WO2015005180A1 - リチウム二次電池用正極活物質、正極および二次電池 - Google Patents

リチウム二次電池用正極活物質、正極および二次電池 Download PDF

Info

Publication number
WO2015005180A1
WO2015005180A1 PCT/JP2014/067555 JP2014067555W WO2015005180A1 WO 2015005180 A1 WO2015005180 A1 WO 2015005180A1 JP 2014067555 W JP2014067555 W JP 2014067555W WO 2015005180 A1 WO2015005180 A1 WO 2015005180A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
secondary battery
electrode active
lithium secondary
Prior art date
Application number
PCT/JP2014/067555
Other languages
English (en)
French (fr)
Inventor
恭崇 飯田
山下 大輔
貴昭 増川
伊藤 博之
寛之 栗田
健二 高森
裕一郎 今成
Original Assignee
株式会社田中化学研究所
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社田中化学研究所, 住友化学株式会社 filed Critical 株式会社田中化学研究所
Priority to CN201480038864.0A priority Critical patent/CN105378987B/zh
Priority to EP14823282.0A priority patent/EP3021387B1/en
Priority to KR1020217003315A priority patent/KR102323929B1/ko
Priority to US14/902,041 priority patent/US10297824B2/en
Priority to KR1020157034394A priority patent/KR20160030090A/ko
Publication of WO2015005180A1 publication Critical patent/WO2015005180A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/53Particles with a specific particle size distribution bimodal size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a positive electrode active material for a lithium secondary battery that is useful for a lithium secondary battery that has a lower battery resistance than that of the prior art, that is, a high output, below freezing.
  • the positive electrode and lithium secondary battery using such a positive electrode active material for lithium secondary batteries can be provided.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a lithium ion secondary battery.
  • FIG. 2 is a diagram showing the pore distribution measurement result of the positive electrode active material 1 of the example.
  • the positive electrode active material of the present invention has a general formula of Li a M 1 s M 2 1-s O 2 (M 1 is any of Ni, Co and Mn). or essential metals, M 2 consists of 1 or more represents Fe, Cu, Ti, Mg, Al, W, Zn, Sn, Zr, any one or more of any metal selected from Ga and V, a Is preferably 0.9 ⁇ a ⁇ 1.2, and s is 0.9 ⁇ s ⁇ 1.
  • the particle form of the positive electrode active material of the present invention may be a secondary particle formed by aggregation of primary particles, or a mixture of primary particles and secondary particles formed by aggregation of primary particles. Also good.
  • the primary particle diameter of the present invention is preferably 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the secondary particle diameter formed by aggregation of the primary particles is preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the average particle diameter of the primary particles can be measured by observing with an SEM. In order to enhance the effect of the present invention, the secondary particle diameter is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the negative electrode mixture may contain a binder as necessary.
  • the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
  • alumina powder is preferable because of its high chemical stability. More preferably, all of the particles constituting the inorganic powder are alumina particles, all of the particles constituting the inorganic powder are alumina particles, and part or all of them are substantially spherical alumina particles. preferable.
  • the thermal film breaking temperature of such a laminated film depends on the type of heat-resistant resin, and is selected and used according to the use scene and purpose of use. More specifically, as the heat-resistant resin, the cyclic olefin polymer is used at about 400 ° C. when the nitrogen-containing aromatic polymer is used, and at about 250 ° C. when poly-4-methylpentene-1 is used. When using, the thermal film breaking temperature can be controlled to about 300 ° C., respectively. In addition, when the heat resistant porous layer is made of an inorganic powder, the thermal film breaking temperature can be controlled to, for example, 500 ° C. or higher.
  • the electrolyte contained in the electrolyte includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide), lithium salt such as lower aliphatic carboxylic acid lithium salt, LiAlCl 4, and a mixture of two or more of these May be used.
  • BOB bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide)
  • lithium salt such as lower aliphatic
  • a coin-type cell adjusted in SOC in a -30 ° C constant temperature bath was allowed to stand for 2 hours, discharged at 20 ⁇ A for 15 seconds, left for 5 minutes, charged at 20 ⁇ A for 15 seconds, left at 5 ⁇ m, left at 40 ⁇ A for 15 minutes Discharge for 5 seconds, leave for 30 minutes, charge at 20 ⁇ A for 30 seconds, leave for 5 minutes, discharge for 15 seconds at 80 ⁇ A, leave for 5 minutes, charge for 20 seconds at 20 ⁇ A, leave for 5 minutes, discharge for 15 minutes at 160 ⁇ A, leave for 5 minutes And charging at 20 ⁇ A for 120 seconds and standing for 5 minutes.
  • the battery resistance was calculated from the plot of the battery voltage after 10 seconds measured at the time of discharging at 20, 40, 80, and 120 ⁇ A and each current value by using the least square approximation method, and this inclination was defined as the battery resistance. .
  • Lithium carbonate was mixed so that Li: (Ni + Co + Mn) was 1.07: 1 with respect to the dry powder of the nickel cobalt manganese composite hydroxide obtained as described above, and held at 950 ° C. for 10 hours. Firing was performed, and the mixture was cooled to room temperature to obtain a positive electrode active material 2.
  • the evaluation of Lithium Metal Composite Oxide When the composition of the obtained positive electrode active material 2 was analyzed, the molar ratio of Li: Ni: Co: Mn was 1.10: 0.34: 0.33: 0.33. there were.
  • Example 4 Production of positive electrode active material 4 A nickel cobalt manganese composite hydroxide was obtained in the same manner as in Example 1 except that the pH in the reaction vessel was set to 12.0. The nickel cobalt manganese composite hydroxide had a BET specific surface area of 20.8 m 2 / g.
  • the primary particle size and secondary particle size of the positive electrode active material 4 were 0.46 ⁇ m and 3.1 ⁇ m, respectively.
  • Example 5 Production of positive electrode active material 5 Except that the pH in the reaction vessel was set to 12.5, the same operation as in Example 1 was performed to obtain a nickel cobalt manganese composite hydroxide.
  • the nickel cobalt manganese composite hydroxide had a BET specific surface area of 49.9 m 2 / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 氷点下において従来よりも低い電池抵抗を示すリチウム二次電池に有用な正極活物質を提供する。 ニッケル、コバルト及びマンガンからなる群から構成される少なくとも1種の元素を含有し、層状構造を有するリチウム二次電池用正極活物質であって、下記要件(1)~(3)の全てを満たすリチウム二次電池用正極活物質。:(1)一次粒子径が0.1~1μm、二次粒子径が1~10μm、(2)CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内のピークにおける結晶子サイズが100~1200Å、かつ、2θ=44.6±1°の範囲内のピークにおける結晶子サイズが100~700Å、(3)水銀圧入法によって得られた細孔分布において、細孔径が10~200nmの範囲に細孔ピークを有し、かつ、該範囲での細孔容積が0.01~0.05cm/g

