WO2009099158A1 - リチウムイオン二次電池正極活物質用の造粒体粉末の製造方法 - Google Patents

リチウムイオン二次電池正極活物質用の造粒体粉末の製造方法 Download PDF

Info

Publication number
WO2009099158A1
WO2009099158A1 PCT/JP2009/051996 JP2009051996W WO2009099158A1 WO 2009099158 A1 WO2009099158 A1 WO 2009099158A1 JP 2009051996 W JP2009051996 W JP 2009051996W WO 2009099158 A1 WO2009099158 A1 WO 2009099158A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
granulated powder
slurry
particles
positive electrode
Prior art date
Application number
PCT/JP2009/051996
Other languages
English (en)
French (fr)
Inventor
Kenji Yamada
Koji Tatsumi
Yuki Nagura
Kazuya Hiratsuka
Original Assignee
Agc Seimi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc Seimi Chemical Co., Ltd. filed Critical Agc Seimi Chemical Co., Ltd.
Priority to JP2009552521A priority Critical patent/JPWO2009099158A1/ja
Publication of WO2009099158A1 publication Critical patent/WO2009099158A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention provides a method for producing a granulated powder useful as a raw material for a positive electrode active material of a lithium ion secondary battery having high volume capacity density, filling density and safety, and excellent charge / discharge cycle durability.
  • a lithium-containing composite oxide for a positive electrode active material of a lithium ion secondary battery using the obtained granulated powder as a raw material, and a positive electrode for a lithium ion secondary battery and the lithium ion secondary containing the lithium-containing composite oxide It relates to batteries.
  • non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries that are small, lightweight, and have high energy density
  • the positive electrode active material for the non-aqueous electrolyte secondary battery include LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4, LiNi 1/3 Co 1/3 Mn 1/3.
  • a composite oxide of lithium and a transition metal such as O 2 is known.
  • a lithium ion secondary battery using lithium cobalt composite oxide (LiCoO 2 ) as a positive electrode active material and using a lithium alloy or carbon such as graphite or carbon fiber as a negative electrode can obtain a high voltage of 4V class. Therefore, it is widely used as a battery having a high energy density.
  • LiCoO 2 lithium cobalt composite oxide
  • the lithium-containing composite oxide is manufactured by preparing particles of a raw material compound having predetermined physical properties, including nickel, cobalt, manganese, and the like, mixing this with a lithium compound, and firing. . This is because, when a raw material compound having a predetermined average particle size is used, a lithium-containing composite oxide having a particle size suitable as a positive electrode active material can be produced. Further, when the particles and the lithium compound are mixed, This is because the process is easy.
  • an alkaline solution is dropped into a solution in which a compound containing an element such as nickel, cobalt, or manganese is dissolved, and the crystallized crystallized particles are filtered, washed, and dried.
  • a method has been proposed. At this time, it has been proposed to obtain crystallized particles in which several elements are co-precipitated by simultaneously crystallizing several elements (see Patent Documents 1 to 3).
  • a sodium hydroxide aqueous solution is added to a solution in which a compound containing a cobalt atom is dissolved to precipitate cobalt hydroxide particles, followed by filtration, washing, and water.
  • a method of obtaining a crystallized particle of cobalt oxide, then dispersing the crystallized particle of cobalt hydroxide, and spray-drying the resulting slurry to produce a granulated body Patent Document 7). reference). JP 2004047437 A Japanese Patent Laid-Open No. 2005-129489 JP 2007-070205 A JP 2005-123180 A Japanese Patent Laid-Open No. 2005-141983 JP 2005-251717 A JP 2002-060225 A
  • the positive electrode for a lithium ion secondary battery using the lithium-containing composite oxide produced using the above-mentioned raw material compound particles obtained by a conventional production method has a filling density, a volume capacity density, Not all of the characteristics such as heat stability (sometimes referred to as safety in the present invention) and charge / discharge cycle durability were necessarily satisfied.
  • the resulting lithium-containing composite oxide may be short-circuited due to the formation of nickel, cobalt, or manganese metal atoms, and charge / discharge may be hindered due to the presence of impurities, resulting in deterioration of battery characteristics.
  • a lithium-containing composite oxide having excellent properties could not be obtained.
  • the granulated product obtained by spray drying has sparse and dense portions inside the particles, and a granulated body having many voids inside is obtained. Moreover, since the lithium-containing composite oxide synthesized by using the granulated material as a raw material also has voids, it was impossible to obtain a lithium-containing composite oxide that was dense and had a high volume capacity density.
  • lithium-containing composite oxide is synthesized using cobalt hydroxide as a raw material.
  • it does not contain elements such as nickel, manganese, and aluminum, safety and charge / discharge cycle durability are achieved. Since it was inferior, the lithium containing complex oxide which has sufficient battery performance was not able to be obtained.
  • the conditions for uniformly co-precipitating each element and the handling of the slurry in which co-precipitated particles are dispersed are very complicated. Only by co-precipitation, a granulated body in which nickel, cobalt, manganese, aluminum and the like are uniformly present cannot be obtained.
  • lithium-containing composite oxides containing additive elements such as nickel, manganese, aluminum, etc., in addition to cobalt, are non-uniform, easy to form voids, The charge / discharge cycle durability is insufficient, and it is difficult to increase the volume capacity density and the packing density. There is also a problem that impurities derived from the raw material are not sufficiently removed.
  • a method for producing a granulated powder useful as a raw material for a lithium ion secondary battery positive electrode active material having high volumetric capacity density, filling density and safety, and excellent charge / discharge cycle durability aims at providing the manufacturing method of the lithium containing complex oxide obtained by this, the positive electrode for lithium ion secondary batteries containing the lithium containing complex oxide obtained by this manufacturing method, and a lithium ion secondary battery.
  • the gist of the present invention is as follows. (1) Ni source, Co source, and Mn source, or an aqueous solution in which Ni source, Co source, and Al source are dissolved and an alkaline aqueous solution are mixed to adjust the pH to the range of 9-14.
  • a lithium mixed powder obtained by mixing the granulated powder obtained by the production method according to any one of (1) to (11) above and a lithium compound powder is obtained in an oxygen-containing atmosphere at 600 to 1100.
  • the manufacturing method of the lithium containing complex oxide baked at ° C.
  • the lithium-containing composite oxide has the general formula Li p N x M y O z (where N represents a combination of Ni, Co, and Mn, or a combination of Ni, Co, and Al.
  • the manufacturing method of the lithium containing complex oxide as described in said (12) represented by.
  • a positive electrode for a lithium ion secondary battery comprising a positive electrode active material containing a lithium-containing composite oxide obtained by the production method according to (12) or (13), a conductive material, and a binder.
  • a lithium ion secondary battery comprising a positive electrode, a negative electrode, a nonaqueous electrolyte, and an electrolytic solution, wherein the positive electrode is the positive electrode for a lithium ion secondary battery according to (14).
  • a granulated powder useful as a raw material for a lithium-containing composite oxide for a positive electrode active material of a lithium ion secondary battery having high volumetric capacity density, filling density and safety, and excellent charge / discharge cycle durability A method for producing a lithium-containing composite oxide using a granulated powder produced by the production method, a positive electrode for a lithium ion secondary battery comprising the lithium-containing composite oxide produced by the production method, and A lithium ion secondary battery is obtained.
  • the production method of the present invention provides a lithium-containing composite oxide suitable for a lithium ion secondary battery positive electrode, which has a high volume capacity density, high safety, and excellent charge / discharge cycle durability. However, it is estimated as follows.
  • a coprecipitation slurry containing Ni, Co and Mn, or Ni, Co and Al in a uniform state can be obtained.
  • impurities such as sulfate ion, chloride ion, nitrate ion and ammonium ion derived from Ni source, Co source, Mn source and Al source can be efficiently removed from the coprecipitation slurry. .
  • the slurry containing these impurities reacts preferentially with the lithium compound in the subsequent firing process with the lithium compound, and the formation reaction of the lithium-containing composite oxide does not proceed uniformly or causes a reduction reaction to cause lithium.
  • Step 2 of the present invention since the slurry in which small particles uniformly containing the element are dispersed is spray-dried, granulated particles containing the element in a very uniform state can be obtained. Therefore, battery characteristics such as safety and charge / discharge cycle durability are improved.
  • the average particle size of the primary particles contained in the slurry obtained by the coprecipitation method is preferably a uniform and small particle of 3 ⁇ m or less, and the slurry is spray-dried and granulated.
  • the average particle diameter (D50) of the secondary particles of the granules preferably a large particle diameter of 10 to 40 ⁇ m, there is no sparse part inside the particles, and each element is present uniformly in the particles.
  • a powder is obtained. When this granulated powder is mixed with a lithium compound and fired, it is believed that it can be uniformly and densely baked without unevenness, and a lithium-containing composite oxide having a high volume capacity density and a high packing density can be obtained. It is.
  • FIG. 2 is an SEM image obtained by photographing the particle surface of the granulated particles obtained in Example 1.
  • FIG. 2 is an SEM image obtained by photographing the particle surface of the granulated particles obtained in Example 1.
  • the pH is adjusted to a range of 9 to 14 by mixing an Ni source, a Co source and an Mn source, or an aqueous solution in which an Ni source, a Co source and an Al source are dissolved and an alkaline aqueous solution.
  • the step of precipitating coprecipitated particles containing the above elements and obtaining a coprecipitated slurry in which the coprecipitated particles are dispersed is referred to as step 1 in the present invention.
  • the Ni: Co: Mn (atomic ratio) is preferably 10 to 80:10 to 80:10 to 80, and more preferably 15 to 70:15 to 70:15 to 70 is more preferable, and 20 to 60:20 to 50:20 to 60 is particularly preferable.
  • the Ni: Co: Al (atomic ratio) is preferably 50 to 96: 5 to 50: 1 to 20, particularly 60 to 87:10 to 40: 3. ⁇ 10 are preferred.
  • the Ni source, the Co source and the Mn source, or the aqueous solution in which the Ni source, the Co source and the Al source are dissolved may further contain an M element as an element other than the element dissolved in the aqueous solution.
  • This M element is at least one selected from the group consisting of transition metal elements other than these elements, Sn, Zn, Al, and alkaline earth metal elements, when Ni source, Co source and Mn source are used.
  • At least one selected from the group consisting of Ti, Zr, Hf, V, Nb, W, Ta, Mo, Sn, Zn, Mg, Ca, Ba, and Al is preferable.
  • at least one selected from the group consisting of Ti, Zr, Hf, Mg, and Al is more preferable, and Zr is particularly preferable from the standpoints of capacity development, safety, charge / discharge cycle characteristics, and the like.
  • the M element is at least one element selected from the group consisting of transition metal elements other than these elements, Sn, Zn and alkaline earth metal elements.
  • the group consisting of Ti, Zr, Hf, V, Nb, W, Ta, Mo, Sn, Zn, Mg, Ca and Ba is preferable.
  • at least one selected from the group consisting of Ti, Zr, Hf, and Mg is more preferable, and Zr is particularly preferable from the standpoints of capacity development, safety, charge / discharge cycle characteristics, and the like.
  • the M element is sometimes referred to as an additive element.
  • a slurry in which small particles are uniformly dispersed, containing elements such as nickel, cobalt, manganese or aluminum and an additive element in a uniform state is obtained. be able to.
  • spray drying the slurry that exists in a state where these elements are uniformly mixed it is possible to obtain a granulated body in which each element exists extremely uniformly.
  • the granulated powder is mixed with a lithium compound as a raw material, and then fired to obtain a lithium-containing composite oxide in which additive elements are uniformly distributed throughout the particles and safety and charge / discharge cycle durability are extremely improved. be able to.
  • precipitated particles uniformly containing Ni, Co and Mn, or Ni, Co and Al can be precipitated, and a precipitated slurry in which the precipitated particles containing Ni, Co and Mn, or Ni, Co and Al are dispersed is obtained (this book).
  • this step is referred to as step 1).
  • the pH range is more preferably 10-13. Furthermore, it is desirable to adjust the fine range of pH according to the combination of elements to be precipitated.
  • the compound serving as the Ni source, Co source, Mn source, and Al source is not particularly limited as long as it is water-soluble, and examples thereof include inorganic salts such as sulfates, chlorides, nitrates, and ammonium salts.
  • examples of the Co source include cobalt sulfate, cobalt chloride, cobalt nitrate, and cobalt ammonium sulfate.
  • examples of the Ni source include nickel sulfate, nickel chloride, nickel nitrate, nickel ammonium sulfate, and the like.
  • Examples of the Mn source include manganese sulfate, manganese chloride, manganese nitrate, and manganese ammonium sulfate.
  • Al source examples include aluminum sulfate, aluminum chloride, and aluminum nitrate.
  • inorganic salts such as a sulfate, a chloride, nitrate, ammonium salt, are illustrated. More specifically, magnesium sulfate, magnesium chloride, magnesium nitrate, etc. can be used as the Mg source.
  • Zr source zirconium sulfate, zirconium chloride, zirconyl nitrate and the like can be used.
  • Ti source titanium sulfate, titanium chloride, or the like can be used.
  • the alkali aqueous solution is preferably a hydroxide aqueous solution such as a sodium hydroxide aqueous solution, a lithium hydroxide aqueous solution, a potassium hydroxide aqueous solution or an ammonium hydroxide aqueous solution, and particularly preferably an alkali metal hydroxide aqueous solution.
  • a hydroxide aqueous solution such as a sodium hydroxide aqueous solution, a lithium hydroxide aqueous solution, a potassium hydroxide aqueous solution or an ammonium hydroxide aqueous solution, and particularly preferably an alkali metal hydroxide aqueous solution.
  • an aqueous sodium hydroxide solution or an aqueous lithium hydroxide solution is preferred.
  • Such an alkaline aqueous solution is preferably introduced so as to precipitate Ni, Co, Mn, Al, or the like and at the same time keep the pH in the system constant.
  • an aqueous solution such as an aqueous ammonia solution, ammonium sulfate, or ammonium chloride can be added in order to keep the pH constant and to provide a buffering effect.
  • the coprecipitation slurry obtained in Step 1 is desalted (in the present invention, this step is referred to as Step 2).
  • the coprecipitation slurry contains impurities such as a Ni source used as a raw material; a Co source; a Mn source or an Al source and a compound containing an M element, such as sulfate ion, chloride ion, nitrate ion, ammonium ion, By the desalting treatment, these impurities in the coprecipitation slurry are removed.
  • Lithium-containing composite oxides using the resulting granulated product as a raw material by spray drying the coprecipitation slurry containing these impurities are low in safety and charge / discharge cycle durability, thus solving the problems of the present invention. It is not possible. This is because the lithium compound preferentially reacts with these impurities during firing with the lithium compound (this step is also referred to as step 4 in the present invention), and the formation reaction of the lithium-containing composite oxide is uniform. This is probably because a side reaction occurs in which impurities other than the lithium-containing composite oxide are generated by causing a reduction reaction to occur.
  • the means for desalting is not particularly limited.
  • a method using an ultrafiltration membrane, a method using a pressure filter, and a belt filter are used. Examples thereof include a method and a method using a filter press. Of these, filter press, belt filter, and ultrafiltration are preferable, and ultrafiltration is particularly preferable.
  • the coprecipitation slurry is supplied to the raw water tank, and then the coprecipitation slurry is circulated through the ultrafiltration apparatus while applying pressure by a pump.
  • pure water is preferably added so as to keep the liquid amount constant while discharging impurity ion-containing water.
