KR101614991B1 - 리튬 이차전지용 양극활물질 - Google Patents

리튬 이차전지용 양극활물질 Download PDF

Info

Publication number
KR101614991B1
KR101614991B1 KR1020130163942A KR20130163942A KR101614991B1 KR 101614991 B1 KR101614991 B1 KR 101614991B1 KR 1020130163942 A KR1020130163942 A KR 1020130163942A KR 20130163942 A KR20130163942 A KR 20130163942A KR 101614991 B1 KR101614991 B1 KR 101614991B1
Authority
KR
South Korea
Prior art keywords
concentration
particles
active material
cathode active
surface portion
Prior art date
Application number
KR1020130163942A
Other languages
English (en)
Other versions
KR20140085347A (ko
Inventor
선양국
노형주
윤성준
Original Assignee
한양대학교 산학협력단
주식회사 에너세라믹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51735003&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101614991(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 한양대학교 산학협력단, 주식회사 에너세라믹 filed Critical 한양대학교 산학협력단
Priority to US14/652,684 priority Critical patent/US20150340686A1/en
Priority to PCT/KR2013/012213 priority patent/WO2014104759A1/ko
Publication of KR20140085347A publication Critical patent/KR20140085347A/ko
Application granted granted Critical
Publication of KR101614991B1 publication Critical patent/KR101614991B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/53Particles with a specific particle size distribution bimodal size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차전지용 양극활물질에 관한 것으로서, 더욱 상세하게는 입자 내에 농도 구배를 가지는 입자를 포함하는 서로 다른 크기의 양극활물질을 혼합하여 탭밀도가 향상된 리튬 이차전지용 양극활물질에 관한 것이다.