Description

リチウム二次電池用正極活物質、正極および二次電池
 本発明は、リチウム二次電池用正極活物質、正極および二次電池に関するものである。
 リチウム金属複合酸化物は、リチウム二次電池などのリチウム二次電池に正極活物質として用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源として実用化されており、更に自動車用途や電力貯蔵用途などの中・大型電源においても、適用が試みられてきた。
 従来の正極活物質として、特許文献1にリチウムニッケルマンガンコバルト系複合酸化物であって、細孔半径が1μm、細孔容積が0.55cm/gであるリチウム二次電池用正極活物質が開示されている。
特開2010-278015号公報
 しかしながら、上記のような従来のリチウム金属複合酸化物を正極活物質として用いて得られるリチウム二次電池は、高い電流レートにおける高出力を要求される用途、すなわち自動車用途や電動工具等のパワーツール用途において十分なものではない。特に、氷点下においては十分なものではなく、更なる高出力化が求められている。
 本発明はこのような事情に鑑みてなされたものであって、リチウム二次電池用正極活物質の粒子凝集形態を制御することで、氷点下において従来よりも低い電池抵抗を示すリチウム二次電池に有用な正極活物質を提供することを目的とする。また、このようなリチウム二次電池用正極活物質を用いた正極、リチウム二次電池を提供することを併せて目的とする。
 上記の課題を解決するため、本発明の一態様は、ニッケル、コバルト及びマンガンからなる群から選択される少なくとも1種の元素を含有し、好適には、一般式Li 1-s(Mは、Ni、Co及びMnのいずれか1種以上で構成される必須金属、Mは、Fe、Cu、Ti、Mg、Al、W、Zn、Sn、Zr、Ga及びVのうちいずれか1種以上の任意金属を表し、aは0.9≦a≦1.2、sは0.9≦s≦1とする)で表される層状構造を有するリチウム二次電池用正極活物質であって、下記要件(1)~(3)を満たすリチウム二次電池用正極活物質を提供する。
(1)一次粒子径が0.1~1μm、二次粒子径が1~10μm
(2)CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内のピークにおける結晶子サイズが100~1200Å、かつ、2θ=44.6±1°の範囲内のピークにおける結晶子サイズが100~700Å
(3)水銀圧入法によって得られた細孔分布において、細孔径が10~200nmの範囲に細孔ピークを有し、かつ、該範囲での細孔容積が0.01~0.05cm/g
 本発明の一態様においては、二次粒子径が1~5μmであることが望ましい。
 本発明の一態様においては、BET比表面積が0.8~4m/gであることが望ましい。
 本発明の一態様においては、粒子内部に空隙を有することが望ましい。
 本発明の一態様においては、LiNiCoMn(ここで、0.9≦a≦1.2、0.3<x<1、0<y<0.4、0<z<0.4、x+y+z=1とする)であることが望ましい。
 また、本発明の一態様は、上述の正極活物質を有する正極を提供する。
 また、本発明の一態様は、負極、および上述の正極を有するリチウム二次電池を提供する。
 本発明によれば、氷点下において従来よりも電池抵抗が低減、すなわち高出力を示すリチウム二次電池に有用なリチウム二次電池用正極活物質を提供することができる。また、このようなリチウム二次電池用正極活物質を用いた正極、リチウム二次電池を提供することができる。
図1は、リチウムイオン二次電池の一例を示す概略構成図である。 図2は、実施例の正極活物質1の細孔分布測定結果を示す図である。
 [リチウム二次電池用正極活物質]
 本実施形態のリチウム二次電池用正極活物質は、ニッケル、マンガン及びコバルトからなる群から選択される少なくとも1種の金属を含有し、好適には一般式Li 1-s(Mは、Ni、Co及びMnのいずれか1種以上で構成される必須金属、Mは、Fe、Cu、Ti、Mg、Al、W、Zn、Sn、Zr、Ga及びVのうちいずれか1種以上の任意金属を表し、aは0.9≦a≦1.2、sは0.9≦s≦1とする)で表される層状構造を有するリチウム二次電池用正極活物質(以下、単に「リチウム金属複合酸化物」とする場合がある。)であって、下記要件(1)~(3)を満たすものである。
(1)一次粒子径が0.1~1μm、二次粒子径が1~10μm
(2)CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内のピークにおける結晶子サイズが100~1200Å、かつ、2θ=44.6±1°の範囲内のピークにおける結晶子サイズが100~700Å
(3)水銀圧入法によって得られた細孔分布において、細孔径が10~200nmの範囲に細孔ピークを有し、かつ、該範囲での細孔容積が0.01~0.05cm/g
 以下、順に説明する。
 より容量を高めるリチウム二次電池を得る意味で、本発明の正極活物質は、一般式が一般式Li 1-s(Mは、Ni、Co及びMnのいずれか1種以上で構成される必須金属、Mは、Fe、Cu、Ti、Mg、Al、W、Zn、Sn、Zr、Ga及びVのうちいずれか1種以上の任意金属を表し、aは0.9≦a≦1.2、sは0.9≦s≦1とする)で表されることが好ましい。
 本発明の正極活物質において、より容量を高めるリチウム二次電池を得る意味で、前記一般式は、LiNiCoMn(ここで、0.9≦a≦1.2、0.3<x<1、0≦y<0.4、0<z<0.4、x+y+z=1とする)であることがより好ましく、LiNi1/3Co1/3Mn1/3(ここで、0.9≦a≦1.2)であることが更に好ましい。
(層状構造)
 まず、本実施形態のリチウム金属複合酸化物の結晶構造は、層状構造であり、六方晶型の結晶構造または単斜晶型の結晶構造であることがより好ましい。
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、P6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。
 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、C2/cからなる群から選ばれるいずれか一つの空間群に帰属される。
 これらのうち、得られるリチウム二次電池の放電容量が増大するため、正極活物質の結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、またはC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。
 本実施形態のリチウム金属複合酸化物の空間群は、次のようにして確認することができる。
 まず、正極活物質について、Cu-Kαを線源とし、かつ回折角2θの測定範囲を10°以上90°以下とする粉末X線回折測定を行い、次いでその結果をもとにリートベルト解析を行い、リチウム金属複合酸化物が有する結晶構造およびこの結晶構造における空間群を決定する。リートベルト解析は、材料の粉末X線回折測定における回折ピークのデータ(回折ピーク強度、回折角2θ)を用いて、材料の結晶構造を解析する手法であり、従来から使用されている手法である(例えば「粉末X線解析の実際-リートベルト法入門-」2002年2月10日発行、日本分析化学会X線分析研究懇談会編、参照)。
(粒子径)
 本発明の正極活物質の粒子形態は、一次粒子が凝集して形成された二次粒子であってもよく、一次粒子と一次粒子が凝集して形成された二次粒子との混合物であってもよい。本発明の一次粒子径は、0.1μm以上1μm以下が好ましい。一次粒子が凝集して形成された二次粒子径は、1μm以上10μm以下であることが好ましい。一次粒子の平均粒子径は、SEMで観察することにより、測定することができる。本発明の効果をより高める意味では、二次粒子径は1μm以上5μm以下であることが好ましい。
 なお、本実施形態において、正極活物質の「二次粒子径」とは、以下の方法(レーザー回折散乱法)によって測定される値を指す。
 まず、正極活物質の粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、該粉末を分散させた分散液を得る。得られた分散液についてマルバーン社製マスターサイザー2000(レーザー回折散乱粒度分布測定装置)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、50%累積時の微小粒子側から見た粒子径(D50)の値が、正極活物質の二次粒子径であるとした。
(結晶子サイズ)
 本実施形態のリチウム金属複合酸化物においては、CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内のピーク(以下、ピークAと呼ぶこともある)における結晶子サイズが100~1200Åの範囲であり、かつ、2θ=44.6±1°の範囲内のピーク(以下、ピークBと呼ぶこともある)における結晶子サイズが100~700Åである。ピークAにおける結晶子サイズは、300~1100Åの範囲であることが好ましく、500~1000Åの範囲であることがより好ましい。ピークBにおける結晶子サイズは150~650Åであることが好ましく、200~600Åであることがより好ましい。上記の好ましいピークAにおける結晶子サイズとピークBにおける結晶子サイズは任意に組み合わせることが出来る。これにより、得られるリチウム二次電池のサイクル特性が良好なものとなるという効果がある。
 なお、本実施形態において、正極活物質のピークAにおける結晶子サイズおよびピークBにおける結晶子サイズは、以下のようにして確認することが出来る。
 まず、正極活物質について、Cu-Kαを線源とし、かつ回折角2θの測定範囲を10°以上90°以下とする粉末X線回折測定を行い、ピークAおよびピークBに対応するピークを決定する。さらに、決定したそれぞれのピークの半値幅を算出し、Scherrer式 D=Kλ/Bcosθ (D:結晶子サイズ、K:Scherrer定数、B:ピーク線幅)を用いることで結晶子サイズを算出することが出来る。該式により、結晶子サイズを算出することは従来から使用されている手法である(例えば「X線構造解析-原子の配列を決める-」2002年4月30日第3版発行、早稲田嘉夫、松原栄一郎著、参照)。
(水銀圧入法による細孔分布)
 また、本実施形態の正極活物質の水銀圧入法から得られた細孔分布における細孔径が10nmから200nmの範囲において、細孔ピークを有し、かつ該範囲での細孔容積が0.01~0.05cm/gである。この範囲の上限を超えると電極にした際の充填率が低下してしまい、電池容量の低下を招いてしまう。一方、この範囲の下限を下回ると、正極活物質と電解液の接触界面が低下してしまうため、電池抵抗が増加し、出力特性の低下を招いてしまう。また、10nmから200nmの範囲において、最大の微分容積を示す細孔径は、10nm~200nmであるが好ましく、20nm~180nmであることが更に好ましく、30nm~150nmであることがより好ましい。
 なお、本実施形態において、正極活物質の細孔分布における細孔径は下記のような方法で得ることができる。
 まず、試料の入った容器内を真空排気した上で、容器内に水銀を満たす。水銀は表面張力が高く、そのままでは試料の表面の細孔には水銀は浸入しないが、水銀に圧力をかけ、徐々に昇圧していくと、径の大きい細孔から順に径の小さい細孔へと、徐々に細孔の中に水銀が浸入していく。圧力を連続的に増加させながら細孔への水銀圧入量を検出していけば、水銀に加えた圧力と水銀圧入量との関係から水銀圧入曲線が得られる。ここで、細孔の形状を円筒状と仮定し、水銀に加えられた圧力をP、その細孔径(細孔直径)をD、水銀の表面張力をσ、水銀と試料との接触角をθとすると、細孔径は、
D=-4σ×cosθ/P
で表される。
 すなわち水銀に加えた圧力Pと水銀が浸入する細孔の直径Dとの間には相関があることから、得られた水銀圧入曲線に基づいて、試料の細孔半径の大きさとその体積との関係を表す細孔分布曲線を得ることができる。なお、水銀圧入法による細孔径のおおよその測定限界は、下限が約2nm以上、上限が約200μm以下である。水銀圧入法による測定は、水銀ポロシメータ等の装置を用いて行うことができる。水銀ポロシメータの具体例としては、オートポアIII9420(Micromeritics 社製)等が挙げられる。
(BET比表面積)
 また、本実施形態の正極活物質のBET比表面積は、0.8m/g以上4m/g以下であることが好ましい。これらにより得られるリチウム二次電池の低温における電池抵抗が低減される。本発明の効果をより高める意味で、リチウム金属複合酸化物のBET比表面積は、1m/g以上であることが好ましい。また、充填性の観点で好ましいBET比表面積は3m/g以下であることが好ましい。
(二次粒子内部の空隙)
 また、本実施形態の正極活物質は二次粒子内部に空隙を有する粒子が含有されることが好ましい。該空隙とは、正極活物質粒子の断面を観察したとき、該粒子内部に存在する、直径50nm以上の空間を指す。該空隙は一粒子内部に二個以上存在することが好ましく、五個以上存在することがより好ましく、十個以上存在することが更に好ましい。これらにより得られるリチウム二次電池の高い電流レートにおける放電容量が高まる。また、空隙の直径は60nm以上1000nm以下の範囲であることが好ましく、70nm以上800nm以下の範囲であることがより好ましく、75nm以上600nm以下の範囲であることがさらに好ましい。これらにより、該正極活物質粒子を用いた電極の密度が高まり、高容量のリチウム二次電池が得られる。
 なお、該空隙の測定方法としては、具体的に以下が挙げられる。
 測定する正極活物質粒子を、エポキシ樹脂に分散し、固化させ、該エポキシ樹脂をGatan社製Ilionを使用したArイオンミリング法で断面加工し、加工したサンプルを日立ハイテクノロジーズ製S-4800を用いて、加速電圧が2kVの電子線を照射してSEM観察を行う。SEM観察により得られた画像(SEM写真)から任意に粒子を抽出し、該粒子内部の空間について、該空間の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を空間の直径として測定し、該直径が、50nm以上であれば、空隙とする。
 さらに、本実施形態の正極活物質は二次粒子内部に空隙を有する粒子を20%以上含むことが好ましく、50%以上含むことがより好ましく、80%以上含むことが更に好ましい。なお、二次粒子内部に空隙を有する粒子の割合は、例えば、二次粒子100個に対して、二次粒子内部に空隙を有する粒子が20個以上含む場合を20%以上含むと定義する。これらにより、該正極活物質粒子を用いた電極の保液量が高まり、高サイクル特性を有するリチウム二次電池が得られる。
