WO2015034030A1 - ガラス及びその製造方法 - Google Patents

ガラス及びその製造方法 Download PDF

Info

Publication number
WO2015034030A1
WO2015034030A1 PCT/JP2014/073425 JP2014073425W WO2015034030A1 WO 2015034030 A1 WO2015034030 A1 WO 2015034030A1 JP 2014073425 W JP2014073425 W JP 2014073425W WO 2015034030 A1 WO2015034030 A1 WO 2015034030A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
phase
organic
content
Prior art date
Application number
PCT/JP2014/073425
Other languages
English (en)
French (fr)
Inventor
篤 虫明
洋平 細田
隆 村田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014000196A external-priority patent/JP6249218B2/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201480039254.2A priority Critical patent/CN105377786B/zh
Publication of WO2015034030A1 publication Critical patent/WO2015034030A1/ja
Priority to US15/058,468 priority patent/US20160200624A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to glass and a method for producing the same, and specifically relates to a phase-separated glass having a light scattering function, a method for producing the glass, and a glass that undergoes phase separation by heat treatment.
  • the light source for illumination is divided into a “directional light source” that illuminates a limited area and a “diffuse light source” that illuminates a wide area.
  • LED lighting corresponds to a “directional light source” and is being adopted as an alternative to an incandescent bulb.
  • an alternative light source for a fluorescent lamp corresponding to a “diffusion light source” is desired, and organic EL (electroluminescence) illumination is a promising candidate.
  • the organic EL element includes a glass plate, a transparent conductive film as an anode, an organic EL layer including an organic compound exhibiting electroluminescence that emits light by current injection, and a cathode, and a cathode. It is an element.
  • As the organic EL layer used in the organic EL element a low molecular dye material, a conjugated polymer material or the like is used.
  • a hole injection layer, a hole transport layer, an electron transport layer, an electron injection A laminated structure with layers and the like is formed.
  • An organic EL layer having such a laminated structure is disposed between the anode and the cathode, and by applying an electric field to the anode and the cathode, holes injected from the transparent electrode that is the anode and those injected from the cathode The electrons recombine in the light emitting layer, and the emission center is excited by the recombination energy to emit light.
  • Organic EL elements are being studied for use in mobile phones and displays, and some have already been put into practical use.
  • the organic EL element has a luminous efficiency equivalent to that of a thin television such as a liquid crystal display or a plasma display.
  • Patent Document 1 a light extraction layer in which a glass frit having a high refractive index is sintered is formed on the surface of a soda glass plate, and a scattering substance is dispersed in the light extraction layer, thereby reducing the light extraction efficiency. It is also described to increase.
  • the present invention has been made in view of the above circumstances, and its technical problem is that the light extraction efficiency of the organic EL element can be increased without forming a light extraction layer made of a sintered body, and The idea is to create a glass with excellent productivity and a method for producing the same.
  • the present inventors have found that the above technical problem can be solved by using a specific phase-separated glass, and propose the present invention (first invention). That is, the glass of the present invention (first present invention) has a phase separation structure including at least a first phase and a second phase, and the content of SiO 2 in the first phase is the second phase. It is more than the content of SiO 2 in the phase and is characterized by being used for an organic EL device.
  • the “organic EL device” includes not only organic EL lighting but also an organic EL display.
  • the light scattering accompanying formation of a 1st phase and a 2nd phase can be confirmed visually. For example, each phase can be confirmed in detail by observing the surface of the sample after being immersed in a 1M hydrochloric acid solution for 10 minutes with a scanning electron microscope.
  • the glass of the present invention (first present invention) has a phase separation structure including at least a first phase and a second phase, and the content of SiO 2 in the first phase is in the second phase. wherein the of more than the content of SiO 2.
  • the glass of the present invention (first invention) has a phase separation structure including at least a first phase and a second phase, and the content of B 2 O 3 in the second phase is More than the content of B 2 O 3 in the first phase, and it is used for an organic EL device.
  • the glass of the present invention has a phase separation structure including at least a first phase and a second phase, and the content of B 2 O 3 in the second phase is More than the content of B 2 O 3 in the first phase, and it is used for an organic EL device.
  • the glass of the present invention (the first present invention) has a glass composition of 30% by mass, SiO 2 30 to 75%, B 2 O 3 0.1 to 50%, Al 2 O 3 0 to 35. % Is preferably contained. If it does in this way, it will become easy to produce phase separation glass and productivity of a glass plate can also be improved.
  • the glass of this invention does not contain a rare metal oxide substantially in a glass composition.
  • the “rare metal oxide” referred to in the present invention is a rare earth oxide such as La 2 O 3 , Nd 2 O 3 , Gd 2 O 3 , CeO 2 , Y 2 O 3 , Nb 2 O 5 , Ta 2 O. 5 points.
  • substantially no rare metal oxide means that the content of the rare metal oxide in the glass composition is 0.1% by mass or less.
  • the glass of the present invention (first invention), it preferably has a refractive index n d is 1.50 greater.
  • One of the causes of lowering the brightness is a problem of refractive index mismatch.
  • the refractive index n d of the transparent conductive film is 1.9 to 2.0
  • the refractive index n d of the organic EL layer is 1.8-1.9.
  • the refractive index n d of the glass plate is usually about 1.5. Therefore, in the conventional organic EL device, light incident from the organic EL layer is reflected at the interface between the glass plate and the transparent conductive film due to a large difference in the refractive index between the glass plate and the transparent conductive film. There was a problem that the extraction efficiency was lowered.
  • refractive index n d refers to the value of the d-line measured by a refractive index measuring device. For example, a rectangular parallelepiped sample of 25 mm ⁇ 25 mm ⁇ about 3 mm is first prepared, and is slowly cooled at a cooling rate of 0.1 ° C./min in the temperature range from (annealing point Ta + 30 ° C.) to (strain point Ps ⁇ 50 ° C.). after, while penetration of immersion the refractive index n d are aligned, it can be measured by the refractive index measuring instrument KPR-2000 manufactured by Shimadzu Corporation.
  • the glass of the present invention (the first present invention) has a flat plate shape, that is, a glass plate.
  • the glass of the present invention (first invention) is preferably formed by an overflow downdraw method. If it does in this way, the surface accuracy of a glass plate can be raised.
  • the “overflow down draw method” is a method in which molten glass overflows from both sides of a heat-resistant bowl-shaped structure, and is stretched downward to form a glass plate while joining at the lower end of the bowl-like structure. It is a method to do.
  • the glass of the present invention (first invention) is preferably not subjected to a separate heat treatment step, and is phase-separated in the molding step or phase-separated in the slow cooling (cooling) step immediately after molding. It is preferable. If it does in this way, the number of manufacturing processes of glass will decrease and glass productivity can be raised.
  • the glass of the present invention (first invention) is preferably used for organic EL lighting.
  • the glass of the present invention (the first present invention) preferably has a phase separation viscosity of 10 7.0 dPa ⁇ s or less. If it does in this way, it will become easy to phase-separate glass at a formation process and / or a slow cooling process, and it will become easy to shape a glass plate which has a phase separation structure by a float process or an overflow down draw method. As a result, after forming the glass plate, a separate heat treatment step becomes unnecessary, and the manufacturing cost of the glass plate can be easily reduced.
  • the glass of this invention (1st invention) carries out phase separation of a glass in a shaping
  • glass is phase-separated by the melting process also except these processes.
  • the “phase separation viscosity” refers to a value obtained by measuring the viscosity of the glass at the phase separation temperature by the platinum pulling method.
  • Phase separation temperature refers to a temperature at which white turbidity is clearly recognized when glass is placed in a platinum boat, remelted at 1400 ° C., then transferred to a temperature gradient furnace, and held in the temperature gradient furnace for 5 minutes. Point to.
  • the glass of the present invention (the first present invention) preferably has a haze value of 1 to 100% at wavelengths of 435 nm, 546 nm and 700 nm. If it does in this way, since it will become easy to scatter light in glass, it will become easy to take out light outside, and it will become easy to raise light extraction efficiency as a result.
  • the “haze value” is a value calculated by (diffuse transmittance) ⁇ 100 / (total light transmittance).
  • “Diffusion transmittance” is a value measured in the thickness direction with a spectrophotometer (for example, UV-2500PC manufactured by Shimadzu Corporation).
  • a spectrophotometer for example, UV-2500PC manufactured by Shimadzu Corporation
  • glass whose both surfaces are mirror-polished can be used as a measurement sample.
  • the “total light transmittance” is a value measured in the thickness direction with a spectrophotometer (for example, UV-2500PC manufactured by Shimadzu Corporation).
  • the glass of the present invention when incorporated into the organic EL element, that the current efficiency is higher than the glass having a refractive index n d is not phase separation of comparable preferable.
  • current efficiency is calculated by preparing a luminance meter in a direction perpendicular to the thickness direction of the glass after measuring the organic EL element using glass and measuring the front luminance of the glass. Can do.
  • the refractive index nd is about the same” means that the refractive index nd is within a range of ⁇ 0.2.
  • the organic EL device of the present invention (first present invention) is characterized by comprising the above glass.
  • a composite substrate of the present invention is a composite substrate obtained by bonding a glass plate and a substrate, and the glass plate is made of the above glass.
  • the glass plate functions as a light scattering layer, the light extraction efficiency of the organic EL element can be increased only by combining with the substrate.
  • the scratch resistance of the composite substrate can be improved.
  • the substrate is preferably a glass substrate.
  • a glass substrate is superior in permeability, weather resistance, and heat resistance compared to a resin substrate or a metal substrate.
  • the composite substrate of the present invention (first invention), it preferably has a refractive index n d of the substrate is 1.50 greater. In this way, since reflection at the interface between the organic EL layer and the substrate is suppressed, light in the substrate can be easily taken out into the air.
  • the glass plate and the substrate are bonded by optical contact.
  • the adhesive tape and the curing agent are not required for joining, the transmittance of the composite substrate is improved, and the glass plate and the substrate can be joined easily. Note that the higher the surface accuracy (flatness) of the surface on the bonding side of the glass plate and the substrate, the higher the bonding strength of the optical contact.
  • the composite substrate of the present invention (first present invention) is preferably used for an organic EL device.
  • the present inventors have found that the above technical problem can be solved by obtaining a phase-separated glass by heat treatment and then applying it to an organic EL device.
  • the present invention is proposed as the second invention. That is, the glass production method of the present invention (second present invention) has a phase-separated structure including at least a first phase and a second phase by forming a molten glass and then heat-treating the organic EL. The glass used for a device is obtained.
  • the present invention includes not only the case where a glass that has not yet undergone phase separation is heat-treated to obtain a phase-separated glass, but also the case where a glass that has already undergone phase separation is subjected to a heat treatment.
  • the concentration of the specific phase is excessively increased locally at the time of molding, so that it is easy to avoid a situation where the glass is devitrified and the phase separation property is easily controlled.
  • the heat treatment efficiency can be increased while controlling the phase separation.
  • the presence / absence of phase separation can be visually confirmed, but precisely, it can be confirmed by observing the sample surface after being immersed in a 1M hydrochloric acid solution for 10 minutes with a scanning electron microscope.
  • the “heat treatment” in the present invention means that after molding, after cooling to a temperature below the annealing point, the temperature is raised to a temperature range where phase separation occurs.
  • the “organic EL device” referred to in the present invention includes not only organic EL illumination but also an organic EL display.
  • a glass having a phase separation structure including at least a first phase and a second phase is obtained by heat treatment.
  • the obtained glass is applied to an organic EL device, light incident from the organic EL layer is scattered at the interface between the first phase and the second phase, and light extraction from the organic EL element is performed. Efficiency can be increased.
  • the optimum scattering characteristics differ depending on the element structure of the organic EL device. Therefore, if the molten glass is molded and then heat-treated, the phase separation of the resulting glass can be controlled, and glasses having different scattering functions can be produced from the same base glass. As a result, the productivity of glass can be increased.
  • phase separation phenomenon can be controlled not only by heat treatment conditions (heat treatment temperature, heat treatment time) but also by glass composition, molding conditions, annealing conditions, and the like.
  • the content of SiO 2 in the first phase is preferably larger than the content of SiO 2 in the second phase .
  • the production method of the glass of the present invention (second invention), the content of the second of B 2 O 3 in phase, than the content of B 2 O 3 in the first phase A large amount is preferable.
  • the obtained glass is applied to an organic EL device, light incident from the organic EL layer is easily scattered at the interface between the first phase and the second phase, and the organic EL element Light extraction efficiency can be increased.
  • the glass production method of the present invention is such that the glass has a glass composition of 30% by mass, SiO 2 30 to 75%, B 2 O 3 0.1 to 50%, Al It is preferable to contain 2 O 3 0 to 35%. If it does in this way, it will become easy to produce specific phase-separated glass by heat processing, and the productivity of a glass plate can also be improved.
  • the glass manufacturing method of this invention does not contain a rare metal oxide substantially in glass composition.
  • the “rare metal oxide” referred to in the present invention is a rare earth oxide such as La 2 O 3 , Nd 2 O 3 , Gd 2 O 3 , CeO 2 , Y 2 O 3 , Nb 2 O 5 , Ta 2 O. 5 points.
  • substantially no rare metal oxide means that the content of the rare metal oxide in the glass composition is 0.1% by mass or less.
  • the production method of the glass of the present invention is preferably a refractive index n d of the glass is 1.50 greater.
  • One of the causes of lowering the brightness is a problem of refractive index mismatch.
  • the refractive index n d of the transparent conductive film is 1.9 to 2.0
  • the refractive index n d of the organic EL layer is 1.8-1.9.
  • the refractive index n d of the glass plate is usually about 1.5. Therefore, in the conventional organic EL device, light incident from the organic EL layer is reflected at the interface between the glass plate and the transparent conductive film due to a large difference in the refractive index between the glass plate and the transparent conductive film.
  • refractive index n d indicates the d-line measured by a refractive index measuring device.
  • a rectangular parallelepiped sample of 25 mm ⁇ 25 mm ⁇ about 3 mm is first prepared, and is slowly cooled at a cooling rate of 0.1 ° C./min in the temperature range from (annealing point Ta + 30 ° C.) to (strain point Ps ⁇ 50 ° C.). after, while penetration of immersion the refractive index n d are aligned, it can be measured by the refractive index measuring instrument KPR-2000 manufactured by Shimadzu Corporation.
  • the glass production method of the present invention (second present invention) is preferably formed into a flat plate shape.
  • the glass production method of the present invention is preferably formed by the overflow down draw method.
  • the “overflow down draw method” is a method in which molten glass overflows from both sides of a heat-resistant bowl-shaped structure, and is stretched downward to form a glass plate while joining at the lower end of the bowl-like structure. It is a method to do.
  • the obtained glass is preferably used for organic EL lighting.
  • the glass of the present invention (second invention) is characterized by being produced by the above-described glass production method.
  • the glass of the present invention (second present invention) has a property of being phase-separated into at least a first phase and a second phase from a state where it has not been phase-separated by heat treatment, and is organic. It is used for an EL device.
  • the glass of the present invention preferably has a haze value of 5 to 100% at wavelengths of 435 nm, 546 nm and 700 nm before heat treatment.
  • the “haze value” is a value calculated by (diffuse transmittance) ⁇ 100 / (total light transmittance).
  • “Diffusion transmittance” is a value measured in the thickness direction with a spectrophotometer (for example, UV-2500PC manufactured by Shimadzu Corporation).
  • spectrophotometer for example, UV-2500PC manufactured by Shimadzu Corporation
  • glass whose both surfaces are mirror-polished can be used as a measurement sample.
  • the “total light transmittance” is a value measured in the thickness direction with a spectrophotometer (for example, UV-2500PC manufactured by Shimadzu Corporation).
  • glass whose both surfaces are mirror-polished can be used as a measurement sample.
  • the glass of the present invention (second invention) preferably has a haze value of 0 to 80% at wavelengths of 435 nm, 546 nm and 700 nm after heat treatment.
  • Sample No. 2 according to [Example 2] 2 is an image obtained by observing the obtained surface with a scanning electron microscope after dipping No. 2 (Sample No. 22 according to [Example 7]) in a 1M hydrochloric acid solution for 10 minutes.
  • Sample No. 2 according to [Example 2] 9 is an image of a surface obtained by immersing No. 9 (Sample No. 29 according to [Example 7]) in a 1M hydrochloric acid solution for 10 minutes and observing the obtained surface with a scanning electron microscope.
  • Sample No. 2 according to [Example 2] 10 is an image obtained by immersing 10 (Sample No.
  • Sample No. 2 according to [Example 2] 11 (Sample No. 31 according to [Example 7]) was immersed in a 1M hydrochloric acid solution for 10 minutes, and then the obtained surface was observed with a scanning electron microscope.
  • Sample No. 2 according to [Example 2] 12 is an image obtained by observing the obtained surface with a scanning electron microscope after dipping No. 12 (Sample No. 32 according to [Example 7]) in a 1M hydrochloric acid solution for 10 minutes.
  • Example 2 according to [Example 2] 13 is an image obtained by observing the obtained surface with a scanning electron microscope after dipping No. 13 (Sample No. 33 according to [Example 7]) in a 1M hydrochloric acid solution for 10 minutes.
  • Sample No. 2 according to [Example 2] 14 (Sample No. 34 according to [Example 7]) was immersed in a 1M hydrochloric acid solution for 10 minutes, and then the obtained surface was observed with a scanning electron microscope.
  • Sample No. 2 according to [Example 2] 15 shows an image obtained by observing the obtained surface with a scanning electron microscope after dipping No. 15 (Sample No. 35 according to [Example 7]) in a 1M hydrochloric acid solution for 10 minutes.
  • Sample No. 2 according to [Example 2] 16 is an image obtained by observing the obtained surface with a scanning electron microscope after dipping No. 16 (Sample No. 36 according to [Example 7]) in a 1M hydrochloric acid solution for 10 minutes.
  • Sample No. 2 according to [Example 2] 17 is an image obtained by observing the obtained surface with a scanning electron microscope after dipping No. 17 (Sample No. 37 according to [Example 7]) in a 1M hydrochloric acid solution for 10 minutes.
  • Sample No. 2 according to [Example 2] 18 shows an image obtained by observing the obtained surface with a scanning electron microscope after dipping 18 (sample No.
  • Sample No. 2 according to [Example 2] 19 is an image obtained by observing the obtained surface with a scanning electron microscope after dipping No. 19 (Sample No. 39 according to [Example 7]) in a 1M hydrochloric acid solution for 10 minutes.
  • Sample No. 2 according to [Example 2] 20 is an image obtained by immersing 20 (Sample No. 40 according to [Example 7]) in a 1M hydrochloric acid solution for 10 minutes and then observing the obtained surface with a scanning electron microscope.
  • 12 is a data showing a current efficiency curve for comparing 12 with a comparative example.
  • the glass of the present invention (first present invention) has a phase separation structure including at least a first phase and a second phase, and the content of SiO 2 in the first phase is in the second phase. more than the content of SiO 2, also the content of B 2 O 3 in the second phase is greater than the content of B 2 O 3 in the first phase. If it does in this way, the refractive index of a 1st phase and a 2nd phase will become easy to differ, and the scattering function of glass can be improved.
  • the average particle diameter of the phase-separated particles of at least one phase is preferably 0.1 to 5 ⁇ m. If the average particle size of the phase-separated particles is smaller than 0.1 ⁇ m, the light emitted from the organic EL layer is difficult to scatter at the interface between the first phase and the second phase. Further, due to Rayleigh scattering, different scattering intensities are shown depending on the wavelength. As a result, it is necessary to optimize the element configuration of the light emitting layer when manufacturing a white OLED. On the other hand, if the average particle size of the phase-separated particles is larger than 5 ⁇ m, the scattering intensity becomes too strong and the total light transmittance may be lowered.
  • the glass of the present invention contains, as a glass composition, by mass%, SiO 2 30 to 75%, B 2 O 3 0.1 to 50%, Al 2 O 3 0 to 35%. It is particularly preferable to contain more than SiO 2 39 to 75%, B 2 O 3 10 to 40%, and Al 2 O 3 less than 10 to 23%. If it does in this way, phase separation will improve and it will become easy to raise a light-scattering function.
  • % display means the mass%.
  • the content of SiO 2 is preferably 30 to 75%.
  • the preferable upper limit range of SiO 2 is 75% or less, 70% or less or 65% or less, particularly 60% or less.
  • the preferable lower limit range of SiO 2 is 30% or more, 35% or more, 38% or more, or more than 39%, particularly 40% or more.
  • the content of B 2 O 3 is preferably 0.1 to 50%.
  • B 2 O 3 is a component that enhances phase separation, but if the content of B 2 O 3 is too large, the component balance of the glass composition is impaired, and devitrification resistance is likely to decrease. The acid resistance tends to decrease. Therefore, a preferable upper limit range of B 2 O 3 is 50% or less, 40% or less or 30% or less, particularly 25% or less, and a preferable lower limit range is 0.1% or more, 0.5% or more, 1%. These are 4% or more, 7% or more, 10% or more, 12% or more, 14% or more, 16% or more, 18% or more, or 20% or more, particularly 22% or more.
  • the content of Al 2 O 3 is preferably 0 to 35%.
  • Al 2 O 3 is a component that enhances devitrification resistance.
  • a preferable upper limit range of Al 2 O 3 is 35% or less, 30% or less, 25% or less or less than 23%, particularly 20% or less, and a preferable lower limit range is 0.1% or more, 3% or more, 5% or more, 8% or more, 10% or more, 12% or more, or 14% or more, particularly 15% or more.
  • the content of SiO 2 —Al 2 O 3 —B 2 O 3 is preferably ⁇ 10 to 30% or ⁇ 5 to 25%, particularly preferably 0 to 20%.
  • the content of Al 2 O 3 + B 2 O 3 is preferably 25 to 50% or 29 to 45%, particularly preferably 32 to 40%, and the mass ratio SiO 2 / (Al 2 O 3 + B 2 O 3 ) is preferably 0.7 to 2, or 6, 0.8 to 2, particularly preferably 0.85 to 1.6.
  • SiO 2 —Al 2 O 3 —B 2 O 3 is obtained by reducing the content of Al 2 O 3 from the content of SiO 2 and further reducing the content of B 2 O 3 .
  • Al 2 O 3 + B 2 O 3 is the total content of Al 2 O 3 and B 2 O 3 .
  • SiO 2 / (Al 2 O 3 + B 2 O 3 )” is a value obtained by dividing the content of SiO 2 by the total content of Al 2 O 3 and B 2 O 3 .
  • the content of Li 2 O is preferably 0 to 30%.
  • Li 2 O is a component that enhances phase separation. However, if the content of Li 2 O is too large, the liquid phase viscosity tends to decrease and the strain point tends to decrease. Furthermore, the alkali component is easily eluted in the acid etching step. Therefore, a preferable upper limit range of Li 2 O is 30% or less, 20% or less, 10% or less, 5% or less, or 1% or less, particularly 0.5% or less.
  • the content of Na 2 O is preferably 0-30%.
  • Na 2 O is a component that enhances the phase separation.
  • a preferable upper limit range of Na 2 O is 30% or less, 20% or less, 10% or less, 5% or less, or 1% or less, particularly 0.5% or less.
  • the content of K 2 O is preferably 0 to 30%.
  • K 2 O is a component that enhances phase separation.
  • a preferable upper limit range of K 2 O is 30% or less, 20% or less, 10% or less, 5% or less, or 1% or less, particularly 0.5% or less.