Description

리튬 이차전지용 양극활물질{POSITIVE-ELECTRODE ACTIVE MATERIAL FOR LITHIUM RECHARGEABLE BATTERY}
본 발명은 리튬 이차전지용 양극활물질에 관한 것으로서, 더욱 상세하게는 서로 다른 크기의 양극활물질을 혼합하여 탭밀도가 향상된 리튬 이차전지용 양극활물질에 관한 것으로서, 상기 혼합되는 양극활물질 중 적어도 하나의 입자가 입자 내에 농도 구배를 가지는 것을 특징으로 하는 리튬 이차전지용 양극활물질에 관한것이다.
최근 이동통신 및 정보전자 산업의 발달로 고용량이면서도 가벼운 리튬 이차전지의 수요가 계속 증가되고 있다. 하지만 이동기기의 다기능화에 의한 당해 기기의 에너지 소비량 증가에 따라 전지의 파워 증가 및 용량 증가의 요구는 더욱 높아지고 있다. 따라서, 전지의 C-rate 특성 증가 및 용량 증가에 관한 연구가 널리 진행되고 있다. 그러나, 두 기능은 서로 상반되는 경향이 있어서, 전지의 용량을 향상시키기 위해 로딩 양이나 전극 밀도를 향상시킬 경우, 일반적으로 전지의 C-rate 특성이 악화되는 결과가 나타난다.
리튬 이차전지는 활물질의 이온전도도를 고려하여 전극의 공극도(porosity)를 일정한 수준 이상으로 유지해 주는 것이 필요하다. 로딩 양이나 전극 밀도의 향상을 위해 전극을 높은 압연율로 압연하면, 전극의 공극도가 과도하게 줄어들어, C-rate의 급격한 감소를 유발한다.
서로 다른 입경을 가진 활물질들을 사용하는 경우에는, 적정한 압연으로도 높은 전극 밀도를 얻을 수 있지만, 공극도가 크게 줄어들어 C-rate의 급격한 감소가 초래된다. 따라서 활물질로서 우수한 방전 용량, 수명 특성, C-rate 특성 등을 갖는 리튬 전이금속 화합물을 제조하기 위하여 활물질의 종류, 입자 크기 등의 조절을 통한 탭 밀도 저하의 방지 등에 대한 연구 및 개발이 필요한 실정이다.
대한민국 등록특허 제 10-0737165 호
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 공극도를 줄이면서도 양호한 C-rate를 나타낼 수 있는 리튬 이차전지용 양극활물질을 제공하는 것을 목적으로 한다.
본 발명은 상기와 같은 과제를 해결하기 위하여 직경이 D1인 입자 P1, 직경이 D2인 입자 P2의 혼합물을 포함하는 리튬 이차전지용 양극활물질에 있어서, 상기 입자 P1, 상기 입자 P2 중 어느 하나는 하기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 것인 리튬 이차전지용 양극활물질을 제공한다.
[화학식 1]Lia1M1x1M2y1M3z1M4wO2
[화학식 2]Lia2M1x2M2y2M3z2M4wO2
(상기 화학식 1, 2에서 M1, M2 및 M3 는 Ni, Co, Mn 및 이들의 조합으로 이루어진 군에서 선택되고, M4는 Fe, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga, B 및 이들의 조합으로 이루어진 군에서 선택되며, 0<a1≤1.1, 0<a2≤1.1, 0≤x1≤1, 0≤x2≤1, 0≤y1≤1, 0≤y2≤1, 0≤z1≤1, 0≤z2≤1, 0≤w≤0.1, 0.0≤δ≤0.02, 0<x1+y1+z1≤1, 0<x2+y2+z2≤1, x1≤x2, y1≤y2, z2≤z1 이다.)
본 발명은 크기가 상이한 양극활물질 입자의 혼합물로 구성되며, 이는 입자 내에서 금속 이온의 농도가 일정한 입자와 입자 내에서 중심부 및 표면부의 조성이 상이한 입자의 혼합물로 구성되거나, 입자 내에서 중심부 및 표면부의 조성이 상이한 입자들의 혼합물로 구성된 양극활물질에 관한 것이다. 즉, 입자 크기가 서로 다른 입자를 혼합함으로써 전극 제조시 공극을 감소시켜 패킹 밀도가 증가하고 그에 따라 탭밀도가 증가하는 효과를 나타냄과 동시에, 상기 중심부 및 표면부의 조성이 상이하고 입자 내에서 농도 구배를 나타내는 입자, 즉 금속 농도의 급격한 경계가 형성되지 않아 안정한 결정구조를 가져 열 안정성이 증가된 입자를 혼합함으로써, 이에 따라 혼합물 양극활물질의 열 안정성이 높아지는 효과까지 나타내게 된다.
본 발명에 있어서, 상기 입자 P1 이 상기 화학식 1로 표시되는 중심부 및 상기 화학식 2로 표시되는 표면부를 가지고, P1의 직경 D1 과 P2의 직경 D2 는 2 내지 20 μm 이고, D1 < D2 의 관계를 만족하고, 상기 입자 P1이 양극활물질 전체 100 중량부에 대하여 5 내지 95 중량부의 비율로 포함되는 것이 가능하다.
예를 들어, 입자의 크기가 크고 금속의 농도가 일정한 입자들 사이의 공간에 입자의 크기가 작고 중심부 및 표면부의 조성이 상이한 입자가 충진되는 경우, 상기 입자의 크기가 크고 금속의 농도가 일정한 입자들에 의해 전체적으로 고출력 특성을 나타내면서도, 상기 입자의 크기가 작고 중심부 및 표면부의 조성이 상이한 입자에 의해 열적 안정성이 향상된 특성을 나타낼 수 있게 된다. 또는 입자의 크기가 크고 중심부 및 표면부의 조성이 상이한 입자 사이의 공간에 입자의 크기가 작고 중심부 및 표면부의 조성이 상이한 입자가 충진되는 경우, 열적 안정성이 높으면서도 고용량을 나타낼 수 있게 된다.
또한, 본 발명에 있어서, 상기 입자 P1 이 상기 화학식 1로 표시되는 중심부 및 상기 화학식 2로 표시되는 표면부를 가지고, P1의 직경 D1 과 P2의 직경 D2 는 2 내지 20 μm 이고, D2 < D1 의 관계를 만족하고, 상기 입자 P1이 양극활물질 전체 100 중량부에 대하여 5 내지 95 중량부의 비율로 포함되는 것이 가능하다.
예를 들어, 입자의 크기가 크고 중심부 및 표면부의 조성이 상이한 입자들 사이의 공간에 입자의 크기가 작고 금속의 농도가 일정한 입자가 충진되는 구조로, 상기 크기가 크고 중심부 및 표면부의 조성이 상이한 입자들에 의해 전체적으로 열 안정성이 향상되면서도, 상기 입자의 크기가 작고 금속의 농도가 일정한 입자에 의해 고출력 특성을 나타낼 수 있게 된다.
본 발명에 있어서, 상기 중심부 및 표면부의 조성이 상이한 리튬 이차전지용 양극활물질은 상기 중심부 및 표면부의 조성이 상이하다면 내부 구조가 한정되지 않는다. 즉, 양극활물질을 구성하는 금속의 농도가 입자의 중심부로부터 표면부까지의 전체 영역에서 연속적인 농도 구배를 형성할 수 있고, 또는 중심부와 표면부의 두께에 따라 코어-쉘 구조, 일정 부분 코어를 형성한 이후 쉘 부분에서만 농도 구배를 형성할 수도 있다.
본 발명의 상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은
상기 중심부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 10 내지 70 % 이고,
상기 중심부로부터 상기 표면부까지 금속 이온의 농도가 상기 화학식 2로 일정하게 표시되는, 즉, 농도가 일정한 코어와 쉘 구조인 것을 특징으로 한다.
본 발명에 있어서, 양극활물질을 구성하는 금속의 농도가 코어-쉘 구조를 형성하는 경우, 입자의 중심으로부터 최표면까지의 거리의 10 내지 70 %를 중심부가 차지하고, 상기 거리의 90 내지 30 %를 상기 표면부가 차지한다. 중심부가 차지하는 비율이, 상기 구경의 중심으로부터 최표면까지의 거리의 70% 이상이라면, 표면부가 너무 얇기 때문에 요철이 있는 구경의 표면을 커버할 수 없으며, 상기 구경의 중심부가 차지하는 비율이 구경의 중심으로부터 최표면까지의 거리의 10% 이하라면, 중심부의 충방전 용량의 저하, 사이클에 수반하는 용량의 저하를 일으킬 수 있다.
