JP5287520B2 - 電極活物質、電極および非水電解質二次電池 - Google Patents

電極活物質、電極および非水電解質二次電池 Download PDF

Info

Publication number
JP5287520B2
JP5287520B2 JP2009134834A JP2009134834A JP5287520B2 JP 5287520 B2 JP5287520 B2 JP 5287520B2 JP 2009134834 A JP2009134834 A JP 2009134834A JP 2009134834 A JP2009134834 A JP 2009134834A JP 5287520 B2 JP5287520 B2 JP 5287520B2
Authority
JP
Japan
Prior art keywords
range
metal oxide
secondary battery
composite metal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009134834A
Other languages
English (en)
Other versions
JP2010086940A (ja
Inventor
裕一郎 今成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2009134834A priority Critical patent/JP5287520B2/ja
Priority to US13/060,197 priority patent/US8354192B2/en
Priority to PCT/JP2009/065456 priority patent/WO2010027038A1/ja
Priority to EP09811563.7A priority patent/EP2328216A4/en
Priority to KR1020117007381A priority patent/KR101660997B1/ko
Priority to CN200980141715.6A priority patent/CN102187501B/zh
Publication of JP2010086940A publication Critical patent/JP2010086940A/ja
Application granted granted Critical
Publication of JP5287520B2 publication Critical patent/JP5287520B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、電極活物質、電極および非水電解質二次電池に関する。
電極活物質は、リチウム二次電池などの非水電解質二次電池における電極に用いられている。リチウム二次電池は、既に携帯電話やノートパソコン等の電源として実用化されており、更に自動車用途や電力貯蔵用途などの中・大型用途においても、適用が試みられている。
従来の電極活物質として、特許文献1には、比表面積が2.4m2/gの高安定性のリチウム複合金属酸化物と、比表面積が0.4m2/gの高伝導性のリチウム複合金属酸化物とが混合された電極活物質が記載され、いずれのリチウム複合金属酸化物についても、2.0m2/g以下とすることが好ましいことが記載されている。
特開2003−173776号公報(0083−0086)
しかしながら、上記のような電極活物質を用いた非水電解質二次電池は、高い電流レートにおける高出力を要求される用途、すなわち自動車用途や電動工具等のパワーツール用途において、未だ改良の余地がある。本発明の目的は、高い電流レートにおいて高出力を示すことのできる非水電解質二次電池を与える電極活物質を提供することにある。
本発明者らは、上記の課題を解決すべく鋭意研究を重ね、本発明に至った。すなわち、本発明は、下記の発明を提供するものである。
<1>BET比表面積が3m2/g以上30m2/g以下である粉末状の第1のリチウム複合金属酸化物と、BET比表面積が0.1m2/g以上2m2/g以下である粉末状の第2のリチウム複合金属酸化物とが、第2のリチウム複合金属酸化物100重量部あたり第1のリチウム複合金属酸化物10重量部以上900重量部以下の混合比で、混合されてなることを特徴とする電極活物質。
<2>第1のリチウム複合金属酸化物が、0.01μm以上0.5μm以下の範囲の直径の一次粒子と、前記範囲の直径の一次粒子が凝集されてなり、0.05μm以上2μm以下の範囲の平均直径の凝集粒子と、から構成される前記<1>記載の電極活物質。
<3>第1のリチウム複合金属酸化物が、少なくともFeを含有する前記<1>または<2>記載の電極活物質。
<4>第1のリチウム複合金属酸化物が、以下の式(1)で表される前記<3>記載の電極活物質。
Li(Ni1-x-yMnxFey)O2 (1)
(ここで、xは0を超え1未満の範囲の値であり、yは0を超え1未満の範囲の値であり、x+yは0を超え1未満の範囲の値である。)
<5>前記xが0.1以上0.7以下の範囲の値であり、前記yが0.01以上0.5以下の範囲の値であり、前記x+yが0.11以上1未満の範囲の値である前記<4>記載の電極活物質。
<6>第2のリチウム複合金属酸化物が、0.1μm以上1μm以下の範囲の直径の一次粒子と、前記範囲の直径の一次粒子が凝集されてなり、3μm以上20μm以下の範囲の平均直径の凝集粒子と、から構成される前記<1>〜<5>のいずれかに記載の電極活物質。
<7>第2のリチウム複合金属酸化物が、少なくともNiまたはCoを含有する前記<1>〜<6>のいずれかに記載の電極活物質。
<8>第2のリチウム複合金属酸化物が、以下の式(2)で表される前記<7>記載の電極活物質。
Li(Ni1-a-bCoab)O2 (2)
(ここで、MはTi、V、Mn、B、AlおよびGaからなる群より選ばれる1種以上を表し、aは0以上1以下の範囲の値であり、bは0以上0.5以下の範囲の値であり、a+bは0以上1未満の範囲の値である。)
<9>前記<1>〜<8>のいずれかに記載の電極活物質を含有する電極。
<10>前記<9>記載の電極を、正極として有する非水電解質二次電池。
<11>セパレータをさらに有する前記<10>記載の非水電解質二次電池。
<12>前記セパレータが、耐熱多孔層と多孔質フィルムとが積層されてなる積層フィルムを有するセパレータである前記<11>記載の非水電解質二次電池。
本発明によれば、高い電流レートにおいて高出力を示すことのできる非水電解質二次電池、換言すれば、すなわちレート特性に優れる非水電解質二次電池を与えることができ、また、二次電池の放電容量を大きくすることもでき、自動車用や電動工具等のパワーツール用の非水電解質二次電池に極めて有用となる。
本発明の電極活物質は、BET比表面積が3m2/g以上30m2/g以下である粉末状の第1のリチウム複合金属酸化物と、BET比表面積が0.1m2/g以上2m2/g以下である粉末状の第2のリチウム複合金属酸化物とが、第2のリチウム複合金属酸化物100重量部あたり第1のリチウム複合金属酸化物10重量部以上900重量部以下の混合比で、混合されてなることを特徴とする。ここで、第2のリチウム複合金属酸化物は、第1のリチウム複合金属酸化物であることはない。
レート特性がより向上する非水電解質二次電池を得る意味で、前記の混合比は、第2のリチウム複合金属酸化物100重量部あたり、第1のリチウム複合金属酸化物40重量部以上800重量部以下であることが好ましく、100重量部以上700重量部以下であることがより好ましく、200重量部以上600重量部以下であることがさらにより好ましい。
第1のリチウム複合金属酸化物と、第2のリチウム複合金属酸化物との混合は、乾式混合、湿式混合のいずれによってもよいが、簡便性の観点では、乾式混合が好ましい。混合装置としては、攪拌混合、V型混合機、W型混合機、リボン混合機、ドラムミキサー、ボールミル等を挙げることができる。
第1のリチウム複合金属酸化物のBET比表面積が3m2/gを下回る場合には、得られる非水電解質二次電池のレート特性は、意外にも十分ではない。また、30m2/gを超える場合には、電極に用いた場合の電極活物質の充填密度が低下するためか、得られる非水電解質二次電池のレート特性が十分ではなく、大きい放電容量も得難くなる。さらに、第2のリチウム複合金属酸化物のBET比表面積が0.1m2/gを下回るか、2m2/gを超える場合は、第1のリチウム複合金属酸化物との充填バランスが低下するためか、得られる非水電解質二次電池のレート特性が十分になり難く、放電容量も小さくなる傾向にあり、好ましくない。本発明において、レート特性がより向上する非水電解質二次電池を得る意味では、第1のリチウム複合金属酸化物のBET比表面積は、3m2/g以上15m2/g以下であることが好ましく、5m2/g以上10m2/g以下がより好ましい。また、第2のリチウム複合金属酸化物のBET比表面積は、0.2m2/g以上1.5m2/g以下であることが好ましく、0.3m2/g以上1m2/g以下がより好ましい。
また、本発明の電極活物質において、第1のリチウム複合金属酸化物は、0.01μm以上0.5μm以下の範囲の直径の一次粒子と、前記範囲の直径の一次粒子が凝集されてなり、0.05μm以上2μm以下の範囲の平均直径の凝集粒子とから構成されることが好ましく、より好ましくは、0.02μm以上0.4μm以下の範囲の直径の一次粒子と、前記範囲の直径の一次粒子が凝集されてなり、0.1μm以上1.5μm以下の範囲の平均直径の凝集粒子とから構成されることであり、さらにより好ましくは、0.05μm以上0.35μm以下の範囲の直径の一次粒子と、前記範囲の直径の一次粒子が凝集されてなり、0.2μm以上1μm以下の範囲の平均直径の凝集粒子とから構成されることであり、第1のリチウム複合金属酸化物をこのように設定することで、得られる非水電解質二次電池のレート特性をより向上させ、放電容量をより大きくすることができる。
ここで、一次粒子の直径ならびに凝集粒子の平均直径は、走査型電子顕微鏡写真(SEM写真)により、その値を得ることができる。特に、一次粒子が凝集されてなる凝集粒子の平均直径は、SEM写真に撮影されている凝集粒子から任意に50個抽出し、それぞれの粒径を測定し、その平均値を用いる。
本発明の電極活物質において、第1のリチウム複合金属酸化物は、少なくともFeを含有することが好ましい。また、第1のリチウム複合金属酸化物においては、正極活物質用金属元素として極めて一般的である高価なCo原料を用いることなしに、レート特性に優れた非水電解質二次電池を与えることもできる。
より具体的には、本発明における第1のリチウム複合金属酸化物は、以下の式(1)で表されることが好ましい。
Li(Ni1-x-yMnxFey)O2 (1)
(ここで、xは0を超え1未満の範囲の値であり、yは0を超え1未満の範囲の値であり、x+yは0を超え1未満の範囲の値である。)
得られる非水電解質二次電池の放電容量がより大きくなり、レート特性がより向上する傾向にあるため、前記式(1)において、xが0.1以上0.7以下の範囲の値であり、yが0.01以上0.5以下の範囲の値であり、x+yが0.11以上1未満の範囲の値であることが好ましい。より好ましいxの範囲は0.2以上0.5以下であり、さらにより好ましいxの範囲は0.3以上0.5以下である。また、より好ましいyの範囲は、0.05以上0.3以下であり、さらにより好ましいyの範囲は0.07以上0.2以下である。
本発明の電極活物質において、第2のリチウム複合金属酸化物は、0.1μm以上1μm以下の範囲の直径の一次粒子と、前記範囲の直径の一次粒子が凝集されてなり、3μm以上20μm以下の範囲の平均直径の凝集粒子とから構成されることが好ましく、より好ましくは、0.2μm以上0.8μm以下の範囲の直径の一次粒子と、前記範囲の直径の一次粒子が凝集されてなり、5μm以上15μm以下の範囲の平均直径の凝集粒子とから構成されることであり、さらにより好ましくは、0.3μm以上0.7μm以下の範囲の直径の一次粒子と、前記範囲の直径の一次粒子が凝集されてなり、7μm以上12μm以下の範囲の平均直径の凝集粒子とから構成されることであり、第2のリチウム複合金属酸化物をこのように設定することで、得られる非水電解質二次電池のレート特性をより向上させ、放電容量をより大きくすることができる。