  • the content of MgO is preferably 0-30%.
  • MgO is a component that raises the refractive index, Young's modulus, and strain point and lowers the high-temperature viscosity.
  • a preferable upper limit range of MgO is 30% or less, 20% or less, particularly 10% or less, and a preferable lower limit range is 0.1% or more, 1% or more, or 3% or more, particularly 5% or more.
  • the CaO content is preferably 0-30%.
  • CaO is a component that lowers the high-temperature viscosity.
  • a preferable upper limit range of CaO is 30% or less, 20% or less, 10% or less, 5% or less, particularly 3% or less, and a preferable lower limit range is 0.1% or more or 0.5% or more, particularly 1% or more.
  • the content of SrO is preferably 0 to 30%. If the SrO content is increased, the refractive index and the density are likely to be increased, and the balance of components of the glass composition is impaired, so that the devitrification resistance is likely to be lowered. Therefore, a preferable upper limit range of SrO is 30% or less or 20% or less, particularly 10% or less, and a preferable lower limit range is 1% or more or 3% or more, particularly 5% or more.
  • BaO is a component that increases the refractive index of alkaline earth metal oxides without extremely reducing the viscosity of the glass.
  • a preferable upper limit range of BaO is 40% or less, 30% or less, 20% or less, or 10% or less, particularly 5% or less, and a preferable lower limit range is 0.1% or more, particularly 1% or more.
  • ZnO is a component that raises the refractive index and strain point and is a component that lowers the high temperature viscosity.
  • a preferable upper limit range of ZnO is 20% or less, 10% or less, or 5% or less, particularly 3% or less, and a preferable lower limit range is 0.1% or more, particularly 1% or more.
  • TiO 2 is a component that increases the refractive index, and its content is preferably 0 to 20%. However, when the content of TiO 2 is increased, the component balance of the glass composition is impaired, and the devitrification resistance is easily lowered. In addition, the total light transmittance may be reduced. Therefore, the preferable upper limit range of TiO 2 is 20% or less, 10% or less, particularly 5% or less, and the preferable lower limit range is 0.001% or more, 0.01% or more, 0.1% or more, 1%. Or more or 2% or more, particularly 3% or more.
  • ZrO 2 is a component that increases the refractive index, and its content is preferably 0 to 20%. However, when the content of ZrO 2 increases, the component balance of the glass composition is impaired, and the devitrification resistance is likely to decrease. Therefore, the preferable upper limit range of ZrO 2 is 20% or less or 10% or less, particularly 5% or less, and the preferable lower limit range is 0.001% or more, 0.01% or more, 0.1% or more, 1%. Or more or 2% or more, particularly 3% or more.
  • La 2 O 3 is a component that increases the refractive index, and its content is preferably 0 to 10%.
  • a suitable upper limit range of La 2 O 3 is 10% or less, 5% or less, 3% or less, 2.5% or less, or 1% or less, particularly 0.1% or less.
  • Nb 2 O 5 is a component that increases the refractive index, and its content is preferably 0 to 10%.
  • the content of Nb 2 O 5 increases, the density tends to increase and the devitrification resistance tends to decrease. Furthermore, the raw material cost rises, and the manufacturing cost of the glass plate is likely to rise. Therefore, the preferable upper limit range of Nb 2 O 5 is 10% or less, 5% or less, 3% or less, 2.5% or less or 1% or less, particularly 0.1% or less.
  • Gd 2 O 3 is a component that increases the refractive index, and its content is preferably 0 to 10%.
  • the preferable upper limit range of Gd 2 O 3 is 10% or less, 5% or less, 3% or less, 2.5% or less or 1% or less, particularly 0.1% or less.
  • the content of La 2 O 3 + Nb 2 O 5 is preferably 0 to 10%.
  • a suitable upper limit range of La 2 O 3 + Nb 2 O 5 is 10% or less, 8% or less, 5% or less, 3% or less, 1% or less, particularly 0.5% or less, particularly 0.1% or less.
  • “La 2 O 3 + Nb 2 O 5 ” refers to the total content of La 2 O 3 and Nb 2 O 5 .
  • the total content of rare metal oxides is preferably 0 to 10%.
  • a preferable upper limit range of the rare metal oxide is 10% or less, 5% or less, or 3% or less, particularly 1% or less, and it is desirable that the rare metal oxide is not substantially contained.
  • the following oxide conversion means that an oxide having a valence different from the indicated oxide is handled after being converted to the indicated oxide.
  • the SnO 2 content is preferably 0 to 1% or 0.001 to 1%, particularly preferably 0.01 to 0.5%.
  • a preferable lower limit range of Fe 2 O 3 is 0.05% or less, 0.04% or less, or 0.03% or less, particularly 0.02% or less, and a preferable lower limit range is 0.001% or more.
  • the CeO 2 content is preferably 0 to 6%.
  • the preferable upper limit range of CeO 2 is 6% or less, 5% or less, 3% or less, 2% or less or 1% or less, particularly 0.1% or less.
  • a preferable lower limit range of CeO 2 is 0.001% or more, particularly 0.01% or more.
  • PbO is a component that lowers the high temperature viscosity, but it is preferable to refrain from using it as much as possible from an environmental point of view.
  • the content of PbO is preferably 0.5% or less, and is desirably substantially free.
  • substantially does not contain PbO refers to a case where the content of PbO in the glass composition is less than 0.1%.
  • other components may be introduced in a total amount, preferably up to 10% (desirably 5%).
  • the refractive index nd is preferably more than 1.50, 1.51 or more, 1.52 or more, 1.53 or more, 1.54 or more, 1.55 or more. Or it is 1.56 or more, Most preferably, it is 1.57 or more.
  • the refractive index nd is 1.50 or less, it becomes difficult to efficiently extract light due to reflection at the interface between the glass plate and the transparent conductive film.
  • the refractive index n d is preferably 2.30 or less, 2.20 or less, 2.10 or less, 2.00 or less, 1.90 or less or 1.80 or less, particularly preferably 1.75 or less.
  • the density is preferably 5.0 g / cm 3 or less, 4.5 g / cm 3 or less, or 3.0 g / cm 3 or less, particularly preferably 2.8 g / cm 3 or less. In this way, the device can be reduced in weight.
  • the strain point is preferably 450 ° C. or higher or 500 ° C. or higher, particularly preferably 550 ° C. or higher.
  • the conventional glass plate has insufficient heat resistance, it has been difficult to form a transparent conductive film at a high temperature. Therefore, when the strain point is in the above range, it is possible to achieve both transparency of the transparent conductive film and low electric resistance, and further, in the device manufacturing process, the glass plate is hardly thermally contracted by heat treatment.
  • the temperature at 10 2.5 dPa ⁇ s is preferably 1600 ° C. or lower, 1560 ° C. or lower, or 1500 ° C. or lower, particularly preferably 1450 ° C. or lower. If it does in this way, since a meltability will improve, productivity of a glass plate will improve.
  • the liquidus temperature is preferably 1300 ° C. or lower, 1250 ° C. or lower, or 1200 ° C. or lower, particularly preferably 1150 ° C. or lower.
  • the liquid phase viscosity is preferably 10 2.5 dPa ⁇ s or more, 10 3.0 dPa ⁇ s or more, 10 3.5 dPa ⁇ s or more, 10 3.8 dPa ⁇ s or more, 10 4.0 dPa or more.
  • liquid phase temperature refers to a temperature gradient furnace in which glass is crushed, passed through a standard sieve 30 mesh (a sieve opening of 500 ⁇ m), and glass powder remaining in a 50 mesh (a sieve opening of 300 ⁇ m) is placed in a platinum boat. It is held for 24 hours and indicates the value at which the temperature at which crystals precipitate is measured.
  • the “liquid phase viscosity” indicates the viscosity of each glass at the liquid phase temperature.
  • the phase separation temperature is preferably 800 ° C. or higher, particularly preferably 900 ° C. or higher.
  • the phase separation viscosity is preferably 10 7.0 dPa ⁇ s or less, particularly preferably 10 3.0 to 10 6.0 dPa ⁇ s. If it does in this way, it will become easy to phase-separate glass at a formation process and / or a slow cooling process, and it will become easy to shape a glass plate which has a phase separation structure by a float process or an overflow down draw method. As a result, after forming the glass plate, a separate heat treatment step becomes unnecessary, and the manufacturing cost of the glass plate can be easily reduced.
  • the total light transmittance at a wavelength of 435 nm is preferably 5% or more or 10% or more, particularly preferably 30 to 100%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the total light transmittance at a wavelength of 546 nm is preferably 5% or more, 10% or more, or 30% or more, and particularly preferably 50 to 100%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the total light transmittance at a wavelength of 700 nm is preferably 5% or more, 10% or more, 30% or more, or 50% or more, and particularly preferably 70 to 100%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the diffuse transmittance at a wavelength of 435 nm is preferably 5% or more, particularly preferably 10 to 100%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the diffuse transmittance at a wavelength of 546 nm is preferably 5% or more or 10% or more, and particularly preferably 20 to 100%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the diffuse transmittance at a wavelength of 700 nm is preferably 1% or more or 5% or more, particularly preferably 10 to 100%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the haze value at a wavelength of 435 nm is preferably 5% or more, 10% or more, 30% or more, or 50% or more, and particularly preferably 70 to 100%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the “haze value” is a value of diffuse transmittance / total light transmittance ⁇ 100.
  • the haze value at a wavelength of 546 nm is preferably 5% or more, 10% or more, 30% or more, or 50% or more, and particularly preferably 70 to 100%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the haze value at a wavelength of 700 nm is preferably 1% or more or 5% or more, particularly preferably 10 to 100%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the total light transmittance at wavelengths of 435 nm, 546 nm and 700 nm is preferably 1% or more or 3% or more, particularly preferably 10 to 100%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the diffuse transmittance at wavelengths of 435 nm, 546 nm and 700 nm is preferably 1% or more or 3% or more, particularly preferably 10 to 100%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the haze values at wavelengths of 435 nm, 546 nm and 700 nm are preferably 1% or more or 3% or more, particularly preferably 10 to 100%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the thickness in the case of a flat plate shape
  • the thickness is preferably 1.5 mm or less, 1.3 mm or less, 1.1 mm or less, 0.8 mm or less, 0.6 mm.
  • it is 0.5 mm or less, 0.3 mm or less, or 0.2 mm or less, particularly preferably 0.1 mm or less.
  • the plate thickness is preferably 10 ⁇ m or more, particularly preferably 30 ⁇ m or more.
  • the glass of the present invention (first invention) preferably has a flat plate shape, that is, a glass plate. If it does in this way, it will become easy to apply to an organic EL device.
  • a flat plate shape it is preferable to have an unpolished surface on at least one surface (in particular, the entire effective surface of at least one surface is an unpolished surface).
  • the theoretical strength of glass is very high, but breakage often occurs even at a stress much lower than the theoretical strength. This is because a small defect called Griffith flow is generated on the surface of the glass in a post-molding process such as a polishing process. Therefore, if the surface of the glass plate is unpolished, the original mechanical strength is hardly lost, and thus the glass plate is difficult to break. Further, since the polishing step can be simplified or omitted, the manufacturing cost of the glass plate can be reduced.
  • the surface roughness Ra of at least one surface is preferably 0.01 to 1 ⁇ m.
  • the surface roughness Ra is larger than 1 ⁇ m, when a transparent conductive film or the like is formed on the surface, the quality of the transparent conductive film is lowered and it becomes difficult to obtain uniform light emission.
  • the preferable upper limit range of the surface roughness Ra is 1 ⁇ m or less, 0.8 ⁇ m or less, 0.5 ⁇ m or less, 0.3 ⁇ m or less, 0.1 ⁇ m or less, 0.07 ⁇ m or less, 0.05 ⁇ m or less, or 0.03 ⁇ m or less, particularly 10 nm. It is as follows.
  • the glass of the present invention (first invention) is preferably formed by a downdraw method, particularly an overflow downdraw method.
  • a downdraw method particularly an overflow downdraw method.
  • the surface to be the surface is not in contact with the bowl-shaped refractory and is molded in a free surface state.
  • the structure and material of the bowl-shaped structure are not particularly limited as long as desired dimensions and surface accuracy can be realized. Further, there is no particular limitation on the method for applying force to the molten glass in order to perform downward stretching.
  • a method of rotating and stretching a heat-resistant roll having a sufficiently large width in contact with the molten glass may be adopted, or a plurality of pairs of heat-resistant rolls may be used only in the vicinity of the end face of the molten glass.
  • a slot downdraw method can be employed. If it does in this way, it will become easy to produce a glass plate with small board thickness.
  • the “slot down draw method” is a method of forming a glass plate by drawing downward from a substantially rectangular gap while drawing molten glass.
  • a redraw method for example, a float method, a roll-out method, etc.
  • the float process can efficiently produce a large glass plate.
  • At least one surface may be a roughened surface. If the roughened surface is arranged on the side in contact with air such as organic EL lighting, in addition to the scattering effect of the glass plate, the non-reflective structure of the roughened surface allows light emitted from the organic EL layer to be within the organic EL layer. As a result, the light extraction efficiency can be increased.
  • the surface roughness Ra of the roughened surface is preferably 10 mm or more, 20 mm or more, 30 mm or more, particularly 50 mm or more.
  • the roughened surface can be formed by HF etching, sandblasting, or the like.
  • the roughened surface can be formed by an atmospheric pressure plasma process. In this way, it is possible to uniformly roughen the other surface while maintaining the surface state of one surface of the glass plate. Moreover, it is preferable to use a gas containing F (for example, SF 6 , CF 4 ) as a source of the atmospheric pressure plasma process. In this way, since plasma containing HF gas is generated, the roughened surface can be formed efficiently.
  • a gas containing F for example, SF 6 , CF 4
  • a roughened surface can be formed on at least one surface during molding of the glass plate. This eliminates the need for a separate roughening process and improves the efficiency of the roughening process.
  • the glass of the present invention (first present invention) is preferably not subjected to a separate heat treatment step, and is phase-separated in the molding step or phase-separated in the slow cooling (cooling) step immediately after molding.
  • a phase separation phenomenon may occur in the bowl-shaped structure, or a phase separation phenomenon may occur during stretch molding or slow cooling. If it does in this way, the number of manufacturing processes of glass will decrease and glass productivity can be raised.
  • the phase separation phenomenon can be controlled by the glass composition, molding conditions, slow cooling conditions, and the like.
  • the current efficiency is preferably higher than that of glass that is not phase-separated.
  • the current efficiency at 10 mA / cm 2 is preferably 5% or more, 10% or more, 20% or more, or 30% or more, particularly 40% or more higher than that of glass that has not undergone phase separation. In this way, the brightness of the organic EL device can be increased.
  • the refractive index n d when incorporated into the organic EL element, current efficiency, the refractive index n d is preferably made higher than the glass that is not phase separation of the same extent.
  • 10 mA / cm current efficiency in the 2, 5% or more as compared with glass having a refractive index n d is not phase separation of comparable, more than 10%, 20% or more or 30% or more, particularly 40% higher It is preferable to become.
  • the brightness of the organic EL device can be increased.
  • the luminance of the organic EL device can be increased only by introducing a component that induces phase separation.
  • the composite substrate of the present invention is a composite substrate obtained by bonding a glass plate and a substrate, and the glass plate is made of the above glass.
  • the glass plate functions as a light scattering layer, the light extraction efficiency of the organic EL element can be increased only by combining with the substrate.
  • the scratch resistance of the composite substrate can be improved.
  • the thickness of the glass plate is preferably 0.7 mm or less, 0.5 mm or less, 0.4 mm or less, 0.3 mm or less, or 0.2 mm or less, particularly preferably. Is 0.01 to 0.1 mm. In this way, the total thickness of the composite substrate can be reduced.
  • a resin substrate As the substrate, various materials can be used.
  • a metal substrate, or a glass substrate can be used.
  • a glass substrate is preferable from the viewpoints of permeability, weather resistance, and heat resistance.
  • Various materials can be used as the glass substrate.
  • a soda lime glass substrate, an aluminosilicate glass substrate, and an alkali-free glass substrate can be used.
  • the thickness of the glass substrate is preferably from 0.3 to 3.0 mm or from 0.4 to 2.0 mm, particularly preferably from more than 0.5 to 1.8 mm, from the viewpoint of maintaining strength.
  • Refractive index n d of the glass substrate is preferably 1.50 greater, 1.51 or more, 1.52 or more, or 1.53 or more, particularly preferably 1.54 or more. If the refractive index of the glass substrate is too low, it becomes difficult to efficiently extract light by reflection at the interface of the glass substrate and the transparent conductive film. On the other hand, if the refractive index nd is too high, the reflectance at the interface between the glass substrate and the glass plate becomes high, and it becomes difficult to extract the light in the glass substrate into the air. Therefore, the refractive index n d is preferably 2.30 or less, 2.20 or less, 2.10 or less, 2.00 or less, 1.90 or less or 1.80 or less, particularly preferably 1.75 or less.
  • the surface roughness Ra of at least one surface (particularly the unpolished surface) of the glass substrate is preferably 0.01 to 1 ⁇ m. If the surface roughness Ra of the surface is too large, it becomes easy to produce a composite substrate by optical contact. In addition, when a transparent conductive film or the like is formed on the surface, the quality of the transparent conductive film is lowered and uniform. It becomes difficult to obtain luminescence.
  • a preferable upper limit range of the surface roughness Ra of at least one surface is 1 ⁇ m or less, 0.8 ⁇ m or less, 0.5 ⁇ m or less, 0.3 ⁇ m or less, 0.1 ⁇ m or less, 0.07 ⁇ m or less, 0.05 ⁇ m or less or 0.03 ⁇ m or less, particularly 10 nm or less.
  • a method of bonding the glass plate and the substrate can be used as a method of bonding the glass plate and the substrate.
  • a method of joining with an adhesive tape, an adhesive sheet, an adhesive, a curing agent, or the like, or a method of joining with an optical contact can be used.
  • a method of joining by optical contact is preferable.
  • the method for producing a glass of the present invention is characterized in that a glass having a phase separation structure including at least a first phase and a second phase is obtained by heat treatment.
  • the content of SiO 2 is more than the content of SiO 2 in the second phase, also the content of B 2 O 3 in the second phase, containing of B 2 O 3 in the first phase More than the amount is preferred. If it does in this way, the refractive index of a 1st phase and a 2nd phase will become easy to differ, and the scattering function of glass can be improved.
  • the heat treatment temperature after forming the molten glass is preferably 600 ° C. or higher, 700 ° C. or higher, or 750 ° C. or higher, and particularly preferably 800 ° C. or higher. In this way, phase separation can be enhanced.
  • the heat treatment temperature is preferably 1100 ° C. or less, particularly preferably 1000 ° C. or less. If the heat treatment temperature is too high, in addition to an increase in heat treatment cost, the scattering intensity becomes too strong, and the linear transmittance, total light transmittance, and the like may decrease.
  • the heat treatment time is preferably 1 minute or more, particularly 5 minutes or more.
  • the heat treatment temperature is preferably 60 minutes or less, particularly 40 minutes or less. If the heat treatment time is too high, the heat treatment cost increases, and the scattering intensity becomes too strong, which may reduce the linear transmittance, the total light transmittance, and the like.
  • the glass has a glass composition in mass% of SiO 2 30 to 75%, B 2 O 3 0.1 to 50%, Al 2 O 3 0. It is preferable to contain ⁇ 35%. If it does in this way, phase separation will improve and it will become easy to raise a light-scattering function.
  • % display means the mass%.
  • the content of SiO 2 is preferably 30 to 75%.
  • the preferable upper limit range of SiO 2 is 75% or less, 70% or less, 65% or less, and particularly 60% or less.
  • a suitable lower limit range of SiO 2 is 30% or more or 35% or more, particularly 38% or more.
  • the content of B 2 O 3 is preferably 0.1 to 50%.
  • B 2 O 3 is a component that enhances phase separation, but if the content of B 2 O 3 is too large, the component balance of the glass composition is impaired, and devitrification resistance is likely to decrease. The acid resistance tends to decrease. Therefore, a preferable upper limit range of B 2 O 3 is 50% or less, 40% or less or 30% or less, particularly 25% or less, and a preferable lower limit range is 0.1% or more, 0.5% or more, 1%. Above 4% or above 7%, especially above 10%.
  • the content of Al 2 O 3 is preferably 0 to 35%.
  • Al 2 O 3 is a component that enhances devitrification resistance.
  • a preferable upper limit range of Al 2 O 3 is 35% or less, 30% or less or 25% or less, particularly 20% or less, and a preferable lower limit range is 0.1% or more, 3% or more, 5% or more, or 8% or more, particularly 10% or more.
  • the content of Li 2 O is preferably 0 to 30%.
  • Li 2 O is a component that enhances phase separation. However, if the content of Li 2 O is too large, the liquid phase viscosity tends to decrease and the strain point tends to decrease. Furthermore, the alkali component is easily eluted in the acid etching step. Therefore, a preferable upper limit range of Li 2 O is 30% or less, 20% or less, 10% or less, 5% or less, or 1% or less, particularly 0.5% or less.
  • the content of Na 2 O is preferably 0-30%.
  • Na 2 O is a component that enhances the phase separation.
  • a preferable upper limit range of Na 2 O is 30% or less, 20% or less, 10% or less, 5% or less, or 1% or less, particularly 0.5% or less.
  • the content of K 2 O is preferably 0 to 30%.
  • K 2 O is a component that enhances phase separation.
  • a preferable upper limit range of K 2 O is 30% or less, 20% or less, 10% or less, 5% or less, or 1% or less, particularly 0.5% or less.
  • the content of MgO is preferably 0-30%.
  • MgO is a component that raises the refractive index, Young's modulus, and strain point and lowers the high-temperature viscosity.
  • a preferable upper limit range of MgO is 30% or less, 20% or less, particularly 10% or less, and a preferable lower limit range is 0.1% or more, 1% or more, or 3% or more, particularly 5% or more.
  • the CaO content is preferably 0-30%.
  • CaO is a component that lowers the high-temperature viscosity.
  • a preferable upper limit range of CaO is 30% or less, 20% or less, 10% or less or 5% or less, particularly 3% or less, and a preferable lower limit range is 0.1% or more or 0.5% or more, particularly 1% or more.
  • the content of SrO is preferably 0 to 30%. If the SrO content is increased, the refractive index and the density are likely to be increased, and the balance of components of the glass composition is impaired, so that the devitrification resistance is likely to be lowered. Therefore, a preferable upper limit range of SrO is 30% or less, 20% or less, particularly 10% or less, and a preferable lower limit range is 1% or more or 3% or more, particularly 5% or more.
  • BaO is a component that increases the refractive index of alkaline earth metal oxides without extremely reducing the viscosity of the glass.
  • a preferable upper limit range of BaO is 40% or less, 30% or less, 20% or less, or 10% or less, particularly 5% or less, and a preferable lower limit range is 0.1% or more, particularly 1% or more.
  • ZnO is a component that raises the refractive index and strain point and lowers the high-temperature viscosity.
  • a preferable upper limit range of ZnO is 20% or less, 10% or less, or 5% or less, particularly 3% or less, and a preferable lower limit range is 0.1% or more, particularly 1% or more.
  • TiO 2 is a component that increases the refractive index, and its content is preferably 0 to 20%. However, when the content of TiO 2 is increased, the component balance of the glass composition is impaired, and the devitrification resistance is easily lowered. In addition, the total light transmittance may be reduced. Therefore, the preferable upper limit range of TiO 2 is 20% or less, particularly 10% or less, and the preferable lower limit range is 0.001% or more, 0.01% or more, 0.1% or more, 1% or more, or 2%. Above, especially 3% or more.
  • ZrO 2 is a component that increases the refractive index, and its content is preferably 0 to 20%. However, when the content of ZrO 2 increases, the component balance of the glass composition is impaired, and the devitrification resistance is likely to decrease. Therefore, the preferable upper limit range of ZrO 2 is 20% or less, 10% or less, particularly 5% or less, and the preferable lower limit range is 0.001% or more, 0.01% or more, 0.1% or more, 1%. Or more or 2% or more, particularly 3% or more.
  • La 2 O 3 is a component that increases the refractive index, and its content is preferably 0 to 10%.
  • a suitable upper limit range of La 2 O 3 is 10% or less, 5% or less, 3% or less, 2.5% or less, or 1% or less, particularly 0.1% or less.
  • Nb 2 O 5 is a component that increases the refractive index, and its content is preferably 0 to 10%.
  • the content of Nb 2 O 5 increases, the density tends to increase and the devitrification resistance tends to decrease. Furthermore, the raw material cost rises, and the manufacturing cost of the glass plate is likely to rise. Therefore, the preferable upper limit range of Nb 2 O 5 is 10% or less, 5% or less, 3% or less, 2.5% or less or 1% or less, particularly 0.1% or less.