[リチウム金属複合酸化物の製造方法]
 本発明のリチウム金属複合酸化物を製造するにあたって、まず、リチウム以外の金属、すなわち、Ni、Co及びMnからなる群から構成される少なくとも1種の必須金属、並びに、Fe、Cu、Ti、Mg、Al、W、Zn、Sn、Zr、Ga、Vのうちいずれか1種以上の任意金属を含む金属複合化合物を調製し、当該金属複合化合物を適当なリチウム塩と焼成することが好ましい。金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。以下に、正極活物質の製造方法の一例を、金属複合化合物の製造工程と、リチウム金属複合酸化物の製造工程とに分けて説明する。
(金属複合化合物の製造工程)
 金属複合化合物は、通常公知のバッチ法又は共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
 まず共沈殿法、特に特開2002-201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、NiCoMn(OH)(式中、x+y+z=1)で表される複合金属水酸化物を製造する。
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れかを使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、及び塩化コバルトのうちの何れかを使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、及び塩化マンガンのうちの何れかを使用することができる。以上の金属塩は、上記NiCoMn(OH)の組成比に対応する割合で用いられる。また、溶媒として水が使用される。
 錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。
 沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム、水酸化カリウム)を添加する。
 上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、NiCoMn(OH)が製造される。反応に際しては、反応槽の温度が例えば10℃以上60℃以下、好ましくは20~60℃の範囲内で制御され、反応槽内のpH値は例えばpH9以上pH13以下、好ましくはpH11~13の範囲内で制御され、反応槽内の物質が適宜撹拌される。反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプのものである。
 以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケルコバルトマンガン複合化合物としてのニッケルコバルトマンガン水酸化物を単離する。また、必要に応じて弱酸水で洗浄しても良い。なお、上記の例では、ニッケルコバルトマンガン複合水酸化物を製造しているが、ニッケルコバルトマンガン複合酸化物を調製しても良い。
 反応槽に供給する金属塩の濃度、攪拌速度、反応温度、反応pH、及び後述する焼成条件等を適宜制御することにより、下記工程で最終的に得られるリチウム金属複合酸化物の一次粒子径、二次粒子径、各結晶子サイズ、BET比表面積等の各種物性を制御することができる。また、所望の細孔分布や空隙を実現するためには、上記の条件の制御に加えて、各種気体、例えば、窒素、アルゴン、二酸化炭素等の不活性ガス、空気、酸素等によるバブリングを併用しても良い。反応条件については、使用する反応槽のサイズ等にも依存することから、最終的に得られるリチウム複合酸化物の各種物性をモニタリングしつつ、反応条件を最適化すれば良い。
(リチウム金属複合酸化物の製造工程)
 上記金属複合酸化物又は水酸化物を乾燥した後、リチウム塩と混合する。乾燥条件は、特に制限されないが、例えば、金属複合酸化物又は水酸化物が酸化・還元されない条件(酸化物→酸化物、水酸化物→水酸化物)、金属複合水酸化物が酸化される条件(水酸化物→酸化物)、金属複合酸化物が還元される条件(酸化物→水酸化物)のいずれの条件でもよい。酸化・還元がされない条件のためには、窒素、ヘリウム及びアルゴン等の希ガス等の不活性ガスを使用すれば良く、水酸化物が酸化される条件では、酸素又は空気を雰囲気下として行えば良い。また、金属複合酸化物が還元される条件としては、不活性ガス雰囲気下、ヒドラジン、亜硫酸ナトリウム等の還元剤を使用すれば良い。リチウム塩としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、または、二つ以上を混合して使用することができる。金属複合酸化物又は水酸化物の乾燥後に、適宜分級を行っても良い。以上のリチウム塩と金属複合金属水酸化物とは、最終目的物の組成比を勘案して用いられる。例えば、ニッケルコバルトマンガン複合水酸化物を用いる場合、リチウム塩と当該複合金属水酸化物は、LiNiCoMn(式中、x+y+z=1)の組成比に対応する割合で用いられる。ニッケルコバルトマンガン複合金属水酸化物及びリチウム塩の混合物を焼成することによって、リチウム-ニッケルコバルトマンガン複合酸化物が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。
 上記金属複合酸化物又は水酸化物と、水酸化リチウム、炭酸リチウム等のリチウム化合物との焼成温度としては、特に制限はないが、好ましくは850℃以上1100℃以下、より好ましくは850℃以上1050℃以下、とりわけ好ましくは850℃~1025℃である。焼成温度が850℃を下回ると、エネルギー密度(放電容量)及び高率放電性能が低下するという問題を生じやすい。これ以下の領域ではLiの移動を妨げる構造的要因が内在している可能性がある。
 一方、焼成温度が1100℃を上回ると、Liの揮発によって目標とする組成の複合酸化物が得られにくいなどの作製上の問題や、粒子の高密度化によって電池性能が低下するという問題が生じやすい。これは、1100℃を上回ると、一次粒子成長速度が増加し、複合酸化物の結晶粒子が大きくなりすぎることに起因しているが、それに加えて、局所的にLi欠損量が増大して、構造的に不安定となっていることも原因ではないかと考えられる。さらに、高温になるほど、Li元素の占有するサイトと、遷移金属元素が占有してなるサイト間の元素置換が極度に生じ、Li伝導パスが抑制されることによって放電容量は低下する。焼成温度を850℃以上1025℃以下の範囲とすることによって、特に高いエネルギー密度(放電容量)を示し、充放電サイクル性能に優れた電池を作製できる。焼成時間は、3時間~50時間が好ましい。焼成時間が50時間を超えると、電池性能上問題はないが、Liの揮発によって実質的に電池性能に劣る傾向となる。焼成時間が3時間より少ないと、結晶の発達が悪く、電池性能が悪くなる傾向となる。なお、上記の焼成の前に、仮焼成を行うことも有効である。この様な仮焼成の温度は、300~850℃の範囲で、1~10時間行うことが好ましい。
 焼成によって得たリチウム金属複合酸化物は、粉砕後に適宜分級され、リチウム二次電池に適用可能な正極活物質とされる。
[リチウム二次電池]
 次いで、リチウム二次電池の構成を説明しながら、本実施形態のリチウム金属複合酸化物をリチウム二次電池の正極活物質として用いた正極、およびこの正極を有するリチウム二次電池について説明する。
 本実施形態のリチウム二次電池の一例は、正極および負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図1は、本実施形態のリチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図1(a)に示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、および一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
 次いで、図1(b)に示すように、電池缶5に電極群4および不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7および封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、またはJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(またはシート型)電池を例示することができる。
 以下、各構成について順に説明する。
(正極)
 本実施形態の正極は、まず正極活物質、導電材およびバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
(導電材)
 本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率および出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、および正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
 正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
(バインダー)
 本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂およびポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力および正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
 本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法および静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、および負極活物質単独からなる電極を挙げることができる。
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属または合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
 負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維および有機高分子化合物焼成体を挙げることができる。
 負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタンまたはバナジウムとを含有する複合金属酸化物;を挙げることができる。
 負極活物質として使用可能な硫化物としては、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。
 負極活物質として使用可能な窒化物としては、LiN、Li3-xN(ここで、AはNiおよびCoのいずれか一方または両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。
 これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質または非晶質のいずれでもよい。
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属およびスズ金属などを挙げることができる。
 負極活物質として使用可能な合金としては、Li-Al、Li-Ni、Li-Si、Li-Sn、Li-Sn-Niなどのリチウム合金;Si-Znなどのシリコン合金;Sn-Mn、Sn-Co、Sn-Ni、Sn-Cu、Sn-Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性が良い)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性が良い)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、または微粉末の凝集体などのいずれでもよい。
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレンおよびポリプロピレンを挙げることができる。
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
 このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
 本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
 セパレータとしては、例えば特開2000-30686号公報、特開平10-324758号公報などに記載のセパレータを挙げることができる。セパレータの厚みは電池の体積エネルギー密度が上がり、内部抵抗が小さくなるという点で、機械的強度が保たれる限り薄くした方がよく、好ましくは5~200μm程度、より好ましくは5~40μm程度である。
 セパレータは、好ましくは、熱可塑性樹脂を含有する多孔質フィルムを有する。リチウム二次電池においては、正極-負極間の短絡などが原因で電池内に異常電流が流れた際に、短絡箇所の電流を遮断して、過大電流が流れることを阻止(シャットダウン)する機能を有することが好ましい。ここで、シャットダウンは、短絡により短絡箇所のセパレータが過熱され、予め想定された使用温度を越えた場合に、セパレータにおける多孔質フィルムが軟化または融解して微細孔を閉塞することによりなされる。そして、セパレータはシャットダウンした後、ある程度の高温まで電池内の温度が上昇しても、その温度により破膜することなく、シャットダウンした状態を維持することが好ましい。
 このようなセパレータとしては、耐熱多孔層と多孔質フィルムとが積層されてなる積層フィルムが挙げられる。このような積層フィルムをセパレータとして用いることにより、本実施形態における二次電池の耐熱性をより高めることが可能となる。積層フィルムにおいては、耐熱多孔層は、多孔質フィルムの両面に積層されていてもよい。
(積層フィルム)
 以下、前記の耐熱多孔層と多孔質フィルムとが互いに積層された積層フィルムについて説明する。
 本実施形態のリチウム二次電池のセパレータとして用いられる積層フィルムにおいて、耐熱多孔層は、多孔質フィルムよりも耐熱性の高い層である。耐熱多孔層は、無機粉末から形成されていてもよいし(第1の耐熱多孔層)、耐熱樹脂から形成されていてもよいし(第2の耐熱多孔層)、耐熱樹脂とフィラーとを含んで形成されていてもよい(第3の耐熱多孔層)。耐熱多孔層が、耐熱樹脂を含有することにより、塗工などの容易な手法で、耐熱多孔層を形成することができる。
(第1の耐熱多孔層)
