 같은 금속 프탈로시아닌이나 비금속 프탈로시아닌, 카본막 및 폴리아닐린 등의 전기적으로 전도성인 고분자 들을 사용하여 형성하거나, 상기 아릴 아민 화합물을 산화제로 하여 루이스산(Lewis acid)과 반응시켜서 형성할 수도 있다.
유기층의 구체적인 구조는 특별히 제한되지 않는다. 이 분야에서는 정공 또는 전자 주입 전극층과 유기층, 예를 들면, 발광 유닛, 전자 주입 또는 수송층, 정공 주입 또는 수송층을 형성하기 위한 다양한 소재 및 그 형성 방법이 공지되어 있으며, 상기 유기전자장치의 제조에는 상기와 같은 방식이 모두 적용될 수 있다.
유기전자장치의 상부 영역은 상부 방향으로 순차 형성된 제 2 무기물층과 커버 필름을 포함할 수 있다.
제 2 무기물층은, 외부 물질의 침투를 차단, 억제 또는 완화하여 내구성을 확보하기 위하여 존재하고, 구체적인 소재 및 형성 방식은 상기 제 1 무기물층의 항목에서 언급한 것과 유사할 수 있다. 다만, 광이 기판 영역측으로 방출되도록 설계되는 경우에 제 2 무기물층은 제 1 무기물층과 같이 높은 굴절률을 가지도록 형성될 필요는 없다.
제 2 무기물층의 상부에 존재하는 커버 필름은, 유기전자장치를 보호하는 구조로서, 예를 들면, 공지의 배리어 필름, 금속 시트 또는 전도성 필름 등이거나, 상기 중 2종 이상의 적층 구조일 수 있다. 상부 영역에서 커버 필름은, 접착층, 예를 들면, 전술한 차단성 접착층을 통하여 제 2 무기물층의 상부에 부착되어 있을 수 있다.
상부 영역도 필요한 경우에 하나 이상의 버퍼층, 즉 제 2 버퍼층이 존재할 수 있다. 상부 영역에서 버퍼층이 존재할 수 있는 위치는 반사 전극층과 제 2 무기물층의 사이가 예시될 수 있다. 다른 예시에서 상부 영역은 제 2 버퍼층 및 제 2 배리어츠을 각각 2개 이상 포함하고, 상기가 교대로 반복되어 적층되어 있는 구조를 포함할 수도 있다. 이러한 버퍼층은, 상부 영역의 구조에서 발생하는 응력(strss)을 완화하는 역할, 제 2 무기물층의 상부에 커버 필름이 형성될 때 소자의 눌림 등을 방지하는 역할 및/또는 제 2 무기물층이 형성되는 온도의 제한을 줄이고, 또한 적절한 평탄면을 제공하여 제 2 무기물층이 우수한 효과를 나타낼 수 있게 하는 역할 등을 할 수 있다. 제 2 버퍼층의 구체적인 소재 및 형성 방식은 상기 제 1 버퍼층의 항목에서 언급한 것과 유사할 수 있다. 다만, 광이 기판 영역측으로 방출되도록 설계되는 경우에 제 2 버퍼층은 반드시 제 1 무기물층과 같이 높은 굴절률을 가지도록 형성될 필요는 없다.
제 2 버퍼층이 적절한 성능을 발휘하고, 또한 전체적인 소자 구조 내에서 목적하는 작용을 나타내도록 하기 위하여, 제 2 버퍼층은, iCVD 방식으로 형성된 iCVD층일 수 있다.
제 2 버퍼층은, 예를 들면, 폴리((메타)아크릴레이트) 또는 유기 실리콘 등을 포함할 수 있다.
폴리((메타)아크릴레이트는, 예를 들면, 하기 화학식 3의 화합물의 중합 단위를 포함할 수 있다. 본 명세서에서 용어 어떤 화합물의 중합 단위는 그 화합물이 중합되어 고분자에 포함되어 있는 형태를 의미할 수 있다. 폴리((메타)아크릴레이트)는 하기 화학식 3의 화합물의 단독 중합체이거나, 하기 화학식 3의 화합물과 함께 다른 공단량체를 포함하는 공중합체일 수 있다.
[화학식 3]
Figure PCTKR2014009232-appb-I000002
화학식 3에서 R1은 수소 또는 탄소수 1 내지 4의 알킬기이고, A는 에폭시기 함유기 또는 지환식 1가 탄화수소기일 수 있다.
상기에서 에폭시기 함유기로는, 글리시딜기, 글리시딜옥시기, 글리시딜알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등이 예시될 수 있다. 또한, 상기에서 지환식 1가 탄화수소기는, 탄소 원자가 고리 모양으로 결합하고 있는 화합물로서 방향족 화합물이 아닌 화합물 또는 그 화합물의 유도체로부터 유래하는 1가의 잔기를 의미한다. 상기 지환식 1가 탄화수소기는 탄소수 3 내지 20, 탄소수 5 내지 15 또는 탄소수 5 내지 12의 지환식 1가 탄화수소기일 수 있고, 예를 들면, 이소보르닐기(isobornyl), 시클로헥실기, 노르보나닐기(norbornanyl), 노르보네닐기(norbornenyl), 디시클로펜타디에닐기, 에티닐시클로헥산기, 에티닐시클로헥센기 또는 에티닐데카히드로나프탈렌기 등이 포함될 수 있으나, 이에 제한되는 것은 아니다.
한편, 유기 실리콘으로는 상기 기판 영역의 버퍼층의 항목에서 기술한 소재를 사용할 수 있다.
상기와 같은 소재를 사용하여, 예를 들어, iCVD 방식으로 형성되는 제 2 버퍼층은, 전체적인 소자 구조 내에서 우수한 기능을 수행할 수 있다. 제 2 버퍼층은, 목적하는 기능을 고려하여 적절한 두께로 형성될 수 있고, 예를 들면, 약 200 nm 내지 1,000 nm 또는 약 200 nm 내지 500 nm의 범위 내의 두께를 가질 수 있다.
본 출원은 또한 상기 유기전자장치, 예를 들면, 유기발광장치의 용도에 관한 것이다. 상기 유기발광장치는, 예를 들면, 액정표시장치(LCD; Liquid Crystal Display)의 백라이트, 조명, 각종 센서, 프린터, 복사기 등의 광원, 차량용 계기 광원, 신호등, 표시등, 표시장치, 면상발광체의 광원, 디스플레이, 장식 또는 각종 라이트 등에 효과적으로 적용될 수 있다. 하나의 예시에서 본 출원은, 상기 유기발광소자를 포함하는 조명 장치에 관한 것이다. 상기 조명 장치 또는 기타 다른 용도에 상기 유기발광소자가 적용될 경우에, 상기 장치 등을 구성하는 다른 부품이나 그 장치의 구성 방법은 특별히 제한되지 않고, 상기 유기발광소자가 사용되는 한, 해당 분야에 공지되어 있는 임의의 재료나 방식이 모두 채용될 수 있다.