  • Gd 2 O 3 is a component that increases the refractive index, and its content is preferably 0 to 10%.
  • the preferable upper limit range of Gd 2 O 3 is 10% or less, 5% or less, 3% or less, 2.5% or less or 1% or less, particularly 0.1% or less.
  • the content of La 2 O 3 + Nb 2 O 5 is preferably 0 to 10%.
  • a suitable upper limit range of La 2 O 3 + Nb 2 O 5 is 10% or less, 8% or less, 5% or less, 3% or less, 1% or less, particularly 0.5% or less, particularly 0.1% or less.
  • “La 2 O 3 + Nb 2 O 5 ” refers to the total amount of La 2 O 3 and Nb 2 O 5 .
  • the total content of rare metal oxides is preferably 0 to 10%.
  • a preferable upper limit range of the rare metal oxide is 10% or less, 5% or less, or 3% or less, particularly 1% or less, and it is desirable that the rare metal oxide is not substantially contained.
  • the following oxide conversion means that an oxide having a valence different from the indicated oxide is handled after being converted to the indicated oxide.
  • the SnO 2 content is preferably 0 to 1% or 0.001 to 1%, particularly preferably 0.01 to 0.5%.
  • a preferable lower limit range of Fe 2 O 3 is 0.05% or less, 0.04% or less, or 0.03% or less, particularly 0.02% or less, and a preferable lower limit range is 0.001% or more.
  • the CeO 2 content is preferably 0 to 6%.
  • the preferable upper limit range of CeO 2 is 6% or less, 5% or less, 3% or less, 2% or less or 1% or less, particularly 0.1% or less.
  • a preferable lower limit range of CeO 2 is 0.001% or more, particularly 0.01% or more.
  • PbO is a component that lowers the high temperature viscosity, but it is preferable to refrain from using it as much as possible from an environmental point of view.
  • the content of PbO is preferably 0.5% or less, and is desirably substantially free.
  • substantially does not contain PbO refers to a case where the content of PbO in the glass composition is less than 0.1%.
  • other components may be introduced in a total amount, preferably up to 10% (desirably 5%).
  • the glass according to the present invention (second present invention) preferably has the following characteristics.
  • the refractive index n d is preferably 1.50 greater, 1.51 or more, 1.52 or more, 1.53 or more, 1.54 or more, 1.55 or more, or 1.555 or more, Especially preferably, it is 1.565 or more.
  • the refractive index nd is 1.50 or less, light cannot be extracted efficiently due to reflection at the interface between the glass plate and the transparent conductive film.
  • the refractive index n d is preferably 2.30 or less, 2.20 or less, 2.10 or less, 2.00 or less, 1.90 or less or 1.80 or less, particularly preferably 1.75 or less.
  • the density is preferably 5.0 g / cm 3 or less, 4.5 g / cm 3 or less, or 3.0 g / cm 3 or less, particularly preferably 2.8 g / cm 3 or less. In this way, the device can be reduced in weight.
  • the strain point is preferably 450 ° C. or higher or 500 ° C. or higher, particularly preferably 550 ° C. or higher.
  • the conventional glass plate has insufficient heat resistance, it has been difficult to form a transparent conductive film at a high temperature. Therefore, when the strain point is in the above range, it is possible to achieve both transparency of the transparent conductive film and low electric resistance, and further, in the device manufacturing process, the glass plate is hardly thermally contracted by heat treatment.
  • the temperature at 10 2.5 dPa ⁇ s is preferably 1600 ° C. or lower, 1560 ° C. or lower, or 1500 ° C. or lower, particularly preferably 1450 ° C. or lower. If it does in this way, since a meltability will improve, productivity of a glass plate will improve.
  • the liquidus temperature is preferably 1300 ° C. or lower, 1250 ° C. or lower, or 1200 ° C. or lower, particularly preferably 1150 ° C. or lower.
  • the liquid phase viscosity is preferably 10 2.5 dPa ⁇ s or more, 10 3.0 dPa ⁇ s or more, 10 3.5 dPa ⁇ s or more, 10 3.8 dPa ⁇ s or more, 10 4.0 dPa or more.
  • liquid phase temperature refers to a temperature gradient furnace in which glass is crushed, passed through a standard sieve 30 mesh (a sieve opening of 500 ⁇ m), and glass powder remaining in a 50 mesh (a sieve opening of 300 ⁇ m) is placed in a platinum boat. It is held for 24 hours and indicates the value at which the temperature at which crystals precipitate is measured.
  • Liquid phase viscosity refers to the viscosity of glass at the liquidus temperature.
  • the thickness of the glass to be obtained is preferably 1.5 mm or less, 1.3 mm or less, 1.1 mm or less, and 0.0. It is preferable to control to 8 mm or less, 0.6 mm or less, 0.5 mm or less, 0.3 mm or less, or 0.2 mm or less, particularly 0.1 mm or less.
  • the plate thickness is preferably 10 ⁇ m or more, particularly preferably 30 ⁇ m or more.
  • the glass production method of the present invention is preferably formed into a flat plate shape, that is, preferably formed into a glass plate. If it does in this way, it will become easy to apply to an organic EL device.
  • After forming into a flat plate shape it is preferable that at least one surface is an unpolished surface (particularly, the entire effective surface of at least one surface is an unpolished surface).
  • the theoretical strength of glass is very high, but breakage often occurs even at a stress much lower than the theoretical strength. This is because a small defect called Griffith flow is generated on the surface of the glass in a post-molding process such as a polishing process. Therefore, if the surface of the glass plate is unpolished, the original mechanical strength is hardly lost, and thus the glass plate is difficult to break. Further, since the polishing step can be simplified or omitted, the manufacturing cost of the glass plate can be reduced.
  • the surface roughness Ra of at least one surface is preferable to 0.01 to 1 ⁇ m.
  • the surface roughness Ra is larger than 1 ⁇ m, when a transparent conductive film or the like is formed on the surface, the quality of the transparent conductive film is lowered and it becomes difficult to obtain uniform light emission.
  • the preferable upper limit range of the surface roughness Ra is 1 ⁇ m or less, 0.8 ⁇ m or less, 0.5 ⁇ m or less, 0.3 ⁇ m or less, 0.1 ⁇ m or less, 0.07 ⁇ m or less, 0.05 ⁇ m or less, or 0.03 ⁇ m or less, particularly 10 nm. It is as follows.
  • the glass production method of the present invention is preferably formed by a downdraw method, particularly an overflow downdraw method.
  • a downdraw method particularly an overflow downdraw method.
  • the surface to be the surface is not in contact with the bowl-shaped refractory and is molded in a free surface state.
  • the structure and material of the bowl-shaped structure are not particularly limited as long as desired dimensions and surface accuracy can be realized. Further, there is no particular limitation on the method for applying force to the molten glass in order to perform downward stretching.
  • a method of rotating and stretching a heat-resistant roll having a sufficiently large width in contact with the molten glass may be adopted, or a plurality of pairs of heat-resistant rolls may be used only in the vicinity of the end face of the molten glass.
  • a slot downdraw method can be employed. If it does in this way, it will become easy to produce a glass plate with small board thickness.
  • the “slot down draw method” is a method of forming a glass plate by drawing downward from a substantially rectangular gap while drawing molten glass.
  • a redraw method for example, a float method, a roll-out method, etc.
  • the float process can efficiently produce a large glass plate.
  • a roughened surface may be formed on at least one surface after being formed into a flat plate shape. If the roughened surface is arranged on the side in contact with air such as organic EL lighting, in addition to the scattering effect of the glass plate, the non-reflective structure of the roughened surface allows light incident from the organic EL layer to enter the organic EL layer. As a result, the light extraction efficiency can be increased.
  • the surface roughness Ra of the roughened surface is preferably 10 mm or more, 20 mm or more, or 30 mm or more, and particularly preferably 50 mm or more.
  • the roughened surface can be formed by HF etching, sandblasting, or the like.
  • the roughened surface can be formed by an atmospheric pressure plasma process. In this way, it is possible to uniformly roughen the other surface while maintaining the surface state of one surface of the glass plate. Moreover, it is preferable to use a gas containing F (for example, SF 6 , CF 4 ) as a source of the atmospheric pressure plasma process. In this way, since plasma containing HF gas is generated, the roughened surface can be formed efficiently.
  • a gas containing F for example, SF 6 , CF 4
  • a roughened surface can be formed on at least one surface during molding of the glass plate. This eliminates the need for a separate roughening process and improves the efficiency of the roughening process.
  • a resin film having a predetermined uneven shape may be attached to the surface of the glass plate.
  • the glass of the present invention (second invention) is characterized by being produced by the above-described glass manufacturing method.
  • the glass of the present invention is not yet phase-separated, but has a property of phase-separating into at least a first phase and a second phase from a state where the phase is not separated by heat treatment, and an organic EL device It is used for.
  • the technical characteristics (preferable structure and effect) of the glass of the present invention have already been described in the description column of the glass manufacturing method of the present invention, and detailed description thereof is omitted here.
  • the haze values at wavelengths of 435 nm, 546 nm and 700 nm before heat treatment are preferably 80% or less or 70% or less, particularly preferably 50% or less, preferably 0%. Or more or 1% or more, particularly preferably 3% or more. If the haze value before heat treatment is regulated as described above, it becomes easy to avoid a situation in which the glass is excessively phase-separated during molding and it becomes difficult to control phase separation. Even when glass is phase-divided in the molding process or glass is phase-divided in the slow cooling (cooling) process immediately after molding, a glass having a desired scattering characteristic can be easily produced by a separate heat treatment.
  • the total light transmittance at a wavelength of 435 nm after the heat treatment is preferably 5% or more, particularly 10 to 100%. Furthermore, the glass of the present invention preferably has a property that the total light transmittance at a wavelength of 435 nm is 5% or more, particularly 10 to 80% when heat-treated at 840 ° C. for 20 minutes, and is heat-treated at 840 ° C. for 40 minutes. In this case, it is preferable that the total light transmittance at a wavelength of 435 nm is 5% or more, particularly 8 to 60%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the total light transmittance at a wavelength of 546 nm after heat treatment is preferably 5% or more, 10% or more, or 30% or more, particularly preferably 50 to 100%.
  • the glass of the present invention preferably has a property that the total light transmittance at a wavelength of 546 nm is 5% or more, 10% or more, or 30% or more, particularly 50 to 100% when heat-treated at 840 ° C. for 20 minutes.
  • the total light transmittance at a wavelength of 546 nm is preferably 5% or more, 10% or more, or 20% or more, particularly 30 to 80%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the total light transmittance at a wavelength of 700 nm after the heat treatment is preferably 5% or more, 10% or more, 30% or more, or 50% or more, particularly preferably 70 to 100%. It is. Furthermore, when the glass of the present invention is heat-treated at 840 ° C. for 20 minutes, the total light transmittance at a wavelength of 700 nm is 5% or more, 10% or more, 30% or more, 50% or more, particularly 70 to 100%. In addition, when heat-treated at 840 ° C. for 40 minutes, the total light transmittance at a wavelength of 700 nm is 5% or more, 10% or more, 30% or more, or 50% or more, particularly 60 to 100%. Is preferred. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the diffuse transmittance at a wavelength of 435 nm after the heat treatment is preferably 5% or more, particularly preferably 10 to 100%.
  • the glass of the present invention preferably has a property that the diffuse transmittance at a wavelength of 435 nm is 5% or more, particularly 10 to 80% when heat-treated at 840 ° C. for 20 minutes, and is heat-treated at 840 ° C. for 40 minutes.
  • the diffuse transmittance at a wavelength of 435 nm is 5% or more, particularly 8 to 60%. In this way, the light extraction efficiency can be increased when the organic EL element is assembled.
  • the diffuse transmittance at a wavelength of 546 nm after the heat treatment is preferably 5% or more or 10% or more, particularly preferably 20 to 100%.
  • the glass of the present invention preferably has a property that the diffuse transmittance at a wavelength of 546 nm is 5% or more or 10% or more, particularly 15 to 80% when heat-treated at 840 ° C. for 20 minutes.
  • the diffuse transmittance at a wavelength of 546 nm is preferably 5% or more or 10% or more, and particularly preferably 20 to 90%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the diffuse transmittance at a wavelength of 700 nm after the heat treatment is preferably 1% or more or 5% or more, particularly preferably 10 to 100%. Further, the glass of the present invention preferably has a property that the diffuse transmittance at a wavelength of 700 nm is 1% or more or 5% or more, particularly 8 to 60% when heat-treated at 840 ° C. for 20 minutes. When the heat treatment is performed for 40 minutes, it is preferable that the diffuse transmittance at a wavelength of 700 nm is 1% or more or 5% or more, particularly 10 to 80%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the haze value at a wavelength of 435 nm after heat treatment is preferably 5% or more, 10% or more, 30% or more, or 50% or more, particularly preferably 70 to 100%.
  • the glass of the present invention has the property that when heat-treated at 840 ° C. for 20 minutes, the haze value at a wavelength of 435 nm is 5% or more, 10% or more, 30% or more, 50% or more, particularly 70 to 100%.
  • heat treatment is performed at 840 ° C. for 40 minutes, it is preferable that the haze value at a wavelength of 435 nm is 5% or more, 10% or more, 30% or more, or 50% or more, particularly 70 to 100%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the haze value at a wavelength of 546 nm after the heat treatment is preferably 5% or more, 10% or more, 30% or more, or 50% or more, particularly preferably 70 to 100%.
  • the glass of the present invention has the property that when heat-treated at 840 ° C. for 20 minutes, the haze value at a wavelength of 546 nm is 5% or more, 10% or more, 30% or more, or 40% or more, particularly 45 to 80%.
  • the haze value at a wavelength of 546 nm is preferably 5% or more, 10% or more, 30% or more, or 50% or more, particularly preferably 70 to 100%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the haze value at a wavelength of 700 nm after the heat treatment is preferably 1% or more or 5% or more, particularly preferably 10 to 100%.
  • the glass of the present invention preferably has such a property that, when heat-treated at 840 ° C. for 20 minutes, the haze value at a wavelength of 700 nm is 1% or more or 5% or more, particularly 8 to 60%.
  • the haze value at a wavelength of 700 nm is 1% or more or 5% or more, particularly 10 to 80%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the total light transmittance at wavelengths of 435 nm, 546 nm and 700 nm after heat treatment is preferably 1% or more or 3% or more, particularly preferably 10 to 100%. Furthermore, the glass of the present invention has a total light transmittance of 1% or more, 3% or more, 5% or more, or 10% or more, particularly 15 to 100%, at wavelengths of 435 nm, 546 nm, and 700 nm when heat-treated at 840 ° C. for 20 minutes. In addition, when heat-treated at 840 ° C.
  • the total light transmittance at wavelengths of 435 nm, 546 nm and 700 nm is 1% or more, 3% or more, 5% or more, particularly 10 to 90%. It preferably has properties. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the diffuse transmittance at wavelengths of 435 nm, 546 nm and 700 nm after heat treatment is preferably 1% or more or 3% or more, particularly preferably 10 to 100%. Furthermore, when the glass of the present invention is heat-treated at 840 ° C. for 20 minutes, it is preferable that the diffuse transmittance at wavelengths of 435 nm, 546 nm and 700 nm is 1% or more or 3% or more, particularly 5 to 60%. Further, when heat-treated at 840 ° C.
  • the diffuse transmittance at wavelengths of 435 nm, 546 nm and 700 nm is 1% or more, 3% or more, 5% or more, particularly 10 to 80%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • the haze values after heat treatment at wavelengths of 435 nm, 546 nm and 700 nm are preferably 1% or more, 3% or more, or 5% or more, particularly preferably 10 to 100%.
  • the glass of the present invention has the property that when heat-treated at 840 ° C. for 20 minutes, the haze value at wavelengths of 435 nm, 546 nm and 700 nm is 1% or more, 3% or more, 5% or more, particularly 8 to 100%.
  • heat treatment is performed at 840 ° C.
  • the haze value at wavelengths of 435 nm, 546 nm, and 700 nm is preferably 1% or more, 3% or more, or 5% or more, particularly preferably 10 to 100%. If it does in this way, when an organic EL element is assembled, light extraction efficiency can be improved.
  • Tables 1 and 2 show Sample No. 1 to 20 are shown.
  • the obtained glass batch was supplied to a glass melting furnace and melted at 1500 ° C. for 8 hours.
  • the obtained molten glass was poured onto a carbon plate, formed into a plate shape, and then slowly cooled from the strain point to room temperature over 10 hours.
  • the obtained glass plate was processed as necessary to evaluate various properties.
  • the density ⁇ is a value measured by the well-known Archimedes method.
  • the strain point Ps is a value measured by the method described in ASTM C336-71. In addition, heat resistance becomes high, so that the strain point Ps is high.
  • the annealing point Ta and the softening point Ts are values measured by the method described in ASTM C338-93.
  • High temperature viscosity 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, 10 2.5 dPa ⁇ s, and temperature (° C.) at 10 2.0 dPa ⁇ s are values measured by the platinum ball pulling method. . In addition, it is excellent in a meltability, so that high temperature viscosity is low.
  • the liquid phase temperature TL is obtained by crushing glass, passing through a standard sieve 30 mesh (a sieve opening of 500 ⁇ m), and putting the glass powder remaining in 50 mesh (a sieve opening of 300 ⁇ m) into a platinum boat and placing it in a temperature gradient furnace for 24 hours. The temperature at which the crystals are deposited is measured.
  • Liquid phase viscosity log ⁇ TL indicates the viscosity of each glass at the liquidus temperature.
  • the phase separation temperature TP is measured at a temperature at which white turbidity is clearly observed when each glass is put into a platinum boat, remelted at 1400 ° C., then transferred to a temperature gradient furnace and held in the temperature gradient furnace for 5 minutes. It is a thing.
  • the phase separation viscosity log ⁇ TP is obtained by measuring the viscosity of each glass at the phase separation temperature by the platinum ball pulling method.
  • Refractive index n d is the value of the d-line as determined by the refractive index measuring instrument KPR-2000 manufactured by Shimadzu Corporation. First, a rectangular parallelepiped sample of 25 mm ⁇ 25 mm ⁇ about 3 mm is prepared, and then subjected to a slow cooling treatment at a cooling rate of 0.1 ° C./min in a temperature range from (slow cooling point Ta + 30 ° C.) to (strain point Ps ⁇ 50 ° C.). a value refractive index n d was measured by penetration of immersion liquid to be aligned.
  • phase separation after the heat treatment is based on the phase separation after each sample after molding is heat-treated (900 ° C. for 5 minutes), stretch-molded to prepare a strain point measurement sample, and the obtained sample is visually observed. Evaluation was made as “ ⁇ ” when white turbidity was observed, and “ ⁇ ” when the white turbidity due to phase separation was not observed.
  • Sample No. not subjected to the above heat treatment. 2 9 to 20 were immersed in a 1M hydrochloric acid solution for 10 minutes, and then the surface of the sample was observed with a scanning electron microscope (S-4300SE, manufactured by Hitachi High-Technologies Corporation). The results are shown in FIGS. 1 to 13 show Sample No. 2 and 9 to 20 show scanning electron microscope images, respectively.
  • sample no. 2, 9, 10, 12 to 20 had a phase separation structure, and a phase rich in B 2 O 3 (second phase: a layer poor in SiO 2 ) was eluted with a hydrochloric acid solution. Note that the phase rich in B 2 O 3 is eluted by the hydrochloric acid solution, and the phase rich in SiO 2 is not eluted in the hydrochloric acid solution.
  • Sample No. in Table 2 A glass plate according to No. 12 (plate thickness 0.7 mm: not heat-treated after molding) was produced, and ITO (thickness 100 nm) was deposited as a transparent electrode layer on the surface of the glass plate using a mask. Subsequently, a polymer PEDOT-PSS (thickness 40 nm) as a hole injection layer, ⁇ -NPD (thickness 50 nm) as a hole transport layer, and Ir (ppy) 3 as an organic light emitting layer are doped by 6% by mass on a glass plate.
  • PEDOT-PSS thickness 40 nm
  • ⁇ -NPD thickness 50 nm
  • Ir (ppy) 3 an organic light emitting layer
  • a glass plate that does not undergo phase separation have comparable refractive index n d for the case of manufacturing the organic EL device incorporates (thickness 0.7 mm) is also measured front luminance in the same manner, the current efficiency evaluated.
  • the results are shown in Table 6 and FIG. In FIG. 14, the current efficiency curve drawn on the upper side corresponds to the present embodiment, and the current efficiency curve drawn on the lower side corresponds to the comparative example.
  • the glass of the comparative example as a glass composition, in mass%, SiO 2 49.8%, Al 2 O 3 23%, B 2 O 3 14%, 6.4% MgO, CaO 1.5%, ZrO 2 2.7%, and contains Ti 2 O 2.6% refractive index n d is 1.54.
  • An organic EL element substrate was produced using the glass plate (plate thickness 0.7 mm) of the comparative example of [Example 4] that was not phase-separated.
  • a sample of refractive index n d via the immersion liquid 1.54 Table 2 No. 12 was disposed (thickness 0.7 mm: not heat-treated after molding), and the emission intensity of the light emitting surface was measured using an integrating sphere.
  • the intensity of the peak wavelength of 520 nm was 1.2 times.
  • Tables 7 and 8 show the sample numbers. 21 to 40 are shown.
  • the obtained glass batch was supplied to a glass melting furnace and melted at 1500 ° C. for 8 hours.
  • a simple slow cooling treatment was performed over 10 hours from the strain point to room temperature.
  • the obtained glass plate was processed as necessary to evaluate various properties.
  • the density ⁇ is a value measured by the well-known Archimedes method.
  • the strain point Ps is a value measured by the method described in ASTM C336-71. In addition, heat resistance becomes high, so that the strain point Ps is high.
  • the annealing point Ta and the softening point Ts are values measured by the method described in ASTM C338-93.
  • High temperature viscosity 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, 10 2.5 dPa ⁇ s, and temperature (° C.) at 10 2.0 dPa ⁇ s are values measured by the platinum ball pulling method. . In addition, it is excellent in a meltability, so that high temperature viscosity is low.
  • the liquid phase temperature TL is obtained by crushing glass, passing through a standard sieve 30 mesh (a sieve opening of 500 ⁇ m), and putting the glass powder remaining in 50 mesh (a sieve opening of 300 ⁇ m) into a platinum boat and placing it in a temperature gradient furnace for 24 hours. The temperature at which the crystals are deposited is measured.
  • Liquid phase viscosity log ⁇ TL indicates the viscosity of each glass at the liquidus temperature.
  • the refractive index nd is a value of the d line measured by a refractive index measuring device KPR-2000 manufactured by Shimadzu Corporation.
  • a rectangular parallelepiped sample of 25 mm ⁇ 25 mm ⁇ about 3 mm is prepared, and then subjected to a slow cooling treatment at a cooling rate of 0.1 ° C./min in a temperature range from (slow cooling point Ta + 30 ° C.) to (strain point Ps ⁇ 50 ° C.).
  • a value refractive index n d was measured by penetration of immersion liquid to be aligned.
  • phase separation after molding was obtained by forming molten glass for each sample, performing the above-described simple slow cooling treatment, and then visually observing the obtained sample, and turbidity due to phase separation was observed. “O” was evaluated as “ ⁇ ” when the white turbidity due to phase separation was not observed and the sample was transparent.
  • phase separation after the heat treatment depends on the phase separation after each sample after molding is heat-treated (900 ° C. for 5 minutes), stretch-molded to prepare a strain point measurement sample, and the obtained sample is visually observed. Evaluation was made as “ ⁇ ” when white turbidity was observed, and “ ⁇ ” when the white turbidity due to phase separation was not observed.
  • the phase separation of 22, 29 to 40 was observed with a scanning electron microscope.
  • the sample No. 22 and 29 to 40 were subjected to the above-described simple slow cooling treatment, then immersed in 1M hydrochloric acid solution for 10 minutes, and the surface of the sample was further observed with a scanning electron microscope (S-4300SE manufactured by Hitachi High-Technologies Corporation). did.
  • S-4300SE manufactured by Hitachi High-Technologies Corporation
  • phase rich in B 2 O 3 (second phase: a layer poor in SiO 2 ) was eluted with a hydrochloric acid solution. Note that the phase rich in B 2 O 3 is eluted by the hydrochloric acid solution, and the phase rich in SiO 2 is not eluted in the hydrochloric acid solution.
  • Specimen No. after molding 39 was put into a platinum boat having a size of about 15 mm ⁇ 130 mm, and the platinum boat was put into an electric furnace and remelted at 1400 ° C.
  • the remelted glass in the platinum boat had a thickness of about 3 to 5 mm.
  • the platinum boat was taken out of the electric furnace and allowed to cool in the air. About the obtained glass, it heat-processed on the conditions of 840 degreeC 20 minutes or 840 degreeC 40 minutes.
  • a glass plate having a thickness of about 10 mm ⁇ 30 mm ⁇ 1.0 mm is processed and both surfaces are mirror-polished, as shown in FIG. Then, it is processed into a glass plate having a thickness of about 10 mm ⁇ 30 mm ⁇ 1.0 mm, and an external appearance photograph when both surfaces are mirror-polished is shown in FIG.

