WO2014104759A1 - 리튬 이차전지용 양극활물질 - Google Patents
리튬 이차전지용 양극활물질 Download PDFInfo
- Publication number
- WO2014104759A1 WO2014104759A1 PCT/KR2013/012213 KR2013012213W WO2014104759A1 WO 2014104759 A1 WO2014104759 A1 WO 2014104759A1 KR 2013012213 W KR2013012213 W KR 2013012213W WO 2014104759 A1 WO2014104759 A1 WO 2014104759A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- lithium secondary
- particles
- concentration
- cathode active
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Manganates manganites or permanganates
- C01G45/1221—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
- C01G45/1228—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Cobaltates
- C01G51/42—Cobaltates containing alkali metals, e.g. LiCoO2
- C01G51/44—Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
- C01G51/50—Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
- H01M4/405—Alloys based on lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
- C01P2004/53—Particles with a specific particle size distribution bimodal size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a cathode active material for a lithium secondary battery, and more particularly, to a cathode active material for a lithium secondary battery having improved tap density by mixing cathode active materials having different sizes, wherein at least one particle of the cathode active material to be mixed is particles. It relates to a cathode active material for a lithium secondary battery, characterized by having a concentration gradient within.
- the porosity of the electrode In the lithium secondary battery, it is necessary to maintain the porosity of the electrode above a certain level in consideration of the ion conductivity of the active material.
- the porosity of the electrode When the electrode is rolled at a high rolling rate to improve the loading amount or the electrode density, the porosity of the electrode is excessively reduced, causing a sharp decrease in the C-rate.
- An object of the present invention is to provide a cathode active material for a lithium secondary battery that can exhibit a good C-rate while reducing the porosity in order to solve the problems of the prior art as described above.
- the present invention in order to solve the above problems, in the positive electrode active material for a lithium secondary battery comprising a mixture of particles P1 having a diameter of D1, particles P2 having a diameter of D2, any one of the particles P1, the particles P2 is represented by the following formula It provides a positive electrode active material for a lithium secondary battery having a central portion represented by 1 and the surface portion represented by the following formula (2).
- M1, M2 and M3 are selected from the group consisting of Ni, Co, Mn, and combinations thereof
- M4 is Fe, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge , Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga, B and combinations thereof, 0 ⁇ a1 ⁇ 1.1, 0 ⁇ a2 ⁇ 1.1, 0 ⁇ x1 ⁇ 1, 0 ⁇ x2 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ z1 ⁇ 1, 0 ⁇ z2 ⁇ 1, 0 ⁇ w ⁇ 0.1, 0.0 ⁇ 0.02, 0 ⁇ x1 + y1 + z1 ⁇ 1, 0 ⁇ x2 + y2 + z2 ⁇ 1, x1 ⁇ x2, y1 ⁇ y2, z2 ⁇ z1.)
- the present invention consists of a mixture of particles of positive electrode active material having different sizes, which is composed of a mixture of particles having a constant concentration of metal ions in the particles and particles having different compositions in the center and surface portions in the particles, or in the particles in the center and surfaces. It relates to a positive electrode active material composed of a mixture of particles having a different composition.
- a positive electrode active material composed of a mixture of particles having a different composition.
- the particle P1 has a central portion represented by the formula (1) and a surface portion represented by the formula (2), the diameter D1 of P1 and the diameter D2 of P2 are 2 to 20 ⁇ m, satisfying the relationship of D1 ⁇ D2
- the particles P1 may be included in a ratio of 5 to 95 parts by weight based on 100 parts by weight of the total positive electrode active material.
- the particle having a large particle size and a constant metal concentration is filled. While the high power characteristics as a whole, the particle size is small, the composition of the thermal stability is improved by the particles having different compositions of the central portion and the surface portion.
- the particle size is small and the particles having different compositions in the central portion and the surface portion are filled in the space between the particles having a large size and the composition in the central portion and the surface portion, high thermal stability and high capacity can be exhibited.
- the particle P1 has a central portion represented by the formula (1) and a surface portion represented by the formula (2), the diameter D1 of P1 and the diameter D2 of P2 are 2 to 20 ⁇ m, and the relationship of D2 ⁇ D1
- the particle P1 may be included in a ratio of 5 to 95 parts by weight based on 100 parts by weight of the total positive electrode active material.
- a structure in which particles having a small particle size and a constant metal concentration are filled in a space between particles having a large particle size and a different composition of the central portion and the surface portion While the thermal stability is improved by the particles as a whole, the particles having a small size and a constant metal concentration can exhibit high output characteristics.
- the positive electrode active material for the lithium secondary battery having different compositions of the center portion and the surface portion is not limited to the internal structure as long as the composition of the center portion and the surface portion is different. That is, the concentration of the metal constituting the positive electrode active material can form a continuous concentration gradient in the entire region from the center of the particle to the surface portion, or form a core-shell structure, a certain core, depending on the thickness of the central portion and the surface portion. Concentration gradients can then be formed only in the shell part.
- the thickness of the central portion is 10 to 70% of the total size of the cathode active material particles for lithium secondary battery,
- the concentration of the metal ions from the central portion to the surface portion is represented by the formula (2), that is, characterized in that the core and shell structure having a constant concentration.
- the central portion occupies 10 to 70% of the distance from the center of the particle to the outermost surface, and 90 to 30% of the distance.
- the surface portion occupies. If the ratio of the center portion is 70% or more of the distance from the center of the aperture to the outermost surface, the surface portion is too thin to cover the surface of the uneven aperture, and the ratio of the center portion of the aperture is the center of the aperture. If it is 10% or less of the distance from the outermost surface to the outermost surface, the charge / discharge capacity of the center portion may be lowered and the capacity accompanying the cycle may be lowered.
- the thickness of the central portion is 10 to 70% of the total size of the cathode active material particles for lithium secondary battery,
- the thickness of the surface portion is 1 to 5% of the total size of the cathode active material particles for lithium secondary battery
- the concentration of M1, M2, and M3 have a continuous concentration gradient from the central portion to the surface portion.
- the central portion and the thickness of the surface portion is 1 to 5% of the total size of the cathode active material particles for lithium secondary battery
- the concentration of M1, M2, and M3 have a continuous concentration gradient from the central portion to the surface portion.
- the cathode active material for a lithium secondary battery having a central portion represented by Chemical Formula 1 and a surface portion represented by Chemical Formula 2 of the present invention increases the concentration of M1 and M2 with a continuous concentration gradient from the central portion to the surface portion,
- the concentration of M3 is characterized in that it decreases with a continuous concentration gradient toward the surface portion from the central portion.
- the concentrations of M1 and M2 are continuous from the center portion to the surface portion.
- the concentration increases with a concentration gradient, and the concentration of M3 decreases with a continuous concentration gradient from the center to the surface portion.
- the concentration distribution means that there is a difference of 0.05 to 15 mol%, preferably 0.05 to 10 mol%, more preferably 0.05 to 5 mol%, of a change in metal concentration per 0.1 ⁇ m from the center of the particle to the surface portion.
- one or more concentration gradient slopes may be included throughout the particles, specifically, the concentration of the metal in the entire region from the particle center to the surface may be particles having one continuous concentration gradient slope, or particles The concentration of metal in the region from the center to the surface may be particles having two or more different concentration gradient gradients.
- the central portion and the thickness of the surface portion is 1 to 5% of the total size of the cathode active material particles for lithium secondary battery
- the concentration of M1 is constant from the central portion to the surface portion
- the concentration of M2 and the concentration of M3 toward the surface portion from the central portion is characterized by having a continuous concentration gradient.
- M1 is Co
- M2 is Mn
- M3 is characterized in that Ni.
- M1 is Mn
- M2 is Co
- M3 is characterized in that Ni.
- M1 is Ni
- M2 is Co
- M3 is characterized in that Mn.
- the present invention also provides an electrode including the cathode active material, a lithium secondary battery comprising the electrode.
- the cathode active material according to the present invention not only enhances the C-rate characteristics by mixing particles having different sizes, but also includes particles having a gradient of metal ions in the particles to be mixed, and also has appropriate porosity. By maintaining the positive electrode active material can be produced significantly improved tap density.
- Figure 1 shows the results of measuring the PSA according to the ratio of the particles mixed in the positive electrode active material according to an embodiment of the present invention.
- Figure 2 shows the tap density according to the proportion of the particles mixed in the positive electrode active material according to an embodiment of the present invention.
- 3 and 4 show the results of measuring the PSA of the positive electrode active material according to an embodiment of the present invention.
- an aqueous metal salt solution having a concentration of 2.0 M in which nickel sulfate, cobalt sulfate, and manganese sulfate is mixed in a molar ratio of 90: 5: 5 is used as an aqueous metal salt solution for forming a core.