ここで、一次粒子の直径ならびに凝集粒子の平均直径は、走査型電子顕微鏡写真(SEM写真)により、その値を得ることができる。特に、一次粒子が凝集されてなる凝集粒子の平均直径は、SEM写真に撮影されている凝集粒子から任意に50個抽出し、それぞれの粒径を測定し、その平均値を用いる。
本発明の電極活物質において、第2のリチウム複合金属酸化物は、少なくともNiまたはCoを含有することが好ましく、より高い放電容量を有する非水電解質二次電池を与えることができる。
より具体的には、本発明における第2のリチウム複合金属酸化物は、以下の式(2)で表されることが好ましい。
Li(Ni1-a-bCoab)O2 (2)
(ここで、MはTi、V、Mn、B、AlおよびGaからなる群より選ばれる1種以上を表し、aは0以上1以下の範囲の値であり、bは0以上0.5以下の範囲の値であり、a+bは0以上1未満の範囲の値である。)
得られる非水電解質二次電池の放電容量がより大きくなり、レート特性がより向上する傾向にあるため、前記式(2)において、好ましいaの範囲は、0.05以上0.3以下であり、より好ましいaの範囲は0.1以上0.2以下である。また、好ましいbの範囲は、0以上0.45以下であり、より好ましいbの範囲は0以上0.4以下である。また、前記式(2)において、好ましいMは、Mnおよび/またはAlであり、より好ましくは、Alである。
前記式(1)ならびに前記式(2)で表されるリチウム複合金属酸化物は、通常、六方晶型の結晶構造を有し、空間群はR−3mに分類される。これらの結晶構造は、CuKαを線源とする粉末X線回折測定により同定することができる。
また、本発明の効果を損なわない範囲で、式(1)で表される第1のリチウム複合金属酸化物および/または式(2)で表される第2のリチウム複合金属酸化物において、Liを除く金属元素の一部を、他元素で置換してもよい。ここで、他元素としては、B、Al、Ti、V、Ga、In、Si、Ge、Sn、Mg、Sc、Y、Zr、Hf、Nb、Ta、Cr、Mo、W、Tc、Ru、Rh、Ir、Pd、Cu、Ag、Zn等の元素を挙げることができる。好ましい他元素としては、式(1)で表される第1のリチウム複合金属酸化物の場合には、Ti、V、Mg、Sc、Y、Zr、Cr、Mo、W、Cu、Ag、Zn等の元素を、式(2)で表される第2のリチウム複合金属酸化物の場合には、In、Sn、Mg、Cr、Mo、W、Cu、Ag、Zn等を、それぞれ挙げることができる。
また、本発明の効果を損なわない範囲で、第1のリチウム複合金属酸化物および/または第2のリチウム複合金属酸化物を構成する粒子の表面に、第1のリチウム複合金属酸化物および第2のリチウム複合金属酸化物とは異なる化合物を付着させてもよい。該化合物としては、B、Al、Ga、In、Si、Ge、Sn、Mgおよび遷移金属元素から選ばれる1種以上の元素を含有する化合物、好ましくはB、Al、Mg、Ga、InおよびSnから選ばれる1種以上の元素を含有する化合物、より好ましくはAlの化合物を挙げることができ、化合物として具体的には、前記元素の酸化物、水酸化物、オキシ水酸化物、炭酸塩、硝酸塩、有機酸塩を挙げることができ、好ましくは、酸化物、水酸化物、オキシ水酸化物である。また、これらの化合物を混合して用いてもよい。これら化合物の中でも、特に好ましい化合物はアルミナである。また、付着後に加熱を行ってもよい。
次に本発明の電極活物質において、リチウム複合金属酸化物を製造する方法について、説明する。
リチウム複合金属酸化物は、構成する金属元素を所定比で含む原料を焼成することにより得ることができる。リチウム複合金属酸化物のBET比表面積は、構成する金属元素の種類にもよるが、焼成温度により制御することができる。該原料は、構成する各金属元素の化合物の混合物であってもよいし、化合物として、複数の金属元素を含む複合化合物を用いてもよい。金属元素の化合物としては、金属元素の酸化物を用いるか、または、水酸化物、オキシ水酸化物、炭酸塩、硝酸塩、酢酸塩、ハロゲン化物、シュウ酸塩、アルコキシドなど高温で分解および/または酸化して酸化物になり得るものを用いることができる。
本発明において、リチウム複合金属酸化物のBET比表面積、一次粒子の直径および凝集粒子の平均直径は、焼成前の前記原料に反応促進剤を含有させておくことによっても制御することができる。反応促進剤として、具体的には、NaCl、KCl、NH4Clなどの塩化物、LiF、NaF、KF、HN4Fなどのフッ化物、酸化ホウ素、ホウ酸などを挙げることができる。好ましくは前記塩化物を挙げることができ、より好ましくはKClである。通常、焼成温度が同じ場合には、原料における反応促進剤の含有量が多くなればなるほど、BET比表面積は小さくなる傾向にあり、また一次粒子の直径および凝集粒子の平均直径は大きくなる傾向にある。また、反応促進剤を2種以上併用することもできる。また、反応促進剤は、リチウム複合金属酸化物に残留していてもよいし、焼成後の洗浄、蒸発等により除去されていてもよい。
前記の焼成温度は、600℃以上1100℃以下の範囲の温度であることが好ましく、より好ましくは650℃以上900℃以下の範囲である。前記温度で保持する時間は、通常0.1〜20時間であり、好ましくは0.5〜8時間である。前記焼成温度までの昇温速度は、通常50℃〜400℃/時間であり、前記焼成温度から室温までの降温速度は、通常10℃〜400℃/時間である。また、焼成の雰囲気としては、大気、酸素、窒素、アルゴンまたはそれらの混合ガスを用いることができるが、大気雰囲気が好ましい。
また、焼成後に、リチウム複合金属酸化物を、ボールミルやジェットミルなどを用いて粉砕してもよい。粉砕によっても、リチウム複合金属酸化物のBET比表面積を制御することができる。また、粉砕と焼成を2回以上繰り返してもよく、必要に応じて洗浄あるいは分級することもできる。また、本発明の効果を損なわない範囲で、他のリチウム複合金属酸化物を1種以上混合してもよい。
例えば、第1のリチウム複合金属酸化物として好ましい前記式(1)で表されるリチウム複合金属酸化物を製造する場合には、リチウム化合物、ニッケル化合物、マンガン化合物および鉄化合物を、Li:Ni:Mn:Feのモル比で1:(1−x−y):x:yとなるように含む混合物を、焼成すればよい。リチウム化合物の例としては水酸化リチウム一水和物、ニッケル化合物の例としては水酸化ニッケル、マンガン化合物の例としては二酸化マンガン、鉄化合物の例としては三酸化二鉄、をそれぞれ挙げることができる。焼成温度としては、600℃〜1000℃を挙げることができる。
また、例えば、第2のリチウム複合金属酸化物として好ましい前記式(2)で表されるリチウム複合金属酸化物を製造する場合には、リチウム化合物、ニッケル化合物、コバルト化合物およびM化合物(もしくはM化合物混合物)を、Li:Ni:Co:Mのモル比で1:(1−a−b):a:bとなるように含む混合物を、焼成すればよい。リチウム化合物の例としては水酸化リチウム一水和物、ニッケル化合物の例としては水酸化ニッケル、コバルト化合物の例としては四三酸化コバルト、M化合物の例としては、MがAlの場合には酸化アルミニウム、MがMnの場合には二酸化マンガン、を挙げることができる。焼成温度としては、700℃〜1000℃を挙げることができる。
上記において混合は、乾式混合、湿式混合のいずれによってもよいが、簡便性の観点では、乾式混合が好ましい。混合装置としては、攪拌混合、V型混合機、W型混合機、リボン混合機、ドラムミキサー、ボールミル等を挙げることができる。
また、上記の複合化合物としては、例えば、下記のような共沈反応によって得られる共沈物を用いればよい。
(a)金属元素を複数含有する水溶液とアルカリとを接触させて共沈物スラリーを得る工程。
(b)該共沈物スラリーから、共沈物を得る工程。
工程(a)における金属元素を複数含有する水溶液は、具体的には、例えば、式(1)で表されるリチウム複合金属酸化物を得る場合には、Ni、MnおよびFeを所定モル比となるように含んでいればよく、これらの水溶性化合物を水に溶解させて製造すればよい。例えば、ニッケル化合物としては塩化ニッケル、マンガン化合物としては塩化マンガン、鉄化合物としては塩化鉄を用いるか、またはこれらの水和物を用いるなどして、これらを水に溶解させて製造すればよい。また、例えば、式(2)で表されるリチウム複合金属酸化物を得る場合には、Ni、CoおよびMを所定モル比となるように含んでいればよく、例えば、ニッケル化合物としては塩化ニッケル、コバルト化合物としては硝酸コバルト、M化合物としてはMがAlの場合には硫酸アルミニウム、MがMnの場合には塩化マンガン、を用いるか、またはこれらの水和物を用いるなどして、これらを水に溶解させて製造すればよい。また、水酸化物、酸水酸化物、酸化物などの水への溶解が困難な化合物を用いる場合には、これらを塩酸などの酸に溶解させて製造すればよい。また、水溶性化合物、水への溶解が困難な化合物、金属材料のうち2種以上を併用してもよい。
工程(a)におけるアルカリとしては、LiOH(水酸化リチウム)、NaOH(水酸化ナトリウム)、KOH(水酸化カリウム)、NH3(アンモニア)、Na2CO3(炭酸ナトリウム)、K2CO3(炭酸カリウム)および(NH42CO3(炭酸アンモニウム)からなる群より選ばれる1種以上の無水物および/または該1種以上の水和物を用いることができ、通常、これらを水に溶解させて、水溶液として用いる。該水溶液におけるアルカリの濃度は、通常0.1〜20M程度、好ましくは0.5〜10M程度である。また、電極活物質における不純物を減らす観点から、アルカリとして、LiOHの無水物および/または水和物を用いることが好ましい。また、製造コストの面からは、アルカリとしてKOHの無水物および/または水和物を用いることが好ましい。また、これらのアルカリを2つ以上併用してもよい。
工程(a)において、金属元素を複数含有する水溶液と、アルカリとを接触することにより、共沈物を生成させるときには、粒径が均一な共沈物を得るために、金属元素を複数含有する水溶液と、アルカリの水溶液とを混合させて生成した共沈物を含む混合液を攪拌することが好ましい。この際、共沈物を含む混合液のpHを計測しながら、遷移金属水溶液と、アルカリの水溶液の投入量を調節する。粒径が均一な共沈物を得る観点で、工程(a)では、計測pHが11以上13以下であるのが好ましい。
工程(b)において、上記共沈物スラリーから、共沈物を得る。共沈物を得ることができれば、工程(b)は如何なる方法によってもよいが、操作性の観点では、ろ過などの固液分離による方法が、好ましく用いられる。共沈物スラリーを用いて、噴霧乾燥などの加熱して液体を揮発させる方法によっても共沈物を得ることができる。
固液分離により共沈物を得る場合には、該共沈物スラリーを固液分離後、洗浄、乾燥することが好ましい。固液分離後に得られる共沈物にアルカリ、Cl等が過剰に存在する場合には、洗浄することにより、これを除去することができる。共沈物を効率よく洗浄する意味では、洗浄液として水を用いることが好ましい。なお、必要に応じてアルコール、アセトンなどの水溶性有機溶媒を洗浄液に加えても良い。また、洗浄は2回以上行ってもよく、例えば、水洗浄を行った後、前記のような水溶性有機溶媒で再度洗浄することもできる。
乾燥は、通常、熱処理によって行うが、送風乾燥、真空乾燥等によってもよい。熱処理によって行う場合には、通常50℃〜300℃で行い、好ましくは100℃〜200℃程度である。
上記のようにして得られる共沈物を複合化合物として用い、これとリチウム化合物とを混合して得られる混合物を、前記と同様にして焼成して、リチウム複合金属化合物を得る。本発明において、リチウム化合物としては、水酸化リチウム、塩化リチウム、硝酸リチウムおよび炭酸リチウムからなる群より選ばれる1種以上の無水物および/または該1種以上の水和物を挙げることができる。混合は、乾式混合、湿式混合のいずれによってもよいが、簡便性の観点では、乾式混合が好ましい。混合装置としては、攪拌混合、V型混合機、W型混合機、リボン混合機、ドラムミキサー、ボールミル等を挙げることができる。