Abstract

ガラスであって、少なくとも第一の相と第二の相を含む分相構造を有すると共に、第一の相中のSiOの含有量が、第二の相中のSiO2の含有量よりも多く、且つ有機ELデバイスに用いることを特徴とする。

Description

ガラス及びその製造方法
 本発明は、ガラス及びその製造方法に関し、具体的には、光散乱機能を有する分相ガラス、及びその製造方法、さらには熱処理により分相するガラスに関する。
 近年、家電製品の普及、大型化、多機能化等の理由から、家庭等の生活空間で消費されるエネルギーが増えている。特に、照明機器のエネルギー消費が多くなっている。このため、高効率の照明が活発に検討されている。
 照明用光源は、限られた範囲を照らす「指向性光源」と、広範囲を照らす「拡散光源」とに分けられる。LED照明は、「指向性光源」に相当し、白熱球の代替として採用されつつある。その一方で、「拡散光源」に相当する蛍光灯の代替光源が望まれており、その候補として、有機EL(エレクトロルミネッセンス)照明が有力である。
 有機EL素子は、ガラス板と、陽極である透明導電膜と、電流の注入によって発光するエレクトロルミネッセンスを呈する有機化合物からなる一層又は複数層の発光層を含む有機EL層と、陰極とを備えた素子である。有機EL素子に用いられる有機EL層として、低分子色素系材料、共役高分子系材料等が用いられており、発光層を形成する場合、ホール注入層、ホール輸送層、電子輸送層、電子注入層等との積層構造が形成される。このような積層構造を有する有機EL層を、陽極と陰極の間に配置し、陽極と陰極に電界を印加することにより、陽極である透明電極から注入された正孔と、陰極から注入された電子とが、発光層内で再結合し、その再結合エネルギーによって発光中心が励起されて、発光する。
 有機EL素子は、携帯電話、ディスプレイ用途として検討が進められており、一部では既に実用化されている。また、有機EL素子は、液晶ディスプレイ、プラズマディスプレイ等の薄型テレビと同等の発光効率を有している。
 しかし、有機EL素子を照明用光源に適用するためには、輝度が未だ実用レベルに到達しておらず、更なる発光効率の改善が必要である。
 ガラス板と空気の屈折率差に起因して、ガラス板内に光が閉じ込められることが輝度低下の原因の一つである。例えば、屈折率n1.5のガラス板を用いた場合、空気の屈折率nは1.0であるため、臨界角はスネルの法則より42°と計算される。よって、この臨界角以上の入射角の光は、全反射を起こし、ガラス板内に閉じ込められて、空気中に取り出されないことになる。
特開2012−25634号公報
 上記問題を解決するために、透明導電膜等とガラス板の間に、光取り出し層を形成することが検討されている。例えば、特許文献1には、ソーダガラス板の表面に、高屈折率のガラスフリットを焼結させた光取り出し層を形成すると共に、光取り出し層内に散乱物質を分散させることにより、光取り出し効率を高めることも記載されている。
 しかし、ガラス板の表面に光取り出し層を形成するためには、ガラス板の表面にガラスペーストを塗布する印刷工程が必要になり、この工程は生産コストの高騰を招く。更に、ガラスフリット中に散乱粒子を分散させる場合、散乱粒子自体の吸収により光取り出し層の透過率が低くなる。更に、特許文献1に記載のガラスフリットは、Nb等のレアメタル酸化物を多量に含むため、原料コストが高価である。
 本発明は、上記事情に鑑み成されたものであり、その技術的課題は、焼結体からなる光取り出し層を形成しなくても、有機EL素子の光取り出し効率を高めることができ、しかも生産性に優れるガラス及びその製造方法を創案することである。
 本発明者等は、鋭意検討の結果、特定の分相ガラスを用いることにより、上記技術的課題を解決し得ることを見出し、本発明(第一の本発明)として提案するものである。すなわち、本発明(第一の本発明)のガラスは、少なくとも第一の相と第二の相を含む分相構造を有すると共に、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多く、且つ有機ELデバイスに用いることを特徴とする。なお、「有機ELデバイス」には、有機EL照明のみならず、有機ELディスプレイ等が含まれる。また、第一の相と第二の相の形成に伴う光散乱は、目視で確認可能である。また、例えば1Mの塩酸溶液に10分間浸漬させた後の試料表面を走査型電子顕微鏡で観察することにより、各相を詳細に確認可能である。
 本発明(第一の本発明)のガラスは、少なくとも第一の相と第二の相を含む分相構造を有すると共に、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多いことを特徴とする。このようにすれば、有機ELデバイスに適用した場合に、有機EL層からガラス板へ入射した光が、第一の相と第二の相の界面で散乱し、有機EL素子の光取り出し効率を高めることができる。
 第二に、本発明(第一の本発明)のガラスは、少なくとも第一の相と第二の相を含む分相構造を有すると共に、第二の相中のBの含有量が、第一の相中のBの含有量よりも多く、且つ有機ELデバイスに用いることを特徴とする。このようにすれば、有機ELデバイスに適用した場合に、有機EL層からガラス板へ入射した光が、第一の相と第二の相の界面で散乱し、有機EL素子の光取り出し効率を高めることができる。
 第三に、本発明(第一の本発明)のガラスは、ガラス組成として、質量%で、SiO 30~75%、B 0.1~50%、Al 0~35%を含有することが好ましい。このようにすれば、分相ガラスを作製し易くなり、またガラス板の生産性を高めることもできる。
 第四に、本発明(第一の本発明)のガラスは、ガラス組成中に、実質的にレアメタル酸化物を含まないことが好ましい。ここで、本発明でいう「レアメタル酸化物」は、La、Nd、Gd、CeO等の希土類酸化物、Y、Nb、Taを指す。また、「実質的にレアメタル酸化物を含まない」とは、ガラス組成中のレアメタル酸化物の含有量が0.1質量%以下の場合を指す。
 第五に、本発明(第一の本発明)のガラスは、屈折率nが1.50超であることが好ましい。輝度を低下させる原因の一つとして、屈折率の不整合の問題が挙げられる。具体的には、透明導電膜の屈折率nは1.9~2.0であり、有機EL層の屈折率nは1.8~1.9である。これに対して、ガラス板の屈折率nは、通常、1.5程度である。よって、従来の有機ELデバイスは、ガラス板と透明導電膜等の屈折率差が大きいことに起因して、有機EL層から入射した光がガラス板と透明導電膜等の界面で反射し、光取り出し効率が低下するという問題があった。そこで、上記のようにガラスの屈折率nを規制すれば、ガラス板と透明導電膜等の屈折率差が小さくなり、有機EL層から入射した光がガラス板と透明導電膜等の界面で反射し難くなる。ここで、「屈折率n」は、屈折率測定器で測定したd線の値を指す。例えば、まず25mm×25mm×約3mmの直方体試料を作製し、(徐冷点Ta+30℃)から(歪点Ps−50℃)までの温度域を0.1℃/分の冷却速度で徐冷処理した後、屈折率nが整合する浸液を浸透させながら、島津製作所製の屈折率測定器KPR−2000により測定可能である。
 第六に、本発明(第一の本発明)のガラスは、平板形状、つまりガラス板であることが好ましい。
 第七に、本発明(第一の本発明)のガラスは、オーバーフローダウンドロー法で成形されてなることが好ましい。このようにすれば、ガラス板の表面精度を高めることができる。ここで、「オーバーフローダウンドロー法」は、耐熱性の樋状構造物の両側から、溶融ガラスを溢れさせて、樋状構造物の下端で合流させながら、下方に延伸成形してガラス板を成形する方法である。
 第八に、本発明(第一の本発明)のガラスは、別途の熱処理工程を経ていないことが好ましく、成形工程で分相しているか、或いは成形直後の徐冷(冷却)工程で分相していることが好ましい。このようにすれば、ガラスの製造工程数が減少し、ガラスの生産性を高めることができる。
 第九に、本発明(第一の本発明)のガラスは、有機EL照明に用いることが好ましい。
 第十に、本発明(第一の本発明)のガラスは、分相粘度が107.0dPa・s以下であることが好ましい。このようにすれば、成形工程及び/又は徐冷工程でガラスが分相し易くなり、フロート法又はオーバーフローダウンドロー法で分相構造を有するガラス板を成形し易くなる。結果として、ガラス板を成形した後に、別途の熱処理工程が不要になり、ガラス板の製造コストを低減し易くなる。なお、本発明(第一の本発明)のガラスは、成形工程及び/又は徐冷工程でガラスが分相することが好ましいが、これらの工程以外でも、溶融工程でガラスが分相していてもよい。ここで、「分相粘度」とは、分相温度におけるガラスの粘度を白金引き上げ法で測定した値を指す。「分相温度」とは、ガラスを白金ボートに入れ、1400℃でリメルトした後、白金ボートを温度勾配炉に移し、温度勾配炉中で5分間保持した時に、白濁が明確に認められる温度を指す。
 第十一に、本発明(第一の本発明)のガラスは、波長435nm、546nm及び700nmにおけるヘイズ値が1~100%であることが好ましい。このようにすれば、ガラス中で光が散乱し易くなるため、光を外部に取り出し易くなり、結果として、光取り出し効率を高め易くなる。ここで、「ヘイズ値」は、(拡散透過率)×100/(全光線透過率)で算出される値である。「拡散透過率」は、分光光度計(例えば、島津製作所製UV−2500PC)により厚み方向で測定した値であり、例えば、両表面が鏡面研磨されたガラスを測定試料とすることができる。「全光線透過率」は、分光光度計(例えば、島津製作所製UV−2500PC)により厚み方向で測定した値であり、例えば、両表面が鏡面研磨されたガラスを測定試料とすることができる。
 第十二に、本発明(第一の本発明)のガラスは、有機EL素子に組み込んだ時に、電流効率が、屈折率nが同程度の分相していないガラスよりも高くなることが好ましい。ここで、「電流効率」は、ガラスを用いて有機EL素子を作製した後、ガラスの厚み方向に対して垂直な方向に輝度計を設置し、ガラスの正面輝度を測定することで算出することができる。「屈折率nが同程度」とは、屈折率nが±0.2の範囲内であることを指す。
 第十三に、本発明(第一の本発明)の有機ELデバイスは、上記のガラスを備えてなることを特徴とする。
 第十四に、本発明(第一の本発明)の複合基板は、ガラス板と基板を接合した複合基板であって、ガラス板が、上記のガラスからなることを特徴とする。このようにすれば、ガラス板が光散乱層として機能するため、基板と複合化するだけで、有機EL素子の光取り出し効率を高めることができる。更に、ガラス板と基板を接合し、ガラス板を空気と接する側に配置すると、複合基板の耐傷性を高めることができる。
 第十五に、本発明(第一の本発明)の複合基板は、基板がガラス基板であることが好ましい。ガラス基板は、樹脂基板や金属基板に比べて、透過性、耐候性、耐熱性に優れている。
 第十六に、本発明(第一の本発明)の複合基板は、基板の屈折率nが1.50超であることが好ましい。このようにすれば、有機EL層と基板の界面での反射が抑制されるため、基板中の光を空気中に取り出し易くなる。
 第十七に、本発明(第一の本発明)の複合基板は、ガラス板と基板がオプティカルコンタクトにより接合されていることが好ましい。このようにすれば、接合に際し、粘着テープや硬化剤が不要になるため、複合基板の透過率が向上すると共に、ガラス板と基板を簡便に接合することができる。なお、ガラス板と基板の接合側の表面の表面精度(平坦性)が高い程、オプティカルコンタクトの接合強度が向上する。
 第十八に、本発明(第一の本発明)の複合基板は、有機ELデバイスに用いることが好ましい。
 また、本発明者等は、鋭意検討の結果、熱処理により分相ガラスを得た後に、これを有機ELデバイスに適用することにより、上記技術的課題を解決し得ることを見出し、本発明(第二の本発明)として提案するものである。すなわち、本発明(第二の本発明)のガラスの製造方法は、溶融ガラスを成形した後、熱処理して、少なくとも第一の相と第二の相を含む分相構造を有し且つ有機ELデバイスに用いられるガラスを得ることを特徴とする。
 なお、本発明(第二の本発明)では、未だ分相していないガラスを熱処理して、分相ガラスとする場合のみならず、既に分相しているガラスを熱処理する場合を含む。前者の場合は、成形時に局所的に特定の相の濃度が高くなり過ぎて、ガラスが失透する事態を回避し易くなると共に、分相性を制御し易くなる。後者の場合は、分相性を制御しつつ、熱処理効率を高めることができる。なお、分相の有無は、目視で確認可能であるが、正確には、1Mの塩酸溶液に10分間浸漬させた後の試料表面を走査型電子顕微鏡で観察することにより確認可能である。この処理を行うと、Bに富む相が塩酸溶液により溶出し、SiOに富む相が塩酸溶液に溶出しない。また、本発明(第二の本発明)でいう「熱処理」は、成形後に、徐冷点以下の温度まで冷却した後、分相が生じる温度域まで昇温することを意味する。更に、本発明(第二の本発明)でいう「有機ELデバイス」には、有機EL照明のみならず、有機ELディスプレイ等が含まれる。
 本発明(第二の本発明)のガラスの製造方法では、熱処理により、少なくとも第一の相と第二の相を含む分相構造を有するガラスを得る。このようにすれば、得られたガラスを有機ELデバイスに適用した場合に、有機EL層から入射した光が、第一の相と第二の相の界面で散乱し、有機EL素子の光取り出し効率を高めることができる。
 また、有機ELデバイスの素子構造により最適な散乱特性は相違する。そこで、溶融ガラスを成形した後に熱処理すれば、得られるガラスの分相性を制御することが可能になり、同一の母材ガラスから異なる散乱機能を有するガラスを作製することができる。結果として、ガラスの生産性を高めることができる。
 更に、成形時にガラスを分相させると、ガラスが失透し易くなるという問題があるが、成形後に熱処理すれば、成形時のガラスの分相を抑制し得るため、このような問題を回避し易くなる。なお、分相現象は、熱処理条件(熱処理温度、熱処理時間)以外にも、ガラス組成、成形条件、徐冷条件等により制御することができる。
 第二に、本発明(第二の本発明)のガラスの製造方法は、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多いことが好ましい。このようにすれば、得られたガラスを有機ELデバイスに適用した場合に、有機EL層から入射した光が、第一の相と第二の相の界面で散乱し易くなり、有機EL素子の光取り出し効率を高めることができる。
 第三に、本発明(第二の本発明)のガラスの製造方法は、第二の相中のBの含有量が、第一の相中のBの含有量よりも多いことが好ましい。このようにすれば、得られたガラスを有機ELデバイスに適用した場合に、有機EL層から入射した光が、第一の相と第二の相の界面で散乱し易くなり、有機EL素子の光取り出し効率を高めることができる。
 第四に、本発明(第二の本発明)のガラスの製造方法は、ガラスが、ガラス組成として、質量%で、SiO 30~75%、B 0.1~50%、Al 0~35%を含有することが好ましい。このようにすれば、熱処理により特定の分相ガラスを作製し易くなり、またガラス板の生産性を高めることもできる。
 第五に、本発明(第二の本発明)のガラスの製造方法は、ガラスが、ガラス組成中に、実質的にレアメタル酸化物を含まないことが好ましい。ここで、本発明でいう「レアメタル酸化物」は、La、Nd、Gd、CeO等の希土類酸化物、Y、Nb、Taを指す。また、「実質的にレアメタル酸化物を含まない」とは、ガラス組成中のレアメタル酸化物の含有量が0.1質量%以下の場合を指す。
 第六に、本発明(第二の本発明)のガラスの製造方法は、ガラスの屈折率nが1.50超であることが好ましい。輝度を低下させる原因の一つとして、屈折率の不整合の問題が挙げられる。具体的には、透明導電膜の屈折率nは1.9~2.0であり、有機EL層の屈折率nは1.8~1.9である。これに対して、ガラス板の屈折率nは、通常、1.5程度である。よって、従来の有機ELデバイスは、ガラス板と透明導電膜等の屈折率差が大きいことに起因して、有機EL層から入射した光がガラス板と透明導電膜等の界面で反射し、光取り出し効率が低下するという問題があった。そこで、上記のようにガラスの屈折率nを規制すれば、ガラス板と透明導電膜等の屈折率差が小さくなり、有機EL層から入射した光がガラス板と透明導電膜等の界面で反射し難くなる。ここで、「屈折率n」は、屈折率測定器で測定したd線のを指す。例えば、まず25mm×25mm×約3mmの直方体試料を作製し、(徐冷点Ta+30℃)から(歪点Ps−50℃)までの温度域を0.1℃/分の冷却速度で徐冷処理した後、屈折率nが整合する浸液を浸透させながら、島津製作所製の屈折率測定器KPR−2000により測定可能である。
 第七に、本発明(第二の本発明)のガラスの製造方法は、平板形状に成形することが好ましい。
 第八に、本発明(第二の本発明)のガラスの製造方法は、オーバーフローダウンドロー法で成形することが好ましい。ここで、「オーバーフローダウンドロー法」は、耐熱性の樋状構造物の両側から、溶融ガラスを溢れさせて、樋状構造物の下端で合流させながら、下方に延伸成形してガラス板を成形する方法である。
 第九に、本発明(第二の本発明)のガラスの製造方法は、得られたガラスを有機EL照明に用いることが好ましい。
 第十に、本発明(第二の本発明)のガラスは、上記のガラスの製造方法により作製されたことを特徴とする。
 第十一に、本発明(第二の本発明)のガラスは、熱処理により、分相していない状態から、少なくとも第一の相と第二の相に分相する性質を有し、且つ有機ELデバイスに用いることを特徴とする。
 第十二に、本発明(第二の本発明)のガラスは、熱処理前の波長435nm、546nm及び700nmにおけるヘイズ値が5~100%であることが好ましい。ここで、「ヘイズ値」は、(拡散透過率)×100/(全光線透過率)で算出される値である。「拡散透過率」は、分光光度計(例えば、島津製作所製UV−2500PC)により厚み方向で測定した値であり、例えば、両表面が鏡面研磨されたガラスを測定試料とすることができる。「全光線透過率」は、分光光度計(例えば、島津製作所製UV−2500PC)により厚み方向で測定した値であり、例えば、両表面が鏡面研磨されたガラスを測定試料とすることができる。
 第十三に、本発明(第二の本発明)のガラスは、熱処理後の波長435nm、546nm及び700nmにおけるヘイズ値が0~80%であることが好ましい。
[実施例2]に係る試料No.2([実施例7]に係る試料No.22)を1Mの塩酸溶液に10分間浸漬させた後、得られた表面を走査型電子顕微鏡で観察した像である。 [実施例2]に係る試料No.9([実施例7]に係る試料No.29)を1Mの塩酸溶液に10分間浸漬させた後、得られた表面を走査型電子顕微鏡で観察した像である。 [実施例2]に係る試料No.10([実施例7]に係る試料No.30)を1Mの塩酸溶液に10分間浸漬させた後、得られた表面を走査型電子顕微鏡で観察した像である。 [実施例2]に係る試料No.11([実施例7]に係る試料No.31)を1Mの塩酸溶液に10分間浸漬させた後、得られた表面を走査型電子顕微鏡で観察した像である。 [実施例2]に係る試料No.12([実施例7]に係る試料No.32)を1Mの塩酸溶液に10分間浸漬させた後、得られた表面を走査型電子顕微鏡で観察した像である。 [実施例2]に係る試料No.13([実施例7]に係る試料No.33)を1Mの塩酸溶液に10分間浸漬させた後、得られた表面を走査型電子顕微鏡で観察した像である。 [実施例2]に係る試料No.14([実施例7]に係る試料No.34)を1Mの塩酸溶液に10分間浸漬させた後、得られた表面を走査型電子顕微鏡で観察した像である。 [実施例2]に係る試料No.15([実施例7]に係る試料No.35)を1Mの塩酸溶液に10分間浸漬させた後、得られた表面を走査型電子顕微鏡で観察した像である。 [実施例2]に係る試料No.16([実施例7]に係る試料No.36)を1Mの塩酸溶液に10分間浸漬させた後、得られた表面を走査型電子顕微鏡で観察した像である。 [実施例2]に係る試料No.17([実施例7]に係る試料No.37)を1Mの塩酸溶液に10分間浸漬させた後、得られた表面を走査型電子顕微鏡で観察した像である。 [実施例2]に係る試料No.18([実施例7]に係る試料No.38)を1Mの塩酸溶液に10分間浸漬させた後、得られた表面を走査型電子顕微鏡で観察した像である。 [実施例2]に係る試料No.19([実施例7]に係る試料No.39)を1Mの塩酸溶液に10分間浸漬させた後、得られた表面を走査型電子顕微鏡で観察した像である。 [実施例2]に係る試料No.20([実施例7]に係る試料No.40)を1Mの塩酸溶液に10分間浸漬させた後、得られた表面を走査型電子顕微鏡で観察した像である。 [実施例4]に係る試料No.12と比較例を対比するための電流効率曲線を示すデータである。 [実施例8]に係る試料No.39をリメルトした後、熱処理を行わずに、約10mm×30mm×1.0mm厚のガラス板に加工した後、その両表面を鏡面研磨した場合の外観写真である。 [実施例8]に係る試料No.39をリメルトし、840℃で20分間熱処理した後、約10mm×30mm×1.0mm厚のガラス板に加工し、その両表面を鏡面研磨した場合の外観写真である。 [実施例8]に係る試料No.39をリメルトし、840℃で40分間熱処理した後、約10mm×30mm×1.0mm厚のガラス板に加工し、その両表面を鏡面研磨した場合の外観写真である。
 本発明(第一の本発明)のガラスは、少なくとも第一の相と第二の相を含む分相構造を有すると共に、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多く、また第二の相中のBの含有量が、第一の相中のBの含有量よりも多い。このようにすれば、第一の相と第二の相の屈折率が相違し易くなり、ガラスの散乱機能を高めることができる。