본 출원에서는, 우수한 광추출 효율 및 내구성을 나타내는 유기전자장치, 예를 들면, 플렉서블 소자가 제공될 수 있다. 이러한 유기전자장치는 조명 또는 디스플레이용 광원 등에 적용될 수 있다.
도 1은, 예시적인 유기전자장치를 나타내는 모식도이다.
이하, 본 출원에 따른 실시예 및 본 출원에 따르지 않는 비교예를 통하여 본 출원을 보다 구체적으로 설명하지만, 본 출원의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
1. 점착제층 헤이즈의 평가 방법
실시예 또는 비교예에서 적용된 점착제층의 헤이즈는 Haze Meter HM-150을 사용하여 ASTM D1003에 따라 평가하였다.
2. 양자 효율의 평가 방법
실시예 또는 비교예에서 제조된 유기전자장치의 양자 효율은 적분구 또는 적분반구를 이용하는 통상의 방식에 따라 평가하였다.
실시예 1.
하기 방식으로 유기전자장치를 제조하였다. 기재 필름으로는, 굴절률이 약 1.7 정도인 PI(polyimide) 필름을 사용하였다. 캐리어 기판인 유리 기판 상에 상기 PI 필름을 위치시키고, 상기 PI 필름 상에 공지의 방식에 따라서 ITO(Indium Tin Oxide)를 포함하는 양극층(anode)(투명 전극층), 알파-NPD(N,N'-Di-[(1-naphthyl)-N,N'-diphenyl]-1,1'-biphenyl)-4,4'-diamine)를 포함하는 정공 주입층 및 발광 유닛(4,4',4''-tris(N-carbazolyl)-triphenylamine (TCTA):Firpic, TCTA:Fir6)을 순차 형성하였다. 이어서, 상기 발광 유닛의 상부에 전자 수송성 화합물인 TCTA(4,4',4''-tris(N-carbazolyl)-triphenylamine) 및 저굴절 재료인 LiF(굴절률: 약 1.39)를 전체 층의 굴절률이 1.66 정도가 되도록 진공증착하여 저굴절 유기층을 약 70 nm의 두께로 형성하였다. 이어서, 전자 주입성 반사 전극으로서 알루미늄(Al) 전극을 진공 증착 방식으로 상기 저굴절 유기층의 상부에 형성하였다. 그 후, 캐리어 기판을 박리하고, PI 필름의 하부에 산란 점착제층을 사용하여 배리어 필름을 부착함으로써 소자를 제조하였다. 산란 점착제로는, 공지의 투명 아크릴 계열의 점착제로서 굴절률이 약 1.47 정도인 점착제에 산란 입자로서 굴절률이 약 1.9이고, 평균 입경이 약 200 nm 정도인 산화 티탄 입자를 상기 점착제층이 약 52% 정도의 헤이즈를 나타내는 양으로 배합하여 제조된 점착제를 사용하였다. 배리어 필름의 부착 시에 점착제층의 두께는 약 30 ㎛ 정도로 조절하였다.
실시예 2.
실시예 1에서 적용한 것과 동일한 공지의 투명 아크릴 계열의 점착제(굴절률: 약 1.47)에 실시예 1과 동일한 산화 티탄 입자를 상기 점착제층이 약 64% 정도의 헤이즈를 나타내는 양으로 배합하여 제조된 점착제층을 사용한 것을 제외하고는 실시예 1과 동일하게 유기전자장치를 제조하였다.
비교예 1.
실시예 1에서 적용한 것과 동일한 공지의 투명 아크릴 계열의 점착제(굴절률: 약 1.47)에 산란 입자(루틸형 산화 티탄 입자)를 배합하지 않고 사용한 것을 제외하고는 실시예 1과 동일하게 유기전자장치를 제조하였다.
비교예 2.
실시예 1에서 적용한 것과 동일한 공지의 투명 아크릴 계열의 점착제(굴절률: 약 1.47)에 굴절률이 약 1.4 정도이고, 평균 입경이 약 200 nm 정도인 실리카 입자를 점착제층이 약 60% 정도의 헤이즈를 나타내는 양으로 배합하여 제조된 점착제층을 사용한 것을 제외하고는 실시예 1과 동일하게 유기전자장치를 제조하였다.
비교예 3.
실시예 1에서 적용한 것과 동일한 공지의 투명 아크릴 계열의 점착제(굴절률: 약 1.47)에 굴절률이 약 1.4 정도이고, 평균 입경이 약 200 nm 정도인 실리카 입자를 점착제층이 약 70% 정도의 헤이즈를 나타내는 양으로 배합하여 제조된 점착제층을 사용한 것을 제외하고는 실시예 1과 동일하게 유기전자장치를 제조하였다.
양자 효율의 평가
상기 실시예 및 비교예에서 각각 제조된 유기전자장치에 대하여 양자 효율을 평가하고 그 결과를 하기 표 1에 정리하였다.
표 1
실시예1 실시예2 비교예1 비교예2 비교예3
양자효율(Q.E.(%)) 46.2 43.7 33.5 38.2 39.8
표 1로부터 확인되는 바와 같이 본 출원에 따른 산란 점착제가 적용된 유기전자소자는, 산란성이 없는 점착제가 적용된 경우에 비해 우수한 효과를 나타내었다. 특히, 비교예 2 및 3과의 대비로부터 점착제층 내의 입자의 굴절률이 점착 바인더에 비하여 큰 경우에 반대의 경우와 동일한 수준 혹은 그보다 낮은 수준의 헤이즈를 가지는 경우에도 우수한 양자 효율이 도출되는 것을 확인하였다.
[부호의 설명]
101: 배리어 필름
102: 산란성 점착제층
1021: 점착 바인더
1022: 산란 입자
103: 기재 필름
104: 투명 전극층
105: 유기층
106: 반사 전극층