- the metal salt aqueous solution for forming a core was first introduced into a reactor. Then, the mixture was mixed while gradually changing the mixing ratio of the aqueous metal salt solution for forming the center portion and the aqueous metal salt solution for forming the surface portion, and charged at a rate of 0.3 liters / hour. In addition, a 4.0 M concentration of ammonia solution was continuously added to the reactor at 0.03 liter / hour.
- a 4.0 M sodium hydroxide aqueous solution was supplied for pH adjustment to maintain pH at 10. Impeller speed was adjusted to 1000 rpm. The flow rate was adjusted so that the average residence time of the solution in the reactor was about 6 hours. After the reaction reached a steady state, a solution containing a cathode active material precursor for a lithium secondary battery was continuously obtained through an overflow pipe.
- the solution containing the obtained cathode active material precursor for lithium secondary batteries was filtered, washed with water, and dried in a 110 ° C. warm air dryer for 15 hours to prepare a cathode active material precursor for lithium secondary batteries.
- cathode active material precursor for lithium secondary batteries After mixing the prepared cathode active material precursor for lithium secondary batteries and lithium hydroxide (LiOH) in a molar ratio of 1.0: 1.19, and heated at a temperature increase rate of 2 °C / min, and maintained at 280 °C for 5 hours, preliminary baking was performed, Subsequently, the resultant was calcined at 900 ° C. for 10 hours to obtain a cathode active material for a lithium secondary battery having a particle size of 4 to 7 ⁇ m and a tap density of 1.97 g / cc, and a particle size of 10 to 14 ⁇ m and a tap density of 2.42 g / cc. Each of the measured cathode active materials for lithium secondary batteries was prepared.
- a cathode active material in which the concentration of Mn is fixed at 25% and the concentration of Co and Ni is gradient, 2.0, in which nickel sulfate, cobalt sulfate, and manganese sulfate were mixed in a molar ratio of 75:00:25 as an aqueous metal salt solution for forming a core.
- the metal salt for forming the center portion was first introduced into the reactor, except that the mixing rate of the metal salt aqueous solution for forming the center portion and the metal salt aqueous solution for forming the surface portion was gradually mixed and added at a rate of 0.3 liters / hour.
- the concentration of Mn is fixed at 25% and the concentration of Co and Ni is gradient as in 1, and the particle size is 4 to 6 ⁇ m and the tap density is 2.03 g / cc.
- a cathode active material having two or more concentration gradients of Mn, Co, and Ni 2.0 M concentration of nickel sulfate, cobalt sulfate, and manganese sulfate was mixed in a molar ratio of 80:05:15 as a metal salt aqueous solution for forming a core.
- An aqueous solution was prepared, and as an aqueous metal salt solution for forming the first surface portion, a 2.0 M metal solution in which nickel sulfate, cobalt sulfate, and manganese sulfate was mixed in a molar ratio of 70:10:20 was prepared, and the metal salt for forming the second surface portion was prepared.
- the aqueous metal salt solution for forming the core was first introduced into a reactor, and the core for forming the core was added thereto. After mixing at a constant rate while gradually changing the mixing ratio of the aqueous metal salt solution and the aqueous metal salt solution for forming the first surface portion, the first surface portion was introduced at a rate of 0.3 liters / hour.
- the size of the concentration gradient was the same as in Preparation Example 1, except that the mixing ratio of the aqueous metal salt aqueous solution and the aqueous metal salt aqueous solution for forming the second surface portion was gradually mixed and fed at a rate of 0.3 liter / hour.
- Cathode active material for lithium secondary batteries having a particle size of 6 ⁇ m and a tap density of 2.17 g / cc, and a cathode active material for lithium secondary batteries having a particle size of 10 to 14 ⁇ m and a tap density of 2.52 g / cc was prepared.
- a metal solution for forming a core having a concentration of 2.0 M in which nickel sulfate, cobalt sulfate, and manganese sulfate was mixed at a molar ratio of 95:00:05 was prepared, and for shell formation
- a metal aqueous solution having a concentration of 2.0 M in which nickel sulfate, cobalt sulfate, and manganese sulfate was mixed in a molar ratio of 40:20:40 was prepared, and then the aqueous metal salt solution for forming a core was first introduced into a reactor to form a core.
- an active material having a particle size of 4 to 6 ⁇ m and a tap density of 1.67 g / cc of particles consisting of a core having a constant concentration and a constant shell concentration Prepared.
- a metal solution for forming a core having a concentration of 2.0 M in which nickel sulfate, cobalt sulfate, and manganese sulfate was mixed in a molar ratio of 80:05:15 was prepared, and a shell was formed.
- an aqueous metal salt solution for preparing a 2.0 M metal solution in which nickel sulfate, cobalt sulfate and manganese sulfate were mixed in a molar ratio of 35:20:45 the aqueous metal salt solution for core formation was first introduced into a reactor to form a core.
- the mixing ratio of the aqueous metal salt solution for core formation and the aqueous metal salt solution for shell formation is gradually mixed, mixed at a constant ratio, and introduced at a rate of 0.3 liters / hour to have particle sizes of 4 to 6 ⁇ m and a tap density of 1.73.
- Positive electrode active material for lithium secondary batteries measured in g / cc
- positive electrode active material for lithium secondary batteries measured in particle size of 11 to 14 ⁇ m and tap density of 2.28 g / cc It was produced quality.
- the particles were prepared using a 2.0 M aqueous metal solution in which nickel sulfate, cobalt sulfate, and manganese sulfate were mixed at a 60:20:20 molar ratio.
- An active material having a size of 5 ⁇ m and a tap density of particles of 1.67 g / cc was prepared.
- NCA particles were prepared having a particle size of 3 ⁇ m and constant concentrations of nickel, cobalt and aluminum in the particle.
- LCO particles having a particle size of 2 ⁇ m and a constant cobalt ion concentration were prepared.
- the particles prepared in Preparation Example 5 were mixed with the particles including the shell having a constant core and concentration gradient and the particles prepared in Preparation Examples 1 to 8 as follows, and each tap density, electrode density, and C-rate were mixed.
- the measurement results are shown in Table 1 below.
- the particles having a concentration gradient of the total metal and the particles prepared in Preparation Examples 1 to 8 were mixed as follows and the respective tap density, electrode density, and C-rate were measured. The results are shown in Table 2 below.
- Example 7 the mixing ratio of the active material of Preparation Example 1 having a particle size of 11 ⁇ m and the LCO particles of Preparation Example 8 having a particle size of 2 ⁇ m was mixed as in Table 3 below, and each mixing Particle size analysis (PSA) results and tap densities according to ratios are shown in FIGS. 1 to 2 and Table 3.
- PSA Particle size analysis
- the active material having a concentration gradient prepared in Preparation Example 1 having a particle size of 6 ⁇ m and the active material particles having a concentration gradient prepared in Preparation Example 1 having a particle size of 14 ⁇ m as in Example 10 were mixed and mixed. Post particle size analysis and change in tap density were measured and shown in FIG. 3.
- the active material having a concentration gradient prepared in Preparation Example 1 having a particle size of 6 ⁇ m and the active material particles having a concentration gradient prepared in Preparation Example 2 having a particle size of 12 ⁇ m as in Example 16 were mixed and mixed. After the particle size analysis and the change in the tap density is measured and shown in Figure 4
- the particles having a concentration gradient of two or more concentrations of Mn, Ni, and Co and the particles prepared in Preparation Examples 1 to 8 were mixed as follows, and the respective tap density, electrode density, And C-rate was measured and the results are shown in Table 5 below.
- the positive electrode active material according to the present invention not only enhances the C-rate property but also maintains proper porosity by mixing particles having different sizes and including particles having a gradient of metal ions in the mixed particles. It is possible to prepare a positive electrode active material having a significantly improved density.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 리튬 이차전지용 양극활물질에 관한 것으로서, 더욱 상세하게는 입자 내에 농도 구배를 가지는 입자를 포함하는 서로 다른 크기의 양극활물질을 혼합하여 탭밀도가 향상된 리튬 이차전지용 양극활물질에 관한 것이다.
Description
본 발명은 리튬 이차전지용 양극활물질에 관한 것으로서, 더욱 상세하게는 서로 다른 크기의 양극활물질을 혼합하여 탭밀도가 향상된 리튬 이차전지용 양극활물질에 관한 것으로서, 상기 혼합되는 양극활물질 중 적어도 하나의 입자가 입자 내에 농도 구배를 가지는 것을 특징으로 하는 리튬 이차전지용 양극활물질에 관한것이다.
