WO2013065918A1 - 리튬 이차전지용 양극 활물질의 제조 방법 - Google Patents

리튬 이차전지용 양극 활물질의 제조 방법 Download PDF

Info

Publication number
WO2013065918A1
WO2013065918A1 PCT/KR2012/003418 KR2012003418W WO2013065918A1 WO 2013065918 A1 WO2013065918 A1 WO 2013065918A1 KR 2012003418 W KR2012003418 W KR 2012003418W WO 2013065918 A1 WO2013065918 A1 WO 2013065918A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
furnace
composite oxide
firing
active material
Prior art date
Application number
PCT/KR2012/003418
Other languages
English (en)
French (fr)
Inventor
신용조
권우정
장윤한
장동길
Original Assignee
(주)제이에이치화학공업(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제이에이치화학공업(주) filed Critical (주)제이에이치화학공업(주)
Publication of WO2013065918A1 publication Critical patent/WO2013065918A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One embodiment of the present invention relates to a method for producing a cathode active material for a lithium secondary battery.
  • LiNiO 2 is inferior in thermal stability and charging / discharging cycle characteristics at the time of charging, and thus a new characteristic improvement is required.
  • research has been conducted on a material in which a part of Ni of LiNiO 2 is substituted with Co and Al.
  • An embodiment of the present invention can provide a method of manufacturing a positive electrode active material for an effective lithium secondary battery.
  • a method of manufacturing a lithium secondary battery comprising: mixing a lithium raw material and a nickel composite compound into a furnace; Preparing a lithium composite oxide by firing a lithium raw material and a nickel complex compound injected into the furnace; And cooling the lithium composite oxide produced in the furnace, wherein, in cooling the lithium composite oxide produced in the furnace, carbon dioxide is introduced into the furnace in a furnace, And 0.3 to 10% by volume based on the volume of the positive electrode active material for the lithium secondary battery.
  • the lithium complex oxide may be represented by the following general formula (1).
  • carbon dioxide may be introduced into the furnace in an amount of 0.5 to 7% by volume based on the volume of the furnace.
  • the firing temperature may be 600 to 1,000 ° C.
  • the firing time may be 5 to 15 hours.
  • the molar ratio of lithium in the lithium source material to the total metal atoms in the nickel composite compound may be greater than 1.
  • Ni, M1 and M2 may be Li / (Ni + M1 + M2) >
  • the step of firing the lithium source material and the nickel complex compound introduced into the furnace to produce the lithium composite oxide may be oxygen or air atmosphere.
  • a positive electrode comprising a positive electrode active material according to the above-described method for producing a positive electrode active material for a lithium secondary battery; A negative electrode comprising a negative electrode active material; And an electrolyte;
  • the present invention provides a lithium secondary battery comprising the same.
  • Fig. 1 is an explanatory diagram of firing conditions according to Embodiment 1 of the present invention.
  • Fig. 2 is an explanatory diagram of firing conditions according to the third embodiment of the present invention.
  • a method of manufacturing a lithium secondary battery comprising: mixing a lithium raw material and a nickel composite compound into a furnace; Preparing a lithium composite oxide by firing a lithium raw material and a nickel complex compound injected into the furnace; And cooling the lithium composite oxide produced in the furnace, wherein, in cooling the lithium composite oxide produced in the furnace, carbon dioxide is introduced into the furnace in a furnace, And 0.3 to 10% by volume based on the volume of the positive electrode active material for the lithium secondary battery.
  • the lithium source material may be mixed so that the amount of lithium is stoichiometrically larger than the amount of the metallic element in the lithium composite oxide.
  • the molar ratio of lithium in the lithium source material to the total metal atoms in the nickel composite compound may be more than 1.
  • lithium secondary battery is produced using such a lithium composite oxide containing lithium carbonate, lithium carbonate is decomposed to generate carbon dioxide gas under abnormal overvoltage conditions, and as a result, the internal pressure of the battery can be increased to smoothly operate the safety device of the battery .
  • the residual amount of lithium oxide may be irregular in each furnace. Therefore, lithium oxide is cross-linked with the binder (PVdF) when the positive electrode plate is produced, so that the viscosity of the slurry increases and the coating condition becomes unstable due to irregular viscosity .
  • carbon dioxide is introduced into the furnace in an amount of 0.3 to 10% by volume relative to the volume of the furnace, The remaining amount of lithium can be largely reduced, and at the same time, most of excess lithium can be changed to lithium carbonate.
  • the firing amount can be relatively increased.
  • carbon dioxide may be introduced into the furnace in an amount of 0.3 to 10% by volume based on the volume of the furnace.
  • carbon dioxide may be introduced into the furnace in an amount of 0.5 to 7% by volume based on the volume of the furnace.