本発明の電極は、本発明の電極活物質を含有してなる。本発明の電極は、非水電解質二次電池における電極として有用であり、特に、本発明の電極を非水電解質二次電池における正極として使用することが好ましい。
次に、本発明の電極を有する非水電解質二次電池について、該電極を正極として有する非水電解質二次電池の場合を中心に説明する。
本発明の電極は、本発明の電極活物質、バインダーおよび必要に応じて導電剤を含む電極合剤を、電極集電体に担持させて製造することができる。
前記導電剤としては炭素材料を用いることができ、炭素材料として黒鉛粉末、カーボンブラック、アセチレンブラック、繊維状炭素材料などを挙げることができる。カーボンブラックやアセチレンブラックは、微粒で表面積が大きいため、少量電極合剤中に添加することにより電極内部の導電性を高め、充放電効率及びレート特性を向上させることができるが、多く入れすぎるとバインダーによる電極合剤と電極集電体との結着性を低下させ、かえって内部抵抗を増加させる原因となる。通常、電極合剤中の導電剤の割合は、電極活物質100重量部に対して5重量部以上20重量部以下である。導電剤として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
前記バインダーとしては、熱可塑性樹脂を用いることができ、具体的には、ポリフッ化ビニリデン(以下、PVDFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂等が挙げられる。また、これらの二種以上を混合して用いてもよい。また、バインダーとしてフッ素樹脂およびポリオレフィン樹脂を用い、正極合剤に対する該フッ素樹脂の割合が1〜10重量%、該ポリオレフィン樹脂の割合が0.1〜2重量%となるように含有させることによって、電極集電体との結着性に優れた電極合剤を得ることができる。
本発明の電極を二次電池における正極として使用する場合には、電極集電体として、Al、Ni、ステンレスなどを用いることができ、薄膜に加工しやすく、安価であるという点でAlが好ましい。
電極集電体に電極合剤を担持させる方法としては、加圧成型する方法、または有機溶媒などを用いてペースト化し、電極集電体上に塗工し、乾燥後プレスするなどして固着する方法が挙げられる。ペースト化する場合、電極活物質、導電剤、バインダー、有機溶媒からなるスラリーを作製する。有機溶媒としては、N,N−ジメチルアミノプロピリアミン、ジエチルトリアミン等のアミン系;エチレンオキシド、テトラヒドロフラン等のエーテル系;メチルエチルケトン等のケトン系;酢酸メチル等のエステル系;ジメチルアセトアミド、N−メチル−2−ピロリドン等の非プロトン性極性溶媒等が挙げられる。電極合剤を電極集電体へ塗工する方法としては、例えばスリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法、静電スプレー法等が挙げられる。
本発明において、非水電解質二次電池は、本発明の電極を有する。該電極を正極として有する非水電解質二次電池は、正極、セパレータおよび負極集電体に負極合剤が担持されてなる負極、をこの順に積層および巻回することによって電極群を得、この電極群を電池缶などの容器内に収納し、電解質を含有する有機溶媒からなる電解液を電極群に含浸させて、製造することができる。
電極群の形状としては例えば、電極群を巻回の軸と垂直方向に切断したときの断面が、円、楕円、長方形、角がとれたような長方形等となるような形状を挙げることができる。また、電池の形状としては、例えば、ペーパー型、コイン型、円筒型、角型などの形状を挙げることができる。
本発明の電極を、正極として有する場合、負極は、正極よりも低い電位でリチウムイオンのドープ・脱ドープが可能であればよく、負極材料を含む負極合剤が負極集電体に担持されてなる電極、または負極材料単独からなる電極を挙げることができる。負極材料としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属または合金で、正極よりも低い電位でリチウムイオンのドープ・脱ドープが可能な材料が挙げられる。また、これらの負極材料を混合して用いてもよい。
前記の負極材料につき、以下に例示する。前記炭素材料として、具体的には、天然黒鉛、人造黒鉛等の黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体などを挙げることができる。前記酸化物として、具体的には、SiO2、SiOなど式SiOx(ここで、xは正の実数)で表されるケイ素の酸化物、TiO2、TiOなど式TiOx(ここで、xは正の実数)で表されるチタンの酸化物、V25、VO2など式VOx(ここで、xは正の実数)で表されるバナジウムの酸化物、Fe34、Fe23、FeOなど式FeOx(ここで、xは正の実数)で表される鉄の酸化物、SnO2、SnOなど式SnOx(ここで、xは正の実数)で表されるスズの酸化物、WO3、WO2など一般式WOx(ここで、xは正の実数)で表されるタングステンの酸化物、Li4Ti512、LiVO2(たとえばLi1.10.92)などのリチウムとチタンおよび/またはバナジウムとを含有する複合金属酸化物などを挙げることができる。前記硫化物として、具体的には、Ti23、TiS2、TiSなど式TiSx(ここで、xは正の実数)で表されるチタンの硫化物、V34、VS2、VSなど式VSx(ここで、xは正の実数)で表されるバナジウムの硫化物、Fe34、FeS2、FeSなど式FeSx(ここで、xは正の実数)で表される鉄の硫化物、Mo23、MoS2など式MoSx(ここで、xは正の実数)で表されるモリブデンの硫化物、SnS2、SnSなど式SnSx(ここで、xは正の実数)で表されるスズの硫化物、WS2など式WSx(ここで、xは正の実数)で表されるタングステンの硫化物、Sb23など式SbSx(ここで、xは正の実数)で表されるアンチモンの硫化物、Se53、SeS2、SeSなど式SeSx(ここで、xは正の実数)で表されるセレンの硫化物などを挙げることができる。前記窒化物として、具体的には、Li3N、Li3-xxN(ここで、AはNiおよび/またはCoであり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。これらの炭素材料、酸化物、硫化物、窒化物は、併用して用いてもよく、結晶質または非晶質のいずれでもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、主に、負極集電体に担持して、電極として用いられる。
また、前記金属として、具体的には、リチウム金属、シリコン金属、スズ金属が挙げられる。また、前記合金としては、Li−Al、Li−Ni、Li−Siなどのリチウム合金、Si−Znなどのシリコン合金、Sn−Mn、Sn−Co、Sn−Ni、Sn−Cu、Sn−Laなどのスズ合金のほか、Cu2Sb、La3Ni2Sn7などの合金を挙げることもできる。これらの金属、合金は、主に、単独で電極として用いられる(例えば箔状で用いられる)。
上記負極材料の中で、電位平坦性が高い、平均放電電位が低い、サイクル性が良いなどの観点からは、天然黒鉛、人造黒鉛等の黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、または微粉末の凝集体などのいずれでもよい。
前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVDF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレン、ポリプロピレンなどを挙げることができる。
前記の負極集電体としては、Cu、Ni、ステンレスなどを挙げることができ、リチウムと合金を作り難い点、薄膜に加工しやすいという点で、Cuを用いればよい。該負極集電体に負極合剤を担持させる方法としては、上記と同様であり、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法等が挙げられる。
前記セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができ、また、前記の材質を2種以上用いてセパレータとしてもよいし、前記の材料が積層されていてもよい。セパレータとしては、例えば特開2000−30686号公報、特開平10−324758号公報等に記載のセパレータを挙げることができる。セパレータの厚みは電池の体積エネルギー密度が上がり、内部抵抗が小さくなるという点で、機械的強度が保たれる限り薄くした方がよく、通常5〜200μm程度、好ましくは5〜40μm程度である。セパレータは、イオン透過性との観点から、ガーレー法による透気度において、透気度が50〜300秒/100ccであることが好ましく、50〜200秒/100ccであることがさらに好ましい。また、セパレータの空孔率は、通常30〜80体積%、好ましくは40〜70体積%である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。
セパレータは、好ましくは、熱可塑性樹脂を含有する多孔質フィルムを有する。非水電解質二次電池においては、通常、正極−負極間の短絡等が原因で電池内に異常電流が流れた際に、電流を遮断して、過大電流が流れることを阻止(シャットダウン)する機能を有することが好ましい。ここで、シャットダウンは、通常の使用温度を越えた場合に、セパレータの微細孔を閉塞することによりなされる。セパレータの微細孔が閉塞した後、ある程度の高温まで電池内の温度が上昇しても、その温度によりセパレータが破膜することなく、セパレータの微細孔を閉塞した状態を維持することが好ましい。かかるセパレータとしては、例えば、耐熱多孔層と多孔質フィルムとが積層されてなる積層フィルムが挙げられ、該フィルムをセパレータとして用いることにより、本発明の二次電池の耐熱性をより高めることが可能となる。ここで、耐熱多孔層は、多孔質フィルムの両面に積層されていてもよい。
次に、前記の耐熱多孔層と多孔質フィルムとが積層されてなる積層フィルムについて、より具体的に説明する。
前記積層フィルムにおいて、耐熱多孔層は、多孔質フィルムよりも耐熱性の高い層であり、該耐熱多孔層は、無機粉末から形成されていてもよいし、耐熱樹脂を含有していてもよい。耐熱多孔層が、耐熱樹脂を含有することにより、塗工などの容易な手法で、耐熱多孔層を形成することができる。耐熱樹脂としては、ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリアセタール、ポリサルホン、ポリフェニレンサルファイド、ポリエーテルケトン、芳香族ポリエステル、ポリエーテルサルホン、ポリエーテルイミドを挙げることができ、好ましい耐熱樹脂は、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルホン、ポリエーテルイミドであり、より好ましい耐熱樹脂は、ポリアミド、ポリイミド、ポリアミドイミドである。さらにより好ましい耐熱樹脂は、芳香族ポリアミド(パラ配向芳香族ポリアミド、メタ配向芳香族ポリアミド)、芳香族ポリイミド、芳香族ポリアミドイミド等の含窒素芳香族重合体であり、とりわけ好ましい耐熱樹脂は芳香族ポリアミドであり、容易に使用できる観点で、特に好ましい耐熱樹脂は、パラ配向芳香族ポリアミド(以下、「パラアラミド」ということがある。)である。また、耐熱樹脂として、ポリ−4−メチルペンテン−1、環状オレフィン系重合体を挙げることもできる。これらの耐熱樹脂を用いることにより、積層フィルムの耐熱性、すなわち、積層フィルムの熱破膜温度、がより高まる。これらの耐熱樹脂のうち、含窒素芳香族重合体を用いる場合には、その分子内の極性によるためか、電解液との相性、すなわち、耐熱多孔層における保液性も向上する場合があり、非水電解質二次電池製造時における電解液の含浸の速度も高く、非水電解質二次電池の充放電容量もより高まる。
かかる積層フィルムの熱破膜温度は、耐熱樹脂の種類に依存し、使用場面、使用目的に応じ、選択使用される。より具体的には、耐熱樹脂として、上記含窒素芳香族重合体を用いる場合は400℃程度に、また、ポリ−4−メチルペンテン−1を用いる場合は250℃程度に、環状オレフィン系重合体を用いる場合には300℃程度に、夫々、熱破膜温度をコントロールすることができる。また、耐熱多孔層が、無機粉末からなる場合には、熱破膜温度を、例えば、500℃以上にコントロールすることも可能である。