최근 이동통신 및 정보전자 산업의 발달로 고용량이면서도 가벼운 리튬 이차전지의 수요가 계속 증가되고 있다. 하지만 이동기기의 다기능화에 의한 당해 기기의 에너지 소비량 증가에 따라 전지의 파워 증가 및 용량 증가의 요구는 더욱 높아지고 있다. 따라서, 전지의 C-rate 특성 증가 및 용량 증가에 관한 연구가 널리 진행되고 있다. 그러나, 두 기능은 서로 상반되는 경향이 있어서, 전지의 용량을 향상시키기 위해 로딩 양이나 전극 밀도를 향상시킬 경우, 일반적으로 전지의 C-rate 특성이 악화되는 결과가 나타난다.
리튬 이차전지는 활물질의 이온전도도를 고려하여 전극의 공극도(porosity)를 일정한 수준 이상으로 유지해 주는 것이 필요하다. 로딩 양이나 전극 밀도의 향상을 위해 전극을 높은 압연율로 압연하면, 전극의 공극도가 과도하게 줄어들어, C-rate의 급격한 감소를 유발한다.
서로 다른 입경을 가진 활물질들을 사용하는 경우에는, 적정한 압연으로도 높은 전극 밀도를 얻을 수 있지만, 공극도가 크게 줄어들어 C-rate의 급격한 감소가 초래된다. 따라서 활물질로서 우수한 방전 용량, 수명 특성, C-rate 특성 등을 갖는 리튬 전이금속 화합물을 제조하기 위하여 활물질의 종류, 입자 크기 등의 조절을 통한 탭 밀도 저하의 방지 등에 대한 연구 및 개발이 필요한 실정이다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 공극도를 줄이면서도 양호한 C-rate를 나타낼 수 있는 리튬 이차전지용 양극활물질을 제공하는 것을 목적으로 한다.
본 발명은 상기와 같은 과제를 해결하기 위하여 직경이 D1인 입자 P1, 직경이 D2인 입자 P2의 혼합물을 포함하는 리튬 이차전지용 양극활물질에 있어서, 상기 입자 P1, 상기 입자 P2 중 어느 하나는 하기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 것인 리튬 이차전지용 양극활물질을 제공한다.
[화학식 1]Lia1M1x1M2y1M3z1M4wO2+δ
[화학식 2]Lia2M1x2M2y2M3z2M4wO2+δ
(상기 화학식 1, 2에서 M1, M2 및 M3 는 Ni, Co, Mn 및 이들의 조합으로 이루어진 군에서 선택되고, M4는 Fe, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga, B 및 이들의 조합으로 이루어진 군에서 선택되며, 0<a1≤1.1, 0<a2≤1.1, 0≤x1≤1, 0≤x2≤1, 0≤y1≤1, 0≤y2≤1, 0≤z1≤1, 0≤z2≤1, 0≤w≤0.1, 0.0≤δ≤0.02, 0<x1+y1+z1≤1, 0<x2+y2+z2≤1, x1≤x2, y1≤y2, z2≤z1 이다.)
본 발명은 크기가 상이한 양극활물질 입자의 혼합물로 구성되며, 이는 입자 내에서 금속 이온의 농도가 일정한 입자와 입자 내에서 중심부 및 표면부의 조성이 상이한 입자의 혼합물로 구성되거나, 입자 내에서 중심부 및 표면부의 조성이 상이한 입자들의 혼합물로 구성된 양극활물질에 관한 것이다. 즉, 입자 크기가 서로 다른 입자를 혼합함으로써 전극 제조시 공극을 감소시켜 패킹 밀도가 증가하고 그에 따라 탭밀도가 증가하는 효과를 나타냄과 동시에, 상기 중심부 및 표면부의 조성이 상이하고 입자 내에서 농도 구배를 나타내는 입자, 즉 금속 농도의 급격한 경계가 형성되지 않아 안정한 결정구조를 가져 열 안정성이 증가된 입자를 혼합함으로써, 이에 따라 혼합물 양극활물질의 열 안정성이 높아지는 효과까지 나타내게 된다.
본 발명에 있어서, 상기 입자 P1 이 상기 화학식 1로 표시되는 중심부 및 상기 화학식 2로 표시되는 표면부를 가지고, P1의 직경 D1 과 P2의 직경 D2 는 2 내지 20 μm 이고, D1 < D2 의 관계를 만족하고, 상기 입자 P1이 양극활물질 전체 100 중량부에 대하여 5 내지 95 중량부의 비율로 포함되는 것이 가능하다.
예를 들어, 입자의 크기가 크고 금속의 농도가 일정한 입자들 사이의 공간에 입자의 크기가 작고 중심부 및 표면부의 조성이 상이한 입자가 충진되는 경우, 상기 입자의 크기가 크고 금속의 농도가 일정한 입자들에 의해 전체적으로 고출력 특성을 나타내면서도, 상기 입자의 크기가 작고 중심부 및 표면부의 조성이 상이한 입자에 의해 열적 안정성이 향상된 특성을 나타낼 수 있게 된다. 또는 입자의 크기가 크고 중심부 및 표면부의 조성이 상이한 입자 사이의 공간에 입자의 크기가 작고 중심부 및 표면부의 조성이 상이한 입자가 충진되는 경우, 열적 안정성이 높으면서도 고용량을 나타낼 수 있게 된다.
또한, 본 발명에 있어서, 상기 입자 P1 이 상기 화학식 1로 표시되는 중심부 및 상기 화학식 2로 표시되는 표면부를 가지고, P1의 직경 D1 과 P2의 직경 D2 는 2 내지 20 μm 이고, D2 < D1 의 관계를 만족하고, 상기 입자 P1이 양극활물질 전체 100 중량부에 대하여 5 내지 95 중량부의 비율로 포함되는 것이 가능하다.
예를 들어, 입자의 크기가 크고 중심부 및 표면부의 조성이 상이한 입자들 사이의 공간에 입자의 크기가 작고 금속의 농도가 일정한 입자가 충진되는 구조로, 상기 크기가 크고 중심부 및 표면부의 조성이 상이한 입자들에 의해 전체적으로 열 안정성이 향상되면서도, 상기 입자의 크기가 작고 금속의 농도가 일정한 입자에 의해 고출력 특성을 나타낼 수 있게 된다.
본 발명에 있어서, 상기 중심부 및 표면부의 조성이 상이한 리튬 이차전지용 양극활물질은 상기 중심부 및 표면부의 조성이 상이하다면 내부 구조가 한정되지 않는다. 즉, 양극활물질을 구성하는 금속의 농도가 입자의 중심부로부터 표면부까지의 전체 영역에서 연속적인 농도 구배를 형성할 수 있고, 또는 중심부와 표면부의 두께에 따라 코어-쉘 구조, 일정 부분 코어를 형성한 이후 쉘 부분에서만 농도 구배를 형성할 수도 있다.
본 발명의 상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은
상기 중심부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 10 내지 70 % 이고,
상기 중심부로부터 상기 표면부까지 금속 이온의 농도가 상기 화학식 2로 일정하게 표시되는, 즉, 농도가 일정한 코어와 쉘 구조인 것을 특징으로 한다.
본 발명에 있어서, 양극활물질을 구성하는 금속의 농도가 코어-쉘 구조를 형성하는 경우, 입자의 중심으로부터 최표면까지의 거리의 10 내지 70 %를 중심부가 차지하고, 상기 거리의 90 내지 30 %를 상기 표면부가 차지한다. 중심부가 차지하는 비율이, 상기 구경의 중심으로부터 최표면까지의 거리의 70% 이상이라면, 표면부가 너무 얇기 때문에 요철이 있는 구경의 표면을 커버할 수 없으며, 상기 구경의 중심부가 차지하는 비율이 구경의 중심으로부터 최표면까지의 거리의 10% 이하라면, 중심부의 충방전 용량의 저하, 사이클에 수반하는 용량의 저하를 일으킬 수 있다.
본 발명의 상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은
상기 중심부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 10 내지 70 % 이고,
상기 표면부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 1 내지 5 %이고,
상기 중심부로부터 상기 표면부로 갈수록 M1의 농도, M2의 농도 및 M3의 농도가 연속적인 농도 구배를 가지는 것을 특징으로 한다.
본 발명의 상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은
상기 중심부 및 상기 표면부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 1 내지 5 %이고,
상기 중심부로부터 상기 표면부로 갈수록 M1의 농도, M2의 농도 및 M3의 농도가 연속적인 농도 구배를 가지는 것을 특징으로 한다.
본 발명의 상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은 상기 M1, M2의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 증가하고, 상기 M3의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 감소하는 것을 특징으로 한다.