Claims (15)

  1. 기재 필름과 상기 기재 필름의 하부에 산란성 점착제층로 부착되어 있는 배리어 필름을 포함하고, 상기 점착제층은, 점착 바인더와 상기 점착 바인더에 비하여 높은 굴절률을 가지는 산란 입자를 포함하는 기판 영역; 및 상기 기판 영역의 상부에 순차 존재하는 투명 전극층, 발광 유닛을 가지는 유기층 및 반사 전극층을 포함하는 소자 영역을 가지는 유기전자장치.
  2. 제 1 항에 있어서, 기재 필름은, 굴절률이 1.5 이상인 유기전자장치.
  3. 제 1 항에 있어서, 기재 필름은 헤이즈가 10% 내지 40%의 범위 내에 있는 유기전자장치.
  4. 제 1 항에 있어서, 점착제층은 헤이즈가 40% 이상인 유기전자장치.
  5. 제 1 항에 있어서, 산란 입자와 점착 바인더의 굴절률의 차이가 0.05 이상인 유기전자장치.
  6. 제 1 항에 있어서, 점착 바인더는 550 nm의 파장의 광에 대한 굴절률이 1.2 내지 1.5의 범위 내에 있는 유기전자장치.
  7. 제 1 항에 있어서, 점착 바인더는 아크릴계 점착 바인더, 올레핀계 점착 바인더 또는 고무계 점착 바인더인 유기전자장치.
  8. 제 1 항에 있어서, 산란 입자는 굴절률이 1.55 이상인 유기전자장치.
  9. 제 1 항에 있어서, 산란 입자는 알루미나, 알루미노 실리케이트, 산화 티탄 또는 산화 지르코늄인 유기전자장치.
  10. 제 1 항에 있어서, 점착제층은 수분 차단 소재를 추가로 포함하는 유기전자장치.
  11. 제 1 항에 있어서, 기재 필름과 투명 전극층의 사이에 상기 기재 필름과의 굴절률의 차이의 절대값이 1 이하인 무기물층이 추가로 포함되어 있는 유기전자장치.
  12. 제 11 항에 있어서, 제 1 무기물층은, 제 1 굴절률을 가지는 제 1 서브층과 제 2 굴절률을 가지는 제 2 서브층의 적층 구조를 포함하고, 상기 제 1 굴절률과 제 2 굴절률의 차이의 절대값은 0.1 내지 1.2의 범위 내에 있는 유기전자장치.
  13. 제 12 항에 있어서, 제 1 서브층의 굴절률은, 1.4 내지 1.9의 범위 내에 있고, 제 2 서브층의 굴절률은 2.0 내지 2.6의 범위 내에 있는 유기전자장치.
  14. 제 1 항의 유기전자장치를 포함하는 디스플레이용 광원.
  15. 제 1 항의 유기전자장치를 포함하는 조명 기구.
PCT/KR2014/009232 2013-09-30 2014-09-30 유기전자장치 WO2015047049A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/888,287 US9755188B2 (en) 2013-09-30 2014-09-30 Organic electronic device
CN201480031357.4A CN105247702B (zh) 2013-09-30 2014-09-30 有机电子器件
JP2016534546A JP6345244B2 (ja) 2013-09-30 2014-09-30 有機電子装置
EP14848913.1A EP2983224B1 (en) 2013-09-30 2014-09-30 Organic electronic device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20130116193 2013-09-30
KR10-2013-0116193 2013-09-30
KR20130153464 2013-12-10
KR10-2013-0153464 2013-12-10
KR1020140131972A KR101614048B1 (ko) 2013-09-30 2014-09-30 유기전자장치
KR10-2014-0131972 2014-09-30