본 발명의 상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은
상기 중심부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 10 내지 70 % 이고,
상기 표면부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 1 내지 5 %이고,
상기 중심부로부터 상기 표면부로 갈수록 M1의 농도, M2의 농도 및 M3의 농도가 연속적인 농도 구배를 가지는 것을 특징으로 한다.
본 발명의 상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은
상기 중심부 및 상기 표면부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 1 내지 5 %이고,
상기 중심부로부터 상기 표면부로 갈수록 M1의 농도, M2의 농도 및 M3의 농도가 연속적인 농도 구배를 가지는 것을 특징으로 한다.
본 발명의 상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은 상기 M1, M2의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 증가하고, 상기 M3의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 감소하는 것을 특징으로 한다.
즉, 본 발명에 있어서, 양극활물질을 구성하는 금속의 농도가 입자의 중심에서부터 표면까지의 전체 영역에서 연속적인 농도 구배를 형성하는 경우 상기 M1, M2의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 증가하고, 상기 M3의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 감소한다. 농도 분포는 입자의 중심부에서부터 표면부까지 0.1 μm당 금속 농도의 변화가 0.05 내지 15 몰%, 바람직하게는 0.05 내지 10 몰%, 보다 바람직하게는 0.05 내지 5 몰% 차이가 있는 것을 의미한다. 또한 본 발명에 있어서, 입자 전체에 하나 이상의 농도 구배 기울기를 포함할 수 있으며, 구체적으로 입자 중심에서부터 표면까지 전체 영역에서 금속의 농도가 하나의 연속적인 농도 구배 기울기를 갖는 입자일 수 있고, 또는 입자 중심에서부터 표면까지 영역에서 금속의 농도가 두 개 이상의 서로 다른 농도 구배 기울기를 갖는 입자일 수도 있다.
본 발명의 상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은
상기 중심부 및 상기 표면부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 1 내지 5 %이고,
상기 중심부로부터 상기 표면부까지 M1의 농도는 일정하고,
상기 중심부로부터 상기 표면부로 갈수록 M2의 농도 및 M3의 농도는 연속적인 농도 구배를 가지는 것을 특징으로 한다.
본 발명에 있어서, 상기 M1은 Co, 상기 M2는 Mn, 상기 M3는 Ni인 것을 특징으로 한다.
본 발명에 있어서, 상기 M1은 Mn, 상기 M2는 Co, 상기 M3는 Ni인 것을 특징으로 한다.
본 발명에 있어서, 상기 M1은 Ni, 상기 M2는 Co, 상기 M3는 Mn인 것을 특징으로 한다.
본 발명은 또한, 상기 양극활물질을 포함하는 전극, 상기 전극을 포함하는 리튬 이차전지를 제공한다.
상술한 바와 같이 본 발명에 따른 양극활물질은 크기가 상이한 입자를 혼합함과 동시에, 혼합되는 입자 중에 금속 이온의 농도가 구배를 나타내는 입자를 포함하도록 함으로써 C-rate 특성을 높일 뿐만 아니라, 적당한 공극도를 유지하여 탭밀도가 현저히 향상된 양극 활물질을 제조할 수 있다.
도 1은 본 발명의 일 실시예에 따른 양극활물질에 있어서 혼합되는 입자의 비율에 따른 PSA 를 측정한 결과를 나타낸다.
도 2는 본 발명의 일 실시예에 따른 양극활물질에 있어서 혼합되는 입자의 비율에 따른 탭밀도를 나타낸 것이다.
도 3 및 도 4은 본 발명의 일 실시예에 따른 양극활물질의 PSA 를 측정한 결과를 나타낸다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하지만, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해되어야 한다. 아울러, 본 발명의 범위는 상기의 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어진다. 또한, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
< 제조예 1> 입자 전체에서 금속 이온이 농도 구배를 나타내는 입자의 제조
공침 반응기(용량 4L, 회전모터의 출력 80W이상)에 증류수 4 리터를 넣은 뒤 반응기의 온도를 50 ℃로 유지시키면서 1000 rpm으로 교반하였다.
Mn, Co, Ni의 농도가 모두 구배를 이루는 양극활물질을 제조하기 위해 중심부 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 90:5:5의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비하고, 표면부 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 54:15:31의 몰비로 혼합된 2.0 M 농도의 금속염 수용액을 준비한 후, 상기 중심부 형성용 금속염 수용액을 반응기에 먼저 투입하고, 여기에 상기 중심부 형성용 금속염 수용액과 상기 표면부 형성용 금속염 수용액의 혼합 비율을 점진적으로 변화시키면서 혼합하고 0.3 리터/시간의 속도로 투입하였다. 또한, 4.0 M 농도의 암모니아 용액을 0.03 리터/시간으로 반응기에 연속적으로 투입하였다. pH 조정을 위해 4.0 M 농도의 수산화나트륨 수용액을 공급하여 pH를 10으로 유지되도록 하였다. 임펠러 속도는 1000 rpm으로 조절하였다.  유량을 조절하여 용액의 반응기 내의 평균체류시간이 6 시간 정도가 되도록 하였으며, 반응이 정상상태에 도달한 후에 오버플로파이프를 통하여 리튬 이차전지용 양극활물질 전구체를 포함하는 용액을 연속적으로 얻었다.
상기 얻은 리튬 이차전지용 양극활물질 전구체를 포함하는 용액을 여과하고, 물 세척한 후에 110 ℃ 온풍 건조기에서 15 시간 건조시켜 리튬 이차전지용 양극 활물질 전구체를 제조하였다.
상기 제조한 리튬 이차전지용 양극활물질 전구체와 수산화리튬(LiOH)을 1.0:1.19의 몰비로 혼합한 후에, 2 ℃/min의 승온 속도로 가열한 후 280 ℃에서 5 시간 유지시켜 예비 소성을 수행하였으며, 뒤이어 900 ℃에서 10 시간 소성시켜 입자의 크기가 4 내지 7 μm이고 탭밀도가 1.97 g/cc로 측정된 리튬 이차전지용 양극활물질과, 입자 크기가 10 내지 14 μm이고 탭밀도가 2.42 g/cc로 측정된 리튬 이차 전지용 양극 활물질을 각각 제조하였다.
< 제조예 2> 하나의 금속의 농도가 일정하고 나머지 금속의 농도가 입자 전체에서 농도 구배를 나타내는 쉘 구조의 입자 제조