즉, 본 발명에 있어서, 양극활물질을 구성하는 금속의 농도가 입자의 중심에서부터 표면까지의 전체 영역에서 연속적인 농도 구배를 형성하는 경우 상기 M1, M2의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 증가하고, 상기 M3의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 감소한다. 농도 분포는 입자의 중심부에서부터 표면부까지 0.1 μm당 금속 농도의 변화가 0.05 내지 15 몰%, 바람직하게는 0.05 내지 10 몰%, 보다 바람직하게는 0.05 내지 5 몰% 차이가 있는 것을 의미한다. 또한 본 발명에 있어서, 입자 전체에 하나 이상의 농도 구배 기울기를 포함할 수 있으며, 구체적으로 입자 중심에서부터 표면까지 전체 영역에서 금속의 농도가 하나의 연속적인 농도 구배 기울기를 갖는 입자일 수 있고, 또는 입자 중심에서부터 표면까지 영역에서 금속의 농도가 두 개 이상의 서로 다른 농도 구배 기울기를 갖는 입자일 수도 있다.
본 발명의 상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은
상기 중심부 및 상기 표면부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 1 내지 5 %이고,
상기 중심부로부터 상기 표면부까지 M1의 농도는 일정하고,
상기 중심부로부터 상기 표면부로 갈수록 M2의 농도 및 M3의 농도는 연속적인 농도 구배를 가지는 것을 특징으로 한다.
본 발명에 있어서, 상기 M1은 Co, 상기 M2는 Mn, 상기 M3는 Ni인 것을 특징으로 한다.
본 발명에 있어서, 상기 M1은 Mn, 상기 M2는 Co, 상기 M3는 Ni인 것을 특징으로 한다.
본 발명에 있어서, 상기 M1은 Ni, 상기 M2는 Co, 상기 M3는 Mn인 것을 특징으로 한다.
본 발명은 또한, 상기 양극활물질을 포함하는 전극, 상기 전극을 포함하는 리튬 이차전지를 제공한다.
상술한 바와 같이 본 발명에 따른 양극활물질은 크기가 상이한 입자를 혼합함과 동시에, 혼합되는 입자 중에 금속 이온의 농도가 구배를 나타내는 입자를 포함하도록 함으로써 C-rate 특성을 높일 뿐만 아니라, 적당한 공극도를 유지하여 탭밀도가 현저히 향상된 양극 활물질을 제조할 수 있다.
도 1은 본 발명의 일 실시예에 따른 양극활물질에 있어서 혼합되는 입자의 비율에 따른 PSA 를 측정한 결과를 나타낸다.
도 2는 본 발명의 일 실시예에 따른 양극활물질에 있어서 혼합되는 입자의 비율에 따른 탭밀도를 나타낸 것이다.
도 3 및 도 4은 본 발명의 일 실시예에 따른 양극활물질의 PSA 를 측정한 결과를 나타낸다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하지만, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해되어야 한다. 아울러, 본 발명의 범위는 상기의 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어진다. 또한, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
<제조예 1> 입자 전체에서 금속 이온이 농도 구배를 나타내는 입자의 제조
공침 반응기(용량 4L, 회전모터의 출력 80W이상)에 증류수 4 리터를 넣은 뒤 반응기의 온도를 50 ℃로 유지시키면서 1000 rpm으로 교반하였다.
Mn, Co, Ni의 농도가 모두 구배를 이루는 양극활물질을 제조하기 위해 중심부 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 90:5:5의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비하고, 표면부 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 54:15:31의 몰비로 혼합된 2.0 M 농도의 금속염 수용액을 준비한 후, 상기 중심부 형성용 금속염 수용액을 반응기에 먼저 투입하고, 여기에 상기 중심부 형성용 금속염 수용액과 상기 표면부 형성용 금속염 수용액의 혼합 비율을 점진적으로 변화시키면서 혼합하고 0.3 리터/시간의 속도로 투입하였다. 또한, 4.0 M 농도의 암모니아 용액을 0.03 리터/시간으로 반응기에 연속적으로 투입하였다. pH 조정을 위해 4.0 M 농도의 수산화나트륨 수용액을 공급하여 pH를 10으로 유지되도록 하였다. 임펠러 속도는 1000 rpm으로 조절하였다. 유량을 조절하여 용액의 반응기 내의 평균체류시간이 6 시간 정도가 되도록 하였으며, 반응이 정상상태에 도달한 후에 오버플로파이프를 통하여 리튬 이차전지용 양극활물질 전구체를 포함하는 용액을 연속적으로 얻었다.
상기 얻은 리튬 이차전지용 양극활물질 전구체를 포함하는 용액을 여과하고, 물 세척한 후에 110 ℃ 온풍 건조기에서 15 시간 건조시켜 리튬 이차전지용 양극 활물질 전구체를 제조하였다.
상기 제조한 리튬 이차전지용 양극활물질 전구체와 수산화리튬(LiOH)을 1.0:1.19의 몰비로 혼합한 후에, 2 ℃/min의 승온 속도로 가열한 후 280 ℃에서 5 시간 유지시켜 예비 소성을 수행하였으며, 뒤이어 900 ℃에서 10 시간 소성시켜 입자의 크기가 4 내지 7 μm이고 탭밀도가 1.97 g/cc로 측정된 리튬 이차전지용 양극활물질과, 입자 크기가 10 내지 14 μm이고 탭밀도가 2.42 g/cc로 측정된 리튬 이차 전지용 양극 활물질을 각각 제조하였다.
<제조예 2> 하나의 금속의 농도가 일정하고 나머지 금속의 농도가 입자 전체에서 농도 구배를 나타내는 쉘 구조의 입자 제조
Mn의 농도가 25 %로 고정되고 Co, Ni 의 농도가 구배를 이루는 양극활물질을 제조하기 위해 중심부 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 75:00:25의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비하고, 표면부 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 55:20:25의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비한 후, 상기 중심부 형성용 금속염 수용액을 반응기에 먼저 투입하고, 여기에 상기 중심부 형성용 금속염 수용액과 상기 표면부 형성용 금속염 수용액의 혼합 비율을 점진적으로 변화시키면서 혼합하여 0.3 리터/시간의 속도로 투입하는 것을 제외하고는 상기 제조예 1과 같이 하여 Mn의 농도가 25 % 로 고정되고 Co, Ni 의 농도가 구배를 이루면서, 입자의 크기가 4 내지 6 μm이고 탭밀도가 2.03 g/cc로 측정된 리튬 이차전지용 양극활물질과, 입자크기가 10 내지 14 μm이고 탭밀도가 2.58 g/cc로 측정된 리튬 이차 전지용 양극 활물질을 제조하였다.
<제조예 3> 입자 전체에서 농도 구배의 크기가 2개 이상인 입자 제조
Mn, Co, Ni 의 농도 구배의 크기가 2개 이상인 양극활물질을 제조하기 위해 중심부 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 80:05:15의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비하고, 제1표면부 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 70:10:20의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비하고, 제2표면부 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 55:18:27의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비한 후, 상기 중심부 형성용 금속염 수용액을 반응기에 먼저 투입하고, 여기에 상기 중심부 형성용 금속염 수용액과 상기 제1표면부 형성용 금속염 수용액의 혼합 비율을 점진적으로 변화시키면서 일정 비율로 혼합하여 0.3 리터/시간의 속도로 투입한 이후, 상기 제1표면부 형성용 금속염 수용액과 상기 제2표면부 형성용 금속염 수용액의 혼합 비율을 점진적으로 변화시키면서 일정 비율로 혼합하여 0.3 리터/시간의 속도로 투입한 것을 제외하고는 상기 제조예 1과 같이 하여 농도 구배의 크기가 2개인 입자의 크기가 6 μm이고 탭밀도가 2.17 g/cc로 측정된 리튬 이차전지용 양극활물질과, 입자크기가 10 내지 14 μm이고 탭밀도가 2.52 g/cc로 측정된 리튬 이차 전지용 양극 활물질을 제조하였다.
<제조예 4> 코어-쉘 구조의 입자 제조
농도가 일정한 코어와 농도가 일정한 쉘로 이루어진 입자를 제조하기 위해 황산니켈, 황산코발트 및 황산망간이 95:00:05의 몰비로 혼합된 2.0 M 농도의 코어 형성용 금속 수용액을 준비하고, 쉘 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 40:20:40의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비한 후, 상기 중심부 형성용 금속염 수용액을 반응기에 먼저 투입하여 코어를 형성시키고, 여기에 상기 쉘부 형성용 금속염 수용액을 0.3 리터/시간의 속도로 투입하여 농도가 일정한 코어와 농도가 일정한 쉘로 이루어진 입자의 크기가 4 내지 6 μm이고 입자의 탭밀도가 1.67 g/cc로 측정된 활물질을 제조하였다.
<제조예 5> 코어-농도 구배를 나타내는 쉘 구조의 입자 제조
농도가 일정한 코어와 농도 구배를 나타내는 쉘로 이루어진 입자를 제조하기 위해 황산니켈, 황산코발트 및 황산망간이 80:05:15의 몰비로 혼합된 2.0 M 농도의 코어 형성용 금속 수용액을 준비하고, 쉘 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 35:20:45의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비한 후, 상기 코어 형성용 금속염 수용액을 반응기에 먼저 투입하여 코어를 형성시키고, 여기에 상기 코어 형성용 금속염 수용액과 상기 쉘 형성용 금속염 수용액의 혼합 비율을 점진적으로 변화시키면서 일정 비율로 혼합하여 0.3 리터/시간의 속도로 투입하여 입자의 크기가 4 내지 6 μm이고 탭밀도가 1.73 g/cc로 측정된 리튬 이차전지용 양극활물질과, 입자크기가 11 내지 14 μm이고 탭밀도가 2.28 g/cc로 측정된 리튬 이차 전지용 양극 활물질을 제조하였다.
<제조예 6> 금속 이온의 농도가 일정한 입자의 제조
니켈, 코발트, 망간을 포함하고 입자 내에서 금속 이온의 농도가 일정한 입자를 제조하기 위해 황산니켈, 황산코발트 및 황산망간이 60:20:20 몰비로 혼합된 2.0 M 농도의 금속 수용액을 이용하여 입자의 크기가 5 μm이고 입자의 탭밀도가 1.67 g/cc로 측정되는 활물질을 제조하였다.
<제조예 7> 금속 이온의 농도가 일정한 입자의 제조
입자의 크기가 3 μm이고 입자 내에서 니켈, 코발트 및 알루미늄의 농도가 일정한 NCA 입자를 제조하였다.
<제조예 8> 금속 이온의 농도가 일정한 입자의 제조
입자의 크기가 2 μm이고 코발트 이온의 농도가 일정한 LCO 입자를 제조하였다.
<실시예 1 내지 6>
상기 제조예 5에서 제조된 농도가 일정한 코어와 농도 구배를 나타내는 쉘을 포함하는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 아래와 같이 혼합하고 각각의 탭밀도, 전극 밀도, 및 C-rate를 측정하고 그 결과를 아래 표 1에 나타내었다.
표 1
제 1 입자 (직경) | 제 2 입자 (직경) | 제1 입자 :제2 입자 혼합비율(wt%) | Tap density | Electrode density | C-rate (5C/0.2C) | |
실시예1 | 제조예5 (11μm) | 제조예8 (2μm) | 70:30 | 2.46 | 2.19 | 81 % |
실시예2 | 제조예5 (12μm) | 제조예5 (4μm) | 80:20 | 2.58 | 2.30 | 83 % |
실시예3 | 제조예5 (13μm) | 제조예4 (6μm) | 75:25 | 2.53 | 2.26 | 79 % |
실시예4 | 제조예5 (14μm) | 제조예1 (5μm) | 80:20 | 2.65 | 2.37 | 85 % |
실시예5 | 제조예5 (12μm) | 제조예2 (5μm) | 85:15 | 2.72 | 2.43 | 85 % |
실시예6 | 제조예5 (14μm) | 제조예3 (6μm) | 90:10 | 2.79 | 2.50 | 86 % |
비교예1 | 제조예8 (2μm) | - | 1.13 | 0.96 | 80 % | |
비교예3 | 제조예5 (12μm) | - | 2.28 | 2.02 | 81 % | |
비교예4 | 제조예5 (4μm) | - | 1.73 | 1.51 | 84 % | |
비교예6 | 제조예1 (5μm) | - | 1.97 | 1.74 | 88 % | |
비교예8 | 제조예2 (5μm) | - | 2.03 | 1.79 | 87 % | |
비교예10 | 제조예3 (6μm) | - | 2.17 | 1.91 | 89 % |
상기 표 1에서 농도가 일정한 코어와 농도 구배를 나타내는 쉘을 포함하는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 혼합하는 경우 혼합하지 않은 비교예에 비해 탭밀도 및 전극밀도가 크게 향상되면서 양호한 C-rate를 유지하는 것을 알 수 있다.
<실시예 7 내지 12 >
상기 제조예 1에서 제조된 입자 전체에서 전체 금속의 농도가 농도 구배를 나타내는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 아래와 같이 혼합하고 각각의 탭밀도, 전극 밀도, 및 C-rate를 측정하고 그 결과를 아래 표 2에 나타내었다.
표 2
제 1 입자 (직경) | 제 2 입자 (직경) | 제1 입자 :제2 입자 혼합비율 (wt%) | Tap density | Electrode density | C-rate (5C/0.2C) | |
실시예7 | 제조예1 (11μm) | 제조예8(2μm) | 65:35 | 2.77 | 2.45 | 84 % |
실시예8 | 제조예1 (12μm) | 제조예5(5μm) | 70:30 | 2.73 | 2.44 | 85 % |
실시예9 | 제조예1 (13μm) | 제조예4(4μm) | 80:20 | 2.94 | 2.64 | 85 % |
실시예10 | 제조예1 (14μm) | 제조예1(6μm) | 85:15 | 2.83 | 2.53 | 87 % |
실시예11 | 제조예1 (13μm) | 제조예2(6μm) | 90:10 | 2.81 | 2.52 | 87 % |
실시예12 | 제조예1 (11μm) | 제조예3(6μm) | 85:15 | 2.79 | 2.50 | 89 % |
비교예1 | 제조예8(2μm) | 1.13 | 0.96 | 80 % | ||
비교예5 | 제조예1(11μm) | 2.42 | 2.15 | 86 % | ||
비교예10 | 제조예3(6μm) | 2.17 | 1.92 | 89 % |
상기 표 2에서 입자 전체에서 전체 금속의 농도가 농도 구배를 나타내는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 혼합하는 경우 혼합하지 않은 비교예에 비해 탭밀도 및 전극밀도가 크게 향상되면서 양호한 C-rate를 유지하는 것을 알 수 있다.
<실험예> 크기가 상이한 입자의 혼합 비율에 따른 탭밀도 측정
상기 실시예 7에서와 같이 11 μm의 입자크기를 갖는 제조예 1의 활물질과 2 μm의 입자크기를 갖는 제조예 8의 LCO 입자의 혼합 비율을 아래 표 3에서와 같이 하여 혼합하고, 각각의 혼합 비율에 따른 입도분석(PSA) 결과 및 탭밀도를 도 1 내지 도 2 및 표 3에 나타내었다.
표 3
제조예1(11μm) (wt%) | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | |
제조예8(2μm) (wt%) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
PSA | D10 | 8.50 | 7.67 | 1.49 | 1.24 | 0.82 | 0.72 | 0.37 | 0.28 | 0.26 | 0.25 | 0.36 |
D50 | 10.97 | 10.26 | 9.39 | 9.13 | 8.10 | 6.66 | 4.33 | 3.05 | 2.56 | 2.38 | 1.92 | |
D90 | 13.39 | 13.53 | 12.77 | 12.71 | 12.27 | 11.47 | 9.95 | 10.62 | 8.86 | 8.38 | 5.51 | |
Tap density (g/cc) | 2.60 | 2.64 | 2.73 | 2.82 | 2.76 | 2.71 | 2.65 | 2.58 | 2.46 | 2.40 | 2.28 |
<실험예> 농도 구배를 가지는 입자간의 혼합
상기 실시예 10에서와 같이 6 μm의 입자크기를 갖는 제조예 1에서 제조된 농도 구배를 가지는 활물질과 14 μm의 입자크기를 갖는 제조예 1에서 제조된 농도 구배를 가지는 활물질 입자를 혼합하고, 혼합후 입도 분석 및 탭밀도의 변화를 측정하고 도 3에 나타내었다.
<실시예 13 내지 18 >
상기 제조예 2에서 제조된 입자 전체에서 Mn 의 농도가 일정하고, Ni, Co 의 농도가 구배를 나타내는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 아래와 같이 혼합하고 각각의 탭밀도, 전극 밀도, 및 C-rate를 측정하고 그 결과를 아래 표 4에 나타내었다.
표 4
제 1 입자(직경) | 제 2 입자(직경) | 제1 입자 :제2 입자 혼합비율(wt%) | Tap density | Electrode density | C-rate (5C/0.2C) | |
실시예 13 | 제조예2(10μm) | 제조예7(3μm) | 80:20 | 2.84 | 2.54 | 83 % |
실시예 14 | 제조예2(11μm) | 제조예5(5μm) | 75:25 | 2.76 | 2.74 | 85 % |
실시예 15 | 제조예2(12μm) | 제조예4(4μm) | 80:20 | 2.94 | 2.64 | 83 % |
실시예 16 | 제조예2(12μm) | 제조예1(6μm) | 90:10 | 2.81 | 2.52 | 86 % |
실시예 17 | 제조예2(13μm) | 제조예2(4μm) | 70:30 | 2.99 | 2.68 | 87 % |
실시예 18 | 제조예2(11μm) | 제조예3(6μm) | 85:15 | 2.75 | 2.46 | 88 % |
비교예 7 | 제조예2 (12μm) | 2.58 | 2.30 | 85 % | ||
비교예 10 | 제조예3 (6μm) | 2.17 | 1.92 | 89 % |
상기 표 4에서 입자 전체에서 Mn 의 농도가 일정하고, Ni, Co 의 농도가 구배를 나타내는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 혼합하는 경우 혼합하지 않은 비교예에 비해 탭밀도 및 전극밀도가 크게 향상되면서 양호한 C-rate를 유지하는 것을 알 수 있다.