  • the lithium complex oxide may be represented by the following general formula (1).
  • Nickel may be included in an embodiment of the present invention, and one embodiment of the present invention is not limited by the above-described formula (1).
  • Li Li
  • Ni + M1 + M2 Li
  • the molar ratio of Ni, M1 and M2 may be Li / (Ni + M1 + M2) > This means that when the lithium source material and the nickel complex compound are mixed as described above, the amount of lithium in the lithium source material may be stoichiometrically excessively larger than the amount of the metallic element in the lithium composite oxide.
  • the firing temperature may be 600 to 1,000 ° C.
  • the firing time may be 5 to 15 hours.
  • the step of firing the lithium source material and the nickel complex compound introduced into the furnace to produce the lithium composite oxide may be an oxygen atmosphere.
  • the positive electrode active material according to one embodiment of the present invention can be usefully used for a positive electrode of a lithium secondary battery.
  • the lithium secondary battery includes a negative electrode including a negative electrode active material together with a positive electrode; And an electrolyte.
  • the positive electrode is prepared by preparing a positive electrode active material composition by mixing a positive electrode active material, a conductive material, a binder and a solvent according to an embodiment of the present invention, and then directly coating and drying the current collector. Or by casting the positive electrode active material composition on a separate support, then peeling the support from the support, and laminating the resulting film on a current collector.
  • the binder serves to adhere the positive electrode active material particles to each other and to adhere the positive electrode active material to the current collector.
  • Typical examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl Polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-acrylonitrile, styrene-butadiene rubber, Butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, and the like, but not limited thereto.
  • the conductive material is used for imparting conductivity to the electrode. Any conductive material can be used without causing any chemical change in the battery. Examples of the conductive material include natural graphite, artificial graphite, carbon black, acetylene black, Metal powders such as black, carbon fiber, copper, nickel, aluminum, and silver, metal fibers, and the like, and conductive materials such as polyphenylene derivatives may be used alone or in combination.
  • Al As the current collector, Al may be used, but the present invention is not limited thereto.
  • the negative electrode and the positive electrode are prepared by mixing an active material, a conductive material and a binder in a solvent to prepare an active material composition and applying the composition to an electric current collector.
  • the method of manufacturing the electrode is well known in the art, and therefore, a detailed description thereof will be omitted herein.
  • the solvent N-methylpyrrolidone or the like can be used, but it is not limited thereto.
  • the non-aqueous electrolyte includes a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • a separator may exist between the positive electrode and the negative electrode.
  • the separator may be a polyethylene / polypropylene double layer separator, a polyethylene / polypropylene / polyethylene triple layer separator, a polypropylene / polyethylene / poly It is needless to say that a mixed multilayer film such as a propylene three-layer separator and the like can be used.
  • Lithium hydroxide was mixed with a nickel-based complex hydroxide containing Ni, Co and Al in a molar ratio of 80: 15: 5, respectively, so that the molar ratio of Li / (Ni + Co + Al) was 1.04.
  • carbon dioxide was introduced into the calcining furnace until the concentration of carbon dioxide reached about 5 vol%, thereby preparing a lithium composite oxide.
  • Example 1 The procedure of Example 1 was repeated except that the introduction amount of carbon dioxide was about 4 vol.% At the time of cooling.
  • Lithium carbonate was mixed with a nickel complex hydroxide containing Ni, Co and Mn in a molar ratio of 50:20:30, respectively, so that the molar ratio Li / (Ni + Co + Mn) was 1.04.
  • Carbon dioxide was introduced into the calcining furnace until the concentration of carbon dioxide reached about 5% by volume from the start of cooling after the calcination at 940 ⁇ for 15 hours in an air atmosphere.
  • Lithium hydroxide was mixed with a nickel-based complex hydroxide containing Ni, Co and Al in a molar ratio of 80: 15: 5, respectively, so that the molar ratio of Li / (Ni + Co + Al) was 1.04.
  • Lithium carbonate was mixed with a nickel complex hydroxide containing Ni, Co and Mn in a molar ratio of 50:20:30, respectively, so that the molar ratio Li / (Ni + Co + Mn) was 1.04.
  • the cathode active material prepared according to Examples 1 to 3 and Comparative Examples 1 and 2 was weighed to a weight ratio of 95.0: 2.5: 2.5 by weight of a conductive material and a binder, followed by making a slurry using solvent N-methylpyrrolidone, After standing for a certain period of time, the slurry was observed to coagulate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