Publications (1)

Publication Number Publication Date
WO2015047049A1 true WO2015047049A1 (ko) 2015-04-02

Family

ID=53033565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009232 WO2015047049A1 (ko) 2013-09-30 2014-09-30 유기전자장치

Country Status (7)

Country Link
US (1) US9755188B2 (ko)
EP (1) EP2983224B1 (ko)
JP (1) JP6345244B2 (ko)
KR (1) KR101614048B1 (ko)
CN (1) CN105247702B (ko)
TW (1) TWI593153B (ko)
WO (1) WO2015047049A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017033908A (ja) * 2015-08-03 2017-02-09 日華化学株式会社 有機el素子

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927984B1 (en) * 2012-11-30 2019-08-07 LG Chem, Ltd. Substrate for organic electronic element
KR101795101B1 (ko) * 2013-10-23 2017-11-07 주식회사 엘지화학 고굴절 점착제 필름 및 이를 포함하는 터치 패널
EP3034548A1 (en) * 2014-12-18 2016-06-22 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Barrier film laminate comprising submicron getter particles and electronic device comprising such a laminate
CN107810555B (zh) * 2015-07-08 2022-03-15 应用材料公司 氮氧化硅梯度构思
KR101805552B1 (ko) 2015-08-31 2017-12-08 엘지디스플레이 주식회사 유기발광 표시장치
KR102389622B1 (ko) 2015-09-17 2022-04-25 삼성디스플레이 주식회사 투명 표시 장치 및 투명 표시 장치의 제조 방법
JP2017069003A (ja) * 2015-09-29 2017-04-06 日東電工株式会社 フレキシブル発光デバイス、照明装置および画像表示装置
CN107068892B (zh) * 2015-12-17 2019-02-19 财团法人工业技术研究院 保护结构以及电子装置
DE102016101710A1 (de) * 2016-02-01 2017-08-03 Osram Oled Gmbh OLED und Verfahren zur Herstellung einer OLED
KR102024258B1 (ko) * 2016-04-19 2019-09-23 주식회사 엘지화학 점착제 및 플렉서블 유기발광다이오드 표시장치
KR102631878B1 (ko) * 2016-06-28 2024-01-30 엘지디스플레이 주식회사 유기발광 표시장치
US9978990B2 (en) 2016-07-12 2018-05-22 Corning Incorporated Waveguides comprising light extraction nanostructures and display devices comprising the same
CN106935720B (zh) * 2017-03-13 2019-06-14 京东方科技集团股份有限公司 显示基板、显示面板、显示设备和制造其的方法
KR102326303B1 (ko) 2017-07-11 2021-11-12 엘지디스플레이 주식회사 유기발광소자를 이용한 조명장치
CN111512192B (zh) * 2018-01-03 2022-05-17 株式会社Lg化学 光学膜
KR102696329B1 (ko) * 2018-10-30 2024-08-19 엘지디스플레이 주식회사 양자점 필름, 엘이디 패키지, 발광다이오드 및 표시장치
CN110649184B (zh) * 2019-09-19 2020-10-30 成都新柯力化工科技有限公司 一种卷对卷连续印刷制备的oled显示柔性衬底及方法
CN113540118A (zh) * 2020-03-30 2021-10-22 元太科技工业股份有限公司 显示装置
TWI743722B (zh) 2020-03-30 2021-10-21 元太科技工業股份有限公司 顯示裝置
KR20230072014A (ko) * 2021-11-17 2023-05-24 엘지디스플레이 주식회사 표시 장치