<실험예> 농도 구배를 가지는 입자간의 혼합
상기 실시예 16에서와 같이 6 μm의 입자크기를 갖는 제조예 1에서 제조된 농도 구배를 가지는 활물질과 12 μm의 입자크기를 갖는 제조예 2에서 제조된 농도 구배를 가지는 활물질 입자를 혼합하고, 혼합후 입도 분석 및 탭밀도의 변화를 측정하고 도 4에 나타내었다
<실시예 19 내지 24 >
상기 제조예 2에서 제조된 입자 전체에서 Mn, Ni, Co 의 농도가 2개 이상의 농도 구배를 나타내는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 아래와 같이 혼합하고 각각의 탭밀도, 전극 밀도, 및 C-rate를 측정하고 그 결과를 아래 표 5에 나타내었다.
표 5
제 1 입자(직경) | 제 2 입자(직경) | 제1 입자 :제2 입자 혼합비율(wt%) | Tap density | Electrode density | C-rate (5C/0.2C) | |
실시예 19 | 제조예3 (10μm) | 제조예6(5μm) | 90:10 | 2.71 | 2.42 | 85 % |
실시예 20 | 제조예3 (11μm) | 제조예5(6μm) | 85:15 | 2.69 | 2.40 | 85 % |
실시예 21 | 제조예3 (12μm) | 제조예4(4μm) | 70:30 | 2.89 | 2.59 | 83 % |
실시예 22 | 제조예3 (13μm) | 제조예1(5μm) | 75:25 | 2.93 | 2.63 | 88 % |
실시예 23 | 제조예3 (11μm) | 제조예2(5μm) | 80:20 | 2.86 | 2.56 | 87 % |
실시예 24 | 제조예3 (14μm) | 제조예3(6μm) | 85:15 | 2.97 | 2.66 | 88 % |
비교예 2 | 제조예6 (5μm) | - | 1.67 | 1.46 | 76 % | |
비교예 6 | 제조예1 (5μm) | - | 1.97 | 1.74 | 88 % | |
비교예 8 | 제조예2 (5μm) | - | 2.03 | 1.79 | 87 % | |
비교예 9 | 제조예3 (12μm) | - | 2.52 | 2.25 | 87 % | |
비교예 10 | 제조예3 (6μm) | - | 2.17 | 1.92 | 89 % |
상기 표 5에서 입자 전체에서 Mn, Ni, Co 의 농도가 2개 이상의 농도 구배를 나타내는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 아래와 같이 혼합한 경우 혼합하지 않은 비교예에 비해 탭밀도 및 전극밀도가 크게 향상되면서 양호한 C-rate를 유지하는 것을 알 수 있다.
본 발명에 따른 양극활물질은 크기가 상이한 입자를 혼합함과 동시에, 혼합되는 입자 중에 금속 이온의 농도가 구배를 나타내는 입자를 포함하도록 함으로써 C-rate 특성을 높일 뿐만 아니라, 적당한 공극도를 유지하여 탭밀도가 현저히 향상된 양극 활물질을 제조할 수 있다.
Claims (15)
- 직경이 D1 인 입자 P1, 직경이 D2 인 입자 P2의 혼합물을 포함하는 리튬 이차전지용 양극활물질에 있어서,상기 입자 P1, 상기 입자 P2 중 어느 하나는 하기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 것인 리튬 이차전지용 양극활물질[화학식 1]Lia1M1x1M2y1M3z1M4wO2+δ[화학식 2]Lia2M1x2M2y2M3z2M4wO2+δ(상기 화학식 1, 2에서 M1, M2 및 M3 는 Ni, Co, Mn 및 이들의 조합으로 이루어진 군에서 선택되고, M4 는 Fe, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga, B 및 이들의 조합으로 이루어진 군에서 선택되며, 0<a1≤1.1, 0<a2≤1.1, 0≤x1≤1, 0≤x2≤1, 0≤y1≤1, 0≤y2≤1, 0≤z1≤1, 0≤z2≤1, 0≤w≤0.1, 0.0≤δ≤0.02, 0<x1+y1+z1≤1, 0<x2+y2+z2≤1, x1≤x2, y1≤y2, z2≤z1 이다.)
- 제 1 항에 있어서,상기 입자 P1 이 상기 화학식 1로 표시되는 중심부 및 상기 화학식 2로 표시되는 표면부를 가지고,상기 D1 과 상기 D2 는 2 내지 20 μm 이고,D1 < D2 의 관계를 만족하는 것인 리튬 이차전지용 양극활물질
- 제 2 항에 있어서,상기 입자 P1 이 활물질 전체 100 중량부에 대하여 5 내지 95 중량부의 비율로 포함되는 것인 리튬 이차전지용 양극활물질
- 제 1 항에 있어서,상기 입자 P1 이 상기 화학식 1로 표시되는 중심부 및 상기 화학식 2로 표시되는 표면부를 가지고,상기 D1 과 상기 D2 는 2 내지 20 μm 이고,D2 < D1 의 관계를 만족하는 것인 리튬 이차전지용 양극활물질
- 제 4 항에 있어서,상기 입자 P1 이 활물질 전체 100 중량부에 대하여 5 내지 95 중량부의 비율로 포함되는 것인 리튬 이차전지용 양극활물질
- 제 1 항에 있어서,상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은상기 중심부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 10 내지 70 % 이고,상기 중심부로부터 상기 표면부까지 금속 이온의 농도가 상기 화학식 2로 일정하게 표시되는 것인 리튬 이차전지용 양극활물질
- 제 1 항에 있어서,상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은상기 중심부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 10 내지 70 % 이고,상기 표면부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 1 내지 5 % 이고,상기 중심부로부터 상기 표면부로 갈수록 M1 의 농도, M2 의 농도 및 M3 의 농도가 연속적인 농도 구배를 가지는 것을 특징으로 하는 리튬 이차전지용 양극활물질
- 제 1 항에 있어서,상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은상기 중심부 및 상기 표면부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 1 내지 5 % 이고,상기 중심부로부터 상기 표면부로 갈수록 M1 의 농도, M2 의 농도 및 M3 의 농도가 연속적인 농도 구배를 가지는 것을 특징으로 하는 리튬 이차전지용 양극활물질
- 제 8 항에 있어서,상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은상기 M1, M2 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 증가하고, 상기 M3 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 감소하는 것인 리튬 이차전지용 양극활물질
- 제 1 항에 있어서,상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은상기 중심부 및 상기 표면부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 1 내지 5 % 이고,상기 중심부로부터 상기 표면부까지 M1 의 농도는 일정하고,상기 중심부로부터 상기 표면부로 갈수록 M2 의 농도 및 M3 의 농도는 연속적인 농도 구배를 가지는 것을 특징으로 하는 리튬 이차전지용 양극활물질
- 제 1 항에 있어서,상기 M1 은 Co, 상기 M2 는 Mn, 상기 M3 는 Ni 인 리튬 이차전지용 양극활물질
- 제 1 항에 있어서,상기 M1 은 Mn, 상기 M2 는 Co, 상기 M3 는 Ni 인 리튬 이차전지용 양극활물질
- 제 1 항에 있어서,상기 M1 은 Ni, 상기 M2 는 Co, 상기 M3 는 Mn 인 리튬 이차전지용 양극활물질
- 제 1 항의 리튬 이차전지용 양극활물질을 포함하는 전극
- 제 14 항의 전극을 포함하는 리튬 이차전지
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/652,684 US20150340686A1 (en) | 2012-12-26 | 2013-12-26 | Cathode active material for lithium secondary battery |
EP13868086.3A EP2940761B1 (en) | 2012-12-26 | 2013-12-26 | Cathode active material for lithium secondary batteries |
CN201380067749.1A CN105009333B (zh) | 2012-12-26 | 2013-12-26 | 用于锂二次电池的正极活性材料 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20120153025 | 2012-12-26 | ||
KR10-2012-0153025 | 2012-12-26 | ||
KR10-2013-0163942 | 2013-12-26 | ||
KR1020130163942A KR101614991B1 (ko) | 2012-12-26 | 2013-12-26 | 리튬 이차전지용 양극활물질 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014104759A1 true WO2014104759A1 (ko) | 2014-07-03 |
Family
ID=51735003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/012213 WO2014104759A1 (ko) | 2012-12-26 | 2013-12-26 | 리튬 이차전지용 양극활물질 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150340686A1 (ko) |
EP (1) | EP2940761B1 (ko) |
KR (2) | KR101614991B1 (ko) |
CN (1) | CN105009333B (ko) |
WO (1) | WO2014104759A1 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105993090A (zh) * | 2014-10-02 | 2016-10-05 | 艾可普罗有限公司 | 锂二次电池用正极活性材料及包含其的锂二次电池 |
JP2018503238A (ja) * | 2014-12-31 | 2018-02-01 | ベイジン イースプリング マテリアル テクノロジー カンパニー リミテッド | リチウムイオン電池用の傾斜構造を有する多成分材料、その調製方法、リチウムイオン電池の正極及びリチウムイオン電池 |
US20180175388A1 (en) * | 2016-12-16 | 2018-06-21 | Sk Innovation Co., Ltd. | Lithium Secondary Battery |
US10756331B2 (en) | 2016-11-18 | 2020-08-25 | Sk Innovation Co., Ltd. | Lithium secondary battery and method of fabricating the same |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014133370A1 (ko) * | 2013-02-28 | 2014-09-04 | 한양대학교 산학협력단 | 리튬이차전지용 양극활물질 |
KR102460961B1 (ko) | 2015-11-06 | 2022-10-31 | 삼성에스디아이 주식회사 | 리튬이차전지용 양극 활물질, 그 제조방법 및 이를 포함한 양극을 구비한 리튬이차전지 |
KR102227306B1 (ko) * | 2015-11-30 | 2021-03-15 | 주식회사 엘지화학 | 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 |
KR102227305B1 (ko) * | 2015-11-30 | 2021-03-15 | 주식회사 엘지화학 | 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 |
KR102227304B1 (ko) * | 2015-11-30 | 2021-03-15 | 주식회사 엘지화학 | 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 |
KR102012427B1 (ko) * | 2015-11-30 | 2019-08-21 | 주식회사 엘지화학 | 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지 |
JP6809487B2 (ja) * | 2016-02-08 | 2021-01-06 | 株式会社村田製作所 | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
KR102467458B1 (ko) * | 2016-11-18 | 2022-11-14 | 에스케이온 주식회사 | 리튬 이차 전지 |
KR102467457B1 (ko) * | 2016-11-18 | 2022-11-14 | 에스케이온 주식회사 | 리튬 이차 전지 |
US10199650B2 (en) * | 2016-11-18 | 2019-02-05 | Sk Innovation Co., Ltd. | Lithium secondary battery and method of fabricating the same |
KR102449152B1 (ko) * | 2017-09-19 | 2022-09-28 | 에스케이온 주식회사 | 리튬 이차 전지 및 이의 제조 방법 |
EP3550641A4 (en) | 2016-12-02 | 2020-08-12 | Samsung SDI Co., Ltd | ACTIVE NICKEL MATERIAL PRECURSOR FOR SECONDARY LITHIUM BATTERY, PRODUCTION PROCESS OF ACTIVE NICKEL MATERIAL PRECURSOR, ACTIVE NICKEL MATERIAL FOR SECONDARY LITHIUM BATTERY PRODUCED BY THE PROCESS, AND SECONDARY LITHIUM BATTERY HAVING AN ACTIVE MATERIAL CONTAINING A CATHAUOD CONTENT NICKEL |
WO2018105945A2 (ko) * | 2016-12-05 | 2018-06-14 | 주식회사 포스코 | 양극 활물질 전구체 및 이의 제조 방법, 양극 활물질 및 이의 제조 방법, 및 상기 양극 활물질을 포함하는 리튬 이차 전지 |
KR102387401B1 (ko) * | 2016-12-16 | 2022-04-14 | 에스케이온 주식회사 | 리튬 이차 전지 |
WO2018117506A1 (ko) * | 2016-12-22 | 2018-06-28 | 주식회사 포스코 | 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
EP3439081A4 (en) * | 2017-01-31 | 2019-08-14 | LG Chem, Ltd. | CATHODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY, COMPRISING LITHIUM OXIDE AND COBALT HAVING A CURORARY STRUCTURE, PREPARATION METHOD THEREFOR, AND CATHODE AND SECONDARY BATTERY COMPRISING AN ACTIVE CATHODE MATERIAL |
KR102366066B1 (ko) * | 2017-03-21 | 2022-02-22 | 에스케이온 주식회사 | 리튬 이차 전지 |
KR102306545B1 (ko) * | 2017-10-19 | 2021-09-30 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 |
EP3486220B1 (en) * | 2017-11-15 | 2020-09-30 | Ecopro Bm Co., Ltd. | Cathode active material for lithium secondary battery and lithium secondary battery including the same |
KR20190055700A (ko) * | 2017-11-15 | 2019-05-23 | 주식회사 에코프로비엠 | 리튬이차전지용 양극 활물질 조성물 및 이를 포함하는 리튬 이차전지 |
PL3696894T3 (pl) * | 2017-11-21 | 2024-03-04 | Lg Energy Solution, Ltd. | Materiał katody dla litowej baterii akumulatorowej oraz katoda i litowa bateria akumulatorowa, która ją zawiera |
KR102331305B1 (ko) * | 2017-11-21 | 2021-11-26 | 주식회사 엘지에너지솔루션 | 전극 조립체 및 이를 포함하는 리튬 이차전지 |
KR102227313B1 (ko) * | 2017-11-21 | 2021-03-15 | 주식회사 엘지화학 | 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 |
WO2019112279A2 (ko) | 2017-12-04 | 2019-06-13 | 삼성에스디아이 주식회사 | 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 |
US11777075B2 (en) | 2017-12-04 | 2023-10-03 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material |
KR102185126B1 (ko) * | 2017-12-04 | 2020-12-01 | 삼성에스디아이 주식회사 | 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 |
US11522189B2 (en) | 2017-12-04 | 2022-12-06 | Samsung Sdi Co., Ltd. | Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode |
KR102424398B1 (ko) | 2020-09-24 | 2022-07-21 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극, 그 제조 방법, 및 이를 포함한 리튬 이차 전지 |
US11670754B2 (en) | 2017-12-04 | 2023-06-06 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material |
KR102559218B1 (ko) | 2017-12-07 | 2023-07-25 | 에스케이온 주식회사 | 리튬 이차 전지용 음극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지 |
KR102041578B1 (ko) * | 2017-12-08 | 2019-11-06 | 주식회사 포스코 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
KR102457285B1 (ko) | 2018-01-15 | 2022-10-19 | 에스케이온 주식회사 | 리튬 이차 전지 |
KR102571672B1 (ko) | 2018-01-17 | 2023-08-25 | 에스케이온 주식회사 | 리튬 이차 전지 |
KR102472882B1 (ko) * | 2018-01-18 | 2022-11-30 | 에스케이온 주식회사 | 리튬 이차 전지 |
KR102302038B1 (ko) | 2018-05-11 | 2021-09-15 | 주식회사 엘지화학 | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 |
KR102485994B1 (ko) * | 2018-06-20 | 2023-01-05 | 에스케이온 주식회사 | 리튬 이차 전지 및 이의 제조 방법 |
JP7556661B2 (ja) * | 2018-06-25 | 2024-09-26 | Toppanホールディングス株式会社 | アルカリ二次電池用負極組成物及びアルカリ二次電池用負極 |
KR101964716B1 (ko) | 2018-06-26 | 2019-04-02 | 에스케이이노베이션 주식회사 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
EP3591748A1 (en) | 2018-07-06 | 2020-01-08 | SK Innovation Co., Ltd. | Lithium secondary battery |
KR102306547B1 (ko) | 2018-09-14 | 2021-09-30 | 주식회사 엘지화학 | 리튬 이차전지용 양극재의 제조 방법 및 이에 의해 제조된 리튬 이차전지용 양극재 |
KR102436308B1 (ko) | 2018-10-18 | 2022-08-24 | 에스케이온 주식회사 | 리튬 이차 전지 |
KR102182358B1 (ko) | 2018-11-02 | 2020-11-24 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 |
CN112909239B (zh) | 2018-11-06 | 2023-03-24 | Sk新能源株式会社 | 用于锂二次电池的正极活性材料及其制造方法 |
KR102453274B1 (ko) * | 2018-12-10 | 2022-10-11 | 주식회사 엘지에너지솔루션 | 리튬이차전지용 양극재, 이를 포함하는 양극 및 리튬이차전지 |
KR102314085B1 (ko) * | 2019-03-05 | 2021-10-18 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 |
US11552293B2 (en) | 2019-03-05 | 2023-01-10 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same |
KR20210006252A (ko) | 2019-07-08 | 2021-01-18 | 주식회사 엘지화학 | 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 |
CN110255500A (zh) * | 2019-07-25 | 2019-09-20 | 海南汉地阳光石油化工有限公司 | 一种循环氢脱氨提纯系统及方法 |
CN111370669B (zh) * | 2020-03-19 | 2021-12-28 | 江苏中奕和创智能科技有限公司 | 一种动力电池复合正极的制备方法 |
KR102587970B1 (ko) * | 2020-10-06 | 2023-10-10 | 주식회사 엘지화학 | 고함량의 니켈 함유 리튬 복합전이금속 산화물 양극 활물질 입자 혼합물의 제조방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100274892B1 (ko) * | 1998-05-13 | 2001-02-01 | 김순택 | 리튬 2차전지 |
KR20060060609A (ko) * | 2004-11-30 | 2006-06-05 | 마쯔시다덴기산교 가부시키가이샤 | 비수전해질 2차전지 |
KR20060105039A (ko) * | 2003-12-31 | 2006-10-09 | 주식회사 엘지화학 | 입도 의존 조성을 갖는 전극 활물질 분말과 그 제조방법 |
KR20070097923A (ko) * | 2006-03-30 | 2007-10-05 | 한양대학교 산학협력단 | 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지 |