 少なくとも一方の相(第一の相及び/又は第二の相)の分相粒子の平均粒子径は0.1~5μmが好ましい。分相粒子の平均粒子径が0.1μmより小さいと、有機EL層から放射した光が、第一の相と第二の相の界面で散乱し難くなる。またレイリー散乱によって波長に依存して異なる散乱強度を示し、結果として、白色OLEDを作製する際に発光層の素子構成の最適化が必要になる。一方、分相粒子の平均粒子径が5μmより大きいと、散乱強度が強くなり過ぎて、全光線透過率が低下する虞がある。
 本発明(第一の本発明)のガラスは、ガラス組成として、質量%で、SiO 30~75%、B 0.1~50%、Al 0~35%を含有することが好ましく、SiO 39超~75%、B 10~40%、Al 10~23%未満を含有することが特に好ましい。このようにすれば、分相性が向上し、光散乱機能を高め易くなる。以下、上記のように各成分を限定した理由を説明する。なお、各成分の含有範囲の説明において、%表示は、質量%を意味する。
 SiOの含有量は30~75%が好ましい。SiOの含有量が多くなると、溶融性、成形性が低下し易くなり、また屈折率が低下し易くなる。よって、SiOの好適な上限範囲は75%以下、70%以下または65%以下、特に60%以下である。一方、SiOの含有量が少なくなると、ガラス網目構造を形成し難くなり、ガラス化が困難になる。またガラスの粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、SiOの好適な下限範囲は30%以上、35%以上、38%以上または39%超、特に40%以上である。
 Bの含有量は0.1~50%が好ましい。Bは、分相性を高める成分であるが、Bの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなることに加えて、耐酸性が低下し易くなる。よって、Bの好適な上限範囲は50%以下、40%以下または30%以下、特に25%以下であり、好適な下限範囲は0.1%以上、0.5%以上、1%以上、4%以上、7%以上、10%以上、12%以上、14%以上、16%以上、18%以上または20%以上、特に22%以上である。
 Alの含有量は0~35%が好ましい。Alは、耐失透性を高める成分であるが、Alの含有量が多過ぎると、分相性が低下し易くなることに加えて、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。また耐酸性が低下し易くなる。よって、Alの好適な上限範囲は35%以下、30%以下、25%以下または23%未満、特に20%以下であり、好適な下限範囲は0.1%以上、3%以上、5%以上、8%以上、10%以上、12%以上または14%以上、特に15%以上である。
 耐失透性と分相性を両立させる観点から、SiO−Al−Bの含有量は、好ましくは−10~30%または−5~25%、特に好ましくは0~20%であり、Al+Bの含有量は、好ましくは25~50%または29~45%、特に好ましくは32~40%であり、質量比SiO/(Al+B)は、好ましくは0.7~2または6、0.8~2、特に好ましくは0.85~1.6である。なお、「SiO−Al−B」は、SiOの含有量からAlの含有量を減じ、更にBの含有量を減じたものである。「Al+B」は、AlとBの合計含有量である。「SiO/(Al+B)」は、SiOの含有量をAlとBの合計含有量で除した値である。
 上記成分以外にも、例えば、以下の成分を導入することができる。
 LiOの含有量は0~30%が好ましい。LiOは、分相性を高める成分であるが、LiOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなる。更に、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、LiOの好適な上限範囲は30%以下、20%以下、10%以下、5%以下または1%以下、特に0.5%以下である。
 NaOの含有量は0~30%が好ましい。NaOは、分相性を高める成分であるが、NaOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなる。更に、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、NaOの好適な上限範囲は30%以下、20%以下、10%以下、5%以下または1%以下、特に0.5%以下である。
 KOの含有量は0~30%が好ましい。KOは、分相性を高める成分であるが、KOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなる。更に、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、KOの好適な上限範囲は30%以下、20%以下、10%以下、5%以下または1%以下、特に0.5%以下である。
 MgOの含有量は0~30%が好ましい。MgOは、屈折率、ヤング率、歪点を高める成分であると共に、高温粘度を低下させる成分であるが、MgOを多量に含有させると、液相温度が上昇して、耐失透性が低下したり、密度が高くなり過ぎる虞がある。よって、MgOの好適な上限範囲は30%以下、20%以下、特に10%以下であり、好適な下限範囲は0.1%以上、1%以上または3%以上、特に5%以上である。
 CaOの含有量は0~30%が好ましい。CaOは、高温粘度を低下させる成分であるが、CaOの含有量が多くなると、密度が高くなり易く、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、CaOの好適な上限範囲は30%以下、20%以下、10%以下、5%以下、特に3%以下であり、好適な下限範囲は0.1%以上または0.5%以上、特に1%以上である。
 SrOの含有量は0~30%が好ましい。SrOの含有量が多くなると、屈折率、密度が高くなり易く、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、SrOの好適な上限範囲は30%以下または20%以下、特に10%以下であり、好適な下限範囲は1%以上または3%以上、特に5%以上である。
 BaOは、アルカリ土類金属酸化物の中ではガラスの粘性を極端に低下させずに、屈折率を高める成分である。BaOの含有量が多くなると、屈折率、密度が高くなり易く、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、BaOの好適な上限範囲は40%以下、30%以下、20%以下または10%以下、特に5%以下であり、好適な下限範囲は0.1%以上、特に1%以上である。
 ZnOは、屈折率、歪点を高める成分であると共に、高温粘度を低下させる成分であるが、ZnOを多量に導入すると、液相温度が上昇して、耐失透性が低下し易くなる。よって、ZnOの好適な上限範囲は20%以下、10%以下または5%以下、特に3%以下であり、好適な下限範囲は0.1%以上、特に1%以上である。
 TiOは、屈折率を高める成分であり、その含有量は0~20%が好ましい。しかし、TiOの含有量が多くなると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。また全光線透過率が低下する虞がある。よって、TiOの好適な上限範囲は20%以下、10%以下、特に5%以下であり、好適な下限範囲は0.001%以上、0.01%以上、0.1%以上、1%以上または2%以上、特に3%以上である。
 ZrOは、屈折率を高める成分であり、その含有量は0~20%が好ましい。しかし、ZrOの含有量が多くなると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、ZrOの好適な上限範囲は20%以下または10%以下、特に5%以下であり、好適な下限範囲は0.001%以上、0.01%以上、0.1%以上、1%以上または2%以上、特に3%以上である。
 Laは、屈折率を高める成分であり、その含有量は0~10%が好ましい。Laの含有量が多くなると、密度が高くなり易く、また耐失透性や耐酸性が低下し易くなる。更に原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、Laの好適な上限範囲は10%以下、5%以下、3%以下、2.5%以下または1%以下、特に0.1%以下である。
 Nbは、屈折率を高める成分であり、その含有量は0~10%が好ましい。Nbの含有量が多くなると、密度が高くなり易く、また耐失透性が低下し易くなる。更に原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、Nbの好適な上限範囲は10%以下、5%以下、3%以下、2.5%以下または1%以下、特に0.1%以下である。
 Gdは、屈折率を高める成分であり、その含有量は0~10%が好ましい。Gdの含有量が多くなると、密度が高くなり過ぎたり、ガラス組成の成分バランスを欠いて、耐失透性が低下したり、高温粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、Gdの好適な上限範囲は10%以下、5%以下、3%以下、2.5%以下または1%以下、特に0.1%以下である。
 La+Nbの含有量は0~10%が好ましい。La+Nbの含有量が多くなると、密度、熱膨張係数が高くなり易く、また耐失透性が低下し易くなり、更には高い液相粘度を確保し難くなる。更に原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、La+Nbの好適な上限範囲は10%以下、8%以下、5%以下、3%以下、1%以下または0.5%以下、特に0.1%以下である。ここで、「La+Nb」は、LaとNbの合計含有量を指す。
 レアメタル酸化物の含有量は合量で0~10%が好ましい。レアメタル酸化物の含有量が多くなると、密度、熱膨張係数が高くなり易く、また耐失透性や耐酸性が低下し易くなり、高い液相粘度を確保し難くなる。更に原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、レアメタル酸化物の好適な上限範囲は10%以下、5%以下または3%以下、特に1%以下であり、実質的に含まないことが望ましい。
 清澄剤として、下記酸化物換算で、As、Sb、SnO、Fe、F、Cl、SO、CeOの群から選択された一種又は二種以上を0~3%導入することができる。特に、清澄剤として、SnO、Fe及びCeOが好ましい。一方、AsとSbは、環境的観点から、その使用を極力控えることが好ましく、各々の含有量は0.3%未満、特に0.1%未満が好ましい。ここで、「下記酸化物換算」は、表記の酸化物とは価数が異なる酸化物であっても、表記の酸化物に換算した上で取り扱うことを意味する。
 SnOの含有量は、好ましくは0~1%または0.001~1%、特に好ましくは0.01~0.5%である。
 Feの好適な下限範囲は0.05%以下、0.04%以下または0.03%以下、特に0.02%以下であり、好適な下限範囲は0.001%以上である。
 CeOの含有量は0~6%が好ましい。CeOの含有量が多くなると、耐失透性が低下し易くなる。よって、CeOの好適な上限範囲は6%以下、5%以下、3%以下、2%以下または1%以下、特に0.1%以下である。一方、CeOの含有量が少なくなると、清澄性が低下し易くなる。よって、CeOを導入する場合、CeOの好適な下限範囲は0.001%以上、特に0.01%以上である。
 PbOは、高温粘性を低下させる成分であるが、環境的観点から、その使用を極力控えることが好ましい。PbOの含有量は0.5%以下が好ましく、実質的に含まないことが望ましい。ここで、「実質的にPbOを含まない」とは、ガラス組成中のPbOの含有量が0.1%未満の場合を指す。
 上記成分以外にも、他の成分を合量で好ましくは10%(望ましくは5%)まで導入してもよい。
 本発明(第一の本発明)のガラスにおいて、屈折率nは、好ましくは1.50超、1.51以上、1.52以上、1.53以上、1.54以上、1.55以上または1.56以上、特に好ましくは1.57以上である。屈折率nが1.50以下になると、ガラス板と透明導電膜等の界面の反射によって光を効率良く取り出すことが困難になる。一方、屈折率nが高過ぎると、ガラス板と空気の界面での反射率が高くなり、光を外部に取り出し難くなる。よって、屈折率nは、好ましくは2.30以下、2.20以下、2.10以下、2.00以下、1.90以下または1.80以下、特に好ましくは1.75以下である。
 密度は、好ましくは5.0g/cm以下、4.5g/cm以下または3.0g/cm以下、特に好ましくは2.8g/cm以下である。このようにすれば、デバイスを軽量化することができる。
 歪点は、好ましくは450℃以上または500℃以上、特に好ましくは550℃以上である。透明導電膜を高温で形成する程、透明性が高く、電気抵抗が低くなり易い。しかし、従来のガラス板は、耐熱性が不十分であるため、透明導電膜を高温で成膜することが困難であった。そこで、歪点を上記範囲とすれば、透明導電膜の透明性と低電気抵抗の両立が可能になり、更にはデバイスの製造工程において、熱処理によりガラス板が熱収縮し難くなる。
 102.5dPa・sにおける温度は、好ましくは1600℃以下、1560℃以下または1500℃以下、特に好ましくは1450℃以下である。このようにすれば、溶融性が向上するため、ガラス板の生産性が向上する。
 液相温度は、好ましくは1300℃以下、1250℃以下または1200℃以下、特に好ましくは1150℃以下である。また、液相粘度は、好ましくは102.5dPa・s以上、103.0dPa・s以上、103.5dPa・s以上、103.8dPa・s以上、104.0dPa・s以上または104.4dPa・s以上、特に好ましくは104.6dPa・s以上である。このようにすれば、成形時にガラスが失透し難くなり、例えば、フロート法又はオーバーフローダウンドロー法でガラス板を成形し易くなる。ここで、「液相温度」は、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値を指す。また「液相粘度」は、液相温度における各ガラスの粘度を示す。
 分相温度は、好ましくは800℃以上、特に好ましくは900℃以上である。また、分相粘度は、好ましくは107.0dPa・s以下、特に好ましくは103.0~106.0dPa・sである。このようにすれば、成形工程及び/又は徐冷工程でガラスが分相し易くなり、フロート法又はオーバーフローダウンドロー法で分相構造を有するガラス板を成形し易くなる。結果として、ガラス板を成形した後に、別途の熱処理工程が不要になり、ガラス板の製造コストを低減し易くなる。
 波長435nmにおける全光線透過率は、好ましくは5%以上または10%以上、特に好ましくは30~100%である。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 波長546nmにおける全光線透過率は、好ましくは5%以上、10%以上または30%以上、特に好ましくは50~100%である。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 波長700nmにおける全光線透過率は、好ましくは5%以上、10%以上、30%以上または50%以上、特に好ましくは70~100%である。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 波長435nmにおける拡散透過率は、好ましくは5%以上、特に好ましくは10~100%である。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 波長546nmにおける拡散透過率は、好ましくは5%以上または10%以上、特に好ましくは20~100%である。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 波長700nmにおける拡散透過率は、好ましくは1%以上または5%以上、特に好ましくは10~100%である。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 波長435nmにおけるヘイズ値は、好ましくは5%以上、10%以上、30%以上または50%以上、特に好ましくは70~100%である。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。なお、「ヘイズ値」は、拡散透過率/全光線透過率×100の値である。
 波長546nmにおけるヘイズ値は、好ましくは5%以上、10%以上、30%以上または50%以上、特に好ましくは70~100%である。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 波長700nmにおけるヘイズ値は、好ましくは1%以上または5%以上、特に好ましくは10~100%である。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 波長435nm、546nm及び700nmにおける全光線透過率は、好ましくは1%以上または3%以上、特に好ましくは10~100%である。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 波長435nm、546nm及び700nmにおける拡散透過率は、好ましくは1%以上または3%以上、特に好ましくは10~100%である。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 波長435nm、546nm及び700nmにおけるヘイズ値は、好ましくは1%以上または3%以上、特に好ましくは10~100%である。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 本発明(第一の本発明)のガラスにおいて、厚み(平板形状の場合、板厚)は、好ましくは1.5mm以下、1.3mm以下、1.1mm以下、0.8mm以下、0.6mm以下、0.5mm以下、0.3mm以下または0.2mm以下、特に好ましくは0.1mm以下である。板厚が小さい程、可撓性が高まり、意匠性に優れた有機EL照明を作製し易くなるが、板厚が極端に小さくなると、ガラスが破損し易くなる。よって、板厚は、好ましくは10μm以上、特に好ましくは30μm以上である。
 本発明(第一の本発明)のガラスは、平板形状を有することが好ましく、つまりガラス板であることが好ましい。このようにすれば、有機ELデバイスに適用し易くなる。平板形状を有する場合、少なくとも一方の表面に未研磨面を有すること(特に、少なくとも一方の表面の有効面全体が未研磨面であること)が好ましい。ガラスの理論強度は、非常に高いが、理論強度よりも遥かに低い応力でも破壊に至ることが多い。これは、ガラスの表面にグリフィスフローと呼ばれる小さな欠陥が成形後の工程、例えば研磨工程等で生じるからである。よって、ガラス板の表面を未研磨にすれば、本来の機械的強度を損ない難くなるため、ガラス板が破壊し難くなる。また、研磨工程を簡略化又は省略し得るため、ガラス板の製造コストを低廉化することができる。
 平板形状を有する場合、少なくとも一方の表面(特に未研磨面)の表面粗さRaは0.01~1μmが好ましい。表面粗さRaが1μmより大きいと、その面に透明導電膜等を形成する場合、透明導電膜の品位が低下して、均一な発光を得難くなる。表面粗さRaの好適な上限範囲は1μm以下、0.8μm以下、0.5μm以下、0.3μm以下、0.1μm以下、0.07μm以下、0.05μm以下または0.03μm以下、特に10nm以下である。
 本発明(第一の本発明)のガラスは、ダウンドロー法、特にオーバーフローダウンドロー法で成形されてなることが好ましい。このようにすれば、未研磨で表面品位が良好なガラス板を製造することができる。その理由は、オーバーフローダウンドロー法の場合、表面になるべき面は樋状耐火物に接触せず、自由表面の状態で成形されるからである。樋状構造物の構造や材質は、所望の寸法や表面精度を実現できる限り、特に限定されない。また、下方への延伸成形を行うために、溶融ガラスに対して、力を印加する方法も特に限定されない。例えば、充分に大きい幅を有する耐熱性ロールを溶融ガラスに接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールを溶融ガラスの端面近傍のみに接触させて延伸する方法を採用してもよい。なお、オーバーフローダウンドロー法以外にも、スロットダウンドロー法を採用することができる。このようにすれば、板厚が小さいガラス板を作製し易くなる。ここで、「スロットダウンドロー法」は、略矩形の隙間から溶融ガラスを流し出しながら、下方に延伸成形して、ガラス板を成形する方法である。
 上記成形方法以外にも、例えば、リドロー法、フロート法、ロールアウト法等を採用することができる。特に、フロート法は、大型のガラス板を効率良く作製することができる。
 本発明(第一の本発明)のガラスは、平板形状を有する場合、少なくとも一方の表面を粗面化面としてもよい。粗面化面を有機EL照明等の空気と接する側に配置すれば、ガラス板の散乱効果に加えて、粗面化面の無反射構造により、有機EL層から放射した光が有機EL層内に戻り難くなり、結果として、光の取り出し効率を高めることができる。粗面化面の表面粗さRaは、好ましくは10Å以上、20Å以上、30Å以上、特に50Å以上である。粗面化面は、HFエッチング、サンドブラスト等で形成することができる。また、リプレス等の熱加工により、ガラス板の表面に凹凸形状を形成してもよい。このようにすれば、ガラス表面に正確な無反射構造を形成することができる。凹凸形状は、屈折率nを考慮しながら、その間隔と深さを調整すればよい。
 また、大気圧プラズマプロセスにより粗面化面を形成することもできる。このようにすれば、ガラス板の一方の表面の表面状態を維持した上で、他方の表面に対して、均一に粗面化処理を行うことができる。また、大気圧プラズマプロセスのソースとして、Fを含有するガス(例えば、SF、CF)を用いることが好ましい。このようにすれば、HF系ガスを含むプラズマが発生するため、粗面化面を効率良く形成することができる。
 更に、ガラス板の成形時に、少なくとも一方の表面に粗面化面を形成することもできる。このようにすれば、別途独立した粗面化処理が不要になり、粗面化処理の効率が向上する。
 なお、ガラス板に粗面化面を形成せずに、所定の凹凸形状を有する樹脂フィルムをガラス板の表面に貼り付けてもよい。
 本発明(第一の本発明)のガラスは、別途の熱処理工程を経ていないことが好ましく、成形工程で分相しているか、或いは成形直後の徐冷(冷却)工程で分相していることが好ましい。特に、オーバーフローダウンドロー法でガラス板を成形する場合、樋状構造物内で分相現象が生じていてもよく、延伸成形時や徐冷時に分相現象が生じていてもよい。このようにすれば、ガラスの製造工程数が減少し、ガラスの生産性を高めることができる。なお、分相現象は、ガラス組成、成形条件、徐冷条件等により制御することができる。
 本発明(第一の本発明)のガラスは、有機EL素子に組み込んだ時に、電流効率が、分相していないガラスよりも高くなることが好ましい。例えば、10mA/cmにおける電流効率が、分相していないガラスと比較して5%以上、10%以上、20%以上または30%以上、特に40%以上高くなることが好ましい。このようにすれば、有機ELデバイスの輝度を高めることができる。
 本発明(第一の本発明)のガラスは、有機EL素子に組み込んだ時に、電流効率が、屈折率nが同程度の分相していないガラスよりも高くなることが好ましい。例えば、10mA/cmにおける電流効率が、屈折率nが同程度の分相していないガラスと比較して5%以上、10%以上、20%以上または30%以上、特に40%以上高くなることが好ましい。このようにすれば、有機ELデバイスの輝度を高めることができる。特に、既存のガラス組成を大幅に変更しなくても、分相を誘起する成分を導入するだけで有機ELデバイスの輝度を高めることができる。
 本発明(第一の本発明)の複合基板は、ガラス板と基板を接合した複合基板であって、ガラス板が、上記のガラスからなることを特徴とする。このようにすれば、ガラス板が光散乱層として機能するため、基板と複合化するだけで、有機EL素子の光取り出し効率を高めることができる。更に、ガラス板と基板を接合し、ガラス板を空気と接する側に配置すると、複合基板の耐傷性を高めることができる。
 本発明(第一の本発明)の複合基板において、ガラス板の板厚は、好ましくは0.7mm以下、0.5mm以下、0.4mm以下、0.3mm以下または0.2mm以下、特に好ましくは0.01~0.1mmである。このようにすれば、複合基板の総板厚を低減することができる。
 基板として、種々の材料を使用することが可能であり、例えば、樹脂基板、金属基板、ガラス基板を使用することが可能である。その中でも、透過性、耐候性、耐熱性の観点から、ガラス基板が好ましい。ガラス基板として、種々の材料が使用可能であり、例えば、ソーダライムガラス基板、アルミノシリケートガラス基板、無アルカリガラス基板が使用可能である。
 ガラス基板の厚みは、強度を維持する観点から、好ましくは0.3~3.0mmまたは0.4~2.0mm、特に好ましくは0.5超~1.8mmである。
 ガラス基板の屈折率nは、好ましくは1.50超、1.51以上、1.52以上または1.53以上、特に好ましくは1.54以上である。ガラス基板の屈折率が低過ぎると、ガラス基板と透明導電膜等の界面の反射によって光を効率良く取り出すことが困難になる。一方、屈折率nが高過ぎると、ガラス基板とガラス板の界面での反射率が高くなり、ガラス基板中の光を空気中に取り出し難くなる。よって、屈折率nは、好ましくは2.30以下、2.20以下、2.10以下、2.00以下、1.90以下または1.80以下、特に好ましくは1.75以下である。
 ガラス基板の少なくとも一方の表面(特に未研磨面)の表面粗さRaは0.01~1μmが好ましい。表面の表面粗さRaが大き過ぎると、オプティカルコンタクトで複合基板を作製し易くなることに加えて、その表面に透明導電膜等を形成する場合、透明導電膜の品位が低下して、均一な発光を得難くなる。よって、少なくとも一方の表面の表面粗さRaの好適な上限範囲は1μm以下、0.8μm以下、0.5μm以下、0.3μm以下、0.1μm以下、0.07μm以下、0.05μm以下または0.03μm以下、特に10nm以下である。
 ガラス板と基板を接合する方法として、種々の方法が利用可能である。例えば、粘着テープ、粘着シート、接着剤、硬化剤等により接合する方法、オプティカルコンタクトで接合する方法が利用可能である。その中でも、複合基板の透過率を高める観点から、オプティカルコンタクトで接合する方法が好ましい。
 本発明(第二の本発明)のガラスの製造方法は、熱処理により、少なくとも第一の相と第二の相を含む分相構造を有するガラスを得ることを特徴とし、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多く、また第二の相中のBの含有量が、第一の相中のBの含有量よりも多いことが好ましい。このようにすれば、第一の相と第二の相の屈折率が相違し易くなり、ガラスの散乱機能を高めることができる。
 本発明(第二の本発明)のガラスの製造方法において、溶融ガラスを成形した後の熱処理温度は、好ましくは600℃以上、700℃以上または750℃以上、特に好ましくは800℃以上である。このようにすれば、分相性を高めることができる。一方、熱処理温度は、好ましくは1100℃以下、特に好ましくは1000℃以下である。熱処理温度が高過ぎると、熱処理コストが増大することに加えて、散乱強度が強くなり過ぎて、直線透過率、全光線透過率等が低下する虞がある。
 本発明(第二の本発明)のガラスの製造方法において、熱処理時間は、好ましくは1分間以上、特に5分間以上である。このようにすれば、分相性を高めることができる。一方、熱処理温度は、好ましくは60分間以下、特に40分間以下である。熱処理時間が高過ぎると、熱処理コストが増大することに加えて、散乱強度が強くなり過ぎて、直線透過率、全光線透過率等が低下する虞がある。
 本発明(第二の本発明)のガラスの製造方法において、ガラスは、ガラス組成として、質量%で、SiO 30~75%、B 0.1~50%、Al 0~35%を含有することが好ましい。このようにすれば、分相性が向上し、光散乱機能を高め易くなる。以下、上記のように各成分を限定した理由を説明する。なお、各成分の含有範囲の説明において、%表示は、質量%を意味する。
 SiOの含有量は30~75%が好ましい。SiOの含有量が多くなると、溶融性、成形性が低下し易くなり、また屈折率が低下し易くなる。よって、SiOの好適な上限範囲は75%以下、70%以下、65%以下、特に60%以下である。一方、SiOの含有量が少なくなると、ガラス網目構造を形成し難くなり、ガラス化が困難になる。またガラスの粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、SiOの好適な下限範囲は30%以上または35%以上、特に38%以上である。
 Bの含有量は0.1~50%が好ましい。Bは、分相性を高める成分であるが、Bの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなることに加えて、耐酸性が低下し易くなる。よって、Bの好適な上限範囲は50%以下、40%以下または30%以下、特に25%以下であり、好適な下限範囲は0.1%以上、0.5%以上、1%以上、4%以上または7%以上、特に10%以上である。
 Alの含有量は0~35%が好ましい。Alは、耐失透性を高める成分であるが、Alの含有量が多過ぎると、分相性が低下し易くなることに加えて、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。また耐酸性が低下し易くなる。よって、Alの好適な上限範囲は35%以下、30%以下または25%以下、特に20%以下であり、好適な下限範囲は0.1%以上、3%以上、5%以上または8%以上、特に10%以上である。
 上記成分以外にも、例えば、以下の成分を導入することができる。
 LiOの含有量は0~30%が好ましい。LiOは、分相性を高める成分であるが、LiOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなる。更に、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、LiOの好適な上限範囲は30%以下、20%以下、10%以下、5%以下または1%以下、特に0.5%以下である。
 NaOの含有量は0~30%が好ましい。NaOは、分相性を高める成分であるが、NaOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなる。更に、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、NaOの好適な上限範囲は30%以下、20%以下、10%以下、5%以下または1%以下、特に0.5%以下である。
 KOの含有量は0~30%が好ましい。KOは、分相性を高める成分であるが、KOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなる。更に、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、KOの好適な上限範囲は30%以下、20%以下、10%以下、5%以下または1%以下、特に0.5%以下である。
 MgOの含有量は0~30%が好ましい。MgOは、屈折率、ヤング率、歪点を高める成分であると共に、高温粘度を低下させる成分であるが、MgOを多量に含有させると、液相温度が上昇して、耐失透性が低下したり、密度が高くなり過ぎる虞がある。よって、MgOの好適な上限範囲は30%以下、20%以下、特に10%以下であり、好適な下限範囲は0.1%以上、1%以上または3%以上、特に5%以上である。
 CaOの含有量は0~30%が好ましい。CaOは、高温粘度を低下させる成分であるが、CaOの含有量が多くなると、密度が高くなり易く、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、CaOの好適な上限範囲は30%以下、20%以下、10%以下または5%以下、特に3%以下であり、好適な下限範囲は0.1%以上または0.5%以上、特に1%以上である。
 SrOの含有量は0~30%が好ましい。SrOの含有量が多くなると、屈折率、密度が高くなり易く、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、SrOの好適な上限範囲は30%以下、20%以下、特に10%以下であり、好適な下限範囲は1%以上または3%以上、特に5%以上である。
 BaOは、アルカリ土類金属酸化物の中ではガラスの粘性を極端に低下させずに、屈折率を高める成分である。BaOの含有量が多くなると、屈折率、密度が高くなり易く、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、BaOの好適な上限範囲は40%以下、30%以下、20%以下または10%以下、特に5%以下であり、好適な下限範囲は0.1%以上、特に1%以上である。
 ZnOは、屈折率、歪点を高める成分であると共に、高温粘度を低下させる成分であるが、ZnOを多量に導入すると、液相温度が上昇して、耐失透性が低下する。よって、ZnOの好適な上限範囲は20%以下、10%以下または5%以下、特に3%以下であり、好適な下限範囲は0.1%以上、特に1%以上である。
 TiOは、屈折率を高める成分であり、その含有量は0~20%が好ましい。しかし、TiOの含有量が多くなると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。また全光線透過率が低下する虞がある。よって、TiOの好適な上限範囲は20%以下、特に10%以下であり、好適な下限範囲は0.001%以上、0.01%以上、0.1%以上、1%以上または2%以上、特に3%以上である。
 ZrOは、屈折率を高める成分であり、その含有量は0~20%が好ましい。しかし、ZrOの含有量が多くなると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、ZrOの好適な上限範囲は20%以下、10%以下、特に5%以下であり、好適な下限範囲は0.001%以上、0.01%以上、0.1%以上、1%以上または2%以上、特に3%以上である。
 Laは、屈折率を高める成分であり、その含有量は0~10%が好ましい。Laの含有量が多くなると、密度が高くなり易く、また耐失透性や耐酸性が低下し易くなる。更に原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、Laの好適な上限範囲は10%以下、5%以下、3%以下、2.5%以下または1%以下、特に0.1%以下である。
 Nbは、屈折率を高める成分であり、その含有量は0~10%が好ましい。Nbの含有量が多くなると、密度が高くなり易く、また耐失透性が低下し易くなる。更に原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、Nbの好適な上限範囲は10%以下、5%以下、3%以下、2.5%以下または1%以下、特に0.1%以下である。
 Gdは、屈折率を高める成分であり、その含有量は0~10%が好ましい。Gdの含有量が多くなると、密度が高くなり過ぎたり、ガラス組成の成分バランスを欠いて、耐失透性が低下したり、高温粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、Gdの好適な上限範囲は10%以下、5%以下、3%以下、2.5%以下または1%以下、特に0.1%以下である。
 La+Nbの含有量は0~10%が好ましい。La+Nbの含有量が多くなると、密度、熱膨張係数が高くなり易く、また耐失透性が低下し易くなり、更には高い液相粘度を確保し難くなる。更に原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、La+Nbの好適な上限範囲は10%以下、8%以下、5%以下、3%以下、1%以下または0.5%以下、特に0.1%以下である。ここで、「La+Nb」は、LaとNbの合量を指す。
 レアメタル酸化物の含有量は合量で0~10%が好ましい。レアメタル酸化物の含有量が多くなると、密度、熱膨張係数が高くなり易く、また耐失透性や耐酸性が低下し易くなり、高い液相粘度を確保し難くなる。更に原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、レアメタル酸化物の好適な上限範囲は10%以下、5%以下または3%以下、特に1%以下であり、実質的に含まないことが望ましい。
 清澄剤として、下記酸化物換算で、As、Sb、SnO、Fe、F、Cl、SO、CeOの群から選択された一種又は二種以上を0~3%導入することができる。特に、清澄剤として、SnO、Fe及びCeOが好ましい。一方、AsとSbは、環境的観点から、その使用を極力控えることが好ましく、各々の含有量は0.3%未満、特に0.1%未満が好ましい。ここで、「下記酸化物換算」は、表記の酸化物とは価数が異なる酸化物であっても、表記の酸化物に換算した上で取り扱うことを意味する。
 SnOの含有量は、好ましくは0~1%または0.001~1%、特に好ましくは0.01~0.5%である。
 Feの好適な下限範囲は0.05%以下、0.04%以下または0.03%以下、特に0.02%以下であり、好適な下限範囲は0.001%以上である。
 CeOの含有量は0~6%が好ましい。CeOの含有量が多くなると、耐失透性が低下し易くなる。よって、CeOの好適な上限範囲は6%以下、5%以下、3%以下、2%以下または1%以下、特に0.1%以下である。一方、CeOの含有量が少なくなると、清澄性が低下し易くなる。よって、CeOを導入する場合、CeOの好適な下限範囲は0.001%以上、特に0.01%以上である。
 PbOは、高温粘性を低下させる成分であるが、環境的観点から、その使用を極力控えることが好ましい。PbOの含有量は0.5%以下が好ましく、実質的に含まないことが望ましい。ここで、「実質的にPbOを含まない」とは、ガラス組成中のPbOの含有量が0.1%未満の場合を指す。
 上記成分以外にも、他の成分を合量で好ましくは10%(望ましくは5%)まで導入してもよい。
 本発明(第二の本発明)に係るガラスは、下記の特性を有することが好ましい。
 本発明に係るガラスにおいて、屈折率nは、好ましくは1.50超、1.51以上、1.52以上、1.53以上、1.54以上、1.55以上または1.555以上、特に好ましくは1.565以上である。屈折率nが1.50以下になると、ガラス板と透明導電膜等の界面の反射によって光を効率良く取り出せなくなる。一方、屈折率nが高過ぎると、ガラス板と空気の界面での反射率が高くなり、光を外部に取り出し難くなる。よって、屈折率nは、好ましくは2.30以下、2.20以下、2.10以下、2.00以下、1.90以下または1.80以下、特に好ましくは1.75以下である。
 密度は、好ましくは5.0g/cm以下、4.5g/cm以下または3.0g/cm以下、特に好ましくは2.8g/cm以下である。このようにすれば、デバイスを軽量化することができる。
 歪点は、好ましくは450℃以上または500℃以上、特に好ましくは550℃以上である。透明導電膜を高温で形成する程、透明性が高く、電気抵抗が低くなり易い。しかし、従来のガラス板は、耐熱性が不十分であるため、透明導電膜を高温で成膜することが困難であった。そこで、歪点を上記範囲とすれば、透明導電膜の透明性と低電気抵抗の両立が可能になり、更にはデバイスの製造工程において、熱処理によりガラス板が熱収縮し難くなる。
 102.5dPa・sにおける温度は、好ましくは1600℃以下、1560℃以下または1500℃以下、特に好ましくは1450℃以下である。このようにすれば、溶融性が向上するため、ガラス板の生産性が向上する。
 液相温度は、好ましくは1300℃以下、1250℃以下または1200℃以下、特に好ましくは1150℃以下である。また、液相粘度は、好ましくは102.5dPa・s以上、103.0dPa・s以上、103.5dPa・s以上、103.8dPa・s以上、104.0dPa・s以上または104.4dPa・s以上、特に好ましくは104.6dPa・s以上である。このようにすれば、成形時にガラスが失透し難くなり、例えば、フロート法又はオーバーフローダウンドロー法でガラス板を成形し易くなる。ここで、「液相温度」は、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値を指す。また、「液相粘度」は、液相温度におけるガラスの粘度を指す。
 本発明(第二の本発明)のガラスの製造方法では、得られるガラスの厚み(平板形状の場合、板厚)を好ましくは1.5mm以下、1.3mm以下、1.1mm以下、0.8mm以下、0.6mm以下、0.5mm以下、0.3mm以下または0.2mm以下、特に0.1mm以下に制御することが好ましい。板厚が小さい程、可撓性が高まり、意匠性に優れた有機EL照明を作製し易くなるが、板厚が極端に小さくなると、ガラスが破損し易くなる。よって、板厚は、好ましくは10μm以上、特に好ましくは30μm以上である。
 本発明(第二の本発明)のガラスの製造方法は、平板形状に成形することが好ましく、つまりガラス板に成形することが好ましい。このようにすれば、有機ELデバイスに適用し易くなる。平板形状に成形した後、少なくとも一方の表面に未研磨面とすること(特に、少なくとも一方の表面の有効面全体が未研磨面とすること)が好ましい。ガラスの理論強度は、非常に高いが、理論強度よりも遥かに低い応力でも破壊に至ることが多い。これは、ガラスの表面にグリフィスフローと呼ばれる小さな欠陥が成形後の工程、例えば研磨工程等で生じるからである。よって、ガラス板の表面を未研磨にすれば、本来の機械的強度を損ない難くなるため、ガラス板が破壊し難くなる。また、研磨工程を簡略化又は省略し得るため、ガラス板の製造コストを低廉化することができる。
 平板形状に成形する場合、少なくとも一方の表面(特に未研磨面)の表面粗さRaを0.01~1μmに制御することが好ましい。表面粗さRaが1μmより大きいと、その面に透明導電膜等を形成する場合、透明導電膜の品位が低下して、均一な発光を得難くなる。表面粗さRaの好適な上限範囲は1μm以下、0.8μm以下、0.5μm以下、0.3μm以下、0.1μm以下、0.07μm以下、0.05μm以下または0.03μm以下、特に10nm以下である。
 本発明(第二の本発明)のガラスの製造方法は、ダウンドロー法、特にオーバーフローダウンドロー法で成形することが好ましい。このようにすれば、未研磨で表面品位が良好なガラス板を製造することができる。その理由は、オーバーフローダウンドロー法の場合、表面になるべき面は樋状耐火物に接触せず、自由表面の状態で成形されるからである。樋状構造物の構造や材質は、所望の寸法や表面精度を実現できる限り、特に限定されない。また、下方への延伸成形を行うために、溶融ガラスに対して、力を印加する方法も特に限定されない。例えば、充分に大きい幅を有する耐熱性ロールを溶融ガラスに接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールを溶融ガラスの端面近傍のみに接触させて延伸する方法を採用してもよい。なお、オーバーフローダウンドロー法以外にも、スロットダウンドロー法を採用することができる。このようにすれば、板厚が小さいガラス板を作製し易くなる。ここで、「スロットダウンドロー法」は、略矩形の隙間から溶融ガラスを流し出しながら、下方に延伸成形して、ガラス板を成形する方法である。
 上記成形方法以外にも、例えば、リドロー法、フロート法、ロールアウト法等を採用することができる。特に、フロート法は、大型のガラス板を効率良く作製することができる。
 本発明(第二の本発明)のガラス板の製造方法は、平板形状に成形した後、少なくとも一方の表面に粗面化面を形成してもよい。粗面化面を有機EL照明等の空気と接する側に配置すれば、ガラス板の散乱効果に加えて、粗面化面の無反射構造により、有機EL層から入射した光が有機EL層内に戻り難くなり、結果として、光の取り出し効率を高めることができる。粗面化面の表面粗さRaは、好ましくは10Å以上、20Å以上または30Å以上、特に好ましくは50Å以上である。粗面化面は、HFエッチング、サンドブラスト等で形成することができる。また、リプレス等の熱加工により、ガラス板の表面に凹凸形状を形成してもよい。このようにすれば、ガラス表面に正確な無反射構造を形成することができる。凹凸形状は、屈折率nを考慮しながら、その間隔と深さを調整すればよい。
 また、大気圧プラズマプロセスにより粗面化面を形成することもできる。このようにすれば、ガラス板の一方の表面の表面状態を維持した上で、他方の表面に対して、均一に粗面化処理を行うことができる。また、大気圧プラズマプロセスのソースとして、Fを含有するガス(例えば、SF、CF)を用いることが好ましい。このようにすれば、HF系ガスを含むプラズマが発生するため、粗面化面を効率良く形成することができる。
 更に、ガラス板の成形時に、少なくとも一方の表面に粗面化面を形成することもできる。このようにすれば、別途独立した粗面化処理が不要になり、粗面化処理の効率が向上する。
 なお、上記方法以外にも、所定の凹凸形状を有する樹脂フィルムをガラス板の表面に貼り付けてもよい。
 本発明(第二の本発明)のガラスは、上記のガラスの製造方法により作製されたことを特徴とする。また、本発明のガラスは、未だ分相していないが、熱処理により、分相していない状態から、少なくとも第一の相と第二の相に分相する性質を有し、且つ有機ELデバイスに用いることを特徴とする。なお、本発明のガラスの技術的特徴(好適な構成、効果)は、本発明のガラスの製造方法の説明欄に記載済みであり、ここでは、詳細な説明を省略する。
 本発明(第二の本発明)のガラスにおいて、熱処理前の波長435nm、546nm及び700nmにおけるヘイズ値は、好ましくは80%以下または70%以下、特に好ましくは50%以下であり、好ましくは0%以上または1%以上、特に好ましくは3%以上である。上記のように熱処理前のヘイズ値を規制すれば、成形時にガラスが分相し過ぎて、分相性を制御し難くなる事態を回避し易くなる。そして、ガラスが成形工程で分相するか、或いは成形直後の徐冷(冷却)工程でガラスが分相する場合でも、別途の熱処理により、所望の散乱特性のガラスを作製し易くなる。
 本発明(第二の本発明)のガラスにおいて、熱処理後の波長435nmにおける全光線透過率は、好ましくは5%以上、特に10~100%である。更に、本発明のガラスは、840℃で20分間熱処理した場合、波長435nmにおける全光線透過率が5%以上、特に10~80%になる性質を有することが好ましく、また840℃で40分間熱処理した場合、波長435nmにおける全光線透過率が5%以上、特に8~60%になる性質を有することが好ましい。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 本発明(第二の本発明)のガラスにおいて、熱処理後の波長546nmにおける全光線透過率は、好ましくは5%以上、10%以上または30%以上、特に好ましくは50~100%である。更に、本発明のガラスは、840℃で20分間熱処理した場合、波長546nmにおける全光線透過率が5%以上、10%以上または30%以上、特に50~100%になる性質を有することが好ましく、また840℃で40分間熱処理した場合、波長546nmにおける全光線透過率が5%以上、10%以上または20%以上、特に30~80%になる性質を有することが好ましい。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 本発明(第二の本発明)のガラスにおいて、熱処理後の波長700nmにおける全光線透過率は、好ましくは5%以上、10%以上、30%以上または50%以上、特に好ましくは70~100%である。更に、本発明のガラスは、840℃で20分間熱処理した場合、波長700nmにおける全光線透過率が5%以上、10%以上、30%以上または50%以上、特に70~100%になる性質を有することが好ましく、また840℃で40分間熱処理した場合、波長700nmにおける全光線透過率が5%以上、10%以上、30%以上または50%以上、特に60~100%になる性質を有することが好ましい。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 本発明(第二の本発明)のガラスにおいて、熱処理後の波長435nmにおける拡散透過率は、好ましくは5%以上、特に好ましくは10~100%である。更に、本発明のガラスは、840℃で20分間熱処理した場合、波長435nmにおける拡散透過率が5%以上、特に10~80%になる性質を有することが好ましく、また840℃で40分間熱処理した場合、波長435nmにおける拡散透過率が5%以上、特に8~60%になる性質を有することが好ましく、このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 本発明(第二の本発明)のガラスにおいて、熱処理後の波長546nmにおける拡散透過率は、好ましくは5%以上または10%以上、特に好ましくは20~100%である。更に、本発明のガラスは、840℃で20分間熱処理した場合、波長546nmにおける拡散透過率が5%以上または10%以上、特に15~80%になる性質を有することが好ましく、また840℃で40分間熱処理した場合、波長546nmにおける拡散透過率は、好ましくは5%以上または10%以上、特に好ましくは20~90%である。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 本発明(第二の本発明)のガラスにおいて、熱処理後の波長700nmにおける拡散透過率は、好ましくは1%以上または5%以上、特に好ましくは10~100%である。更に、本発明のガラスは、840℃で20分間熱処理した場合、波長700nmにおける拡散透過率が1%以上または5%以上、特に8~60%になる性質を有することが好ましく、また840℃で40分間熱処理した場合、波長700nmにおける拡散透過率が1%以上または5%以上、特に10~80%になる性質を有することが好ましい。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 本発明(第二の本発明)のガラスにおいて、熱処理後の波長435nmにおけるヘイズ値は、好ましくは5%以上、10%以上、30%以上または50%以上、特に好ましくは70~100%である。更に、本発明のガラスは、840℃で20分間熱処理した場合、波長435nmにおけるヘイズ値が5%以上、10%以上、30%以上または50%以上、特に70~100%になる性質を有することが好ましく、また840℃で40分間熱処理した場合、波長435nmにおけるヘイズ値が5%以上、10%以上、30%以上または50%以上、特に70~100%になる性質を有することが好ましい。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 本発明(第二の本発明)のガラスにおいて、熱処理後の波長546nmにおけるヘイズ値は、好ましくは5%以上、10%以上、30%以上または50%以上、特に好ましくは70~100%である。更に、本発明のガラスは、840℃で20分間熱処理した場合、波長546nmにおけるヘイズ値が5%以上、10%以上、30%以上または40%以上、特に45~80%になる性質を有することが好ましく、また840℃で40分間熱処理した場合、波長546nmにおけるヘイズ値が5%以上、10%以上、30%以上または50%以上、特に70~100%になる性質を有することが好ましい。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 本発明(第二の本発明)のガラスにおいて、熱処理後の波長700nmにおけるヘイズ値は、好ましくは1%以上または5%以上、特に好ましくは10~100%である。更に、本発明のガラスは、840℃で20分間熱処理した場合、波長700nmにおけるヘイズ値が1%以上または5%以上、特に8~60%になる性質を有することが好ましく、また840℃で40分間熱処理した場合、波長700nmにおけるヘイズ値が1%以上または5%以上、特に10~80%になる性質を有することが好ましい。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 本発明(第二の本発明)のガラスにおいて、熱処理後の波長435nm、546nm及び700nmにおける全光線透過率は、好ましくは1%以上または3%以上、特に好ましくは10~100%である。更に、本発明のガラスは、840℃で20分間熱処理した場合、波長435nm、546nm及び700nmにおける全光線透過率が1%以上、3%以上、5%以上または10%以上、特に15~100%になる性質を有することが好ましく、また840℃で40分間熱処理した場合、波長435nm、546nm及び700nmにおける全光線透過率が1%以上、3%以上または5%以上、特に10~90%になる性質を有することが好ましい。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 本発明(第二の本発明)のガラスにおいて、熱処理後の波長435nm、546nm及び700nmにおける拡散透過率は、好ましくは1%以上または3%以上、特に好ましくは10~100%である。更に、本発明のガラスは、840℃で20分間熱処理した場合、波長435nm、546nm及び700nmにおける拡散透過率が1%以上または3%以上、特に5~60%になる性質を有することが好ましく、また840℃で40分間熱処理した場合、波長435nm、546nm及び700nmにおける拡散透過率が1%以上、3%以上または5%以上、特に10~80%になる性質を有することが好ましい。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 本発明(第二の本発明)のガラスにおいて、熱処理後の波長435nm、546nm及び700nmにおけるヘイズ値は、好ましくは1%以上、3%以上または5%以上、特に好ましくは10~100%である。更に、本発明のガラスは、840℃で20分間熱処理した場合、波長435nm、546nm及び700nmにおけるヘイズ値が1%以上、3%以上または5%以上、特に8~100%になる性質を有することが好ましく、また840℃で40分間熱処理した場合、波長435nm、546nm及び700nmにおけるヘイズ値が1%以上、3%以上または5%以上、特に10~100%になる性質を有することが好ましい。このようにすれば、有機EL素子を組み立てた際に光取り出し効率を高めることができる。
 以下、本発明(第一の本発明)を、実施例に基づいて詳細に説明する。なお、以下の実施例は単なる例示である。本発明(第一の本発明)は、以下の実施例に何ら限定されない。
 表1、2は、試料No.1~20を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 まず、表1、2に記載のガラス組成になるように、ガラス原料を調合した後、得られたガラスバッチをガラス溶融炉に供給して1500℃で8時間溶融した。次に、得られた溶融ガラスをカーボン板の上に流し出し、板状に成形した後、歪点より室温まで10時間かけて徐冷処理を行った。最後に、得られたガラス板について、必要に応じて加工を行い、種々の特性を評価した。
 密度ρは、周知のアルキメデス法で測定した値である。
 歪点Psは、ASTM C336−71に記載の方法で測定した値である。なお、歪点Psが高い程、耐熱性が高くなる。
 徐冷点Ta、軟化点Tsは ASTM C338−93に記載の方法で測定した値である。
 高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・s及び102.0dPa・sにおける温度(℃)は、白金球引き上げ法で測定した値である。なお、高温粘度が低い程、溶融性に優れる。
 液相温度TLは、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定したものである。
 液相粘度logηTLは、液相温度における各ガラスの粘度を示す。
 分相温度TPは、各ガラスを白金ボートに入れ、1400℃でリメルトした後、白金ボートを温度勾配炉に移し、温度勾配炉中で5分間保持した時に、白濁が明確に認められる温度を測定したものである。
 分相粘度logηTPは、分相温度における各ガラスの粘度を白金球引き上げ法で測定したものである。
 屈折率nは、島津製作所製の屈折率測定器KPR−2000により測定したd線の値である。まず25mm×25mm×約3mmの直方体試料を作製し、(徐冷点Ta+30℃)から(歪点Ps−50℃)までの温度域を0.1℃/分の冷却速度で徐冷処理した後、屈折率nが整合する浸液を浸透させて測定した値である。
 成形後の分相性は、各試料について、溶融ガラスを成形した後に上記のように徐冷処理し、得られた試料を目視観察したところ、分相による白濁が認められたものを「○」、分相による白濁が認められず、透明であったものを「×」として評価した。なお、成形後の分相性が「×」の評価であっても、徐冷条件を調整すれば、徐冷工程でガラスを分相させることが可能であると考えられる。
 熱処理後の分相性は、成形後の各試料を熱処理(900℃で5分間)、延伸成形して、歪点測定用試料を作製した後、得られた試料を目視観察したところ、分相による白濁が認められたものを「○」、分相による白濁が認められず、透明であったものを「×」として評価した。
 上記熱処理を行っていない試料No.2、9~20を1Mの塩酸溶液に10分間浸漬させた後、試料表面を走査型電子顕微鏡(日立ハイテクノロジーズ社製S−4300SE)により観察した。その結果を図1~13にそれぞれ示す。図1~13は、試料No.2、9~20の表面の走査型電子顕微鏡の像をそれぞれ示している。その結果、試料No.2、9、10、12~20は、分相構造を有しており、Bに富む相(第二の相:SiOに乏しい層)が塩酸溶液により溶出していた。なお、Bに富む相が塩酸溶液により溶出し、SiOに富む相が塩酸溶液に溶出しない。
 板厚が1.0mm又は0.7mmになるように、上記熱処理を行っていない試料No.2、12、19を加工した後、両表面を鏡面研磨し、表中の波長について、分光光度計(島津製作所製分光光度計UV−2500PC)により、厚み方向の全光線透過率及び拡散透過率を測定した。その結果を表3~5に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表2の試料No.12に係るガラス板(板厚0.7mm:成形後に熱処理していないもの)を作製し、該ガラス板表面上に、マスクを用いて透明電極層としてITO(厚み100nm)を蒸着させた。続いて、ガラス板上に、正孔注入層として高分子PEDOT−PSS(厚み40nm)、正孔輸送層としてα−NPD(厚み50nm)、有機発光層としてIr(ppy)を6質量%ドープしたCBP(厚み30nm)、正孔阻止層BAlq(厚み10nm)、電子輸送層Alq(厚み30nm)、電子注入層としてLiF(厚み0.8nm)、対向電極としてAl(厚み150nm)を形成した後、内部を封止して、有機EL素子を作製した。得られた有機EL素子について、発光面に垂直な方向に輝度計(株式会社トプコン社製BM−9)を配置し、正面輝度を測定し、電流効率を評価した。比較例として試料No.12と同程度の屈折率nを有する分相していないガラス板(板厚0.7mm)を組み込んで有機EL素子を作製した場合についても、同様にして正面輝度を測定し、電流効率を評価した。その結果を表6、図14に示す。この図14中、上側に描かれている電流効率曲線が本実施例に相当し、下側に描かれている電流効率曲線が比較例に相当する。なお、比較例のガラスは、ガラス組成として、質量%で、SiO 49.8%、Al 23%、B 14%、MgO 6.4%、CaO 1.5%、ZrO 2.7%、TiO 2.6%を含有しており、屈折率nが1.54である。
Figure JPOXMLDOC01-appb-T000006
 表6、図3から分かるように、試料No.12は、有機EL素子を作製した時に、電流効率が比較例よりも高かった。例えば10mA/cmにおいて電流効率が約46%高かった。
 [実施例4]の比較例の分相していないガラス板(板厚0.7mm)を用いて、有機EL素子基板を作製した。次に、この基板上に、屈折率nが1.54の浸液を介して表2の試料No.12に係るガラス板(板厚0.7mm:成形後に熱処理していないもの)を配置した後、積分球を用いて発光面の発光強度を測定したところ、試料No.12に係るガラス板を配置していない場合と比較して、520nmのピーク波長の強度が1.2倍であった。
 次に、本発明(第二の本発明)を、実施例に基づいて詳細に説明する。なお、以下の実施例は単なる例示である。本発明(第二の本発明)は、以下の実施例に何ら限定されない。
 表7、8は、試料No.21~40を示している。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 まず、表7、8に記載のガラス組成になるように、ガラス原料を調合した後、得られたガラスバッチをガラス溶融炉に供給して1500℃で8時間溶融した。次に、得られた溶融ガラスをカーボン板の上に流し出し、板状に成形した後、歪点より室温まで10時間かけて簡易な徐冷処理を行った。最後に、得られたガラス板について、必要に応じて加工を行い、種々の特性を評価した。
 密度ρは、周知のアルキメデス法で測定した値である。
 歪点Psは、ASTM C336−71に記載の方法で測定した値である。なお、歪点Psが高い程、耐熱性が高くなる。
 徐冷点Ta、軟化点Tsは ASTM C338−93に記載の方法で測定した値である。
 高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・s及び102.0dPa・sにおける温度(℃)は、白金球引き上げ法で測定した値である。なお、高温粘度が低い程、溶融性に優れる。
 液相温度TLは、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定したものである。
 液相粘度logηTLは、液相温度における各ガラスの粘度を示す。
 屈折率ndは、島津製作所製の屈折率測定器KPR−2000により測定したd線の値である。まず25mm×25mm×約3mmの直方体試料を作製し、(徐冷点Ta+30℃)から(歪点Ps−50℃)までの温度域を0.1℃/分の冷却速度で徐冷処理した後、屈折率nが整合する浸液を浸透させて測定した値である。
 成形後の分相性は、各試料について、溶融ガラスを成形し、上記の簡易な徐冷処理を行った後、得られた試料を目視観察したところ、分相による白濁が認められたものを「○」、分相による白濁が認められず、透明であったものを「×」として評価した。
 熱処理後の分相性は、成形後の各試料を熱処理(900℃で5分)、延伸成形して、歪点測定用試料を作製した後、得られた試料を目視観察したところ、分相による白濁が認められたものを「○」、分相による白濁が認められず、透明であったものを「×」として評価した。
 参考までに、成形後、且つ熱処理前の試料No.22、29~40の分相性を走査型電子顕微鏡で観察した。具体的には、成形後の試料No.22、29~40について、上記の簡易な徐冷処理を行った後、1Mの塩酸溶液に10分間浸漬させて、更に試料表面を走査型電子顕微鏡(日立ハイテクノロジーズ社製S−4300SE)により観察した。この試料No.22、29~40の表面の走査型電子顕微鏡の像についても、上述の実施例2と同様に、図1~13に示す態様となっていた。その結果、試料No.22、29、30、32~40は、分相構造を有しており、Bに富む相(第二の相:SiOに乏しい層)が塩酸溶液により溶出していた。なお、Bに富む相が塩酸溶液により溶出し、SiOに富む相が塩酸溶液に溶出しない。
 成形後の試料No.39を約15mm×130mmのサイズの白金ボートに投入し、その白金ボートを電気炉内に投入し、1400℃でリメルトした。なお、白金ボート内でリメルトされたガラスの厚みは約3~5mmであった。リメルトした後、電気炉から白金ボートを取り出し、空気中で放冷した。得られたガラスについて、840℃20分間又は840℃40分間の条件で熱処理を行った。熱処理後のガラスを約10mm×30mm×1.0mm厚のガラス板に加工した後、両表面を鏡面研磨し、表中の波長について、分光光度計(島津製作所製分光光度計UV−2500PC)により、厚み方向の全光線透過率及び拡散透過率を測定した。その結果を表9~11に示す。更に、熱処理を行っていないガラスを約10mm×30mm×1.0mm厚のガラス板に加工した後、その両表面を鏡面研磨すると共に、その外観写真を図15に示す。更に、840℃で20分間熱処理した後、約10mm×30mm×1.0mm厚のガラス板に加工し、その両表面を鏡面研磨した場合の外観写真を図16に示し、840℃で40分間熱処理した後、約10mm×30mm×1.0mm厚のガラス板に加工し、その両表面を鏡面研磨した場合の外観写真を図17に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011

Claims (31)

  1.  少なくとも第一の相と第二の相を含む分相構造を有すると共に、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多く、且つ有機ELデバイスに用いることを特徴とするガラス。
  2.  少なくとも第一の相と第二の相を含む分相構造を有すると共に、第二の相中のBの含有量が、第一の相中のBの含有量よりも多く、且つ有機ELデバイスに用いることを特徴とするガラス。
  3.  ガラス組成として、質量%で、SiO 30~75%、B 0.1~50%、Al 0~35%を含有することを特徴とする請求項1又は2に記載のガラス。
  4.  ガラス組成中に、実質的にレアメタル酸化物を含まないことを特徴とする請求項1~3の何れかに記載のガラス。
  5.  屈折率nが1.50超であることを特徴とする請求項1~4の何れかに記載のガラス。
  6.  平板形状であることを特徴とする請求項1~5の何れかに記載のガラス。
  7.  オーバーフローダウンドロー法で成形されてなることを特徴とする請求項1~6の何れかに記載のガラス。
  8.  別途の熱処理工程を経ていないことを特徴とする請求項1~7の何れかに記載のガラス。
  9.  有機EL照明に用いることを特徴とする請求項1~8の何れかに記載のガラス。
  10.  分相粘度が107.0dPa・s以下であることを特徴とする請求項1~9の何れかに記載のガラス。
  11.  波長435nm、546nm及び700nmにおけるヘイズ値が1~100%であることを特徴とする請求項1~10の何れかに記載のガラス。
  12.  有機EL素子に組み込んだ時に、電流効率が、屈折率nが同程度の分相していないガラスよりも高くなることを特徴とする請求項1~11の何れかに記載のガラス。
  13.  請求項1~13の何れかに記載のガラスを備えてなることを特徴とする有機ELデバイス。
  14.  ガラス板と基板を接合した複合基板であって、
     ガラス板が、請求項1~12の何れかに記載のガラスからなることを特徴とする複合基板。
  15.  基板がガラス基板であることを特徴とする請求項14に記載の複合基板。
  16.  基板の屈折率nが1.50超であることを特徴とする請求項14又は15に記載の複合基板。
  17.  ガラス板と基板がオプティカルコンタクトにより接合されていることを特徴とする請求項14~16の何れかに記載の複合基板。
  18.  有機ELデバイスに用いることを特徴とする請求項14~17の何れかに記載の複合基板。
  19.  溶融ガラスを成形した後、熱処理して、少なくとも第一の相と第二の相を含む分相構造を有し且つ有機ELデバイスに用いられるガラスを得ることを特徴とするガラスの製造方法。
  20.  第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多いことを特徴とする請求項19に記載のガラスの製造方法。
  21.  第二の相中のBの含有量が、第一の相中のBの含有量よりも多いことを特徴とする請求項19又は20に記載のガラスの製造方法。
  22.  ガラスが、ガラス組成として、質量%で、SiO 30~75%、B 0.1~50%、Al 0~35%を含有することを特徴とする請求項19~21の何れかに記載のガラスの製造方法。
  23.  ガラスが、ガラス組成中に、実質的にレアメタル酸化物を含まないことを特徴とする請求項1~4の何れかに記載のガラスの製造方法。
  24.  ガラスの屈折率ndが1.50超であることを特徴とする請求項19~23の何れかに記載のガラスの製造方法。
  25.  平板形状に成形することを特徴とする請求項19~24の何れかに記載のガラスの製造方法。
  26.  オーバーフローダウンドロー法で成形することを特徴とする請求項19~25の何れかに記載のガラスの製造方法。
  27.  得られたガラスを有機EL照明に用いることを特徴とする請求項19~26の何れかに記載のガラスの製造方法。
  28.  請求項19~27の何れかに記載のガラスの製造方法により作製されたことを特徴とするガラス。
  29.  熱処理により、分相していない状態から、少なくとも第一の相と第二の相に分相する性質を有し、且つ有機ELデバイスに用いることを特徴とするガラス。
  30.  熱処理前の波長435nm、546nm及び700nmにおけるヘイズ値が5~100%であることを特徴とする請求項28又は29に記載のガラス。
  31.  熱処理後の波長435nm、546nm及び700nmにおけるヘイズ値が0~80%であることを特徴とする請求項28又は29に記載のガラス。
PCT/JP2014/073425 2013-09-03 2014-08-29 ガラス及びその製造方法 WO2015034030A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480039254.2A CN105377786B (zh) 2013-09-03 2014-08-29 玻璃及其制造方法
US15/058,468 US20160200624A1 (en) 2013-09-03 2016-03-02 Glass and method for producing same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2013-182210 2013-09-03
JP2013-182211 2013-09-03
JP2013182211 2013-09-03
JP2013182210 2013-09-03
JP2014000196A JP6249218B2 (ja) 2013-09-03 2014-01-06 ガラスの製造方法及びガラス
JP2014000195 2014-01-06
JP2014-000196 2014-01-06
JP2014-000195 2014-01-06
JP2014-021075 2014-02-06
JP2014021075 2014-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/058,468 Continuation-In-Part US20160200624A1 (en) 2013-09-03 2016-03-02 Glass and method for producing same

Publications (1)

Publication Number Publication Date
WO2015034030A1 true WO2015034030A1 (ja) 2015-03-12

Family

ID=52628491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073425 WO2015034030A1 (ja) 2013-09-03 2014-08-29 ガラス及びその製造方法

Country Status (1)

Country Link
WO (1) WO2015034030A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186606A1 (ja) * 2014-06-02 2015-12-10 日本電気硝子株式会社 分相ガラス、分相性ガラス、有機elデバイス及び分相ガラスの製造方法
WO2015186584A1 (ja) * 2014-06-02 2015-12-10 日本電気硝子株式会社 分相ガラス及び分相ガラスの製造方法並びに分相ガラスを用いた複合基板
WO2016117406A1 (ja) * 2015-01-21 2016-07-28 日本電気硝子株式会社 分相ガラス

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265841A (ja) * 1987-04-23 1988-11-02 日本電気硝子株式会社 硼珪酸系乳白ガラス
JP2011116633A (ja) * 2009-10-27 2011-06-16 Tokyo Univ Of Science 発光ガラス、当該発光ガラスを備えた発光装置及び発光ガラスの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265841A (ja) * 1987-04-23 1988-11-02 日本電気硝子株式会社 硼珪酸系乳白ガラス
JP2011116633A (ja) * 2009-10-27 2011-06-16 Tokyo Univ Of Science 発光ガラス、当該発光ガラスを備えた発光装置及び発光ガラスの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186606A1 (ja) * 2014-06-02 2015-12-10 日本電気硝子株式会社 分相ガラス、分相性ガラス、有機elデバイス及び分相ガラスの製造方法
WO2015186584A1 (ja) * 2014-06-02 2015-12-10 日本電気硝子株式会社 分相ガラス及び分相ガラスの製造方法並びに分相ガラスを用いた複合基板
WO2016117406A1 (ja) * 2015-01-21 2016-07-28 日本電気硝子株式会社 分相ガラス

Similar Documents

Publication Publication Date Title
KR101638488B1 (ko) 고굴절률 유리
JP6269933B2 (ja) ガラス板
TWI609515B (zh) 結晶性玻璃基板、結晶化玻璃基板及其製造方法、 及擴散板
WO2015186606A1 (ja) 分相ガラス、分相性ガラス、有機elデバイス及び分相ガラスの製造方法
US20160200624A1 (en) Glass and method for producing same
JP6066060B2 (ja) 結晶化ガラス基板及びその製造方法
WO2016013612A1 (ja) 高屈折率ガラス
WO2015186584A1 (ja) 分相ガラス及び分相ガラスの製造方法並びに分相ガラスを用いた複合基板
WO2015034030A1 (ja) ガラス及びその製造方法
JP6249218B2 (ja) ガラスの製造方法及びガラス
JP2016098118A (ja) 分相ガラス
JP2004051473A (ja) フラットパネルディスプレイ装置用ガラス基板
JP6406571B2 (ja) ガラス
JP2016064970A (ja) 分相ガラス
JP6331076B2 (ja) ガラスフィルム及びこれを用いた複合基板
JP6331077B2 (ja) 分相ガラス及びこれを用いた複合基板
JP2016011245A (ja) 分相ガラス
WO2016117406A1 (ja) 分相ガラス
JP2015105218A (ja) ガラス基板及びその製造方法
JP2015227272A (ja) 分相ガラス及びこれを用いた複合基板
JP5812242B2 (ja) 高屈折率ガラス
JP2018027876A (ja) 分相ガラス板
JP2018027877A (ja) 分相ガラス
JP6090708B2 (ja) 拡散板及びそれを備えた照明装置
TW201602021A (zh) 分相玻璃、分相玻璃的製造方法、分相性玻璃、複合基板以及有機電致發光裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841469

Country of ref document: EP

Kind code of ref document: A1