 耐熱多孔層が無機粉末から形成されている場合、耐熱多孔層に用いられる無機粉末としては、例えば、金属酸化物、金属窒化物、金属炭化物、金属水酸化物、炭酸塩、硫酸塩などの無機物からなる粉末が挙げられ、これらの中でも、導電性の低い(絶縁体の)無機物からなる粉末が好ましく用いられる。具体的に例示すると、アルミナ、シリカ、二酸化チタンまたは炭酸カルシウムなどからなる粉末が挙げられる。このような無機粉末は、単独で用いてもよいし、2種以上を混合して用いることもできる。
 これらの無機粉末の中でも、化学的安定性が高いことから、アルミナ粉末が好ましい。また、無機粉末を構成する粒子のすべてがアルミナ粒子であることがより好ましく、無機粉末を構成する粒子のすべてがアルミナ粒子であり、その一部または全部が略球状のアルミナ粒子であることがさらに好ましい。
(第2の耐熱多孔層)
 耐熱多孔層が耐熱樹脂から形成されている場合、耐熱多孔層に用いられる耐熱樹脂としては、ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリアセタール、ポリサルホン、ポリフェニレンサルファイド、ポリエーテルケトン、芳香族ポリエステル、ポリエーテルサルホンおよびポリエーテルイミドを挙げることができる。積層フィルムの耐熱性をより高めるためには、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルホンおよびポリエーテルイミドが好ましく、より好ましくは、ポリアミド、ポリイミドまたはポリアミドイミドである。
 耐熱多孔層に用いられる耐熱樹脂としてさらに好ましくは、芳香族ポリアミド(パラ配向芳香族ポリアミド、メタ配向芳香族ポリアミド)、芳香族ポリイミド、芳香族ポリアミドイミドなどの含窒素芳香族重合体であり、とりわけ好ましくは芳香族ポリアミド、製造しやすいために特に好ましいのは、パラ配向芳香族ポリアミド(以下、パラアラミドということがある。)である。
 また、耐熱樹脂として、ポリ-4-メチルペンテン-1および環状オレフィン系重合体を挙げることもできる。
 これらの耐熱樹脂を用いることにより、リチウム二次電池のセパレータとして用いられる積層フィルムの耐熱性、すなわち、積層フィルムの熱破膜温度をより高めることができる。これらの耐熱樹脂のうち、含窒素芳香族重合体を用いる場合には、その分子内の極性によるためか、電解液との相性、すなわち、耐熱多孔層における保液性も向上する場合があり、リチウム二次電池製造時における電解液の含浸の速度も高く、リチウム二次電池の充放電容量もより高まる。
 かかる積層フィルムの熱破膜温度は、耐熱樹脂の種類に依存し、使用場面、使用目的に応じ、選択使用される。より具体的には、耐熱樹脂として、上記含窒素芳香族重合体を用いる場合は400℃程度に、また、ポリ-4-メチルペンテン-1を用いる場合は250℃程度に、環状オレフィン系重合体を用いる場合は300℃程度に、夫々、熱破膜温度をコントロールすることができる。また、耐熱多孔層が、無機粉末からなる場合には、熱破膜温度を、例えば、500℃以上にコントロールすることも可能である。
 上記パラアラミドは、パラ配向芳香族ジアミンとパラ配向芳香族ジカルボン酸ハライドとの縮合重合により得られるものであり、アミド結合が芳香族環のパラ位またはそれに準じた配向位(例えば、4,4’-ビフェニレン、1,5-ナフタレン、2,6-ナフタレンなどのような反対方向に同軸または平行に延びる配向位)で結合される繰り返し単位から実質的になるものである。具体的には、ポリ(パラフェニレンテレフタルアミド)、ポリ(パラベンズアミド)、ポリ(4,4’-ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(2-クロロ-パラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6-ジクロロパラフェニレンテレフタルアミド共重合体などのパラ配向型またはパラ配向型に準じた構造を有するパラアラミドが例示される。
 前記の芳香族ポリイミドとしては、芳香族の二酸無水物とジアミンとの縮重合で製造される全芳香族ポリイミドが好ましい。
 縮重合に用いられる芳香族の二酸無水物の具体例としては、ピロメリット酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’-ビス(3,4―ジカルボキシフェニル)ヘキサフルオロプロパンおよび3,3’,4,4’-ビフェニルテトラカルボン酸二無水物が挙げられる。
 縮重合に用いられるジアミンの具体例としては、オキシジアニリン、パラフェニレンジアミン、ベンゾフェノンジアミン、3,3’-メチレンジアニリン、3,3’-ジアミノベンソフェノン、3,3’-ジアミノジフェニルスルフォンおよび1,5-ナフタレンジアミンが挙げられる。
 また、芳香族ポリイミドとしては、溶媒に可溶なポリイミドが好適に使用できる。このようなポリイミドとしては、例えば、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物と芳香族ジアミンとの重縮合物のポリイミドが挙げられる。
 前記の芳香族ポリアミドイミドとしては、芳香族ジカルボン酸および芳香族ジイソシアネートを用いてこれらの縮合重合から得られるもの、芳香族二酸無水物および芳香族ジイソシアネートを用いてこれらの縮合重合から得られるものが挙げられる。芳香族ジカルボン酸の具体例としてはイソフタル酸およびテレフタル酸が挙げられる。また芳香族二酸無水物の具体例としては無水トリメリット酸が挙げられる。芳香族ジイソシアネートの具体例としては、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、オルソトリレンジイソシアネートおよびm-キシレンジイソシアネートが挙げられる。
 また、イオン透過性をより高めるためには、積層フィルムが有する耐熱多孔層の厚みは、1μm以上10μm以下、さらには1μm以上5μm以下、特に1μm以上4μm以下という薄い耐熱多孔層であることが好ましい。また、耐熱多孔層は微細孔を有し、その孔のサイズ(直径)は、好ましくは3μm以下、より好ましくは1μm以下である。
(第3の耐熱多孔層)
 また、耐熱多孔層が耐熱樹脂とフィラーとを含んで形成されている場合、耐熱樹脂は、上記第2の耐熱多孔層に用いられる耐熱樹脂と同じものを使用することができる。フィラーは、有機粉末、無機粉末またはこれらの混合物からなる群から選ばれる1種以上を用いることができる。フィラーを構成する粒子は、その平均粒子径が、0.01μm以上1μm以下であることが好ましい。
 フィラーとして用いることができる有機粉末としては、例えば、スチレン、ビニルケトン、アクリロニトリル、メタクリル酸メチル、メタクリル酸エチル、グリシジルメタクリレート、グリシジルアクリレート、アクリル酸メチルなどの単独または2種類以上の共重合体;PTFE、4フッ化エチレン-6フッ化プロピレン共重合体、4フッ化エチレン-エチレン共重合体、ポリビニリデンフルオライドなどのフッ素系樹脂;メラミン樹脂;尿素樹脂;ポリオレフィン樹脂;ポリメタクリレート;などの有機物からなる粉末が挙げられる。このような有機粉末は、単独で用いてもよいし、2種以上を混合して用いることもできる。これらの有機粉末の中でも、化学的安定性が高いことから、PTFEの粉末が好ましい。
 フィラーとして用いることができる無機粉末としては、上記耐熱多孔層に用いられる無機粉末と同じものを例示することができる。
 耐熱多孔層が耐熱樹脂とフィラーとを含んで形成されている場合、フィラーの含有量としては、フィラーの材質の比重にもよるが、例えば、フィラーを構成する粒子のすべてがアルミナ粒子である場合には、耐熱多孔層の総質量を100質量部としたとき、フィラーの質量は、好ましくは5質量部以上95質量部以下であり、より好ましくは20質量部以上95質量部以下であり、さらに好ましくは30質量部以上90質量部以下である。これらの範囲は、フィラーの材質の比重により、適宜設定できる。
 フィラーの形状については、略球状、板状、柱状、針状、繊維状などの形状が挙げられ、いずれの粒子も用いることができるが、均一な孔を形成しやすいことから、略球状粒子であることが好ましい。略球状粒子としては、粒子のアスペクト比(粒子の長径/粒子の短径)が1以上1.5以下である粒子が挙げられる。粒子のアスペクト比は、電子顕微鏡写真により測定することができる。
 本実施形態のリチウム二次電池のセパレータとして用いられる積層フィルムにおいて多孔質フィルムは、微細孔を有し、シャットダウン機能を有することが好ましい。この場合、多孔質フィルムは、熱可塑性樹脂を含有する。
 多孔質フィルムにおける微細孔のサイズは、好ましくは3μm以下、より好ましくは1μm以下である。多孔質フィルムの空孔率は、好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。リチウム二次電池において、予め想定された使用温度を越えた場合には、熱可塑性樹脂を含有する多孔質フィルムは、多孔質フィルムを構成する熱可塑性樹脂の軟化または融解により、微細孔を閉塞することができる。
 多孔質フィルムに用いられる熱可塑性樹脂は、リチウム二次電池における電解液に溶解しないものを選択すればよい。具体的には、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂および熱可塑性ポリウレタン樹脂を挙げることができ、これらの2種以上の混合物を用いてもよい。
 セパレータがより低温で軟化してシャットダウンさせるためには、多孔質フィルムがポリエチレンを含有することが好ましい。ポリエチレンとして、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレンなどのポリエチレンを挙げることができ、分子量が100万以上の超高分子量ポリエチレンを挙げることもできる。
 多孔質フィルムの突刺し強度をより高めるためには、多孔質フィルムを構成する熱可塑性樹脂は、少なくとも超高分子量ポリエチレンを含有することが好ましい。また、多孔質フィルムの製造面において、熱可塑性樹脂は、低分子量(重量平均分子量1万以下)のポリオレフィンからなるワックスを含有することが好ましい場合もある。
 また、積層フィルムにおける多孔質フィルムの厚みは、好ましくは3μm以上30μm以下であり、より好ましくは3μm以上25μm以下である。また、本実施形態において、積層フィルムの厚みは、好ましくは40μm以下、より好ましくは、30μm以下である。また、耐熱多孔層の厚みをA(μm)、多孔質フィルムの厚みをB(μm)としたときには、A/Bの値が、0.1以上1以下であることが好ましい。
 本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。
 また、セパレータの空孔率は、好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。
(電解液)
 本実施形態のリチウム二次電池が有する電解液は、電解質および有機溶媒を含有する。
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、LiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCFおよびLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物、またはこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒および環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩およびフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。
 上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖またはポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS-SiS、LiS-GeS、LiS-P、LiS-B、LiS-SiS-LiPO、LiS-SiS-LiSO、LiS-GeS-Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。
 また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。
 以上のような構成の正極活物質は、上述した本実施形態のリチウム金属複合酸化物を用いているため、正極活物質を用いたリチウム二次電池を、従来よりも氷点下において低い電池抵抗を示すものとすることができる。
 また、以上のような構成の正極は、上述した本実施形態のリチウム金属複合酸化物を用いた正極活物質を有するため、リチウム二次電池を、氷点下において低い電池抵抗を示すものとすることができる。
 さらに、以上のような構成のリチウム二次電池は、上述した正極有するため、従来よりも氷点下において低い電池抵抗を示すリチウム二次電池となる。
 次に、本発明を実施例によりさらに詳細に説明する。
 本実施例においては、リチウム金属複合酸化物(正極活物質)の評価、正極およびリチウム二次電池の作製評価を、次のようにして行った。
(1)リチウム二次電池用正極活物質の評価
1.リチウム二次電池用正極活物質の組成分析
 後述の方法で製造されるリチウム金属複合酸化物の組成分析は、得られたリチウム金属複合酸化物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
2.リチウム二次電池用正極活物質の一次粒子径の測定
 測定するリチウム金属複合酸化物の粒子を、サンプルステージの上に貼った導電性シート上に載せ、日本電子株式会社製JSM-5510を用いて、加速電圧が20kVの電子線を照射してSEM観察を行った。SEM観察により得られた画像(SEM写真)から任意に50個の一次粒子を抽出し、それぞれの1次粒子について、一次粒子の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を一次粒子の粒子径として測定した。得られた粒子径の算術平均値を、リチウム金属複合酸化物の平均一次粒子径とした。
3.リチウム二次電池用正極活物質の二次粒子径の測定
 測定するリチウム金属複合酸化物の粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、該粉末を分散させた分散液を得た。得られた分散液についてマルバーン社製マスターサイザー2000(レーザー回折散乱粒度分布測定装置)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得た。得られた累積粒度分布曲線において、50%累積時の微小粒子側から見た粒子径(D50)の値を、リチウム金属複合酸化物の平均二次粒子径とした。
4.リチウム二次電池用正極活物質の結晶子サイズ測定
 リチウム金属複合酸化物の粉末X線回折測定は、X線回折装置(X‘Prt PRO、PANalytical社)を用いて行った。得られたリチウム金属複合酸化物を専用の基板に充填し、Cu-Kα線源を用いて、回折角2θ=10°~90°の範囲にて測定を行うことで、粉末X線回折図形を得た。粉末X線回折パターン総合解析ソフトウェアJADE5を用い、該粉末X線回折図形からピークAに対応するピークの半価幅およびピークBに対応するピークの半値幅を得て、Scherrer式により、結晶子径を算出した。
ピークA : 2θ=18.7±1°
ピークB : 2θ=44.6±1°
5.リチウム二次電池用正極活物質の水銀圧入法による細孔分布測定
 前処理としてリチウム金属複合酸化物を120℃、4時間、恒温乾燥した。オートポアIII9420(Micromeritics 社製)を用いて、下記の測定条件にて細孔分布測定を実施した。なお水銀の表面張力は480dynes/cm、水銀と試料の接触角は140°とした。
   測定条件
     測定温度 : 25℃
     測定圧力 : 1.07psia~59256.3psia
6.リチウム二次電池用正極活物質のBET比表面積測定
 測定するリチウム金属複合酸化物の粉末1gを窒素雰囲気中、150℃で15分間乾燥させた後、マイクロメリティックス製フローソーブII2300を用いて測定した。
(2)正極の作製
 後述する製造方法で得られるリチウム金属複合酸化物(正極活物質)と導電材(アセチレンブラック:黒鉛=9:1(質量比))とバインダー(PVdF)とを、正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いた。
 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、正極を得た。この正極の電極面積は1.65cmとした。
(3)リチウム二次電池(コインセル)の作製
 以下の操作を、アルゴン雰囲気のグローブボックス内で行った。
 「(2)正極の作製」で作成した正極を、コイン型電池R2032用のコインセル(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置いた。ここに電解液を300μl注入した。用いた電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの16:10:74(体積比)混合液に、ビニルカーボネートを1vol%、LiPFを1.3mol/lとなるように溶解して調製した。
 次に、負極として人造黒鉛(日立化成社製MAGD)を用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型電池R2032。以下、「コイン型電池」と称することがある。)を作製した。
(4)充放電試験
 「(3)リチウム二次電池(コインセル)の作製」で作製したコイン型電池を用いて、以下に示す条件で充放電試験を実施した。充放電試験における、充電容量および放電容量をそれぞれ以下のようにして求めた。
<充放電試験条件>
 試験温度:25℃
 充電時条件:充電最大電圧4.2V、充電時間5時間、充電電流0.2CA
 放電時条件:放電最小電圧2.7V、放電時間5時間、放電電流0.2CA
<電池抵抗測定>
 上記で測定した放電容量を充電深度(以下、SOCと証称することがある。)100%として、-30℃において、SOC 50%、100%の電池抵抗測定を行った。なお、各SOCに調整するのは25℃環境下にて行った。電池抵抗測定は、-30℃恒温槽内にSOC調整したコイン型セルを2時間静置し、20μAで15秒間放電、5分静置、20μAで15秒間充電、5分静置、40μAで15秒間放電、5分静置、20μAで30秒間充電、5分静置、80μAで15秒間放電、5分静置、20μAで60秒間充電、5分静置、160μAで15秒間放電、5分静置、20μAで120秒間充電、5分静置の順に実施した。電池抵抗は、20、40、80、120μA放電時に測定された10秒後の電池電圧と各電流値とのプロットから、最小二乗近似法を用いて傾きを算出し、この傾きを電池抵抗とした。
(実施例1)
1.正極活物質1の製造 
 攪拌機およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.33:0.33:0.33となるように混合して、混合原料液を調整した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、反応槽内の溶液のpHが11.7になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得た。得られた粒子を、濾過後水洗し、100℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物の乾燥粉末を得た。このニッケルコバルトマンガン複合水酸化物のBET比表面積は、13.1m/gであった。
 以上のようにして得られたニッケルコバルトマンガン複合水酸化物の乾燥粉末と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.07となるように秤量して混合した後、大気雰囲気下950℃で10時間焼成して、目的の正極活物質1すなわちリチウム-ニッケルコバルトマンガン複合酸化物を得た。
2.リチウム金属複合酸化物の評価
 得られた正極活物質1の組成分析を行ったところ、Li:Ni:Co:Mnのモル比は、1.02:0.34:0.33:0.33であった。
 正極活物質1の一次粒子径、二次粒子径は、それぞれ0.49μm、3.5μmであった。
 正極活物質1のピークA、ピークBから算出される結晶子サイズは、それぞれ919Å、504Åであった。
 正極活物質1の細孔分布測定結果(図2)から、65nmにピークを有し、10nmから200nmの範囲での細孔容積は0.012cm/gであった。また、BET比表面積は、1.0m/gであった。
3.リチウム二次電池の-30℃での電池抵抗測定
 正極活物質1を用いてコイン型電池を作製し-30℃でSOC 100%、50%での電池抵抗は、それぞれ1259Ω、1538Ωであった。
(実施例2)
1.正極活物質2の製造
 反応槽内のpHを12.6に設定したこと以外は実施例1と同様の操作を行い、ニッケルコバルトマンガン複合水酸化物を得た。このニッケルコバルトマンガン複合水酸化物のBET比表面積は、38.5m/gであった。
 以上のようにして得られたニッケルコバルトマンガン複合水酸化物の乾燥粉末に対してLi:(Ni+Co+Mn)が1.07:1となるように炭酸リチウムを混合し、950℃、10時間保持して焼成を行い、室温まで冷却して正極活物質2を得た。
2.リチウム金属複合酸化物の評価
 得られた正極活物質2の組成分析を行ったところ、Li:Ni:Co:Mnのモル比は、1.10:0.34:0.33:0.33であった。
 正極活物質2の一次粒子径、二次粒子径は、それぞれ0.37μm、2.6μmであった。
 正極活物質2のピークA、ピークBから算出される結晶子サイズは、それぞれ994Å、589Åであった。
 正極活物質2の細孔分布測定結果から、74nmにピークを有し、10nmから200nmの範囲での細孔容積は0.030cm/gであった。また、BET比表面積は、1.9m/gであった。
3.リチウム二次電池の-30℃での電池抵抗測定
 正極活物質2を用いてコイン型電池を作製し-30℃でSOC 100%、50%での電池抵抗は、1219Ω、1294Ωであった。
(実施例3)
1.正極活物質3の製造
 850℃で焼成を行った以外は、実施例2と同様の操作を行い、正極活物質3を得た。2.リチウム金属複合酸化物の評価
 得られた正極活物質3の組成分析を行ったところ、Li:Ni:Co:Mnのモル比は、1.05:0.34:0.33:0.33であった。
 正極活物質3の一次粒子径、二次粒子径は、それぞれ0.19μm、2.7μmであった。
 正極活物質3のピークA、ピークBから算出される結晶子サイズは、それぞれ640Å、429Åであった。
 正極活物質3の細孔分布測定結果から、95nmにピークを有し、10nmから200nmの範囲での細孔容積は0.034cm/gであった。また、BET比表面積は、2.6m/gであった
3.リチウム二次電池の-30℃での電池抵抗測定
 正極活物質3を用いてコイン型電池を作製し-30℃でSOC 100%、50%での電池抵抗は、それぞれ1374Ω、1418Ωであった。
(実施例4)
1.正極活物質4の製造
 反応槽内のpHを12.0に設定したこと以外は実施例1と同様の操作を行い、ニッケルコバルトマンガン複合水酸化物を得た。このニッケルコバルトマンガン複合水酸化物のBET比表面積は、20.8m/gであった。
 以上のようにして得られたニッケルコバルトマンガン複合水酸化物の乾燥粉末に対してLi:(Ni+Co+Mn)が1.07:1となるように炭酸リチウムを混合し、950℃、10時間保持して焼成を行い、室温まで冷却して正極活物質4を得た。
2.リチウム金属複合酸化物の評価
 得られた正極活物質4の組成分析を行ったところ、Li:Ni:Co:Mnのモル比は、1.08:0.33:0.33:0.34であった。
 正極活物質4の一次粒子径、二次粒子径は、それぞれ0.46μm、3.1μmであった。
 正極活物質4のピークA、ピークBから算出される結晶子サイズは、それぞれ994Å、547Åであった。
 正極活物質4の細孔分布測定結果から、108nmにピークを有し、10nmから200nmの範囲での細孔容積は0.025cm/gであった。また、BET比表面積は、1.3m/gであった。
3.リチウム二次電池の-30℃での電池抵抗測定
 正極活物質4を用いてコイン型電池を作製し-30℃でSOC 100%、50%での電池抵抗は、それぞれ1207Ω、1367Ωであった。
(実施例5)
1.正極活物質5の製造
 反応槽内のpHを12.5に設定したこと以外は実施例1と同様の操作を行い、ニッケルコバルトマンガン複合水酸化物を得た。このニッケルコバルトマンガン複合水酸化物のBET比表面積は、49.9m/gであった。
 以上のようにして得られたニッケルコバルトマンガン複合水酸化物の乾燥粉末に対してLi:(Ni+Co+Mn)が1.07:1となるように炭酸リチウムを混合し、950℃、10時間保持して焼成を行い、室温まで冷却して正極活物質5を得た。
2.リチウム金属複合酸化物の評価
 得られた正極活物質5の組成分析を行ったところ、Li:Ni:Co:Mnのモル比は、1.09:0.33:0.34:0.33であった。
 正極活物質5の一次粒子径、二次粒子径は、それぞれ0.37μm、2.7μmであった。
 正極活物質5のピークA、ピークBから算出される結晶子サイズは、それぞれ970Å、601Åであった。
 正極活物質5の細孔分布測定結果から、95nmにピークを有し、10nmから200nmの範囲での細孔容積は0.030cm/gであった。また、BET比表面積は、1.9m/gであった
3.リチウム二次電池の-30℃での電池抵抗測定
 正極活物質5を用いてコイン型電池を作製し-30℃でSOC 100%、50%での電池抵抗測定は、それぞれ1217Ω、1280Ωであった。
(比較例1)
1.正極活物質6の製造
 反応槽内のpHを8.6に設定したこと以外は実施例1と同様の操作を行い、ニッケルコバルトマンガン複合水酸化物を得た。このニッケルコバルトマンガン複合水酸化物のBET比表面積は、9.3m/gであった。
 以上のようにして得られたニッケルコバルトマンガン複合水酸化物の乾燥粉末に対してLi:(Ni+Co+Mn)が1.05:1となるように水酸化リチウムを混合し、1000℃、10時間保持して焼成を行い、室温まで冷却して正極活物質6を得た。
2.リチウム金属複合酸化物の評価
 得られた正極活物質6の組成分析を行ったところ、Li:Ni:Co:Mnのモル比は、0.83:0.33:0.32:0.35であった。
 正極活物質6の一次粒子径、二次粒子径の測定は、それぞれ1.01μm、8.1μmであった。
 正極活物質6のピークA、ピークBから算出される結晶子サイズは、それぞれ1118Å、721Åであった。
 正極活物質6の細孔分布測定結果から、10nmから200nmの範囲にピークは確認されなかった。また、BET比表面積は、0.4m/gであった
3.リチウム二次電池の-30℃での電池抵抗測定
 正極活物質6を用いてコイン型電池を作製し-30℃でSOC 100%、50%での電池抵抗測定を行ったところそれぞれ3147Ω、3489Ωであった。
(比較例2)
1.正極活物質7の製造
 反応槽内のpHを11.8に設定し、攪拌条件を適宜変更したこと以外は実施例1と同様の操作を行い、ニッケルコバルトマンガン複合水酸化物を得た。このニッケルコバルトマンガン複合水酸化物のBET比表面積は、12.8m/gであった。
 以上のようにして得られたニッケルコバルトマンガン複合水酸化物の乾燥粉末と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.05となるように秤量して混合した後、大気雰囲気下890℃で30時間焼成して、焼成後、生成物を篩分けした。篩分け後、生成物の2回目の焼成を大気雰囲気下890℃で4時間行い、目的の正極活物質7すなわちリチウム-ニッケルコバルトマンガン複合酸化物を得た。
2.リチウム金属複合酸化物の評価
 得られた正極活物質7の組成分析を行ったところ、Li:Ni:Co:Mnのモル比は、1.02:0.33:0.34:0.33であった。
 正極活物質7の一次粒子径、二次粒子径は、それぞれ0.52μm、5.0μmであった。
 正極活物質7のピークA、ピークBから算出される結晶子サイズは、それぞれ909Å、461Åであった。
 正極活物質7の細孔分布測定結果から、10nmから200nmの範囲にピークは確認されなかった。また、BET比表面積は、0.7m/gであった。
3.リチウム二次電池の-30℃での電池抵抗測定
 正極活物質7を用いてコイン型電池を作製し-30℃でSOC 100%、50%での電池抵抗は、それぞれ1815Ω、2207Ωであった。
Figure JPOXMLDOC01-appb-T000001
 評価の結果、実施例1~5のリチウム金属複合酸化物を正極活物質として用いたリチウム二次電池では、いずれも、比較例1および2のリチウム金属複合酸化物を正極活物質として用いたリチウム二次電池よりも氷点下において電池抵抗が低減、すなわち高出力を示す。
 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…非水電解質二次電池、21…正極リード、31…負極リード