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH0288689A (ja) 1988-09-26 1990-03-28 Mitsubishi Kasei Corp 電界発光素子
JPH02191694A (ja) 1989-01-20 1990-07-27 Idemitsu Kosan Co Ltd 薄膜有機el素子
JPH02196885A (ja) 1989-01-25 1990-08-03 Asahi Chem Ind Co Ltd 有機電界発光素子
JPH02250292A (ja) 1989-03-23 1990-10-08 Ricoh Co Ltd 電界発光素子
JPH02255789A (ja) 1989-03-29 1990-10-16 Asahi Chem Ind Co Ltd 有機電場発光素子
JPH02289676A (ja) 1989-01-13 1990-11-29 Ricoh Co Ltd 電界発光素子
JPH03296595A (ja) 1990-04-13 1991-12-27 Kao Corp 有機薄膜エレクトロルミネッセンス素子
JPH0496990A (ja) 1990-08-10 1992-03-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH059470A (ja) 1991-02-06 1993-01-19 Pioneer Electron Corp 有機エレクトロルミネツセンス素子
JPH0517764A (ja) 1991-02-06 1993-01-26 Pioneer Electron Corp 有機エレクトロルミネツセンス素子
JPH05202011A (ja) 1992-01-27 1993-08-10 Toshiba Corp オキサジアゾール誘導体
JPH0649079A (ja) 1992-04-02 1994-02-22 Idemitsu Kosan Co Ltd シラナミン誘導体およびその製造方法並びに該シラナミン誘導体を用いたel素子
JPH0688072A (ja) 1992-09-07 1994-03-29 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH0692947A (ja) 1992-07-27 1994-04-05 Ricoh Co Ltd オキサジアゾール誘導体ならびにその製造法
JPH06100857A (ja) 1992-09-21 1994-04-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06107648A (ja) 1992-09-29 1994-04-19 Ricoh Co Ltd 新規なオキサジアゾール化合物
JPH06132080A (ja) 1992-10-19 1994-05-13 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06145146A (ja) 1992-11-06 1994-05-24 Chisso Corp オキシネイト誘導体
JPH06203963A (ja) 1993-01-08 1994-07-22 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06206865A (ja) 1992-10-14 1994-07-26 Chisso Corp 新規アントラセン化合物と該化合物を用いる電界発光素子
JPH06207170A (ja) 1992-11-20 1994-07-26 Idemitsu Kosan Co Ltd 白色有機エレクトロルミネッセンス素子
JPH06279323A (ja) 1993-03-26 1994-10-04 Idemitsu Kosan Co Ltd 新規スチリル化合物,その製造法およびそれからなる有機エレクトロルミネッセンス素子
JPH06279322A (ja) 1993-03-26 1994-10-04 Idemitsu Kosan Co Ltd 4官能スチリル化合物およびその製造法
JPH06293778A (ja) 1993-04-05 1994-10-21 Idemitsu Kosan Co Ltd シラナミン誘導体およびその製造方法
JPH07157473A (ja) 1993-12-06 1995-06-20 Chisso Corp トリアジン誘導体、その製造法及びそれを用いた電界発光素子
JPH07179394A (ja) 1993-12-21 1995-07-18 Ricoh Co Ltd オキサジアゾール化合物およびその製造法
JPH07228579A (ja) 1993-12-21 1995-08-29 Ricoh Co Ltd オキサジアゾール化合物およびその製造法
JPH07278124A (ja) 1993-12-24 1995-10-24 Ricoh Co Ltd オキサジアゾール誘導体およびその製造方法
JPH0822557A (ja) 1994-05-24 1996-01-23 Texas Instr Inc <Ti> ユーザへビデオ画像を表示する装置及び方法
JPH0881472A (ja) 1994-09-12 1996-03-26 Motorola Inc 発光装置に使用するための有機金属錯体
JP2000145627A (ja) 1998-11-10 2000-05-26 Halla Aircon Co Ltd 可変容量斜板式圧縮機
US6226890B1 (en) 2000-04-07 2001-05-08 Eastman Kodak Company Desiccation of moisture-sensitive electronic devices
JP2001252505A (ja) 2000-03-14 2001-09-18 Sumitomo Heavy Ind Ltd 脱水装置におけるマットフォーメーションプレートとドラム型フィルターとの間隔調整機構
US6808828B2 (en) 2001-08-23 2004-10-26 Tohoku Pioneer Corporation Organic electroluminescent display panel
US20070257608A1 (en) * 2006-05-05 2007-11-08 Eastman Kodak Company Electroluminescent device having improved light output
JP2007335253A (ja) * 2006-06-15 2007-12-27 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
US20100326519A1 (en) * 2008-02-27 2010-12-30 Koninklijke Philips Electronics N.V. Hidden organic optoelectronic devices with a light scattering layer
JP2012512518A (ja) * 2008-12-17 2012-05-31 スリーエム イノベイティブ プロパティズ カンパニー ナノ粒子コーティングを有する光抽出フィルム
US20130114269A1 (en) * 2010-07-16 2013-05-09 Asahi Glass Company, Limited Translucent conductive substrate for organic light emitting devices