Mn의 농도가 25 %로 고정되고 Co, Ni 의 농도가 구배를 이루는 양극활물질을 제조하기 위해 중심부 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 75:00:25의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비하고, 표면부 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 55:20:25의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비한 후, 상기 중심부 형성용 금속염 수용액을 반응기에 먼저 투입하고, 여기에 상기 중심부 형성용 금속염 수용액과 상기 표면부 형성용 금속염 수용액의 혼합 비율을 점진적으로 변화시키면서 혼합하여 0.3 리터/시간의 속도로 투입하는 것을 제외하고는 상기 제조예 1과 같이 하여 Mn의 농도가 25 % 로 고정되고 Co, Ni 의 농도가 구배를 이루면서, 입자의 크기가 4 내지 6 μm이고 탭밀도가 2.03 g/cc로 측정된 리튬 이차전지용 양극활물질과, 입자크기가 10 내지 14 μm이고 탭밀도가 2.58 g/cc로 측정된 리튬 이차 전지용 양극 활물질을 제조하였다.
< 제조예 3> 입자 전체에서 농도 구배의 크기가 2개 이상인 입자 제조
Mn, Co, Ni 의 농도 구배의 크기가 2개 이상인 양극활물질을 제조하기 위해 중심부 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 80:05:15의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비하고, 제1표면부 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 70:10:20의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비하고, 제2표면부 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 55:18:27의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비한 후, 상기 중심부 형성용 금속염 수용액을 반응기에 먼저 투입하고, 여기에 상기 중심부 형성용 금속염 수용액과 상기 제1표면부 형성용 금속염 수용액의 혼합 비율을 점진적으로 변화시키면서 일정 비율로 혼합하여 0.3 리터/시간의 속도로 투입한 이후, 상기 제1표면부 형성용 금속염 수용액과 상기 제2표면부 형성용 금속염 수용액의 혼합 비율을 점진적으로 변화시키면서 일정 비율로 혼합하여 0.3 리터/시간의 속도로 투입한 것을 제외하고는 상기 제조예 1과 같이 하여 농도 구배의 크기가 2개인 입자의 크기가 6 μm이고 탭밀도가 2.17 g/cc로 측정된 리튬 이차전지용 양극활물질과, 입자크기가 10 내지 14 μm이고 탭밀도가 2.52 g/cc로 측정된 리튬 이차 전지용 양극 활물질을 제조하였다.
< 제조예 4> 코어-쉘 구조의 입자 제조
농도가 일정한 코어와 농도가 일정한 쉘로 이루어진 입자를 제조하기 위해 황산니켈, 황산코발트 및 황산망간이 95:00:05의 몰비로 혼합된 2.0 M 농도의 코어 형성용 금속 수용액을 준비하고, 쉘 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 40:20:40의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비한 후, 상기 중심부 형성용 금속염 수용액을 반응기에 먼저 투입하여 코어를 형성시키고, 여기에 상기 쉘부 형성용 금속염 수용액을 0.3 리터/시간의 속도로 투입하여 농도가 일정한 코어와 농도가 일정한 쉘로 이루어진 입자의 크기가 4 내지 6 μm이고 입자의 탭밀도가 1.67 g/cc로 측정된 활물질을 제조하였다.
< 제조예 5> 코어-농도 구배를 나타내는 쉘 구조의 입자 제조
농도가 일정한 코어와 농도 구배를 나타내는 쉘로 이루어진 입자를 제조하기 위해 황산니켈, 황산코발트 및 황산망간이 80:05:15의 몰비로 혼합된 2.0 M 농도의 코어 형성용 금속 수용액을 준비하고, 쉘 형성용 금속염 수용액으로서 황산니켈, 황산코발트 및 황산망간이 35:20:45의 몰비로 혼합된 2.0 M 농도의 금속 수용액을 준비한 후, 상기 코어 형성용 금속염 수용액을 반응기에 먼저 투입하여 코어를 형성시키고, 여기에 상기 코어 형성용 금속염 수용액과 상기 쉘 형성용 금속염 수용액의 혼합 비율을 점진적으로 변화시키면서 일정 비율로 혼합하여 0.3 리터/시간의 속도로 투입하여 입자의 크기가 4 내지 6 μm이고 탭밀도가 1.73 g/cc로 측정된 리튬 이차전지용 양극활물질과, 입자크기가 11 내지 14 μm이고 탭밀도가 2.28 g/cc로 측정된 리튬 이차 전지용 양극 활물질을 제조하였다.
< 제조예 6> 금속 이온의 농도가 일정한 입자의 제조
니켈, 코발트, 망간을 포함하고 입자 내에서 금속 이온의 농도가 일정한 입자를 제조하기 위해 황산니켈, 황산코발트 및 황산망간이 60:20:20 몰비로 혼합된 2.0 M 농도의 금속 수용액을 이용하여 입자의 크기가 5 μm이고 입자의 탭밀도가 1.67 g/cc로 측정되는 활물질을 제조하였다.
< 제조예 7> 금속 이온의 농도가 일정한 입자의 제조
입자의 크기가 3 μm이고 입자 내에서 니켈, 코발트 및 알루미늄의 농도가 일정한 NCA 입자를 제조하였다.
< 제조예 8> 금속 이온의 농도가 일정한 입자의 제조
입자의 크기가 2 μm이고 코발트 이온의 농도가 일정한 LCO 입자를 제조하였다.
< 실시예 1 내지 6>
상기 제조예 5에서 제조된 농도가 일정한 코어와 농도 구배를 나타내는 쉘을 포함하는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 아래와 같이 혼합하고 각각의 탭밀도, 전극 밀도, 및 C-rate를 측정하고 그 결과를 아래 표 1에 나타내었다.
제 1 입자 (직경) 제 2 입자 (직경) 제1 입자 :제2 입자
혼합비율(wt%)
Tap density Electrode density C-rate (5C/0.2C)
실시예 1 제조예5 (11μm) 제조예8 (2μm) 70:30 2.46 2.19 81 %
실시예 2 제조예5 (12μm) 제조예5 (4μm) 80:20 2.58 2.30 83 %
실시예 3 제조예5 (13μm) 제조예4 (6μm) 75:25 2.53 2.26 79 %
실시예 4 제조예5 (14μm) 제조예1 (5μm) 80:20 2.65 2.37 85 %
실시예 5 제조예5 (12μm) 제조예2 (5μm) 85:15 2.72 2.43 85 %
실시예 6 제조예5 (14μm) 제조예3 (6μm) 90:10 2.79 2.50 86 %
비교예 1 제조예8 (2μm) - 1.13 0.96 80 %
비교예 3 제조예5 (12μm) - 2.28 2.02 81 %
비교예 4 제조예5 (4μm) - 1.73 1.51 84 %
비교예 6 제조예1 (5μm) - 1.97 1.74 88 %
비교예 8 제조예2 (5μm) - 2.03 1.79 87 %
비교예 10 제조예3 (6μm) - 2.17 1.91 89 %
상기 표 1에서 농도가 일정한 코어와 농도 구배를 나타내는 쉘을 포함하는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 혼합하는 경우 혼합하지 않은 비교예에 비해 탭밀도 및 전극밀도가 크게 향상되면서 양호한 C-rate를 유지하는 것을 알 수 있다.
< 실시예 7 내지 12 >
상기 제조예 1에서 제조된 입자 전체에서 전체 금속의 농도가 농도 구배를 나타내는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 아래와 같이 혼합하고 각각의 탭밀도, 전극 밀도, 및 C-rate를 측정하고 그 결과를 아래 표 2에 나타내었다.
제1입자(직경) 제2입자(직경) 제1입자:제2입자
혼합비율 (wt%)
Tap density Electrode density C-rate (5C/0.2C)
실시예 7 제조예1 (11μm) 제조예8(2μm) 65:35 2.77 2.45 84 %
실시예 8 제조예1 (12μm) 제조예5(5μm) 70:30 2.73 2.44 85 %
실시예 9 제조예1 (13μm) 제조예4(4μm) 80:20 2.94 2.64 85 %
실시예 10 제조예1 (14μm) 제조예1(6μm) 85:15 2.83 2.53 87 %
실시예 11 제조예1 (13μm) 제조예2(6μm) 90:10 2.81 2.52 87 %
실시예 12 제조예1 (11μm) 제조예3(6μm) 85:15 2.79 2.50 89 %
비교예 1 제조예8(2μm) 1.13 0.96 80 %
비교예 5 제조예1(11μm) 2.42 2.15 86 %
비교예 10 제조예3(6μm) 2.17 1.92 89 %
상기 표 2에서 입자 전체에서 전체 금속의 농도가 농도 구배를 나타내는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 혼합하는 경우 혼합하지 않은 비교예에 비해 탭밀도 및 전극밀도가 크게 향상되면서 양호한 C-rate를 유지하는 것을 알 수 있다.
< 실험예 > 크기가 상이한 입자의 혼합 비율에 따른 탭밀도 측정
상기 실시예 7에서와 같이 11 μm의 입자크기를 갖는 제조예 1의 활물질과 2 μm의 입자크기를 갖는 제조예 8의 LCO 입자의 혼합 비율을 아래 표 3에서와 같이 하여 혼합하고, 각각의 혼합 비율에 따른 입도분석(PSA) 결과 및 탭밀도를 도 1 내지 도 2 및 표 3에 나타내었다.
제조예1
(11μm)
(wt%)
100 90 80 70 60 50 40 30 20 10 0
제조예8
(2μm)
(wt%)
0 10 20 30 40 50 60 70 80 90 100
PSA D10 8.50 7.67 1.49 1.24 0.82 0.72 0.37 0.28 0.26 0.25 0.36
D50 10.97 10.26 9.39 9.13 8.10 6.66 4.33 3.05 2.56 2.38 1.92
D90 13.39 13.53 12.77 12.71 12.27 11.47 9.95 10.62 8.86 8.38 5.51
Tap density
(g/cc)
2.60 2.64 2.73 2.82 2.76 2.71 2.65 2.58 2.46 2.40 2.28
< 실험예 > 농도 구배를 가지는 입자간의 혼합
상기 실시예 10에서와 같이 6 μm의 입자크기를 갖는 제조예 1에서 제조된 농도 구배를 가지는 활물질과 14 μm의 입자크기를 갖는 제조예 1에서 제조된 농도 구배를 가지는 활물질 입자를 혼합하고, 혼합후 입도 분석 및 탭밀도의 변화를 측정하고 도 3에 나타내었다.
< 실시예 13 내지 18 >
상기 제조예 2에서 제조된 입자 전체에서 Mn 의 농도가 일정하고, Ni, Co 의 농도가 구배를 나타내는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 아래와 같이 혼합하고 각각의 탭밀도, 전극 밀도, 및 C-rate를 측정하고 그 결과를 아래 표 4에 나타내었다.
제 1 입자(직경) 제 2 입자(직경) 제1 입자 :제2 입자
혼합비율(wt%)
Tap density Electrode density C-rate (5C/0.2C)
실시예 13 제조예2 (10μm) 제조예7 (3μm) 80:20 2.84 2.54 83 %
실시예 14 제조예2 (11μm) 제조예5 (5μm) 75:25 2.76 2.74 85 %
실시예 15 제조예2 (12μm) 제조예4 (4μm) 80:20 2.94 2.64 83 %
실시예 16 제조예2 (12μm) 제조예1 (6μm) 90:10 2.81 2.52 86 %
실시예 17 제조예2 (13μm) 제조예2 (4μm) 70:30 2.99 2.68 87 %
실시예 18 제조예2 (11μm) 제조예3 (6μm) 85:15 2.75 2.46 88 %
비교예 7 제조예2 (12μm) 2.58 2.30 85 %
비교예 10 제조예3 (6μm) 2.17 1.92 89 %
상기 표 4에서 입자 전체에서 Mn 의 농도가 일정하고, Ni, Co 의 농도가 구배를 나타내는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 혼합하는 경우 혼합하지 않은 비교예에 비해 탭밀도 및 전극밀도가 크게 향상되면서 양호한 C-rate를 유지하는 것을 알 수 있다.
< 실험예 > 농도 구배를 가지는 입자간의 혼합
상기 실시예 16에서와 같이 6 μm의 입자크기를 갖는 제조예 1에서 제조된 농도 구배를 가지는 활물질과 12 μm의 입자크기를 갖는 제조예 2에서 제조된 농도 구배를 가지는 활물질 입자를 혼합하고, 혼합후 입도 분석 및 탭밀도의 변화를 측정하고 도 4에 나타내었다
< 실시예 19 내지 24 >
상기 제조예 2에서 제조된 입자 전체에서 Mn, Ni, Co 의 농도가 2개 이상의 농도 구배를 나타내는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 아래와 같이 혼합하고 각각의 탭밀도, 전극 밀도, 및 C-rate를 측정하고 그 결과를 아래 표 5에 나타내었다.
제 1 입자(직경) 제 2 입자(직경) 제1 입자 :제2 입자
혼합비율(wt%)
Tap density Electrode density C-rate (5C/0.2C)
실시예 19 제조예3 (10μm) 제조예6 (5μm) 90:10 2.71 2.42 85 %
실시예 20 제조예3 (11μm) 제조예5 (6μm) 85:15 2.69 2.40 85 %
실시예 21 제조예3 (12μm) 제조예4 (4μm) 70:30 2.89 2.59 83 %
실시예 22 제조예3 (13μm) 제조예1 (5μm) 75:25 2.93 2.63 88 %
실시예 23 제조예3 (11μm) 제조예2 (5μm) 80:20 2.86 2.56 87 %
실시예 24 제조예3 (14μm) 제조예3 (6μm) 85:15 2.97 2.66 88 %
비교예 2 제조예6 (5μm) - 1.67 1.46 76 %
비교예 6 제조예1 (5μm) - 1.97 1.74 88 %
비교예 8 제조예2 (5μm) - 2.03 1.79 87 %
비교예 9 제조예3 (12μm) - 2.52 2.25 87 %
비교예 10 제조예3 (6μm) - 2.17 1.92 89 %
상기 표 5에서 입자 전체에서 Mn, Ni, Co 의 농도가 2개 이상의 농도 구배를 나타내는 입자와 상기 제조예 1 내지 8에서 제조된 입자를 아래와 같이 혼합한 경우 혼합하지 않은 비교예에 비해 탭밀도 및 전극밀도가 크게 향상되면서 양호한 C-rate를 유지하는 것을 알 수 있다.

Claims (17)

  1. 직경이 10~14μm인 D1 인 입자 P1, 직경이 2~6μm인 D2 인 입자 P2의 혼합물을 포함하는 리튬 이차전지용 양극활물질에 있어서,
    상기 입자 P1, 상기 입자 P2 중 어느 하나는 하기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 것인 리튬 이차전지용 양극활물질.
    [화학식 1]Lia1M1x1M2y1M3z1M4wO2+δ
    [화학식 2]Lia2M1x2M2y2M3z2M4wO2+δ
    (상기 화학식 1, 2에서 M1, M2 및 M3 는 각각 Ni, Co, 및 Mn이고, M4 는 Fe, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga, B 및 이들의 조합으로 이루어진 군에서 선택되며, 0<a1≤1.1, 0<a2≤1.1, 0.7≤x1≤0.95, 0.35≤x2≤0.55, 0≤y1≤0.1, 0.15≤y2≤0.2, 0.05≤z1≤0.25, 0.25≤z2≤0.45, 0≤w≤0.1, 0.0≤δ≤0.02, 0<x1+y1+z1≤1, 0<x2+y2+z2≤1, x1>x2, y1<y2, z1<z2 이다.)
  2. 제 1 항에 있어서,
    상기 입자 P2 가 상기 화학식 1로 표시되는 중심부 및 상기 화학식 2로 표시되는 표면부를 갖는 것을 포함하는 리튬 이차전지용 양극활물질.
  3. 제 2 항에 있어서,
    상기 입자 P2 가 활물질 전체 100 중량부에 대하여 5 내지 95 중량부의 비율로 포함되는 것인 리튬 이차전지용 양극활물질.
  4. 제 1 항에 있어서,
    상기 입자 P1 이 상기 화학식 1로 표시되는 중심부 및 상기 화학식 2로 표시되는 표면부를 갖는 것을 포함하는 리튬 이차전지용 양극활물질.
  5. 제 4 항에 있어서,
    상기 입자 P1 이 활물질 전체 100 중량부에 대하여 5 내지 95 중량부의 비율로 포함되는 것인 리튬 이차전지용 양극활물질.
  6. 제 1 항에 있어서,
    상기 화학식 1로 표시되는 중심부 및 상기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은
    상기 중심부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 10 내지 70 % 이고,
    상기 중심부로부터 상기 표면부까지 금속 이온의 농도가 상기 화학식 2로 일정하게 표시되는 것인 리튬 이차전지용 양극활물질.
  7. 제 1 항에 있어서,
    상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은
    상기 중심부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 10 내지 70 % 이고,
    상기 표면부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 1 내지 5 % 이고,
    상기 중심부로부터 상기 표면부로 갈수록 M1 의 농도, M2 의 농도 및 M3 의 농도가 연속적인 농도 구배를 가지는 것을 특징으로 하는 리튬 이차전지용 양극활물질.
  8. 제 1 항에 있어서,
    상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은
    상기 중심부 및 상기 표면부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 1 내지 5 % 이고,
    상기 중심부로부터 상기 표면부로 갈수록 M1 의 농도, M2 의 농도 및 M3 의 농도가 연속적인 농도 구배를 가지는 것을 특징으로 하는 리튬 이차전지용 양극활물질.
  9. 제 8 항에 있어서,
    상기 화학식 1로 표시되는 중심부 및 상기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은
    상기 M1, M2 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 증가하고, 상기 M3 의 농도는 상기 중심부로부터 상기 표면부로 갈수록 연속적인 농도 구배를 가지면서 감소하는 것인 리튬 이차전지용 양극활물질.
  10. 제 1 항에 있어서,
    상기 화학식 1로 표시되는 중심부 및 하기 화학식 2로 표시되는 표면부를 가지는 리튬 이차전지용 양극활물질은
    상기 중심부 및 상기 표면부의 두께가 상기 리튬 이차전지용 양극활물질 입자 전체 크기의 1 내지 5 % 이고,
    상기 중심부로부터 상기 표면부까지 M1 의 농도는 일정하고,
    상기 중심부로부터 상기 표면부로 갈수록 M2 의 농도 및 M3 의 농도는 연속적인 농도 구배를 가지는 것을 특징으로 하는 리튬 이차전지용 양극활물질.
  11. 삭제
  12. 삭제
  13. 삭제
  14. 제 1 항의 리튬 이차전지용 양극활물질을 포함하는 전극.
  15. 제 14 항의 전극을 포함하는 리튬 이차전지.
  16. 10~14μm의 직경을 갖는 제1 입자; 및
    2~6 μm의 직경을 갖는 제2 입자를 포함하되,
    상기 제1 입자 및 상기 제2 입자는 니켈, 코발트, 및 망간을 포함하고,
    상기 제1 입자 및 상기 제2 입자 중에서 적어도 어느 하나의 입자의 중심부에서 표면부 방향으로, 니켈의 농도는 감소하고, 코발트 및 망간의 농도는 증가되는 것을 포함하는 리튬 이차전지용 양극활물질
  17. 니켈, 코발트, 및 망간을 포함하는 제1 금속 수용액을 준비하는 단계;
    니켈, 코발트, 및 망간을 포함하되, 니켈, 코발트, 및 망간의 함량이 상기 제1 금속 수용액과 다른 제2 금속 수용액을 준비하는 단계;
    상기 제1 금속 수용액 및 상기 제2 금속 수용액을 이용하여, 니켈, 코발트, 및 망간 중에서 적어도 어느 하나의 함량이 중심부에서 표면부 방향으로 변화되고, 제1 직경을 갖는 제1 입자를 제조하는 단계;
    니켈, 코발트, 및 망간을 포함하는 제3 금속 수용액을 이용하여, 상기 제1 직경과 다른 제2 직경을 갖는 제2 입자를 제조하는 단계; 및
    상기 제1 입자 및 상기 제2 입자를 제조한 후, 상기 제1 입자 및 상기 제2 입자를 혼합하여, 상기 제1 입자의 탭 밀도 및 상기 제2 입자의 탭 밀보보다 높은 탭 밀도를 갖는 혼합물을 제조하는 단계를 포함하는 리튬 이차전지용 양극활물질의 제조 방법.
KR1020130163942A 2012-12-26 2013-12-26 리튬 이차전지용 양극활물질 KR101614991B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/652,684 US20150340686A1 (en) 2012-12-26 2013-12-26 Cathode active material for lithium secondary battery
PCT/KR2013/012213 WO2014104759A1 (ko) 2012-12-26 2013-12-26 리튬 이차전지용 양극활물질

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120153025 2012-12-26
KR1020120153025 2012-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020160046960A Division KR101812517B1 (ko) 2012-12-26 2016-04-18 리튬 이차전지용 양극활물질

Publications (2)

Publication Number Publication Date
KR20140085347A KR20140085347A (ko) 2014-07-07
KR101614991B1 true KR101614991B1 (ko) 2016-04-22

Family

ID=51735003

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020130163942A KR101614991B1 (ko) 2012-12-26 2013-12-26 리튬 이차전지용 양극활물질
KR1020160046960A KR101812517B1 (ko) 2012-12-26 2016-04-18 리튬 이차전지용 양극활물질

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020160046960A KR101812517B1 (ko) 2012-12-26 2016-04-18 리튬 이차전지용 양극활물질

Country Status (5)

Country Link
US (1) US20150340686A1 (ko)
EP (1) EP2940761B1 (ko)
KR (2) KR101614991B1 (ko)
CN (1) CN105009333B (ko)
WO (1) WO2014104759A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11901552B2 (en) 2017-12-08 2024-02-13 Posco Holdings Inc. Positive active material for lithium secondary battery and lithium secondary battery comprising same

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105229830A (zh) * 2013-02-28 2016-01-06 汉阳大学校产学协力团 锂二次电池用正极活性物质
KR101555594B1 (ko) * 2014-10-02 2015-10-06 주식회사 에코프로 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지
KR20170102293A (ko) * 2014-12-31 2017-09-08 베이징 이스프링 머티리얼 테크놀로지 컴퍼니 리미티드 리튬 이온 배터리용 분급 구조를 갖는 다성분 재료, 이의 제조 방법, 리튬 이온 배터리 및 리튬 이온 배터리의 양극
KR102460961B1 (ko) 2015-11-06 2022-10-31 삼성에스디아이 주식회사 리튬이차전지용 양극 활물질, 그 제조방법 및 이를 포함한 양극을 구비한 리튬이차전지
KR102227305B1 (ko) * 2015-11-30 2021-03-15 주식회사 엘지화학 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR102012427B1 (ko) * 2015-11-30 2019-08-21 주식회사 엘지화학 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
KR102227304B1 (ko) * 2015-11-30 2021-03-15 주식회사 엘지화학 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR102227306B1 (ko) * 2015-11-30 2021-03-15 주식회사 엘지화학 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2017138309A1 (ja) 2016-02-08 2017-08-17 ソニー株式会社 二次電池用正極活物質、二次電池用正極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR102467458B1 (ko) * 2016-11-18 2022-11-14 에스케이온 주식회사 리튬 이차 전지
DE202017007568U1 (de) * 2016-11-18 2022-11-18 Sk Innovation Co., Ltd. Lithium-Sekundärbatterie
KR102467457B1 (ko) * 2016-11-18 2022-11-14 에스케이온 주식회사 리튬 이차 전지
CN108075178B (zh) * 2016-11-18 2023-04-07 Sk新能源株式会社 锂二次电池及其制造方法
KR102449152B1 (ko) * 2017-09-19 2022-09-28 에스케이온 주식회사 리튬 이차 전지 및 이의 제조 방법
CN110050366B (zh) * 2016-12-02 2022-06-14 三星Sdi株式会社 镍活性物质前驱体、其制备方法、镍活性物质以及锂二次电池
CN110050367B (zh) * 2016-12-05 2023-09-12 浦项股份有限公司 正极活性物质及其制备方法以及包括其的锂二次电池
KR102387401B1 (ko) * 2016-12-16 2022-04-14 에스케이온 주식회사 리튬 이차 전지
US11936041B2 (en) * 2016-12-16 2024-03-19 Sk On Co., Ltd. Lithium secondary battery
WO2018117506A1 (ko) * 2016-12-22 2018-06-28 주식회사 포스코 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
US11038159B2 (en) 2017-01-31 2021-06-15 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery including lithium cobalt oxide having core-shell structure, method for producing the same, and positive electrode and secondary battery including the positive electrode active material
KR102366066B1 (ko) * 2017-03-21 2022-02-22 에스케이온 주식회사 리튬 이차 전지
KR102306545B1 (ko) * 2017-10-19 2021-09-30 주식회사 엘지에너지솔루션 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
US11063250B2 (en) * 2017-11-15 2021-07-13 Ecopro Bm Co., Ltd. Cathode active material for lithium secondary battery and lithium secondary battery comprising the same
KR20190055700A (ko) * 2017-11-15 2019-05-23 주식회사 에코프로비엠 리튬이차전지용 양극 활물질 조성물 및 이를 포함하는 리튬 이차전지
JP7049551B2 (ja) * 2017-11-21 2022-04-07 エルジー エナジー ソリューション リミテッド 二次電池用正極材及びこれを含むリチウム二次電池
ES2960557T3 (es) 2017-11-21 2024-03-05 Lg Energy Solution Ltd Material de cátodo para batería secundaria de litio, y cátodo y batería secundaria de litio que comprende el mismo
KR102331305B1 (ko) * 2017-11-21 2021-11-26 주식회사 엘지에너지솔루션 전극 조립체 및 이를 포함하는 리튬 이차전지
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11522189B2 (en) 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
KR102185126B1 (ko) * 2017-12-04 2020-12-01 삼성에스디아이 주식회사 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
KR102424398B1 (ko) 2020-09-24 2022-07-21 삼성에스디아이 주식회사 리튬 이차 전지용 양극, 그 제조 방법, 및 이를 포함한 리튬 이차 전지
US10847781B2 (en) 2017-12-04 2020-11-24 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
KR102559218B1 (ko) 2017-12-07 2023-07-25 에스케이온 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지
KR102457285B1 (ko) * 2018-01-15 2022-10-19 에스케이온 주식회사 리튬 이차 전지
KR102571672B1 (ko) * 2018-01-17 2023-08-25 에스케이온 주식회사 리튬 이차 전지
KR102472882B1 (ko) * 2018-01-18 2022-11-30 에스케이온 주식회사 리튬 이차 전지
KR102302038B1 (ko) 2018-05-11 2021-09-15 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102485994B1 (ko) * 2018-06-20 2023-01-05 에스케이온 주식회사 리튬 이차 전지 및 이의 제조 방법
JP2020004508A (ja) * 2018-06-25 2020-01-09 凸版印刷株式会社 アルカリ二次電池用負極組成物及びアルカリ二次電池用負極
KR101964716B1 (ko) 2018-06-26 2019-04-02 에스케이이노베이션 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
EP3591748A1 (en) * 2018-07-06 2020-01-08 SK Innovation Co., Ltd. Lithium secondary battery
KR102306547B1 (ko) 2018-09-14 2021-09-30 주식회사 엘지화학 리튬 이차전지용 양극재의 제조 방법 및 이에 의해 제조된 리튬 이차전지용 양극재
KR102436308B1 (ko) 2018-10-18 2022-08-24 에스케이온 주식회사 리튬 이차 전지
KR102182358B1 (ko) * 2018-11-02 2020-11-24 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN112909254B (zh) 2018-11-06 2023-06-30 Sk新能源株式会社 用于锂二次电池的正极活性材料及其制造方法
KR102453274B1 (ko) * 2018-12-10 2022-10-11 주식회사 엘지에너지솔루션 리튬이차전지용 양극재, 이를 포함하는 양극 및 리튬이차전지
US11552293B2 (en) 2019-03-05 2023-01-10 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
KR102314085B1 (ko) * 2019-03-05 2021-10-18 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20210006252A (ko) 2019-07-08 2021-01-18 주식회사 엘지화학 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
CN110255500A (zh) * 2019-07-25 2019-09-20 海南汉地阳光石油化工有限公司 一种循环氢脱氨提纯系统及方法
CN111370669B (zh) * 2020-03-19 2021-12-28 江苏中奕和创智能科技有限公司 一种动力电池复合正极的制备方法
KR102587970B1 (ko) * 2020-10-06 2023-10-10 주식회사 엘지화학 고함량의 니켈 함유 리튬 복합전이금속 산화물 양극 활물질 입자 혼합물의 제조방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100274892B1 (ko) * 1998-05-13 2001-02-01 김순택 리튬 2차전지
EP1716609B1 (en) * 2003-12-31 2018-07-25 LG Chem, Ltd. Electrode active material powder with size dependent composition and method to prepare the same
JP4859373B2 (ja) * 2004-11-30 2012-01-25 パナソニック株式会社 非水電解液二次電池
US9666862B2 (en) * 2005-02-23 2017-05-30 Lg Chem, Ltd. Secondary battery of improved lithium ion mobility and cell capacity
KR100822012B1 (ko) * 2006-03-30 2008-04-14 한양대학교 산학협력단 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지
JP5196844B2 (ja) 2007-05-14 2013-05-15 キヤノン株式会社 プローブセット、プローブ担体及び検査方法
JP5287520B2 (ja) 2008-09-02 2013-09-11 住友化学株式会社 電極活物質、電極および非水電解質二次電池
JP4972624B2 (ja) 2008-09-30 2012-07-11 日立ビークルエナジー株式会社 リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
CN102362378B (zh) 2009-02-20 2013-12-25 尤米科尔公司 在锂可充电电池中兼有高安全性和高功率的非均质正极材料
US8871113B2 (en) 2010-03-31 2014-10-28 Samsung Sdi Co., Ltd. Positive active material, and positive electrode and lithium battery including positive active material
US8911902B2 (en) * 2010-07-06 2014-12-16 Samsung Sdi Co., Ltd. Nickel-based positive electrode active material, method of preparing the same, and lithium battery using the nickel-based positive electrode active material
KR101292757B1 (ko) 2011-01-05 2013-08-02 한양대학교 산학협력단 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN103460457B (zh) * 2011-04-18 2017-02-15 株式会社Lg 化学 正极活性材料和包含所述正极活性材料的锂二次电池
CN103635431B (zh) * 2011-06-17 2016-06-01 尤米科尔公司 用核心材料的元素和一种或多种金属氧化物的混合物涂覆的锂金属氧化物粒子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11901552B2 (en) 2017-12-08 2024-02-13 Posco Holdings Inc. Positive active material for lithium secondary battery and lithium secondary battery comprising same

Also Published As

Publication number Publication date
WO2014104759A1 (ko) 2014-07-03
KR20140085347A (ko) 2014-07-07
CN105009333A (zh) 2015-10-28
EP2940761A1 (en) 2015-11-04
US20150340686A1 (en) 2015-11-26
KR101812517B1 (ko) 2017-12-28
EP2940761B1 (en) 2019-12-18
EP2940761A4 (en) 2016-08-31
CN105009333B (zh) 2018-04-17
KR20160049519A (ko) 2016-05-09

Similar Documents

Publication Publication Date Title
KR101812517B1 (ko) 리튬 이차전지용 양극활물질
CN107093740B (zh) 锂二次电池用正极活性材料前体,由其制造的正极活性材料及含该材料的锂二次电池
KR101612601B1 (ko) 리튬이차전지용 양극활물질
KR101719866B1 (ko) 리튬 이차 전지용 양극활물질
KR101605254B1 (ko) 리튬 복합 산화물 및 이의 제조 방법
KR101443996B1 (ko) 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
EP2741349B1 (en) Method for preparing a cathode active material for lithium secondary batteries.
KR20190069367A (ko) 양극 활물질, 이의 제조 방법, 및 상기 양극 활물질을 포함하는 리튬 이차 전지
KR101051066B1 (ko) 리튬이차 전지용 금속 복합 산화물 제조 방법 및 이를 포함하는 양극활물질
KR102327052B1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR20140018981A (ko) 크기 의존 조성을 갖는 포지티브 전극 재료
JP2015227263A (ja) ニッケルコバルトマンガン複合水酸化物とその製造方法
KR20130059029A (ko) 복합 금속 수산화물의 제조방법
CN114644361B (zh) 多层结构的钠离子电池正极材料及其前驱体、以及制备方法
KR20140148269A (ko) 리튬이차전지 양극활물질
KR102082516B1 (ko) 나트륨 이차 전지용 양극활물질, 이의 제조 방법 및 이를 포함하는 나트륨 이차 전지
KR20230142684A (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR102585694B1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR101375704B1 (ko) 리튬이차전지용 양극활물질 전구체 및 이의 제조방법
CN115924978B (zh) 锰基层状钠离子电池正极材料及其制备方法和应用
KR101525000B1 (ko) 리튬이차전지의 양극 활물질용 니켈-망간 복합 수산화물의 제조방법, 이에 따라 제조된 니켈-망간 복합 수산화물 및 이를 포함하는 리튬이차전지용 양극 활물질
KR101449811B1 (ko) 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20210051806A (ko) 리튬 복합 산화물
KR101632887B1 (ko) 리튬 이차 전지용 양극 활물질 전구체 및 이의 제조 방법, 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR20190090018A (ko) 양극재료, 그 제조방법 및 리튬 이온전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190415

Year of fee payment: 4