Claims (8)

  1.  ニッケル、コバルト及びマンガンからなる群から構成される少なくとも1種の元素を含有し、層状構造を有するリチウム二次電池用正極活物質であって、下記要件(1)~(3)の全てを満たすリチウム二次電池用正極活物質。
    (1)一次粒子径が0.1~1μmかつ、二次粒子径が1~10μm
    (2)CuKα線を使用した粉末X線回折測定において、
       2θ=18.7±1°の範囲内のピークにおける結晶子サイズが
       100~1200Å、
       かつ、2θ=44.6±1°の範囲内のピークにおける結晶子サイズが
       100~700Å
    (3)水銀圧入法によって得られた細孔分布において、
       細孔径が10~200nmの範囲に細孔ピークを有し、
       かつ、該範囲での細孔容積が0.01~0.05cm/g
  2.  一般式Li 1-s(Mは、Ni、Co及びMnのいずれか1種以上で構成される必須金属、Mは、Fe、Cu、Ti、Mg、Al、W、Zn、Sn、Zr、Ga及びVのうちいずれか1種以上の任意金属を表し、aは0.9≦a≦1.2、sは0.9≦s≦1とする)で表される、請求項1記載のリチウム二次電池用正極活物質。
  3.  二次粒子径が1~5μmである請求項1又は2記載のリチウム二次電池用正極活物質。
  4.  BET比表面積が0.8~4m/gである請求項1~3いずれかに記載のリチウム二次電池用正極活物質。
  5.  粒子内部に空隙を有する請求項1~4のいずれかに記載のリチウム二次電池用正極活物質。
  6.  LiNiCoMn(ここで、0.9≦a≦1.2、0.3<x<1、0≦y<0.4、0<z<0.4、x+y+z=1とする)で表される請求項1~5いずれかに記載のリチウム二次電池用正極活物質。
  7.  請求項1~6のいずれかに記載のリチウム二次電池用正極活物質を有するリチウム二次電池用正極。
  8.  請求項7に記載のリチウム二次電池用正極を有するリチウム二次電池。
PCT/JP2014/067555 2013-07-10 2014-07-01 リチウム二次電池用正極活物質、正極および二次電池 WO2015005180A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480038864.0A CN105378987B (zh) 2013-07-10 2014-07-01 锂二次电池用正极活性物质、正极以及二次电池
EP14823282.0A EP3021387B1 (en) 2013-07-10 2014-07-01 Cathode active material for lithium secondary battery, cathode, and secondary battery
KR1020217003315A KR102323929B1 (ko) 2013-07-10 2014-07-01 리튬 이차 전지용 정극 활물질, 정극 및 이차 전지
US14/902,041 US10297824B2 (en) 2013-07-10 2014-07-01 Positive electrode active material for lithium secondary battery, positive electrode, and secondary battery
KR1020157034394A KR20160030090A (ko) 2013-07-10 2014-07-01 리튬 이차 전지용 정극 활물질, 정극 및 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013144947A JP5701343B2 (ja) 2013-07-10 2013-07-10 リチウム二次電池用正極活物質、正極および二次電池
JP2013-144947 2013-07-10

Publications (1)

Publication Number Publication Date
WO2015005180A1 true WO2015005180A1 (ja) 2015-01-15

Family

ID=52279866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067555 WO2015005180A1 (ja) 2013-07-10 2014-07-01 リチウム二次電池用正極活物質、正極および二次電池

Country Status (6)

Country Link
US (1) US10297824B2 (ja)
EP (1) EP3021387B1 (ja)
JP (1) JP5701343B2 (ja)
KR (2) KR102323929B1 (ja)
CN (1) CN105378987B (ja)
WO (1) WO2015005180A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063777A (ja) * 2016-10-11 2018-04-19 株式会社東芝 活物質、非水電解質電池、電池パック及び車両
EP3208872A4 (en) * 2014-10-15 2018-05-09 Sumitomo Chemical Company, Ltd. Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN108352528A (zh) * 2015-11-05 2018-07-31 住友化学株式会社 锂二次电池用正极活性物质、锂二次电池用正极活性物质的制造方法、锂二次电池用正极以及锂二次电池
WO2018181158A1 (ja) * 2017-03-31 2018-10-04 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
CN109071264A (zh) * 2016-02-03 2018-12-21 住友化学株式会社 含过渡金属的氢氧化物和含锂复合氧化物的制造方法
CN106058236B (zh) * 2015-04-08 2021-03-23 住友化学株式会社 含锂复合氧化物、其制造方法、正极活性物质、锂离子二次电池用正极以及锂离子二次电池

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013111356B4 (de) 2013-10-15 2019-04-18 Lemken Gmbh & Co. Kg Säherz für Einzelkornsämaschine
KR102513330B1 (ko) 2014-11-25 2023-03-24 아메리칸 리튬 에너지 코포레이션 내부 전류 제한기 및 차단기를 갖는 재충전가능 배터리
US10020545B2 (en) * 2014-11-25 2018-07-10 American Lithium Energy Corporation Rechargeable battery with resistive layer for enhanced safety
KR102636863B1 (ko) 2015-02-17 2024-02-19 도다 고교 가부시끼가이샤 비수전해질 이차 전지용 정극 활물질, 비수전해질 이차 전지
JP6468025B2 (ja) * 2015-03-26 2019-02-13 株式会社豊田中央研究所 非水系リチウム二次電池
JP6768647B2 (ja) * 2015-06-02 2020-10-14 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US20170104217A1 (en) * 2015-10-07 2017-04-13 City University Of Hong Kong Material for use in a battery, a battery and a method of manufacturing a material for use in a battery
JP6873614B2 (ja) * 2016-06-22 2021-05-19 日本ケミコン株式会社 リチウムイオン二次電池及びその製造方法
JP7004959B2 (ja) 2016-07-14 2022-01-21 株式会社Gsユアサ リチウム遷移金属複合酸化物、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、リチウム遷移金属複合酸化物の製造方法、非水電解質二次電池用正極活物質、非水電解質二次電池用電極、非水電解質二次電池及び蓄電装置
JP6500001B2 (ja) * 2016-08-31 2019-04-10 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6337360B2 (ja) * 2016-08-31 2018-06-06 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
CN106450155B (zh) 2016-09-18 2019-11-29 贵州振华新材料股份有限公司 球形或类球形锂离子电池正极材料及制法和应用
JP6132062B1 (ja) 2016-09-30 2017-05-24 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、その製造方法、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP6381606B2 (ja) 2016-10-31 2018-08-29 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6343753B2 (ja) * 2016-12-07 2018-06-20 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6412094B2 (ja) 2016-12-26 2018-10-24 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018150843A1 (ja) * 2017-02-14 2018-08-23 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2018155154A1 (ja) * 2017-02-21 2018-08-30 日本碍子株式会社 リチウム複合酸化物焼結体板
JP6751042B2 (ja) * 2017-03-24 2020-09-02 株式会社東芝 活物質、電極、二次電池、電池パック、及び車両
JP6288340B1 (ja) 2017-03-24 2018-03-07 住友大阪セメント株式会社 リチウムイオン二次電池用電極材料、及びリチウムイオン二次電池
EP3619761B1 (en) 2017-05-01 2021-03-03 American Lithium Energy Corporation Negative thermal expansion current interrupter
JP6368022B1 (ja) * 2017-05-31 2018-08-01 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2019023683A1 (en) 2017-07-28 2019-01-31 American Lithium Energy Corporation ANTI-CORROSION COATING FOR BATTERY CURRENT COLLECTOR
KR102324996B1 (ko) 2017-08-14 2021-11-12 미쓰이금속광업주식회사 전고체형 리튬 이차전지용 양극 활물질
JP6864104B2 (ja) * 2017-08-28 2021-04-21 三井金属鉱業株式会社 全固体型リチウム二次電池用正極活物質
CN109574090B (zh) * 2017-09-28 2020-09-15 比亚迪股份有限公司 氢氧化镍钴锰和正极材料及其制备方法和锂离子电池
JP6426820B1 (ja) 2017-11-30 2018-11-21 住友化学株式会社 リチウム含有遷移金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム含有遷移金属複合酸化物の製造方法
JP6799551B2 (ja) * 2018-02-07 2020-12-16 住友化学株式会社 リチウム二次電池用正極活物質の製造方法
PL3776695T3 (pl) * 2018-03-28 2023-11-27 Umicore Tlenek kompozytowy litu–metalu przejściowego jako materiałaktywny elektrody dodatniej w akumulatorach wielokrotnego ładowania z litowym ogniwem wtórnym
JP6523508B1 (ja) * 2018-03-30 2019-06-05 住友化学株式会社 リチウム複合金属化合物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池、及びリチウム複合金属化合物の製造方法
EP3553918B1 (en) 2018-04-09 2020-11-25 NXP USA, Inc. A power transmitter unit
EP3553917B1 (en) * 2018-04-09 2021-09-01 NXP USA, Inc. A power transmitter unit
JP7298376B2 (ja) * 2018-09-26 2023-06-27 東レ株式会社 非水電解質二次電池
KR102568566B1 (ko) 2019-02-01 2023-08-22 주식회사 엘지에너지솔루션 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
JP6650064B1 (ja) * 2019-03-29 2020-02-19 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極および全固体リチウムイオン電池
CN110302794A (zh) * 2019-06-19 2019-10-08 西安交通大学 一种基于柔性碳基底的NiAlV三元金属氢氧化物纳米片阵列复合材料及其制备方法
JP6810287B1 (ja) * 2020-01-17 2021-01-06 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
JP7194703B2 (ja) * 2020-01-17 2022-12-22 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極および全固体リチウムイオン電池
EP4113661A4 (en) 2020-02-27 2023-09-20 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERIES, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP7471903B2 (ja) * 2020-05-07 2024-04-22 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
CN112978812B (zh) * 2021-02-05 2022-07-29 宁德新能源科技有限公司 正极材料、电化学装置和电子装置
US20240234708A1 (en) 2021-05-28 2024-07-11 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device and energy storage apparatus
JPWO2023090333A1 (ja) 2021-11-22 2023-05-25
CN116799165A (zh) * 2022-04-29 2023-09-22 北京当升材料科技股份有限公司 用于锂离子电池的正极材料及其制备方法
JP2024102945A (ja) * 2023-01-20 2024-08-01 プライムプラネットエナジー&ソリューションズ株式会社 正極用ncm系活物質、正極および電池
JP2024102947A (ja) * 2023-01-20 2024-08-01 プライムプラネットエナジー&ソリューションズ株式会社 正極用ncm系活物質、正極および電池

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324758A (ja) 1997-03-26 1998-12-08 Sumitomo Chem Co Ltd パラアラミド系多孔質フィルムおよびそれを用いた電池用セパレーターとリチウム二次電池
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2001076724A (ja) * 1999-09-02 2001-03-23 Sumitomo Metal Ind Ltd リチウム電池用正極材料とその製造方法
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2008103308A (ja) * 2006-09-22 2008-05-01 Mitsubishi Chemicals Corp リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体、その製造方法、及び噴霧乾燥粉体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2009152188A (ja) * 2007-11-30 2009-07-09 Sony Corp 正極活物質、正極および非水電解質二次電池
WO2009099158A1 (ja) * 2008-02-06 2009-08-13 Agc Seimi Chemical Co., Ltd. リチウムイオン二次電池正極活物質用の造粒体粉末の製造方法
JP4556377B2 (ja) * 2001-04-20 2010-10-06 株式会社Gsユアサ 正極活物質およびその製造方法、非水電解質二次電池用正極、並びに、非水電解質二次電池
JP2010278015A (ja) 2006-09-22 2010-12-09 Mitsubishi Chemicals Corp リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体、その製造方法、及び噴霧乾燥粉体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2011029132A (ja) * 2008-10-27 2011-02-10 Kao Corp リチウム複合酸化物焼結体
JP2011105588A (ja) * 2009-10-22 2011-06-02 Toda Kogyo Corp ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池
JP2012234766A (ja) * 2011-05-09 2012-11-29 Sony Corp リチウムイオン二次電池用活物質、リチウムイオン二次電池用電極、リチウムイオン二次電池、電子機器、電動工具、電動車両および電力貯蔵システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162860A (ja) 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP4062165B2 (ja) * 1997-03-07 2008-03-19 日亜化学工業株式会社 リチウムイオン二次電池用正極活物質の製造方法
TW460505B (en) 1998-04-27 2001-10-21 Sumitomo Chemical Co Separator for nonaqueous electrolyte battery and lithium secondary battery made from the same
US20020053663A1 (en) 2000-11-06 2002-05-09 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
US7393476B2 (en) 2001-11-22 2008-07-01 Gs Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
US8241790B2 (en) * 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
CN100492728C (zh) 2003-09-26 2009-05-27 三菱化学株式会社 用于锂二次电池正极材料的锂复合氧化物颗粒、使用该颗粒的锂二次电池正极以及锂二次电池
KR100727332B1 (ko) * 2003-09-26 2007-06-12 미쓰비시 가가꾸 가부시키가이샤 리튬 2차 전지의 포지티브 전극 재료용 리튬 복합 산화물입자, 및 이를 이용한 리튬 2차 전지용 포지티브 전극 및리튬 2차 전지
JP4781004B2 (ja) * 2005-04-28 2011-09-28 パナソニック株式会社 非水電解液二次電池
EP2006937A4 (en) 2006-04-07 2014-06-18 Mitsubishi Chem Corp LITHIUM TRANSITION METAL BASED COMPOSITE POWDER FOR POSITIVE ELECTRODE MATERIAL IN A RECHARGEABLE LITHIUM BATTERY, METHOD FOR PRODUCING THE POWDER, spray-dried product POWDER, Feuerungs-PRECURSOR POWDER AND POSITIVE ELECTRODE FOR RECHARGEABLE LITHIUM BATTERY AND THE POWDER USED RECHARGEABLE LITHIUM BATTERY
US8340284B2 (en) 2007-02-13 2012-12-25 Nec Corporation Key generation device, key derivation device, encryption device, decryption device, method and program
CN101548417B (zh) * 2007-06-21 2011-07-06 Agc清美化学股份有限公司 含锂复合氧化物粉末及其制造方法
KR101562237B1 (ko) * 2007-09-04 2015-10-21 미쓰비시 가가꾸 가부시키가이샤 리튬 천이 금속계 화합물 분체
CN102144322B (zh) * 2009-04-10 2016-06-29 日立麦克赛尔株式会社 电极用活性物质、其制造方法、非水二次电池用电极以及非水二次电池
JP2012023015A (ja) * 2010-01-08 2012-02-02 Mitsubishi Chemicals Corp リチウム二次電池用正極材料用粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
EP2555287B1 (en) 2010-04-01 2018-05-02 Mitsubishi Chemical Corporation Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP5447248B2 (ja) 2010-07-14 2014-03-19 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法、ならびにこの正極活物質を用いた非水系電解質二次電池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324758A (ja) 1997-03-26 1998-12-08 Sumitomo Chem Co Ltd パラアラミド系多孔質フィルムおよびそれを用いた電池用セパレーターとリチウム二次電池
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2001076724A (ja) * 1999-09-02 2001-03-23 Sumitomo Metal Ind Ltd リチウム電池用正極材料とその製造方法
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP4556377B2 (ja) * 2001-04-20 2010-10-06 株式会社Gsユアサ 正極活物質およびその製造方法、非水電解質二次電池用正極、並びに、非水電解質二次電池
JP2008103308A (ja) * 2006-09-22 2008-05-01 Mitsubishi Chemicals Corp リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体、その製造方法、及び噴霧乾燥粉体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2010278015A (ja) 2006-09-22 2010-12-09 Mitsubishi Chemicals Corp リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体、その製造方法、及び噴霧乾燥粉体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2009152188A (ja) * 2007-11-30 2009-07-09 Sony Corp 正極活物質、正極および非水電解質二次電池
WO2009099158A1 (ja) * 2008-02-06 2009-08-13 Agc Seimi Chemical Co., Ltd. リチウムイオン二次電池正極活物質用の造粒体粉末の製造方法
JP2011029132A (ja) * 2008-10-27 2011-02-10 Kao Corp リチウム複合酸化物焼結体
JP2011105588A (ja) * 2009-10-22 2011-06-02 Toda Kogyo Corp ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池
JP2012234766A (ja) * 2011-05-09 2012-11-29 Sony Corp リチウムイオン二次電池用活物質、リチウムイオン二次電池用電極、リチウムイオン二次電池、電子機器、電動工具、電動車両および電力貯蔵システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The Japan Society for Analytical Chemistry", 10 February 2002, X-RAY ANALYSIS RESEARCH COUNCIL
WASEDA, YOSHIO; MATSUBARA, EIICHIRO: "X-sen Kouzou Kaiseki - Genshi-no Hairetsuo Kimeru", 30 April 2002, UCHIDA ROKAKUHO PUBLISHING

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3208872A4 (en) * 2014-10-15 2018-05-09 Sumitomo Chemical Company, Ltd. Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN106058236B (zh) * 2015-04-08 2021-03-23 住友化学株式会社 含锂复合氧化物、其制造方法、正极活性物质、锂离子二次电池用正极以及锂离子二次电池
CN108352528A (zh) * 2015-11-05 2018-07-31 住友化学株式会社 锂二次电池用正极活性物质、锂二次电池用正极活性物质的制造方法、锂二次电池用正极以及锂二次电池
US11437618B2 (en) 2015-11-05 2022-09-06 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, method of producing positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
CN109071264B (zh) * 2016-02-03 2021-02-02 住友化学株式会社 含过渡金属的氢氧化物和含锂复合氧化物的制造方法
CN109071264A (zh) * 2016-02-03 2018-12-21 住友化学株式会社 含过渡金属的氢氧化物和含锂复合氧化物的制造方法
EP3412634A4 (en) * 2016-02-03 2019-11-13 Sumitomo Chemical Company, Limited HYDROXIDE CONTAINING TRANSITION METAL, AND PROCESS FOR PRODUCING LITHIUM CONTAINING COMPOSITE OXIDE
US10763504B2 (en) 2016-02-03 2020-09-01 Sumitomo Chemical Company, Limited Transition metal-containing hydroxide, and method for producing lithium-containing composite oxide
JP2018063777A (ja) * 2016-10-11 2018-04-19 株式会社東芝 活物質、非水電解質電池、電池パック及び車両
CN110462897A (zh) * 2017-03-31 2019-11-15 住友化学株式会社 锂二次电池用正极活性物质、锂二次电池用正极以及锂二次电池
JP2018174106A (ja) * 2017-03-31 2018-11-08 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
CN110462897B (zh) * 2017-03-31 2022-08-09 住友化学株式会社 锂二次电池用正极活性物质、锂二次电池用正极以及锂二次电池
WO2018181158A1 (ja) * 2017-03-31 2018-10-04 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Also Published As

Publication number Publication date
KR102323929B1 (ko) 2021-11-08
EP3021387A1 (en) 2016-05-18
JP5701343B2 (ja) 2015-04-15
CN105378987A (zh) 2016-03-02
CN105378987B (zh) 2018-06-12
EP3021387A4 (en) 2017-02-22
KR20210016076A (ko) 2021-02-10
US10297824B2 (en) 2019-05-21
EP3021387B1 (en) 2017-11-29
KR20160030090A (ko) 2016-03-16
JP2015018678A (ja) 2015-01-29
US20160372749A1 (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP5701343B2 (ja) リチウム二次電池用正極活物質、正極および二次電池
WO2016195036A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP5287520B2 (ja) 電極活物質、電極および非水電解質二次電池
JP5640311B2 (ja) リチウム複合金属酸化物および非水電解質二次電池
JP5644392B2 (ja) 遷移金属複合水酸化物およびリチウム複合金属酸化物
JP5842478B2 (ja) リチウム複合金属酸化物およびその製造方法
JP5504800B2 (ja) リチウム複合金属酸化物および正極活物質
JP2011070994A (ja) 正極合剤、正極および非水電解質二次電池
US20120258351A1 (en) Electrode active material, electrode, and non-aqueous electrolyte secondary battery
JP5487821B2 (ja) リチウム複合金属酸化物および正極活物質
WO2011158889A1 (ja) 遷移金属複合水酸化物およびリチウム複合金属酸化物
WO2014007360A1 (ja) リチウム複合金属酸化物、リチウム複合金属酸化物の製造方法、正極活物質、正極および非水電解質二次電池
JP6068530B2 (ja) リチウム二次電池用正極活物質、正極および二次電池
KR20120038983A (ko) 분말 재료 및 정극 합제
JP2011216472A (ja) 正極用粉末
WO2014007357A1 (ja) リチウム複合金属酸化物、正極活物質、正極および非水電解質二次電池
JP5742193B2 (ja) リチウム複合金属酸化物および非水電解質二次電池
JP2011153067A (ja) 複合金属水酸化物およびリチウム複合金属酸化物の製造方法ならびに非水電解質二次電池
JP5515435B2 (ja) リチウムニッケル複合金属酸化物用原料粉末
JP2010118161A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157034394

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14902041

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014823282

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014823282

Country of ref document: EP