리튬 이차전지용 양극 활물질의 제조 방법에 관한 것으로, 리튬 원료 물질 및 니켈 복합 화합물을 혼합하여 로(furnace)에 투입하는 단계; 상기 로(furnace)에 투입된 리튬 원료 물질 및 니켈 복합 화합물을 소성하여 리튬 복합 산화물을 제조하는 단계; 및 상기 로(furnace) 내에 제조된 리튬 복합 산화물을 냉각하는 단계; 를 포함하고, 상기 로(furnace) 내에 제조된 리튬 복합 산화물을 냉각하는 단계에서, 로(furnace) 내에 이산화탄소를 로(furnace)의 부피에 대해 0.3 내지 10부피% 투입하는 것인 리튬 이차전지용 양극 활물질의 제조 방법을 제공할 수 있다. 대표도: 도 1

Description

리튬 이차전지용 양극 활물질의 제조 방법
본 발명의 일 구현예는 리튬 이차전지용 양극 활물질의 제조 방법에 관한 것이다.
근래 AV 기기나 컴퓨터 등의 전자기기의 포터블(portable)화, 코드리스(cordless)화가 급속히 진행되고 있다. 이러한 구동용 전원으로서 소형, 경량으로 고에너지 밀도를 가지는 이차전지에의 요구가 높아지고 있다.
또한 환경에 대한 관심이 높아지면서 전기 자동차(EV), 하이브리드 자동차(HEV)의 개발 및 실용화가 이루어지고 있으며, 이로 인해 대형 용도로서 보존 특성이 우수한 리튬 이차전지의 요구가 높아지고 있다.
종래 4V급의 전압을 갖는 고에너지 형의 리튬 이차전지에 유용한 양극 활물질로는 스피넬(spinel)형 구조의 LiMn2O4, 지그재그 층상 구조의 LiMnO2, 층상 암염 구조의 LiCoO2, LiNiO2등이 일반적으로 알려져 있고, 이 중 LiNiO2를 이용한 리튬 이차전지는 높은 충방전 용량을 가지는 전지로서 주목받고 있다.
그러나 상기 LiNiO2는 충전시의 열안정성 및 충방전 사이클 특성이 떨어지기 때문에 새로운 특성 개선이 요구되고 있는 실정이다. 상기 요구 사항에 대해 LiNiO2의 Ni 일부를 Co, Al로 치환한 재료의 연구가 행해지고 있다.
이러한 니켈계 리튬 이차전지용 양극 활물질을 효과적으로 제조할 수 있는 방법에 대한 연구가 요구되고 있는 실정이다.
본 발명의 일 구현예는 효과적인 리튬 이차전지용 양극 활물질의 제조 방법을 제공할 수 있다.
본 발명의 일 구현예에서는, 리튬 원료 물질 및 니켈 복합 화합물을 혼합하여 로(furnace)에 투입하는 단계; 상기 로(furnace)에 투입된 리튬 원료 물질 및 니켈 복합 화합물을 소성하여 리튬 복합 산화물을 제조하는 단계; 및 상기 로(furnace) 내에 제조된 리튬 복합 산화물을 냉각하는 단계;를 포함하고, 상기 로(furnace) 내에 제조된 리튬 복합 산화물을 냉각하는 단계에서, 로(furnace) 내에 이산화탄소를 로(furnace)의 부피에 대해 0.3 내지 10부피% 투입하는 것인 리튬 이차전지용 양극 활물질의 제조 방법을 제공한다.
상기 리튬 복합 산화물은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
LiaNibM1cM2dO2
상기 화학식 1에서, M1 및 M2는 독립적으로 Co, Mn, Fe, Mg, Ti, Cu, Zn, Al, Ca, V, Cr 또는 Mo 중 선택되는 적어도 하나 이상의 원소이고, 0.9≤a≤1.2, b+c+d=1.0, 0.4≤b≤0.9, 0.07≤c≤0.4, 0.03≤d≤0.2 이다.
상기 로(furnace) 내에 제조된 리튬 복합 산화물을 냉각하는 단계에서, 로(furnace) 내에 이산화탄소를 로(furnace)의 부피에 대해 0.5 내지 7부피% 투입할 수 있다.
상기 로(furnace)에 투입된 리튬 원료 물질 및 니켈 복합 화합물을 소성하여 리튬 복합 산화물을 제조하는 단계에서, 상기 소성 온도는 600 내지 1,000℃일 수 있다.
상기 로(furnace)에 투입된 리튬 원료 물질 및 니켈 복합 화합물을 소성하여 리튬 복합 산화물을 제조하는 단계에서, 상기 소성 시간은 5 내지 15 시간일 수 있다.
상기 니켈 복합 화합물 내 총 금속 원자에 대한 상기 리튬 원료 물질 내 리튬의 몰비는 1 초과일 수 있다.
상기 Li; 및 Ni, M1 및 M2;의 몰비율은 Li/(Ni+M1+M2)>1 일 수 있다.
상기 로(furnace)에 투입된 리튬 원료 물질 및 니켈 복합 화합물을 소성하여 리튬 복합 산화물을 제조하는 단계는 산소 혹은 공기 분위기일 수 있다.
본 발명의 다른 일 구현예에서는, 전술한 리튬 이차 전지용 양극 활물질의 제조 방법에 의한 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전해질; 을 포함하는 리튬 이차 전지를 제공할 수 있다.
리튬 이차전지용 양극 활물질을 제조할 때 과잉으로 존재하는 리튬을 효과적으로 제거할 수 있으며, 이로 인해 소성 처리량을 증가시킬 수 있다.
도 1은 본 발명의 실시예 1 의 소성 조건 설명도이다.
도 2는 본 발명의 실시예 3 의 소성 조건 설명도이다.
도 3는 본 발명의 비교예 1 의 소성 조건 설명도이다.
도 4는 본 발명의 비교예 2 의 소성 조건 설명도이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 발명의 일 구현예에서는, 리튬 원료 물질 및 니켈 복합 화합물을 혼합하여 로(furnace)에 투입하는 단계; 상기 로(furnace)에 투입된 리튬 원료 물질 및 니켈 복합 화합물을 소성하여 리튬 복합 산화물을 제조하는 단계; 및 상기 로(furnace) 내에 제조된 리튬 복합 산화물을 냉각하는 단계;를 포함하고, 상기 로(furnace) 내에 제조된 리튬 복합 산화물을 냉각하는 단계에서, 로(furnace) 내에 이산화탄소를 로(furnace)의 부피에 대해 0.3 내지 10부피% 투입하는 것인 리튬 이차전지용 양극 활물질의 제조 방법을 제공할 수 있다.
상기 리튬 원료 물질과 니켈 복합 화합물을 혼합하는 경우 상기 리튬 원료 물질 내 리튬의 양이 상기 리튬 복합 산화물 내 금속 원소의 양보다 화학 양론적으로 과잉이 되도록 혼합할 수 있다.
즉, 상기 니켈 복합 화합물 내 총 금속 원자에 대한 상기 리튬 원료 물질 내 리튬의 몰비는 1 초과일 수 있다.
이는 과잉 리튬의 대부분은 소성 직후에는 산화리튬의 형태로 존재하지만, 소성 후 공기중의 이산화탄소와 반응하여 탄산 리튬으로 변한다. 이와 같은 탄산리튬을 함유하는 리튬 복합 산화물을 사용하여 리튬 이차전지를 만드는 경우, 이상 과전압 상황에서 탄산리튬이 분해되어 탄산가스가 발생하고, 그 결과 전지 캔 내압이 높아져서 전지의 안전 장치를 원활하게 작동시킬 수 있다.
그러나, 과잉의 리튬이 전부 탄산리튬으로 변하지 않고, 일부의 리튬이 산화리튬으로 남기 때문에, 실제의 탄산 리튬 잔존량이 이론수치를 크게 밑돌게 된다는 문제가 생길 수 있다.
게다가 산화 리튬의 잔존량이 로(furnace) 마다 불규칙할 수 있으며, 이로 인해 양극 극판을 제조할 때 산화 리튬이 바인더(PVdF)와 가교 반응하여 슬러리의 점도가 상승하고 불규칙한 점도로 인해 도포 조건이 불안정하게 될 수 있다.