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996035725A1 (en) * 1995-05-10 1996-11-14 Avery Dennison Corporation Pigmented, uv-cured, acrylic-based, pressure sensitive adhesives, and method for making same
JP2004273137A (ja) * 2003-03-05 2004-09-30 Konica Minolta Holdings Inc 照明装置及び液晶表示装置
WO2004084323A1 (de) * 2003-03-19 2004-09-30 Osram Opto Semiconductors Gmbh Organische leuchtdiode mit verbesserter lichteffizienz
US7245074B2 (en) 2003-07-24 2007-07-17 General Electric Company Organic electroluminescent devices having improved light extraction
CN100484356C (zh) * 2004-03-05 2009-04-29 出光兴产株式会社 有机电致发光显示装置
JP2006228519A (ja) 2005-02-16 2006-08-31 Canon Inc 有機エレクトロルミネッセンス素子及びその製造方法
US7276848B2 (en) 2005-03-29 2007-10-02 Eastman Kodak Company OLED device having improved light output
US20060250084A1 (en) * 2005-05-04 2006-11-09 Eastman Kodak Company OLED device with improved light output
US20070135552A1 (en) * 2005-12-09 2007-06-14 General Atomics Gas barrier
US20080138624A1 (en) * 2006-12-06 2008-06-12 General Electric Company Barrier layer, composite article comprising the same, electroactive device, and method
US7560747B2 (en) 2007-05-01 2009-07-14 Eastman Kodak Company Light-emitting device having improved light output
JP4932758B2 (ja) * 2008-02-06 2012-05-16 富士フイルム株式会社 発光デバイス及びその製造方法
KR20100138939A (ko) * 2008-03-18 2010-12-31 아사히 가라스 가부시키가이샤 전자 디바이스용 기판, 유기 led 소자용 적층체 및 그의 제조 방법, 유기 led 소자 및 그의 제조 방법
WO2010033571A1 (en) * 2008-09-17 2010-03-25 3M Innovative Properties Company Optical adhesive with diffusive properties
CN102171300B (zh) * 2008-09-17 2015-02-18 3M创新有限公司 光漫射压敏粘合剂
JP2010218738A (ja) * 2009-03-13 2010-09-30 Konica Minolta Opto Inc 有機el素子、それを用いたディスプレイ、及び照明装置
US9239417B2 (en) * 2010-02-10 2016-01-19 3M Innovative Properties Company Illumination device having viscoelastic layer
JP5520752B2 (ja) * 2010-09-01 2014-06-11 株式会社日立製作所 粘着シート,粘着シートを用いた光学部材,有機発光素子および照明装置並びにそれらの製造方法
JP5754912B2 (ja) * 2010-10-18 2015-07-29 富士フイルム株式会社 光取り出しシート、有機電界発光装置及びその製造方法
CN202145468U (zh) * 2011-05-06 2012-02-15 京东方科技集团股份有限公司 一种柔性有机电致发光器件
TWI469409B (zh) * 2011-09-28 2015-01-11 Au Optronics Corp 有機電致發光元件
WO2013051358A1 (ja) * 2011-10-04 2013-04-11 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、面状発光体、及び、有機エレクトロルミネッセンス素子の製造方法
JP5706972B2 (ja) 2011-12-19 2015-04-22 パナソニック株式会社 面状発光素子
KR101352561B1 (ko) * 2012-01-18 2014-01-17 한국전자통신연구원 고분자 물질, 광학 필름 및 유기 발광 소자
KR101478429B1 (ko) * 2012-03-12 2014-12-31 주식회사 엘지화학 점착 필름
EP2892935B1 (en) * 2012-05-21 2024-03-20 Lubrizol Advanced Materials, Inc. An alloy comprising polyolefin and thermoplastic polyurethane
WO2014112552A1 (ja) * 2013-01-18 2014-07-24 日本電気硝子株式会社 結晶性ガラス基板及び結晶化ガラス基板並びに拡散板及びそれを備えた照明装置
JP6449788B2 (ja) * 2013-02-25 2019-01-09 サン−ゴバン グラス フランス 有機発光ダイオードを有するデバイスのための基材
US9366787B2 (en) * 2013-03-12 2016-06-14 Ppg Industries Ohio, Inc. Organic light emitting diode with light extracting layer
US9263701B2 (en) * 2013-03-14 2016-02-16 Guardian Industries Corp. Coated article and/or device with optical out-coupling layer stack (OCLS) including vacuum deposited index match layer over scattering matrix, and/or associated methods
KR101772135B1 (ko) * 2013-06-29 2017-09-12 아익스트론 에스이 고성능 코팅들을 증착하기 위한 방법 및 캡슐화된 전자 디바이스들

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH0288689A (ja) 1988-09-26 1990-03-28 Mitsubishi Kasei Corp 電界発光素子
JPH02289676A (ja) 1989-01-13 1990-11-29 Ricoh Co Ltd 電界発光素子
JPH02191694A (ja) 1989-01-20 1990-07-27 Idemitsu Kosan Co Ltd 薄膜有機el素子
JPH02196885A (ja) 1989-01-25 1990-08-03 Asahi Chem Ind Co Ltd 有機電界発光素子
JPH02250292A (ja) 1989-03-23 1990-10-08 Ricoh Co Ltd 電界発光素子
JPH02255789A (ja) 1989-03-29 1990-10-16 Asahi Chem Ind Co Ltd 有機電場発光素子
JPH03296595A (ja) 1990-04-13 1991-12-27 Kao Corp 有機薄膜エレクトロルミネッセンス素子
JPH0496990A (ja) 1990-08-10 1992-03-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH059470A (ja) 1991-02-06 1993-01-19 Pioneer Electron Corp 有機エレクトロルミネツセンス素子
JPH0517764A (ja) 1991-02-06 1993-01-26 Pioneer Electron Corp 有機エレクトロルミネツセンス素子
JPH05202011A (ja) 1992-01-27 1993-08-10 Toshiba Corp オキサジアゾール誘導体
JPH0649079A (ja) 1992-04-02 1994-02-22 Idemitsu Kosan Co Ltd シラナミン誘導体およびその製造方法並びに該シラナミン誘導体を用いたel素子
JPH0692947A (ja) 1992-07-27 1994-04-05 Ricoh Co Ltd オキサジアゾール誘導体ならびにその製造法
JPH0688072A (ja) 1992-09-07 1994-03-29 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06100857A (ja) 1992-09-21 1994-04-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06107648A (ja) 1992-09-29 1994-04-19 Ricoh Co Ltd 新規なオキサジアゾール化合物
JPH06206865A (ja) 1992-10-14 1994-07-26 Chisso Corp 新規アントラセン化合物と該化合物を用いる電界発光素子
JPH06132080A (ja) 1992-10-19 1994-05-13 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06145146A (ja) 1992-11-06 1994-05-24 Chisso Corp オキシネイト誘導体
JPH06207170A (ja) 1992-11-20 1994-07-26 Idemitsu Kosan Co Ltd 白色有機エレクトロルミネッセンス素子
JPH06203963A (ja) 1993-01-08 1994-07-22 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH06279323A (ja) 1993-03-26 1994-10-04 Idemitsu Kosan Co Ltd 新規スチリル化合物,その製造法およびそれからなる有機エレクトロルミネッセンス素子
JPH06279322A (ja) 1993-03-26 1994-10-04 Idemitsu Kosan Co Ltd 4官能スチリル化合物およびその製造法
JPH06293778A (ja) 1993-04-05 1994-10-21 Idemitsu Kosan Co Ltd シラナミン誘導体およびその製造方法
JPH07157473A (ja) 1993-12-06 1995-06-20 Chisso Corp トリアジン誘導体、その製造法及びそれを用いた電界発光素子
JPH07179394A (ja) 1993-12-21 1995-07-18 Ricoh Co Ltd オキサジアゾール化合物およびその製造法
JPH07228579A (ja) 1993-12-21 1995-08-29 Ricoh Co Ltd オキサジアゾール化合物およびその製造法
JPH07278124A (ja) 1993-12-24 1995-10-24 Ricoh Co Ltd オキサジアゾール誘導体およびその製造方法
JPH0822557A (ja) 1994-05-24 1996-01-23 Texas Instr Inc <Ti> ユーザへビデオ画像を表示する装置及び方法
JPH0881472A (ja) 1994-09-12 1996-03-26 Motorola Inc 発光装置に使用するための有機金属錯体
JP2000145627A (ja) 1998-11-10 2000-05-26 Halla Aircon Co Ltd 可変容量斜板式圧縮機
JP2001252505A (ja) 2000-03-14 2001-09-18 Sumitomo Heavy Ind Ltd 脱水装置におけるマットフォーメーションプレートとドラム型フィルターとの間隔調整機構
US6226890B1 (en) 2000-04-07 2001-05-08 Eastman Kodak Company Desiccation of moisture-sensitive electronic devices
US6808828B2 (en) 2001-08-23 2004-10-26 Tohoku Pioneer Corporation Organic electroluminescent display panel
US20070257608A1 (en) * 2006-05-05 2007-11-08 Eastman Kodak Company Electroluminescent device having improved light output
JP2007335253A (ja) * 2006-06-15 2007-12-27 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
US20100326519A1 (en) * 2008-02-27 2010-12-30 Koninklijke Philips Electronics N.V. Hidden organic optoelectronic devices with a light scattering layer
JP2012512518A (ja) * 2008-12-17 2012-05-31 スリーエム イノベイティブ プロパティズ カンパニー ナノ粒子コーティングを有する光抽出フィルム
US20130114269A1 (en) * 2010-07-16 2013-05-09 Asahi Glass Company, Limited Translucent conductive substrate for organic light emitting devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2983224A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017033908A (ja) * 2015-08-03 2017-02-09 日華化学株式会社 有機el素子

Also Published As

Publication number Publication date
CN105247702B (zh) 2018-10-26
TWI593153B (zh) 2017-07-21
US20160072101A1 (en) 2016-03-10
EP2983224A4 (en) 2016-12-14
CN105247702A (zh) 2016-01-13
JP6345244B2 (ja) 2018-06-20
TW201523953A (zh) 2015-06-16
JP2016528702A (ja) 2016-09-15
EP2983224A1 (en) 2016-02-10
EP2983224B1 (en) 2020-08-26
KR101614048B1 (ko) 2016-04-20
KR20150037702A (ko) 2015-04-08
US9755188B2 (en) 2017-09-05

Similar Documents

Publication Publication Date Title
WO2015047049A1 (ko) 유기전자장치
KR101784804B1 (ko) 유기발광소자
WO2015047037A1 (ko) 유기전자소자용 기판 및 이의 제조방법
WO2013141676A1 (ko) 유기전자소자용 기판
WO2016200179A1 (ko) 접착제 조성물, 이를 포함하는 접착 필름 및 이를 포함하는 유기전자장치
WO2015047036A1 (ko) 유기전자소자용 기판 및 이의 제조방법
WO2013141675A1 (ko) 유기발광소자
WO2016200176A1 (ko) 유기전자장치
WO2015047053A1 (ko) 유기전자장치의 제조 방법
WO2015047044A1 (ko) 유기전자장치의 제조 방법
WO2013147572A1 (ko) 유기전자소자용 기판
WO2013147571A1 (ko) 유기전자소자용 기판
WO2014021644A1 (ko) 유기전자소자용 기판
KR101612588B1 (ko) 유기전자소자용 기판
KR102028142B1 (ko) 유기전자소자용 기판
KR101947382B1 (ko) 유기전자장치의 제조 방법
KR20160081388A (ko) 유기전자장치
KR101660692B1 (ko) 유기전자소자용 기판
KR20170050900A (ko) 유기전자장치
WO2016032281A1 (ko) 플라스틱 기판
KR20130111486A (ko) 유기전자소자용 기판
KR20160081387A (ko) 유기전자장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848913

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14888287

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014848913

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016534546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE