WO2014112552A1 - 結晶性ガラス基板及び結晶化ガラス基板並びに拡散板及びそれを備えた照明装置 - Google Patents

結晶性ガラス基板及び結晶化ガラス基板並びに拡散板及びそれを備えた照明装置 Download PDF

Info

Publication number
WO2014112552A1
WO2014112552A1 PCT/JP2014/050659 JP2014050659W WO2014112552A1 WO 2014112552 A1 WO2014112552 A1 WO 2014112552A1 JP 2014050659 W JP2014050659 W JP 2014050659W WO 2014112552 A1 WO2014112552 A1 WO 2014112552A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
crystal
crystallized glass
crystalline
diffusion plate
Prior art date
Application number
PCT/JP2014/050659
Other languages
English (en)
French (fr)
Inventor
篤 虫明
泰 藤澤
洋平 細田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013007215A external-priority patent/JP6090708B2/ja
Priority claimed from JP2013006861A external-priority patent/JP6066060B2/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US14/760,532 priority Critical patent/US20150353413A1/en
Priority to DE112014000476.6T priority patent/DE112014000476T5/de
Priority to CN201480002329.XA priority patent/CN104619666B/zh
Priority to KR1020157000466A priority patent/KR20150031268A/ko
Publication of WO2014112552A1 publication Critical patent/WO2014112552A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/18Quartz
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a crystalline glass substrate and a crystallized glass substrate that can impart a light scattering function, a diffusion plate, and an illumination device including the same.
  • the light source for illumination is divided into a “directional light source” that illuminates a limited area and a “diffuse light source” that illuminates a wide area.
  • LED lighting corresponds to a “directional light source” and is being adopted as an alternative to an incandescent bulb.
  • an alternative light source for a fluorescent lamp corresponding to a “diffusion light source” is desired, and organic EL (electroluminescence) illumination is a promising candidate.
  • FIG. 3 is a conceptual cross-sectional view of the organic EL lighting 10.
  • the organic EL illumination 10 includes a glass plate 11, a transparent conductive film as an anode 12, an organic EL layer 13 including one or more light-emitting layers made of an organic compound exhibiting electroluminescence that emits light by current injection, a cathode It is an element provided with.
  • a hole injection layer, a hole transport layer, an electron transport layer, A laminated structure with an electron injection layer or the like is formed.
  • the organic EL layer 13 having such a laminated structure is disposed between the anode 12 and the cathode 14 and an electric field is applied to the anode 12 and the cathode 14, holes injected from the transparent electrode as the anode 12 and the cathode The electrons injected from 14 recombine in the light emitting layer, and the light emission center is excited by the recombination energy to emit light.
  • Organic EL elements are being studied for use in mobile phones and displays, and some have already been put into practical use.
  • the organic EL element has a luminous efficiency equivalent to that of a thin television such as a liquid crystal display or a plasma display.
  • a thin television such as a liquid crystal display or a plasma display.
  • the luminance has not yet reached a practical level, and further improvement in light emission efficiency is necessary.
  • the refractive index nd of the organic EL layer is 1.8 to 1.9
  • the refractive index nd of the transparent conductive film is 1.9 to 2.0
  • the refractive index nd of the glass substrate is usually about 1.5. Therefore, in the conventional organic EL device, light emitted from the organic EL layer is reflected at the interface between the transparent conductive film and the glass substrate due to a large refractive index difference between the transparent conductive film and the glass substrate, and the light extraction efficiency is reduced. There was a problem that decreased.
  • the critical angle is calculated to be 42 ° from Snell's law. Therefore, light having an incident angle greater than the critical angle causes total reflection, is confined in the glass substrate, and is not extracted into the air.
  • Patent Document 1 describes that a light extraction layer in which a glass frit having a high refractive index is sintered is formed on the surface of a soda glass substrate in order to increase the light extraction efficiency. Furthermore, Patent Document 1 also describes that the light extraction efficiency is further increased by dispersing a scattering material in the light extraction layer.
  • Patent Document 2 describes that a light extraction layer is formed by forming a concavo-convex portion on the surface of a glass plate and sintering a glass frit having a high refractive index on the concavo-convex portion.
  • the glass frit described in Patent Document 1 contains a large amount of Nb 2 O 5 or the like, the raw material cost is high.
  • a printing process for applying a glass paste to the surface of the glass substrate is required, and this process causes an increase in production cost.
  • the scattering particles are dispersed in the glass frit, the transmittance of the light extraction layer is lowered due to the absorption of the scattering particles themselves.
  • the present invention has been made in view of the above circumstances, and its technical problem is that the light extraction efficiency of the organic EL element can be increased without forming a light extraction layer made of a sintered body, and The idea is to create a substrate material with excellent productivity.
  • the present inventors have crystallized a crystalline glass substrate, and when the obtained crystallized glass is applied to organic EL lighting, the organic EL can be obtained without forming a light extraction layer made of a sintered body.
  • the present invention proposes that the light emitted from the layer is scattered at the glass matrix / deposition crystal interface to improve the light extraction efficiency. That is, the present invention is characterized in that a crystalline glass substrate is used as a substrate material, and this is applied to organic EL lighting.
  • crystalstallinity refers to the property of crystal precipitation by heat treatment.
  • the crystalline glass substrate of the present invention preferably contains, as a glass composition, 40 to 80% of SiO 2 , 10 to 35% of Al 2 O 3 and 1 to 10% of Li 2 O by mass%.
  • Li 2 O—Al 2 O 3 —SiO 2 crystal LAS crystal: for example, ⁇ -quartz solid solution, ⁇ -spodumene solid solution
  • the thermal expansion coefficient in the temperature range of 30 to 750 ° C. becomes ⁇ 10 ⁇ 10 ⁇ 7 to 30 ⁇ 10 ⁇ 7 / ° C., and the thermal shock resistance can be improved. .
  • the crystalline glass substrate of the present invention has a glass composition in terms of mass% of SiO 2 55 to 73%, Al 2 O 3 17 to 27%, Li 2 O 2 to 5%, MgO 0 to 1.5%. ZnO 0 to 1.5%, Na 2 O 0 to 1%, K 2 O 0 to 1%, TiO 2 0 to 3.8%, ZrO 2 0 to 2.5%, SnO 2 0 to 0.6 % Is preferably contained.
  • the crystalline glass substrate of the present invention does not substantially contain As 2 O 3 and Sb 2 O 3 .
  • substantially does not contain As 2 O 3 refers to the case where the content of As 2 O 3 in the glass composition is less than 0.1% by mass.
  • substantially free of Sb 2 O 3 refers to the case where the content of Sb 2 O 3 in the glass composition is less than 0.1% by mass.
  • the crystalline glass substrate of the present invention preferably has a thickness of 2.0 mm or less. If it does in this way, it will become easy to aim at weight reduction of organic EL illumination.
  • the crystalline glass substrate of the present invention preferably has a refractive index nd of more than 1.500.
  • nd refractive index measuring device.
  • the crystalline glass substrate of the present invention is preferably formed by a roll-out method.
  • the “roll-out method” is a method of forming a glass substrate by inserting a molten glass between a pair of forming rolls and rolling the molten glass while quenching.
  • the crystalline glass substrate of the present invention is preferably formed by a float process.
  • the surface smoothness of the crystalline glass substrate (particularly the surface smoothness of the glass surface on the side not in contact with the molten metal tin bath) can be enhanced.
  • the “float method” is a method of forming a glass substrate by floating a molten glass on a molten metal tin bath (float bath).
  • the crystallized glass substrate of the present invention is a crystallized glass substrate obtained by heat-treating a crystalline glass substrate, and the crystalline glass substrate is the crystalline glass substrate described above.
  • the main crystal is preferably a ⁇ -quartz solid solution or a ⁇ -spodumene solid solution.
  • the thermal expansion coefficient in the temperature range of 30 to 750 ° C. becomes ⁇ 10 ⁇ 10 ⁇ 7 to 30 ⁇ 10 ⁇ 7 / ° C., thereby improving the thermal shock resistance.
  • the “main crystal” refers to a crystal having the largest amount of precipitation.
  • the crystallized glass substrate of the present invention preferably has an average crystal particle diameter of 10 to 2000 nm. If it does in this way, it will become easy to improve the light-scattering function in a visible light region.
  • the crystallized glass substrate of the present invention preferably has a haze value of 0.2% or more.
  • the “haze value” can be measured by a TM double beam type automatic haze computer manufactured by Suga Test Instruments, using, for example, a sample (plate thickness: 1.1 mm) whose both surfaces are mirror-polished.
  • the crystallized glass substrate of the present invention preferably has a property that when light having a critical angle or more is incident from one surface, the light is extracted from the other surface. In this way, the light confined in the crystallized glass substrate is reduced, and the light extraction efficiency is improved.
  • the crystallized glass substrate of the present invention is (radiant flux value obtained from one surface by irradiating light with an incident angle of 60 °) / (light having an incident angle of 0 ° from one surface).
  • the value of the radiant flux value obtained from the other surface after irradiation is preferably 0.005 or more. In this way, the light confined in the crystallized glass substrate is reduced, and the light extraction efficiency is improved.
  • a method for producing a crystallized glass substrate according to the present invention is a method for producing a crystallized glass substrate by heat-treating the above-mentioned crystallized glass substrate, wherein the crystallized glass substrate is subjected to heat treatment. It is characterized in that it is held for 30 minutes or more in the crystal nucleus growth temperature range (for example, 800 to 1100 ° C.) of the substrate and is not held for 30 minutes or more in the crystal nucleus formation temperature range (for example, less than 600 to 800 ° C.). In this way, a large number of crystal nuclei are not precipitated in the glass matrix, and the average crystal grain size per particle tends to increase. As a result, crystal grains can be coarsened to such an extent that a light scattering function is exhibited in the visible light region.
  • the inventors of the present invention as a result of intensive studies, emitted light when a large number of fine crystals were precipitated in a glass substrate containing Al 2 O 3 and / or SiO 2 by heat treatment and used as a diffusion plate.
  • the present invention proposes that the light is scattered at the interface between the matrix glass and the fine crystal to increase the light extraction efficiency of organic EL illumination and the like.
  • the diffusion plate of the present invention is a crystallized glass substrate obtained by heat-treating the above-described crystalline glass substrate, and a crystallized glass substrate containing at least Al 2 O 3 and / or SiO 2 as a composition.
  • the crystallinity is 10 to 90%.
  • the “crystallized glass substrate” includes not only a flat plate shape but also a substantially plate shape having a bent portion, a stepped portion, and the like. “Crystallinity” is calculated by measuring the XRD by the powder method to calculate the halo area corresponding to the amorphous mass and the peak area corresponding to the crystal mass, respectively. ] ⁇ 100 / [peak area + halo area] (%).
  • the diffusion plate of the present invention is a crystallized glass substrate containing at least Al 2 O 3 and / or SiO 2 . If it does in this way, a weather resistance can be improved.
  • the crystallinity of the crystallized glass substrate is 10 to 90%. In this way, the visible light scattering function can be enhanced.
  • the diffusion plate of the present invention can be produced by crystallizing a glass plate by heat treatment. Therefore, the manufacturing cost of the diffusion plate can be reduced.
  • the main crystal is preferably an Al—Si—O-based crystal.
  • the “main crystal” refers to a crystal seed having the highest precipitation rate in the XRD pattern.
  • the “ ⁇ system crystal” means a crystal having an explicit component as an essential component, and is preferably a crystal substantially free of components other than the explicit component.
  • the main crystal is preferably an R—Al—Si—O-based crystal.
  • R refers to any of Li, Na, K, Mg, Ca, Sr, Ba, and Zn.
  • the diffusion plate of the present invention preferably contains SiO 2 45 to 75%, Al 2 O 3 13 to 30%, Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO + ZnO 0 to 30% by mass.
  • Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO + ZnO refers to the total amount of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, BaO and ZnO.
  • the diffusion plate of the present invention preferably contains, by mass, SiO 2 45 to 70%, Al 2 O 3 13 to 30%, Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO + ZnO 1 to 35% by mass.
  • the average crystal grain size of the main crystal is preferably 20 to 30000 nm.
  • the diffusion plate of the present invention preferably has a haze value of 10% or more.
  • the “haze value” indicates the ratio of diffusely transmitted light in the total transmitted light, and the smaller the haze value, the higher the transparency.
  • the haze value can be measured, for example, by using a sample (plate thickness: 1 mm) whose both surfaces are mirror-polished as an evaluation sample, using a TM double beam automatic haze computer manufactured by Suga Test Instruments.
  • the diffusion plate of the present invention is preferably used for a lighting device.
  • the illuminating device of the present invention comprises the above diffusion plate. Since the illuminating device of this invention comprises the said diffuser plate, it can scatter the emitted light and can improve the extraction efficiency of light. As a result, since the amount of current is reduced, it is possible to extend the life of the lighting device and enjoy an energy saving effect.
  • the crystalline glass substrate of the present invention preferably contains, as a glass composition, 40 to 80% of SiO 2 , 10 to 35% of Al 2 O 3 , and 1 to 10% of Li 2 O by mass%. The reason for defining the content of each component as described above will be described below.
  • the crystallized glass substrate of the present invention preferably has the same composition as that of the crystalline glass substrate of the present invention.
  • SiO 2 is a component that forms a glass skeleton and constitutes an LAS crystal.
  • the content of SiO 2 is reduced, the chemical durability tends to be lowered.
  • the content of SiO 2 increases, the meltability tends to be lowered, or the viscosity of the molten glass tends to increase, and as a result, it becomes difficult to form the crystalline glass substrate.
  • the preferred content of SiO 2 is 40-80%, 50-75%, 55-73%, 58-70%, especially 60-68%.
  • Al 2 O 3 is a component that forms a glass skeleton and constitutes an LAS crystal.
  • chemical durability tends to decrease.
  • the content of Al 2 O 3 increases, the meltability tends to decrease and the viscosity of the molten glass tends to increase, and as a result, it becomes difficult to form the crystalline glass substrate.
  • the preferred content of Al 2 O 3 is 10 to 35%, 17 to 27% or 19 to 25%, particularly preferably 20 to 23%.
  • Li 2 O is a component that constitutes the LAS-based crystal, and has a great influence on crystallinity and is a component that lowers the viscosity of the glass and improves the meltability and formability.
  • the content of Li 2 O is reduced, LAS crystals are difficult to precipitate during heat treatment. Further, during molding, mullite crystals are precipitated, and the glass is easily broken.
  • the preferred content of Li 2 O is 1 to 10%, 2 to 5%, or 2.3 to 4.7%, particularly preferably 2.5 to 4.5%.
  • MgO is a component that dissolves in the LAS crystal.
  • the preferred content of MgO is 0 to 5% or 0 to 1.5%, particularly preferably 0 to 1.2%.
  • ZnO is a component that increases the refractive index and is a component that dissolves in the LAS crystal in the same manner as MgO.
  • the preferred content of ZnO is 0 to 5%, 0 to 3% or 0 to 1.5%, particularly preferably 0 to 1.2%.
  • the preferable content of Li 2 O, MgO and ZnO is 1 to 10% or 2 to 5.2% in total, and particularly preferably 2.3 to 5%.
  • Na 2 O is a component that lowers the viscosity of the glass and improves the meltability and moldability.
  • the content of Na 2 O increases, it is taken into the ⁇ -spodumene solid solution at the time of molding, and crystal growth is promoted. Thereby, glass devitrifies and it becomes easy to break glass. Therefore, the preferred content of Na 2 O is 0 to 3%, 0 to 1% or 0 to 0.6%, particularly preferably 0.05 to 0.5%.
  • K 2 O is a component that lowers the viscosity of the glass and improves the meltability and moldability.
  • the preferable content of K 2 O is 0 to 3%, 0 to 1% or 0 to 0.6%, particularly preferably 0.05 to 0.5%.
  • Na 2 O and K 2 O in combination.
  • Na 2 O is a component that is incorporated into the ⁇ -spodumene solid solution. Therefore, if K 2 O is not introduced and the meltability and moldability are improved, Na 2 O must be excessively introduced. This is because the glass tends to devitrify during molding. In order to reduce the viscosity of the glass while suppressing devitrification at the time of molding, it is preferable to use together with Na 2 O, K 2 O which is not taken into the ⁇ -spodumene solid solution and improves the meltability and moldability.
  • the preferable content of Na 2 O and K 2 O is 0.05 to 5%, 0.05 to 3%, or 0.05 to 1% in total, particularly preferably 0.35 to 0%. .9%.
  • TiO 2 is a component that increases the refractive index and is a crystal nucleation component. When the content of TiO 2 increases, the glass is devitrified during molding, and the glass is easily broken. Accordingly, the preferred content of TiO 2 is 0 to 10%, 0 to 3.8% or 0.1 to 3.8%, particularly preferably 0.5 to 3.6%.
  • ZrO 2 is a component that increases the refractive index in the same manner as TiO 2 and is a crystal nucleus forming component.
  • the preferred content of ZrO 2 is 0 to 5%, 0 to 2.5% or 0.1 to 2.5%, particularly preferably 0.5 to 2.3%.
  • the preferred content of TiO 2 and ZrO 2 is 1 to 15%, 1 to 10%, 1 to 7% or 2 to 6% in total, particularly preferably 2.7 to 4.5%. It is.
  • SnO 2 is a component that enhances clarity.
  • the content of SnO 2 increases, the glass tends to be devitrified at the time of melting, and it becomes difficult to form the crystalline glass substrate.
  • the preferred content of SnO 2 is 0 to 2%, 0 to 1%, 0 to 0.6% or 0 to 0.45%, particularly preferably 0.01 to 0.4%.
  • Cl and SO 3 are components that enhance clarity.
  • the preferred content of Cl is 0-2%.
  • a preferable content of SO 3 is 0 to 2%.
  • As 2 O 3 and Sb 2 O 3 are also components that enhance clarity, but these components are components that increase the environmental load, and when molded by the float process, they are reduced in the float bath to become metallic foreign objects. It is a component. Therefore, in the present invention, it is preferable that substantially no As 2 O 3 or Sb 2 O 3 is contained.
  • B 2 O 3 can be introduced as a component that forms the skeleton of the glass.
  • the preferable content of B 2 O 3 is 0 to 2%.
  • P 2 O 5 is a component that promotes nucleation while suppressing devitrification during molding.
  • a suitable content of P 2 O 5 is 0 to 5% or 0 to 3%, particularly preferably 0 to 2%.
  • CaO, SrO, and BaO are components that promote devitrification during melting.
  • the preferred content of CaO, SrO and BaO is 0 to 5% or 0 to 2% in total.
  • NiO, CoO, Cr 2 O 3 , Fe 2 O 3 , V 2 O 5 , Nb 2 O 3 , and Gd 2 O 3 are components that can be added as colorants.
  • a suitable content of these components is 0 to 2% in total.
  • the plate thickness is preferably 2.0 mm or less, 1.5 mm or less, 1.3 mm or less, 1.1 mm or less, 0.8 mm or less, 0.6 mm.
  • it is 0.5 mm or less, 0.3 mm or less, or 0.2 mm or less, and particularly preferably 0.1 mm or less.
  • the plate thickness is preferably 10 ⁇ m or more, and particularly preferably 30 ⁇ m or more.
  • the refractive index nd is preferably more than 1.500, 1.580 or more, or 1.600 or more, particularly preferably 1.630 or more.
  • the refractive index nd is 1.500 or less, it becomes difficult to extract light to the outside due to reflection at the transparent conductive film-crystallized glass substrate interface.
  • the refractive index nd is higher than 2.3, the reflectance at the air-crystallized glass substrate interface increases, and it becomes difficult to extract light to the outside. Therefore, the refractive index nd is preferably 2.3 or less, 2.2 or less, 2.1 or less, 2.0 or less, or 1.9 or less, and particularly preferably 1.75 or less.
  • glass raw materials are prepared so as to have a predetermined composition, and the obtained glass batch is melted at a temperature of 1550 to 1750 ° C. and then formed into a plate shape to obtain a crystalline glass substrate.
  • a forming method there are a float method, a roll-out method, a press method, etc., but when the surface smoothness of the crystalline glass substrate is desired to be increased, the float method is preferred, and when a large crystalline glass substrate is desired to be produced.
  • the roll-out method is preferable, and when it is desired to suppress devitrification during molding, the press method is preferable.
  • a crystallized glass substrate can be produced by heat treatment at 800-1100 ° C. for 0.5-3 hours to grow crystals.
  • a crystal nucleus forming step for forming crystal nuclei on the crystalline glass substrate may be provided before the step of growing the crystal.
  • the crystal nucleus growth temperature range of the crystalline glass substrate it is preferable to hold for 30 minutes or more in the crystal nucleus growth temperature range of the crystalline glass substrate and not to hold for 30 minutes or more in the crystal nucleus formation temperature range.
  • the crystal particles are easily coarsened to the extent that they exhibit a light scattering function in the visible light range.
  • the crystallized glass substrate of the present invention preferably has a LAS crystal precipitated as the main crystal.
  • the thermal expansion coefficient in the temperature range of 30 to 750 ° C. becomes ⁇ 10 ⁇ 10 ⁇ 7 to 30 ⁇ 10 ⁇ 7 / ° C. while ensuring the light scattering function, and the thermal shock resistance is improved. Can do.
  • heat treatment may be performed at 800 to 950 ° C. for 0.5 to 3 hours.
  • heat treatment may be performed at 1000 to 1100 ° C. for 0.5 to 3 hours.
  • the average crystal particle diameter is preferably 10 to 2000 nm, 20 to 1800 nm, 100 to 1500 nm, or 200 to 1500 nm, and particularly preferably 400 to 1000 nm. If it does in this way, it will become easy to improve the light-scattering function in a visible light region.
  • the haze value is preferably 0.2% or more, 1% or more, 10% or more, 20% or more, or 30% or more, and particularly preferably 50 to 95%. If the haze value is too small, the amount of light confined in the crystallized glass substrate increases, and the light extraction efficiency tends to decrease.
  • the total light transmittance is preferably 40% or more, 50% or more, or 60% or more. If it does in this way, a brightness
  • the value of the radiant flux value obtained from the other surface is preferably 0.005 or more, 0.01 or more, 0.03 or more, 0.05 or more, or 0.08 or more, particularly preferably 0.8. 1 or more. If the above value is too small, the amount of light confined in the crystallized glass substrate increases, and the light extraction efficiency tends to decrease.
  • the diffusion plate of the present invention is a crystallized glass substrate containing at least Al 2 O 3 and / or SiO 2 as a composition, and the total amount of SiO 2 and Al 2 O 3 is preferably 70% by mass or more. In particular, it is 75% by mass or more. If it does in this way, a weather resistance can be improved.
  • the crystallinity of the crystallized glass substrate is 10 to 90%, preferably 40 to 85% or 45 to 80%, particularly preferably 50 to 75%. If the crystallinity is too low, it is difficult to ensure light scattering. On the other hand, if the degree of crystallinity is too high, the light transmittance tends to decrease.
  • the main crystal of the crystallized glass substrate is an Al—Si—O based crystal, an R—Si—O based crystal, an R—Al—O based crystal or an R—Al—Si—O based crystal.
  • Particularly preferred are Al—Si—O based crystals and R—Al—Si—O based crystals. Since an Al—Si—O-based crystal tends to be a needle-like crystal, even when the degree of crystallinity is low, the area of the interface between the matrix glass and the crystal becomes large, and as a result, the emitted light is easily scattered.
  • R-Al-Si-O-based crystals are large in density, and the difference in refractive index between the matrix glass and the crystal tends to be large, so that the reflectivity is improved at the interface between the matrix glass and the crystal even when the crystallinity is low. As a result, the emitted light is easily scattered.
  • the composition is SiO 2 45 to 75%, Al 2 O 3 13 to 30%, Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO + ZnO 0 to 30% by mass. It is preferable to contain.
  • SiO 2 forms a glass skeleton and is a constituent component of an Al—Si—O-based crystal.
  • the content of SiO 2 is preferably 45 to 75% or 50 to 70%, particularly preferably 53 to 65%.
  • the weather resistance tends to decrease.
  • the content of SiO 2 is too large, vitrification tends to be difficult.
  • Al 2 O 3 forms a glass skeleton and is a constituent component of an Al—Si—O-based crystal.
  • the content of Al 2 O 3 is preferably 13 to 30% or 15 to 27%, particularly preferably 17 to 25%.
  • the weather resistance tends to decrease.
  • the content of Al 2 O 3 is too large, vitrification becomes difficult.
  • Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO + ZnO is a component that improves meltability and moldability.
  • the content of Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO + ZnO is preferably 0-30%, 1-25% or 5-23%, particularly preferably 8-20%.
  • Li 2 O + Na 2 O + K 2 O + content of MgO + CaO + SrO + BaO + ZnO is too small, the meltability and the formability tends to decrease.
  • the Li 2 O content is preferably 0 to 5%, and particularly preferably 0 to 1%.
  • the content of Na 2 O is preferably 0 to 10%, particularly preferably 0.5 to 6%.
  • the content of K 2 O is preferably 0 to 10%, particularly preferably 1 to 6%.
  • the MgO content is preferably 0 to 6%, particularly preferably 0.1 to 1%.
  • the CaO content is preferably 0 to 6%, particularly preferably 0.1 to 1%.
  • the content of SrO is preferably 0 to 6%, particularly preferably 0.1 to 3%.
  • the content of BaO is preferably 0 to 10% or 1 to 9%, particularly preferably 2 to 7%.
  • the content of ZnO is preferably 0 to 8%, particularly preferably 0.1 to 7%.
  • the molar ratio Al 2 O 3 / (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO + ZnO) is preferably 1.3 or more, particularly preferably 1.4 or more. If the molar ratio Al 2 O 3 / (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO + ZnO) is too small, Al—Si—O-based crystals are difficult to precipitate during heat treatment.
  • TiO 2 is a component that enhances the weather resistance and is a component that functions as a crystal nucleus.
  • the content of TiO 2 is preferably 0 to 7% or 0 to 5%, particularly preferably 0.01 to 3%. When the content of TiO 2 is too large, the glass tends to devitrify at the time of molding.
  • ZrO 2 is a component that enhances weather resistance and is a component that functions as a crystal nucleus.
  • the content of ZrO 2 is preferably 0 to 7% or 0 to 5%, particularly preferably 0.1 to 4%. When the content of ZrO 2 is too high, the glass tends to devitrify at the time of molding.
  • B 2 O 3 is a component that forms a glass skeleton.
  • the content of B 2 O 3 is preferably 0 to 10%, particularly preferably 0 to 7%.
  • the weather resistance is liable to decrease, and in addition, Al—Si—O-based crystals are difficult to precipitate during heat treatment.
  • P 2 O 5 is a component that forms a glass skeleton.
  • the content of P 2 O 5 is preferably 0 to 5%, particularly preferably 0.1 to 3%.
  • the weather resistance is liable to decrease, and in addition, Al—Si—O-based crystals are difficult to precipitate during heat treatment.
  • the transition metal oxide is colored, its content is preferably 1% or less, particularly preferably 0.1% or less.
  • As 2 O 3 , Sb 2 O 3 , SnO 2 , SO 3 , Cl, etc. may be introduced up to 3% in total.
  • the main crystal When precipitating an Al—Si—O-based crystal as the main crystal, it is preferably crystallized by holding it at a temperature range of 850 to 1100 ° C. for 10 to 60 minutes, and if necessary, before this crystallization step
  • the step of precipitating crystal nuclei may be provided by maintaining the temperature in the temperature range of 650 to 800 ° C. for about 10 to 100 minutes.
  • the composition is SiO 2 45 to 70%, Al 2 O 3 13 to 30%, Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO + ZnO 1 to 3 % by mass. It is preferable to contain 35%.
  • SiO 2 forms a glass skeleton and is a constituent component of the R—Al—Si—O-based crystal.
  • the content of SiO 2 is preferably 45 to 70% or 50 to 68%, particularly preferably 53 to 65%.
  • the weather resistance tends to decrease.
  • the content of SiO 2 is too large, vitrification tends to be difficult.
  • Al 2 O 3 forms a glass skeleton and is a constituent component of the R—Al—Si—O-based crystal.
  • the content of Al 2 O 3 is preferably 13 to 30% or 15 to 27%, particularly preferably 17 to 25%.
  • the weather resistance tends to decrease.
  • the content of Al 2 O 3 is too large, vitrification becomes difficult.
  • Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO + ZnO is a component of the R—Al—Si—O-based crystal and is a component that improves the meltability and moldability.
  • the content of Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO + ZnO is preferably 1 to 35%, 2 to 25%, or 5 to 23%, particularly preferably 8 to 20%.
  • Li 2 O + Na 2 O + K 2 O + content of MgO + CaO + SrO + BaO + ZnO is too small, the meltability and the formability tends to decrease.
  • the Li 2 O content is preferably 0 to 5%, and particularly preferably 0 to 1%.
  • the content of Na 2 O is preferably 0 to 10%, particularly preferably 0.5 to 6%.
  • the content of K 2 O is preferably 0 to 10%, particularly preferably 1 to 6%.
  • the MgO content is preferably 0 to 6%, particularly preferably 0.1 to 1%.
  • the CaO content is preferably 0 to 6%, particularly preferably 0.1 to 1%.
  • the content of SrO is preferably 0 to 6%, particularly preferably 0.1 to 3%.
  • the content of BaO is preferably 0 to 10% or 1 to 9%, particularly preferably 2 to 7%.
  • the content of ZnO is preferably 0 to 11% or 1 to 10%, particularly preferably 2 to 9%.
  • the molar ratio Al 2 O 3 / (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO + ZnO) is preferably 1.3 or less, particularly preferably 1.25 or less. If the molar ratio Al 2 O 3 / (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO + ZnO) is too small, R—Al—Si—O-based crystals are difficult to precipitate during heat treatment.
  • TiO 2 is a component that enhances the weather resistance and is a component that functions as a crystal nucleus.
  • the content of TiO 2 is preferably 0 to 7% or 0 to 5%, particularly preferably 0.01 to 3%. When the content of TiO 2 is too large, the glass tends to devitrify at the time of molding.
  • ZrO 2 is a component that enhances weather resistance and is a component that functions as a crystal nucleus.
  • the content of ZrO 2 is preferably 0 to 7% or 0 to 5%, particularly preferably 0.1 to 4%. When the content of ZrO 2 is too high, the glass tends to devitrify at the time of molding.
  • B 2 O 3 is a component that forms a glass skeleton.
  • the content of B 2 O 3 is preferably 0 to 10%, particularly preferably 0 to 7%.
  • the weather resistance is liable to decrease, and in addition, R—Al—Si—O-based crystals are difficult to precipitate during heat treatment.
  • P 2 O 5 is a component that forms a glass skeleton.
  • the content of P 2 O 5 is preferably 0 to 5%, particularly preferably 0.1 to 3%.
  • the weather resistance is liable to decrease, and in addition, R—Al—Si—O-based crystals are difficult to precipitate during heat treatment.
  • the transition metal oxide is colored, its content is preferably 1% or less, particularly preferably 0.1% or less.
  • As 2 O 3 , Sb 2 O 3 , SnO 2 , SO 3 , Cl, etc. may be introduced up to 3% in total.
  • the R—Al—Si—O-based crystal When the R—Al—Si—O-based crystal is precipitated as the main crystal, it is preferably crystallized by holding it in the temperature range of 850 to 1100 ° C. for 10 to 60 minutes. If necessary, this crystallization step Prior to this, a step of precipitating crystal nuclei by holding at a temperature of 650 to 800 ° C. for about 10 to 100 minutes may be provided.
  • the crystal grain size can be controlled by adjusting the heat treatment temperature and the heat treatment time. In particular, if crystal nuclei are formed in advance before crystallization, the crystal grain size can be easily controlled. The larger the number of crystal nuclei, the smaller the crystal grain size.
  • the average crystal grain size of the main crystal is preferably 20 to 30000 nm. If the average crystal grain size of the main crystal is too small, the light scattering property tends to be insufficient. On the other hand, if the average crystal grain size of the main crystal is too large, it tends to cause damage when the crystal grows.
  • the haze value is preferably 10% or more, 20% or more, 30% or more, or 40% or more, and particularly preferably 50 to 99%. If it does in this way, light-scattering property will improve and the light extraction efficiency of an illuminating device can be improved.
  • the diffusion plate of the present invention can be produced by various methods, for example, as follows.
  • glass materials are prepared so as to have a desired composition and then melted uniformly.
  • molding methods As a forming method, a roll-out method, a float method, a down draw method (for example, a slot down draw method or an overflow down draw method), a press method, or the like can be applied.
  • a bent plate process etc. may be performed with respect to the glass plate after shaping
  • the glass substrate is cut to an appropriate size and then crystallized by heat treatment.
  • the heat treatment conditions are determined in consideration of the viscosity characteristics such as the softening point and the crystal growth rate.
  • the surface of the crystallized glass substrate can be polished, cut or punched to produce a diffusion plate.
  • the diffusion plate produced in this way is applicable to lighting devices, particularly organic EL lighting.
  • the diffuser plate of the present invention can be applied to an application for diffusing light of an LED that is a point light source.
  • the diffusion plate of the present invention is preferably replaced with the glass plate 11 shown in FIG. 3, and the diffusion plate of the present invention may be attached to the outer surface of the glass plate 11.
  • Example 1 is merely an example.
  • the present invention is not limited to the following Example 1.
  • Tables 1 to 4 show Example 1 (Sample Nos. 1 to 23) of the present invention.
  • Each sample was prepared as follows. First, the raw materials were prepared so as to have the glass composition in the table, mixed uniformly, and then placed in a platinum crucible and melted at 1600 ° C. for 20 hours. Next, the molten glass is poured out on a carbon surface plate, formed into a thickness of 5 mm using a roller, and then cooled from a temperature of 700 ° C. to room temperature at a cooling rate of 100 ° C./hour using a slow cooling furnace. Was made.
  • the crystalline glass was heat-treated under the following heat treatment conditions (1) to (3) to produce crystallized glass.
  • the rate of temperature increase from room temperature to the nucleation temperature is 300 ° C./hour
  • the rate of temperature increase from the nucleation temperature to the crystal growth temperature is 150 ° C./hour
  • the rate of temperature decrease from the crystal growth temperature to room temperature is 100 ° C./hour. It was time.
  • Heat treatment conditions (1) Nucleation: 780 ° C.-2 hours ⁇ Crystal growth: 900 ° C.-1 hour Heat treatment conditions (2) Nucleation: 780 ° C.-2 hours ⁇ Crystal growth: 1160 ° C.-1 hour Heat treatment conditions (3) Nuclei Formation: No retention ⁇ Crystal growth: 900 ° C. for 1 hour
  • ⁇ -Q indicates a ⁇ -quartz solid solution
  • ⁇ -S indicates a ⁇ -spodumene solid solution.
  • crystallized glass obtained by precipitating ⁇ -quartz solid solution as the main crystal could be obtained under the heat treatment conditions (1) and (3). Furthermore, crystallized glass obtained by precipitating ⁇ -spodumene as the main crystal could be obtained by the heat treatment condition (2).
  • the light scattering function was evaluated for SS-1 manufactured by Nippon Electric Glass. The results are shown in Table 5.
  • board thickness of an evaluation sample is 1.1 mm in all.
  • a red laser SNF-660-5 manufactured by Moritex was used as a light source
  • a fiber multichannel spectrometer USB4000 manufactured by Ocean Photonics was used as a spectrometer
  • OPWave manufactured by Ocean Photonics was used as software.
  • P50-2-UV-VIS manufactured by Ocean Optics was used as the optical fiber connecting the integrating sphere and the spectroscope.
  • FIG. 1 is a schematic cross-sectional view showing a method for evaluating the light scattering function.
  • a hemispherical lens 2 is disposed on one surface of the substrate 1
  • an integrating sphere 3 is disposed on the other surface of the substrate 1.
  • the inclination from a plane perpendicular to the surface of the substrate 1 is ⁇ , and light from the light source 4 is emitted toward the center of the hemispherical lens 2 from this angle and is detected by the integrating sphere 3 through the inside of the substrate 1. .
  • FIG. 2 is a chart in which the data in Table 5 is plotted.
  • the vertical axis indicates the radiant flux value ( ⁇ W)
  • the horizontal axis indicates the incident angle ⁇ (°)
  • “ ⁇ ” indicates the sample No. before heat treatment.
  • data “ ⁇ ” indicates the sample No. after the heat treatment condition (A).
  • “+” indicates the sample No. after the heat treatment condition (B).
  • 23 data indicates the sample No. after the heat treatment condition (C).
  • data, “ ⁇ ” is SS-1 data.
  • the haze value and the total light transmittance are values measured by a TM double beam automatic haze computer manufactured by Suga Test Instruments Co., Ltd. using a sample (plate thickness: 1.1 mm) whose both surfaces are mirror-polished.
  • Example 2 is merely an example.
  • the present invention is not limited to Example 2 below.
  • Table 6 shows the composition of the crystallized glass substrate (glass plate).
  • the raw materials were prepared so as to have the composition shown in Table 6, melted at 1200 to 1700 ° C. for 4 to 24 hours with a melting crucible, then poured onto a carbon plate so as to form a plate, and annealed. Samples (Samples A to E) were prepared.
  • sample No. 24 was heat-treated with an electric furnace under the heat treatment conditions shown in Table 7 to obtain crystallized glass substrates (sample Nos. 24 to 29).
  • Sample No. Specifically, taking 24 as an example, the sample A is first put in an electric furnace set at 500 ° C., and then heated to 780 ° C. at a temperature rising rate of 600 ° C./hour, and then 780 ° C. The temperature is maintained at 1 ° C. for 1 hour, further raised from 900 ° C. to 900 ° C. at a rate of 600 ° C./hour from 780 ° C., held at 900 ° C. for 1 hour, and finally from 900 ° C. to 25 ° C. at 100 ° C. / After the temperature was lowered at the rate of temperature drop, it was taken out of the electric furnace.
  • Sample No. 30 is the sample A before heat processing.
  • the main crystal seed and crystallinity were evaluated by crushing a part of each sample and performing XRD measurement. In the measurement, the measurement range was 10 to 60 °, and the scan speed was 4 ° / min. The crystallinity was calculated by calculating the area of the halo corresponding to the mass of the amorphous and the area of the peak corresponding to the mass of the crystal, and then [peak area] ⁇ 100 / [peak area + halo]. Area] (%).
  • the haze value is a value measured by a TM double beam type automatic haze computer manufactured by Suga Test Instruments, using a sample (plate thickness: 1 mm) whose both surfaces are mirror-polished.
  • sample No. Nos. 24-29 have good light scattering properties because of their high haze values. Therefore, sample no. If 24 to 29 are used as the diffusion plate, it is considered that the light extraction efficiency of the lighting device can be improved. On the other hand, Sample No. No. 30 had poor light scattering properties because of its low haze value.
  • the diffusion plate of the present invention is suitable for organic EL lighting applications, but can also be applied to LED lighting applications, mercury lamp applications, fluorescent lamp applications, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

 焼結体からなる光取り出し層を形成しなくても、有機EL素子の光取り出し効率を高めることができ、しかも生産性に優れる基板材料を創案することを課題とするものであって、基板材料として、結晶性ガラス基板1を用い、これを有機EL照明に適用する。

Description

結晶性ガラス基板及び結晶化ガラス基板並びに拡散板及びそれを備えた照明装置
 本発明は、光散乱機能を付与し得る結晶性ガラス基板及び結晶化ガラス基板並びに拡散板及びそれを備えた照明装置に関する。
 近年、家電製品の普及、大型化、多機能化等の理由から、家庭等の生活空間で消費されるエネルギーが増えている。特に、照明機器のエネルギー消費が多くなっている。このため、高効率の照明が活発に検討されている。
 照明用光源は、限られた範囲を照らす「指向性光源」と、広範囲を照らす「拡散光源」とに分けられる。LED照明は、「指向性光源」に相当し、白熱球の代替として採用されつつある。その一方で、「拡散光源」に相当する蛍光灯の代替光源が望まれており、その候補として、有機EL(エレクトロルミネッセンス)照明が有力である。
 図3は、有機EL照明10の断面概念図である。有機EL照明10は、ガラス板11と、陽極12である透明導電膜と、電流の注入によって発光するエレクトロルミネッセンスを呈する有機化合物からなる一層又は複数層の発光層を含む有機EL層13と、陰極とを備えた素子である。有機EL照明10に用いられる有機EL層13として、低分子色素系材料、共役高分子系材料等が用いられており、発光層を形成する場合、ホール注入層、ホール輸送層、電子輸送層、電子注入層等との積層構造が形成される。このような積層構造を有する有機EL層13を、陽極12と陰極14の間に配置し、陽極12と陰極14に電界を印加すると、陽極12である透明電極から注入された正孔と、陰極14から注入された電子とが、発光層内で再結合し、その再結合エネルギーによって発光中心が励起されて、発光する。
 有機EL素子は、携帯電話、ディスプレイ用途として検討が進められており、一部では既に実用化されている。
 また、有機EL素子は、液晶ディスプレイ、プラズマディスプレイ等の薄型テレビと同等の発光効率を有している。しかし、照明用光源に適用するためには、輝度が未だ実用レベルに到達しておらず、更なる発光効率の改善が必要である。
 輝度が低い原因の一つとして、屈折率の不整合が挙げられる。具体的には、有機EL層の屈折率ndは1.8~1.9であり、透明導電膜の屈折率ndは1.9~2.0である。これに対して、ガラス基板の屈折率ndは、通常、1.5程度になる。よって、従来の有機ELデバイスは、透明導電膜とガラス基板の屈折率差が大きいことに起因して、有機EL層から放射した光が透明導電膜とガラス基板の界面で反射し、光取り出し効率が低下するという問題があった。
 また、ガラス基板と空気の屈折率差に起因して、ガラス基板内に光が閉じ込められることも輝度が低い原因の一つである。例えば、屈折率nd1.5のガラス基板を用いた場合、空気の屈折率ndは1.0であるため、臨界角はスネルの法則より42°と計算される。よって、この臨界角以上の入射角の光は、全反射を起こし、ガラス基板内に閉じ込められて、空気中に取り出されないことになる。
特開2012-25634号公報 特開2010-198797号公報
 上記問題を解決するために、透明導電膜とガラス基板の間に、光取り出し層を形成することが検討されている。例えば、特許文献1には、光取り出し効率を高めるために、ソーダガラス基板の表面に、高屈折率のガラスフリットを焼結させた光取り出し層を形成することが記載されている。更に、特許文献1には、光取り出し層内に散乱物質を分散させることにより、光取り出し効率を更に高めることも記載されている。また、特許文献2には、ガラス板の表面に凹凸を形成した上で、その凹凸部分について、高屈折率のガラスフリットを焼結させた光取り出し層を形成することが記載されている。
 しかし、特許文献1に記載のガラスフリットは、Nb25等を多量に含むため、原料コストが高価である。また、ガラス基板の表面に光取り出し層を形成するためには、ガラス基板の表面にガラスペーストを塗布する印刷工程が必要になり、この工程は生産コストの高騰を招く。更に、ガラスフリット中に散乱粒子を分散させる場合、散乱粒子自体の吸収により光取り出し層の透過率が低くなる。
 また、特許文献2に記載のガラス板を作製するためには、ガラス板の表面に凹凸を形成する工程が必要になると共に、その凹凸部分にガラスペーストを塗布する印刷工程も必要になる。これらの工程は、製造コストの高騰を招く。
 本発明は、上記事情に鑑み成されたものであり、その技術的課題は、焼結体からなる光取り出し層を形成しなくても、有機EL素子の光取り出し効率を高めることができ、しかも生産性に優れる基板材料を創案することである。
 本発明者等は、鋭意検討の結果、結晶性ガラス基板を結晶化し、得られた結晶化ガラスを有機EL照明に適用すると、焼結体からなる光取り出し層を形成しなくても、有機EL層から放射した光がガラスマトリクス/析出結晶界面で散乱して、光取り出し効率が向上することを見出し、本発明として提案するものである。すなわち、本発明は、基板材料として、結晶性ガラス基板を用い、これを有機EL照明に適用することを特徴とする。ここで、「結晶性」とは、熱処理により結晶が析出する性質を指す。
 この場合、本発明の結晶性ガラス基板は、ガラス組成として、質量%で、SiO2 40~80%、Al23 10~35%、Li2O 1~10%を含有することが好ましい。このようにすれば、熱処理により、主結晶としてLi2O-Al23-SiO2系結晶(LAS系結晶:例えば、β-石英固溶体、β-スポジュメン固溶体)を析出させることが可能になる。結果として、光散乱機能を確保し得ると共に、30~750℃の温度範囲における熱膨張係数が-10×10-7~30×10-7/℃になって、耐熱衝撃性を高めることができる。
 また、本発明の結晶性ガラス基板は、ガラス組成として、質量%で、SiO2 55~73%、Al23 17~27%、Li2O 2~5%、MgO 0~1.5%、ZnO 0~1.5%、Na2O 0~1%、K2O 0~1%、TiO2 0~3.8%、ZrO2 0~2.5%、SnO2 0~0.6%を含有することが好ましい。
 さらに、本発明の結晶性ガラス基板は、実質的にAs23及びSb23を含まないことが好ましい。このようにすれば、近年の環境的要請を満たすことができる。ここで、「実質的にAs23を含まない」とは、ガラス組成中のAs23の含有量が0.1質量%未満の場合を指す。「実質的にSb23を含まない」とは、ガラス組成中のSb23の含有量が0.1質量%未満の場合を指す。
 また、本発明の結晶性ガラス基板は、板厚が2.0mm以下であることが好ましい。このようにすれば、有機EL照明の軽量化を図り易くなる。
 さらに、本発明の結晶性ガラス基板は、屈折率ndが1.500超であることが好ましい。このようにすれば、有機EL層と結晶化ガラス基板界面での屈折率差が小さくなり、有機EL層から放射した光が透明導電膜と結晶化ガラス基板の界面で反射し難くなる。ここで、「屈折率nd」は、屈折率測定器で測定可能であり、例えば、25mm×25mm×約3mmの直方体試料を作製した後、(徐冷点Ta+30℃)から(歪点Ps-50℃)までの温度域を0.1℃/minの冷却速度でアニール処理し、続いて屈折率ndが整合する浸液をガラス間に浸透させながら、カルニュー製の屈折率測定器KPR-2000を用いることにより測定可能である。
 また、本発明の結晶性ガラス基板は、ロールアウト法により成形されてなることが好ましい。このようにすれば、大型の結晶性ガラス基板を大量に作製することができる。ここで、「ロールアウト法」は、溶融ガラスを一対の成形ロールの間に通して挟み込み、溶融ガラスを急冷しながら圧延成形して、ガラス基板を成形する方法である。
 さらに、本発明の結晶性ガラス基板は、フロート法により成形されてなることが好ましい。このようにすれば、結晶性ガラス基板の表面平滑性(特に、溶融金属錫浴に接していない側のガラス表面の表面平滑性)を高めることができる。ここで、「フロート法」は、溶融金属錫浴(フロートバス)上に溶融ガラスを浮かべて、ガラス基板を成形する方法である。
 また、本発明の結晶化ガラス基板は、結晶性ガラス基板を熱処理してなる結晶化ガラス基板であって、結晶性ガラス基板が、上記の結晶性ガラス基板であることを特徴とする。
 さらに、本発明の結晶化ガラス基板は、主結晶がβ-石英固溶体又はβ-スポジュメン固溶体であることが好ましい。このようにすれば、光散乱機能を確保し得ると共に、30~750℃の温度範囲における熱膨張係数が-10×10-7~30×10-7/℃になって、耐熱衝撃性を高めることができる。ここで、「主結晶」とは、析出量が最も多い結晶を指す。
 また、本発明の結晶化ガラス基板は、平均結晶粒子径が10~2000nmであることが好ましい。このようにすれば、可視光域における光散乱機能を高め易くなる。
 さらに、本発明の結晶化ガラス基板は、ヘイズ値が0.2%以上であることが好ましい。このようにすれば、有機EL層から放射した光が結晶化ガラス基板内で散乱し易くなる。ここで、「ヘイズ値」は、例えば、両表面が鏡面研磨された試料(板厚1.1mm)を評価試料とし、スガ試験機製TMダブルビーム式自動ヘーズコンピュータにより測定することができる。
 また、本発明の結晶化ガラス基板は、一方の表面から臨界角以上の光を入射した際に、他方の表面から光が取り出される性質を有することが好ましい。このようにすれば、結晶化ガラス基板内に閉じ込められる光が低減されて、光取り出し効率が向上する。
 さらに、本発明の結晶化ガラス基板は、(一方の表面から入射角60°の光を照射して、他方の表面から得られる放射束値)/(一方の表面から入射角0°の光を照射して、他方の表面から得られる放射束値)の値が0.005以上であることが好ましい。このようにすれば、結晶化ガラス基板内に閉じ込められる光が低減されて、光取り出し効率が向上する。
 また、本発明の結晶化ガラス基板の製造方法は、上記の結晶性ガラス基板を熱処理して、結晶化ガラス基板を得る結晶化ガラス基板の製造方法であって、熱処理の際に、結晶性ガラス基板の結晶核成長温度域(例えば、800~1100℃)で30分間以上保持すると共に、結晶核形成温度域(例えば、600~800℃未満)で30分間以上保持しないことを特徴とする。このようにすれば、結晶核がガラスマトリクス中に多量に析出することなく、1個当たりの平均結晶粒子径が大きくなり易い。結果として、可視光域で光散乱機能を発揮する程度まで結晶粒子を粗大化させることができる。
  加えて、本発明者等は、鋭意検討の結果、熱処理により、Al23及び/又はSiO2を含むガラス基板中に微細結晶を多数析出させて、これを拡散板として用いると、発光した光がマトリックスガラスと微細結晶の界面で散乱して、有機EL照明等の光取り出し効率を高め得ることを見出し、本発明として、提案するものである。すなわち、本発明の拡散板は、上述の結晶性ガラス基板を加熱処理してなる結晶化ガラス基板であって、且つ、組成として、少なくともAl23及び/又はSiO2を含む結晶化ガラス基板を、その結晶化度を10~90%としたことを特徴とする。ここで、「結晶化ガラス基板」には、平板形状のみならず、屈曲部、段付き部等を有する略板形状を含むものとする。「結晶化度」は、粉末法によりXRDを測定することにより、非晶質の質量に相当するハローの面積と、結晶の質量に相当するピークの面積とをそれぞれ算出した後、[ピークの面積]×100/[ピークの面積+ハローの面積](%)の式により求めた値を指す。
 この場合、本発明の拡散板は、少なくともAl23及び/又はSiO2を含む結晶化ガラス基板である。このようにすれば、耐候性を高めることができる。また、本発明の拡散板は、結晶化ガラス基板の結晶化度が10~90%である。このようにすれば、可視光の散乱機能を高めることができる。更に、本発明の拡散板は、熱処理により、ガラス板を結晶化することで作製可能である。よって、拡散板の製造コストを低廉化することができる。
 また、本発明の拡散板は、主結晶がAl-Si-O系結晶であることが好ましい。ここで、「主結晶」とは、XRDパターンにおいて、析出割合が最も大きい結晶種を指す。「~系結晶」とは、明示の成分を必須成分とする結晶を意味し、明示の成分以外の成分を実質的に含まない結晶であることが好ましい。
 さらに、本発明の拡散板は、主結晶がR-Al-Si-O系結晶であることが好ましい。ここで、「R」は、Li、Na、K、Mg、Ca、Sr、Ba、Znの何れかを指す。
 また、本発明の拡散板は、組成として、質量%で、SiO2 45~75%、Al23 13~30%、Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnO 0~30%を含有することが好ましい。ここで、「Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnO」とは、Li2O、Na2O、K2O、MgO、CaO、SrO、BaO及びZnOの合量を指す。
 さらに、本発明の拡散板は、組成として、質量%で、SiO2 45~70%、Al23 13~30%、Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnO 1~35%を含有することが好ましい。
 また、本発明の拡散板は、主結晶の平均結晶粒径が20~30000nmであることが好ましい。
 さらに、本発明の拡散板は、ヘイズ値が10%以上であることが好ましい。ここで、「ヘイズ値」は、全透過光の内、拡散透過光の割合を示すものであり、ヘイズ値が小さい程、透明性が高いことを意味する。ヘイズ値は、例えば、両表面が鏡面研磨された試料(板厚1mm)を評価試料とし、スガ試験機製TMダブルビーム式自動ヘーズコンピュータにより測定することができる。
 また、本発明の拡散板は、照明装置に用いることが好ましい。
 さらに、本発明の照明装置は、上記の拡散板を具備してなることが好ましい。本発明の照明装置は、上記拡散板を具備してなるため、発光した光を散乱させて、光の取り出し効率を高めることができる。結果として、電流量が低減されるため、照明装置が長寿命化すると共に、省エネ効果を享受することができる。
光散乱機能の評価方法を示す概略断面図である。 [表5]のデータをプロットしたチャートである。 有機EL照明の断面概念図である。
 本発明の結晶性ガラス基板において、ガラス組成として、質量%で、SiO2 40~80%、Al23 10~35%、Li2O 1~10%を含有することが好ましい。上記のように各成分の含有量を規定した理由を以下に説明する。なお、本発明の結晶化ガラス基板は、本発明の結晶性ガラス基板と同様の組成を有することが好ましい。
 SiO2は、ガラスの骨格を形成すると共に、LAS系結晶を構成する成分である。SiO2の含有量が少なくなると、化学的耐久性が低下し易くなる。一方、SiO2の含有量が多くなると、溶融性が低下し易くなったり、溶融ガラスの粘度が高くなり易く、結果として、結晶性ガラス基板への成形が困難になる。従って、SiO2の好適な含有量は40~80%、50~75%、55~73%、58~70%、特に60~68%である。
 Al23は、ガラスの骨格を形成すると共に、LAS系結晶を構成する成分である。Al23の含有量が少なくなると、化学的耐久性が低下し易くなる。一方、Al23の含有量が多くなると、溶融性が低下し易くなったり、溶融ガラスの粘度が高くなり易く、結果として、結晶性ガラス基板への成形が困難になる。また、成形時に、ムライトの結晶が析出して、ガラスが破損し易くなる。従って、Al23の好適な含有量は10~35%、17~27%または19~25%であり、特に好ましくは20~23%である。
 Li2Oは、LAS系結晶を構成する成分であり、結晶性に大きな影響を与えると共に、ガラスの粘性を低下させて、溶融性及び成形性を高める成分である。Li2Oの含有量が少なくなると、熱処理時に、LAS系結晶が析出し難しくなる。更に、成形時に、ムライトの結晶が析出して、ガラスが破損し易くなる。一方、Li2Oの含有量が多くなると、結晶性が強くなり過ぎて、成形時にガラスが失透して、ガラスが破損し易くなる。従って、Li2Oの好適な含有量は1~10%、2~5%または2.3~4.7%であり、特に好ましくは2.5~4.5%である。
 上記成分以外にも、例えば、以下の成分を添加してもよい。
 MgOは、LAS系結晶に固溶する成分である。MgOの含有量が多くなると、結晶性が強くなり過ぎて、成形時にガラスが失透して、ガラスが破損し易くなる。従って、MgOの好適な含有量は0~5%または0~1.5%であり、特に好ましくは0~1.2%である。
 ZnOは、屈折率を高める成分であると共に、MgOと同様にして、LAS系結晶に固溶する成分である。ZnOの含有量が多くなると、結晶性が強くなり過ぎて、成形時にガラスが失透して、ガラスが破損し易くなる。従って、ZnOの好適な含有量は0~5%、0~3%または0~1.5%であり、特に好ましくは0~1.2%である。
 Li2O、MgO及びZnOの合量が少な過ぎる場合、成形時にムライトの結晶が析出して、ガラスが破損し易くなる。更に、結晶性ガラスを結晶化させる際に、LAS系結晶が析出し難しくなり、結晶化ガラス基板の耐熱衝撃性が低下し易くなる。一方、Li2O、MgO及びZnOの合量が多くなると、結晶性が強くなり過ぎて、成形時にガラスが失透して、ガラスが破損し易くなる。従って、Li2O、MgO及びZnOの好適な含有量は、合量で1~10%または2~5.2%であり、特に好ましくは2.3~5%である。
 Na2Oは、ガラスの粘性を低下させて、溶融性及び成形性を高める成分である。Na2Oの含有量が多くなると、成形時にβ-スポジュメン固溶体に取り込まれて、結晶成長が促進される。これにより、ガラスが失透して、ガラスが破損し易くなる。従って、Na2Oの好適な含有量は0~3%、0~1%または0~0.6%であり、特に好ましくは0.05~0.5%である。
 K2Oは、ガラスの粘性を低下させて、溶融性及び成形性を高める成分である。K2Oの含有量が多くなると、熱膨張係数が高くなり易く、また耐クリープ性が低下し易くなり、結晶化ガラス基板を高温下で長時間使用すると、結晶化ガラス基板が変形し易くなる。従って、K2Oの好適な含有量は0~3%、0~1%または0~0.6%であり、特に好ましくは0.05~0.5%である。
 β-スポジュメン固溶体を析出させた結晶化ガラス基板を作製したい場合、Na2OとK2Oを併用することが好ましい。その理由は、Na2Oは、β-スポジュメン固溶体に取り込まれる成分であるため、K2Oを導入せずに、溶融性及び成形性を高めようとすると、Na2Oを過剰に導入しなければならず、成形時にガラスが失透し易くなるからである。成形時の失透を抑制しつつ、ガラスの粘性を低下させるには、Na2Oと共に、β-スポジュメン固溶体に取り込まれず、溶融性及び成形性を高めるK2Oを併用することが好ましい。Na2OとK2Oの合量が多くなると、成形時にガラスが失透し易くなる。一方、Na2OとK2Oの合量が少なくなると、溶融性及び成形性を高め難くなる。従って、Na2OとK2Oの好適な含有量は、合量で0.05~5%、0.05~3%または0.05~1%であり、特に好ましくは0.35~0.9%である。
 TiO2は、屈折率を高める成分であり、また結晶核形成成分である。TiO2の含有量が多くなると、成形時にガラスが失透して、ガラスが破損し易くなる。従って、TiO2の好適な含有量は0~10%、0~3.8%または0.1~3.8%であり、特に好ましくは0.5~3.6%である。
 ZrO2は、TiO2と同様にして、屈折率を高める成分であり、また結晶核形成成分である。ZrO2の含有量が多くなると、溶融時にガラスが失透し易くなり、結晶性ガラス基板への成形が困難になる。従って、ZrO2の好適な含有量は0~5%、0~2.5%または0.1~2.5%であり、特に好ましくは0.5~2.3%である。
 TiO2及びZrO2の合量が少なくなると、結晶性ガラスを結晶化させる際に、LAS系結晶が析出し難くなって、光散乱機能を確保し難くなる。一方、TiO2及びZrO2の合量が多くなると、成形時にガラスが失透して、ガラスが破損し易くなる。従って、TiO2及びZrO2の好適な含有量は、合量で1~15%、1~10%、1~7%または2~6%であり、特に好ましくは2.7~4.5%である。
 SnO2は、清澄性を高める成分である。SnO2の含有量が多くなると、溶融時にガラスが失透し易くなり、結晶性ガラス基板への成形が困難になる。従って、SnO2の好適な含有量は0~2%、0~1%、0~0.6%または0~0.45%であり、特に好ましくは0.01~0.4%である。
 Cl、SO3は、清澄性を高める成分である。Clの好適な含有量は0~2%である。また、SO3の好適な含有量は0~2%である。
 As23及びSb23も清澄性を高める成分であるが、これらの成分は環境的負荷を高める成分であり、またフロート法で成形する場合、フロートバス中で還元されて金属異物になる成分である。従って、本発明では、実質的にAs23及びSb23を含有しないことが好ましい。
 ガラスの骨格を形成する成分として、B23を導入することができる。しかし、B23の含有量が多くなると、耐熱性が低下し易くなる。従って、B23の好適な含有量は0~2%である。
 P25は、成形時の失透を抑制しつつ、核形成を促進する成分である。P25の好適な含有量は0~5%または0~3%であり、特に好ましくは0~2%である。
 CaO、SrO及びBaOは、溶融時の失透を助長する成分である。CaO、SrO及びBaOの好適な含有量は、合量で0~5%または0~2%である。
 NiO、CoO、Cr23、Fe23、V25、Nb23、Gd23は、着色剤として添加可能な成分である。これらの成分の好適な含有量は、合量で0~2%である。
 上記成分以外にも、他の成分を例えば5%まで導入してもよい。
 本発明の結晶性ガラス基板(及び結晶化ガラス基板)において、板厚は、好ましくは2.0mm以下、1.5mm以下、1.3mm以下、1.1mm以下、0.8mm以下、0.6mm以下、0.5mm以下、0.3mm以下または0.2mm以下であり、特に好ましくは0.1mm以下である。板厚が小さい程、有機EL照明を軽量化し易くなるが、板厚が極端に小さくなると、機械的強度が低下し易くなる。従って、板厚は、好ましくは10μm以上であり、特に好ましくは30μm以上である。
  本発明の結晶性ガラス基板において、屈折率ndは、好ましくは1.500超、1.580以上または1.600以上であり、特に好ましくは1.630以上である。屈折率ndが1.500以下になると、透明導電膜-結晶化ガラス基板界面の反射によって、光を外部に取り出し難くなる。一方、屈折率ndが2.3より高くなると、空気-結晶化ガラス基板界面での反射率が高くなり、光を外部に取り出し難くなる。よって、屈折率ndは、好ましくは2.3以下、2.2以下、2.1以下、2.0以下または1.9以下であり、特に好ましくは1.75以下である。
 本発明の結晶化ガラスの製造方法を説明する。まず所定の組成になるようにガラス原料を調合し、得られたガラスバッチを1550~1750℃の温度で溶融した後、板状に成形し、結晶性ガラス基板を得る。なお、成形方法として、フロート法、ロールアウト法、プレス法等があるが、結晶性ガラス基板の表面平滑性を高めたい場合は、フロート法が好ましく、大型の結晶性ガラス基板を作製したい場合は、ロールアウト法が好ましく、成形時の失透を抑制したい場合は、プレス法が好ましい。
 続いて、800~1100℃で0.5~3時間熱処理して、結晶を成長させることにより、結晶化ガラス基板を作製することができる。なお、必要に応じて、結晶を成長させる工程の前に、結晶性ガラス基板に結晶核を形成させる結晶核形成工程を設けることもできる。
 特に、熱処理の際に、結晶性ガラス基板の結晶核成長温度域で30分間以上保持すると共に、結晶核形成温度域で30分間以上保持しないことが好ましい。このようにすれば、結晶核がガラスマトリクス中に多量に析出する事態が防止されて、結晶粒子1個当たりの平均結晶粒子径が大きくなり易い。結果として、可視光域で光散乱機能を発揮する程度まで結晶粒子が粗大化し易くなる。
 本発明の結晶化ガラス基板は、主結晶としてLAS系結晶を析出していることが好ましい。このようにすれば、光散乱機能を確保しつつ、30~750℃の温度範囲における熱膨張係数が-10×10-7~30×10-7/℃になって、耐熱衝撃性を高めることができる。
 LAS系結晶として、β-石英固溶体を析出させるためには、結晶核を形成した後、800~950℃で0.5~3時間熱処理すればよく、β-スポジュメン固溶体を析出させるためには、結晶核を形成した後、1000~1100℃で0.5~3時間熱処理すればよい。
 本発明の結晶化ガラス基板において、平均結晶粒子径は、好ましくは10~2000nm、20~1800nm、100~1500nmまたは200~1500nmであり、特に好ましくは400~1000nmである。このようにすれば、可視光域における光散乱機能を高め易くなる。
 本発明の結晶化ガラス基板において、ヘイズ値は、好ましくは0.2%以上、1%以上、10%以上、20%以上または30%以上であり、特に好ましくは50~95%である。ヘイズ値が小さ過ぎると、結晶化ガラス基板内に閉じ込められる光が多くなり、光取り出し効率が低下し易くなる。
 本発明の結晶化ガラス基板において、全光線透過率は、好ましくは40%以上、50%以上または60%以上である。このようにすれば、有機EL素子を組み立てた際に輝度を高めることができる。
 本発明の結晶化ガラス基板において、(一方の表面から入射角60°の光を照射して、他方の表面から得られる放射束値)/(一方の表面から入射角0°の光を照射して、他方の表面から得られる放射束値)の値は、好ましくは0.005以上、0.01以上、0.03以上、0.05以上または0.08以上であり、特に好ましくは0.1以上である。上記値が小さ過ぎると、結晶化ガラス基板内に閉じ込められる光が多くなり、光取り出し効率が低下し易くなる。
 加えて、本発明の拡散板は、組成として、少なくともAl23及び/又はSiO2を含む結晶化ガラス基板であり、SiO2とAl23の合量は、好ましくは70質量%以上、特に75質量%以上である。このようにすれば、耐候性を高めることができる。
 本発明の拡散板において、結晶化ガラス基板の結晶化度は10~90%であり、好ましくは40~85%または45~80%であり、特に好ましくは50~75%である。結晶化度が低過ぎると、光散乱性を確保し難くなる。一方、結晶化度が高過ぎると、光透過性が低下し易くなる。
  本発明の拡散板において、結晶化ガラス基板の主結晶は、Al-Si-O系結晶、R-Si-O系結晶、R-Al-O系結晶またはR-Al-Si-O系結晶が好ましく、特にAl-Si-O系結晶またはR-Al-Si-O系結晶が好ましい。Al-Si-O系結晶は、針状結晶になり易いため、結晶化度が低い場合でも、マトリックスガラスと結晶の界面の面積が大きくなり、結果として、発光した光を散乱させ易くなる。また、R-Al-Si-O系結晶は、密度が大きく、マトリックスガラスと結晶の屈折率差が大きくなり易いため、結晶化度が低い場合でも、マトリックスガラスと結晶の界面で反射率が向上し、結果として、発光した光を散乱させ易くなる。
 主結晶として、Al-Si-O系結晶を析出させる場合、組成として、質量%で、SiO2 45~75%、Al23 13~30%、Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnO 0~30%を含有することが好ましい。
 SiO2は、ガラスの骨格を形成すると共に、Al-Si-O系結晶の構成成分である。SiO2の含有量は、好ましくは45~75%または50~70%であり、特に好ましくは53~65%である。SiO2の含有量が少な過ぎると、耐候性が低下し易くなる。一方、SiO2の含有量が多過ぎると、ガラス化が困難になる。
 Al23は、ガラスの骨格を形成すると共に、Al-Si-O系結晶の構成成分である。Al23の含有量は、好ましくは13~30%または15~27%であり、特に好ましくは17~25%である。Al23の含有量が少な過ぎると、耐候性が低下し易くなる。一方、Al23の含有量が多過ぎると、ガラス化が困難になる。
 Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnOは、溶融性や成形性を高める成分である。Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnOの含有量は、好ましくは0~30%、1~25%または5~23%であり、特に好ましくは8~20%である。Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnOの含有量が少な過ぎると、溶融性や成形性が低下し易くなる。一方、Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnOの含有量が多過ぎると、耐候性が低下し易くなる。なお、Li2Oの含有量は、好ましくは0~5%であり、特に好ましくは0~1%である。Na2Oの含有量は、好ましくは0~10%であり、特に好ましくは0.5~6%である。K2Oの含有量は、好ましくは0~10%であり、特に好ましくは1~6%である。MgOの含有量は、好ましくは0~6%であり、特に好ましくは0.1~1%である。CaOの含有量は、好ましくは0~6%であり、特に好ましくは0.1~1%である。SrOの含有量は、好ましくは0~6%であり、特に好ましくは0.1~3%である。BaOの含有量は、好ましくは0~10%または1~9%であり、特に好ましくは2~7%である。ZnOの含有量は、好ましくは0~8%であり、特に好ましくは0.1~7%である。
 モル比Al23/(Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnO)は、好ましくは1.3以上であり、特に好ましくは1.4以上である。モル比Al23/(Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnO)が小さ過ぎると、熱処理時に、Al-Si-O系結晶が析出し難くなる。
 上記成分以外にも、例えば、以下の成分を導入してもよい。
 TiO2は、耐候性を高める成分であり、また結晶核として機能する成分である。TiO2の含有量は、好ましくは0~7%または0~5%であり、特に好ましくは0.01~3%である。TiO2の含有量が多過ぎると、成形時にガラスが失透し易くなる。
 ZrO2は、耐候性を高める成分であり、また結晶核として機能する成分である。ZrO2の含有量は、好ましくは0~7%または0~5%であり、特に好ましくは0.1~4%である。ZrO2の含有量が多過ぎると、成形時にガラスが失透し易くなる。
 B23は、ガラスの骨格を形成する成分である。B23の含有量は、好ましくは0~10%であり、特に好ましくは0~7%である。B23の含有量が多過ぎると、耐候性が低下し易くなることに加えて、熱処理時に、Al-Si-O系結晶が析出し難くなる。
 P25は、ガラスの骨格を形成する成分である。P25の含有量は、好ましくは0~5%であり、特に好ましくは0.1~3%である。P25の含有量が多過ぎると、耐候性が低下し易くなることに加えて、熱処理時に、Al-Si-O系結晶が析出し難くなる。
 遷移金属酸化物は、有色であるため、その含有量を1%以下、特に0.1%以下とすることが好ましい。
 清澄剤として、As23、Sb23、SnO2、SO3、Cl等を合量で3%まで導入してもよい。
 主結晶として、Al-Si-O系結晶を析出させる場合、850~1100℃の温度域で10~60分間保持することで結晶化させることが好ましく、必要に応じて、この結晶化工程前に、650~800℃の温度域で10~100分程度保持して、結晶核を析出させる工程を設けてもよい。
 主結晶として、R-Al-Si-O系結晶を析出させる場合、組成として、質量%で、SiO2 45~70%、Al23 13~30%、Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnO 1~35%を含有することが好ましい。
 SiO2は、ガラスの骨格を形成すると共に、R-Al-Si-O系結晶の構成成分である。SiO2の含有量は、好ましくは45~70%または50~68%であり、特に好ましくは53~65%である。SiO2の含有量が少な過ぎると、耐候性が低下し易くなる。一方、SiO2の含有量が多過ぎると、ガラス化が困難になる。
 Al23は、ガラスの骨格を形成すると共に、R-Al-Si-O系結晶の構成成分である。Al23の含有量は、好ましくは13~30%または15~27%であり、特に好ましくは17~25%である。Al23の含有量が少な過ぎると、耐候性が低下し易くなる。一方、Al23の含有量が多過ぎると、ガラス化が困難になる。
 Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnOは、R-Al-Si-O系結晶の構成成分であると共に、溶融性や成形性を高める成分である。Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnOの含有量は、好ましくは1~35%、2~25%または5~23%であり、特に好ましくは8~20%である。Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnOの含有量が少な過ぎると、溶融性や成形性が低下し易くなる。一方、Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnOの含有量が多過ぎると、耐候性が低下し易くなる。なお、Li2Oの含有量は、好ましくは0~5%であり、特に好ましくは0~1%である。Na2Oの含有量は、好ましくは0~10%であり、特に好ましくは0.5~6%である。K2Oの含有量は、好ましくは0~10%であり、特に好ましくは1~6%である。MgOの含有量は、好ましくは0~6%であり、特に好ましくは0.1~1%である。CaOの含有量は、好ましくは0~6%であり、特に好ましくは0.1~1%である。SrOの含有量は、好ましくは0~6%であり、特に好ましくは0.1~3%である。BaOの含有量は、好ましくは0~10%または1~9%であり、特に好ましくは2~7%である。ZnOの含有量は、好ましくは0~11%または1~10%であり、特に好ましくは2~9%である。
 モル比Al23/(Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnO)は、好ましくは1.3以下であり、特に好ましくは1.25以下である。モル比Al23/(Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnO)が小さ過ぎると、熱処理時に、R-Al-Si-O系結晶が析出し難くなる。
 上記成分以外にも、例えば、以下の成分を導入してもよい。
 TiO2は、耐候性を高める成分であり、また結晶核として機能する成分である。TiO2の含有量は、好ましくは0~7%または0~5%であり、特に好ましくは0.01~3%である。TiO2の含有量が多過ぎると、成形時にガラスが失透し易くなる。
 ZrO2は、耐候性を高める成分であり、また結晶核として機能する成分である。ZrO2の含有量は、好ましくは0~7%または0~5%であり、特に好ましくは0.1~4%である。ZrO2の含有量が多過ぎると、成形時にガラスが失透し易くなる。
 B23は、ガラスの骨格を形成する成分である。B23の含有量は、好ましくは0~10%であり、特に好ましくは0~7%である。B23の含有量が多過ぎると、耐候性が低下し易くなることに加えて、熱処理時に、R-Al-Si-O系結晶が析出し難くなる。
 P25は、ガラスの骨格を形成する成分である。P25の含有量は、好ましくは0~5%であり、特に好ましくは0.1~3%である。P25の含有量が多過ぎると、耐候性が低下し易くなることに加えて、熱処理時に、R-Al-Si-O系結晶が析出し難くなる。
 遷移金属酸化物は、有色であるため、その含有量を1%以下、特に0.1%以下とすることが好ましい。
 清澄剤として、As23、Sb23、SnO2、SO3、Cl等を合量で3%まで導入してもよい。
 主結晶として、R-Al-Si-O系結晶を析出させる場合、850~1100℃の温度域で10~60分間保持することで結晶化させることが好ましく、必要に応じて、この結晶化工程前に、650~800℃の温度域で10~100分程度保持して、結晶核を析出させる工程を設けてもよい。
 結晶粒径の制御は、熱処理温度と熱処理時間を調整することで行うことができる。特に、結晶化前に予め結晶核を形成すると、結晶粒径を制御し易くなる。結晶核が多い程、結晶粒径を小さくすることができる。
 本発明の拡散板において、主結晶の平均結晶粒径は20~30000nmが好ましい。主結晶の平均結晶粒径が小さ過ぎると、光散乱性が不十分になり易い。一方、主結晶の平均結晶粒径が大き過ぎると、結晶が成長する際に破損の原因になり易い。
 本発明の拡散板において、ヘイズ値は、好ましくは10%以上、20%以上、30%以上または40%以上であり、特に好ましくは50~99%である。このようにすれば、光散乱性が向上し、照明装置の光取り出し効率を高めることができる。
 本発明の拡散板は、種々の方法により作製することができ、例えば、以下のようにして作製することができる。
 まず所望の組成になるように、ガラス原料を調合した後、均一になるように溶融する。次に、各種の成形方法により板状に成形する。成形方法として、ロールアウト法、フロート法、ダウンドロー法(例えば、スロットダウンドロー法、オーバーフローダウンドロー法)、プレス法等が適用可能である。なお、成形後のガラス板に対して、曲げ板加工等を行なって、ガラス板の一方の表面に凹面、凸面、波面を形成してもよい。
 続いて、必要に応じて、適当な寸法にガラス基板を切断した後、熱処理により結晶化する。熱処理条件は、軟化点等の粘度特性と結晶成長速度を考慮して決定される。
 最後に、必要に応じて、結晶化ガラス基板の表面を研磨したり、切断、穴あけ加工を行うことにより、拡散板を作製することができる。
 このようにして作製した拡散板は、照明装置、特に有機EL照明に適用可能である。なお、本発明の拡散板は、点光源であるLEDの光を拡散する用途にも適用可能である。
 有機EL照明に用いる場合、例えば、本発明の拡散板を図3に示すガラス板11の代替とすることが好ましく、本発明の拡散板をガラス板11の外表面に貼着してもよい。
 以下、実施例1に基づいて、上述の結晶性ガラス及び結晶化ガラスに係る本発明を詳細に説明する。なお、以下の実施例1は、単なる例示である。本発明は、以下の実施例1に何ら限定されない。
 表1~4は、本発明の実施例1(試料No.1~23)を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 各試料は、次のようにして調製した。まず表中のガラス組成になるように原料を調合し、均一に混合した後、白金ルツボに入れて1600℃で20時間溶融した。次いで、溶融ガラスをカーボン定盤上に流し出し、ローラーを用いて5mmの厚さに成形した後、徐冷炉を用いて700℃から室温まで100℃/時間の降温速度で冷却して、結晶性ガラスを作製した。
 次に、下記の熱処理条件(1)~(3)により、結晶性ガラスを熱処理して、結晶化ガラスを作製した。なお、室温から核形成温度までの昇温速度を300℃/時間、核形成温度から結晶成長温度までの昇温速度を150℃/時間とし、結晶成長温度から室温までの降温速度を100℃/時間とした。
 熱処理条件(1) 核形成:780℃-2時間 → 結晶成長:900℃-1時間
 熱処理条件(2) 核形成:780℃-2時間 → 結晶成長:1160℃-1時間
 熱処理条件(3) 核形成:保持なし → 結晶成長:900℃-1時間
 各結晶化ガラスについて、X線回折装置(リガク製 RINT-2100)を用いて、主結晶を評価した。なお、測定範囲を2θ=10~60°とした。なお、表中の「β-Q」はβ-石英固溶体を指し、「β-S」はβ-スポジュメン固溶体を指す。
 表から明らかなように、熱処理条件(1)、(3)により、主結晶としてβ-石英固溶体を析出してなる結晶化ガラスを得ることができた。更に、熱処理条件(2)により、主結晶としてβ-スポジュメンを析出してなる結晶化ガラスを得ることができた。
<光散乱機能の評価>
 続いて、熱処理前の試料No.23に対して、以下の熱処理条件(A)~(C)で熱処理を行い、図1に示す測定装置により、光散乱機能を評価した。
 (A)炉内温度900℃に維持された徐冷炉内に投入し、1時間保持した後、炉内から試料を取り出し、室温にて静置する。
 (B)炉内温度940℃に維持された徐冷炉内に投入し、1時間保持した後、炉内から試料を取り出し、室温にて静置する。
 (C)電気炉で室温から760℃まで20℃/分で昇温し、760℃で1分間保持した上で、940℃まで20℃/分で昇温し、940℃で1時間保持した後に、炉内から試料を取り出し、室温にて静置する。
 同様にして、日本電気硝子製SS-1についても、光散乱機能を評価した。その結果を表5に示す。なお、評価試料の板厚は、何れも1.1mmである。
 光散乱機能の評価方法を詳細に説明する。まず一方の基板の表面上に浸液を用いて屈折率nd1.74の半球レンズを設置し、半球レンズの中心に向かって、光源を入射させた。次に、基板の内部を通って、他方の基板の表面から取り出される光を積分球により検出した。更に、入射角θを変化させて同様の実験を繰り返し、それぞれの入射角において取り出される光を積分球により検出した。その測定結果を表2に示す。ここで、光源には、モリテックス製赤色レーザーSNF-660-5、分光器には、オーシャンフォトニクス製ファイバマルチチャンネル分光器USB4000、ソフトウェアには、オーシャンフォトニクス製OPWaveを用いた。また、積分球と分光器を接続する光ファイバには、オーシャンオプティクス製P50-2-UV-VISを用いた。
 図1は、光散乱機能の評価方法を示す概略断面図である。図1から分かるように、基板1の一方の表面上に半球レンズ2が配置されており、基板1の他方の表面に積分球3が配置されている。基板1の表面に垂直な面からの傾きをθとし、この角度から光源4の光が半球レンズ2の中心に向かって出射されると共に、基板1の内部を通って積分球3により検出される。
Figure JPOXMLDOC01-appb-T000005
 図2は、表5のデータをプロットしたチャートである。図2において、縦軸は放射束値(μW)、横軸は入射角θ(°)を示しており、「○」は熱処理前の試料No.23のデータ、「□」は熱処理条件(A)を行った後の試料No.23のデータ、「+」は熱処理条件(B)を行った後の試料No.23のデータ、「×」は熱処理条件(C)を行った後の試料No.23のデータ、「△」はSS-1のデータである。
 ヘイズ値及び全光線透過率は、両表面が鏡面研磨された試料(板厚1.1mm)を評価試料とし、スガ試験機製TMダブルビーム式自動ヘーズコンピュータにより測定した値である。
 表5から明らかなように、試料No.23に対して、熱処理条件(A)~(C)を行ったところ、臨界角付近である40°以上の入射角でも、高い放射束値が得られた。なお、熱処理条件(A)~(C)により、主結晶としてβ-石英固溶体が析出していた。一方、日本電気硝子製SS-1は、入射角が40°以上になると、放射束値が低くなった。
 以下、実施例2に基づいて、上述の拡散板及びそれを用いた照明装置に係る本発明を詳細に説明する。なお、以下の実施例2は、単なる例示である。本発明は、以下の実施例2に何ら限定されない。
 表6は、結晶化ガラス基板(ガラス板)の組成を示している。
Figure JPOXMLDOC01-appb-T000006
 表6に記載の組成になるように原料を調合し、溶融ルツボで1200~1700℃で4~24時間溶融した後、板状になるようにカーボン板上に流し出し、アニールすることにより、ガラス試料(試料A~E)を作製した。
 次に、各ガラス試料について、電気炉により、表7に記載の熱処理条件で熱処理して、結晶化ガラス基板(試料No.24~29)を得た。試料No.24を例にして、具体的に説明すると、まず500℃に設定された電気炉内に、試料Aを投入した上で、600℃/時の昇温速度で780℃まで昇温した後、780℃で1時間保持し、更に780℃から900℃まで600℃/時の昇温速度で900℃まで昇温した後、900℃で1時間保持し、最後に900℃から25℃まで100℃/時の降温速度で降温した後、電気炉外に取り出した。なお、試料No.30は、熱処理前の試料Aである。
Figure JPOXMLDOC01-appb-T000007
 主結晶種と結晶化度は、各試料の一部を粉砕して、XRD測定を行うことにより評価した。なお、測定に際し、測定範囲を10~60°、スキャン速度を4°/分とした。なお、結晶化度は、非晶質の質量に相当するハローの面積と、結晶の質量に相当するピークの面積とをそれぞれ算出した後、[ピークの面積]×100/[ピークの面積+ハローの面積](%)の式により求めた。
 ヘイズ値は、両表面が鏡面研磨された試料(板厚1mm)を評価試料とし、スガ試験機製TMダブルビーム式自動ヘーズコンピュータにより測定した値である。
 表7から明らかなように、試料No.24~29は、ヘイズ値が高いため、光散乱性が良好である。よって、試料No.24~29を拡散板として用いると、照明装置の光取り出し効率を高め得ると考えられる。一方、試料No.30は、ヘイズ値が低いため、光散乱性が不良であった。
 本発明の拡散板は、有機EL照明用途に好適であるが、LED照明用途、水銀灯用途、蛍光灯用途等にも適用可能である。
1 基板(結晶化ガラス基板)
2 半球レンズ
3 積分球
4 レーザー
10 有機EL照明
11 ガラス板
12 陽極
13 有機EL層
14 陰極

Claims (24)

  1.  有機EL照明に用いることを特徴とする結晶性ガラス基板。
  2.  ガラス組成として、質量%で、SiO2 40~80%、Al23 10~35%、Li2O 1~10%を含有することを特徴とする請求項1に記載の結晶性ガラス基板。
  3.  ガラス組成として、質量%で、SiO2 55~73%、Al23 17~27%、Li2O 2~5%、MgO 0~1.5%、ZnO 0~1.5%、Na2O 0~1%、K2O 0~1%、TiO2 0~3.8%、ZrO2 0~2.5%、SnO2 0~0.6%を含有することを特徴とする請求項1又は2に記載の結晶性ガラス基板。
  4.  実質的にAs23及びSb23を含まないことを特徴とする請求項1~3の何れかに記載の結晶性ガラス基板。
  5.  板厚が2.0mm以下であることを特徴とする請求項1~4の何れかに記載の結晶性ガラス基板。
  6.  屈折率ndが1.500超であることを特徴とする請求項1~5の何れかに記載の結晶性ガラス基板。
  7.  ロールアウト法により成形されてなることを特徴とする請求項1~6の何れかに記載の結晶性ガラス基板。
  8.  フロート法により成形されてなることを特徴とする請求項1~6の何れかに記載の結晶性ガラス基板。
  9.  結晶性ガラス基板を熱処理してなる結晶化ガラス基板であって、
     結晶性ガラス基板が、請求項1~8の何れかに記載の結晶性ガラス基板であることを特徴とする結晶化ガラス基板。
  10.  主結晶がβ-石英固溶体又はβ-スポジュメン固溶体であることを特徴とする請求項9に記載の結晶化ガラス基板。
  11.  平均結晶粒子径が10~2000nmであることを特徴とする請求項9又は10の結晶化ガラス基板。
  12.  ヘイズ値が0.2%以上であることを特徴とする請求項9~11の何れかに記載の結晶化ガラス基板。
  13.  一方の表面から臨界角以上の光を入射した際に、他方の表面から光が取り出される性質を有することを特徴とする請求項9~12の何れかに記載の結晶化ガラス基板。
  14.  (一方の表面から入射角60°の光を照射して、他方の表面から得られる放射束値)/(一方の表面から入射角0°の光を照射して、他方の表面から得られる放射束値)の値が0.005以上であることを特徴とする請求項9~13の何れかに記載の結晶化ガラス基板。
  15.  請求項1~8の何れかに記載の結晶性ガラス基板を熱処理して、結晶化ガラス基板を得る結晶化ガラス基板の製造方法であって、
     熱処理の際に、結晶性ガラス基板の結晶核成長温度域で30分間以上保持すると共に、結晶核形成温度域で30分間以上保持しないことを特徴とする結晶化ガラス基板の製造方法。
  16.  請求項1に記載の結晶性ガラス基板を熱処理してなる結晶化ガラス基板であって、且つ、組成として、少なくともAl23及び/又はSiO2を含む結晶化ガラス基板を、その結晶化度を10~90%としたことを特徴とする拡散板。
  17.  主結晶がAl-Si-O系結晶であることを特徴とする請求項16に記載の拡散板。
  18.  主結晶がR-Al-Si-O系結晶であることを特徴とする請求項16に記載の拡散板。
  19.  組成として、質量%で、SiO2 45~75%、Al23 13~30%、Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnO 0~30%を含有することを特徴とする請求項16又は17に記載の拡散板。
  20.  組成として、質量%で、SiO2 45~70%、Al23 13~30%、Li2O+Na2O+K2O+MgO+CaO+SrO+BaO+ZnO 1~35%を含有することを特徴とする請求項16又は18に記載の拡散板。
  21.  主結晶の平均結晶粒径が20~30000nmであることを特徴とする請求項16~20の何れかに記載の拡散板。
  22.  ヘイズ値が10%以上であることを特徴とする請求項16~21の何れかに記載の拡散板。
  23.  照明装置に用いることを特徴とする請求項16~22の何れかに記載の拡散板。
  24.  請求項16~22の何れかに記載の拡散板を具備してなることを特徴とする照明装置。
PCT/JP2014/050659 2013-01-18 2014-01-16 結晶性ガラス基板及び結晶化ガラス基板並びに拡散板及びそれを備えた照明装置 WO2014112552A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/760,532 US20150353413A1 (en) 2013-01-18 2014-01-16 Crystalline glass substrate, crystallized glass substrate, diffusion plate, and illumination device provided with same
DE112014000476.6T DE112014000476T5 (de) 2013-01-18 2014-01-16 Kristallines Glassubstrat, Kristallisiertes Glassubstrat, Diffusionsplatte und Leuchtvorrichtung
CN201480002329.XA CN104619666B (zh) 2013-01-18 2014-01-16 结晶性玻璃基板及结晶化玻璃基板、以及扩散板及具备其的照明装置
KR1020157000466A KR20150031268A (ko) 2013-01-18 2014-01-16 결정성 유리 기판, 결정화 유리 기판, 확산판, 및 그것을 구비한 조명 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-006861 2013-01-18
JP2013-007215 2013-01-18
JP2013007215A JP6090708B2 (ja) 2013-01-18 2013-01-18 拡散板及びそれを備えた照明装置
JP2013006861A JP6066060B2 (ja) 2013-01-18 2013-01-18 結晶化ガラス基板及びその製造方法

Publications (1)

Publication Number Publication Date
WO2014112552A1 true WO2014112552A1 (ja) 2014-07-24

Family

ID=51209641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050659 WO2014112552A1 (ja) 2013-01-18 2014-01-16 結晶性ガラス基板及び結晶化ガラス基板並びに拡散板及びそれを備えた照明装置

Country Status (6)

Country Link
US (1) US20150353413A1 (ja)
KR (1) KR20150031268A (ja)
CN (1) CN104619666B (ja)
DE (1) DE112014000476T5 (ja)
TW (1) TWI609515B (ja)
WO (1) WO2014112552A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020027088A1 (ja) * 2018-07-31 2021-09-24 日本電気硝子株式会社 ディスプレイ用基板及びその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247702B (zh) * 2013-09-30 2018-10-26 乐金显示有限公司 有机电子器件
JP6742593B2 (ja) * 2015-01-05 2020-08-19 日本電気硝子株式会社 支持ガラス基板の製造方法及び積層体の製造方法
JP6953101B2 (ja) * 2017-02-24 2021-10-27 株式会社オハラ 結晶化ガラス
US20210139362A1 (en) * 2018-04-20 2021-05-13 Ohara Inc. Method for producing crystallized glass member having curved shape
WO2020203308A1 (ja) * 2019-04-01 2020-10-08 日本電気硝子株式会社 Li2O-Al2O3-SiO2系結晶化ガラス
US20220081348A1 (en) * 2019-04-23 2022-03-17 Nippon Electric Glass Co., Ltd. Li2O-Al2O3-SiO2-BASED CRYSTALLIZED GLASS
CN110510879A (zh) * 2019-08-21 2019-11-29 成都光明光电股份有限公司 微晶玻璃制品、微晶玻璃及其制造方法
CN110436788A (zh) * 2019-08-21 2019-11-12 成都光明光电股份有限公司 微晶玻璃、微晶玻璃制品及其制造方法
CN110482866B (zh) * 2019-08-21 2022-08-02 成都光明光电股份有限公司 微晶玻璃制品、微晶玻璃及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059313A (ja) * 2005-08-26 2007-03-08 Showa Denko Kk 発光デバイスおよびその用途
JP2011033714A (ja) * 2009-07-30 2011-02-17 Nippon Electric Glass Co Ltd 光反射基材
WO2011106489A2 (en) * 2010-02-26 2011-09-01 Corning Incorporated Glass-ceramic with bulk scattering properties and methods of making them

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388375B1 (en) * 1998-05-12 2002-05-14 Corning Incorporated Display panel backplate
US6939283B2 (en) * 2003-08-12 2005-09-06 Xerox Corporation Booklet maker with flexible gate upstream of crease rolls
JP4933863B2 (ja) * 2005-10-25 2012-05-16 株式会社オハラ 結晶化ガラスおよび結晶化ガラスの製造方法
DE502006004506D1 (de) * 2006-03-20 2009-09-24 Schott Ag Transparente, farblose Lithium-Aluminosilikat-Glaskeramikplatte mit blickdichter, farbiger Unterseitenbeschichtung
US8039738B2 (en) * 2007-07-26 2011-10-18 Translucent, Inc. Active rare earth tandem solar cell
JP5673909B2 (ja) * 2008-05-19 2015-02-18 日本電気硝子株式会社 結晶性ガラス及びこれを結晶化させてなる結晶化ガラス
DE102008050263C5 (de) * 2008-10-07 2020-01-02 Schott Ag Transparente, eingefärbte Kochfläche mit verbesserter farbiger Anzeigefähigkeit und Verfahren zur Herstellung einer solchen Kochfläche
FR2955574B1 (fr) * 2010-01-22 2014-08-08 Eurokera Vitroceramiques de beta-quartz ; articles en lesdites vitroceramiques ; procedes d'obtention ; verres precurseurs.
KR101570968B1 (ko) * 2012-11-20 2015-11-23 코닝정밀소재 주식회사 유기 발광소자용 기판, 그 제조방법 및 이를 구비하는 유기 발광소자

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059313A (ja) * 2005-08-26 2007-03-08 Showa Denko Kk 発光デバイスおよびその用途
JP2011033714A (ja) * 2009-07-30 2011-02-17 Nippon Electric Glass Co Ltd 光反射基材
WO2011106489A2 (en) * 2010-02-26 2011-09-01 Corning Incorporated Glass-ceramic with bulk scattering properties and methods of making them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020027088A1 (ja) * 2018-07-31 2021-09-24 日本電気硝子株式会社 ディスプレイ用基板及びその製造方法

Also Published As

Publication number Publication date
CN104619666A (zh) 2015-05-13
KR20150031268A (ko) 2015-03-23
US20150353413A1 (en) 2015-12-10
CN104619666B (zh) 2017-05-31
TW201434192A (zh) 2014-09-01
TWI609515B (zh) 2017-12-21
DE112014000476T5 (de) 2015-11-05

Similar Documents

Publication Publication Date Title
WO2014112552A1 (ja) 結晶性ガラス基板及び結晶化ガラス基板並びに拡散板及びそれを備えた照明装置
JP6066060B2 (ja) 結晶化ガラス基板及びその製造方法
US9902647B2 (en) Manufacturing method for phase-separated glass, and phase-separated glass
KR101638488B1 (ko) 고굴절률 유리
JP6269933B2 (ja) ガラス板
WO2012157695A1 (ja) 高屈折率ガラス
WO2016013612A1 (ja) 高屈折率ガラス
WO2015186606A1 (ja) 分相ガラス、分相性ガラス、有機elデバイス及び分相ガラスの製造方法
US20160200624A1 (en) Glass and method for producing same
JP4962898B2 (ja) フラットパネルディスプレイ用ガラス基板
WO2015186584A1 (ja) 分相ガラス及び分相ガラスの製造方法並びに分相ガラスを用いた複合基板
JP6249218B2 (ja) ガラスの製造方法及びガラス
WO2015034030A1 (ja) ガラス及びその製造方法
WO2014175418A1 (ja) 高屈折率ガラス
JP6090708B2 (ja) 拡散板及びそれを備えた照明装置
JP2016064970A (ja) 分相ガラス
JP6406571B2 (ja) ガラス
WO2016117406A1 (ja) 分相ガラス
JP6331076B2 (ja) ガラスフィルム及びこれを用いた複合基板
JP2006244870A (ja) 平面表示装置用ガラススペーサーの製造方法及びガラススペーサー
JP2015227272A (ja) 分相ガラス及びこれを用いた複合基板
JP2016011245A (ja) 分相ガラス
JP2016147777A (ja) 分相ガラスの製造方法
JP2018027877A (ja) 分相ガラス
JP2015227273A (ja) 分相ガラスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157000466

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14760532

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014000476

Country of ref document: DE

Ref document number: 1120140004766

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740935

Country of ref document: EP

Kind code of ref document: A1