본 발명의 일 구현예에서는, 상기 로(furnace) 내에 제조된 리튬 복합 산화물을 냉각하는 단계에서, 로(furnace) 내에 이산화탄소를 로(furnace)의 부피에 대해 0.3 내지 10부피% 투입하는 것에 의해 산화 리튬의 잔존량을 크게 줄임과 동시에 과잉의 리튬의 대부분을 탄산리튬으로 변화시킬 수 있다.
이로 인해, 소성 처리량도 상대적으로 증가시킬 수 있다.
상기 로(furnace) 내에 제조된 리튬 복합 산화물을 냉각하는 단계에서, 로(furnace) 내에 이산화탄소를 로(furnace)의 부피에 대해 0.3 내지 10부피% 투입할 수 있다.
상기 범위를 만족하는 경우, 효과적으로 과잉의 리튬을 탄산리튬으로 변화시킬 수 있으며, 상기 범위보다 많은 양의 이산화탄소는 생산단가를 높일 수 있다.
보다 구체적으로는, 상기 로(furnace) 내에 제조된 리튬 복합 산화물을 냉각하는 단계에서, 로(furnace) 내에 이산화탄소를 로(furnace)의 부피에 대해 0.5 내지 7부피% 투입할 수 있다.
상기 리튬 복합 산화물은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
LiaNibM1cM2dO2
상기 화학식 1에서, M1 및 M2는 독립적으로 Co, Mn, Fe, Mg, Ti, Cu, Zn, Al, Ca, V, Cr 또는 Mo 중 선택되는 적어도 하나 이상의 원소이고, 0.9≤a≤1.2, b+c+d=1.0, 0.4≤b≤0.9, 0.07≤c≤0.4, 0.03≤d≤0.2 이다.
니켈을 포함하는 리튬 복합 산화물인 경우라면 본 발명의 일 구현예로 포함될 수 있으며, 본 발명의 일 구현예가 상기 화학식 1에 의해 제한되는 것은 아니다.
상기 Li; 및 Ni, M1 및 M2;의 몰비율은 Li/(Ni+M1+M2)>1 일 수 있다. 이는 전술한 바와 같이 상기 리튬 원료 물질과 니켈 복합 화합물을 혼합하는 경우 상기 리튬 원료 물질 내 리튬의 양이 상기 리튬 복합 산화물 내 금속 원소의 양보다 화학 양론적으로 과잉이 될 수 있다는 의미이다.
상기 로(furnace)에 투입된 리튬 원료 물질 및 니켈 복합 화합물을 소성하여 리튬 복합 산화물을 제조하는 단계에서, 상기 소성 온도는 600 내지 1,000℃일 수 있다.
또한, 상기 로(furnace)에 투입된 리튬 원료 물질 및 니켈 복합 화합물을 소성하여 리튬 복합 산화물을 제조하는 단계에서, 상기 소성 시간은 5 내지 15 시간일 수 있다.
상기 로(furnace)에 투입된 리튬 원료 물질 및 니켈 복합 화합물을 소성하여 리튬 복합 산화물을 제조하는 단계는 산소 분위기일 수 있다.
본 발명 일 구현예에 따른 양극 활물질은 리튬 이차전지의 양극에 유용하게 사용될 수 있다. 상기 리튬 이차전지는 양극과 함께 음극 활물질을 포함하는 음극; 및 전해질을 포함한다.
상기 양극은 본 발명의 일 구현예에 따른 양극 활물질, 도전재, 바인더 및 용매를 혼합하여 양극 활물질 조성물을 제조한 다음, 전류 집전체 상에 직접 코팅 및 건조하여 제조한다. 또는 상기 양극 활물질 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 전류 집전체 상에 라미네이션하여 제조가 가능하다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말, 금속 섬유 등을 사용할 수 있고, 또한 폴리페닐렌 유도체 등의 도전성 재료를 1종 또는 1종 이상을 혼합하여 사용할 수 있다.