  • impurities such as ions in the coprecipitation slurry can be sufficiently removed by circulating the slurry until the conductivity of the discharged ion-containing water is sufficiently lowered.
  • various types such as a hollow fiber type and a flat membrane type, can be used for the ultrafiltration membrane, a general-purpose hollow fiber type is more preferable.
  • the hollow fiber type ultrafiltration membrane include “Microza SIP-1053” (manufactured by Asahi Kasei Corporation).
  • desalting is performed by ultrafiltration, a concentrated desalting slurry can be obtained.
  • a centrifugal separation As a means for desalting, a centrifugal separation, a vacuum drying filter, a filter press or a belt filter can be used.
  • a centrifugal separation filter presses or belt filters are used, if the solid content concentration of the desalted slurry is 30 to 60% by weight, it becomes a wet cake slurry and is easy to handle.
  • the desalting state of the slurry can be evaluated by the conductivity of the ion-containing water to be discharged, regardless of which apparatus is used.
  • the conductivity of the discharged ion-containing water is preferably 100 ⁇ S / cm or less, more preferably 50 ⁇ S / cm or less, It is especially preferable that it is 15 ⁇ S / cm or less.
  • the solids concentration can be adjusted by diluting the desalted slurry. Moreover, at the time of this dilution, you may disperse
  • the present invention has a step of obtaining a substantially spherical granulated powder by spray drying the desalted slurry obtained in step 2 (this step is referred to as step 3 in the present invention).
  • step 3 as a method of spray drying, it is preferable to perform spray drying using a spray dryer.
  • the particle size can be divided by adjusting the operating conditions. Further, a four-fluid nozzle that can easily make a particle size depending on the amount of spray air is preferable.
  • the particle size of primary particles of coprecipitated particles dispersed in the desalting slurry used for spray drying is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, further preferably 1 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less.
  • the primary particle diameter of the coprecipitated particles is preferably 0.005 ⁇ m or more, and more preferably 0.01 ⁇ m or more.
  • the particle size of the primary particles of the coprecipitated particles can be determined by observing with a scanning electron microscope (sometimes referred to as SEM in the present invention).
  • an ultra-high-resolution field emission scanning electron microscope (sometimes referred to as FE-SEM in the present invention).
  • the surface of the granulated particles is observed with an SEM, or the granulated particles are embedded in a thermosetting resin such as an epoxy resin, polished, and the cross section of the particles is observed with an SEM. It can be obtained by doing.
  • the magnification of SEM can be easily selected depending on the primary particle size, but it is preferable to use an image observed at a magnification of 10,000 to 50,000 times. From the observed image, image analysis software (for example, image analysis software Macview ver3.5 manufactured by Mountec Co., Ltd.) is used to measure 100 to 300 particles, and the equivalent circle diameter is obtained to obtain the particle size of the primary particles. It is done.
  • the solid content concentration of the desalting slurry used for spray drying is preferably 10% by weight or more, more preferably 20% by weight or more, still more preferably 30% by weight or more, and particularly preferably 40% by weight or more. Further, the solid content concentration of the desalted slurry is preferably 70% by weight or less, and more preferably 60% by weight or less. When the solid content concentration is within this range, the size of droplets to be sprayed can be easily adjusted, and the particle size of the granulated particles can be easily adjusted. Furthermore, inside the particles, the particles are uniformly distributed without being sparsely or densely biased. Further, it is preferable that the solid content concentration is high because productivity and production efficiency are high, and since water in the slurry is small, energy required for spray drying is also reduced.
  • the solid content concentration is determined as follows. First, a part of the desalted slurry is taken and the weight of the taken slurry is measured, and then the taken slurry is dried at 100 ° C. to measure the weight of the dry powder. The solid content concentration can be determined by dividing the weight of the measured dry powder by the weight of the collected slurry.
  • the viscosity of the desalted slurry used for spray drying is preferably 2 to 1000 mPa ⁇ s, more preferably 2 to 500 mPa ⁇ s, still more preferably 4 to 300 mPa ⁇ s, and particularly preferably 6 to 100 mPa ⁇ s.
  • the viscosity is lower than 2 mPa ⁇ s, the solid content concentration of the desalting slurry is low, or the particle size of the dispersed coprecipitated particles is large, so it becomes impossible to obtain a spherical uniform granulated product, It is not preferable.
  • the viscosity is higher than 1000 mPa ⁇ s, the fluidity of the slurry is poor, and it is not preferable because the solution cannot be transported or transported to the nozzle of the spray dryer or the nozzle is blocked. This is particularly noticeable in a slurry having a high solid content concentration of 20% by weight or more.
  • the viscosity of the desalted slurry is generally measured by a rotary viscometer or a vibration viscometer, but the value may vary greatly depending on the type of viscometer and measurement conditions.
  • a Brookfield digital rotational viscometer DV-II + LV type is used with a small sample unit and measured under conditions of 25 ° C. and 30 rpm.
  • the viscosity is 100 mPa ⁇ s or less, the spindle no. 18 is used, and in the case of 100 mPa ⁇ s or more, the spindle No. 31 is 1000 mPa ⁇ s or higher, the spindle no. 34.
  • a dispersant can be appropriately added to the slurry in order to increase the solid content concentration and lower the viscosity.
  • the dispersant general dispersants such as polycarboxylic acid type polymer surfactants, ammonium salts of polycarboxylic acid type polymer surfactants, and polyacrylates can be used.
  • gas is generated during firing, voids are formed inside the particles of the obtained lithium-containing composite oxide, and the packing density and volume capacity density may be lowered. Therefore, when adding a dispersant, it is preferable to add an appropriate amount of the dispersant.
  • the average particle size (D50) of the granulated powder obtained by spray drying is preferably 10 to 40 ⁇ m, more preferably 13 to 30 ⁇ m, and even more preferably 15 to 25 ⁇ m.
  • the average particle size is smaller than 10 ⁇ m, the resulting lithium-containing composite oxide has a small particle size and a low packing density, which is not preferable.
  • the average particle diameter is more than 40 ⁇ m, it becomes difficult to apply the current to a current collector such as an aluminum foil, the applied electrode is scratched, or the positive electrode active material is peeled off from the current collector. It is difficult to make a secondary battery.
  • the average particle size (D50) is a cumulative 50% value of the volume particle size distribution obtained by a laser scattering particle size distribution measuring apparatus (for example, using Microtrack HRAX-100 manufactured by Nikkiso Co., Ltd.). means.
  • the average particle size (D50) may be simply referred to as an average particle size.
  • D10 described later means a cumulative value of 10%
  • D90 means a cumulative value of 90%.
  • the solvent needs to be selected so that the granulated material dissolves into the solvent and does not redisperse.
  • acetone is used as the solvent.
  • the D10 of the granulated powder is preferably 3 to 13 ⁇ m, more preferably 5 to 11 ⁇ m.
  • the granulated powder maintains its shape and becomes a lithium-containing composite oxide having a particle size distribution that is easy to be filled in the firing of step 4, and thus has a high packing density and volume capacity density. Since lithium containing complex oxide is obtained, it is preferable.
  • D10 is smaller than 3 ⁇ m, a plurality of small particles are collected and burnt into a rugged shape, which is not preferable because the packing density of the lithium-containing composite oxide is lowered.
  • D10 exceeds 13 ⁇ m, there is no small particle in the particle size distribution of the lithium-containing composite oxide, which is not preferable because the packing density is lowered.
  • D90 of the granulated powder in the present invention is preferably 70 ⁇ m or less, more preferably 60 ⁇ m or less, and further preferably 50 ⁇ m or less. It is preferable that D90 is 70 ⁇ m or less because the application of the positive electrode active material to the electrode is facilitated.
  • a granule that is a raw material The powder is required to be densely baked in the firing in step 4, and is characterized by obtaining a granulated powder suitable for it.
  • the granulated powder preferably has a high porosity and a porosity of 60% or more. More preferably, it is 65% or more, and more preferably 70% or more. The porosity is preferably 90% or less, more preferably 85% or less.
  • lithium atoms can easily permeate into the granulated body, the reaction can be promoted uniformly, and a lithium-containing composite oxide with a dense particle as a whole can be obtained.
  • the porosity is low and less than 60%, there are few voids in the particles, the reaction can be biased on the surface and inside during the synthesis of the lithium-containing composite oxide, and the densification of the particles does not progress uniformly, The filling density of the lithium-containing composite oxide is low, and the volume capacity density is low, which is not preferable.
  • the porosity refers to a fine pore volume that is half of the cumulative pore volume when mercury is injected at a pressure of 0.1 kPa to 400 MPa using a mercury porosimeter and mercury is injected at a pressure of 0.1 kPa to 400 MPa. It means the numerical value of the pore diameter.
  • the upper limit of the average pore diameter of the granulated powder is preferably 1 ⁇ m, more preferably 0.8 ⁇ m, further preferably 0.5 ⁇ m, and particularly preferably 0.3 ⁇ m.
  • the lower limit of the average pore diameter of the granulated powder is preferably 0.01 ⁇ m, more preferably 0.05 ⁇ m, and particularly preferably 0.1 ⁇ m.
  • the average pore diameter means the average value of the distribution obtained by measuring the size of pores formed in the gaps between the particles constituting the granulated powder.
  • the average pore diameter can be measured by a mercury intrusion method using a mercury porosimeter.
  • FIG. 1 it can be seen from FIG. 1 that the primary particles forming the granulated particles are very small particles, and as described above, the porosity of the granulated particles of the present invention is high and the average pore diameter is small. .
  • the granulated powder in the present invention is substantially spherical.
  • the substantially spherical shape does not necessarily need to be a true sphere, and includes those having a high sphericity and those having a substantially spherical shape.
  • the aspect ratio is preferably 1.20 or less, more preferably 1.15 or less, and particularly preferably 1.10 or less.
  • the aspect ratio is preferably 1 or more.
  • the aspect ratio of the particles in the present invention can be determined by observing a photograph with an SEM. Specifically, the granulated particles are embedded in an epoxy thermosetting resin, the particle cross section is cut and polished, and the cross section of the particles is observed. 100 to 300 granule particle cross sections are measured with a SEM at a magnification of 500 times. At this time, all particles appearing in the image are to be subjected to particle size measurement.
  • the aspect ratio is a value obtained by dividing the longest diameter of each particle by the vertical diameter of the longest diameter, and the average value thereof is the aspect ratio in the present invention. In the examples, the measurement was performed using image analysis software Macview ver3.5 manufactured by Mountec. From FIG. 2, it can be seen that the granulated particles obtained by the present invention have high sphericity.
  • the granulated powder has high fluidity and preferably has an angle of repose of 60 ° or less, more preferably 55 ° or less, and further preferably 50 ° or less.
  • the angle of repose is more than 60 °, the lithium-containing composite oxide tends to have a low packing density and a low volume capacity density.
  • the lower limit of the angle of repose is preferably 30 °, more preferably 40 °.
  • a lithium-containing composite oxide synthesized from a granulated powder having high fluidity is preferable because it has a high packing density and volume capacity density.
  • the granulated powder is preferably a hydroxide, oxyhydroxide, oxide, or sulfate, more preferably a hydroxide or oxyhydroxide, and more preferably a hydroxide. Particularly preferred.
  • step 4 After mixing the granulated powder containing Ni, Co and Mn or Ni, Co and Al obtained in step 3 and the lithium compound powder, firing is performed at 600 to 1100 ° C. in an oxygen-containing atmosphere. As a result, a lithium-containing composite oxide can be obtained (step 4).
  • lithium compound powder lithium carbonate, lithium hydroxide, lithium nitrate, or the like can be used. Among them, lithium carbonate that is easy to handle and inexpensive is preferable.
  • the lithium mixture obtained by mixing the granulated powder and the lithium compound is fired at 600 to 1100 ° C., but the lower limit is preferably 700 ° C., more preferably 800 ° C., more preferably 1000 ° C., and then 1010. Preferred in the order of 10 ° C and 1030 ° C.
  • the upper limit of the firing temperature is preferably 1070 ° C and more preferably 1050 ° C.
  • the lithium-containing composite oxide for the positive electrode active material of the lithium ion secondary battery produced in the present invention is represented by the general formula Li p N x M y O z .
  • p, x, y, and z are as follows. 0.9 ⁇ p ⁇ 1.5, preferably 0.95 ⁇ p ⁇ 1.45, 0.96 ⁇ x ⁇ 2.00, preferably 0.98 ⁇ x ⁇ 1.10, 0 ⁇ y ⁇ 0. 04, preferably 0 ⁇ y ⁇ 0.04, more preferably 0 ⁇ y ⁇ 0.03, 1.9 ⁇ z ⁇ 4.2, preferably 1.95 ⁇ z ⁇ 2.05.
  • N and M in a formula mean the N element and M element which were used when manufacturing the granulated body of this invention, respectively.
  • the press density of the lithium-containing composite oxide of the present invention is preferably 2.8 to 3.3 g / cm 3 , particularly preferably 2.9 to 3.2 g / cm 3 .
  • the press density in the present invention refers to the apparent press density when 5 g of the particle powder is pressed at a pressure of 0.32 t / cm 2 .
  • the method of obtaining the positive electrode for lithium ion secondary batteries using the lithium containing complex oxide of this invention can be implemented in accordance with a conventional method.
  • the positive electrode mixture is formed by mixing the positive electrode active material powder of the present invention with a carbon-based conductive material such as acetylene black, graphite, or ketjen black and a binder.
  • a carbon-based conductive material such as acetylene black, graphite, or ketjen black
  • a binder polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is used.
  • a slurry in which the above positive electrode mixture is dispersed in a dispersion medium such as N-methylpyrrolidone is applied to a positive electrode current collector such as an aluminum foil, dried, and press-rolled to form a positive electrode active material layer on the positive electrode current collector.
  • the solute of the electrolyte solution is ClO 4 ⁇ , CF 3 SO 3 ⁇ , BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ . It is preferable to use any one or more of lithium salts having CF 3 CO 2 ⁇ , (CF 3 SO 2 ) 2 N ⁇ and the like as anions.
  • an electrolyte composed of a lithium salt is preferably added to the solvent or solvent-containing polymer at a concentration of 0.2 to 2.0 mol / L.
  • the ionic conductivity is lowered and the electrical conductivity of the electrolyte is lowered. More preferably, 0.5 to 1.5 mol / L is selected.
  • porous polyethylene or porous polypropylene film is used for the separator.
  • a carbonate ester is preferable as the solvent of the electrolyte solution.
  • the carbonate ester can be either cyclic or chain.
  • cyclic carbonates include propylene carbonate and ethylene carbonate (EC).
  • chain carbonate include dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like.
  • the carbonate ester may be used alone or in combination of two or more. Moreover, you may mix and use with another solvent.
  • discharge characteristics, cycle durability, and charge / discharge efficiency may be improved.
  • a gel polymer electrolyte is added. It is also good.
  • the negative electrode active material of a lithium ion secondary battery using the positive electrode active material of the present invention for the positive electrode is a material that can occlude and release lithium ions.
  • the material for forming the negative electrode active material is not particularly limited.
  • the carbon material those obtained by pyrolyzing an organic substance under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, flake graphite, and the like can be used.
  • the oxide a compound mainly composed of tin oxide can be used.
  • the negative electrode current collector a copper foil, a nickel foil or the like is used.
  • the shape of the lithium ion secondary battery using the positive electrode active material in the present invention is not particularly limited.
  • a sheet shape (so-called film shape), a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is selected depending on the application.