上記パラアラミドは、パラ配向芳香族ジアミンとパラ配向芳香族ジカルボン酸ハライドの縮合重合により得られるものであり、アミド結合が芳香族環のパラ位またはそれに準じた配向位(例えば、4,4’−ビフェニレン、1,5−ナフタレン、2,6−ナフタレン等のような反対方向に同軸または平行に延びる配向位)で結合される繰り返し単位から実質的になるものである。具体的には、ポリ(パラフェニレンテレフタルアミド)、ポリ(パラベンズアミド)、ポリ(4,4’−ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン−4,4’−ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン−2,6−ナフタレンジカルボン酸アミド)、ポリ(2−クロロ−パラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6−ジクロロパラフェニレンテレフタルアミド共重合体等のパラ配向型またはパラ配向型に準じた構造を有するパラアラミドが例示される。
前記の芳香族ポリイミドとしては、芳香族の二酸無水物とジアミンの縮重合で製造される全芳香族ポリイミドが好ましい。該二酸無水物の具体例としては、ピロメリット酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’−ビス(3,4―ジカルボキシフェニル)ヘキサフルオロプロパン、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物などがあげられる。該ジアミンの具体例としては、オキシジアニリン、パラフェニレンジアミン、ベンゾフェノンジアミン、3,3’−メチレンヂアニリン、3,3’−ジアミノベンソフェノン、3,3’−ジアミノジフェニルスルフォン、1,5’−ナフタレンジアミンなどがあげられる。また、溶媒に可溶なポリイミドが好適に使用できる。このようなポリイミドとしては、例えば、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物と、芳香族ジアミンとの重縮合物のポリイミドが挙げられる。
前記の芳香族ポリアミドイミドとしては、芳香族ジカルボン酸および芳香族ジイソシアネートを用いてこれらの縮合重合から得られるもの、芳香族二酸無水物および芳香族ジイソシアネートを用いてこれらの縮合重合から得られるものが挙げられる。芳香族ジカルボン酸の具体例としてはイソフタル酸、テレフタル酸などが挙げられる。また芳香族二酸無水物の具体例としては無水トリメリット酸などが挙げられる。芳香族ジイソシアネートの具体例としては、4,4’−ジフェニルメタンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、オルソトリランジイソシアネート、m−キシレンジイソシアネートなどが挙げられる。
また、イオン透過性をより高める意味で、耐熱多孔層の厚みは、1μm以上10μm以下、さらには1μm以上5μm以下、特に1μm以上4μm以下という薄い耐熱多孔層であることが好ましい。また、耐熱多孔層は微細孔を有し、その孔のサイズ(直径)は通常3μm以下、好ましくは1μm以下である。
また、耐熱多孔層が、耐熱樹脂を含有する場合には、フィラーをさらに含有することもできる。フィラーは、その材質として、有機粉末、無機粉末またはこれらの混合物のいずれから選ばれるものであってもよい。フィラーを構成する粒子は、その平均粒子径が、0.01μm以上1μm以下であることが好ましい。
前記有機粉末としては、例えば、スチレン、ビニルケトン、アクリロニトリル、メタクリル酸メチル、メタクリル酸エチル、グリシジルメタクリレート、グリシジルアクリレート、アクリル酸メチル等の単独あるいは2種類以上の共重合体、ポリテトラフルオロエチレン、4フッ化エチレン−6フッ化プロピレン共重合体、4フッ化エチレン−エチレン共重合体、ポリビニリデンフルオライド等のフッ素系樹脂;メラミン樹脂;尿素樹脂;ポリオレフィン;ポリメタクリレート等の有機物からなる粉末が挙げられる。該有機粉末は、単独で用いてもよいし、2種以上を混合して用いることもできる。これらの有機粉末の中でも、化学的安定性の点で、ポリテトラフルオロエチレン粉末が好ましい。
前記無機粉末としては、例えば、金属酸化物、金属窒化物、金属炭化物、金属水酸化物、炭酸塩、硫酸塩等の無機物からなる粉末が挙げられ、これらの中でも、導電性の低い無機物からなる粉末が好ましく用いられる。具体的に例示すると、アルミナ、シリカ、二酸化チタン、または炭酸カルシウム等からなる粉末が挙げられる。該無機粉末は、単独で用いてもよいし、2種以上を混合して用いることもできる。これらの無機粉末の中でも、化学的安定性の点で、アルミナ粉末が好ましい。ここで、フィラーを構成する粒子のすべてがアルミナ粒子であることがより好ましく、さらにより好ましいのは、フィラーを構成する粒子のすべてがアルミナ粒子であり、その一部または全部が略球状のアルミナ粒子である実施形態である。因みに、耐熱多孔層が、無機粉末から形成される場合には、上記例示の無機粉末を用いればよく、必要に応じてバインダーと混ぜて用いればよい。
耐熱多孔層が、耐熱樹脂を含有する場合のフィラーの含有量としては、フィラーの材質の比重にもよるが、例えば、耐熱多孔層の総重量を100としたとき、フィラーの重量は、通常5以上95以下であり、20以上95以下であることが好ましく、より好ましくは30以上90以下である。これらの範囲は、フィラーを構成する粒子のすべてがアルミナ粒子である場合に、特に好適である。
フィラーの形状については、略球状、板状、柱状、針状、ウィスカー状、繊維状等が挙げられ、いずれの粒子も用いることができるが、均一な孔を形成しやすいことから、略球状粒子であることが好ましい。略球状粒子としては、粒子のアスペクト比(粒子の長径/粒子の短径)が1以上1.5以下の範囲の値である粒子が挙げられる。粒子のアスペクト比は、電子顕微鏡写真により測定することができる。
積層フィルムにおいて、多孔質フィルムは、微細孔を有し、通常、シャットダウン機能を有する。多孔質フィルムにおける微細孔のサイズ(直径)は通常3μm以下、好ましくは1μm以下である。多孔質フィルムの空孔率は、通常30〜80体積%、好ましくは40〜70体積%である。非水電解質二次電池において、通常の使用温度を越えた場合には、シャットダウン機能により、多孔質フィルムの変形、軟化により、微細孔を閉塞することができる。
積層フィルムにおいて、多孔質フィルムを構成する樹脂は、非水電解質二次電池において、電解液に溶解しないものを選択すればよい。具体的には、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、熱可塑性ポリウレタン樹脂を挙げることができ、これらの2種以上の混合物を用いてもよい。より低温で軟化してシャットダウンさせる意味で、多孔質フィルムは、ポリオレフィン樹脂を含有することが好ましく、より好ましくは、ポリエチレンを含有することである。ポリエチレンとして、具体的には、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン等のポリエチレンを挙げることができ、超高分子量ポリエチレンを挙げることもできる。多孔質フィルムの突刺し強度をより高める意味では、それを構成する樹脂は、少なくとも超高分子量ポリエチレンを含有することが好ましい。また、多孔質フィルムの製造面において、低分子量(重量平均分子量1万以下)のポリオレフィンからなるワックスを含有することが好ましい場合もある。
また、積層フィルムにおける多孔質フィルムの厚みは、通常、3〜30μmであり、好ましくは3〜25μmである。また、積層フィルムの厚みとしては、通常40μm以下、好ましくは、20μm以下である。また、耐熱多孔層の厚みをA(μm)、多孔質フィルムの厚みをB(μm)としたときには、A/Bの値が、0.1以上1以下であることが好ましい。
次に、積層フィルムの製造の一例について説明する。
まず、多孔質フィルムの製造方法について説明する。多孔質フィルムの製造は特に限定されるものではなく、例えば特開平7−29563号公報に記載されたように、熱可塑性樹脂に可塑剤を加えてフィルム成形した後、該可塑剤を適当な溶媒で除去する方法や、特開平7−304110号公報に記載されたように、公知の方法により製造した熱可塑性樹脂からなるフィルムを用い、該フィルムの構造的に弱い非晶部分を選択的に延伸して微細孔を形成する方法が挙げられる。例えば、多孔質フィルムが、超高分子量ポリエチレンおよび重量平均分子量1万以下の低分子量ポリオレフィンを含むポリオレフィン樹脂から形成されてなる場合には、製造コストの観点から、以下に示すような方法により製造することが好ましい。すなわち、
(1)超高分子量ポリエチレン100重量部と、重量平均分子量1万以下の低分子量ポリオレフィン5〜200重量部と、無機充填剤100〜400重量部とを混練してポリオレフィン樹脂組成物を得る工程
(2)前記ポリオレフィン樹脂組成物を用いてシートを成形する工程
(3)工程(2)で得られたシート中から無機充填剤を除去する工程
(4)工程(3)で得られたシートを延伸して多孔質フィルムを得る工程
を含む方法、または
(1)超高分子量ポリエチレン100重量部と、重量平均分子量1万以下の低分子量ポリオレフィン5〜200重量部と、無機充填剤100〜400重量部とを混練してポリオレフィン樹脂組成物を得る工程
(2)前記ポリオレフィン樹脂組成物を用いてシートを成形する工程
(3)工程(2)で得られたシートを延伸する工程
(4)工程(3)で得られた延伸シート中から、無機充填剤を除去して多孔質フィルムを得る工程
を含む方法である。
多孔質フィルムの強度およびイオン透過性の観点から、用いる無機充填剤は、平均粒子径(直径)が0.5μm以下であることが好ましく、0.2μm以下であることがさらに好ましい。ここで、平均粒子径は、電子顕微鏡写真から測定される値を用いる。具体的には、該写真に撮影されている無機充填剤粒子から任意に50個抽出し、それぞれの粒子径を測定して、その平均値を用いる。
無機充填剤としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、酸化亜鉛、酸化カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、硫酸カルシウム、珪酸、酸化亜鉛、塩化カルシウム、塩化ナトリウム、硫酸マグネシウムなどが挙げられる。これらの無機充填剤は酸、あるいはアルカリ溶液によりシートまたはフィルム中から除去することができる。粒子径の制御性、酸への選択的溶解性の観点から炭酸カルシウムを用いることが好ましい。
上記ポリオレフィン樹脂組成物の製造方法は特に限定されないが、ポリオレフィン樹脂や無機充填剤等のポリオレフィン樹脂組成物を構成する材料を混合装置、例えばロール、バンバリーミキサー、一軸押出機、二軸押出機などを用いて混合し、ポリオレフィン樹脂組成物を得る。材料を混合する際に、必要に応じて脂肪酸エステルや安定化剤、酸化防止剤、紫外線吸収剤、難燃剤等の添加剤を添加してもよい。
上記ポリオレフィン樹脂組成物からなるシートの製造方法は特に限定されるものではなく、インフレーション加工、カレンダー加工、Tダイ押出加工、スカイフ法等のシート成形方法により製造することができる。より膜厚精度の高いシートが得られることから、下記の方法により製造することが好ましい。
ポリオレフィン樹脂組成物からなるシートの好ましい製造方法とは、ポリオレフィン樹脂組成物に含有されるポリオレフィン樹脂の融点より高い表面温度に調整された一対の回転成形工具を用いて、ポリオレフィン樹脂組成物を圧延成形する方法である。回転成形工具の表面温度は、(融点+5)℃以上であることが好ましい。また表面温度の上限は、(融点+30)℃以下であることが好ましく、(融点+20)℃以下であることがさらに好ましい。一対の回転成形工具としては、ロールやベルトが挙げられる。両回転成形工具の周速度は必ずしも厳密に同一周速度である必要はなく、それらの差異が±5%以内程度であればよい。このような方法により得られるシートを用いて多孔質フィルムを製造することにより、強度やイオン透過、透気性などに優れる多孔質フィルムを得ることができる。また、前記したような方法により得られる単層のシート同士を積層したものを、多孔質フィルムの製造に使用してもよい。
ポリオレフィン樹脂組成物を一対の回転成形工具により圧延成形する際には、押出機よりストランド状に吐出したポリオレフィン樹脂組成物を直接一対の回転成形工具間に導入してもよく、一旦ペレット化したポリオレフィン樹脂組成物を用いてもよい。
ポリオレフィン樹脂組成物からなるシートまたは該シートから無機充填剤を除去したシートを延伸する際には、テンター、ロールあるいはオートグラフ等を用いることができる。透気性の面から延伸倍率は2〜12倍が好ましく、より好ましくは4〜10倍である。延伸温度は通常、ポリオレフィン樹脂の軟化点以上融点以下の温度で行われ、80〜115℃で行うことが好ましい。延伸温度が低すぎると延伸時に破膜しやすくなり、高すぎると得られる多孔質フィルムの透気性やイオン透過性が低くなることがある。また延伸後はヒートセットを行うことが好ましい。ヒートセット温度はポリオレフィン樹脂の融点未満の温度であることが好ましい。
本発明においては、前記したような方法で得られる熱可塑性樹脂を含有する多孔質フィルムと、耐熱多孔層とを積層して、積層フィルムを得る。耐熱多孔層は多孔質フィルムの片面に設けられていてもよく、両面に設けられていてもよい。
多孔質フィルムと耐熱多孔層とを積層する方法としては、耐熱多孔層と多孔質フィルムとを別々に製造してそれぞれを積層する方法、多孔質フィルムの少なくとも片面に、耐熱樹脂とフィラーとを含有する塗工液を塗工して耐熱多孔層を形成する方法等が挙げられるが、本発明において、耐熱多孔層は比較的薄い場合には、その生産性の面から後者の手法が好ましい。多孔質フィルムの少なくとも片面に、耐熱樹脂とフィラーとを含有する塗工液を塗布して耐熱樹脂層を形成する方法としては、具体的に以下のような工程を含む方法が挙げられる。
(a)耐熱樹脂100重量部を含む極性有機溶媒溶液に、該耐熱樹脂100重量部に対しフィラーを1〜1500重量部分散したスラリー状塗工液を調製する。
(b)該塗工液を多孔質フィルムの少なくとも片面に塗工し、塗工膜を形成する。
(c)加湿、溶媒除去あるいは耐熱樹脂を溶解しない溶媒への浸漬等の手段で、前記塗工膜から耐熱樹脂を析出させた後、必要に応じて乾燥する。
塗工液は、特開2001−316006号公報に記載の塗工装置および特開2001−23602号公報に記載の方法により連続的に塗工することが好ましい。
また、前記の極性有機溶媒溶液において、耐熱樹脂がパラアラミドである場合には、極性有機溶媒としては、極性アミド系溶媒または極性尿素系溶媒を用いることができ、具体的には、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン(NMP)、テトラメチルウレア等があげられるが、これらに限定されるものではない。
耐熱樹脂としてパラアラミドを用いる場合、パラアラミドの溶媒への溶解性を改善する目的で、パラアラミド重合時にアルカリ金属またはアルカリ土類金属の塩化物を添加することが好ましい。具体例としては、塩化リチウムまたは塩化カルシウムがあげられるが、これらに限定されるものではない。上記塩化物の重合系への添加量は、縮合重合で生成するアミド基1.0モル当たり0.5〜6.0モルの範囲が好ましく、1.0〜4.0モルの範囲がさらに好ましい。塩化物が0.5モル未満では、生成するパラアラミドの溶解性が不十分となる場合があり、6.0モルを越えると実質的に塩化物の溶媒への溶解度を越えるので好ましくない場合がある。一般には、アルカリ金属またはアルカリ土類金属の塩化物が2重量%未満では、パラアラミドの溶解性が不十分となる場合があり、10重量%を越えてはアルカリ金属またはアルカリ土類金属の塩化物が極性アミド系溶媒または極性尿素系溶媒等の極性有機溶媒に溶解しない場合がある。
また、耐熱樹脂が芳香族ポリイミドである場合には、芳香族ポリイミドを溶解させる極性有機溶媒としては、アラミドを溶解させる溶媒として例示したもののほか、ジメチルスルホキサイド、クレゾール、およびo−クロロフェノール等が好適に使用できる。
フィラーを分散させてスラリー状塗工液を得る方法としては、その装置として、圧力式分散機(ゴーリンホモジナイザー、ナノマイザー)等を用いればよい。
スラリー状塗工液を塗工する方法としては、例えばナイフ、ブレード、バー、グラビア、ダイ等の塗工方法があげられ、バー、ナイフ等の塗工が簡便であるが、工業的には、溶液が外気と接触しない構造のダイ塗工が好ましい。また、塗工は2回以上行う場合もある。この場合、上記工程(c)において耐熱樹脂を析出させた後に行うのが通常である。
また、前記の耐熱多孔層と多孔質フィルムとを別々に製造してそれぞれを積層する場合においては、接着剤による方法、熱融着による方法等により、固定化しておくのがよい。
二次電池において、電解液は、通常、電解質を含有する有機溶媒からなる。電解質としては、LiClO4、LiPF6、LiAsF6、LiSbF6、LIBF4、LiCF3SO3、LiN(SO2CF32、LiC(SO2CF33、Li210Cl10、低級脂肪族カルボン酸リチウム塩、LiAlCl4などのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。リチウム塩として、通常、これらの中でもフッ素を含むLiPF6、LiAsF6、LiSbF6、LiBF4、LiCF3SO3、LiN(SO2CF32およびLiC(SO2CF33からなる群から選ばれた少なくとも1種を含むものを用いる。
また、電解液における有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトンなどの含硫黄化合物、または上記の有機溶媒にさらにフッ素置換基を導入したものを用いることができるが、通常はこれらのうちの二種以上を混合して用いる。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネート、または環状カーボネートとエーテル類の混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートの混合溶媒としては、動作温度範囲が広く、負荷特性に優れ、かつ負極の活物質として天然黒鉛、人造黒鉛等の黒鉛材料を用いた場合でも難分解性であるという点で、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒が好ましい。また、特に優れた安全性向上効果が得られる点で、LiPF6等のフッ素を含むリチウム塩およびフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル等のフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、大電流放電特性にも優れており、さらに好ましい。
また、電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖もしくはポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解質溶液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLi2S−SiS2、Li2S−GeS2、Li2S−P25、Li2S−B23、Li2S−SiS2−Li3PO4、Li2S−SiS2−Li2SO4などの硫化物を含む無機系固体電解質を用いてもよい。これら固体電解質を用いて、安全性をより高めることができることがある。また、非水電解質二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。
次に、本発明を実施例によりさらに詳細に説明する。なお、特に断らない限り、リチウム複合金属酸化物の評価方法、ならびに、電極および非水電解質二次電池の作製、評価方法は、以下の方法によった。
(1)電極の作製
電極活物質(リチウム複合金属酸化物)と、導電剤(アセチレンブラックと黒鉛を9:1で混合したもの)との混合物に、バインダーとしてのPVDF(株式会社クレハ製、PolyVinylideneDiFluoridePolyflon)のN−メチル−2−ピロリドン(NMP:東京化成工業株式会社製)溶液を、活物質:導電剤:バインダー=87:10:3(重量比)の組成となるように加えて混練することによりペーストを得て、集電体である厚さ40μmのAl箔に該ペーストを塗布し、60℃で2時間乾燥させて電極シートを得た。次いで、ロールプレスを用いて、該電極シートを0.5MPaの圧力で圧延して、これを打ち抜き機で14.5mmφの大きさに打ち抜いて、150℃で8時間真空乾燥を行い、電極を得た。
(2)非水電解質二次電池の作製
(1)により得られる電極を正極として用いた。コインセル(宝泉株式会社製)の下側パーツの窪みに、アルミ箔を下に向けて正極を置き、その上にセパレータ(ポリプロピレン多孔質フィルム(厚み20μm))を置き、電解液(エチレンカーボネート(以下、ECということがある。)とジメチルカーボネート(以下、DMCということがある。)とエチルメチルカーボネート(以下、EMCということがある。)の30:35:35(体積比)混合液にLiPF6を1モル/リットルとなるように溶解したもの(以下、LiPF6/EC+DMC+EMCと表すことがある。))を注入して、負極(金属リチウム)を用いて、金属リチウムと中蓋とを組み合わせて、これらをセパレータの上側に、金属リチウムが下側を向くように置き、ガスケットを介して上側パーツで蓋をし、かしめ機でかしめて非水電解質二次電池(コイン型電池R2032)を作製した。なお、電池の組み立てはアルゴン雰囲気のグローブボックス内で行った。
(3)非水電解質二次電池の評価
(2)により得られる非水電解質二次電池を用いて、25℃保持下、以下に示す放電レート試験により評価した。放電レート試験は、放電時の放電電流を変えて放電容量を測定し、放電容量維持率を算出した。
<放電レート試験>
充電最大電圧4.3V、充電時間8時間、充電電流0.2mA/cm2
放電時は放電最小電圧を3.0Vで一定とし、各サイクルにおける放電電流を下記のように変えて放電を行った。10Cにおける放電(高い電流レート)による放電容量が高ければ高いほど、高出力を示すことを意味する。
1、2サイクル目の放電(0.2C):放電電流0.2mA/cm2
3サイクル目の放電(1C):放電電流1.0mA/cm2
4サイクル目の放電(5C):放電電流5.0mA/cm2
5サイクル目の放電(10C):放電電流10mA/cm2
<放電容量維持率>
放電容量維持率(%)=(各サイクル(各レート)における放電容量)/(初回放電容量(1サイクル目の放電容量))×100
(4)リチウム複合金属酸化物の評価
1.BET比表面積測定
粉末1gを窒素雰囲気中150℃、15分間乾燥した後、マイクロメトリックス製フローソーブII2300を用いて測定した。
2.SEM観察
粉末を構成する粒子をサンプルステージ上に貼った導電性シート上に載せ、日本電子株式会社製JSM−5510を用いて、加速電圧が20kVの電子線を照射してSEM観察を行い、一次粒子の直径、凝集粒子の平均直径を求めた。
3.組成分析
粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析法(SPS3000、以下ICP−AESと呼ぶことがある)を用いて、組成を求めた。
4.粉末X線回折測定
リチウム複合金属酸化物の粉末X線回折測定は株式会社リガク製RINT2500TTR型を用いて行った。測定は、リチウム複合金属酸化物を専用の基板に充填し、CuKα線源を用いて、回折角2θ=10°〜90°の範囲にて行い、粉末X線回折図形を得た。
製造例1
1.第1のリチウム複合金属酸化物の製造
ポリプロピレン製ビーカー内で、蒸留水200mlに、水酸化カリウム83.88gを添加、攪拌により溶解し、水酸化カリウムを完全に溶解させ、水酸化カリウム水溶液(アルカリ水溶液)を調製した。また、ガラス製ビーカー内で、蒸留水200mlに、塩化ニッケル(II)六水和物を16.04g、塩化マンガン(II)四水和物を13.36g、塩化鉄(II)四水和物を2.982g添加し、攪拌により溶解し、ニッケル−マンガン−鉄混合水溶液を得た。前記水酸化カリウム水溶液を攪拌しながら、これに前記ニッケル−マンガン−鉄混合水溶液を滴下することにより、共沈物が生成し、共沈物スラリーを得た。
次いで、共沈物スラリーについて、ろ過・蒸留水洗浄を行い、100℃で乾燥させて共沈物を得た。前記共沈物2.0gと水酸化リチウム一水和物1.16gとKCl1.16gとをメノウ乳鉢を用いて乾式混合して混合物を得た。次いで、該混合物をアルミナ製焼成容器に入れ、電気炉を用いて大気雰囲気中800℃で6時間保持して焼成を行い、室温まで冷却し、焼成品を得て、これを粉砕し、蒸留水でデカンテーションによる洗浄を行い、ろ過し、100℃で8時間乾燥して、粉末状のリチウム複合金属酸化物R1を得た。
前記R1のBET比表面積は7.8m2/gであり、SEM観察における一次粒子の直径は0.2μmであり、一次粒子が凝集した凝集粒子の平均直径は0.5μmであった。また、組成分析の結果、Li:Ni:Mn:Feのモル比は、1.10:0.45:0.45:0.10であり、粉末X線回折測定の結果、空間群R−3mに分類されることがわかった。
比較例1
1.第2のリチウム複合金属酸化物の製造
水酸化リチウム一水和物を6.16kg、ニッケルコバルト複合水酸化物(Ni0.85Co0.15(OH)2を13.8kgそれぞれ秤量し、レーディゲミキサー(株式会社マツボー製、FM−130D型)を用いて混合して、混合物を得た。次いで、該混合物をアルミナさやに充填し、酸素気流中、750℃で10時間焼成することで粉末状のリチウム複合金属酸化物(コア材C1)を得た。得られたコア材C110kgと、酸化アルミニウム0.31kg(コア材C1におけるNiおよびCoの含有量を1モルとすると、Alは0.06molである。)をレーディゲミキサー(株式会社マツボー製、FM−130D型)にて混合して得られた粉末を、酸素気流中750℃で1.2時間熱処理して、コア材C1の粒子表面にアルミニウム化合物を被覆させた粉末状のリチウム複合金属酸化物R2を得た。
前記R2のBET比表面積は0.3m2/gであり、SEM観察における一次粒子の直径は0.5μmであり、一次粒子が凝集した凝集粒子の平均直径は10μmであった。また、バルク組成の分析の結果、Li:Ni:Co:Alのモル比は1.03:0.85:0.15:0.06であり、粉末X線回折測定の結果、空間群R−3mに分類されることがわかった。
2.非水電解質二次電池の放電レート試験
2を用いて非水電解質二次電池を作製し、放電レート試験を行ったところ、0.2C、1C、5C、10Cにおける放電容量(mAh/g)は、それぞれ、186、175、159、107であり、放電容量維持率(%)は、それぞれ100、94、85、58であった。10C放電容量/0.2C初回放電容量の放電容量維持率の結果を表1に示す。
実施例1
1.電極活物質の調整
1を1.2g、R2を2.8gそれぞれ秤量し(R2100重量部に対してR1が43重量部)、メノウ乳鉢で十分に混合して電極活物質A1を得た。
2.非水電解質二次電池の放電レート試験
1を用いて非水電解質二次電池を作製し、放電レート試験を行ったところ、0.2C、1C、5C、10Cにおける放電容量(mAh/g)は、それぞれ、165、154、142、135であり、放電容量維持率(%)は、それぞれ100、93、86、82であり、10Cにおける放電容量および放電容量維持率は非常に高かった。10C放電容量/0.2C初回放電容量の放電容量維持率の結果を表1に示す。
実施例2
1.電極活物質の調整
1を2.0g、R2を2.0gそれぞれ秤量し(R2100重量部に対してR1が100重量部)、メノウ乳鉢で十分に混合して電極活物質A2を得た。
2.非水電解質二次電池の放電レート試験
2を用いて非水電解質二次電池を作製し、放電レート試験を行ったところ、0.2C、1C、5C、10Cにおける放電容量(mAh/g)は、それぞれ、151、141、127、119であり、容量維持率(%)は、それぞれ100、93、84、79であり、10Cにおける放電容量および放電容量維持率は非常に高かった。10C放電容量/0.2C初回放電容量の放電容量維持率の結果を表1に示す。
実施例3
1.電極活物質の調整
1を2.8g、R2を1.2gそれぞれ秤量し(R2100重量部に対してR1が233重量部)、メノウ乳鉢で十分に混合して電極活物質A3を得た。
2.非水電解質二次電池の放電レート試験
3を用いて非水電解質二次電池を作製し、放電レート試験を行ったところ、0.2C、1C、5C、10Cにおける放電容量(mAh/g)は、それぞれ、134、125、110、103であり、容量維持率(%)は、それぞれ100、93、82、77であり、10Cにおける放電容量および放電容量維持率は、非常に高かった。10C放電容量/0.2C初回放電容量の放電容量維持率の結果を表1に示す。
実施例4
1.電極活物質の調整
1を3.6g、R2を0.4gそれぞれ秤量し(R2100重量部に対してR1が900重量部)、メノウ乳鉢で十分に混合して電極活物質A4を得た。
2.非水電解質二次電池の放電レート試験
3を用いて非水電解質二次電池を作製し、放電レート試験を行ったところ、0.2C、1C、5C、10Cにおける放電容量(mAh/g)は、それぞれ、124、115、101、93であり、放電容量維持率(%)は、それぞれ100、93、81、75であり、10Cにおける放電容量および放電容量維持率は、非常に高かった。10C放電容量/0.2C初回放電容量の放電容量維持率の結果を表1に示す。
実施例5
1.電極活物質の調整
1を0.4g、R2を3.6gそれぞれ秤量し(R2100重量部に対してR1が11重量部)、メノウ乳鉢で十分に混合して電極活物質A5を得た。
2.非水電解質二次電池の放電レート試験
5を用いて非水電解質二次電池を作製し、放電レート試験を行ったところ、0.2C、1C、5C、10Cにおける放電容量(mAh/g)は、それぞれ、174、163、151、130であり、放電容量維持率(%)は、それぞれ100、94、87、75であり、10Cにおける放電容量および放電容量維持率は、非常に高かった。10C放電容量/0.2C初回放電容量の放電容量維持率の結果を表1に示す。
実施例6
1.電極活物質の調整
1を0.8g、R2を3.2gそれぞれ秤量し(R2100重量部に対してR1が25重量部)、メノウ乳鉢で十分に混合して電極活物質A6を得た。
2.非水電解質二次電池の放電レート試験
6を用いて非水電解質二次電池を作製し、放電レート試験を行ったところ、0.2C、1C、5C、10Cにおける放電容量(mAh/g)は、それぞれ、162、152、139、128であり、放電容量維持率(%)は、それぞれ100、94、86、79であり、10Cにおける放電容量および放電容量維持率は、非常に高かった。10C放電容量/0.2C初回放電容量の放電容量維持率の結果を表1に示す。
比較例2
1.第1のリチウム複合金属酸化物の製造
製造例1で得られた共沈物2.0gと水酸化リチウム一水和物1.16gとKCl1.16gとをメノウ乳鉢を用いて乾式混合して混合物を得た。次いで、該混合物をアルミナ製焼成容器に入れ、電気炉を用いて大気雰囲気中1000℃で4時間保持して焼成を行い、室温まで冷却し、焼成品を得て、これを粉砕し、蒸留水でデカンテーションによる洗浄を行い、ろ過し、100℃で8時間乾燥して、粉末状のリチウム複合金属酸化物R3を得た。
前記R3のBET比表面積は2.3m2/gであり、SEM観察における一次粒子の直径は1.5μmであり、一次粒子が凝集した凝集粒子の平均直径は20μmであった。また、組成分析の結果、Li:Ni:Mn:Feのモル比は、1.08:0.45:0.45:0.10であり、粉末X線回折測定の結果、空間群R−3mに分類されることがわかった。
2.非水電解質二次電池の放電レート試験
3を用いて非水電解質二次電池を作製し、放電レート試験を行ったところ、0.2C、1C、5C、10Cにおける放電容量(mAh/g)は、それぞれ、118、100、76、51であり、放電容量維持率(%)は、それぞれ100、85、64、43であった。10C放電容量/0.2C初回放電容量の放電容量維持率の結果を表1に示す。
比較例3
1.電極活物質の調整
3を2.0g、R2を2.0gそれぞれ秤量し(R2100重量部に対してR3が100重量部)、メノウ乳鉢で十分に混合して電極活物質R4を得た。
2.非水電解質二次電池の放電レート試験
4を用いて非水電解質二次電池を作製し、放電レート試験を行ったところ、0.2C、1C、5C、10Cにおける放電容量(mAh/g)は、それぞれ、152、132、110、85であり、放電容量維持率(%)は、それぞれ100、87、72、56であった。10C放電容量/0.2C初回放電容量の放電容量維持率の結果を表1に示す。
Figure 0005287520
また、実施例および比較例で用いた各リチウム複合金属酸化物におけるBET比表面積の値を、表2にまとめた。
Figure 0005287520
積層フィルムの製造例
(1)塗工液の製造
NMP4200gに塩化カルシウム272.7gを溶解した後、パラフェニレンジアミン132.9gを添加して完全に溶解させた。得られた溶液に、テレフタル酸ジクロライド(以下、TPCと略す)243.3gを徐々に添加して重合し、パラアラミドを得て、さらにNMPで希釈して、濃度2.0重量%のパラアラミド溶液(A)を得た。得られたパラアラミド溶液100gに、アルミナ粉末(a)2g(日本アエロジル社製、アルミナC、平均粒子径0.02μm、粒子は略球状で、粒子のアスペクト比は1)とアルミナ粉末(b)2g(住友化学株式会社製スミコランダム、AA03、平均粒子径0.3μm、粒子は略球状で、粒子のアスペクト比は1)とをフィラーとして計4g添加して混合し、ナノマイザーで3回処理し、さらに1000メッシュの金網で濾過、減圧下で脱泡して、スラリー状塗工液(B)を製造した。パラアラミドおよびアルミナ粉末の合計重量に対するアルミナ粉末(フィラー)の重量は、67重量%となる。
(2)積層フィルムの製造
多孔質フィルムとしては、ポリエチレン製多孔質フィルム(膜厚12μm、透気度140秒/100cc、平均孔径0.1μm、空孔率50%)を用いた。厚み100μmのPETフィルムの上に上記ポリエチレン製多孔質フィルムを固定し、テスター産業株式会社製バーコーターにより、該多孔質フィルムの上にスラリー状塗工液(B)を塗工した。PETフィルム上の塗工された該多孔質フィルムを一体にしたまま、貧溶媒である水中に浸漬させ、パラアラミド多孔層(耐熱多孔層)を析出させた後、溶媒を乾燥させて、耐熱多孔層と多孔質フィルムとが積層された積層フィルム1を得た。積層フィルム1の厚みは16μmであり、パラアラミド多孔層(耐熱多孔層)の厚みは4μmであった。積層フィルム1の透気度は180秒/100cc、空孔率は50%であった。積層フィルム1における耐熱多孔層の断面を走査型電子顕微鏡(SEM)により観察をしたところ、0.03μm〜0.06μm程度の比較的小さな微細孔と0.1μm〜1μm程度の比較的大きな微細孔とを有することがわかった。また、上記のように、積層フィルム1の耐熱多孔層には含窒素芳香族重合体であるパラアラミドが用いられており、積層フィルム1の熱破膜温度は400℃程度である。尚、積層フィルムの評価は以下の方法で行った。
(3)積層フィルムの評価
(A)厚み測定
積層フィルムの厚み、多孔質フィルムの厚みは、JIS規格(K7130−1992)に従い、測定した。また、耐熱多孔層の厚みとしては、積層フィルムの厚みから多孔質フィルムの厚みを差し引いた値を用いた。
(B)ガーレー法による透気度の測定
積層フィルムの透気度は、JIS P8117に基づいて、株式会社安田精機製作所製のデジタルタイマー式ガーレー式デンソメータで測定した。
(C)空孔率
得られた積層フィルムのサンプルを一辺の長さ10cmの正方形に切り取り、重量W(g)と厚みD(cm)を測定した。サンプル中のそれぞれの層の重量(Wi(g))を求め、Wiとそれぞれの層の材質の真比重(真比重i(g/cm3))とから、それぞれの層の体積を求めて、次式より空孔率(体積%)を求めた。
空孔率(体積%)=100×{1−(W1/真比重1+W2/真比重2+・・+Wn/真比重n)/(10×10×D)}
上記実施例のそれぞれにおいて、セパレータとして、積層フィルムを用いれば、熱破膜をより防ぐことのできる非水電解質二次電池を得ることができる。

Claims (5)

  1. 0.01μm以上0.5μm以下の範囲の直径の一次粒子と、前記範囲の直径の一次粒子が凝集されてなり、0.05μm以上2μm以下の範囲の平均直径の凝集粒子と、から構成され、BET比表面積が3m2/g以上30m2/g以下である、以下の式(1)で表される粉末状の第1のリチウム複合金属酸化物と、0.1μm以上1μm以下の範囲の直径の一次粒子と、前記範囲の直径の一次粒子が凝集されてなり、3μm以上20μm以下の範囲の平均直径の凝集粒子と、から構成され、BET比表面積が0.1m2/g以上2m2/g以下である、以下の式(2)で表される粉末状の第2のリチウム複合金属酸化物とが、第2のリチウム複合金属酸化物100重量部あたり第1のリチウム複合金属酸化物10重量部以上900重量部以下の混合比で、混合されてなることを特徴とする電極活物質。
    Li(Ni 1-x-y Mn x Fe y )O 2 (1)
    (ここで、xは0.1以上0.7以下の範囲の値であり、yは0.01以上0.5以下の範囲の値であり、x+yは0.11以上1未満の範囲の値である。)
    Li(Ni 1-a-b Co a b )O 2 (2)
    (ここで、MはTi、V、Mn、B、AlおよびGaからなる群より選ばれる1種以上を表し、aは0以上1以下の範囲の値であり、bは0以上0.5以下の範囲の値であり、a+bは0以上1未満の範囲の値である。)
  2. 請求項1記載の電極活物質を含有する電極。
  3. 請求項記載の電極を、正極として有する非水電解質二次電池。
  4. セパレータをさらに有する請求項記載の非水電解質二次電池。
  5. 前記セパレータが、耐熱多孔層と多孔質フィルムとが積層されてなる積層フィルムを有するセパレータである請求項記載の非水電解質二次電池。
JP2009134834A 2008-09-02 2009-06-04 電極活物質、電極および非水電解質二次電池 Active JP5287520B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009134834A JP5287520B2 (ja) 2008-09-02 2009-06-04 電極活物質、電極および非水電解質二次電池
US13/060,197 US8354192B2 (en) 2008-09-02 2009-08-28 Electrode active material, electrode, and nonaqueous electrolyte secondary battery
PCT/JP2009/065456 WO2010027038A1 (ja) 2008-09-02 2009-08-28 電極活物質、電極および非水電解質二次電池
EP09811563.7A EP2328216A4 (en) 2008-09-02 2009-08-28 ACTIVE ELECTRODE MATERIAL, ELECTRODE AND SECONDARY BATTERY WITH A WATER-FREE ELECTROLYTE
KR1020117007381A KR101660997B1 (ko) 2008-09-02 2009-08-28 전극 활성 물질, 전극 및 비수전해질 이차 전지
CN200980141715.6A CN102187501B (zh) 2008-09-02 2009-08-28 电极活性物质、电极和非水电解质二次电池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008224473 2008-09-02
JP2008224473 2008-09-02
JP2009134834A JP5287520B2 (ja) 2008-09-02 2009-06-04 電極活物質、電極および非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP2010086940A JP2010086940A (ja) 2010-04-15
JP5287520B2 true JP5287520B2 (ja) 2013-09-11