상기 전류 집전체로는 Al을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 음극과 양극은 활물질, 도전재 및 바인더를 용매 중에서 혼합하여 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에 도포하여 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N-메틸피롤리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.
본 발명 일 구현예에 따른 비수계 전해질 이차전지에서, 비수 전해질은 비수성 유기 용매와 리튬염을 포함한다.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
리튬 이차전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수 도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.
양극 활물질의 제조
실시예 1
Ni, Co 및 Al이 각각 80:15:5의 몰비율로 함유되어 있는 니켈계 복합 수산화물에 수산화 리튬을 Li/(Ni+Co+Al) 몰비가 1.04가 되도록 혼합하였다.
산소 분위기 하에서 500℃에서 3시간 가소성한 뒤, 700℃에서 10시간 소성하였다.
이후 냉각을 개시하는 시점에서부터 이산화탄소의 농도가 약 5부피% 정도가 될 때까지 소성로 내부에 이산화탄소를 도입하여 리튬 복합 산화물을 제조하였다.
실시예 2
냉각시점에서 이산화탄소의 도입량을 약 4부피% 정도가 되도록 하는 것 이외에는 실시예 1과 동일하게 실시하였다.
실시예 3
Ni, Co 및 Mn이 각각 50:20:30의 몰비율로 함유되어 있는 니켈계 복합 수산화물에 탄산리튬을 Li/(Ni+Co+Mn) 몰비가 1.04가 되도록 혼합하였다.
공기 분위기 하에서 940℃에서 15시간 소성하고, 이후 냉각을 개시하는 시점에서부터 이산화탄소의 농도가 약 5부피% 정도가 될 때까지 소성로 내부에 이산화탄소를 도입하였다.
비교예 1
Ni, Co 및 Al이 각각 80:15:5의 몰비율로 함유되어 있는 니켈계 복합 수산화물에 수산화 리튬을 Li/(Ni+Co+Al) 몰비가 1.04가 되도록 혼합하였다.
이후 산소 분위기 하에서 500℃에서 3시간 가소성한 뒤, 700℃에서 10시간 소성하였다.
비교예 2
Ni, Co 및 Mn이 각각 50:20:30의 몰비율로 함유되어 있는 니켈계 복합 수산화물에 탄산 리튬을 Li/(Ni+Co+Mn) 몰비가 1.04가 되도록 혼합하였다.
이후 공기 분위기 하에서 940℃에서 15시간 소성하였다.
상기 실시예 1 내지 3, 비교예 1 및 2에 따라 만들어진 양극활물질을 도전재 및 바인더를 중량%로 95.0:2.5:2.5 만큼 계량한 다음 용매 N-메틸피롤리돈을 사용하여 슬러리를 만들고, 이를 일정시간 방치한 뒤 슬러리가 응집이 일어나는 지를 보았다.이에 대한 결과는 다음과 같다.
[수학식 1]
전환율(%) = [잔류 탄산 리튬(중량%)]/[(잔류 탄산 리튬(중량% + 잔류 수산화 리튬(중량%)] × 100
표 1
구분 잔류 탄산 리튬(중량%) 잔류 수산화 리튬(중량%) 전환율(%) 슬러리 고화
실시예1 0.1470 0.0005 99.5 고화 안됨
실시예2 0.1463 0.0010 99.00 고화 안됨
실시예3 0.1474 0.0002 99.75 고화 안됨
비교예1 0.1193 0.0185 80.75 12시간 후 고화 됨
비교예2 0.1330 0.0096 90.00 24시간 후 고화 됨
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (9)

  1. 리튬 원료 물질 및 니켈 복합 화합물을 혼합하여 로(furnace)에 투입하는 단계;
    상기 로(furnace)에 투입된 리튬 원료 물질 및 니켈 복합 화합물을 소성하여 리튬 복합 산화물을 제조하는 단계; 및
    상기 로(furnace) 내에 제조된 리튬 복합 산화물을 냉각하는 단계;
    를 포함하고,
    상기 로(furnace) 내에 제조된 리튬 복합 산화물을 냉각하는 단계에서, 로(furnace) 내에 이산화탄소를 로(furnace)의 부피에 대해 0.3 내지 10부피% 투입하는 것인 리튬 이차전지용 양극 활물질의 제조 방법.
  2. 제1항에 있어서,
    상기 리튬 복합 산화물은 하기 화학식 1로 표시되는 것인 리튬 이차전지용 양극 활물질의 제조 방법:
    [화학식 1]
    LiaNibM1cM2dO2
    상기 화학식 1에서,
    M1 및 M2는 독립적으로 Co, Mn, Fe, Mg, Ti, Cu, Zn, Al, Ca, V, Cr 또는 Mo 중 선택되는 적어도 하나 이상의 원소이고, 0.9≤a≤1.2, b+c+d=1.0, 0.4≤b≤0.9, 0.07≤c≤0.4, 0.03≤d≤0.2 이다.
  3. 제1항에 있어서,
    상기 로(furnace) 내에 제조된 리튬 복합 산화물을 냉각하는 단계에서, 로(furnace) 내에 이산화탄소를 로(furnace)의 부피에 대해 0.5 내지 7부피% 투입하는 것인 리튬 이차전지용 양극 활물질의 제조 방법.
  4. 제1항에 있어서,
    상기 로(furnace)에 투입된 리튬 원료 물질 및 니켈 복합 화합물을 소성하여 리튬 복합 산화물을 제조하는 단계에서,
    상기 소성 온도는 600 내지 1,000℃인 것인 리튬 이차전지용 양극 활물질의 제조 방법.
  5. 제1항에 있어서,
    상기 로(furnace)에 투입된 리튬 원료 물질 및 니켈 복합 화합물을 소성하여 리튬 복합 산화물을 제조하는 단계에서,
    상기 소성 시간은 5 내지 15 시간인 것인 리튬 이차전지용 양극 활물질의 제조 방법.
  6. 제1항에 있어서,
    상기 니켈 복합 화합물 내 총 금속 원자에 대한 상기 리튬 원료 물질 내 리튬의 몰비는 1 초과인 것인 리튬 이차전지용 양극 활물질의 제조 방법.
  7. 제2항에 있어서,
    상기 Li; 및 Ni, M1 및 M2;의 몰비율은 Li/(Ni+M1+M2)>1인 것인 리튬 이차전지용 양극 활물질의 제조 방법.
  8. 제1항에 있어서,
    상기 로(furnace)에 투입된 리튬 원료 물질 및 니켈 복합 화합물을 소성하여 리튬 복합 산화물을 제조하는 단계는 산소 분위기인 것인 리튬 이차전지용 양극 활물질의 제조 방법.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 리튬 이차 전지용 양극 활물질의 제조 방법에 의한 양극 활물질을 포함하는 양극;
    음극 활물질을 포함하는 음극; 및
    전해질;
    을 포함하는 리튬 이차 전지.
PCT/KR2012/003418 2011-11-04 2012-05-02 리튬 이차전지용 양극 활물질의 제조 방법 WO2013065918A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110114599A KR20130049517A (ko) 2011-11-04 2011-11-04 리튬 이차전지용 양극 활물질의 제조 방법
KR10-2011-0114599 2011-11-04

Publications (1)

Publication Number Publication Date
WO2013065918A1 true WO2013065918A1 (ko) 2013-05-10

Family

ID=48192241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003418 WO2013065918A1 (ko) 2011-11-04 2012-05-02 리튬 이차전지용 양극 활물질의 제조 방법

Country Status (2)

Country Link
KR (1) KR20130049517A (ko)
WO (1) WO2013065918A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021091326A1 (ko) * 2019-11-08 2021-05-14 주식회사 엘지화학 가교 폴리올레핀 분리막, 가교 폴리올레핀 분리막의 제조방법 및 이를 포함하는 전기화학소자

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102395236B1 (ko) * 2017-09-26 2022-05-09 주식회사 엘지에너지솔루션 리튬 이차전지용 양극활물질의 제조방법
US11621419B2 (en) 2020-11-24 2023-04-04 Samsung Sdi Co., Ltd. Composite positive electrode active material for lithium secondary battery, method of preparing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery including the positive electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167919A (ja) * 1997-12-05 1999-06-22 Nikki Chemcal Co Ltd 高安定性リチウムイオン二次電池用正極材、製造方法およびその用途
JP2000306581A (ja) * 1999-04-21 2000-11-02 Dowa Mining Co Ltd 非水二次電池用正極活物質、その製造方法、およびそれを用いた非水二次電池
JP2004119110A (ja) * 2002-09-25 2004-04-15 Toyota Motor Corp リチウムイオン二次電池用正極活物質及びその製造方法
KR20040071852A (ko) * 2003-02-07 2004-08-16 삼성에스디아이 주식회사 카본 화합물이 흡착된 정극 활물질 및 이를 채용한 리튬전지
JP2009099462A (ja) * 2007-10-18 2009-05-07 Toyota Motor Corp 被覆正極活物質、非水系二次電池用正極、及び、非水系二次電池、並びに、これらの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167919A (ja) * 1997-12-05 1999-06-22 Nikki Chemcal Co Ltd 高安定性リチウムイオン二次電池用正極材、製造方法およびその用途
JP2000306581A (ja) * 1999-04-21 2000-11-02 Dowa Mining Co Ltd 非水二次電池用正極活物質、その製造方法、およびそれを用いた非水二次電池
JP2004119110A (ja) * 2002-09-25 2004-04-15 Toyota Motor Corp リチウムイオン二次電池用正極活物質及びその製造方法
KR20040071852A (ko) * 2003-02-07 2004-08-16 삼성에스디아이 주식회사 카본 화합물이 흡착된 정극 활물질 및 이를 채용한 리튬전지
JP2009099462A (ja) * 2007-10-18 2009-05-07 Toyota Motor Corp 被覆正極活物質、非水系二次電池用正極、及び、非水系二次電池、並びに、これらの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021091326A1 (ko) * 2019-11-08 2021-05-14 주식회사 엘지화학 가교 폴리올레핀 분리막, 가교 폴리올레핀 분리막의 제조방법 및 이를 포함하는 전기화학소자

Also Published As

Publication number Publication date
KR20130049517A (ko) 2013-05-14

Similar Documents

Publication Publication Date Title
WO2020111580A1 (ko) 리튬 이차 전지용 양극 첨가제, 이의 제조방법, 이를 포함하는 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
WO2012115411A2 (ko) 출력 특성이 향상된 혼합된 양극활물질 및 이를 포함하는 리튬 이차전지
WO2014010970A1 (ko) 고밀도 음극 활물질 및 이의 제조방법
WO2015099243A1 (ko) 붕소 화합물 함유 전극 활물질 및 이를 이용한 전기화학소자
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2021006704A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2014010973A1 (ko) 바이모달 타입의 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2010143805A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2014129720A1 (ko) 실리콘-금속 합금계 음극 활물질을 포함하는 이차전지
WO2020080800A1 (ko) 리튬 이차전지용 양극 첨가제의 제조방법 및 이로부터 제조된 리튬 이차전지용 양극 첨가제
WO2019017643A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2018194345A1 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법
WO2019088345A1 (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2013065918A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법
WO2019078506A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021225396A1 (ko) 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2014061973A1 (ko) 규소 산화물의 제조방법
WO2020153701A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2020149618A1 (ko) 음극 활물질의 제조 방법
WO2019093869A2 (ko) 이차전지용 양극 활물질의 제조방법
WO2013002559A2 (ko) 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법
WO2022085984A1 (ko) 이차 전지용 전극 및 이차 전지용 전극의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845347

Country of ref document: EP

Kind code of ref document: A1