  • Example 1 (Example) 112.47 g of cobalt sulfate heptahydrate with a cobalt content of 20.96 wt%, 105.23 g of nickel sulfate hexahydrate with a nickel content of 22.31 wt%, and manganese sulfate pentahydrate with a manganese content of 22.71 wt% 96.76 g was dissolved in 500 g of distilled water to prepare an aqueous solution containing cobalt, nickel and manganese in which cobalt, nickel and manganese were uniformly dissolved.
  • the slurry was supplied to the raw water tank of the ultrafiltration device.
  • the slurry is circulated in the ultrafiltration device and the water content is kept constant so that the solid content concentration of the slurry becomes 10% by weight while discharging the ion-containing water.
  • Distilled water was added to maintain. While maintaining this state, the slurry was continuously circulated in the ultrafiltration device until the conductivity of the discharged ion-containing water reached 15 ⁇ S / cm. Desalination was performed by performing a desalting operation to remove impurities such as ions in the slurry. Further, the addition of distilled water was stopped, and the slurry was concentrated to obtain a desalted slurry.
  • the ultrafiltration membrane As the ultrafiltration membrane, “Microza SIP-1053” manufactured by Asahi Kasei Co., Ltd. was used.
  • the desalting slurry had a viscosity of 42 mPa ⁇ s, and the solid concentration measured by separating the slurry and drying at 100 ° C. was 15% by weight.
  • a spray dryer 500 g of the desalted slurry was dried while granulating to obtain a dry granulated powder composed of hydroxides containing cobalt, nickel and manganese elements.
  • a spray dryer “GB22” manufactured by Yamato Scientific Co., Ltd. was used. The operating conditions were a slurry supply rate of 10 g / min, a spray gas pressure of 0.15 MPa, and a gas temperature of 180 ° C.
  • FIG. 1 An SEM image obtained by photographing the particle surface of this granulated body is shown in FIG. 1, and an SEM image obtained by photographing the granulated particle powder is shown in FIG. FIG. 2 shows that the granulated particles have high sphericity.
  • FIG. 2 shows that the granulated particles have high sphericity.
  • the average particle diameter of the primary particles of the coprecipitated particles measured using image analysis software Macview ver3.5 manufactured by Mountec Co., Ltd. was 0.28 ⁇ m.
  • the average particle diameter of the secondary particles was 18.2 ⁇ m, D10 was 7.0 ⁇ m, and D90 was 41.3 ⁇ m.
  • the dry granulated powder has a porosity of 78%, an average pore diameter of 0.13 ⁇ m, an aspect ratio of 1.12 and an angle of repose of 58 °, and the total content of nickel, cobalt and manganese is 60.5 wt. %Met.
  • the obtained lithium-containing composite oxide powder was observed with an SEM, it was found that primary particles of 0.5 to 3 ⁇ m aggregated to form substantially spherical secondary particles.
  • the average particle size of the lithium-containing composite oxide powder was 15.6 ⁇ m, D10 was 6.8 ⁇ m, and D90 was 28.8 ⁇ m.
  • the specific surface area was 0.45 m 2 / g.
  • the lithium-containing composite oxide powder, acetylene black, and polyvinylidene fluoride powder were mixed at a weight ratio of 90/5/5, and N-methylpyrrolidone was added to prepare a slurry, with a thickness of 20 ⁇ m.
  • the aluminum foil was coated on one side using a doctor blade. Subsequently, it dried and the positive electrode sheet
  • a punched sheet of the positive electrode body is used as the positive electrode
  • a metal lithium foil having a thickness of 500 ⁇ m is used as the negative electrode
  • a nickel foil of 20 ⁇ m is used as the negative electrode current collector
  • a porous material having a thickness of 25 ⁇ m is used as the separator.
  • Polypropylene is used, and the electrolyte solution is a LiPF 6 / EC + DEC (1: 1) solution having a concentration of 1 M (meaning a mixed solution of EC and DEC in a weight ratio (1: 1) containing LiPF 6 as a solute).
  • Two similar stainless-cell closed cell type lithium batteries were assembled in an argon glove box using the same solvent.
  • the one battery is charged to 4.3 V at a load current of 30 mA per 1 g of the positive electrode active material at 25 ° C., and discharged to 2.5 V at a load current of 30 mA per 1 g of the positive electrode active material. Asked. Moreover, about this battery, the charging / discharging cycle test was performed 30 times continuously. As a result, the initial weight capacity density of the positive electrode at 25 ° C. and 2.5 to 4.3 V was 154 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 94.3%.
  • the volume capacity density which can be calculated by multiplying the press density and the initial weight capacity density, was 460 mAh / cm 3 .
  • Example 2 (Example) 112.47 g of cobalt sulfate heptahydrate having a cobalt content of 20.96 wt%, 105.23 g of nickel sulfate hexahydrate having a nickel content of 22.31 wt%, and manganese sulfate pentahydrate having a manganese content of 22.71 wt% Cobalt, nickel, manganese and zirconium in which cobalt, nickel, manganese and zirconium were uniformly dissolved by dissolving 5.80 g of zirconium sulfate tetrahydrate having a zirconium content of 19.05% by weight in 96 g of distilled water.
  • a containing aqueous solution was prepared. 1 L of distilled water was put into a 2 L glass reactor, and the above-mentioned aqueous solution containing cobalt, nickel, manganese and zirconium was added at a feed rate of 10 g / min, and 48 weight was maintained so that the pH in the system was maintained at 11.0. % Sodium hydroxide aqueous solution and distilled water were intermittently added to precipitate a hydroxide containing cobalt, nickel, manganese and zirconium, thereby preparing 2.2 kg of a slurry of the hydroxide powder.
  • Example 2 Except that the concentration of hydroxide present in the slurry was 5% by weight, the same operation as in Example 1 was performed, and a granulated powder was obtained through a desalting slurry.
  • the desalting slurry obtained in the middle had a viscosity of 55 mPa ⁇ s and a solid content concentration of 17% by weight.
  • the obtained granulated powder was observed with an SEM, it was found that primary particles of 0.02 to 0.75 ⁇ m aggregated to form substantially spherical secondary particles.
  • the average particle diameter of primary particles of the coprecipitated particles was 0.24 ⁇ m.
  • the average particle diameter of the secondary particles was 16.0 ⁇ m, D10 was 5.5 ⁇ m, and D90 was 36.5 ⁇ m.
  • the granulated powder has a porosity of 83%, an average pore diameter of 0.13 ⁇ m, an aspect ratio of 1.07, an angle of repose of 55 °, and a total content of nickel, cobalt, manganese and zirconium of 60. It was 8% by weight.
  • the granulated powder was mixed with 8.19 g of lithium carbonate having a lithium content of 18.7% by weight, and the resulting mixture powder was fired at 1000 ° C. for 16 hours in an oxygen-containing atmosphere. Thereafter, the mixture was pulverized to obtain a substantially spherical lithium-containing composite oxide powder having a composition of Li 1.024 Ni 0.322 Co 0.322 Mn 0.322 Zr 0.01 O 2 .
  • the obtained lithium-containing composite oxide powder was evaluated in the same manner as in Example 1.
  • the half value width of the diffraction peak of (110) plane was 0.178 °, and the press density was 2.92 g / cm 3 .
  • the obtained lithium-containing composite oxide powder was observed with an SEM, it was found that primary particles of 0.5 to 3 ⁇ m aggregated to form substantially spherical secondary particles.
  • the average particle size was 12.5 ⁇ m
  • D10 was 5.5 ⁇ m
  • D90 was 25.2 ⁇ m.
  • the specific surface area is 0.61 m 2 / g
  • the initial weight capacity density of the positive electrode is 152 mAh / g
  • the capacity retention rate 95.1% volume capacity density is 444mAh / cm 3
  • start heating The temperature was 231 ° C.
  • Example 3 (Example) 67.25 g of cobalt sulfate heptahydrate with a cobalt content of 20.96 wt%, 188.79 g of nickel sulfate hexahydrate with a nickel content of 22.31 wt%, manganese sulphate pentahydrate with a manganese content of 22.71 wt% An aqueous solution containing cobalt, nickel and manganese in which 57.87 g was dissolved in 500 g of distilled water and cobalt, nickel and manganese were uniformly dissolved was prepared.
  • the obtained granulated powder was observed with an SEM, it was found that primary particles of 0.05 to 1 ⁇ m aggregated to form substantially spherical secondary particles. Moreover, the average particle diameter of the primary particles of the coprecipitated particles was 0.46 ⁇ m. The average particle diameter of the secondary particles was 14.8 ⁇ m, D10 was 5.3 ⁇ m, and D90 was 31.6 ⁇ m.
  • the granulated powder has a porosity of 80%, an average pore diameter of 0.13 ⁇ m, an aspect ratio of 1.15 and an angle of repose of 60 °, and the total content of nickel, cobalt and manganese is 60.2 wt. %Met.
  • the obtained lithium-containing composite oxide powder was evaluated in the same manner as in Example 1.
  • the half value width of the diffraction peak of (110) plane was 0.166 °, and the press density was 3.03 g / cm 3 .
  • the average particle size was 11.8 ⁇ m
  • D10 was 5.0 ⁇ m
  • D90 was 22.6 ⁇ m.
  • the specific surface area is 0.55 m 2 / g
  • the initial weight capacity density of the positive electrode is 160 mAh / g
  • the capacity retention is 95.6%
  • the volume capacity density is 485 mAh / cm 3
  • the temperature was 218 ° C.
  • Example 4 (Example) 67.25 g of cobalt sulfate heptahydrate with a cobalt content of 20.96% by weight, 188.79 g of nickel sulfate hexahydrate with a nickel content of 22.31% by weight, manganese sulfate pentahydrate with a manganese content of 22.71% by weight Cobalt, nickel, manganese and zirconium in which cobalt, nickel, manganese and zirconium are uniformly dissolved by dissolving 5.78 g of zirconium sulfate tetrahydrate having a zirconium content of 19.05% by weight in 500 g of distilled water. A containing aqueous solution was prepared.
  • Example 2 Except that the concentration of hydroxide present in the slurry was 5% by weight, the same operation as in Example 1 was performed, and a granulated powder was obtained through a desalting slurry.
  • the viscosity of the desalted slurry obtained along the way was 40 mPa ⁇ s, and the solid content concentration was 35% by weight.
  • the obtained granulated powder was observed with an SEM, it was found that primary particles of 0.05 to 1.0 ⁇ m aggregated to form substantially spherical secondary particles.
  • the average particle diameter of the primary particles of the coprecipitated particles was 0.52 ⁇ m.
  • the average particle diameter of the secondary particles was 15.2 ⁇ m, D10 was 5.3 ⁇ m, and D90 was 32.5 ⁇ m.
  • the granulated powder has a porosity of 78%, an average pore diameter of 0.14 ⁇ m, an aspect ratio of 1.13 and an angle of repose of 58 °, and the total content of nickel, cobalt, manganese and zirconium is 60. It was 4% by weight.
  • the granulated powder was mixed with 8.07 g of lithium carbonate having a lithium content of 18.7% by weight, and the obtained mixture powder was fired at 900 ° C. for 16 hours in an oxygen-containing atmosphere. Thereafter, the mixture was pulverized to obtain a substantially spherical lithium-containing composite oxide powder having a composition of Li 1.024 Ni 0.580 Co 0.193 Mn 0.193 Zr 0.01 O 2 .
  • the obtained lithium-containing composite oxide powder was evaluated in the same manner as in Example 1.
  • the half value width of the diffraction peak of (110) plane was 0.178 °, and the press density was 2.95 g / cm 3 .
  • the obtained lithium-containing composite oxide powder was observed with an SEM, it was found that primary particles of 0.5 to 3 ⁇ m aggregated to form substantially spherical secondary particles.
  • the average particle size was 12.6 ⁇ m
  • D10 was 5.9 ⁇ m
  • D90 was 24.9 ⁇ m.
  • the specific surface area is 0.59 m 2 / g
  • the initial weight capacity density of the positive electrode is 160 mAh / g
  • the capacity retention ratio is 95.8%
  • the volume capacity density is 472 mAh / cm 3
  • heat generation starts.
  • Example 5 (Example) 63.54 g of cobalt sulfate heptahydrate having a cobalt content of 20.96 wt%, 250.43 g of nickel sulfate hexahydrate having a nickel content of 22.31 wt%, and 2.07 g of aluminum sulfate having an aluminum content of 15.6 wt%
  • a cobalt, nickel and aluminum-containing aqueous solution in which cobalt, nickel and aluminum were uniformly dissolved was prepared by dissolving in 500 g of distilled water.
  • the obtained granulated powder was observed with an SEM, it was found that primary particles of 0.05 to 1 ⁇ m aggregated to form substantially spherical secondary particles. Moreover, the average particle diameter of the primary particles of the coprecipitated particles was 0.62 ⁇ m. The average particle size of the secondary particles was 14.9 ⁇ m, D10 was 5.0 ⁇ m, and D90 was 31.8 ⁇ m.
  • the granulated powder has a porosity of 79%, an average pore diameter of 0.14 ⁇ m, an aspect ratio of 1.11 and an angle of repose of 58 °, and the total content of nickel, cobalt and aluminum is 59.4 wt. %Met.
  • the obtained lithium-containing composite oxide powder was evaluated in the same manner as in Example 1.
  • the half value width of the diffraction peak of (110) plane was 0.231 °, and the press density was 3.05 g / cm 3 .
  • the average particle size was 13.4 ⁇ m
  • D10 was 5.6 ⁇ m
  • D90 was 23.1 ⁇ m.
  • the specific surface area is 0.52 m 2 / g
  • the initial weight capacity density of the positive electrode is 179 mAh / g
  • the capacity retention is 91.0%
  • the volume capacity density is 546 mAh / cm 3
  • the temperature was 243 ° C.
  • Example 6 (Example) 165.51 g of cobalt sulfate heptahydrate having a cobalt content of 20.96% by weight, 154.82 g of nickel sulfate hexahydrate having a nickel content of 22.31% by weight, and 2.06 g of aluminum sulfate having an aluminum content of 15.6% by weight
  • a cobalt, nickel and aluminum-containing aqueous solution in which cobalt, nickel and aluminum were uniformly dissolved was prepared by dissolving in 500 g of distilled water.
  • the obtained granulated powder was observed with an SEM, it was found that primary particles of 0.05 to 1 ⁇ m aggregated to form substantially spherical secondary particles. Moreover, the average particle diameter of the primary particles of the coprecipitated particles was 0.54 ⁇ m. The average particle size of the secondary particles was 17.4 ⁇ m, D10 was 4.7 ⁇ m, and D90 was 38.1 ⁇ m.
  • the granulated powder has a porosity of 80%, an average pore diameter of 0.13 ⁇ m, an aspect ratio of 1.13, an angle of repose of 60 °, and a total content of nickel, cobalt and aluminum of 60.8 wt. %Met.
  • the obtained lithium-containing composite oxide powder was evaluated in the same manner as in Example 1. (110) diffraction peak half-width of the surface is 0.158 °, the press density was 3.02 g / cm 3. The average particle size was 14.4 ⁇ m, D10 was 5.8 ⁇ m, and D90 was 27.3 ⁇ m.
  • the specific surface area is 0.35 m 2 / g, the initial weight capacity density of the positive electrode is 158 mAh / g, the capacity retention rate is 93.8%, the volume capacity density is 477 mAh / cm 3 , and heat generation starts.
  • the temperature was 233 ° C.
  • Example 7 (Comparative Example) 112.47 g of cobalt sulfate heptahydrate with a cobalt content of 20.96 wt%, 105.23 g of nickel sulfate hexahydrate with a nickel content of 22.31 wt%, and manganese sulfate pentahydrate with a manganese content of 22.71 wt% 96.76 g was dissolved in 500 g of distilled water to prepare an aqueous solution containing cobalt, nickel and manganese in which cobalt, nickel and manganese were uniformly dissolved.
  • the coprecipitate powder has a porosity of 58%, an average pore diameter of 2.05 ⁇ m, an aspect ratio of 1.25, an angle of repose of 62 °, and a total content of nickel, cobalt and manganese of 60.3 wt. %Met.
  • Example 8 (Comparative example) 40.30 g of cobalt hydroxide having a cobalt content of 62.3 wt%, 31.97 g of nickel oxide (NiO) having a nickel content of 78.2 wt%, manganese oxide having a manganese content of 71.5 wt% (Mn 3 Water was mixed with 32.73 g of O 4 ) and stirred to obtain a 300 g slurry. Subsequently, each raw material particle dispersed in the slurry was wet-pulverized using a circulating medium agitation type wet bead mill until the average particle diameter became 0.3 ⁇ m, thereby obtaining a pulverized slurry. The viscosity of this pulverized slurry was 900 mPa ⁇ s, and the solid content concentration measured by separating the slurry and drying it at 100 ° C. was 35% by weight.
  • This slurry was subjected to the same operation as in Example 1 to obtain a granulated powder containing cobalt, nickel and manganese.
  • the obtained granulated powder was observed with an SEM, it was found that secondary particles in which primary particles of 0.02 to 3 ⁇ m were aggregated were formed.
  • the average particle diameter of primary particles of the coprecipitated particles was 0.90 ⁇ m.
  • the average particle diameter of the secondary particles was 15.5 ⁇ m, D10 was 5.1 ⁇ m, and D90 was 45.5 ⁇ m.
  • the granulated powder has a porosity of 73%, an average pore diameter of 0.21 ⁇ m, an aspect ratio of 1.22, an angle of repose of 63 °, and a total content of nickel, cobalt and manganese of 60.4 wt. %was.
  • the specific surface area is 0.66 m 2 / g
  • the initial weight capacity density of the positive electrode is 151 mAh / g
  • the capacity retention is 94.5%
  • the volume capacity density is 408 mAh / cm 3 .
  • the heat generation starting temperature was 225 ° C.
  • a method for producing a granulated powder useful as a raw material for a lithium ion secondary battery positive electrode active material having high volumetric capacity density, filling density and safety, and excellent charge / discharge cycle durability there can be provided a method for producing a lithium-containing composite oxide obtained by the production method, a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery comprising the lithium-containing composite oxide obtained by the production method.

Abstract

 体積容量密度、充填密度及び安全性が高く、充放電サイクル耐久性に優れたリチウムイオン二次電池正極活物質と、その原料として有用な造粒体粉末の製造方法を提供する。  Ni源、Co源及びMn源、又はNi源、Co源及びAl源を溶解した水溶液から、共沈粒子を共沈させ、脱塩して、噴霧乾燥して、実質上球状を有する造粒体を得ることを特徴とする造粒体粉末の製造方法。

Description

リチウムイオン二次電池正極活物質用の造粒体粉末の製造方法
 本発明は体積容量密度、充填密度及び安全性が高く、充放電サイクル耐久性に優れたリチウムイオン二次電池正極活物質用の原料として有用な造粒体粉末の製造方法、該製造方法で得られる造粒体粉末を原料に用いたリチウムイオン二次電池正極活物質用のリチウム含有複合酸化物の製造方法、並びに該リチウム含有複合酸化物を含むリチウムイオン二次電池用正極及びリチウムイオン二次電池に関する。
 近年、パソコン、携帯電話等の情報関連機器や通信機器の急速な発達が進むにつれて、小型、軽量でかつ高エネルギー密度を有するリチウムイオン二次電池等の非水電解液二次電池に対する要求が高まっている。かかる非水電解液二次電池用の正極活物質には、LiCoO、LiNiO、LiNi0.8Co0.2、LiMn4、LiNi1/3Co1/3Mn1/3などのリチウムと遷移金属の複合酸化物(本発明において、リチウム含有複合酸化物ということがある)が知られている。
 なかでも、リチウムコバルト複合酸化物(LiCoO)を正極活物質として用い、リチウム合金、又はグラファイト若しくはカーボンファイバー等のカーボンを負極として用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として広く使用されている。
 上記のリチウム含有複合酸化物は、所定の物性を有する、ニッケル、コバルト及びマンガンなどを含む原料化合物の粒子を予め調製して、これをリチウム化合物と混合して、焼成することにより製造されている。これは、所定の平均粒子径を有する原料化合物を用いると、正極活物質として適した粒径であるリチウム含有複合酸化物を作製することができるためであり、さらに該粒子とリチウム化合物を混合すると、工程として容易であるためである。
 上記の原料化合物の粒子の製造方法として、ニッケル、コバルト、マンガンなどの元素を含む化合物が溶解した溶液に、アルカリ溶液を滴下して、晶析させた晶析粒子を、ろ過、洗浄、乾燥させる方法が提案されている。また、この際に数種の元素を同時に晶析させることで、数種の元素を共沈させた晶析粒子を得ることが提案されている(特許文献1~3参照)。
 また、上記の原料化合物の他の製造方法としては、ニッケル、コバルト及びマンガンなどの元素を含む化合物を分散させたスラリーを湿式粉砕した後、スプレードライヤーなどで噴霧乾燥して、造粒体を作製する方法が提案されている(特許文献4~6参照)。
 さらに、上記の原料化合物の他の製造方法として、コバルト原子を含む化合物が溶解した溶液に、水酸化ナトリウム水溶液を添加して、水酸化コバルト粒子を析出させた後、ろ過、洗浄して、水酸化コバルトの晶析粒子を得て、次いでこの水酸化コバルトの晶析粒子を分散させて、得られるスラリーを、噴霧乾燥して、造粒体を作製する方法が提案されている(特許文献7参照)。
特開2004-047437号公報 特開2005-129489号公報 特開2007-070205号公報 特開2005-123180号公報 特開2005-141983号公報 特開2005-251717号公報 特開2002-060225号公報
 しかしながら、従来の製造方法で得られる上記の原料化合物の粒子を使用して製造されるリチウム含有複合酸化物を用いたリチウムイオン二次電池用正極は、充填密度、体積容量密度、過熱した際の熱に対する安定性(本発明において、安全性ということがある)、充放電サイクル耐久性などの各特性の全てを必ずしも満足するものではなかった。
 例えば、特許文献1~3に記載の方法では、粒径が大きい晶析粒子を作製するのに、粒子を成長させる必要があるため、長い時間が必要である。また長い時間をかけて粒子を成長させると、粒子形状がいびつになり球状の晶析粒子を得ることが難しい。さらに、粒径が大きい晶析粒子を作製する場合、粒子を成長させた際に、硫酸イオン、塩化物イオン、炭酸イオンなどの不純物が粒子内部に取り込まれ、洗浄しても完全に除去できないため、不純物が粒子内部に残存する。このような不純物を含む晶析粒子を原料に用いて、リチウム含有複合酸化物を製造すると、組成を厳密に制御することが困難になる。また、得られるリチウム含有複合酸化物にニッケル、コバルト又はマンガンの金属原子の生成によりショートしたり、不純物の存在により充放電が妨害され電池特性の悪化したりするため、安全性及び充放電サイクル耐久性に優れるリチウム含有複合酸化物を得ることはできなかった。
 また、ニッケル、コバルト及びマンガンを、粒子内部に均一に存在させることで、正極材料としての充放電サイクル耐久性や安全性を向上できることが知られている。各元素を均一に添加する有用な手段である、数種類の元素を同時に晶析させる共沈法は、特に結晶を成長させて、粒径が大きい共沈粒子を作製する場合、粒子内部に添加元素が不均一に偏って分布する傾向が見られるようになる。その結果、粒径の大きな共沈粒子からリチウム含有複合酸化物を合成すると、粒子内部に添加元素を均一に存在させることが難しくなるため、充放電サイクル耐久性や安全性が高く、十分な性能を有するリチウム含有複合酸化物を得ることはできなかった。
 特許文献4~6に記載の方法では、噴霧乾燥して得られる造粒体は、粒子内部に疎や密な部分ができ、内部に多くの空隙を有する造粒体が得られてしまう。また、該造粒体を原料に用いて、合成したリチウム含有複合酸化物も空隙が残るため、緻密で、体積容量密度が高い、リチウム含有複合酸化物を得ることはできなかった。
 また、原料化合物を分散させたスラリーに分散剤を含有させることで、固形分濃度が高いスラリーを作製する方法では、多量の分散剤を加える必要がある。また、焼成の際に、分散剤の分解により二酸化炭素や水蒸気などの気体が発生して、得られるリチウム含有複合酸化物の粒子中に空隙ができるため、体積容量密度が低くなる傾向が見られる。
 さらに、ビーズミルなどを用いて、スラリー中の原料化合物を湿式粉砕する工程を含む場合、分散メディア由来の不純物が混入して、かつスラリーの粘度が高くなる。不純物の混入により、放電容量や充放電サイクル耐久性が悪化する。また粘度の高いスラリーを噴霧乾燥するため、粒子内部に多くの空隙を有する造粒体が得られる。さらに該造粒体を原料に用いて、合成したリチウム含有複合酸化物も空隙が残るため、緻密で、体積容量密度が高いリチウム含有複合酸化物を得ることはできなかった。
 特許文献7に記載の方法では、水酸化コバルトを原料として、リチウム含有複合酸化物を合成しているが、ニッケル、マンガン及びアルミニウムなどの元素を含まないため、安全性及び充放電サイクル耐久性が劣るため、十分な電池性能を有するリチウム含有複合酸化物を得ることはできなかった。また、特許文献7に記載の方法では、たとえ添加元素を使用しても各元素を均一に共沈させる条件や共沈粒子が分散するスラリーの取り扱いが非常に複雑であり、単純に各元素を共沈させるだけでは、ニッケル、コバルト、マンガン及びアルミニウムなどを均一に存在させた造粒体を得ることはできない。特に、コバルトのみを含むリチウム含有複合酸化物と比べて、コバルトに加えて、ニッケル、マンガン、アルミニウムなどの添加元素を含むリチウム含有複合酸化物は、不均一で、空隙ができやすく、安全性及び充放電サイクル耐久性が不十分であり、体積容量密度及び充填密度を高くすることは困難である。また原料に由来する不純物の除去が不十分であるという問題もあった。
 そこで、本発明では体積容量密度、充填密度及び安全性が高く、充放電サイクル耐久性に優れたリチウムイオン二次電池正極活物質用の原料として有用な造粒体粉末の製造方法、該製造方法によって得られたリチウム含有複合酸化物の製造方法、並びに該製造方法によって得られたリチウム含有複合酸化物を含むリチウムイオン二次電池用正極及びリチウムイオン二次電池の提供を目的とする。
 本発明者らは、鋭意研究を続けたところ、上記目的を達成しうる本発明に到達した。本発明は以下の構成を要旨とするものである。
(1)Ni源、Co源及びMn源を、又はNi源、Co源及びAl源を溶解した水溶液とアルカリ水溶液とを混合して、pHを9~14の範囲に調節することにより、上記の元素を含む共沈粒子を析出させ、該共沈粒子が分散する共沈スラリーを得る工程1と;前記共沈スラリーを脱塩処理して脱塩スラリーを得る工程2と;前記脱塩スラリーを噴霧乾燥して実質上球状の造粒体粉末を得る工程3とを、この順番で含むことを特徴とするリチウムイオン二次電池正極活物質用の造粒体粉末の製造方法。
(2)工程1で得られる共沈スラリー中に分散する共沈粒子の一次粒子の平均粒子径が0.01~3μmである上記(1)に記載の造粒体粉末の製造方法。
(3)共沈スラリーの固形分濃度が10重量%のときに、工程2の脱塩処理で排出されるイオン含有水の伝導度が100μS/cm以下である上記(1)に記載の造粒体粉末の製造方法。
(4)工程2で噴霧乾燥に用いる脱塩スラリーの固形分濃度が10重量%以上であり、脱塩スラリーの粘度が2~1000mPa・sである上記(1)又は(2)に記載の造粒体粉末の製造方法。
(5)工程3で得られる造粒体粉末の平均粒子径(D50)が10~40μmである上記(1)~(4)のいずれかに記載の造粒体粉末の製造方法。
(6)工程3で得られる造粒体粉末の気孔率が60%以上である上記(1)~(5)のいずれかに記載の造粒体粉末の製造方法。
(7)工程3で得られる造粒体粉末の平均細孔径が1μm以下である上記(1)~(6)のいずれかに記載の造粒体粉末の製造方法。
(8)工程3で得られる造粒体粉末のアスペクト比が1.2以下である上記(1)~(7)のいずれかに記載の造粒体粉末の製造方法。
(9)工程3で得られる造粒体粉末の安息角が60°以下である上記(1)~(8)のいずれかに記載の造粒体粉末の製造方法。
(10)工程3で得られる造粒体粉末のD10が3~12μmである上記(1)~(9)のいずれかに記載の造粒体粉末の製造方法。
(11)工程3で得られる造粒体粉末のD90が70μm以下である上記(1)~(10)のいずれかに記載の造粒体粉末の製造方法。
(12)上記(1)~(11)のいずれかに記載の製造方法により得られる造粒体粉末とリチウム化合物粉末とを混合して得られるリチウム混合粉末を、酸素含有雰囲気中において600~1100℃で焼成するリチウム含有複合酸化物の製造方法。
(13)リチウム含有複合酸化物が、一般式Li(但し、Nは、Ni、Co及びMnの組み合わせ、又はNi、Co及びAlの組み合わせを表す。Mは、NがNi、Co及びMnの組み合わせを表す場合、N元素以外の遷移金属元素、Sn、Zn、Al及びアルカリ土類金属元素からなる群から選ばれる少なくとも1種の元素を表し、NがNi、Co及びAlの組み合わせを表す場合、N元素以外の遷移金属元素、Sn、Zn及びアルカリ土類金属元素からなる群から選ばれる少なくとも1種の元素を表す。0.9≦p≦1.5、0.96≦x<2.00、0≦y≦0.04、1.9≦z≦4.2)で表される上記(12)に記載のリチウム含有複合酸化物の製造方法。
(14)上記(12)又は(13)に記載の製造方法により得られるリチウム含有複合酸化物を含む正極活物質と導電材とバインダーとを含むリチウムイオン二次電池用正極。
(15)正極、負極、非水電解質及び電解液を含み、かつ該正極が上記(14)に記載のリチウムイオン二次電池用正極であるリチウムイオン二次電池。
 本発明によれば、体積容量密度、充填密度及び安全性が高く、充放電サイクル耐久性に優れたリチウムイオン二次電池正極活物質用のリチウム含有複合酸化物の原料として有用な造粒体粉末の製造方法、該製造方法によって作られた造粒体粉末を用いたリチウム含有複合酸化物の製造方法、並びに該製造方法により製造されたリチウム含有複合酸化物を含むリチウムイオン二次電池用正極及びリチウムイオン二次電池が得られる。
 本発明の製造方法により、なぜ体積容量密度が高く、安全性が高く、充放電サイクル耐久性に優れた、リチウムイオン二次電池正極に適したリチウム含有複合酸化物が得られるのかは、必ずしも明確ではないが、ほぼ以下のように推定される。
 すなわち、本発明の製造方法によると、共沈法を用いることにより、Ni、Co及びMn、又はNi、Co及びAlを含む均一な状態で含む共沈スラリーが得られるが、該共沈スラリーは脱塩処理後に噴霧乾燥することにより、Ni源、Co源、Mn源及びAl源などから由来する硫酸イオン、塩化物イオン、硝酸イオン、アンモニウムイオンなどの不純物を、共沈スラリーから効率良く除去できる。これらの不純物が含有するスラリーは、後に行われるリチウム化合物との焼成過程において、リチウム化合物と優先的に反応し、リチウム含有複合酸化物の生成反応が均一に進行しない、又は還元反応を起こしてリチウム含有複合酸化物以外の物質が生成する副反応が起こるため、得られるリチウム含有複合酸化物は、安全性、及び充放電サイクル耐久性が低くなる。また、本発明の工程2では、元素を均一に含有する小さな粒子が分散したスラリーを噴霧乾燥するため、非常に均一な状態で元素を含む造粒体粒子が得られる。そのため、安全性及び充放電サイクル耐久性といった電池特性が向上する。
 また、本発明では、共沈法により得られるスラリー中に含まれる一次粒子の平均粒子径は好ましくは3μm以下という均一で小さな粒子であり、該スラリーを噴霧乾燥して造粒し、また、造粒体の二次粒子の平均粒子径(D50)を好ましくは10~40μmという大きな粒子径にすることにより、粒子内部に疎な部分がなく、粒子内部に均一に各元素が存在する造粒体粉末が得られる。この造粒体粉末をリチウム化合物と混合し、焼成した場合、偏りなく均一に、かつ緻密に焼きしまり、高い体積容量密度、高い充填密度を有するリチウム含有複合酸化物を得ることができるものと思われる。
例1で得られた造粒体粒子の粒子表面を撮影したSEM像。 例1で得られた造粒体粉末を撮影したSEM像。
 本発明の製造方法は、Ni源、Co源及びMn源を、又はNi源、Co源及びAl源を溶解した水溶液とアルカリ水溶液とを混合して、pHを9~14の範囲に調節することにより、上記の元素を含む共沈粒子を析出させ、該共沈粒子が分散する共沈スラリーを得る工程(本発明において、この工程を工程1という)を有する。該共沈粒子がNi、Co及びMnを含む場合、Ni:Co:Mn(原子比)は10~80:10~80:10~80が好ましく、なかでも15~70:15~70:15~70であるとより好ましく、特に20~60:20~50:20~60が好ましい。
 また、該共沈粒子がNi、Co及びAlを含む場合、Ni:Co:Al(原子比)は50~96:5~50:1~20が好ましく、特に60~87:10~40:3~10が好ましい。
 また、Ni源、Co源及びMn源が、又はNi源、Co源及びAl源が溶解した水溶液に、該水溶液に溶解している元素以外の元素として、M元素がさらに含まれていても良い。このM元素とは、Ni源、Co源及びMn源を使用する場合には、これらの元素以外の遷移金属元素、Sn、Zn、Al及びアルカリ土類金属元素からなる群から選ばれる少なくとも1種の元素を表し、なかでもTi、Zr、Hf、V、Nb、W、Ta、Mo、Sn、Zn、Mg、Ca、Ba及びAlからなる群から選ばれる少なくとも1種が好ましい。なかでも、容量発現性、安全性、充放電サイクル特性などの見地よりTi、Zr、Hf、Mg及びAlからなる群から選ばれる少なくとも1種がより好ましく、Zrが特に好ましい。
 また、M元素は、Ni源、Co源及びAl源を使用する場合には、これらの元素以外の遷移金属元素、Sn、Zn及びアルカリ土類金属元素からなる群から選ばれる少なくとも1種の元素を表し、なかでもTi、Zr、Hf、V、Nb、W、Ta、Mo、Sn、Zn、Mg、Ca及びBaからなる群から選ばれる少なくとも1種が好ましい。なかでも、容量発現性、安全性、充放電サイクル特性などの見地よりTi、Zr、Hf及びMgからなる群から選ばれる少なくとも1種がより好ましく、Zrが特に好ましい。なお、本発明において、M元素を添加元素ということがある。
 上記の共沈法により製造した造粒体粉末を、原料として用いることにより、ニッケル、コバルト、マンガン又はアルミニウムなどの元素と添加元素を均一な状態で含む、小さな粒子が均一に分散したスラリーを得ることができる。この各元素が均一に混合された状態で存在するスラリーを、噴霧乾燥することで、各元素が極めて均一に存在する造粒体を得ることができる。この造粒体粉末を原料としてリチウム化合物と混合の後、焼成することにより、添加元素が粒子全体に均一に分布した、安全性及び充放電サイクル耐久性が極めて向上したリチウム含有複合酸化物を得ることができる。
 本発明において、まずNi源、Co源及びMn源、又はNi源、Co源及びAl源を含む化合物を溶解した水溶液とアルカリ水溶液とを混合して、pHを9~14の範囲に調節することで、Ni、Co及びMn、又はNi、Co及びAlを均一に含む析出粒子を析出でき、Ni、Co及びMn、又はNi、Co及びAlを含む析出粒子が分散する析出スラリーが得られる(本発明において、この工程を工程1という)。上記したpHの範囲は、10~13がより好ましい。さらにpHの細かい範囲については、析出させる元素の組み合わせに合わせて、調節することが望ましい。
 Ni源、Co源、Mn源及びAl源となる化合物としては、水溶性であれば特に問わないが、硫酸塩、塩化物、硝酸塩、アンモニウム塩などの無機塩が例示される。より具体的には、Co源としては、硫酸コバルト、塩化コバルト、硝酸コバルト、硫酸コバルトアンモニウムなどが例示される。Ni源としては、硫酸ニッケル、塩化ニッケル、硝酸ニッケル、硫酸ニッケルアンモニウムなどが例示される。Mn源としては、硫酸マンガン、塩化マンガン、硝酸マンガン、硫酸マンガンアンモニウムなどが例示される。またAl源としては、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウムなどが例示される。なお、M元素を加える場合、M元素源となる化合物としては、水溶性であれば特に問わないが、硫酸塩、塩化物、硝酸塩、アンモニウム塩などの無機塩が例示される。より具体的には、Mg源としては、硫酸マグネシウム、塩化マグネシウム、硝酸マグネシウムなどが使用できる。Zr源としては、硫酸ジルコニウム、塩化ジルコニウム、硝酸ジルコニルなどが使用できる。またTi源としては、硫酸チタン、塩化チタンなどが使用できる。
 アルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、水酸化アンモニウム水溶液などの水酸化物の水溶液が好ましく、特にアルカリ金属の水酸化物の水溶液が特に好ましい。なかでも水酸化ナトリウム水溶液又は水酸化リチウム水溶液が好ましい。このようなアルカリ水溶液は、Ni、Co、Mn又はAlなどを析出させると同時に、系中のpHを一定に保つように導入するのが好ましい。pHを一定に保ちながら、粒子を析出させることで、析出粒子の一次粒子径、二次粒子径やその他の粉体物性を、均一に揃えることができる。また各元素を共沈させる際に、pHを一定に保ち、緩衝効果を加えるために、アンモニア水溶液、硫酸アンモニウム又は塩化アンモニウムなどの水溶液を添加することもできる。
 次いで、本発明では、工程1で得られた共沈スラリーを脱塩処理する(本発明において、この工程を工程2という)。共沈スラリーには、原料に用いたNi源;Co源;Mn源若しくはAl源及びM元素を含む化合物由来の硫酸イオン、塩化物イオン、硝酸イオン、アンモニウムイオンなどの不純物が含有されるが、脱塩処理により、共沈スラリー中のこれらの不純物が除去せしめられる。
 これらの不純物が含有する共沈スラリーを噴霧乾燥して、得られる造粒体を原料に用いたリチウム含有複合酸化物は、安全性、及び充放電サイクル耐久性が低く、本発明の課題を解決できるものではない。これは、後に行われる、リチウム化合物との焼成(本発明において、この工程を工程4ともいう)において、リチウム化合物がこれらの不純物と優先的に反応し、リチウム含有複合酸化物の生成反応が均一に進行しない、又は還元反応を起こして、リチウム含有複合酸化物以外の不純物が生成する副反応が起こるためと考えられる。
 本発明で、共沈スラリー中の上記不純物が除去できる限り、脱塩処理の手段は特に限定されず、限外ろ過膜を使用する方法、加圧ろ過機を使用する方法、ベルトフィルターを使用する方法、フィルタープレスを使用する方法などの手段が挙げられる。なかでも、フィルタープレス、ベルトフィルター、限外ろ過が好ましく、特に限外ろ過が好ましい。限外ろ過の場合、共沈スラリーを原水タンクに供給し、次に、ポンプで圧力をかけながら、限外ろ過装置を通じて共沈スラリーを循環させる。限外ろ過装置では、不純物イオン含有水を排出させつつ、好ましくは液量を一定に維持するように純水を添加する。
 限外ろ過は、排出されるイオン含有水の伝導度が十分に下がるまで、スラリーを循環させることによって、共沈スラリー中のイオンなどの不純物を十分に除去することができる。限外ろ過膜は、中空糸タイプ、平膜タイプなどの種々のタイプが使用できるが、汎用的な中空糸タイプがより好ましい。中空糸タイプの限外ろ過膜として、例えば、「マイクローザ SIP-1053」(旭化成社製)が例示される。なお、限外ろ過により脱塩処理する場合、濃縮した脱塩スラリーを得ることができる。
 また、脱塩処理の手段として、遠心分離、真空乾燥ろ過機、フィルタープレス又はベルトフィルターを用いることもできる。これらの遠心分離、フィルタープレス又はベルトフィルターを用いた場合、脱塩スラリーの固形分濃度が30~60重量%であると、ウェットケーキ状のスラリーとなり、取り扱いやすい。
 脱塩処理の方法として、いずれの装置を使用した場合でも、スラリーの脱塩状態は排出されるイオン含有水の伝導度により評価することができる。具体的には、スラリーの固形分濃度を10重量%に調製した際に、排出されるイオン含有水の伝導度は、100μS/cm以下が好ましく、より好ましくは50μS/cm以下であり、さらには15μS/cm以下であると特に好ましい。
 脱塩スラリーは、希釈することで、固形分濃度を調節することができる。また、この希釈の際に、必要に応じて、攪拌したり、超音波を照射したりすることで、粒子を効率良く分散させてもよい。だが、粒子を分散させるために、ビーズミルやボールミルなどの比較的強度の強い方法を用いると、粒子の粒径が変化したり、スラリーの粘度が高くなり流動性が失われたりするため好ましくない。
 本発明は、工程2で得られた脱塩スラリーを噴霧乾燥して実質上球状の造粒体粉末を得る工程(本発明において、この工程を工程3という)を有する。工程3において、噴霧乾燥する方法としては、スプレードライヤーを用いて噴霧乾燥することが好ましい。この場合、運転条件を調整することによって、粒径の作りわけを行うことができる。また、噴霧エア量により粒径の作り分けが容易な四流体ノズルが好ましい。
 噴霧乾燥に用いる脱塩スラリー中に分散する共沈粒子の一次粒子の粒子径は3μm以下であることが好ましく、なかでも2μm以下がより好ましく、1μm以下がさらに好ましく、0.5μm以下が特に好ましい。また、共沈粒子の一次粒子の粒子径は、0.005μm以上が好ましく、0.01μm以上がより好ましい。なお本発明において、共沈粒子の一次粒子の粒子径は走査型電子顕微鏡(本発明においてSEMということがある)で観察することで求めることができる。より高解像度の画像が得られるので、超高分解能電界放出形走査電子顕微鏡(本発明においてFE-SEMということがある)を用いるとより好ましい。造粒体粒子の表面をSEMで観察したり、また造粒体をエポキシ樹脂などの熱硬化性樹脂に造粒体粒子を包埋して、それを研磨して、粒子の断面をSEMで観察したりすることによって求めることができる。SEMの倍率は一次粒子の粒径によって観察しやすい倍率を選ぶことができるが、1万倍~5万倍の倍率で観察した画像を用いると好ましい。観察した画像から、画像解析ソフト(例えば、マウンテック社製画像解析ソフトMacview ver3.5)を用い、100~300個の粒子を計測し、その円相当径をして、一次粒子の粒子径が得られる。
 噴霧乾燥に用いる脱塩スラリーの固形分濃度は、10重量%以上が好ましく、より好ましくは20重量%以上、さらに好ましくは30重量%以上、特には40重量%以上が好ましい。また、脱塩スラリーの固形分濃度は、70重量%以下が好ましく、60重量%以下がより好ましい。固形分濃度がこの範囲にある場合、噴霧する液滴のサイズを容易に調整することができ、造粒体粒子の粒径を容易に調整できる。さらに粒子の内部において、粒子が疎や密に偏ることなく均一に分布する。また、固形分濃度が高い方が生産性及び生産効率が高いことはもちろんのこと、スラリー中の水分が少ないため、噴霧乾燥に必要なエネルギーも少なくなるため好ましい。固形分濃度が10重量%未満である場合、粒径を大きくすることが難しくなり、さらに造粒体内部の空隙が増え、該造粒体を原料として得られるリチウム含有複合酸化物の体積容量密度が低くなる傾向があり、好ましくない。さらに、生産性が低く、噴霧乾燥の際に必要なエネルギーが多くなり、好ましくない。なお、本発明において、固形分濃度は次のようにして求める。まず脱塩スラリーの一部を分取して、分取したスラリーの重量を測定した後、その分取したスラリーを100℃で乾燥して、乾燥粉末の重量を測定する。測定した乾燥粉末の重量を分取したスラリーの重量で除すことで、固形分濃度を求めることができる。
 また、噴霧乾燥に用いる脱塩スラリーの粘度は2~1000mPa・sが好ましく、より好ましくは2~500mPa・s、さらに好ましくは4~300mPa・s、特には6~100mPa・sが好ましい。2mPa・sよりも粘度が低い場合、脱塩スラリーの固形分濃度が低かったり、又は分散した共沈粒子の粒径が大きかったりするため、球状の均一な造粒体を得ることができなくなり、好ましくない。1000mPa・sよりも粘度が高い場合、スラリーの流動性が乏しく、溶液の搬送や、噴霧乾燥機のノズルへの搬送ができなくなったり、ノズルが閉塞したりするため、好ましくない。特に、20重量%以上の固形分濃度が高いスラリーでは顕著である。
 本発明において、脱塩スラリーの粘度は、一般に回転式粘度計や振動式粘度計によって測定されるが、粘度計の形式、測定条件により大きく値が変わる場合がある。本発明においては、ブルックフィールド社製デジタル回転粘度計DV-II+のLV型で少量サンプルユニットを用い、25℃、30rpmの条件にて測定し、粘度が100mPa・s以下の場合にはスピンドルNo.18を用い、100mPa・s以上の場合にはスピンドルNo.31を、1000mPa・s以上の場合にはスピンドルNo.34を用いて測定する。
 なお、本発明に係る脱塩スラリーにおいて、固形分濃度をより高く、粘度をより低くするために、適宜、スラリーに分散剤を加えることができる。分散剤としては、ポリカルボン酸型高分子界面活性剤、ポリカルボン酸型高分子界面活性剤のアンモニウム塩、ポリアクリル酸塩など、一般的な分散剤を用いることができる。ただし、分散剤を過剰に加えると、焼成の際に、気体が発生して、得られるリチウム含有複合酸化物の粒子内部に空隙ができ、充填密度及び体積容量密度が低くなることがある。そのため、分散剤を添加する際は、適切な量の分散剤を添加することが好ましい。
 噴霧乾燥して、得られる造粒体粉末の平均粒子径(D50)は10~40μmが好ましく、より好ましくは13~30μm、さらには15~25μmが好ましい。平均粒子径が10μmより小さいと、得られるリチウム含有複合酸化物の粒径が小さく、充填密度が低くなり、好ましくない。平均粒子径が40μm超の場合、アルミニウム箔などの集電体への塗工が難しくなり、塗工した電極に傷が入ったり、もしくは正極活物質が集電体から剥離したりし、リチウムイオン二次電池を作ることが難しい。
 なお、本発明において、平均粒子径(D50)とは、レーザー散乱粒度分布測定装置(例えば、日機装社製マイクロトラックHRAX-100などを用いる)により得られた体積粒度分布の累積50%の値を意味する。なお本発明において、平均粒子径(D50)を、単に平均粒子径ということがある。また、後述するD10は累積10%、D90は累積90%の値を意味する。このとき、溶媒は造粒体が溶媒に解けて再分散しないような溶媒を選択する必要がある。本発明においては、溶媒にアセトンを使用した。
 また、本発明において、造粒体粉末のD10は3~13μmが好ましく、5~11μmがより好ましい。D10がこの範囲にある場合、工程4の焼成において、造粒体粉末がその形状を保ち、かつ充填されやすい粒径分布のリチウム含有複合酸化物になるため、高い充填密度、体積容量密度を有するリチウム含有複合酸化物が得られるため好ましい。D10が3μmよりも小さい場合、小さな粒子が複数集まっていびつな形に焼きあがってしまい、リチウム含有複合酸化物の充填密度が低下するため、好ましくない。また、D10が13μm超の場合、リチウム含有複合酸化物の粒径分布に小さな粒子がなくなるため充填密度が低下し、好ましくない。
 また、本発明における造粒体粉末のD90は、70μm以下が好ましく、より好ましくは60μm以下、さらには50μm以下が好ましい。D90が70μm以下であると、正極活物質の電極への塗工が容易になり好ましい。
 本発明においては、体積容量密度が高く、安全性が高く、かつサイクル耐久性に優れたリチウムイオン二次電池用正極となる、リチウム含有複合酸化物を得るためには、原料となる造粒体粉末が工程4における焼成において、緻密に焼き締まることが必要であり、それに適した造粒体粉末を得ることを特徴とする。造粒体粉末は、高い気孔率を有して、気孔率が60%以上であることが好ましい。より好ましくは65%以上であり、さらには70%以上が好ましい。また気孔率は90%以下が好ましく、85%以下がより好ましい。高い気孔率を有する場合、リチウム原子が造粒体内部に浸透しやすく、均一に反応を進めることができ、粒子全体が緻密なリチウム含有複合酸化物を得ることができる。一方、気孔率が低く、60%未満の場合には、粒子内の空隙が少なく、リチウム含有複合酸化物の合成時に表面と内部で反応に偏りができ、粒子の緻密化が均一に進まず、リチウム含有複合酸化物の充填密度が低く、体積容量密度が低くなり、好ましくない。本発明において、気孔率とは、水銀ポロシメーターを用いて、水銀圧入法によって、0.1kPa~400MPaの圧力で水銀を圧入して細孔分布を測定し、その累積細孔体積の半数となる細孔径の数値を意味する。
 また、本発明においては、造粒体粉末の平均細孔径の上限は、1μmであることが好ましく、0.8μmがより好ましく、0.5μmがさらに好ましく、0.3μmが特に好ましい。また、造粒体粉末の平均細孔径の下限は、0.01μmが好ましく、0.05μmがより好ましく、0.1μmが特に好ましい。平均細孔径が上記範囲であると、焼成時に、粒子の緻密化が進むため、特に充填密度が高く、体積容量密度の高いリチウム含有複合酸化物が得られる。1μmよりも大きいと、リチウム含有複合酸化物の合成時に、粒子の緻密化が進まず、リチウム含有複合酸化物の充填密度が低く、体積容量密度が低くなり、好ましくない。
 なお、本発明においては、平均細孔径とは、造粒体粉末を構成する粒子と粒子の隙間にできる細孔のサイズを測定し、その分布の平均値を意味する。平均細孔径は、水銀ポロシメーターによる、水銀圧入法で測定することができる。
 なお、図1から、造粒体粒子を形成する一次粒子が極めて小さな粒子であり、上記のとおり、本発明の造粒体粒子の気孔率が高いこと、及びその平均細孔径が小さいことがわかる。
 本発明における造粒体粉末は実質上球状である。実質上球状とは、必ずしも真球である必要はなく、高い球状性を有するものや略球状のものも含まれる。このため、アスペクト比は1.20以下が好ましく、1.15以下がより好ましく、1.10以下が特に好ましい。アスペクト比が1.20を超える場合、合成したリチウム含有複合酸化物の球状性が悪く、充填密度が低く、体積容量密度が低くなる傾向がある。またアスペクト比は、1以上が好ましい。
 なお、本発明における粒子のアスペクト比はSEMで写真観察して求めることができる。具体的には、造粒体粒子を、エポキシ熱硬化性樹脂に包埋して、粒子断面を切断、研磨して粒子の断面を観察する。SEMで500倍の倍率で100~300個の造粒体粒子断面を測定する。このとき画像に写る全ての粒子が粒径測定の対象となるようにする。アスペクト比とは各々の粒子の最長径を最長径の垂直径で割った値であり、それらの平均値が本発明におけるアスペクト比である。なお、実施例においてはマウンテック社製画像解析ソフトMacview ver3.5 を使用して測定した。図2から、本発明により得られる造粒体粒子が、高い球状性を有することがわかる。
 本発明において、造粒体粉末は、高い流動性を有して、安息角が60°以下であることが好ましく、55°以下がより好ましく、50°以下がさらに好ましい。安息角が60°超であると、リチウム含有複合酸化物は充填密度が低く、体積容量密度が低くなる傾向がある。一方、安息角の下限に関しては、30°が好ましく、40°がより好ましい。上記した範囲に造粒体の安息角が含まれる場合、高い流動性を有する造粒体粉末から合成されたリチウム含有複合酸化物は高い充填密度、体積容量密度を有するので好ましい。
 また、本発明において、造粒体粉末は、水酸化物、オキシ水酸化物、酸化物、硫酸塩であることが好ましく、なかでも水酸化物、オキシ水酸化物がより好ましく、水酸化物であると特に好ましい。
 さらに、工程3で得られた、Ni、Co及びMn、又はNi、Co及びAlを含有する造粒体粉末と、リチウム化合物粉末とを混合した後、酸素含有雰囲気中において600~1100℃で焼成することでリチウム含有複合酸化物を得ることができる(工程4)。
 リチウム化合物粉末としては、炭酸リチウム、水酸化リチウム、硝酸リチウムなどを使用できるが、なかでも、取り扱いが容易で安価な炭酸リチウムが好ましい。
 上記造粒体粉末と、リチウム化合物とを混合して得られるリチウム混合物は600~1100℃で焼成するが、下限について、好ましくは700℃、より好ましくは800℃、さらに好ましくは1000℃、次いで1010℃、1030℃の順番に好ましい。一方、焼成温度の上限は、1070℃が好ましく、1050℃がより好ましい。
 上記のようにして、本発明で製造されるリチウムイオン二次電池正極活物質用のリチウム含有複合酸化物は、一般式Liで表される。この式において、p、x、y、zは、それぞれ以下のとおりである。0.9≦p≦1.5、好ましくは0.95≦p≦1.45、0.96≦x≦2.00、好ましくは0.98≦x≦1.10、0≦y≦0.04、好ましくは0<y≦0.04、より好ましくは0<y≦0.03、1.9≦z≦4.2、好ましくは1.95≦z≦2.05。なお、式中のN及びMは、本発明の造粒体を製造する際に用いた、N元素及びM元素をそれぞれ意味している。
 本発明のリチウム含有複合酸化物のプレス密度は好ましくは2.8~3.3g/cm、特に好ましくは2.9~3.2g/cmである。なお、本発明におけるプレス密度は、粒子粉末5gを0.32t/cmの圧力でプレスしたときの見かけのプレス密度をいう。
 本発明のリチウム含有複合酸化物を用いて、リチウムイオン二次電池用正極を得る方法は、常法に従って実施できる。例えば、本発明の正極活物質の粉末に、アセチレンブラック、黒鉛、ケッチェンブラック等のカーボン系導電材と、結合材とを混合することにより正極合剤が形成される。結合材には、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミド、カルボキシメチルセルロース、アクリル樹脂等が用いられる。
 上記の正極合剤を、N-メチルピロリドンなどの分散媒に分散させたスラリーをアルミニウム箔等の正極集電体に塗工・乾燥及びプレス圧延せしめて正極活物質層を正極集電体上に形成する。
 本発明の正極活物質を正極に使用するリチウムイオン二次電池において、電解質溶液の溶質としては、ClO4 、CF3SO3 、BF4 、PF6 、AsF6 、SbF6 、CF3CO2 、(CF3SO22等をアニオンとするリチウム塩のいずれか1種以上を使用することが好ましい。上記の電解質溶液又はポリマー電解質は、リチウム塩からなる電解質を前記溶媒又は溶媒含有ポリマーに0.2~2.0mol/Lの濃度で添加するのが好ましい。この範囲を逸脱すると、イオン伝導度が低下し、電解質の電気伝導度が低下する。より好ましくは0.5~1.5mol/Lが選定される。セパレータには多孔質ポリエチレン、多孔質ポリプロピレンフィルムが使用される。
 また、電解質溶液の溶媒としては炭酸エステルが好ましい。炭酸エステルは環状、鎖状いずれも使用できる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート(EC)等が例示される。鎖状炭酸エステルとしては、ジメチルカーボネート、ジエチルカーボネート(DEC)、エチルメチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート等が例示される。
 上記炭酸エステルは単独でも2種以上を混合して使用してもよい。また、他の溶媒と混合して使用してもよい。また、負極活物質の材料によっては、鎖状炭酸エステルと環状炭酸エステルを併用すると、放電特性、サイクル耐久性、充放電効率が改良できる場合がある。
 また、これらの有機溶媒にフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(例えばアトケム社製カイナー)又はフッ化ビニリデン-パーフルオロプロピルビニルエーテル共重合体を添加し、上記の溶質を加えることによりゲルポリマー電解質としても良い。
 本発明の正極活物質を正極に使用するリチウムイオン二次電池の負極活物質は、リチウムイオンを吸蔵、放出可能な材料である。負極活物質を形成する材料は特に限定されないが、例えばリチウム金属、リチウム合金、炭素材料、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物又は周期表14、15族の金属を主体とした酸化物等が挙げられる。
 炭素材料としては、様々な熱分解条件で有機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒鉛、膨張黒鉛、鱗片状黒鉛等を使用できる。また、酸化物としては、酸化スズを主体とする化合物が使用できる。負極集電体としては、銅箔、ニッケル箔等が用いられる。
 本発明における正極活物質を使用するリチウムイオン二次電池の形状には、特に制約はない。シート状(いわゆるフイルム状)、折り畳み状、巻回型有底円筒形、ボタン形等が用途に応じて選択される。
 以下に本発明を具体的に説明するが、本発明はこれらの実施例に限定されないことはもちろんである。
[例1](実施例)
 コバルト含量20.96重量%の硫酸コバルト7水和物112.47g、ニッケル含量22.31重量%の硫酸ニッケル6水和物105.23g、マンガン含量22.71重量%の硫酸マンガン5水和物96.76gを蒸留水500gに溶解し、コバルト、ニッケル及びマンガンが均一に溶解した、コバルト、ニッケル及びマンガン含有水溶液を調製した。2Lガラス反応器に蒸留水を1L入れ、前記のコバルト、ニッケル及びマンガン含有水溶液を10g/minの供給速度で添加しつつ、かつ系内のpHが11.5を維持するように48重量%の水酸化ナトリウム水溶液と蒸留水を断続的に添加し、コバルト、ニッケル及びマンガンを含有する水酸化物を析出させ、当該水酸化物粉末のスラリー2.2kgを作製した。この時、スラリー中に存在する水酸化物の濃度は5重量%であった。
 次いで、前記スラリーを限外ろ過装置の原水タンクに供給した。次に、ポンプで圧力をかけながら、限外ろ過装置中でスラリーを循環させるとともに、イオン含有水を排出させつつ、スラリーの固形分濃度が10重量%になるように、かつ液量を一定に維持するように蒸留水を添加した。この状態を維持しつつ、排出されるイオン含有水の伝導度が15μS/cmになるまで、限外ろ過装置中でスラリーを循環させ続けた。スラリー中のイオンなどの不純物を取り除く脱塩の操作をすることにより、脱塩を行った。さらに蒸留水の添加を止め、スラリーを濃縮して脱塩スラリーを得た。なお限外ろ過膜には旭化成社製「マイクローザ SIP-1053」を使用した。この脱塩スラリーの粘度は42mPa・s、スラリーを分取して、100℃で乾燥して測定した固形分濃度は15重量%であった。
 次いで、スプレードライヤーを用いて、前記の脱塩スラリーの500gを造粒しながら乾燥して、コバルト、ニッケル及びマンガンの各元素を含有する水酸化物からなる乾燥造粒粉末を得た。なおスプレードライヤーには、ヤマト科学社製「GB22」を使用した。運転条件は、スラリー供給速度10g/min、噴霧ガス圧力0.15MPa、ガス温度180℃であった。
 この造粒体の粒子表面を撮影したSEM像を図1に、造粒体粒子粉末を撮影したSEM像を図2に示す。図2から、この造粒体粒子が、高い球状性を有することがわかる。前記の造粒体粉末を、SEMで観察したところ、0.02~0.75μmの一次粒子が凝集して略球状の二次粒子を形成していることがわかった。また、マウンテック社製画像解析ソフトMacview ver3.5を用いて測定した共沈粒子の一次粒子の平均粒子径は0.28μmであった。また二次粒子の平均粒子径は18.2μmであり、D10は7.0μm、D90は41.3μmであった。また、乾燥造粒粉末の気孔率は78%、平均細孔径は0.13μm、アスペクト比は1.12、安息角は58°であり、ニッケル、コバルト及びマンガンを合計した含量は60.5重量%であった。
 さらに前記の乾燥造粒粉末20gを、リチウム含量18.7重量%の炭酸リチウム8.59gとを混合して、得られた混合物粉末を酸素含有雰囲気下1000℃で16時間焼成した。その後、粉砕してLi1.0475Ni0.3175Co0.3175Mn0.3175の組成を有する略球状のリチウム含有複合酸化物粉末を得た。
 得られたリチウム含有複合酸化物の粉末について、X線回折装置(理学電機社製RINT 2100型)を用いてX線回折スペクトルを得た。CuKα線を使用した粉末X線回折において、2θ=65.1±1°の(110)面の回折ピーク半値幅は0.182°であった。この粉末を0.32トン/cmの圧力でプレスしたときのプレス密度は2.99g/cmであった。
 また、得られたリチウム含有複合酸化物粉末を、SEMで観察したところ、0.5~3μmの一次粒子が凝集して略球状の二次粒子を形成していることがわかった。リチウム含有複合酸化物粉末の平均粒子径は15.6μm、D10は6.8μm、D90は28.8μmであった。比表面積は0.45m/gであった。
 次に、前記リチウム含有複合酸化物粉末と、アセチレンブラックと、ポリフッ化ビニリデン粉末とを90/5/5の重量比で混合し、N-メチルピロリドンを添加してスラリーを作製し、厚さ20μmのアルミニウム箔にドクターブレードを用いて片面塗工した。次いで乾燥し、ロールプレス圧延を3回行うことによりリチウム電池用の正極体シートを作製した。
 次に、前記の正極体シートを打ち抜いたものを正極に用い、厚さ500μmの金属リチウム箔を負極に用い、負極集電体にニッケル箔20μmを使用し、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、さらに電解液には、濃度1MのLiPF/EC+DEC(1:1)溶液(LiPFを溶質とするECとDECとの重量比(1:1)の混合溶液を意味する。後記する溶媒もこれに準じる)を用いてステンレス製簡易密閉セル型リチウム電池をアルゴングローブボックス内で2個組み立てた。
 前記1個の電池については、25℃にて正極活物質1gにつき30mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき30mAの負荷電流にて2.5Vまで放電して初期放電容量を求めた。また、この電池について、引き続き充放電サイクル試験を30回行った。その結果、25℃、2.5~4.3Vにおける正極の初期重量容量密度は、154mAh/gであり、30回充放電サイクル後の容量維持率は94.3%であった。プレス密度と初期重量容量密度をかけあわせることで計算できる、体積容量密度は460mAh/cmであった。さらにもう一つの電池については、4.3Vで10時間充電し、アルゴングローブボックス内で解体し、充電後の正極体シートを取り出し、その正極体シートを洗浄後、直径3mmに打ち抜き、ECとともにアルミニウム製カプセルに密閉し、走査型差動熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、発熱曲線の発熱開始温度は228℃であった。
[例2](実施例)
 コバルト含量20.96重量%の硫酸コバルト7水和物112.47g、ニッケル含量22.31重量%の硫酸ニッケル6水和物105.23g、マンガン含量22.71重量%の硫酸マンガン5水和物96.76g、ジルコニウム含有量19.05重量%の硫酸ジルコニウム4水和物5.80gを蒸留水500gに溶解し、コバルト、ニッケル、マンガン及びジルコニウムが均一に溶解した、コバルト、ニッケル、マンガン及びジルコニウム含有水溶液を調製した。2Lガラス反応器に蒸留水を1L入れ、前記のコバルト、ニッケル、マンガン及びジルコニウム含有水溶液を10g/minの供給速度で添加しつつ、かつ系内のpHが11.0を維持するように48重量%の水酸化ナトリウム水溶液と蒸留水を断続的に添加し、コバルト、ニッケル、マンガン及びジルコニウムを含有する水酸化物を析出させ、当該水酸化物粉末のスラリー2.2kgを作製した。この時、スラリー中に存在する水酸化物の濃度は5重量%であった他は例1と同様の操作を行い、脱塩スラリーを経て、造粒体粉末を得た。途中で得られた脱塩スラリーの粘度は55mPa・s、固形分濃度は17重量%であった。
 得られた造粒体粉末を、SEMで観察したところ、0.02~0.75μmの一次粒子が凝集して略球状の二次粒子を形成していることがわかった。また、共沈粒子の一次粒子の平均粒子径は0.24μmであった。また二次粒子の平均粒子径は16.0μmであり、D10は5.5μm、D90は36.5μmであった。また、造粒体粉末の気孔率は83%、平均細孔径は0.13μm、アスペクト比は1.07、安息角は55°であり、ニッケル、コバルト、マンガン及びジルコニウムを合計した含量は60.8重量%であった。
 さらに前記の造粒体粉末20gを、リチウム含量18.7重量%の炭酸リチウム8.19gとを混合して、得られた混合物粉末を酸素含有雰囲気下1000℃で16時間焼成した。その後、粉砕してLi1.024Ni0.322Co0.322Mn0.322Zr0.01の組成を有する略球状のリチウム含有複合酸化物粉末を得た。
 得られたリチウム含有複合酸化物の粉末について、例1と同様の操作を行って評価した。(110)面の回折ピーク半値幅は0.178°であり、プレス密度は2.92g/cmであった。また、得られたリチウム含有複合酸化物粉末を、SEMで観察したところ、0.5~3μmの一次粒子が凝集して略球状の二次粒子を形成していることがわかった。平均粒子径は12.5μm、D10は5.5μm、D90は25.2μmであった。比表面積は0.61m/gであり、正極の初期重量容量密度は、152mAh/gであり、容量維持率は95.1%であり、体積容量密度は444mAh/cmであり、発熱開始温度は231℃であった。
[例3](実施例)
 コバルト含量20.96重量%の硫酸コバルト7水和物67.25g、ニッケル含量22.31重量%の硫酸ニッケル6水和物188.79g、マンガン含量22.71重量%の硫酸マンガン5水和物57.87gを蒸留水500gに溶解し、コバルト、ニッケル及びマンガンが均一に溶解した、コバルト、ニッケル及びマンガン含有水溶液を調製した。2Lガラス反応器に蒸留水を1L入れ、前記のコバルト、ニッケル及びマンガン含有水溶液を10g/minの供給速度で添加しつつ、かつ系内のpHが11.7を維持するように48重量%の水酸化ナトリウム水溶液と蒸留水を断続的に添加し、コバルト、ニッケル及びマンガンを含有する水酸化物を析出させ、当該水酸化物粉末のスラリー2.2kgを作製した。この時、スラリー中に存在する水酸化物の濃度は5重量%であった他は例1と同様の操作を行い、脱塩スラリーを経て、造粒体粉末を得た。途中で得られた脱塩スラリーの粘度は36mPa・s、固形分濃度は34重量%であった。
 得られた造粒体粉末を、SEMで観察したところ、0.05~1μmの一次粒子が凝集して略球状の二次粒子を形成していることがわかった。また、共沈粒子の一次粒子の平均粒子径は0.46μmであった。また二次粒子の平均粒子径は14.8μmであり、D10は5.3μm、D90は31.6μmであった。また、造粒体粉末の気孔率は80%、平均細孔径は0.13μm、アスペクト比は1.15、安息角は60°であり、ニッケル、コバルト及びマンガンを合計した含量は60.2重量%であった。
 さらに前記の造粒体粉末20gを、リチウム含量18.7重量%の炭酸リチウム8.09gとを混合して、得られた混合物粉末を酸素含有雰囲気下900℃で16時間焼成した。その後、粉砕してLi1.024Ni0.5856Co0.1952Mn0.1952の組成を有する略球状のリチウム含有複合酸化物粉末を得た。
 得られたリチウム含有複合酸化物の粉末について、例1と同様の操作を行って評価した。(110)面の回折ピーク半値幅は0.166°であり、プレス密度は3.03g/cmであった。平均粒子径は11.8μm、D10は5.0μm、D90は22.6μmであった。比表面積は0.55m/gであり、正極の初期重量容量密度は、160mAh/gであり、容量維持率は95.6%であり、体積容量密度は485mAh/cmであり、発熱開始温度は218℃であった。
[例4](実施例)
 コバルト含量20.96重量%の硫酸コバルト7水和物67.25g、ニッケル含量22.31重量%の硫酸ニッケル6水和物188.79g、マンガン含量22.71重量%の硫酸マンガン5水和物57.87g、ジルコニウム含有量19.05重量%の硫酸ジルコニウム4水和物5.78gを蒸留水500gに溶解し、コバルト、ニッケル、マンガン及びジルコニウムが均一に溶解した、コバルト、ニッケル、マンガン及びジルコニウム含有水溶液を調製した。2Lガラス反応器に蒸留水を1L入れ、前記のコバルト、ニッケル、マンガン及びジルコニウム含有水溶液を10g/minの供給速度で添加しつつ、かつ系内のpHが12.2を維持するように48重量%の水酸化ナトリウム水溶液と蒸留水を断続的に添加し、コバルト、ニッケル、マンガン及びジルコニウムを含有する水酸化物を析出させ、当該水酸化物粉末のスラリー2.2kgを作製した。この時、スラリー中に存在する水酸化物の濃度は5重量%であった他は例1と同様の操作を行い、脱塩スラリーを経て、造粒体粉末を得た。途中で得られた脱塩スラリーの粘度は40mPa・s、固形分濃度は35重量%であった。
 得られた造粒体粉末を、SEMで観察したところ、0.05~1.0μmの一次粒子が凝集して略球状の二次粒子を形成していることがわかった。また、共沈粒子の一次粒子の平均粒子径は0.52μmであった。また二次粒子の平均粒子径は15.2μmであり、D10は5.3μm、D90は32.5μmであった。また、造粒体粉末の気孔率は78%、平均細孔径は0.14μm、アスペクト比は1.13、安息角は58°であり、ニッケル、コバルト、マンガン及びジルコニウムを合計した含量は60.4重量%であった。
 さらに前記の造粒体粉末20gを、リチウム含量18.7重量%の炭酸リチウム8.07gとを混合して、得られた混合物粉末を酸素含有雰囲気下900℃で16時間焼成した。その後、粉砕してLi1.024Ni0.580Co0.193Mn0.193Zr0.01の組成を有する略球状のリチウム含有複合酸化物粉末を得た。
 得られたリチウム含有複合酸化物の粉末について、例1と同様の操作を行って評価した。(110)面の回折ピーク半値幅は0.178°であり、プレス密度は2.95g/cmであった。また、得られたリチウム含有複合酸化物粉末を、SEMで観察したところ、0.5~3μmの一次粒子が凝集して略球状の二次粒子を形成していることがわかった。平均粒子径は12.6μm、D10は5.9μm、D90は24.9μmであった。比表面積は0.59m/gであり、正極の初期重量容量密度は、160mAh/gであり、容量維持率は95.8%であり、体積容量密度は472mAh/cmであり、発熱開始温度は218℃であった。
[例5](実施例)
 コバルト含量20.96重量%の硫酸コバルト7水和物63.54g、ニッケル含量22.31重量%の硫酸ニッケル6水和物250.43g、アルミニウム含量15.6重量%の硫酸アルミニウム2.07gを蒸留水500gに溶解し、コバルト、ニッケル及びアルミニウムが均一に溶解した、コバルト、ニッケル及びアルミニウム含有水溶液を調製した。2Lガラス反応器に蒸留水を1L入れ、前記のコバルト、ニッケル及びアルミニウム含有水溶液を10g/minの供給速度で添加しつつ、かつ系内のpHが11.5を維持するように48重量%の水酸化ナトリウム水溶液と蒸留水を断続的に添加し、コバルト、ニッケル及びアルミニウムを含有する水酸化物を析出させ、当該水酸化物粉末のスラリー2.2kgを作製した。この時、スラリー中に存在する水酸化物の濃度は5重量%であった他は例1と同様の操作を行い、脱塩スラリーを経て、造粒体粉末を得た。途中で得られた脱塩スラリーの粘度は44mPa・s、固形分濃度は33重量%であった。
 得られた造粒体粉末を、SEMで観察したところ、0.05~1μmの一次粒子が凝集して略球状の二次粒子を形成していることがわかった。また、共沈粒子の一次粒子の平均粒子径は0.62μmであった。また二次粒子の平均粒子径は14.9μmであり、D10は5.0μm、D90は31.8μmであった。また、造粒体粉末の気孔率は79%、平均細孔径は0.14μm、アスペクト比は1.11、安息角は58°であり、ニッケル、コバルト及びアルミニウムを合計した含量は59.4重量%であった。
 さらに前記の造粒体粉末20gを、リチウム含量16.4重量%の水酸化リチウム13.0gとを混合して、得られた混合物粉末を酸素含有雰囲気下500℃で10時間仮焼した後に混合し、その後800℃で24時間焼成した。その後、粉砕してLi1.024Ni0.781Co0.185Al0.01の組成を有する略球状のリチウム含有複合酸化物粉末を得た。
 得られたリチウム含有複合酸化物の粉末について、例1と同様の操作を行って評価した。(110)面の回折ピーク半値幅は0.231°であり、プレス密度は3.05g/cmであった。平均粒子径は13.4μm、D10は5.6μm、D90は23.1μmであった。比表面積は0.52m/gであり、正極の初期重量容量密度は、179mAh/gであり、容量維持率は91.0%であり、体積容量密度は546mAh/cmであり、発熱開始温度は243℃であった。
[例6](実施例)
 コバルト含量20.96重量%の硫酸コバルト7水和物165.51g、ニッケル含量22.31重量%の硫酸ニッケル6水和物154.82g、アルミニウム含量15.6重量%の硫酸アルミニウム2.06gを蒸留水500gに溶解し、コバルト、ニッケル及びアルミニウムが均一に溶解した、コバルト、ニッケル及びアルミニウム含有水溶液を調製した。2Lガラス反応器に蒸留水を1L入れ、前記のコバルト、ニッケル及びアルミニウム含有水溶液を10g/minの供給速度で添加しつつ、かつ系内のpHが11.5を維持するように48重量%の水酸化ナトリウム水溶液と蒸留水を断続的に添加し、コバルト、ニッケル及びアルミニウムを含有する水酸化物を析出させ、当該水酸化物粉末のスラリー2.2kgを作製した。この時、スラリー中に存在する水酸化物の濃度は5重量%であった他は例1と同様の操作を行い、脱塩スラリーを経て、造粒体粉末を得た。途中で得られた脱塩スラリーの粘度は49mPa・s、固形分濃度は34重量%であった。
 得られた造粒体粉末を、SEMで観察したところ、0.05~1μmの一次粒子が凝集して略球状の二次粒子を形成していることがわかった。また、共沈粒子の一次粒子の平均粒子径は0.54μmであった。また二次粒子の平均粒子径は17.4μmであり、D10は4.7μm、D90は38.1μmであった。また、造粒体粉末の気孔率は80%、平均細孔径は0.13μm、アスペクト比は1.13、安息角は60°であり、ニッケル、コバルト及びアルミニウムを合計した含量は60.8重量%であった。
 さらに前記の造粒体粉末20gを、リチウム含量16.4重量%の水酸化リチウム13.3gとを混合して、得られた混合物粉末を酸素含有雰囲気下500℃で10時間仮焼した後に混合し、その後900℃で24時間焼成した。その後、粉砕してLi1.024Ni0.483Co0.483Al0.01の組成を有する略球状のリチウム含有複合酸化物粉末を得た。
 得られたリチウム含有複合酸化物の粉末について、例1と同様の操作を行って評価した。(110)面の回折ピーク半値幅は0.158°であり、プレス密度は3.02g/cmであった。平均粒子径は14.4μm、D10は5.8μm、D90は27.3μmであった。比表面積は0.35m/gであり、正極の初期重量容量密度は、158mAh/gであり、容量維持率は93.8%であり、体積容量密度は477mAh/cmであり、発熱開始温度は233℃であった。
[例7](比較例)
 コバルト含量20.96重量%の硫酸コバルト7水和物112.47g、ニッケル含量22.31重量%の硫酸ニッケル6水和物105.23g、マンガン含量22.71重量%の硫酸マンガン5水和物96.76gを蒸留水500gに溶解し、コバルト、ニッケル及びマンガンが均一に溶解した、コバルト、ニッケル及びマンガン含有水溶液を調製した。2Lガラス反応器に蒸留水を1L入れ、前記のコバルト、ニッケル及びマンガン含有水溶液を0.5g/minの供給速度で添加しつつ、かつ系内のpHが11.5を維持するように48重量%の水酸化ナトリウム水溶液と蒸留水を断続的に添加し、コバルト、ニッケル及びマンガンを含有する水酸化物を析出させ、当該水酸化物粉末のスラリー2.2kgを作製した。この時、スラリー中に存在する水酸化物の濃度は5重量%であった。このスラリーをろ過、洗浄を繰り返し、脱塩したコバルト、ニッケル及びマンガンを含む共沈体のケーキを得た。このケーキを120℃で12時間乾燥し、コバルト、ニッケル、マンガン共沈体粉末を得た。
 得られたコバルト、ニッケル、マンガン共沈体粉末を、SEMで観察したところ、0.1~1.5μmの一次粒子が凝集した二次粒子を形成していることがわかった。また、共沈粒子の一次粒子の平均粒子径は0.73μmであった。また二次粒子の平均粒子径は10.8μmであり、D10は4.8μm、D90は18.3μmであった。また、共沈体粉末の気孔率は58%、平均細孔径は2.05μm、アスペクト比は1.25、安息角は62°であり、ニッケル、コバルト及びマンガンを合計した含量は60.3重量%であった。
 さらに前記のコバルト、ニッケル、マンガン共沈体粒末20gを、リチウム含量18.7重量%の炭酸リチウム8.56gとを混合して、得られた混合物粉末を酸素含有雰囲気下1000℃で16時間焼成した。その後、粉砕してLi1.0475Ni0.3175Co0.3175Mn0.3175の組成を有するリチウム含有複合酸化物粉末を得た。
 得られたリチウム含有複合酸化物の粉末について、例1と同様の操作を行って評価した。(110)面の回折ピーク半値幅は0.177°であり、プレス密度は2.74g/cmであった。また、得られたリチウム含有複合酸化物粉末を、SEMで観察したところ、0.5~3μmの一次粒子が凝集した二次粒子を形成していることがわかった。平均粒子径は9.8μm、D10は4.3μm、D90は15.6μmであった。比表面積は0.33m/gであり、正極の初期重量容量密度は、149mAh/gであり、容量維持率は95.5%であり、体積容量密度は408mAh/cmであり、発熱開始温度は225℃であった。
[例8](比較例)
 コバルト含量が62.3重量%の水酸化コバルト40.30gと、ニッケル含量が78.2重量%の酸化ニッケル(NiO)31.97gと、マンガン含量が71.5重量%の酸化マンガン(Mn)32.73gに、水を混合して攪拌し300gのスラリーとした。次いで、循環式媒体攪拌型湿式ビーズミルを用いて、このスラリーに分散する各原料粒子を、平均粒子径が0.3μmになるまで、湿式粉砕して、粉砕スラリーを得た。この粉砕スラリーの粘度は900mPa・s、スラリーを分取して、100℃で乾燥して測定した固形分濃度は35重量%であった。
 このスラリーを例1と同様の操作を行ってコバルト、ニッケル及びマンガンを含む造粒体粉末を得た。得られた造粒体粉末を、SEMで観察したところ、0.02~3μmの一次粒子が凝集した二次粒子を形成していることがわかった。また、共沈粒子の一次粒子の平均粒子径は0.90μmであった。また二次粒子の平均粒子径は15.5μmであり、D10は5.1μm、D90は45.5μmであった。また、造粒体粉末の気孔率は73%、平均細孔径は0.21μm、アスペクト比は1.22、安息角は63°であり、ニッケル、コバルト及びマンガンの合計の含量は60.4重量%だった。
 さらに前記の造粒体粉末20gを、リチウム含量18.7重量%の炭酸リチウム8.56gとを混合して、得られた混合物粉末を酸素含有雰囲気下1000℃で16時間焼成した。その後、粉砕してLi1.0475Ni0.3175Co0.3175Mn0.3175の組成を有するリチウム含有複合酸化物粉末を得た。
 得られたリチウム含有複合酸化物の粉末について、例1と同様の操作を行って評価した。(110)面の回折ピーク半値幅は0.195°であり、プレス密度は2.70g/cmであった。また、得られたリチウム含有複合酸化物粉末を、SEMで観察したところ、0.5~3μmの一次粒子が凝集した二次粒子を形成していることがわかった。平均粒子径は14.3μm、D10は5.3μm、D90は30.3μmであった。また、このリチウム含有複合酸化物粉末について、ジルコニウムの含量を測定したところ、200ppmのジルコニウムが不純物として混入していることが確認できた。これはメディアとしてビーズミルに含まれるジルコニウムが不純物として混入したためと考えられる。また、比表面積は0.66m/gであり、正極の初期重量容量密度は、151mAh/gであり、容量維持率は94.5%であり、体積容量密度は408mAh/cmであり、発熱開始温度は225℃であった。
 本発明によれば、体積容量密度、充填密度及び安全性が高く、充放電サイクル耐久性に優れたリチウムイオン二次電池正極活物質用の原料として有用な造粒体粉末の製造方法と、該製造方法によって得られたリチウム含有複合酸化物の製造方法と、該製造方法によって得られたリチウム含有複合酸化物を含むリチウムイオン二次電池用正極及びリチウムイオン二次電池を提供できる。

 なお、2008年2月6日に出願された日本特許出願2008-027023号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  Ni源、Co源及びMn源を、又はNi源、Co源及びAl源を溶解した水溶液とアルカリ水溶液とを混合して、pHを9~14の範囲に調節することにより、上記の元素を含む共沈粒子を析出させ、該共沈粒子が分散する共沈スラリーを得る工程1と;前記共沈スラリーを脱塩処理して脱塩スラリーを得る工程2と;前記脱塩スラリーを噴霧乾燥して実質上球状の造粒体粉末を得る工程3とを、この順番で含むことを特徴とするリチウムイオン二次電池正極活物質用の造粒体粉末の製造方法。
  2.  工程1で得られる共沈スラリー中に分散する共沈粒子の一次粒子の平均粒子径が0.01~3μmである請求項1に記載の造粒体粉末の製造方法。
  3.  共沈スラリーの固形分濃度が10重量%のときに、工程2の脱塩処理で排出されるイオン含有水の伝導度が100μS/cm以下である請求項1に記載の造粒体粉末の製造方法。
  4.  工程2で噴霧乾燥に用いる脱塩スラリーの固形分濃度が10重量%以上であり、脱塩スラリーの粘度が2~1000mPa・sである請求項1又は2に記載の造粒体粉末の製造方法。
  5.  工程3で得られる造粒体粉末の平均粒子径(D50)が10~40μmである請求項1~4のいずれかに記載の造粒体粉末の製造方法。
  6.  工程3で得られる造粒体粉末の気孔率が60%以上である請求項1~5のいずれかに記載の造粒体粉末の製造方法。
  7.  工程3で得られる造粒体粉末の平均細孔径が1μm以下である請求項1~6のいずれかに記載の造粒体粉末の製造方法。
  8.  工程3で得られる造粒体粉末のアスペクト比が1.2以下である請求項1~7のいずれかに記載の造粒体粉末の製造方法。
  9.  工程3で得られる造粒体粉末の安息角が60°以下である請求項1~8のいずれかに記載の造粒体粉末の製造方法。
  10.  工程3で得られる造粒体粉末のD10が3~12μmである請求項1~9のいずれかに記載の造粒体粉末の製造方法。
  11.  工程3で得られる造粒体粉末のD90が70μm以下である請求項1~10のいずれかに記載の造粒体粉末の製造方法。
  12.  請求項1~11のいずれかに記載の製造方法により得られる造粒体粉末とリチウム化合物粉末とを混合して得られるリチウム混合粉末を、酸素含有雰囲気中において600~1100℃で焼成するリチウム含有複合酸化物の製造方法。
  13.  リチウム含有複合酸化物が、一般式Li(但し、Nは、Ni、Co及びMnの組み合わせ、又はNi、Co及びAlの組み合わせを表す。Mは、NがNi、Co及びMnの組み合わせを表す場合、N元素以外の遷移金属元素、Sn、Zn、Al及びアルカリ土類金属元素からなる群から選ばれる少なくとも1種の元素を表し、NがNi、Co及びAlの組み合わせを表す場合、N元素以外の遷移金属元素、Sn、Zn及びアルカリ土類金属元素からなる群から選ばれる少なくとも1種の元素を表す。0.9≦p≦1.5、0.96≦x<2.00、0≦y≦0.04、1.9≦z≦4.2)で表される請求項12に記載のリチウム含有複合酸化物の製造方法。
  14.  請求項12又は13に記載の製造方法により得られるリチウム含有複合酸化物を含む正極活物質と導電材とバインダーとを含むリチウムイオン二次電池用正極。
  15.  正極、負極、非水電解質及び電解液を含み、かつ該正極が請求項14に記載のリチウムイオン二次電池用正極であるリチウムイオン二次電池。
PCT/JP2009/051996 2008-02-06 2009-02-05 リチウムイオン二次電池正極活物質用の造粒体粉末の製造方法 WO2009099158A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009552521A JPWO2009099158A1 (ja) 2008-02-06 2009-02-05 リチウムイオン二次電池正極活物質用の造粒体粉末の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008027023 2008-02-06
JP2008-027023 2008-02-06

Publications (1)

Publication Number Publication Date
WO2009099158A1 true WO2009099158A1 (ja) 2009-08-13

Family

ID=40952231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051996 WO2009099158A1 (ja) 2008-02-06 2009-02-05 リチウムイオン二次電池正極活物質用の造粒体粉末の製造方法

Country Status (2)

Country Link
JP (1) JPWO2009099158A1 (ja)
WO (1) WO2009099158A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104147A (zh) * 2011-01-18 2011-06-22 佛山市邦普循环科技有限公司 镍钴复合氧化物、镍钴掺杂氧化物及其制备方法
WO2012020769A1 (ja) * 2010-08-10 2012-02-16 Agcセイミケミカル株式会社 ニッケル含有複合化合物の製造方法
JP2012099470A (ja) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd リチウム二次電池用正極材料前駆体の製造方法およびリチウム二次電池用正極材料の製造方法
WO2012073550A1 (ja) * 2010-12-03 2012-06-07 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2012124240A1 (ja) * 2011-03-11 2012-09-20 三洋電機株式会社 非水電解質二次電池
WO2014061579A1 (ja) * 2012-10-15 2014-04-24 日本碍子株式会社 リチウム二次電池用正極活物質の製造方法及びそれに用いられる活物質前駆体粉末
WO2015005180A1 (ja) * 2013-07-10 2015-01-15 株式会社田中化学研究所 リチウム二次電池用正極活物質、正極および二次電池
WO2016006557A1 (ja) * 2014-07-07 2016-01-14 日立金属株式会社 リチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極材の製造方法
WO2016048862A1 (en) * 2014-09-23 2016-03-31 Dow Global Technologies Llc Lithium metal oxide containing batteries having improved rate capability
JP5973352B2 (ja) * 2010-12-03 2016-08-23 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
EP3093272A1 (en) * 2015-05-13 2016-11-16 Basf Se Cathode materials for lithium ion batteries, process for preparing the same and their use in electrochemical cells
CN106463721A (zh) * 2014-05-29 2017-02-22 住友化学株式会社 锂二次电池用正极活性物质、锂二次电池用正极及锂二次电池
CN106920960A (zh) * 2015-12-28 2017-07-04 北京有色金属研究总院 动态微观结构的镍钴锰三元复合氢氧化物及调控构建方法
JP2017520506A (ja) * 2014-05-16 2017-07-27 厦門厦▲う▼新能源材料有限公司 多元系複合酸化物材料、その製造方法及び使用
US10149425B2 (en) 2013-10-15 2018-12-11 Lemken Gmbh & Co. Kg. Seed meter for a single-grain seeder
CN110612623A (zh) * 2017-05-15 2019-12-24 日本碍子株式会社 钛酸锂烧结体板
WO2020054236A1 (ja) * 2018-09-14 2020-03-19 花王株式会社 リチウムイオン二次電池用正極活物質の製造方法
JP2020045276A (ja) * 2018-09-18 2020-03-26 旭化成株式会社 水酸化物の製造方法、及び正極活物質の製造方法
US10756343B2 (en) 2015-06-02 2020-08-25 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, and lithium secondary cell
CN114772658A (zh) * 2022-04-24 2022-07-22 南通金通储能动力新材料有限公司 一种功率型锂离子电池正极材料前驱体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145716A (ja) * 1997-05-27 1999-02-16 Tdk Corp 非水電解質電池用電極の製造方法
JP2004107095A (ja) * 2001-10-11 2004-04-08 Mitsubishi Chemicals Corp リチウム遷移金属複合酸化物の製造方法
JP2005015282A (ja) * 2003-06-26 2005-01-20 Mitsubishi Chemicals Corp 共沈物の製造方法及び置換型リチウム遷移金属複合酸化物の製造方法
JP2005327644A (ja) * 2004-05-17 2005-11-24 Shin Kobe Electric Mach Co Ltd リチウム二次電池用正極材の製造方法、正極材及びリチウム二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145716A (ja) * 1997-05-27 1999-02-16 Tdk Corp 非水電解質電池用電極の製造方法
JP2004107095A (ja) * 2001-10-11 2004-04-08 Mitsubishi Chemicals Corp リチウム遷移金属複合酸化物の製造方法
JP2005015282A (ja) * 2003-06-26 2005-01-20 Mitsubishi Chemicals Corp 共沈物の製造方法及び置換型リチウム遷移金属複合酸化物の製造方法
JP2005327644A (ja) * 2004-05-17 2005-11-24 Shin Kobe Electric Mach Co Ltd リチウム二次電池用正極材の製造方法、正極材及びリチウム二次電池

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020769A1 (ja) * 2010-08-10 2012-02-16 Agcセイミケミカル株式会社 ニッケル含有複合化合物の製造方法
JP2012099470A (ja) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd リチウム二次電池用正極材料前駆体の製造方法およびリチウム二次電池用正極材料の製造方法
JP5805104B2 (ja) * 2010-12-03 2015-11-04 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2012073550A1 (ja) * 2010-12-03 2012-06-07 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5973352B2 (ja) * 2010-12-03 2016-08-23 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
CN102104147A (zh) * 2011-01-18 2011-06-22 佛山市邦普循环科技有限公司 镍钴复合氧化物、镍钴掺杂氧化物及其制备方法
WO2012124240A1 (ja) * 2011-03-11 2012-09-20 三洋電機株式会社 非水電解質二次電池
JP5128018B1 (ja) * 2011-03-11 2013-01-23 三洋電機株式会社 非水電解質二次電池
WO2014061579A1 (ja) * 2012-10-15 2014-04-24 日本碍子株式会社 リチウム二次電池用正極活物質の製造方法及びそれに用いられる活物質前駆体粉末
WO2015005180A1 (ja) * 2013-07-10 2015-01-15 株式会社田中化学研究所 リチウム二次電池用正極活物質、正極および二次電池
JP2015018678A (ja) * 2013-07-10 2015-01-29 株式会社田中化学研究所 リチウム二次電池用正極活物質、正極および二次電池
US10297824B2 (en) 2013-07-10 2019-05-21 Tanaka Chemical Corporation Positive electrode active material for lithium secondary battery, positive electrode, and secondary battery
CN105378987A (zh) * 2013-07-10 2016-03-02 株式会社田中化学研究所 锂二次电池用正极活性物质、正极以及二次电池
US10149425B2 (en) 2013-10-15 2018-12-11 Lemken Gmbh & Co. Kg. Seed meter for a single-grain seeder
JP2017520506A (ja) * 2014-05-16 2017-07-27 厦門厦▲う▼新能源材料有限公司 多元系複合酸化物材料、その製造方法及び使用
US10938019B2 (en) 2014-05-29 2021-03-02 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
CN106463721A (zh) * 2014-05-29 2017-02-22 住友化学株式会社 锂二次电池用正极活性物质、锂二次电池用正极及锂二次电池
WO2016006557A1 (ja) * 2014-07-07 2016-01-14 日立金属株式会社 リチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極材の製造方法
JPWO2016006557A1 (ja) * 2014-07-07 2017-04-27 日立金属株式会社 リチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極材の製造方法
JP2017188466A (ja) * 2014-07-07 2017-10-12 日立金属株式会社 リチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
US10193150B2 (en) 2014-07-07 2019-01-29 Hitachi Metals, Ltd. Lithium ion secondary battery cathode material, lithium ion secondary battery cathode and lithium ion secondary battery that use same, and method for manufacturing lithium ion secondary battery cathode material
WO2016048862A1 (en) * 2014-09-23 2016-03-31 Dow Global Technologies Llc Lithium metal oxide containing batteries having improved rate capability
EP3093272A1 (en) * 2015-05-13 2016-11-16 Basf Se Cathode materials for lithium ion batteries, process for preparing the same and their use in electrochemical cells
US10756343B2 (en) 2015-06-02 2020-08-25 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, and lithium secondary cell
CN106920960B (zh) * 2015-12-28 2019-09-06 有研工程技术研究院有限公司 动态微观结构的镍钴锰三元复合氢氧化物及调控构建方法
CN106920960A (zh) * 2015-12-28 2017-07-04 北京有色金属研究总院 动态微观结构的镍钴锰三元复合氢氧化物及调控构建方法
CN110612623A (zh) * 2017-05-15 2019-12-24 日本碍子株式会社 钛酸锂烧结体板
CN110612623B (zh) * 2017-05-15 2022-05-03 日本碍子株式会社 钛酸锂烧结体板
WO2020054236A1 (ja) * 2018-09-14 2020-03-19 花王株式会社 リチウムイオン二次電池用正極活物質の製造方法
KR20210040439A (ko) * 2018-09-14 2021-04-13 카오카부시키가이샤 리튬 이온 이차 전지용 정극 활물질의 제조 방법
JP2020047584A (ja) * 2018-09-14 2020-03-26 花王株式会社 リチウムイオン二次電池用正極活物質の製造方法
KR102448659B1 (ko) 2018-09-14 2022-09-28 카오카부시키가이샤 리튬 이온 이차 전지용 정극 활물질의 제조 방법
JP2020045276A (ja) * 2018-09-18 2020-03-26 旭化成株式会社 水酸化物の製造方法、及び正極活物質の製造方法
JP7425567B2 (ja) 2018-09-18 2024-01-31 旭化成株式会社 水酸化物の製造方法、及び正極活物質の製造方法
CN114772658A (zh) * 2022-04-24 2022-07-22 南通金通储能动力新材料有限公司 一种功率型锂离子电池正极材料前驱体及其制备方法
CN114772658B (zh) * 2022-04-24 2023-10-17 南通金通储能动力新材料有限公司 一种功率型锂离子电池正极材料前驱体及其制备方法

Also Published As

Publication number Publication date
JPWO2009099158A1 (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
WO2009099158A1 (ja) リチウムイオン二次電池正極活物質用の造粒体粉末の製造方法
JP5460329B2 (ja) リチウム二次電池正極活物質の原料用の遷移金属化合物造粒体の製造方法
JP5132360B2 (ja) リチウムイオン二次電池正極活物質用リチウムコバルト複合酸化物の製造方法
JP4943145B2 (ja) リチウム二次電池用正極活物質粉末
JP4318313B2 (ja) リチウム二次電池用の正極活物質粉末
KR100694567B1 (ko) 리튬-니켈-코발트-망간 함유 복합 산화물 및 리튬 이차전지용 양극 활성물질용 원료와 그것들의 제조방법
JP5162388B2 (ja) リチウムイオン二次電池に適したリチウム含有複合酸化物の製造方法。
JP4217712B2 (ja) リチウム−ニッケル−コバルト−マンガン−フッ素含有複合酸化物ならびにその製造方法およびそれを用いたリチウム二次電池
JP5877817B2 (ja) 非水系二次電池用正極活物質及びその正極活物質を用いた非水系電解質二次電池
JP5135843B2 (ja) リチウム遷移金属複合酸化物、および、それを用いたリチウム二次電池用正極、ならびに、それを用いたリチウム二次電池
JP5253808B2 (ja) リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
JP2021517721A (ja) 充電式リチウムイオン電池用の正極材料を調製する方法
JPWO2004082046A1 (ja) リチウム二次電池用正極活物質粉末
JP2015026594A (ja) リチウム二次電池用混合活物質、リチウム二次電池用電極、及びリチウム二次電池
WO2012020769A1 (ja) ニッケル含有複合化合物の製造方法
CN108432001B (zh) 正极活性物质的制造方法、正极活性物质、正极和锂离子二次电池
WO2012176471A1 (ja) リチウム含有複合酸化物粉末およびその製造方法
JP2004220897A (ja) リチウム二次電池用正極活物質粉末
WO2017104736A1 (ja) 遷移金属水酸化物粒子の製造方法
WO2009099156A1 (ja) リチウムイオン二次電池正極活物質用の造粒体粉末の製造方法
JP2005089225A (ja) リチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物の製造方法
JP3974396B2 (ja) リチウム二次電池用正極活物質の製造方法
JP2011187174A (ja) リチウムイオン二次電池用正極活物質の製造方法
JP4797332B2 (ja) リチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体、リチウム二次電池正極及びリチウム二次電池
JP2016126935A (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708254

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009552521

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09708254

Country of ref document: EP

Kind code of ref document: A1