Family

ID=41797204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009134834A Active JP5287520B2 (ja) 2008-09-02 2009-06-04 電極活物質、電極および非水電解質二次電池

Country Status (6)

Country Link
US (1) US8354192B2 (ja)
EP (1) EP2328216A4 (ja)
JP (1) JP5287520B2 (ja)
KR (1) KR101660997B1 (ja)
CN (1) CN102187501B (ja)
WO (1) WO2010027038A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871113B2 (en) * 2010-03-31 2014-10-28 Samsung Sdi Co., Ltd. Positive active material, and positive electrode and lithium battery including positive active material
JP5682151B2 (ja) 2010-06-17 2015-03-11 住友化学株式会社 遷移金属複合水酸化物およびリチウム複合金属酸化物
JP2012021959A (ja) * 2010-07-16 2012-02-02 Toshiba Corp パターン検査装置、パターン検査方法、およびパターンを有する構造体
JP5842478B2 (ja) * 2010-09-06 2016-01-13 住友化学株式会社 リチウム複合金属酸化物およびその製造方法
EP2733776A4 (en) * 2011-07-13 2015-03-18 Gs Yuasa Int Ltd NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP6465538B2 (ja) * 2012-02-01 2019-02-06 日産自動車株式会社 固溶体リチウム含有遷移金属酸化物の製造方法、非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法
CN108987670B (zh) * 2012-02-01 2021-08-03 日产自动车株式会社 固溶体含锂过渡金属氧化物、正极以及电池
JP6032457B2 (ja) * 2012-02-03 2016-11-30 日産自動車株式会社 固溶体リチウム含有遷移金属酸化物及びリチウムイオン二次電池
JP5370515B2 (ja) 2012-02-22 2013-12-18 住友金属鉱山株式会社 非水系電解質二次電池用正極材料とその製造方法、および該正極材料を用いた非水系電解質二次電池
JP6112380B2 (ja) 2012-03-07 2017-04-12 日産自動車株式会社 正極活物質、電気デバイス用正極及び電気デバイス
CN104247135B (zh) * 2012-04-05 2016-09-14 Nec能源元器件株式会社 锂离子二次电池
KR101689213B1 (ko) * 2012-06-21 2016-12-23 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함한 리튬 이차 전지용 양극 및 이를 구비한 리튬 이차 전지
EP2712009B1 (en) 2012-07-13 2019-09-11 LG Chem, Ltd. Bimodal-type anode active material and lithium secondary battery including same
JP6045901B2 (ja) 2012-12-18 2016-12-14 オートモーティブエナジーサプライ株式会社 非水電解質電池用混合電極およびその製造方法
WO2014104759A1 (ko) 2012-12-26 2014-07-03 한양대학교 산학협력단 리튬 이차전지용 양극활물질
CN106058166B (zh) * 2015-04-02 2021-08-10 松下知识产权经营株式会社 电池和电池用正极材料
KR102388848B1 (ko) * 2017-11-30 2022-04-20 주식회사 엘지에너지솔루션 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
JP7203360B2 (ja) * 2018-06-28 2023-01-13 パナソニックIpマネジメント株式会社 電極構造体及び非水電解質二次電池
CN112542582B (zh) * 2020-12-09 2021-09-28 四川虹微技术有限公司 一种多元素改性的富锂锰基正极材料及其制备方法
EP4129927A4 (en) * 2020-12-23 2023-11-08 LG Energy Solution, Ltd. METHOD FOR MANUFACTURING A POSITIVE ELECTRODE ACTIVE MATERIAL
CN116438685A (zh) * 2021-10-15 2023-07-14 艾可普罗 Bm 有限公司 正极活性物质及包括其的锂二次电池

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3050021B2 (ja) 1993-05-11 2000-06-05 三菱化学株式会社 バッテリーセパレーター及びそれを用いたリチウム電池
JP3003830B2 (ja) 1994-05-12 2000-01-31 宇部興産株式会社 積層多孔質フイルム及びその製法
JP4038868B2 (ja) 1997-03-26 2008-01-30 住友化学株式会社 パラアラミド系多孔質フィルムおよびそれを用いた電池用セパレーターとリチウム二次電池
JP3175730B2 (ja) 1998-04-27 2001-06-11 住友化学工業株式会社 非水電解質電池セパレーターとリチウム二次電池
JP3120789B2 (ja) * 1998-08-27 2000-12-25 日本電気株式会社 非水電解液二次電池
JP4560852B2 (ja) 1999-07-13 2010-10-13 住友化学株式会社 非水電解液二次電池用セパレータの製造方法および非水電解液二次電池
JP2001167766A (ja) * 1999-12-13 2001-06-22 Mitsubishi Chemicals Corp リチウム二次電池用正極材料
JP4682388B2 (ja) * 1999-11-05 2011-05-11 三菱化学株式会社 リチウム二次電池用正極材料並びにこれを用いた正極及びリチウム二次電池
JP2001316006A (ja) 2000-05-12 2001-11-13 Sumitomo Chem Co Ltd 基材搬送装置および基材塗工体の製造方法
JP4910243B2 (ja) * 2001-04-20 2012-04-04 パナソニック株式会社 非水電解質二次電池
JP2003092108A (ja) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP4404179B2 (ja) 2001-12-06 2010-01-27 ソニー株式会社 正極活物質およびこれを用いた二次電池
JP4307005B2 (ja) * 2002-03-25 2009-08-05 三洋電機株式会社 非水電解液二次電池
JP2004063269A (ja) * 2002-07-29 2004-02-26 Sony Corp 非水電解質電池
JP4172423B2 (ja) * 2004-05-26 2008-10-29 ソニー株式会社 正極活物質および非水電解質二次電池
JP4582579B2 (ja) * 2004-12-07 2010-11-17 Agcセイミケミカル株式会社 リチウム二次電池用正極材料
KR20060091486A (ko) * 2005-02-15 2006-08-21 삼성에스디아이 주식회사 양극 활물질, 그 제조 방법 및 이를 채용한 양극과 리튬 전지
KR100670507B1 (ko) * 2005-04-28 2007-01-16 삼성에스디아이 주식회사 리튬 이차 전지
JP5137312B2 (ja) * 2006-03-17 2013-02-06 三洋電機株式会社 非水電解質電池
TWI481100B (zh) * 2007-01-18 2015-04-11 Lg Chemical Ltd 陰極活性材料及包含其之二次電池

Also Published As

Publication number Publication date
KR101660997B1 (ko) 2016-09-28
US8354192B2 (en) 2013-01-15
US20110151327A1 (en) 2011-06-23
JP2010086940A (ja) 2010-04-15
EP2328216A4 (en) 2014-05-07
WO2010027038A1 (ja) 2010-03-11
CN102187501A (zh) 2011-09-14
CN102187501B (zh) 2014-07-02
EP2328216A1 (en) 2011-06-01
KR20110073488A (ko) 2011-06-29

Similar Documents

Publication Publication Date Title
JP5287520B2 (ja) 電極活物質、電極および非水電解質二次電池
JP5640311B2 (ja) リチウム複合金属酸化物および非水電解質二次電池
JP5531602B2 (ja) 電極活物質、電極および非水電解質二次電池
US9577256B2 (en) Electrode mix, electrode mix paste, electrode, and non-aqueous electrolyte secondary battery
WO2010024304A1 (ja) 電極活物質およびその製造方法
JP5644392B2 (ja) 遷移金属複合水酸化物およびリチウム複合金属酸化物
JP5842478B2 (ja) リチウム複合金属酸化物およびその製造方法
JP2015018678A (ja) リチウム二次電池用正極活物質、正極および二次電池
JP2011070994A (ja) 正極合剤、正極および非水電解質二次電池
JP5699436B2 (ja) 層状構造リチウム複合金属酸化物の製造方法
KR20120038983A (ko) 분말 재료 및 정극 합제
WO2011158889A1 (ja) 遷移金属複合水酸化物およびリチウム複合金属酸化物
JP5487821B2 (ja) リチウム複合金属酸化物および正極活物質
WO2010110403A1 (ja) リチウム複合金属酸化物および正極活物質
JP2011181367A (ja) 非水電解質二次電池
JP2011216472A (ja) 正極用粉末
JP5780059B2 (ja) 正極活物質、正極および非水電解質二次電池
JP2015118945A (ja) リチウム二次電池用正極活物質、正極および二次電池
JP5742192B2 (ja) リチウム複合金属酸化物の製造方法
JP5771891B2 (ja) 導電性正極活物質粉末の製造方法
JP5742193B2 (ja) リチウム複合金属酸化物および非水電解質二次電池
JP2010118161A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R151 Written notification of patent or utility model registration

Ref document number: 5287520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350