KR20120118435A (ko) * | 2011-04-18 | 2012-10-26 | 주식회사 엘지화학 | 양극 활물질 및 그것을 포함한 리튬 이차전지 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9666862B2 (en) * | 2005-02-23 | 2017-05-30 | Lg Chem, Ltd. | Secondary battery of improved lithium ion mobility and cell capacity |
JP5196844B2 (ja) | 2007-05-14 | 2013-05-15 | キヤノン株式会社 | プローブセット、プローブ担体及び検査方法 |
JP5287520B2 (ja) | 2008-09-02 | 2013-09-11 | 住友化学株式会社 | 電極活物質、電極および非水電解質二次電池 |
JP4972624B2 (ja) | 2008-09-30 | 2012-07-11 | 日立ビークルエナジー株式会社 | リチウム二次電池用正極材料及びそれを用いたリチウム二次電池 |
CA2751819C (en) | 2009-02-20 | 2013-12-10 | Umicore | Non-homogeneous positive electrode materials combining high safety and high power in a li rechargeable battery |
US8871113B2 (en) | 2010-03-31 | 2014-10-28 | Samsung Sdi Co., Ltd. | Positive active material, and positive electrode and lithium battery including positive active material |
US8911902B2 (en) * | 2010-07-06 | 2014-12-16 | Samsung Sdi Co., Ltd. | Nickel-based positive electrode active material, method of preparing the same, and lithium battery using the nickel-based positive electrode active material |
KR101292757B1 (ko) | 2011-01-05 | 2013-08-02 | 한양대학교 산학협력단 | 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
US10170763B2 (en) * | 2011-06-17 | 2019-01-01 | Umicore | Lithium metal oxide particles coated with a mixture of the elements of the core material and one or more metal oxides |
-
2013
- 2013-12-26 US US14/652,684 patent/US20150340686A1/en not_active Abandoned
- 2013-12-26 WO PCT/KR2013/012213 patent/WO2014104759A1/ko active Application Filing
- 2013-12-26 KR KR1020130163942A patent/KR101614991B1/ko active IP Right Grant
- 2013-12-26 CN CN201380067749.1A patent/CN105009333B/zh active Active
- 2013-12-26 EP EP13868086.3A patent/EP2940761B1/en not_active Revoked
-
2016
- 2016-04-18 KR KR1020160046960A patent/KR101812517B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100274892B1 (ko) * | 1998-05-13 | 2001-02-01 | 김순택 | 리튬 2차전지 |
KR20060105039A (ko) * | 2003-12-31 | 2006-10-09 | 주식회사 엘지화학 | 입도 의존 조성을 갖는 전극 활물질 분말과 그 제조방법 |
KR20060060609A (ko) * | 2004-11-30 | 2006-06-05 | 마쯔시다덴기산교 가부시키가이샤 | 비수전해질 2차전지 |
KR20070097923A (ko) * | 2006-03-30 | 2007-10-05 | 한양대학교 산학협력단 | 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지 |
KR20120118435A (ko) * | 2011-04-18 | 2012-10-26 | 주식회사 엘지화학 | 양극 활물질 및 그것을 포함한 리튬 이차전지 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105993090A (zh) * | 2014-10-02 | 2016-10-05 | 艾可普罗有限公司 | 锂二次电池用正极活性材料及包含其的锂二次电池 |
US10522823B2 (en) * | 2014-10-02 | 2019-12-31 | Ecopro Bm Co., Ltd. | Cathode active material for lithium secondary battery and lithium secondary battery comprising the same |
JP2020109772A (ja) * | 2014-10-02 | 2020-07-16 | エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. | リチウム二次電池用正極活物質及びこれを含むリチウム二次電池 |
JP7412258B2 (ja) | 2014-10-02 | 2024-01-12 | エコプロ ビーエム カンパニー リミテッド | リチウム二次電池用正極活物質及びこれを含むリチウム二次電池 |
JP2018503238A (ja) * | 2014-12-31 | 2018-02-01 | ベイジン イースプリング マテリアル テクノロジー カンパニー リミテッド | リチウムイオン電池用の傾斜構造を有する多成分材料、その調製方法、リチウムイオン電池の正極及びリチウムイオン電池 |
US10756331B2 (en) | 2016-11-18 | 2020-08-25 | Sk Innovation Co., Ltd. | Lithium secondary battery and method of fabricating the same |
US20180175388A1 (en) * | 2016-12-16 | 2018-06-21 | Sk Innovation Co., Ltd. | Lithium Secondary Battery |
US11936041B2 (en) * | 2016-12-16 | 2024-03-19 | Sk On Co., Ltd. | Lithium secondary battery |
Also Published As
Publication number | Publication date |
---|---|
CN105009333A (zh) | 2015-10-28 |
CN105009333B (zh) | 2018-04-17 |
EP2940761A4 (en) | 2016-08-31 |
KR20160049519A (ko) | 2016-05-09 |
KR101614991B1 (ko) | 2016-04-22 |
EP2940761A1 (en) | 2015-11-04 |
KR101812517B1 (ko) | 2017-12-28 |
KR20140085347A (ko) | 2014-07-07 |
US20150340686A1 (en) | 2015-11-26 |
EP2940761B1 (en) | 2019-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014104759A1 (ko) | 리튬 이차전지용 양극활물질 | |
WO2014178625A1 (ko) | 리튬 이차 전지용 양극활물질 | |
WO2014133370A1 (ko) | 리튬이차전지용 양극활물질 | |
WO2013147537A1 (ko) | 리튬 이차 전지용 양극활물질 전구체의 제조 방법, 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 및 이를 포함하는 리튬 이차 전지용 양극활물질 | |
WO2012093798A2 (ko) | 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 | |
WO2016021791A1 (ko) | 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지 | |
WO2014193203A1 (ko) | 리튬 전지용 양극 활물질 및 이의 제조방법 | |
WO2013002457A1 (ko) | 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지 | |
WO2013115446A1 (ko) | 리튬 복합 전이금속 산화물의 전구체 제조용 반응기 및 전구체 제조방법 | |
WO2014010970A1 (ko) | 고밀도 음극 활물질 및 이의 제조방법 | |
WO2014077663A1 (ko) | 나트륨 이차전지용 양극활물질 및 이의 제조 방법 | |
WO2021025370A1 (ko) | 리튬 이차전지용 양극 활물질 | |
WO2021075942A1 (ko) | 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2015099233A1 (ko) | 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법 | |
WO2016108375A1 (ko) | 농도 구배를 나타내는 리튬 이차전지용 양극활물질 전구체 및 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 농도 구배를 나타내는 리튬 이차전지용 양극활물질 전구체 및 양극활물질 | |
WO2022065935A1 (ko) | 고함량의 니켈 함유 리튬 복합전이금속 산화물 양극 활물질 단입자의 고상합성방법, 이로부터 형성된 고함량의 니켈 함유 리튬 복합전이금속 산화물 양극 활물질 단입자 및 이를 포함하는 양극 및 리튬 이차전지 | |
WO2022149675A1 (ko) | 리튬 이차 전지용 양극 활물질 전구체 및 이의 제조 방법 | |
WO2022014858A1 (ko) | 리튬 이차전지용 양극 활물질 | |
WO2015102200A1 (ko) | 리튬 전이금속 인산화물, 그 제조방법 및 이를 이용하여 제조된 리튬 이차전지 | |
WO2013065918A1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법 | |
WO2013002559A2 (ko) | 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법 | |
WO2020256358A1 (ko) | 리튬 이차전지용 양극 활물질 | |
WO2023080286A1 (ko) | 이차전지용 양극 활물질 | |
WO2020055210A1 (ko) | 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 | |
WO2014163359A1 (ko) | 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13868086 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14652684 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013868086 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |