WO2016006557A1 - リチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極材の製造方法 - Google Patents

リチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極材の製造方法 Download PDF

Info

Publication number
WO2016006557A1
WO2016006557A1 PCT/JP2015/069324 JP2015069324W WO2016006557A1 WO 2016006557 A1 WO2016006557 A1 WO 2016006557A1 JP 2015069324 W JP2015069324 W JP 2015069324W WO 2016006557 A1 WO2016006557 A1 WO 2016006557A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
positive electrode
lithium ion
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2015/069324
Other languages
English (en)
French (fr)
Inventor
孝亮 馮
秀一 高野
崇 中林
章 軍司
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to EP15818616.3A priority Critical patent/EP3168908B1/en
Priority to US15/321,064 priority patent/US10193150B2/en
Priority to JP2016532916A priority patent/JP6150013B2/ja
Publication of WO2016006557A1 publication Critical patent/WO2016006557A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a positive electrode material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery using the positive electrode material, and a method for producing a positive electrode material for a lithium ion secondary battery.
  • Lithium ion secondary batteries have characteristics such as higher energy density and less memory effect than other secondary batteries such as nickel / hydrogen storage batteries and nickel / cadmium storage batteries. Therefore, from power sources for portable electronic devices such as smartphones and tablets, power sources for household electrical devices, power storage devices, uninterruptible power supply devices, power leveling devices and other stationary power sources, ships, railways, hybrid vehicles, electric vehicles, etc. Applications have been expanded to drive power sources, and further improvements in battery performance are required.
  • Patent Document 1 includes a general formula Li w N x M y O z Fa (where N represents at least one element selected from the group consisting of Ni, Co, and Mn, and M represents Ni, Represents at least one element selected from the group consisting of transition metal elements other than Co and Mn, Al, Sn and alkaline earth metals, and 0.9 ⁇ w ⁇ 1.3, 0.9 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 0.1, 1.9 ⁇ z ⁇ 4.1, and 0 ⁇ a ⁇ 0.05), wherein the average particle diameter of primary particles A granulated particle containing at least N element having an average particle diameter of 10 to 40 ⁇ m and a crystallized particle containing at least N element having an average particle diameter of 6 ⁇ m or less.
  • the weight ratio of deposited particles is 10/90 to 90/10, and lithiated
  • a method for producing a lithium-containing composite oxide is disclosed in which a powder of a mixture containing a compound is fired at 750 to 1250 ° C. in an oxygen-containing atmosphere.
  • Patent Document 2 discloses that the average composition is Li x Co y Ni z M 1 -yz O ba X a (where M is boron (B), magnesium (Mg), aluminum (Al). , Silicon (Si), phosphorus (P), sulfur (S), titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), gallium (Ga) , Germanium (Ge), yttrium (Y), zirconium (Zr), molybdenum (Mo), silver (Ag), barium (Ba), tungsten (W), indium (In), strontium (Sr), tin (Sn) , Lead (Pb) and antimony (Sb) are one or more elements selected from the group consisting of X, X is a halogen element, x, y, z, a and b are each 0.8.
  • the volume-based 50% average particle diameter measured by the folding / scattering method is 10 ⁇ m or more and 30 ⁇ m or less, the number-based 10% average particle diameter is 3 ⁇ m or less, the number-based 50% average particle diameter is 6 ⁇ m or less, and the number A positive electrode active material for a non-aqueous electrolyte battery having a standard 90% average particle size of 13 ⁇ m or more and 20 ⁇ m or less is disclosed.
  • the diffusion of lithium ions depends solely on the diffusion rate of the positive electrode active material particles in the solid, and the internal side of the positive electrode active material during discharge tends to be deficient in lithium ions. End up. Therefore, the discharge capacity decreases as the rate of discharge increases, and the rate characteristics may deteriorate.
  • a layered oxide represented by LiMO 2 (M represents an element such as Ni, Co, Mn, etc.) has been intensively developed.
  • the layered oxide is a lithium metal composite oxide having an ⁇ -NaFeO 2 type crystal structure, and is a kind of promising positive electrode active material having a relatively high charge / discharge capacity.
  • Nickel-based layered oxides such as LiNiO 2 are known as inexpensive and high-capacity layered oxides.
  • crystal distortion due to the generation of the Jahnteller effect and gas is particularly generated.
  • the positive electrode active material filled with a high density cannot follow the volume change accompanying charge / discharge, and the primary particles
  • cracks may occur between each particle of secondary particles or inside each particle. And when a crack progresses by repetition of charging / discharging and the particle
  • the present invention provides a positive electrode material for a lithium ion secondary battery that can achieve both good rate characteristics and charge / discharge cycle characteristics while having good filling properties of the positive electrode active material, and a lithium ion secondary battery using the same. It aims at providing the manufacturing method of the positive electrode for secondary batteries, a lithium ion secondary battery, and the positive electrode material for lithium ion secondary batteries.
  • a positive electrode material for a lithium ion secondary battery has the following composition formula (I) Li 1 + x M1 1-xy M2 y O 2 (I) [wherein x is a number that satisfies ⁇ 0.1 ⁇ x ⁇ 0.3, y is a number that satisfies 0 ⁇ y ⁇ 0.1, and M1 is at least one selected from the group consisting of Ni, Co, and Mn. M2 is at least one element selected from the group consisting of Mg, Al, Ti, Zr, Mo, Nb, Fe, and B. And the secondary particles constituting the aggregates are measured by laser diffraction / scattering type particle size distribution measurement.
  • the particle size (D10) corresponding to 10% of the volume-based cumulative particle size distribution by 0.5 to 10 ⁇ m and the particle size (D90) corresponding to 90% of the volume-based cumulative particle size distribution is 10 ⁇ m.
  • the average porosity in the secondary particles that is greater than 50 ⁇ m and the particle diameter is greater than 10 ⁇ m and less than or equal to 50 ⁇ m is higher than the average porosity in the secondary particles that have a particle diameter of 0.5 ⁇ m to 10 ⁇ m.
  • the positive electrode for a lithium ion secondary battery according to the present invention is characterized by comprising the above-described positive electrode material for a lithium ion secondary battery.
  • a lithium ion secondary battery according to the present invention includes the above-described positive electrode for a lithium ion secondary battery.
  • the method for producing a positive electrode material for a lithium ion secondary battery according to the present invention has the following composition formula (I) Li 1 + x M1 1-xy M2 y O 2 (I) [wherein x is -0.1 ⁇ x ⁇ 0.3, y is a number satisfying 0 ⁇ y ⁇ 0.1, and M1 is at least one element selected from the group consisting of Ni, Co, and Mn M2 is at least one element selected from the group consisting of Mg, Al, Ti, Zr, Mo, Nb, Fe, and B.
  • Primary particles of a lithium metal composite oxide having a layered structure or primary particles of a lithium metal composite oxide having a crystal structure different from the lithium metal composite oxide having the layered structure, Using the primary particles, the first aggregate of secondary particles having a particle size distribution in the range of 0.5 ⁇ m or more and 10 ⁇ m or less is wet granulated, and using the primary particles, the primary particles are used in the range of more than 10 ⁇ m and 50 ⁇ m or less.
  • the second aggregate of secondary particles having a particle size distribution is wet granulated with a slurry having a higher drying rate or higher viscosity than the wet granulation of the first aggregate, and the granulated first aggregate and the
  • the particle size (D10) corresponding to 10% of the volume-based sieving cumulative particle size distribution by laser diffraction / scattering type particle size distribution measurement is mixed with the second set, and the body is 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the average void ratio of the secondary particles having a particle size (D90) corresponding to 90% of the standard under-sieving cumulative particle size distribution of more than 10 ⁇ m and 50 ⁇ m or less and a particle size of more than 10 ⁇ m and 50 ⁇ m or less is the particle size.
  • An aggregate of secondary particles higher than the average porosity of the secondary particles having a particle size of 0.5 ⁇ m or more and 10 ⁇ m or less is prepared.
  • a positive electrode material for a lithium ion secondary battery capable of achieving both good rate characteristics and charge / discharge cycle characteristics while having good filling properties of the positive electrode active material, and lithium ion secondary battery using the same.
  • the manufacturing method of the positive electrode for secondary batteries, a lithium ion secondary battery, and the positive electrode material for lithium ion secondary batteries can be provided.
  • a positive electrode material for a lithium ion secondary battery according to an embodiment of the present invention, a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery using the same, and a method for producing a positive electrode material for a lithium ion secondary battery This will be described in detail.
  • symbol is attached
  • the positive electrode material for a lithium ion secondary battery according to this embodiment is a primary particle of a lithium metal composite oxide having a layered structure (hereinafter also referred to as a layered oxide). Comprising secondary particles agglomerated. That is, the positive electrode material is composed of an aggregate of secondary particles (corresponding to an aggregate), and the secondary particles constituting the aggregate are aggregated by aggregation of primary particles including at least primary particles of the layered oxide. It is formed.
  • the positive electrode material according to the present embodiment forms a positive electrode mixture layer in a positive electrode for a lithium ion secondary battery together with a conductive material, a binder, etc., and the aggregate of secondary particles has a relatively high porosity.
  • the aggregate of secondary particles may form an aggregate in which the aggregates are aggregated, or the aggregate is formed into a complex in which the aggregates are bound in an unspecified shape by a binder, You may form the compact
  • the layered oxide is specifically expressed as the following composition formula (I).
  • Li 1 + x M1 1-xy M2 y O 2 (I) [Wherein x is a number that satisfies ⁇ 0.1 ⁇ x ⁇ 0.3, y is a number that satisfies 0 ⁇ y ⁇ 0.1, and M1 is selected from the group consisting of Ni, Co, and Mn.
  • M2 is at least one element selected from the group consisting of Mg, Al, Ti, Zr, Mo, Nb, Fe, and B. ]
  • the layered oxide represented by the composition formula (I) is a positive electrode active material that can insert and desorb lithium ions in association with an electrode reaction, and has a layered crystal structure mainly of ⁇ -NaFeO 2 type.
  • the diffraction peak obtained by the X-ray diffraction method is a lithium metal composite oxide showing a pattern that can be assigned to the space group R3-m (“-” is an upper bar of “3”).
  • the composition ratio of oxygen is defined as 2, but it is known that the composition ratio is slightly deviated from the stoichiometric composition depending on analysis conditions, firing conditions, and the like. Therefore, it is not deviated from the gist of the present invention that the value of the oxygen composition ratio is about 5% while maintaining the above crystal structure.
  • x is a number satisfying ⁇ 0.1 ⁇ x ⁇ 0.3, and the composition ratio of lithium (Li) is 0.9 or more and 1.3 or less.
  • the layered oxide is not limited to an oxide in which lithium is arranged only at the 3a site in the ⁇ -NaFeO 2 type crystal structure, but a so-called layered solid solution oxide (Li (Li p M 1-p ) O 2 (expressed as 0 ⁇ p ⁇ 1), Li 2 MO 3 —LiMO 2, etc.).
  • the M1 element preferably contains at least one element selected from the group consisting of Ni and Mn, more preferably contains Ni, and more preferably does not contain Co.
  • a composition containing Ni at a high ratio it is easy to obtain a high-capacity positive electrode active material while being inexpensive.
  • M2 is at least one element selected from the group consisting of Mg, Al, Ti, Zr, Mo, Nb, Fe, and B, and the composition ratio of the M2 element is 0 or more and 0.1 or less. That is, the element M1 is replaced by a single element of Mg, Al, Ti, Zr, Mo, Nb, Fe, or B or a plurality of elements selected from these elements within a range satisfying 0 ⁇ y ⁇ 0.1. be able to. When a part of the M1 element is replaced by such an element, it is possible to obtain effects such as improvement of charge / discharge cycle characteristics, improvement of rate characteristics, and reduction of resistance.
  • the secondary particles constituting the positive electrode material have a particle size corresponding to 10% of the volume-based sieving cumulative particle size distribution measured by laser diffraction / scattering particle size distribution measurement (hereinafter sometimes referred to as D10) of 0.5 ⁇ m. More than 10 ⁇ m and a particle size corresponding to 90% of the volume-based sieving cumulative particle size distribution measured by laser diffraction / scattering particle size distribution measurement (hereinafter sometimes referred to as D90) exceeds 10 ⁇ m and is preferably 50 ⁇ m or less. Is configured to be 20 ⁇ m or more and 50 ⁇ m or less.
  • the laser diffraction / scattering particle size distribution measurement may be performed in a state where the secondary particles are dispersed in a dispersion medium such as water, and the secondary particles include spherical particles and non-spherical particles. It may be measured in any state.
  • FIG. 1 is a conceptual diagram schematically showing a cross-sectional structure of a positive electrode material for a lithium ion secondary battery according to an embodiment of the present invention.
  • a particle form and a dispersed state are schematically shown when the secondary particles constituting the positive electrode material are filled with two particle sizes.
  • the positive electrode material 1 is composed of large-sized secondary particles (large particles) formed by aggregating only primary particles of the layered oxide 10 and only primary particles of the layered oxide 10. And small-diameter secondary particles (small particles) formed in this manner.
  • large-sized secondary particles large particles
  • small-diameter secondary particles small particles formed in this manner.
  • the large particles 50 are, for example, a collection of secondary particles having a single particle size distribution in a range of more than 10 ⁇ m and 50 ⁇ m or less, and are closely packed and packed at a high density according to close packing.
  • the particle diameter (D90) corresponding to 90% of the volume-based sieving cumulative particle diameter distribution by the laser diffraction / scattering particle size distribution measurement in the secondary particles constituting the positive electrode material is 10 ⁇ m.
  • the particle size distribution range of the large particles 50 is in the range of more than 10 ⁇ m and not more than 50 ⁇ m, the coatability and handleability of the particles can be ensured and the packing density of the positive electrode active material in the electrode can be made high. Is advantageous.
  • the small particles 60 are, for example, a collection of secondary particles having a single particle size distribution in a range of 0.5 ⁇ m or more and 10 ⁇ m or less, and are filled in voids between the large particles 50.
  • the particle size (D10) corresponding to 10% of the volume-based sieving cumulative particle size distribution by laser diffraction / scattering type particle size distribution measurement in the secondary particles constituting the positive electrode material is 0. It can be set to 5 ⁇ m or more and 10 ⁇ m or less.
  • the particle size ratio with the large particles 50 becomes a ratio that approximates a two-particle close-packed model, and between the small particles 60 It is possible to make it difficult to cause a decrease in coatability due to aggregation.
  • each secondary particle is formed with secondary particles such that the porosity of the large particles 50 is higher than the porosity of the small particles 60.
  • the average porosity of the secondary particles having a particle diameter of more than 10 ⁇ m and 50 ⁇ m or less, preferably 20 ⁇ m or more and 50 ⁇ m or less is greater than the average porosity of the secondary particles having a particle diameter of 0.5 ⁇ m or more and 10 ⁇ m or less. Is also considered high.
  • the electrolytic solution is difficult to penetrate into the deep part of the particles, so that the ion conductivity decreases particularly in the secondary particles having a large particle diameter, and rate characteristics Will get worse.
  • the secondary particles cannot follow the volume change caused by charging / discharging, there are many particles that cannot exhibit electrochemical activity due to secondary particle cracking or separation between secondary particles. It will occur and the charge / discharge cycle characteristics and volume energy density will deteriorate.
  • a positive electrode is obtained by combining large-sized secondary particles having a relatively high porosity and small-sized secondary particles having a relatively low porosity. While increasing the packing density of the active material, the action of large particles with a high porosity mainly ensures the penetration of the electrolyte solution into the deep part of the particle, and the stress caused by the volume change accompanying charging and discharging of the positive electrode active material Can be relaxed. And, by ensuring high ion conductivity and preventing the occurrence of cracks due to the volume change associated with charge / discharge, both good rate characteristics and charge / discharge cycle characteristics are achieved.
  • the average porosity of the secondary particles having a particle diameter of more than 10 ⁇ m and 50 ⁇ m or less, preferably 20 ⁇ m or more and 50 ⁇ m or less is preferably 5% or more and 70% or less, and more preferably 5% or more and 45% or less. .
  • the porosity of such large-sized large particles is 5% or more and 70% or less, the electrolyte easily penetrates into the large particles, and the diffusion distance of lithium ions is relatively long.
  • lithium ions are sufficiently supplied, high rate characteristics can be secured.
  • large particles with a large volume ratio can follow the volume change associated with charge / discharge, it becomes difficult for cracks and particle separation to occur in the secondary particles as a whole, and charge / discharge cycle characteristics are improved.
  • the volume energy density can be increased to a higher level while obtaining the effect of relaxing the volume change of the positive electrode active material accompanying charge / discharge. It becomes possible.
  • the average porosity of secondary particles having a particle diameter of 0.5 ⁇ m or more and 10 ⁇ m or less is preferably 5% or less.
  • the porosity of such small-sized small particles is 5% or less, the filling ratio of the voids generated between the large particles can be further improved. And it becomes possible to improve a volume energy density more, ensuring the effect
  • the porosity in the secondary particles can be measured by an appropriate measurement method such as an immersion method such as a mercury intrusion method, a gas displacement method (also referred to as a gas adsorption method), or direct observation with an electron microscope.
  • an appropriate measurement method such as an immersion method such as a mercury intrusion method, a gas displacement method (also referred to as a gas adsorption method), or direct observation with an electron microscope.
  • pore volume or pore distribution
  • the porosity (corresponding to the average porosity) can be calculated by the following formula 1.
  • Porosity pore volume / particle volume ⁇ 100 (Equation 1)
  • required by the laser diffraction / scattering type particle size distribution measurement is just to use as the particle volume of the aggregate
  • the porosity may be calculated based on a pore distribution having a diameter of 0.9 ⁇ m or less.
  • the mercury contact angle is 130 ° and the surface tension of mercury is 485 dyne / What is necessary is just to calculate as cm (485 * 10 ⁇ -5 > N / cm).
  • the positive electrode material for a lithium ion secondary battery according to the present embodiment may include a plurality of types of lithium metal composite oxide (layered oxide) having a layered structure. That is, the aggregate of secondary particles can be configured by combining a plurality of types of layered oxides having different element types and composition ratios within the range represented by the composition formula (I). Specifically, a set of secondary particles in which primary particles of a plurality of types of layered oxide are aggregated, a set of types of secondary particles in which primary particles of the same type of layered oxide are aggregated, or a plurality of types of layered oxidation It may be composed of any of secondary particles in which the primary particles of the product are aggregated and secondary particles in which the primary particles of the same kind of layered oxide are aggregated.
  • layered oxide lithium metal composite oxide
  • a layered oxide having a relatively large expansion / contraction amount among a plurality of types of layered oxides may be the above-mentioned large particles, and a compound having a relatively small expansion / contraction amount may be the above-mentioned small particles.
  • a layered oxide having a relatively large amount of nickel is made large particles, and a layered oxide having a relatively small amount of nickel is made small particles.
  • a layered oxide having a relatively high conductivity among a plurality of types of layered oxides may be the above-described large particles, and a layered oxide having a relatively low conductivity may be the above-described small particles. If it does in this way, it will become possible to raise the electroconductivity in the whole positive electrode material, releasing the expansion-contraction accompanying charging / discharging effectively by a pore.
  • primary particles of a layered oxide having a relatively high conductivity may be included in each secondary particle.
  • the positive electrode material for a lithium ion secondary battery according to the present embodiment includes a lithium metal composite oxide having a crystal structure different from a lithium metal composite oxide having a layered structure (layered oxide) (hereinafter referred to as a non-positive electrode) as a positive electrode active material. It may be referred to as a layered oxide). That is, instead of the form of FIG. 1 consisting of a set of secondary particles 50 and 60 in which only primary particles 10 of lithium metal composite oxide having a layered structure are aggregated, primary particles of lithium metal composite oxide having a layered structure and Secondary particles in which primary particles of lithium metal composite oxide having a different crystal structure are aggregated (see FIG. 2) and secondary particles in which primary particles of lithium metal composite oxide having a layered structure are aggregated are different.
  • Combination with secondary particles in which primary particles of lithium metal composite oxide having a crystal structure are aggregated (see FIG. 3), or secondary particles in which primary particles of lithium metal composite oxide having a layered structure are aggregated, and Are secondary particles in which primary particles of a lithium metal composite oxide having different crystal structures are aggregated, primary particles of a lithium metal composite oxide having a layered structure, and May be those of primary particles of the lithium-metal composite oxide having a different crystal structure becomes more any combination of the agglomerated secondary particles (see FIG. 4).
  • the relationship between the particle diameter and the porosity of the positive electrode material containing primary particles of the non-layered oxide is the same as that of the positive electrode material containing only primary particles of the layered oxide.
  • a lithium metal composite oxide other than the layered oxide that can be used as a positive electrode active material for a lithium ion secondary battery can be used.
  • olivine type composite oxides such as LiFePO 4 , LiNiPO 4 , LiMnPO 4 , LiFeMnPO 4 , and spinel type composites such as LiMnO 4 , LiMn 2 O 4 , LiNi 0.5 Mn 0.5 O 4.
  • the positive electrode active material known in the art include oxides and polyanionic complex oxides such as LiFeBO 3 , LiNiBO 3 , LiMnBO 3 , Li 2 FeSO 4 , Li 2 NiSO 4 , and Li 2 MnSO 4 .
  • non-layered oxide one kind of these may be used alone, or a plurality of kinds may be used in combination.
  • a plurality of types can be used as separate secondary particles.
  • an olivine-type composite oxide having a small volume change accompanying charge / discharge is more preferable.
  • FIG. 2 is a conceptual diagram schematically showing a cross-sectional structure of a positive electrode material for a lithium ion secondary battery according to another embodiment of the present invention.
  • the positive electrode material 2 for a lithium ion secondary battery according to another embodiment shown in FIG. 2 is similar to the positive electrode material 1 in that the secondary particles having large diameters (large particles) having a relatively high porosity and the porosity is high.
  • the aggregate of secondary particles constituting the positive electrode material 2 is a large-diameter secondary particle formed by agglomerating the primary particles 10 of the layered oxide and the primary particles 20 of the non-layered oxide ( 50A and primary particles 10 of the layered oxide and primary particles 20 of the non-layered oxide are aggregated to form secondary particles (small particles) 60A having a small diameter.
  • the large particles 50A containing the primary particles 10 of the layered oxide are charged and discharged. It will be in the state which follows easily the volume change of the layered oxide (10) with which the volume change accompanying it is remarkable. That is, in the large particles 50A in which the layered oxide (10) is present in a large volume, the volume change of the layered oxide (10) is effectively mitigated by the voids, and the large particles 50A and small particles resulting from the volume change. The cracks of 60A and the divergence between the secondary particles of the large particles 50A and the small particles 60A are further suppressed.
  • the large particles 50A and the small particles 60A are composed of a combination of the primary particles 10 of the layered oxide and the primary particles 20 of the non-layered oxide, so that the layered oxidation in the large particles 50A and the small particles 60A.
  • the sum of volume changes due to the object (10) can be reduced.
  • the large particles 50A and the small particles 60A have the same kind of particle configuration, there is an advantage that the relationship between the porosity of the large particles 50A and the small particles 60A can be easily controlled in production.
  • FIG. 3 is a conceptual diagram schematically showing a cross-sectional structure of a positive electrode material for a lithium ion secondary battery according to another embodiment of the present invention.
  • the positive electrode material 3 for a lithium ion secondary battery according to another embodiment shown in FIG. 3 has large-diameter secondary particles (large particles) having a relatively high porosity and a porosity of A secondary particle in which primary particles of a lithium metal composite oxide having a layered structure are aggregated and a crystal structure different from the secondary particle, which is composed of a combination of relatively small secondary particles (small particles). And mixed with secondary particles in which primary particles of lithium metal composite oxide having agglomerated are aggregated.
  • the non-layered oxide (20) has a smaller volume change associated with charge / discharge than the layered oxide (10). Therefore, as shown in FIG.
  • the aggregate of the secondary particles constituting the positive electrode material 3 consists of secondary particles (large particles) 50B in which only the primary particles 10 of the layered oxide are aggregated as the positive electrode active material and the non-layered oxide. It is a preferable form that it is configured to be a combination with secondary particles (small particles) 60B in which only the primary particles 20 are aggregated.
  • the large particles 50B containing the primary particles 10 of the layered oxide are charged and discharged. It will be in the state which follows easily the volume change of the layered oxide (10) with which the volume change accompanying it is remarkable. That is, in the large particles 50B in which the layered oxide (10) is present in a large volume, the volume change of the layered oxide (10) is effectively mitigated by the voids. Further, the separation between the secondary particles of the large particle 50B and the small particle 60B is further suppressed.
  • the small particles 60B with the primary particles 20 of the non-layered oxide, the volume change in the small particles 60B is reduced, and the cracks of the small particles 60B are reduced.
  • the non-layered oxide (20) there is an advantage that it is easy to suppress the dissociation between secondary particles due to charge / discharge by applying in particular a positive electrode active material with a small volume change accompanying charge / discharge. .
  • FIG. 4 is a conceptual diagram schematically showing a cross-sectional structure of a positive electrode material for a lithium ion secondary battery according to another embodiment of the present invention.
  • the positive electrode material 4 for a lithium ion secondary battery according to another embodiment shown in FIG. 4 is similar to the positive electrode material 1 in that the secondary particles having large diameters (large particles) having a relatively high porosity and the porosity are high. It is constituted by a combination with a relatively small secondary particle (small particle) having a small diameter.
  • the aggregate of secondary particles constituting the positive electrode material 4 includes secondary particles (large particles) 50C1 in which only the primary particles 10 of the layered oxide are aggregated as the positive electrode active material and non-positive electrodes as the positive electrode active material.
  • Secondary particles 60C1 in which only the primary particles 20 of the layered oxide are aggregated, and secondary particles (large particles 50C2, small particles) in which the primary particles 10 of the layered oxide and the primary particles 20 of the non-layered oxide are aggregated. 60C2).
  • the large particles 50C1 containing the primary particles 10 of the layered oxide. 50C2 is in a state where it can easily follow the volume change of the layered oxide (10) in which the volume change accompanying charge / discharge is significant. That is, in the large particles 50C1 and 50C2 having a large volume of the layered oxide (10), the volume change of the layered oxide (10) is effectively mitigated by the voids, and the large particles 50C1 due to the volume change.
  • the positive electrode material for a lithium ion secondary battery according to this embodiment is prepared by previously preparing a plurality of groups of monodispersed secondary particles having different particle diameter ranges, and then performing laser diffraction on the entire secondary particles constituting the positive electrode material.
  • the particle size (D10) corresponding to 10% of the volume-based sieving cumulative particle size distribution measured by the scattering-type particle size distribution is 0.5 ⁇ m or more and 10 ⁇ m or less, and 90% of the volume-based sieving cumulative particle size distribution.
  • the particle diameter (D90) corresponding to the above can be manufactured by appropriately combining and mixing aggregates of the prepared secondary particles so that the particle diameter (D90) exceeds 10 ⁇ m and is 50 ⁇ m or less, preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • This manufacturing method includes a secondary particle preparation step and a secondary particle mixing step.
  • a plurality of groups of secondary particles including secondary particles in which primary particles of the lithium metal composite oxide having a layered structure represented by the composition formula (I) are aggregated are prepared.
  • the aggregate of secondary particles is at least in the range of more than 10 ⁇ m to 50 ⁇ m or less, preferably 20 ⁇ m or more and 50 ⁇ m or less so that the particle size distribution in the entire secondary particles constituting the positive electrode material is in a predetermined condition. It is preferable to prepare a plurality of groups including a set of secondary particles having a size distribution and a set of secondary particles having a particle size distribution in the range of 0.5 ⁇ m to 10 ⁇ m. If necessary, the primary particles of the non-layered oxide may be formed in parallel with the primary particles of the layered oxide.
  • the primary particles can be formed according to a general method for preparing a positive electrode active material for a lithium ion secondary battery. Specifically, any of a solid phase method, a coprecipitation method, a sol-gel method, a hydrothermal method, and the like can be used as the preparation method. For example, in the case of the solid phase method, the raw material lithium-containing compound and the M1 element-containing compound are pulverized and mixed so that lithium and the M1 element have a predetermined molar concentration ratio, and then the obtained raw material powder is fired. Thus, primary particles can be formed.
  • the raw material lithium-containing compound examples include lithium acetate, lithium nitrate, lithium carbonate, lithium hydroxide, lithium chloride, and lithium sulfate.
  • the raw material lithium-containing compound is preferably lithium carbonate or lithium hydroxide. When such a compound is used, impurities can be desorbed as a gas and crystallized at a relatively low temperature.
  • the raw material M1 element-containing compound for example, acetate, nitrate, carbonate, sulfate, oxide, hydroxide and the like can be used.
  • the raw material M1 element-containing compound is preferably a carbonate, oxide, or hydroxide. When such a compound is used, impurities can be desorbed as a gas and crystallized at a relatively low temperature.
  • the raw material compound may be pulverized and mixed by either dry pulverization or wet pulverization.
  • various pulverizers such as a ball mill, a bead mill, a planetary ball mill, and a jet mill can be used.
  • the pulverized and mixed raw material compound is, for example, calcined at a temperature of 400 ° C. or higher and 700 ° C. or lower, and then pyrolyzed, then 700 ° C. or higher and 1100 ° C. or lower, preferably 800 ° C. or higher and 1000 ° C. or lower. It is preferable that the main baking is performed. In such a temperature range, the crystallinity of the primary particles can be improved satisfactorily while avoiding decomposition and volatilization of components.
  • the calcining treatment time is 2 to 24 hours, preferably 4 to 16 hours
  • the main firing treatment time is 2 to 24 hours, preferably 4 to 16 hours. is there.
  • the firing may be repeated a plurality of times.
  • the firing atmosphere may be either an inert gas atmosphere or an oxidizing gas atmosphere, but is preferably an oxidizing gas atmosphere such as oxygen or air.
  • an oxidizing gas atmosphere such as oxygen or air.
  • the calcination atmosphere may be either an inert gas atmosphere or an oxidizing gas atmosphere, but the firing atmosphere is preferably an oxidizing gas atmosphere.
  • an atmosphere having an oxygen concentration higher than that of air is preferable.
  • the fired primary particles may be gradually cooled in air or in an inert gas, or may be quenched with liquid nitrogen or the like.
  • the average particle diameter of the primary particles of the layered oxide formed is preferably 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the average particle diameter of the primary particles is 2 ⁇ m or less, the filling property of the layered oxide is improved, and a high energy density can be secured.
  • the average particle diameter of the primary particles is 0.1 ⁇ m or more, the handling properties of the primary particles are not greatly impaired, and excessive aggregation of the primary particles can be avoided.
  • the primary particles of the layered oxide may be those in which the M2 element is substantially uniformly substituted in the crystals of the primary particles, or may be deposited on the surface of the primary particles.
  • Primary particles in which the M2 element is substantially uniformly substituted in the crystal can be prepared by previously mixing a raw material M2 element-containing compound with a lithium-containing compound or an M1 element-containing compound to form primary particles.
  • the primary particles deposited on the surface can be prepared using a known surface treatment method such as a mechanochemical method or a sol-gel method.
  • both dry granulation and wet granulation can be applied, and an appropriate granulation method such as rolling granulation, fluidized bed granulation, compression granulation, spray granulation or the like can be used. Can be used.
  • the granulation operation may be performed on the raw material powder before firing or the fired body obtained by firing depending on the aggregation state of the raw material powder and the primary particles to be fired.
  • a particularly preferred granulation method is wet granulation. For example, if the mixed pulverization of the raw material powder before firing is wet pulverization and the cohesiveness is improved by adding a binder to the raw material powder dispersed in the dispersion medium, the fired body is made into secondary particles.
  • the porosity and particle size of the secondary particles are various conditions in the granulation operation, for example, wet granulation, the concentration of the slurry in which the raw material powder or the fired body is dispersed, the viscosity of the slurry, the supply amount of the slurry, and the dispersion in the slurry. It can be controlled by adjusting the degree (or agglomeration degree), the compressive load in dry granulation, the spraying temperature, spraying pressure, blowing speed, etc. in spray granulation (or spray drying) after wet granulation.
  • secondary particles with a high porosity are sprayed after agglomerated raw material powder having a high slurry viscosity and a low degree of dispersion are fired, or sprayed at a higher spraying pressure and temperature to increase the drying speed. It can be prepared by baking after drying.
  • secondary particles having a low porosity are obtained by firing non-aggregating raw material powder having a high degree of dispersion in the slurry, or by performing spray drying with a low spray pressure or spray temperature and a slow drying speed. It can be prepared by firing.
  • volume-based sieving integration by laser diffraction / scattering-type particle size distribution measurement is performed on the entire secondary particles constituting the positive electrode material by mixing a set of prepared secondary particles.
  • the particle size (D10) corresponding to 10% of the particle size distribution is 0.5 ⁇ m or more and 10 ⁇ m or less, and the particle size (D90) corresponding to 90% of the volume-based sieving cumulative particle size distribution exceeds 10 ⁇ m.
  • a positive electrode material for a lithium ion secondary battery that is 50 ⁇ m or less is prepared.
  • a plurality of groups can be mixed at an appropriate volume ratio, but from the viewpoint of optimizing the packing density of the positive electrode active material, the particle size distribution It is preferable to mix two groups of large particles and small particles according to a normal distribution so that a predetermined volume ratio is obtained.
  • the volume ratio of the mixed large particles: small particles is preferably 3.5: 1 to 6.0: 1, more preferably 4.0: 1 to, although it depends on the particle size ratio of the large particles to the small particles. 5.0: 1.
  • the positive electrode for a lithium ion secondary battery according to the present embodiment is mainly composed of a positive electrode mixture layer comprising the above positive electrode material for a lithium ion secondary battery, a conductive material, and a binder, and a positive electrode mixture layer. And a positive electrode current collector formed on the surface.
  • a conductive material used for a general positive electrode for a lithium ion secondary battery can be used.
  • Specific examples include carbon particles such as graphite powder, acetylene black, furnace black, thermal black, and channel black, and carbon fibers such as pitch-based carbon fibers and polyacrylonitrile (PAN) -based carbon fibers.
  • PAN polyacrylonitrile
  • a binder used in a general positive electrode for lithium ion secondary batteries can be used.
  • Specific examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyhexafluoropropylene, styrene-butadiene rubber, carboxymethyl cellulose, polyacrylonitrile, and modified polyacrylonitrile. What is necessary is just to use the quantity which becomes 2-10 mass% with respect to the mass of the whole positive electrode compound material, for example, as a binder.
  • foil made of aluminum or aluminum alloy, expanded metal, punching metal, or the like can be used.
  • About foil what is necessary is just to set it as the thickness of 8 micrometers or more and 20 micrometers or less, for example.
  • the positive electrode for a lithium ion secondary battery according to this embodiment can be manufactured according to a general method for manufacturing a positive electrode for a lithium ion secondary battery, using the positive electrode active material for a lithium ion secondary battery. .
  • it can be manufactured through a positive electrode mixture preparation step, a positive electrode mixture coating step, and a molding step.
  • a slurry-like positive electrode mixture in which a positive electrode material, a conductive material, and a binder are mixed in a solvent is prepared.
  • the solvent include N-methylpyrrolidone, water, N, N-dimethylformamide, N, N-dimethylacetamide, methanol, ethanol, propanol, isopropanol, ethylene glycol, diethylene glycol, and glycerin depending on the type of binder.
  • Dimethyl sulfoxide, tetrahydrofuran and the like can be used.
  • a planetary mixer, a disper mixer, a rotation / revolution mixer, or the like can be used for mixing the materials.
  • the prepared slurry-like positive electrode mixture is applied on the main surface of the positive electrode current collector and then dried to form a positive electrode mixture layer.
  • a bar coater, a doctor blade, a roll transfer machine or the like can be used for the application of the positive electrode mixture.
  • the dried positive electrode mixture layer is pressure-molded and cut with a positive electrode current collector as necessary to obtain a positive electrode for a lithium ion secondary battery having a desired shape.
  • the thickness of the positive electrode mixture layer formed on the positive electrode current collector may be, for example, about 50 ⁇ m to 300 ⁇ m.
  • the pressure and compressive load in the pressure molding can be appropriately adjusted according to the desired electrode density, but it is preferable that the porosity of each secondary particle is maintained.
  • FIG. 5 is a schematic cross-sectional view showing an example of the lithium ion secondary battery according to the embodiment.
  • a lithium ion secondary battery 100 mainly includes the positive electrode (positive electrode for a lithium ion secondary battery) 101, a negative electrode 102, a separator 103, and a non-aqueous electrolyte (not shown). Yes.
  • the lithium ion secondary battery 100 is a cylindrical lithium ion secondary battery, and the nonaqueous electrolytic solution is accommodated in a bottomed cylindrical battery can 104.
  • the lithium ion secondary battery 100 may be in the form of a square shape, a button shape, a laminate sheet shape, or the like.
  • the positive electrode 101 in which the positive electrode mixture layer is formed on the main surface of the positive electrode current collector and the negative electrode 102 in which the negative electrode mixture layer is formed on the main surface of the negative electrode current collector are the positive electrode It is wound through a separator 103 interposed between 101 and a negative electrode 102 to form a stacked electrode group.
  • the positive electrode 101 is electrically connected to the sealing lid 106 via the positive electrode lead piece 107
  • the negative electrode 102 is electrically connected to the battery can 104 via the negative electrode lead piece 105.
  • the positive electrode lead piece 107 and the negative electrode lead piece 105 are current drawing members made of the same material as the positive electrode current collector and the negative electrode current collector, respectively, and are welded to the positive electrode current collector and the negative electrode current collector, respectively. ing. Further, an insulating plate 109 is disposed between the positive electrode lead piece 107 and the negative electrode 102 and between the negative electrode lead piece 105 and the positive electrode 101 to be electrically insulated.
  • the battery can 104 contains a nonaqueous electrolyte together with an electrode group and the like, and is sealed with a sealing lid 106 via a sealing material 108.
  • the negative electrode 102 includes a negative electrode active material and a negative electrode current collector electrically connected to the negative electrode active material.
  • the negative electrode 102 may be the same as the binder or the conductive material used in the positive electrode for a lithium ion secondary battery.
  • the binder may be used in an amount of about 5% by mass with respect to the mass of the negative electrode active material.
  • a negative electrode active material used in a general negative electrode for lithium ion secondary batteries can be used.
  • a carbon material for example, graphites such as natural graphite and artificial graphite, carbides such as coke and pitch, amorphous carbon, carbon fiber, and the like can be used.
  • a metal material for example, a metal such as lithium, silicon, tin, aluminum, indium, gallium, magnesium, or an alloy thereof, or as a metal oxide material, a metal oxide containing tin, silicon, or the like is used. Can do.
  • the negative electrode current collector copper or nickel foil, expanded metal, punching metal, or the like can be used.
  • the foil may have a thickness of, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode for lithium ion secondary batteries is coated with a negative electrode mixture in which a negative electrode active material and a binder are mixed on the main surface of the negative electrode current collector, and then dried.
  • the negative electrode composite material layer can be formed, and the negative electrode composite material layer can be pressure-molded and cut together with the negative electrode current collector as necessary.
  • the thickness of the negative electrode mixture layer formed on the negative electrode current collector may be, for example, 20 ⁇ m or more and 150 ⁇ m or less.
  • a polyolefin resin such as polyethylene, polypropylene, or a polyethylene-polypropylene copolymer
  • a microporous film such as a polyamide resin or an aramid resin, a nonwoven fabric, or the like
  • Non-aqueous electrolytes include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2.
  • a solution in which a lithium salt such as LiN (CF 3 SO 2 ) 2 or LiC (CF 3 SO 2 ) 3 is dissolved in a non-aqueous solvent can be used.
  • the concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.7M or more and 1.5M or less.
  • non-aqueous solvent diethyl carbonate, dimethyl carbonate, ethylene carbonate, propylene carbonate, vinylene carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl acetate, dimethoxyethane and the like can be used.
  • various additives should be added to the non-aqueous electrolyte for the purpose of suppressing oxidative decomposition and reductive decomposition of the electrolytic solution, preventing precipitation of metal elements, improving ion conductivity, and improving flame retardancy. Can do.
  • additives examples include 1,3-propane sultone and 1,4-butane sultone that suppress decomposition of the electrolyte, insoluble polyadipic anhydride that improves the storage stability of the electrolyte, and hexahydrophthalic anhydride.
  • examples include acids and the like, and fluorine-substituted alkylborons that improve flame retardancy.
  • the lithium ion secondary battery according to the present embodiment includes, for example, a power source for portable electronic devices such as smartphones and tablets, a power source for household electrical devices, a power storage device, an uninterruptible power supply device, a power leveling device, and a stationary power source. It is suitable as a drive power source for ships, railways, hybrid cars, electric cars and the like.
  • compositions, particle size, porosity, etc. of secondary particles contained in the positive electrode provided in the lithium ion secondary battery are decomposed in the glove box etc. to separate the positive electrode, and constitute the positive electrode mixture layer It is possible to confirm by collecting the composition to be subjected to instrumental analysis.
  • the recovered composition of the positive electrode mixture layer is heat-treated at about 300 ° C. to 400 ° C. in an inert gas atmosphere to gasify only the carbon-based conductive material and the binder that can be included as the composition.
  • the binder is dissolved and removed by removing or adding an appropriate organic solvent.
  • the particle size distribution and porosity of a secondary particle can be confirmed by observing the remaining composition using a scanning electron microscope or a transmission electron microscope.
  • the porosity is, for example, a local observation of the secondary particles, and the area ratio between the secondary particles and the voids. Or by comparing the volume ratio converted to the volume of the cylindrical body. In parallel with the confirmation of the particle size distribution, classification of the aggregates of the roughly pulverized secondary particles is performed, and the aggregates of the secondary particles having a particle size corresponding to the large particles and the small particles in the confirmed particle size distribution. The porosity can also be confirmed by measuring the pore distribution.
  • Examples 1 to 11 are constituted by a combination of large-diameter secondary particles (large particles) having a relatively high porosity and small-diameter secondary particles (small particles) having a relatively low porosity.
  • the positive electrode material for lithium ion secondary batteries was prepared, the lithium ion secondary battery using those positive electrode materials was manufactured, and the rate characteristic and the charge / discharge cycle characteristic were evaluated. Further, as Comparative Examples 1 to 5, positive electrode materials in which the size relationship between the porosity of the large particles and the small particles is reversed with respect to the examples are prepared, and lithium ion secondary batteries using these positive electrode materials are prepared. Evaluation was also performed.
  • a group of secondary particles in which the primary particles of the layered oxide LiNi 0.8 Co 0.1 Mn 0.1 O 2 aggregated were prepared in a plurality of groups according to the following procedure.
  • the lithium source evaporates around 700 ° C. during firing, and the lithium ratio becomes lower than the blending ratio. Therefore, the blending ratio is adjusted in the raw material mixing stage, and the raw material lithium carbonate, nickel carbonate, cobalt carbonate, carbonic acid Manganese was weighed so that the molar ratio of Li: Ni: Co: Mn was 1.03: 0.80: 0.10: 0.10.
  • raw materials were pulverized and mixed by wet pulverization with water to which a small amount of a granulating agent was added, and then spray-dried using a spray dryer to obtain a coherent raw material powder.
  • the obtained raw material powder was put into a high-purity alumina container and calcined at 650 ° C. for 12 hours in an oxygen stream.
  • the obtained calcined body was air-cooled and crushed, it was again put into a high-purity alumina container and subjected to main firing at 850 ° C. for 8 hours under an oxygen stream.
  • assembly of the obtained secondary particle was air-cooled, and after classifying, it classified.
  • the particle size of the secondary particles and the porosity of the secondary particles in each group were adjusted by appropriately changing the conditions for wet pulverization and spray drying of the raw material powder.
  • the particle size greatly depends on the spraying conditions. Depending on the scale of the spray drying apparatus, the spray pressure is high, the slurry supply amount is large, the particle size is large, the spray pressure is low, and the slurry supply is small, the particle size is small.
  • the porosity is greatly affected by the slurry viscosity and concentration, and particles having a low porosity can be obtained by using a slurry having a high viscosity and a low viscosity by using a slurry having a high viscosity.
  • the slurry supply amount at the time of spray drying is set to about 2 kg / hr, and the particles are controlled by adjusting the above parameters.
  • the slurry viscosity is 5 mPa ⁇ S to 30 mPa ⁇ S at 100 rpm, and the slurry concentration is The range was 10% to 70%, and the spray pressure was 0.05 MPa to 0.5 MPa.
  • the crystal structure of this positive electrode active material was analyzed.
  • an X-ray diffractometer “RINTIII” manufactured by Rigaku Corporation
  • CuK ⁇ rays were used.
  • a peak attributed to the space group R3-m was confirmed, and it was confirmed that it had a layered structure.
  • the particle size distribution of the aggregate of the prepared secondary particles was measured using a laser diffraction / scattering particle size distribution measuring device “LA-920” (manufactured by Horiba, Ltd.). Note that the application time of ultrasonic waves was 5 min.
  • each prepared secondary particle was measured by a mercury intrusion method using a pore distribution measuring device “Autopore IV9520” (manufactured by Shimadzu Corporation). Specifically, 0.3 g of each secondary particle powder prepared by changing the conditions was put into a powder cell with a capacity of 5 cc, and measurement was started from an initial pressure of 20 kPa, and the pore diameter was 60 ⁇ m or more and 3 nm. The pore volume was measured under conditions corresponding to the following. The contact angle of mercury is 130 °, the surface tension of mercury is 485 dyne / cm (485 ⁇ 10 ⁇ 5 N / cm), and the porosity is within the range of the pore diameter of 0.9 ⁇ m or less inside the secondary particles. It was calculated on the basis of the above mathematical formula 1, assuming that the voids exist in the space.
  • Example 1 For each of the secondary particles whose particle size distribution and porosity were measured, in Examples 1 to 11, the secondary particles having a large diameter (large particles) having a relatively high porosity and the small diameter having a relatively low porosity were used.
  • the mixture was prepared by mixing two kinds of large particles and small particles so as to be constituted by a combination with secondary particles (small particles).
  • Comparative Examples 1 to 5 are constituted by a combination of large-diameter secondary particles (large particles) having a relatively low porosity and small-diameter secondary particles (small particles) having a relatively high porosity. As described above, two types of large particles and small particles were mixed and prepared. Table 1 shows the volume ratio and porosity of the mixed large particles and small particles, and the particle size distribution measured for the obtained positive electrode materials according to Examples 1 to 11 and the positive electrode materials according to Comparative Examples 1 to 5. .
  • the lithium ion secondary battery was a cylindrical 18650 battery having a diameter of 18 mm and a height of 650 mm.
  • the positive electrode 90 parts by mass of a positive electrode material, 6 parts by mass of a conductive material, and 4 parts by mass of a binder are mixed in a solvent, and stirred for 3 hours using a planetary mixer. Prepared.
  • the conductive material was carbon particle powder
  • the binder was polyvinylidene fluoride
  • the solvent was N-methylpyrrolidone.
  • the obtained positive electrode mixture was applied to both surfaces of a positive electrode current collector, which is an aluminum foil having a thickness of 20 ⁇ m, using a roll transfer machine, and the electrode density was 3.0 g / cm using a roll press. After pressurizing to about 3 , it was cut into a positive electrode.
  • Table 1 shows the electrode densities of the positive electrodes according to Examples 1 to 11 and the positive electrodes according to Comparative Examples 1 to 5.
  • a negative electrode active material 95 parts by mass of a negative electrode active material and 5 parts by mass of a binder were mixed in a solvent, and stirred for 30 minutes using a slurry mixer to prepare a negative electrode mixture.
  • graphite was used as the negative electrode active material
  • polyvinylidene fluoride was used as the binder
  • N-methylpyrrolidone was used as the solvent.
  • the obtained negative electrode mixture was applied to both surfaces of a negative electrode current collector, which is a copper foil having a thickness of 10 ⁇ m, using a roll transfer machine, pressed using a roll press, and then cut into negative electrodes and did.
  • the obtained positive electrode and negative electrode were each joined by a positive electrode lead piece and a negative electrode lead piece by ultrasonic welding, and then wound into a cylindrical shape with a porous polyethylene film sandwiched between the electrodes as a separator and accommodated in a battery can. Then, after the positive electrode lead piece and the negative electrode lead piece were connected to the battery can and the sealing lid, respectively, the battery can and the sealing lid were joined and sealed by laser welding. Thereafter, a non-aqueous electrolyte was injected into the battery can from the injection port to obtain a lithium ion secondary battery.
  • non-aqueous electrolyte a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / L in a mixed solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2 was used.
  • a lithium ion secondary battery manufactured using each of the positive electrode materials according to Examples 1 to 11 and the positive electrode materials according to Comparative Examples 1 to 5 was subjected to a charge / discharge test to obtain rate characteristics and charge / discharge cycle characteristics. evaluated.
  • the charge / discharge test was performed at an environmental temperature of 25 ° C.
  • the discharge capacity at each rate was determined according to the following procedure. First, constant current low voltage charging was performed up to an upper limit voltage of 4.5 V at a current equivalent to 0.2 C, and after resting for 30 minutes, discharging was performed to a lower limit voltage of 3.0 V at a constant current equivalent to 0.2 C. Subsequently, charging / discharging for 2 cycles in total was repeated with this charging / discharging as one cycle.
  • the value of the discharge capacity density per positive electrode material obtained in the second cycle was defined as the discharge capacity (Ah / kg) at 0.2C.
  • the capacity maintenance rate in the charge / discharge cycle was determined by the following procedure. After measuring the discharge capacity at 5.0 C, constant current low voltage charging was performed at a current equivalent to 0.2 C up to an upper limit voltage of 4.5 V, and after resting for 30 minutes, the lower limit voltage 3. Discharge was performed to 0V. The value of the discharge capacity obtained at this time was defined as the discharge capacity before the charge / discharge cycle. Subsequently, constant current low voltage charging was performed to a maximum voltage of 4.5 V with a current corresponding to 1.0 C, and after resting for 10 minutes, discharging was performed to a minimum voltage of 3.0 V with a constant current corresponding to 1.0 C.
  • the particle size (D10) corresponding to 10% of the volume-based cumulative particle size distribution is 0.5 ⁇ m or more and 10 ⁇ m or less
  • the volume The particle size (D90) corresponding to 90% of the standard cumulative particle size distribution is in the range of more than 10 ⁇ m and 50 ⁇ m or less.
  • the average porosity in the secondary particles having a particle diameter in the range of more than 10 ⁇ m and 50 ⁇ m or less is higher than the average porosity in the secondary particles having a particle diameter in the range of 0.5 ⁇ m to 10 ⁇ m
  • the average porosity of secondary particles having a particle diameter of more than 10 ⁇ m and 50 ⁇ m or less exceeds 5% and 70% or less
  • the average porosity of secondary particles having a particle diameter of 0.5 ⁇ m or more and 10 ⁇ m or less is 5% or less.
  • the particle diameter (D10) corresponding to 10% of the volume-based cumulative particle diameter distribution is 0.5 ⁇ m or more and 10 ⁇ m or less
  • the particle diameter (D90) corresponding to 90% of the cumulative particle diameter distribution is in the range of more than 10 ⁇ m and 50 ⁇ m or less
  • the average porosity in the secondary particles in the range of more than 10 ⁇ m and 50 ⁇ m or less is the particle diameter. Is lower than the average porosity of secondary particles in the range of 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the rate capacity maintenance rate is approximately in the upper half of the 60% range, and the cycle capacity maintenance rate is about 86% to 87% or less.
  • the rate capacity maintenance rate generally exceeded about 72%, and reached about 75% to 76%, and good rate characteristics were realized. It has been confirmed. From the above results, the average porosity of the secondary particles having a particle diameter of more than 10 ⁇ m and not more than 50 ⁇ m is higher than the average porosity of the secondary particles having a particle diameter of not less than 0.5 ⁇ m and not more than 10 ⁇ m.
  • the rate capacity maintenance ratio and the cycle capacity maintenance ratio can be improved.
  • the cycle capacity maintenance rate exceeded 88% and reached about 90%, and it was confirmed that good charge / discharge cycle characteristics were realized. It was done.
  • Positive electrode material for lithium ion secondary batteries 10 Layered oxide 50 Large particle (secondary particle) 60 small particles (secondary particles) 100 Lithium ion secondary battery 101 Positive electrode (Positive electrode for lithium ion secondary battery) 102 Negative electrode 103 Separator 104 Battery can 105 Negative electrode lead piece 106 Sealing lid 107 Positive electrode lead piece 108 Sealing material 109 Insulating plate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 本発明は、正極活物質が高密度化されていながら、良好なレート特性とサイクル特性とを有するリチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池を提供するものである。リチウムイオン二次電池用正極材1は、Li1+xM11-x-yM2[-0.1≦x≦0.3、0≦y≦0.1、M1はNi、Co、Mn、M2はMg、Al、Ti、Zr、Mo、Nb、Fe、B]で表され、層状構造のリチウム金属複合酸化物一次粒子10が凝集した二次粒子50,60を含む集合体であって、二次粒子50,60は、レーザ回折/散乱式粒度分布測定によるD10が0.5μm以上10μm以下、D90が10μmを超え50μm以下であり、粒子径が10μmを超え50μm以下の二次粒子の平均空隙率が、粒子径が0.5μm以上10μm以下の二次粒子の平均空隙率よりも高いことを特徴とする。

Description

リチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極材の製造方法
 本発明は、リチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極材の製造方法に関する。
 リチウムイオン二次電池は、ニッケル・水素蓄電池やニッケル・カドミウム蓄電池等の他の二次電池と比較して、エネルギー密度が高く、メモリ効果は小さいといった特性を有している。そのため、スマートフォン、タブレット等の携帯電子機器の電源から、家庭用電気機器の電源、電力貯蔵装置、無停電電源装置、電力平準化装置等の定置用電源、船舶、鉄道、ハイブリット自動車、電気自動車等の駆動電源に至るまでその用途が拡大しており、電池性能のさらなる向上が求められている。
 リチウムイオン二次電池の各種用途の中でも、特に、電池の占有体積の縮小化が望まれる小型電源や車載用等の中型電源等については、正極の体積エネルギー密度の向上に対する要求が高くなっている。そこで、正極活物質の粒子径を適切に制御することによって、正極活物質の充填密度の向上を図る技術が提案されている。
 例えば、特許文献1には、一般式Li(但し、Nは、Ni、Co及びMnからなる群から選ばれる少なくとも1種の元素を表し、Mは、Ni、Co及びMn以外の遷移金属元素、Al、Sn並びにアルカリ土類金属からなる群から選ばれる少なくとも1種の元素を表し、かつ0.9≦w≦1.3、0.9≦x≦2、0≦y≦0.1、1.9≦z≦4.1、0≦a<0.05を満たす)で表されるリチウム含有複合酸化物の製造方法であって、一次粒子の平均粒子径が1μm以下の粒子からなる平均粒子径が10~40μmの少なくともN元素を含有する造粒粒子と、平均粒子径が6μm以下の少なくともN元素を含有する晶析粒子とを、造粒粒子/晶析粒子の重量比が10/90~90/10で含み、かつリチウム化合物を含む混合物の粉末を、酸素含有雰囲気で750~1250℃で焼成することを特徴とするリチウム含有複合酸化物の製造方法が開示されている。
 また、特許文献2には、平均組成がLiCoNi1-y-zb-a(式中、Mは、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、リン(P)、硫黄(S)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、イットリウム(Y)、ジルコニウム(Zr)、モリブデン(Mo)、銀(Ag)、バリウム(Ba)、タングステン(W)、インジウム(In)、ストロンチウム(Sr)、スズ(Sn)、鉛(Pb)およびアンチモン(Sb)からなる群から選択される1種または2種以上の元素である。Xは、ハロゲン元素である。x、y、z、aおよびbはそれぞれ0.8<x≦1.2、0<y≦0.5、0.2≦z≦1.0、0.2<y+z≦1.0、1.8≦b≦2.2、0≦a≦1.0の範囲内の値である。)で示されるリチウム複合酸化物粒子の一次粒子、もしくは平均組成がLiM11-tM2PO(式中、M1は、鉄(Fe)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、マグネシウム(Mg)からなる群から選択される1種または2種以上の元素である。M2は、2族~15族から選ばれる元素のうちM1を除く1種または2種以上の元素である。s、tはそれぞれ0≦s≦1.2、0≦t≦1.0の範囲内の値である。)で示される表面の少なくとも一部が電子導電性物質にて被覆されたリチウム複合酸化物粒子の一次粒子が凝集した二次粒子を含み、レーザ回折・散乱法によって測定された体積基準の50%平均粒径が10μm以上30μm以下であり、かつ個数基準の10%平均粒径が3μm以下、個数基準の50%平均粒径が6μm以下および個数基準の90%平均粒径が13μm以上20μm以下である非水電解質電池用正極活物質が開示されている。
特開2010-070427号公報 特開2012-221855号公報
 リチウムイオン二次電池の体積エネルギー密度を向上させるためには、正極活物質の充填性を向上させ、電極の高密度化を図ることが必要となる。特許文献1や特許文献2に開示される技術のように、異なる粒径の粒子を組み合わせて用いたり、電極のプレス成形における圧力を高くしたりすると、正極活物質の粒子間の空隙は減容されるため、正極活物質の充填密度を向上させることが可能である。しかしながら、正極活物質の粒子間の空隙を減容させると、電解液が空隙を伝って浸透し難くなるため、正極活物質の内部側に浸透する電解液の量は減少することになる。このような場合には、リチウムイオンの拡散が正極活物質粒子の固体内拡散速度に専ら依存するようになり、放電時の正極活物質の内部側はリチウムイオンが欠乏した状態になり易くなってしまう。そのため、高レートの放電になるほど放電容量が低下して、レート特性が悪化する恐れがある。
 他方、リチウムイオン二次電池用の正極活物質としては、LiMO(Mは、Ni、Co、Mn等の元素を示す。)と表される層状酸化物の開発が鋭意進められている。層状酸化物は、α-NaFeO型の結晶構造を有するリチウム金属複合酸化物であって、比較的高い充放電容量を有する有望な正極活物質の一種である。しかしながら、リチウムイオンの挿入及び脱離に伴う体積変化が大きいという特徴を有している。安価で高容量な層状酸化物としては、LiNiOのようなニッケル系層状酸化物が知られているが、ニッケル系層状酸化物では、特にヤーンテラー効果やガスの発生による結晶歪が発生する。そのため、層状酸化物をはじめとする正極活物質の粒子間の空隙を減容させると、高密度に充填された正極活物質が充放電に伴う体積変化に追従することができなくなって、一次粒子や二次粒子の各粒子間や各粒子内部に割れが発生することがある。そして、充放電の繰り返しによって割れが進展し、電気化学的活性が著しく低下した粒子が多数発生した場合、充放電サイクル特性や体積エネルギー密度が悪化する虞がある。
 そこで、本発明は、正極活物質の充填性が良好でありながら、良好なレート特性と充放電サイクル特性とを両立することができるリチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極材の製造方法を提供することを目的とする。
 前記課題を解決するために本発明に係るリチウムイオン二次電池用正極材は、以下の組成式(I)Li1+xM11-x-yM2・・・(I)[式中、xは-0.1≦x≦0.3を満たす数であり、yは0≦y≦0.1を満たす数であり、M1はNi、Co、Mnからなる群より選択される少なくとも1種の元素であり、M2はMg、Al、Ti、Zr、Mo、Nb、Fe、Bからなる群より選択される少なくとも1種の元素である。]で表され、層状構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子を含む集合体であって、前記集合体を構成する二次粒子は、レーザ回折/散乱式粒度分布測定による体積基準の積算粒子径分布の10%に対応した粒子径(D10)が0.5μm以上10μm以下、且つ、体積基準の積算粒子径分布の90%に対応した粒子径(D90)が10μmを超え50μm以下であり、粒子径が10μmを超え50μm以下である前記二次粒子における平均空隙率が、粒子径が0.5μm以上10μm以下である前記二次粒子における平均空隙率よりも高いことを特徴とする。
 また、本発明に係るリチウムイオン二次電池用正極は、前記のリチウムイオン二次電池用正極材を含んでなることを特徴とする。
 また、本発明に係るリチウムイオン二次電池は、前記のリチウムイオン二次電池用正極を備えることを特徴とする。
 また、本発明に係るリチウムイオン二次電池用正極材の製造方法は、以下の組成式(I)Li1+xM11-x-yM2・・・(I)[式中、xは-0.1≦x≦0.3を満たす数であり、yは0≦y≦0.1を満たす数であり、M1はNi、Co、Mnからなる群より選択される少なくとも1種の元素であり、M2はMg、Al、Ti、Zr、Mo、Nb、Fe、Bからなる群より選択される少なくとも1種の元素である。]で表され、層状構造を有するリチウム金属複合酸化物の一次粒子、あるいはさらに前記層状構造を有するリチウム金属複合酸化物とは異なる結晶構造を有するリチウム金属複合酸化物の一次粒子を調製し、前記一次粒子を用いて、0.5μm以上10μm以下の範囲に粒子径分布を有する二次粒子の第1の集合を湿式造粒すると共に、前記一次粒子を用いて、10μmを超え50μm以下の範囲に粒子径分布を有する二次粒子の第2の集合を前記第1の集合の湿式造粒よりも速い乾燥速度又は高粘度のスラリーによって湿式造粒し、造粒された前記第1の集合と前記第2の集合とを混合して、レーザ回折/散乱式粒度分布測定による体積基準の篩下積算粒子径分布の10%に対応した粒子径(D10)が0.5μm以上10μm以下、且つ、体積基準の篩下積算粒子径分布の90%に対応した粒子径(D90)が10μmを超え50μm以下であり、粒子径が10μmを超え50μm以下である前記二次粒子における平均空隙率が、粒子径が0.5μm以上10μm以下である前記二次粒子における平均空隙率よりも高い二次粒子の集合体を調製することを特徴とする。
 本発明によれば、正極活物質の充填性が良好でありながら、良好なレート特性と充放電サイクル特性とを両立することができるリチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極材の製造方法を提供することができる。
本発明の一実施形態に係るリチウムイオン二次電池用正極材の断面構造を模式的に示す概念図である。 本発明の他の実施形態に係るリチウムイオン二次電池用正極材の断面構造を模式的に示す概念図である。 本発明の他の実施形態に係るリチウムイオン二次電池用正極材の断面構造を模式的に示す概念図である。 本発明の他の実施形態に係るリチウムイオン二次電池用正極材の断面構造を模式的に示す概念図である。 本発明の実施形態に係るリチウムイオン二次電池の一例を示す断面模式図である。
 以下、本発明の一実施形態に係るリチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極材の製造方法について詳細に説明する。なお、共通する構成については、同一の符号を付し、重複した説明を省略する。
 本実施形態に係るリチウムイオン二次電池用正極材(以下、正極材ということがある。)は、層状構造を有するリチウム金属複合酸化物(以下、層状酸化物ということがある。)の一次粒子が凝集した二次粒子を含んでなる。すなわち、正極材は、二次粒子の集合(集合体に相当する。)からなり、その集合を構成する二次粒子は、少なくとも層状酸化物の一次粒子を含む一次粒子の集合が凝集することによって形成される。本実施形態に係る正極材は、導電材、結着剤等と共にリチウムイオン二次電池用正極における正極合材層を形成するものであり、二次粒子の集合が、空隙率が相対的に高い大径の二次粒子(以下、大粒子ということがある。)と、空隙率が相対的に低い小径の二次粒子(以下、小粒子ということがある。)とを含むように構成されている点に特徴を有している。なお、二次粒子の集合は、集合同士が凝集した凝集体を形成してもよいし、集合同士が結着剤などによって不特定形状に結着した複合体を形成していてもよいし、集合同士が加圧成形された成形体を形成していてもよい。
 層状酸化物は、詳細には、以下の組成式(I)のように表される。
  Li1+xM11-x-yM2・・・(I)
[式中、xは-0.1≦x≦0.3を満たす数であり、yは0≦y≦0.1を満たす数であり、M1はNi、Co、Mnからなる群より選択される少なくとも1種の元素であり、M2はMg、Al、Ti、Zr、Mo、Nb、Fe、Bからなる群より選択される少なくとも1種の元素である。]
 組成式(I)で表わされる層状酸化物は、電極反応に伴ってリチウムイオンの挿入及び脱離をすることができる正極活物質であって、主としてα-NaFeO型の層状の結晶構造を有し、X線回折法による回折ピークは、空間群R3-m(「-」は、「3」の上付バーである。)に帰属され得るパターンを示すリチウム金属複合酸化物である。なお、組成式(I)では酸素の組成比は2と規定しているが、分析条件、焼成条件等によって量論組成から多少ずれることが知られている。よって、上記の結晶構造を維持しながら、酸素の組成比の値が5%程度前後するのは本発明の趣旨から外れるものではない。
 組成式(I)において、xは-0.1≦x≦0.3を満たす数であり、リチウム(Li)の組成比は0.9以上1.3以下とされる。すなわち、層状酸化物は、リチウムがα-NaFeO型の結晶構造における3aサイトのみに配置される酸化物に限られず、リチウムが化学量論比より過剰である所謂層状固溶体酸化物(Li(Li1-p)O(0<p<1)、LiMO-LiMO等と表される。)であってもよい。層状酸化物におけるリチウムの組成比をこのような範囲とすることによって、高い放電容量を確保することができる。
 M1は、Ni、Mn、Coからなる群より選択される少なくとも1種の元素であり、Niの組成比をa、Mnの組成比をb、Coの組成比をcとしたとき、0≦a≦1-x-y、0≦b≦1-x-y、0≦c≦1-x-y、a+b+c=1-x-yを満たす範囲で、単一元素又は複数元素からなる任意の組成とすることができる。M1元素は、好ましくはNi、Mnからなる群より選択される少なくとも1種の元素を含み、より好ましくはNiを含み、さらに好ましくはCoを含まない組成からなる。すなわち、層状酸化物の好ましい形態は、以下の組成式(II)
  Li1+xNiMnCoM2・・・(II)
[式中、xは-0.1≦x≦0.3を満たす数であり、a、b及びcは0<a≦1-x-y、0≦b<1-x-y、0≦c<1-x-y、a+b+c=1-x-y、a>b、a>cをそれぞれ満たす数であり、yは0≦y≦0.1を満たす数であり、M2はMg、Al、Ti、Zr、Mo、Nb、Fe、Bからなる群より選択される少なくとも1種の元素である。]で表され、好ましくはcが0である。このようなNiを高い比率で含有する組成とすることによって、安価でありながら高容量の正極活物質が得易くなる。
 M2は、Mg、Al、Ti、Zr、Mo、Nb、Fe、Bからなる群より選択される少なくとも1種の元素であり、M2元素の組成比は0以上0.1以下とされる。すなわち、0≦y≦0.1を満たす範囲で、Mg、Al、Ti、Zr、Mo、Nb、Fe若しくはBのいずれかの単一元素又はこれらから選択される複数元素によってM1元素を置換させることができる。このような元素によってM1元素の一部を置換させると、充放電サイクル特性の向上、レート特性の向上、抵抗低減等の作用を得ることが可能である。
 正極材を構成する二次粒子は、レーザ回折/散乱式粒度分布測定による体積基準の篩下積算粒子径分布の10%に対応した粒子径(以下、D10ということがある。)が0.5μm以上10μm以下、且つ、レーザ回折/散乱式粒度分布測定による体積基準の篩下積算粒子径分布の90%に対応した粒子径(以下、D90ということがある。)が10μmを超え50μm以下、好ましくは20μm以上50μm以下となるように構成される。正極材を構成する二次粒子の集合をこのような粒子径分布を有するものとすると、粒子径が大きい大粒子が高密度で充填されると共に、その大粒子同士の間の空隙に粒子径が小さい小粒子が充填されることによって、電極中の正極活物質の充填密度を高密度にすることが可能である。なお、レーザ回折/散乱式粒度分布測定は、二次粒子を水等の分散媒に分散させた状態で測定すればよく、二次粒子は、球形化された粒子及び球形化されていない粒子のいずれの状態で測定されてもよい。
 図1は、本発明の一実施形態に係るリチウムイオン二次電池用正極材の断面構造を模式的に示す概念図である。なお、以下の概念図では、正極材を構成する二次粒子を二粒度で充填させたときの粒子形態、分散状態を模式的に示している。
 図1に示すように、正極材1は、層状酸化物10の一次粒子のみが凝集して形成された大径の二次粒子(大粒子)と、層状酸化物10の一次粒子のみが凝集して形成された小径の二次粒子(小粒子)とを含むように構成することができる。このような二粒度に類する粒子集合を充填させることによって、二次粒子全体における粒子径分布が所定の粒径範囲を有するように簡便に制御することが可能であり、充填密度を高密度化させ易くすることができる。
 大粒子50は、例えば、10μmを超え50μm以下の範囲に一山型の粒子径分布を有する二次粒子の集合とし、互いに密接して最密充填に準じた高密度で充填させる。このようにすることによって、正極材を構成する二次粒子全体における、レーザ回折/散乱式粒度分布測定による体積基準の篩下積算粒子径分布の90%に対応した粒子径(D90)が、10μmを超え50μm以下となるようにすることができる。大粒子50の粒子径分布の範囲を10μmを超え50μm以下の範囲とすると、粒子の塗工性や取り扱い性が確保できると共に、電極における正極活物質の充填密度を高い水準にすることができる点で有利である。
 一方で、小粒子60は、例えば、0.5μm以上10μm以下の範囲に一山型の粒子径分布を有する二次粒子の集合とし、大粒子50同士の間の空隙に充填させる。このようにすることによって、正極材を構成する二次粒子全体における、レーザ回折/散乱式粒度分布測定による体積基準の篩下積算粒子径分布の10%に対応した粒子径(D10)が、0.5μm以上10μm以下となるようにすることができる。小粒子60の粒子径分布の範囲を0.5μm以上10μm以下の範囲とすると、大粒子50との粒子径比が二粒度最密充填のモデルに近似した比となると共に、小粒子60同士の凝集による塗工性の低下を生じ難くすることができる。
 図1に示すように、各二次粒子は、大粒子50における空隙率が小粒子60における空隙率よりも高くなるように二次粒子が形成される。具体的には、粒子径が10μmを超え50μm以下、好ましくは20μm以上50μm以下である二次粒子における平均空隙率が、粒子径が0.5μm以上10μm以下である二次粒子における平均空隙率よりも高い状態とされる。
 一般には、空隙率が低い二次粒子のみから構成される正極材では、電解液が粒子の深部に浸透し難くなるため、特に粒子径が大きい二次粒子でイオン伝導性が低下し、レート特性が悪化することになる。また、充放電に伴う体積変化に二次粒子が追従することができなくなるため、二次粒子の割れや二次粒子同士の乖離が生じることによって、電気化学的活性を奏することができない粒子が多数発生し、充放電サイクル特性や体積エネルギー密度が悪化することになる。その一方で、空隙率が高い二次粒子のみから構成される正極材では、正極材の体積エネルギー密度を高い水準に維持することは難しくなる。
 そこで、本実施形態に係るリチウムイオン二次電池用正極材では、空隙率が相対的に高い大径の二次粒子と空隙率が相対的に低い小径の二次粒子とを組み合わせることによって、正極活物質の充填密度を高密度化させつつ、主として空隙率が高い大粒子の作用によって、電解液の粒子深部への浸透を確保すると共に、正極活物質の充放電に伴う体積変化に起因する応力を緩和させることができるようにしている。そして、高いイオン伝導性を確保し、充放電に伴う体積変化に起因する割れの発生を防止することで、良好なレート特性と充放電サイクル特性との両立を図っている。
 粒子径が10μmを超え50μm以下、好ましくは20μm以上50μm以下である二次粒子における平均空隙率は、5%以上70%以下とすることが好ましく、5%以上45%以下とすることがより好ましい。このような大径の大粒子における空隙率を5%以上70%以下とすると、大粒子の粒子内部に電解液が浸透し易くなり、リチウムイオンの拡散距離が比較的長くなる大粒子の中心付近にもリチウムイオンが十分に供給されることになるため、高いレート特性を確保することができるようになる。また、存在体積比が大きい大粒子が、充放電に伴う体積変化に追従することができるようになることによって、二次粒子全体において割れや粒子同士の乖離が生じ難くなり、充放電サイクル特性をより向上させることができる。さらには、このような大粒子における空隙率を5%以上45%以下とすると、充放電に伴う正極活物質の体積変化を緩和させる作用を得つつ、体積エネルギー密度をより高い水準にすることが可能となる。
 粒子径が0.5μm以上10μm以下である二次粒子における平均空隙率は、5%以下とすることが好ましい。このような小径の小粒子における空隙率を5%以下とすると、大粒子同士の間に生じる空隙の充填率をより向上させることができる。そして、空隙率が高い大粒子による作用を確保しつつ、体積エネルギー密度をより向上させることが可能になる。
 二次粒子における空隙率は、水銀圧入法等の液浸法、ガス置換法(ガス吸着法ともいう。)等の適宜の測定方法や、電子顕微鏡による直接観察によって測定することができる。例えば、水銀圧入法による場合は、二次粒子の集合である粉体に高圧で水銀を圧入し、圧力を変えて水銀の圧入量を測定していくことで細孔体積(ないし細孔分布)を求めることができる。そして、空隙率(平均空隙率に相当する。)を、以下の数式1によって算出することができる。
  空隙率=細孔体積/粒子体積×100・・・(数式1)
 なお、二次粒子の集合の粒子体積は、レーザ回折/散乱式粒度分布測定によって求められる平均体積を用いればよい。また、空隙率は、直径0.9μm以下の細孔分布に基いて算出すればよく、厳密な測定では、水銀圧入法におけるWashburnの式において水銀接触角を130°、水銀の表面張力を485dyne/cm(485×10-5N/cm)として算出すればよい。
 本実施形態に係るリチウムイオン二次電池用正極材は、層状構造を有するリチウム金属複合酸化物(層状酸化物)を複数種類含むようにしてもよい。すなわち、二次粒子の集合は、前記の組成式(I)で表わされる範囲で元素の種類や組成比が異なる複数種類の層状酸化物を組み合わせて構成することができる。具体的には、複数種類の層状酸化物の一次粒子が凝集した二次粒子の集合、同種の層状酸化物の一次粒子が凝集した二次粒子の複数種類の集合、又は、複数種類の層状酸化物の一次粒子が凝集した二次粒子と、同種の層状酸化物の一次粒子が凝集した二次粒子との集合のいずれかよりなるものとしてもよい。
 一般に、組成の異なる正極活物質は、作動電位範囲内での充放電に伴う膨張収縮量に差異がある。そのため、複数種類の層状酸化物のうちで膨張収縮量が相対的に大きい層状酸化物を上述の大粒子とし、膨張収縮量が相対的に小さい化合物を上述の小粒子としてもよい。例えば、ニッケル量が相対的に多い層状酸化物を大粒子とし、ニッケル量が相対的に少ない層状酸化物を小粒子とする等である。このようにすると、充放電に伴う膨張収縮を細孔によって有効に逃がすことができ、正極活物質の充填性を確保しながらも、膨張収縮に伴う二次粒子の割れや二次粒子同士の乖離を抑制することが可能になる。或いは、複数種類の層状酸化物のうちで導電性が相対的に高い層状酸化物を上述の大粒子とし、導電性が相対的に低い層状酸化物を上述の小粒子としてもよい。このようにすると、充放電に伴う膨張収縮を細孔によって有効に逃がしつつ、正極材全体における導電性を高めることが可能になる。また、導電性が相対的に高い種類の層状酸化物の一次粒子が各二次粒子に含まれるようにしてもよい。
 本実施形態に係るリチウムイオン二次電池用正極材は、正極活物質として、層状構造を有するリチウム金属複合酸化物(層状酸化物)とは異なる結晶構造を有するリチウム金属複合酸化物(以下、非層状酸化物ということがある。)の一次粒子を含むようにしてもよい。すなわち、層状構造を有するリチウム金属複合酸化物の一次粒子10のみが凝集した二次粒子50,60の集合からなる図1の形態に代えて、層状構造を有するリチウム金属複合酸化物の一次粒子及びそれとは異なる結晶構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子(図2参照)、層状構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子と、それとは異なる結晶構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子との組合せ(図3参照)、又は、層状構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子と、それとは異なる結晶構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子と、層状構造を有するリチウム金属複合酸化物の一次粒子及びそれとは異なる結晶構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子との組合せ(図4参照)のいずれかよりなるものとしてもよい。なお、非層状酸化物の一次粒子を含有する正極材における粒子径と空隙率の関係は、層状酸化物の一次粒子のみを含有する正極材についてと同様である。
 非層状酸化物としては、リチウムイオン二次電池用の正極活物質として用いることが可能な、層状酸化物以外のリチウム金属複合酸化物を用いることができる。具体的には、例えば、LiFePO、LiNiPO、LiMnPO、LiFeMnPO等のオリビン型複合酸化物や、LiMnO、LiMn、LiNi0.5Mn0.5等のスピネル型複合酸化物や、LiFeBO、LiNiBO、LiMnBO、LiFeSO、LiNiSO、LiMnSO等のポリアニオン型複合酸化物等の従来知られている正極活物質が挙げられる。非層状酸化物としては、これらの一種を単独で用いてよく、複数種を組み合わせて用いてもよい。例えば、複数種を互いに別体の二次粒子として用いることも可能である。非層状酸化物としては、これらの中でも、充放電に伴う体積変化が小さいオリビン型複合酸化物等がより好ましい。
 図2は、本発明の他の実施形態に係るリチウムイオン二次電池用正極材の断面構造を模式的に示す概念図である。
 図2に示す他の実施形態に係るリチウムイオン二次電池用正極材2は、正極材1と同様に、空隙率が相対的に高い大径の二次粒子(大粒子)と、空隙率が相対的に低い小径の二次粒子(小粒子)との組み合わせによって構成されたものであって、層状構造を有するリチウム金属複合酸化物の一次粒子及びそれとは異なる結晶構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子からなるものである。図2に示すように、正極材2を構成する二次粒子の集合は、層状酸化物の一次粒子10及び非層状酸化物の一次粒子20が凝集して形成された大径の二次粒子(大粒子)50Aと、層状酸化物の一次粒子10及び非層状酸化物の一次粒子20が凝集して形成された小径の二次粒子(小粒子)60Aとからなるように構成することができる。
 図2に示す正極材2では、大粒子50Aにおける空隙率が小粒子60Aにおける空隙率よりも高くされているため、層状酸化物の一次粒子10を含有している大粒子50Aが、充放電に伴う体積変化が顕著である層状酸化物(10)の体積変化に追従し易い状態となる。すなわち、層状酸化物(10)の存在体積が大きい大粒子50Aにおいて、層状酸化物(10)の体積変化が空隙によって有効に緩和されることになり、体積変化に起因する大粒子50Aや小粒子60Aの割れや、大粒子50A及び小粒子60Aの各二次粒子間の乖離がより抑制されるようになる。他方、大粒子50A及び小粒子60Aを、層状酸化物の一次粒子10と非層状酸化物の一次粒子20との組み合わせで構成されるようにすることで、大粒子50A及び小粒子60Aにおける層状酸化物(10)による体積変化の総和を減少させることができる。また、大粒子50Aと小粒子60Aとが、同種類の粒子構成を有しているため、大粒子50Aと小粒子60Aの空隙率の関係を製造上制御し易いという利点を有している。
 図3は、本発明の他の実施形態に係るリチウムイオン二次電池用正極材の断面構造を模式的に示す概念図である。
 図3に示す他の実施形態に係るリチウムイオン二次電池用正極材3は、正極材1と同様に、空隙率が相対的に高い大径の二次粒子(大粒子)と、空隙率が相対的に低い小径の二次粒子(小粒子)との組み合わせによって構成されたものであって、層状構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子と、それとは異なる結晶構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子とが混合したものである。一般に、層状酸化物(10)よりも非層状酸化物(20)の方が、充放電に伴う体積変化が小さい。そのため、図3に示すように、正極材3を構成する二次粒子の集合は、正極活物質として層状酸化物の一次粒子10のみが凝集した二次粒子(大粒子)50Bと非層状酸化物の一次粒子20のみが凝集した二次粒子(小粒子)60Bとの組合せからなるように構成することが好ましい形態である。
 図3に示す正極材3では、大粒子50Bにおける空隙率が小粒子60Bにおける空隙率よりも高くされているため、層状酸化物の一次粒子10を含有している大粒子50Bが、充放電に伴う体積変化が顕著である層状酸化物(10)の体積変化に追従し易い状態となる。すなわち、層状酸化物(10)の存在体積が大きい大粒子50Bにおいて、層状酸化物(10)の体積変化が空隙によって有効に緩和されることになり、体積変化に起因する大粒子50Bの割れや、大粒子50B及び小粒子60Bの各二次粒子間の乖離がより抑制されるようになる。他方、小粒子60Bを、非層状酸化物の一次粒子20で形成することで、小粒子60Bにおける体積変化が減少し、小粒子60Bの割れが低減するようになる。また、非層状酸化物(20)として、充放電に伴う体積変化が小さい正極活物質を特に適用することによって、充放電に伴う二次粒子間の乖離が抑え易くなるという利点を有している。
 図4は、本発明の他の実施形態に係るリチウムイオン二次電池用正極材の断面構造を模式的に示す概念図である。
 図4に示す他の実施形態に係るリチウムイオン二次電池用正極材4は、正極材1と同様に、空隙率が相対的に高い大径の二次粒子(大粒子)と、空隙率が相対的に低い小径の二次粒子(小粒子)との組み合わせによって構成されたものである。図4に示すように、正極材4を構成する二次粒子の集合は、正極活物質として層状酸化物の一次粒子10のみが凝集した二次粒子(大粒子)50C1と、正極活物質として非層状酸化物の一次粒子20のみが凝集した二次粒子(小粒子)60C1と、層状酸化物の一次粒子10及び非層状酸化物の一次粒子20が凝集した二次粒子(大粒子50C2,小粒子60C2)との組合せからなるように構成することができる。
 図4に示す正極材4では、大粒子50C1,50C2における空隙率が小粒子60C1,60C2における空隙率よりも高くされているため、層状酸化物の一次粒子10を含有している大粒子50C1,50C2が、充放電に伴う体積変化が顕著である層状酸化物(10)の体積変化に追従し易い状態となる。すなわち、層状酸化物(10)の存在体積が大きい大粒子50C1,50C2において、層状酸化物(10)の体積変化が空隙によって有効に緩和されることになり、体積変化に起因する大粒子50C1,50C2や小粒子60C1,60C2の割れや、大粒子50C1,50C2及び小粒子60C1,60C2の各二次粒子間の乖離がより抑制されるようになる。他方、大粒子50C2及び小粒子60C1,60C2を、非層状酸化物(20)を含むように形成することで、正極材4全体における層状酸化物(10)の体積変化の総和を減少させつつ、層状酸化物の一次粒子10のみを含有している大粒子50C1の体積比を大きく採れるようにすることができる。また、正極活物質全体の充填密度をより高密度化させることが可能となる。
 次に、本実施形態に係るリチウムイオン二次電池用正極材の製造方法について説明する。
 本実施形態に係るリチウムイオン二次電池用正極材は、異なる粒子径範囲を有する単分散の二次粒子の集合を複数群あらかじめ調製した後、正極材を構成する二次粒子全体における、レーザ回折/散乱式粒度分布測定による体積基準の篩下積算粒子径分布の10%に対応した粒子径(D10)が、0.5μm以上10μm以下、且つ、体積基準の篩下積算粒子径分布の90%に対応した粒子径(D90)が、10μmを超え50μm以下、好ましくは20μm以上50μm以下となるように、調製した二次粒子の集合を適宜組み合わせて混合することで製造することができる。この製造方法は、二次粒子調製工程と、二次粒子混合工程を含んでなる。
 二次粒子調製工程では、組成式(I)で表される層状構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子を含む二次粒子の集合を複数群調製する。なお、二次粒子の集合としては、正極材を構成する二次粒子全体における粒子径分布が所定の条件になるように、少なくとも、10μmを超え50μm以下、好ましくは20μm以上50μm以下の範囲に粒子径分布を有する二次粒子の集合と、0.5μm以上10μm以下の範囲に粒子径分布を有する二次粒子の集合とを含む複数群を調製することが好ましい。必要に応じて、非層状酸化物の一次粒子については、層状酸化物の一次粒子と並行して形成させてもよい。
 一次粒子は、一般的なリチウムイオン二次電池用正極活物質の調製方法に準じて形成させることができる。調製方法としては、具体的には、固相法、共沈法、ゾルゲル法、水熱法等のいずれを利用することも可能である。例えば、固相法による場合には、原料のリチウム含有化合物とM1元素含有化合物とを、リチウムやM1元素が所定のモル濃度比となるように粉砕混合した後、得られた原料粉末を焼成することによって一次粒子を形成させることができる。
 原料のリチウム含有化合物としては、例えば、酢酸リチウム、硝酸リチウム、炭酸リチウム、水酸化リチウム、塩化リチウム、硫酸リチウム等を用いることができる。原料のリチウム含有化合物は、好ましくは炭酸リチウム、水酸化リチウムである。このような化合物を用いると、不純物をガスとして脱離させて、比較的低温で結晶粒子化させることが可能である。
 また、原料のM1元素含有化合物としては、例えば、酢酸塩、硝酸塩、炭酸塩、硫酸塩、酸化物、水酸化物等を用いることができる。原料のM1元素含有化合物は、好ましくは炭酸塩、酸化物、水酸化物である。このような化合物を用いると、不純物をガスとして脱離させて、比較的低温で結晶粒子化させることが可能である。
 原料化合物の粉砕混合は、乾式粉砕及び湿式粉砕のいずれの方式によって行ってもよい。粉砕混合には、例えば、ボールミル、ビーズミル、遊星型ボールミル、ジェットミル等の各種の粉砕機を用いることができる。
 粉砕混合された原料化合物は、例えば、400℃以上700℃以下の温度で仮焼することによって原料化合物を熱分解させた後、700℃以上1100℃以下、好ましくは800℃以上1000℃以下の温度で本焼成することが好ましい。このような温度範囲であれば、分解や成分の揮発を避けつつ、一次粒子の結晶性を良好に向上させることができる。なお、仮焼の処理時間は、2時間以上24時間以下、好ましくは4時間以上16時間以下であり、本焼成の処理時間は、2時間以上24時間以下、好ましくは4時間以上16時間以下である。焼成は、複数回を繰り返し行ってもよい。
 焼成の雰囲気は、不活性ガス雰囲気及び酸化性ガス雰囲気のいずれとしてもよいが、酸素、空気等の酸化性ガス雰囲気とすることが好ましい。酸化性ガス雰囲気で焼成を行うことによって、原料化合物の不完全な熱分解によって不純物が混入するのを避けることができ、一次粒子の結晶性を向上させることができる。また、例えば、Niを高い比率で含有する層状酸化物の場合、仮焼の雰囲気は、不活性ガス雰囲気及び酸化性ガス雰囲気のいずれでもよいが、本焼成の雰囲気は、酸化性ガス雰囲気が好ましく、特に空気よりも高い酸素濃度の雰囲気とすることが好ましい。なお、焼成された一次粒子は、空気中又は不活性ガス中で徐冷してよく、或いは液体窒素等で急冷してもよい。
 形成される層状酸化物の一次粒子の平均粒子径は、0.1μm以上2μm以下とすることが好ましい。一次粒子の平均粒子径を2μm以下とすると、層状酸化物の充填性が改善され、高いエネルギー密度を確保することができるようになる。また、一次粒子の平均粒子径が0.1μm以上であれば、一次粒子の取り扱い性が大きく損なわれることがなく、一次粒子の過度な凝集を避けることができる。
 層状酸化物の一次粒子は、M2元素が、一次粒子の結晶中に略均一に置換されたものであっても、一次粒子の表面に被着されたものであってもよい。M2元素が結晶中に略均一に置換された一次粒子は、原料のM2元素含有化合物をリチウム含有化合物やM1元素含有化合物とあらかじめ混合して一次粒子化させることで調製することができる。また、表面に被着された一次粒子は、メカノケミカル法、ゾルゲル法等の公知の表面処理法を利用して調製することができる。
 二次粒子の造粒方法としては、乾式造粒及び湿式造粒のいずれも適用可能であり、転動造粒、流動層造粒、圧縮造粒、噴霧造粒等の適宜の造粒方法を利用することができる。造粒操作は、原料粉末や焼成される一次粒子の凝集状態に応じて、焼成前の原料粉末に対して行っても、焼成して得られる焼成体に対して行ってもよい。特に好ましい造粒方法は、湿式造粒である。例えば、焼成前の原料粉末の混合粉砕を湿式粉砕とし、分散媒に分散した原料粉末に結着剤を添加する等して凝集性を向上させておくと、焼成体が二次粒子化された状態となり易い点で有利である。また、スプレードライヤ等の造粒機を利用した噴霧造粒によると、空隙率が異なる数μm~数十μmの二次粒子を簡易に造粒することができる。
 二次粒子の空隙率や粒子径は、造粒操作における各種条件、例えば、湿式造粒における、原料粉末又は焼成体を分散させたスラリーの濃度、スラリーの粘度、スラリーの供給量、スラリーにおける分散度(ないし凝集度)や、乾式造粒における圧縮荷重や、湿式造粒後の噴霧造粒(ないし噴霧乾燥)における噴霧温度、噴霧圧力、送風速度等を調節することによって制御することができる。例えば、空隙率が高い二次粒子は、スラリーの粘度が高く、分散度が低い凝集性の原料粉末を噴霧乾燥させた後に焼成したり、噴霧圧力や噴霧温度を高くし乾燥速度を速めて噴霧乾燥を行った後に焼成することで調製可能である。その一方で、空隙率が低い二次粒子は、スラリーにおける分散度が高い非凝集性の原料粉末を焼成したり、噴霧圧力や噴霧温度を低くし乾燥速度を遅くして噴霧乾燥を行った後に焼成することで調製可能である。
 二次粒子混合工程では、調製された複数群の二次粒子の集合を混合することによって、正極材を構成する二次粒子全体における、レーザ回折/散乱式粒度分布測定による体積基準の篩下積算粒子径分布の10%に対応した粒子径(D10)が、0.5μm以上10μm以下、且つ、体積基準の篩下積算粒子径分布の90%に対応した粒子径(D90)が、10μmを超え50μm以下となるリチウムイオン二次電池用正極材を調製する。二次粒子の集合は、個々の集合の粒子径分布に応じて、複数群を適宜の体積比で混合することができるが、正極活物質の充填密度を適化させる観点からは、粒子径分布が正規分布に準じた大粒子の集合と小粒子の集合の2群を所定体積比となるように混合することが好ましい。混合する大粒子:小粒子の体積比は、大粒子と小粒子との粒子径比にもよるが、好ましくは3.5:1~6.0:1、より好ましくは4.0:1~5.0:1である。
 次に、本実施形態に係るリチウムイオン二次電池用正極について説明する。
 本実施形態に係るリチウムイオン二次電池用正極は、前記のリチウムイオン二次電池用正極材と、導電材と、結着剤とを含んでなる正極合材層と、正極合材層が主面上に形成された正極集電体とを備えている。
 導電材としては、一般的なリチウムイオン二次電池用正極に使用されている導電材を用いることができる。具体的には、例えば、黒鉛粉末、アセチレンブラック、ファーネスブラック、サーマルブラック、チャンネルブラック等の炭素粒子や、ピッチ系炭素繊維、ポリアクリロニトリル(PAN)系炭素繊維等の炭素繊維等が挙げられる。導電材は、例えば、正極合材全体の質量に対して3質量%以上10質量%以下となる量を用いればよい。なお、導電材は、二次粒子と混合されてよいし、二次粒子を造粒する際に一次粒子と混合されてもよい。
 結着剤としては、一般的なリチウムイオン二次電池用正極に使用されている結着剤を用いることができる。具体的には、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、スチレン-ブタジエンゴム、カルボキシメチルセルロース、ポリアクリロニトリル、変性ポリアクリロニトリル等が挙げられる。結着剤は、例えば、正極合材全体の質量に対して2質量%以上10質量%以下となる量を用いればよい。
 正極集電体としては、アルミニウム製又はアルミニウム合金製の箔、エキスパンドメタル、パンチングメタル等を用いることができる。箔については、例えば、8μm以上20μm以下の厚さとすればよい。
 本実施形態に係るリチウムイオン二次電池用正極は、前記のリチウムイオン二次電池用正極活物質を用いて、一般的なリチウムイオン二次電池用正極の製造方法に準じて製造することができる。例えば、正極合材調製工程、正極合材塗工工程、成形工程を経て製造することができる。
 正極合材調製工程では、材料の正極材と、導電材と、結着剤とが溶媒中で混合されたスラリー状の正極合材を調製する。溶媒としては、結着剤の種類に応じて、例えば、N-メチルピロリドン、水、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、ジエチレングリコール、グリセリン、ジメチルスルホキシド、テトラヒドロフラン等を用いることができる。また、材料の混合には、例えば、プラネタリーミキサ、ディスパーミキサ、自転・公転ミキサ等を用いることができる。
 正極合材塗工工程では、調製されたスラリー状の正極合材を正極集電体の主面上に塗布した後、乾燥させることによって正極合材層を形成する。正極合材の塗布には、例えば、バーコーター、ドクターブレード、ロール転写機等を用いることができる。
 成形工程では、乾燥させた正極合材層を加圧成形し、必要に応じて正極集電体と共に裁断することによって、所望の形状のリチウムイオン二次電池用正極とする。正極集電体上に形成される正極合材層の厚さは、例えば、50μm以上300μm以下程度とすればよい。また、加圧成形における圧力、圧縮荷重は、所望の電極密度に応じて適宜調節することができるが、各二次粒子の空隙率が維持される程度とすることが好ましい。
 次に、本実施形態に係るリチウムイオン二次電池について説明する。
 図5は、実施形態に係るリチウムイオン二次電池の一例を示す断面模式図である。
 本実施形態に係るリチウムイオン二次電池100は、主に、前記の正極(リチウムイオン二次電池用正極)101と、負極102と、セパレータ103と、不図示の非水電解液とを備えている。リチウムイオン二次電池100は、円筒型のリチウムイオン二次電池であって、非水電解液は、有底円筒形状の電池缶104に収容されている。なお、リチウムイオン二次電池100としては、角型、ボタン型、ラミネートシート型等の形態であってもよい。
 リチウムイオン二次電池100において、正極集電体の主面に正極合材層が形成された正極101と、負極集電体の主面に負極合材層が形成された負極102とは、正極101及び負極102の間に介装されたセパレータ103を介して捲回されて、積層された電極群を形成している。また、正極101は、正極リード片107を介して密閉蓋106と電気的に接続されており、負極102は、負極リード片105を介して電池缶104と電気的に接続されている。
 正極リード片107及び負極リード片105は、それぞれ正極集電体、負極集電体と同様の材質からなる電流引き出し用の部材となっており、正極集電体、負極集電体とそれぞれ溶接されている。また、正極リード片107と負極102の間及び負極リード片105と正極101の間には、それぞれ絶縁板109が配設されて電気的に絶縁されている。電池缶104は、電極群等と共に非水電解液を収容し、シール材108を介して密閉蓋106で封止されている。
 負極102は、負極活物質と、負極活物質と電気的に接続された負極集電体とを備えている。なお、負極102には、リチウムイオン二次電池用正極において用いられる結着剤や、導電材と同様のものを用いることもできる。結着剤は、例えば、負極活物質の質量に対して5質量%程度となる量を用いればよい。
 負極活物質としては、一般的なリチウムイオン二次電池用負極に使用されている負極活物質を用いることができる。具体的には、例えば、炭素材料、金属材料、金属酸化物材料等の一種以上を用いることができる。炭素材料としては、例えば、天然黒鉛、人造黒鉛等の黒鉛類や、コークス、ピッチ等の炭化物類や、非晶質炭素や、炭素繊維等を用いることができる。また、金属材料としては、例えば、リチウム、シリコン、スズ、アルミニウム、インジウム、ガリウム、マグネシウム等の金属やこれらの合金、金属酸化物材料としては、スズ、ケイ素等を含有する金属酸化物を用いることができる。
 負極集電体としては、銅製又はニッケル製の箔、エキスパンドメタル、パンチングメタル等を用いることができる。箔については、例えば、5μm以上20μm以下の厚さとすればよい。
 リチウムイオン二次電池用負極は、リチウムイオン二次電池用正極と同様に、負極活物質と結着剤とが混合された負極合材を負極集電体の主面上に塗布した後、乾燥させることによって負極合材層を形成し、その負極合材層を加圧成形し、必要に応じて負極集電体と共に裁断することによって製造することができる。負極集電体上に形成される負極合材層の厚さは、例えば、20μm以上150μm以下とすればよい。
 セパレータ104としては、ポリエチレン、ポリプロピレン、ポリエチレン-ポリプロピレン共重合体等のポリオレフィン系樹脂、ポリアミド樹脂、アラミド樹脂等の微孔性フィルムや不織布等を用いることができる。
 非水電解液としては、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO等のリチウム塩を非水溶媒に溶解させた溶液を用いることができる。非水電解液におけるリチウム塩の濃度は、0.7M以上1.5M以下とすることが好ましい。
 非水溶媒としては、ジエチルカーボネート、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、メチルアセテート、ジメトキシエタン等を用いることができる。また、非水電解液には、電解液の酸化分解及び還元分解の抑制、金属元素の析出防止、イオン伝導性の向上、難燃性の向上等を目的として、各種の添加剤を添加することができる。このような添加剤としては、例えば、電解液の分解を抑制する1,3-プロパンサルトン、1,4-ブタンサルトン等や、電解液の保存性を向上させる不溶性ポリアジピン酸無水物、ヘキサヒドロ無水フタル酸等や、難燃性を向上させるフッ素置換アルキルホウ素等がある。
 本実施形態に係るリチウムイオン二次電池は、例えば、スマートフォン、タブレット等の携帯電子機器の電源、家庭用電気機器の電源、電力貯蔵装置、無停電電源装置、電力平準化装置等の定置用電源、船舶、鉄道、ハイブリット自動車、電気自動車等の駆動電源として好適である。
 リチウムイオン二次電池が備える正極に含まれる二次粒子の組成、粒子径、空隙率等は、リチウムイオン二次電池をグローブボックス内等で分解して正極を分離し、正極合材層を構成する組成物を回収して機器分析に供することによって確認することが可能である。例えば、回収した正極合材層の組成物を、不活性ガス雰囲気において300℃~400℃程度で熱処理することによって、組成物として含まれ得る炭素系導電材や結着剤のみをガス化させて除去したり、適宜の有機溶剤を添加することによって、結着剤を溶解除去する。そして、残留した組成物を走査型電子顕微鏡や透過型電子顕微鏡を使用して観察することで、二次粒子の粒子径分布や空隙率を確認することができる。二次粒子同士が凝集又は結着して高次構造を形成している場合には、空隙率は、例えば、二次粒子の局所観察を行い二次粒子と空隙との面積比、これらを球体や円柱体の体積に換算した体積比等を比較することによって把握することが可能である。また、粒子径分布の確認と並行して、粗解砕した二次粒子の集合の分級を行い、確認された粒子径分布における大粒子や小粒子に対応する粒子径の二次粒子の集合について細孔分布測定を行うことで空隙率を確認することもできる。
 以下、実施例を示して本発明について具体的に説明するが、本発明の技術的範囲はこれに限定されるものではない。
 実施例1~11として、空隙率が相対的に高い大径の二次粒子(大粒子)と、空隙率が相対的に低い小径の二次粒子(小粒子)との組み合わせによって構成されているリチウムイオン二次電池用正極材を調製し、それらの正極材を用いたリチウムイオン二次電池を製造して、レート特性及び充放電サイクル特性の評価を行った。また、比較例1~5として、大粒子と小粒子との空隙率の大小関係が実施例に対して反転している正極材を調製し、それらの正極材を用いたリチウムイオン二次電池の評価を併せて行った。
 層状酸化物LiNi0.8Co0.1Mn0.1の一次粒子が凝集した二次粒子の集合は、以下の手順にしたがって複数群調製した。まず、焼成時にリチウム源が700℃付近で蒸発し、配合比に比してリチウム比が低くなるため、原料混合の段階で配合比を調整し、原料の炭酸リチウム、炭酸ニッケル、炭酸コバルト、炭酸マンガンを、Li:Ni:Co:Mnが、モル濃度比で、1.03:0.80:0.10:0.10となるように秤量した。これらの原料を、少量の造粒剤を添加した水による湿式粉砕で粉砕混合した後、スプレードライヤを使用して噴霧乾燥させることで凝集性の原料粉末を得た。続いて、得られた原料粉末を、高純度アルミナ容器に投入し、酸素気流下において650℃で12時間の仮焼を行った。次いで、得られた仮焼体を、空冷及び解砕した後、再び高純度アルミナ容器に投入して、酸素気流下において850℃で8時間の本焼成を行った。そして、得られた二次粒子の集合を空冷し、解砕した後に分級した。
 なお、各群の二次粒子の粒子径と二次粒子の空隙率は、原料粉末の湿式粉砕の条件、噴霧乾燥の条件を適宜変更することによって調整した。粒径は噴霧の条件に大きく依存する。噴霧乾燥の装置の規模によっても異なるが、噴霧圧力が高く、スラリー供給量が多いと大粒径、噴霧圧力が低く、スラリー供給が少ないと小粒径となる。空隙率は、スラリー粘度、濃度の影響が大きく、高粘度のスラリーとすることで高空隙率、低粘度のスラリーとすることで低空隙率の粒子が得られる。本実施例では、噴霧乾燥時のスラリー供給量を約2kg/hrに設定の上、上記のパラメータ調整により粒子の制御を行い、スラリー粘度は100rpmで5mPa・S~30mPa・S、スラリーの濃度は10%~70%の範囲とするとともに、噴霧圧力を0.05MPa~0.5MPaとした。
 本焼成によって得られた正極活物質は、組成比Li:Ni:Co:Mn=1.00:0.80:0.10:0.10であった。この正極活物質について、結晶構造の分析を行った。分析には、X線回折装置「RINTIII」(株式会社リガク製)を使用し、CuKα線を用いた。その結果、得られた正極活物質について、空間群R3-mに帰属されるピークが確認され、層状構造を有することが確認された。
 調製した各二次粒子の集合の粒度分布は、レーザ回折/散乱式粒度分布測定装置「LA-920」(株式会社堀場製作所製)を使用して測定した。なお、超音波の印加時間は5minとした。
 また、調製した各二次粒子の空隙率は、細孔分布測定装置「オートポアIV9520」(株式会社島津製作所製)を使用し、水銀圧入法によって測定した。具体的には、条件を変更して調製した各二次粒子の粉末0.3gを容量5ccの粉体用セルに投入し、初期圧20kPaから測定を開始して、細孔直径が60μm以上3nm以下に相当する範囲の条件で細孔体積を測定した。なお、水銀の接触角は130°、水銀の表面張力は485dyne/cm(485×10-5N/cm)とし、空隙率は、細孔直径が0.9μm以下の範囲を二次粒子の内部に存在する空隙であると見做して前記の数式1に基いて算出した。
 粒度分布と空隙率とを測定した各二次粒子は、実施例1~11については、空隙率が相対的に高い大径の二次粒子(大粒子)と、空隙率が相対的に低い小径の二次粒子(小粒子)との組み合わせによって構成されるように、大粒子と小粒子との2種を混合して調製した。また、比較例1~5については、空隙率が相対的に低い大径の二次粒子(大粒子)と、空隙率が相対的に高い小径の二次粒子(小粒子)との組み合わせによって構成されるように、大粒子と小粒子との2種を混合して調製した。なお、混合した大粒子と小粒子の体積比及び空隙率、並びに、得られた実施例1~11に係る正極材と比較例1~5に係る正極材について測定した粒度分布を表1に示す。
 次に、得られたリチウムイオン二次電池用正極材を用いて、以下の手順で、リチウムイオン二次電池を製造した。なお、リチウムイオン二次電池は、直径18mm×高さ650mmの円筒型の18650電池とした。
 正極については、90質量部の正極材と、6質量部の導電材と、4質量部の結着剤とを溶媒中で混合し、プラネタリーミキサを用いて3時間撹拌して正極合材を調製した。なお、導電材としては、炭素粒子の粉末、結着剤としては、ポリフッ化ビニリデン、溶媒としては、N-メチルピロリドンを用いた。そして、得られた正極合材をロール転写機を用いて、厚さ20μmのアルミニウム製の箔である正極集電体の両面に塗布し、ロールプレスを用いて、電極密度が3.0g/cm前後となるように加圧した後、裁断して正極とした。得られた実施例1~11に係る正極と比較例1~5に係る正極における電極密度を表1に示す。
 負極については、95質量部の負極活物質と、5質量部の結着剤とを溶媒中で混合し、スラリーミキサを用いて30分間撹拌して負極合材を調製した。なお、負極活物質としては、黒鉛、結着剤としては、ポリフッ化ビニリデン、溶媒としては、N-メチルピロリドンを用いた。そして、得られた負極合材をロール転写機を用いて、厚さ10μmの銅製の箔である負極集電体の両面に塗布し、ロールプレスを用いて加圧した後、裁断して負極とした。
 得られた正極及び負極は、それぞれ正極リード片、負極リード片を超音波溶接によって接合した後、セパレータとして多孔性ポリエチレンフィルムを電極間に挟んで円筒状に捲回して電池缶に収容した。そして、正極リード片及び負極リード片を電池缶、密閉蓋とそれぞれ接続した後、電池缶と密閉蓋とをレーザ溶接により接合して封止した。その後、注液口から電池缶内部に非水電解液を注入して、リチウムイオン二次電池とした。なお、非水電解液としては、エチレンカーボネートとジメチルカーボネートとを体積比1:2で混合した混合溶媒に、LiPFを1.0mol/Lの濃度で溶解させたものを用いた。
 次に、実施例1~11に係る正極材と比較例1~5に係る正極材のそれぞれを用いて製造したリチウムイオン二次電池について、充放電試験を行い、レート特性及び充放電サイクル特性を評価した。なお、充放電試験は、25℃の環境温度下で行った。
 各レートにおける放電容量については、以下の手順で求めた。まず、0.2C相当の電流で上限電圧4.5Vまで定電流低電圧充電を行い、30分間休止した後、0.2C相当の定電流で下限電圧3.0Vまで放電を行った。続いて、この充放電を1サイクルとして、計2サイクルの充放電を繰り返した。そして、この2サイクル目において求めた正極材あたりの放電容量密度の値を、0.2Cにおける放電容量(Ah/kg)とした。次に、0.2Cにおける放電容量を測定した後、0.2C相当の電流で上限電圧4.5Vまで定電流低電圧充電を行い、10分間休止した後、5.0C相当の定電流で下限電圧3.0Vまで放電を行った。そして、このとき求めた正極材あたりの放電容量密度の値を、5.0Cにおける放電容量(Ah/kg)とした。その後、測定された5.0Cにおける放電容量の0.2Cにおける放電容量に対する分率をレート容量維持率(%)として算出した。これらの結果を表1に示す。
 充放電サイクルにおける容量維持率については、以下の手順で求めた。5.0Cにおける放電容量を測定した後、0.2C相当の電流で上限電圧4.5Vまで定電流低電圧充電を行い、30分間休止した後、0.2C相当の定電流で下限電圧3.0Vまで放電を行った。このとき求めた放電容量の値を、充放電サイクル前の放電容量とした。続いて、1.0C相当の電流で上限電圧4.5Vまで定電流低電圧充電を行い、10分間休止した後、1.0C相当の定電流で下限電圧3.0Vまで放電を行った。続いて、この充放電を1サイクルとして、計99サイクルの充放電を繰り返した。そして、0.2C相当の電流で上限電圧4.5Vまで定電流低電圧充電を行い、30分間休止した後、0.2C相当の定電流で下限電圧3.0Vまで放電を行った。その後、この100サイクル目において求めた放電容量の、充放電サイクル前の放電容量に対する分率を容量維持率(%)として算出した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~11に係るリチウムイオン二次電池では、体積基準の積算粒子径分布の10%に対応した粒子径(D10)が0.5μm以上10μm以下、且つ、体積基準の積算粒子径分布の90%に対応した粒子径(D90)が10μmを超え50μm以下の範囲にある。また、粒子径が10μmを超え50μm以下の範囲にある二次粒子における平均空隙率が、粒子径が0.5μm以上10μm以下の範囲にある二次粒子における平均空隙率よりも高くなっており、粒子径が10μmを超え50μm以下である二次粒子における平均空隙率が5%を超え70%以下、粒子径が0.5μm以上10μm以下である二次粒子における平均空隙率が5%以下となっている。
 これに対して、比較例1~5に係るリチウムイオン二次電池では、体積基準の積算粒子径分布の10%に対応した粒子径(D10)が0.5μm以上10μm以下、且つ、体積基準の積算粒子径分布の90%に対応した粒子径(D90)が10μmを超え50μm以下の範囲にあるものの、粒子径が10μmを超え50μm以下の範囲にある二次粒子における平均空隙率が、粒子径が0.5μm以上10μm以下の範囲にある二次粒子における平均空隙率よりも低くなっている。
 これらの比較例1~5に係るリチウムイオン二次電池では、レート容量維持率は、概ね60%台後半となり、サイクル容量維持率は、86%~87%程度以下となっている。これに対して、実施例1~11に係るリチウムイオン二次電池では、レート容量維持率は、概ね72%程度を超え、75%~76%前後を達成しており、良好なレート特性が実現されていることが確認された。以上の結果より、粒子径が10μmを超え50μm以下の範囲にある二次粒子における平均空隙率が、粒子径が0.5μm以上10μm以下の範囲にある二次粒子における平均空隙率よりも高いことにより、レート容量維持率及及びサイクル容量維持率を向上できる。また、実施例1~11に係るリチウムイオン二次電池では、サイクル容量維持率は、88%を超え、90%前後を達成しており、良好な充放電サイクル特性が実現されていることが確認された。
1 リチウムイオン二次電池用正極材
10 層状酸化物
50 大粒子(二次粒子)
60 小粒子(二次粒子)
100 リチウムイオン二次電池
101 正極(リチウムイオン二次電池用正極)
102 負極
103 セパレータ
104 電池缶
105 負極リード片
106 密閉蓋
107 正極リード片
108 シール材
109 絶縁板

Claims (7)

  1.  以下の組成式(I)
      Li1+xM11-x-yM2・・・(I)
    [式中、xは-0.1≦x≦0.3を満たす数であり、yは0≦y≦0.1を満たす数であり、M1はNi、Co、Mnからなる群より選択される少なくとも1種の元素であり、M2はMg、Al、Ti、Zr、Mo、Nb、Fe、Bからなる群より選択される少なくとも1種の元素である。]で表され、層状構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子を含む集合体であって、
     前記集合体を構成する二次粒子は、レーザ回折/散乱式粒度分布測定による体積基準の積算粒子径分布の10%に対応した粒子径(D10)が0.5μm以上10μm以下、且つ、体積基準の積算粒子径分布の90%に対応した粒子径(D90)が10μmを超え50μm以下であり、
     粒子径が10μmを超え50μm以下である前記二次粒子における平均空隙率が、粒子径が0.5μm以上10μm以下である前記二次粒子における平均空隙率よりも高いことを特徴とするリチウムイオン二次電池用正極材。
  2.  粒子径が10μmを超え50μm以下である前記二次粒子における平均空隙率が5%以上70%以下であり、
     粒子径が0.5μm以上10μm以下である前記二次粒子における平均空隙率が5%以下であることを特徴とする請求項1に記載のリチウムイオン二次電池用正極材。
  3.  さらに、前記層状構造を有するリチウム金属複合酸化物とは異なる結晶構造を有するリチウム金属複合酸化物の一次粒子が含まれることを特徴とする請求項1に記載のリチウムイオン二次電池用正極材。
  4.  前記層状構造を有するリチウム金属複合酸化物の一次粒子及び前記異なる結晶構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子、
     前記層状構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子と、前記異なる結晶構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子との組合せ、又は、
     前記層状構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子と、前記異なる結晶構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子と、前記層状構造を有するリチウム金属複合酸化物の一次粒子及び前記異なる結晶構造を有するリチウム金属複合酸化物の一次粒子が凝集した二次粒子との組合せのいずれかよりなることを特徴とする請求項3に記載のリチウムイオン二次電池用正極材。
  5.  請求項1から請求項4のいずれか1項に記載のリチウムイオン二次電池用正極材を含んでなることを特徴とするリチウムイオン二次電池用正極。
  6.  請求項5に記載のリチウムイオン二次電池用正極を備えることを特徴とするリチウムイオン二次電池。
  7.  以下の組成式(I)
      Li1+xM11-x-yM2・・・(I)
    [式中、xは-0.1≦x≦0.3を満たす数であり、yは0≦y≦0.1を満たす数であり、M1はNi、Co、Mnからなる群より選択される少なくとも1種の元素であり、M2はMg、Al、Ti、Zr、Mo、Nb、Fe、Bからなる群より選択される少なくとも1種の元素である。]で表され、層状構造を有するリチウム金属複合酸化物の一次粒子、あるいはさらに前記層状構造を有するリチウム金属複合酸化物とは異なる結晶構造を有するリチウム金属複合酸化物の一次粒子を調製し、前記一次粒子を用いて、0.5μm以上10μm以下の範囲に粒子径分布を有する二次粒子の第1の集合を湿式造粒すると共に、前記一次粒子を用いて、10μmを超え50μm以下の範囲に粒子径分布を有する二次粒子の第2の集合を前記第1の集合の湿式造粒よりも速い乾燥速度又は高粘度のスラリーによって湿式造粒し、
     造粒された前記第1の集合と前記第2の集合とを混合して、レーザ回折/散乱式粒度分布測定による体積基準の篩下積算粒子径分布の10%に対応した粒子径(D10)が0.5μm以上10μm以下、且つ、体積基準の篩下積算粒子径分布の90%に対応した粒子径(D90)が10μmを超え50μm以下であり、粒子径が10μmを超え50μm以下である前記二次粒子における平均空隙率が、粒子径が0.5μm以上10μm以下である前記二次粒子における平均空隙率よりも高い二次粒子の集合体を調製することを特徴とするリチウムイオン二次電池用正極材の製造方法。
PCT/JP2015/069324 2014-07-07 2015-07-03 リチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極材の製造方法 WO2016006557A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15818616.3A EP3168908B1 (en) 2014-07-07 2015-07-03 Lithium ion secondary battery positive electrode material, lithium ion secondary battery positive electrode and lithium ion secondary battery that use same, and method for manufacturing lithium ion secondary battery positive electrode material
US15/321,064 US10193150B2 (en) 2014-07-07 2015-07-03 Lithium ion secondary battery cathode material, lithium ion secondary battery cathode and lithium ion secondary battery that use same, and method for manufacturing lithium ion secondary battery cathode material
JP2016532916A JP6150013B2 (ja) 2014-07-07 2015-07-03 リチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014139891 2014-07-07
JP2014-139891 2014-07-07

Publications (1)

Publication Number Publication Date
WO2016006557A1 true WO2016006557A1 (ja) 2016-01-14

Family

ID=55064193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069324 WO2016006557A1 (ja) 2014-07-07 2015-07-03 リチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用正極材の製造方法

Country Status (4)

Country Link
US (1) US10193150B2 (ja)
EP (1) EP3168908B1 (ja)
JP (2) JP6150013B2 (ja)
WO (1) WO2016006557A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126312A1 (ja) * 2016-01-19 2017-07-27 日立金属株式会社 リチウムイオン二次電池用正極活物質、その製造方法及びリチウムイオン二次電池
CN107819107A (zh) * 2016-09-13 2018-03-20 罗伯特·博世有限公司 具有局部孔隙度区别的电极、其制造方法和应用
JP2018049685A (ja) * 2016-09-20 2018-03-29 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池
JP2018174134A (ja) * 2017-03-30 2018-11-08 東レ株式会社 二次電池用電極およびその製造方法
CN109524634A (zh) * 2018-08-30 2019-03-26 宁波维科新能源科技有限公司 一种锂离子电池
JP2020083750A (ja) * 2019-10-07 2020-06-04 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
WO2020110260A1 (ja) * 2018-11-29 2020-06-04 株式会社 東芝 電極、電池、及び電池パック
US20220093920A1 (en) * 2018-11-30 2022-03-24 Posco Cathode active material for lithium secondary battery, and lithium secondary battery comprising same
JP2023501681A (ja) * 2019-12-05 2023-01-18 エルジー エナジー ソリューション リミテッド リチウム二次電池用正極活物質、前記正極活物質の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428076B (zh) * 2017-09-04 2023-04-11 三星电子株式会社 正极活性材料前体、正极活性材料、制备正极活性材料的方法、正极和锂电池
EP3648200A4 (en) * 2017-09-28 2020-06-03 LG Chem, Ltd. METHOD FOR PREDICTING SUITABILITY FOR TREATING AN ELECTRODE SUSPENSION AND SELECTING AN ELECTRODE BINDER
KR20240118193A (ko) 2018-08-03 2024-08-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 및 양극 활물질의 제작 방법
WO2020121109A1 (en) 2018-12-13 2020-06-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material
CN112436115B (zh) * 2018-12-29 2021-12-28 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及电化学储能装置
CN112909238B (zh) * 2018-12-29 2022-04-22 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及电化学储能装置
CN109962221B (zh) * 2019-02-20 2020-03-17 江西星盈科技有限公司 复合正极材料及正极片及正极片制备方法及锂离子电池
JPWO2020201874A1 (ja) 2019-03-29 2020-10-08
CN110416511B (zh) * 2019-07-19 2020-12-25 宁德新能源科技有限公司 正极材料及包括其的正极和电化学装置
EP4040527A4 (en) 2019-09-30 2022-11-09 Panasonic Intellectual Property Management Co., Ltd. SECONDARY NON-AQUEOUS ELECTROLYTE BATTERY
KR20220010999A (ko) * 2020-07-20 2022-01-27 에스케이온 주식회사 리튬 이차 전지
KR102411937B1 (ko) * 2020-10-29 2022-06-22 삼성에스디아이 주식회사 니켈계 활물질, 이를 포함한 양극 및 리튬이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099158A1 (ja) * 2008-02-06 2009-08-13 Agc Seimi Chemical Co., Ltd. リチウムイオン二次電池正極活物質用の造粒体粉末の製造方法
JP2009205974A (ja) * 2008-02-28 2009-09-10 Agc Seimi Chemical Co Ltd リチウムイオン二次電池正極活物質用リチウムコバルト複合酸化物の製造方法
JP2011175739A (ja) * 2010-02-23 2011-09-08 Hitachi Ltd リチウム二次電池及びその製造方法
JP2012129070A (ja) * 2010-12-15 2012-07-05 Nissan Motor Co Ltd 双極型電極およびその製造方法
WO2013084923A1 (ja) * 2011-12-09 2013-06-13 株式会社Gsユアサ 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060263690A1 (en) * 2002-09-26 2006-11-23 Seimi Chemical Co., Ltd. Positive electrode active material for lithium secondary battery and process for producing the same
CN103594728B (zh) * 2007-09-12 2017-01-11 株式会社Lg化学 非水性电解质锂二次电池
JP5162388B2 (ja) 2008-09-19 2013-03-13 Agcセイミケミカル株式会社 リチウムイオン二次電池に適したリチウム含有複合酸化物の製造方法。
CN102362380B (zh) * 2009-03-27 2015-05-13 三菱化学株式会社 非水电解质二次电池用负极材料以及使用该负极材料的非水电解质二次电池
JP2012221855A (ja) 2011-04-12 2012-11-12 Sony Corp 非水電解質電池用正極活物質、非水電解質電池用正極および非水電解質電池、ならびに非水電解質電池を用いた電池パック、電子機器、電動車両、蓄電装置および電力システム
US20130273435A1 (en) * 2012-04-13 2013-10-17 Basf Se Layer system for electrochemical cells
US20140087265A1 (en) 2012-09-25 2014-03-27 Ngk Insulators, Ltd. Cathode active material for a lithium ion secondary battery and a lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099158A1 (ja) * 2008-02-06 2009-08-13 Agc Seimi Chemical Co., Ltd. リチウムイオン二次電池正極活物質用の造粒体粉末の製造方法
JP2009205974A (ja) * 2008-02-28 2009-09-10 Agc Seimi Chemical Co Ltd リチウムイオン二次電池正極活物質用リチウムコバルト複合酸化物の製造方法
JP2011175739A (ja) * 2010-02-23 2011-09-08 Hitachi Ltd リチウム二次電池及びその製造方法
JP2012129070A (ja) * 2010-12-15 2012-07-05 Nissan Motor Co Ltd 双極型電極およびその製造方法
WO2013084923A1 (ja) * 2011-12-09 2013-06-13 株式会社Gsユアサ 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749176B2 (en) 2016-01-19 2020-08-18 Hitachi Metals, Ltd. Cathode active material used for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
JPWO2017126312A1 (ja) * 2016-01-19 2018-06-28 日立金属株式会社 リチウムイオン二次電池用正極活物質、その製造方法及びリチウムイオン二次電池
KR20180080315A (ko) * 2016-01-19 2018-07-11 히타치 긴조쿠 가부시키가이샤 리튬이온 이차 전지용 정극 활물질, 그 제조 방법 및 리튬이온 이차 전지
KR102237731B1 (ko) * 2016-01-19 2021-04-08 히타치 긴조쿠 가부시키가이샤 리튬이온 이차 전지용 정극 활물질, 그 제조 방법 및 리튬이온 이차 전지
WO2017126312A1 (ja) * 2016-01-19 2017-07-27 日立金属株式会社 リチウムイオン二次電池用正極活物質、その製造方法及びリチウムイオン二次電池
CN107819107A (zh) * 2016-09-13 2018-03-20 罗伯特·博世有限公司 具有局部孔隙度区别的电极、其制造方法和应用
JP2018049685A (ja) * 2016-09-20 2018-03-29 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池
JP2018174134A (ja) * 2017-03-30 2018-11-08 東レ株式会社 二次電池用電極およびその製造方法
CN109524634A (zh) * 2018-08-30 2019-03-26 宁波维科新能源科技有限公司 一种锂离子电池
WO2020110260A1 (ja) * 2018-11-29 2020-06-04 株式会社 東芝 電極、電池、及び電池パック
JPWO2020110260A1 (ja) * 2018-11-29 2021-06-03 株式会社東芝 電極、電池、及び電池パック
JP7055899B2 (ja) 2018-11-29 2022-04-18 株式会社東芝 電極、電池、及び電池パック
US20220093920A1 (en) * 2018-11-30 2022-03-24 Posco Cathode active material for lithium secondary battery, and lithium secondary battery comprising same
JP2020083750A (ja) * 2019-10-07 2020-06-04 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
JP7222866B2 (ja) 2019-10-07 2023-02-15 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
JP2023501681A (ja) * 2019-12-05 2023-01-18 エルジー エナジー ソリューション リミテッド リチウム二次電池用正極活物質、前記正極活物質の製造方法

Also Published As

Publication number Publication date
JP6341318B2 (ja) 2018-06-13
EP3168908A1 (en) 2017-05-17
JP6150013B2 (ja) 2017-06-21
EP3168908A4 (en) 2018-01-24
JP2017188466A (ja) 2017-10-12
US10193150B2 (en) 2019-01-29
JPWO2016006557A1 (ja) 2017-04-27
US20170155139A1 (en) 2017-06-01
EP3168908B1 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP6341318B2 (ja) リチウムイオン二次電池用正極材、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
KR101888552B1 (ko) 리튬 이온 이차전지용 양극 활물질, 그것을 사용한 리튬 이온 이차전지용 양극 및 리튬 이온 이차전지
JP5518182B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質の前駆体、ならびに該正極活物質を用いた非水系電解質二次電池
JP5251401B2 (ja) 非水系電解質二次電池用正極活物質及びその製造方法、並びに非水系電解質二次電池
JP5326567B2 (ja) 非水電解質二次電池用正極材料、それを備えた非水電解質二次電池、及びその製造法
US20160156031A1 (en) Anode active material for lithium secondary battery and lithium secondary battery including the anode active material
JP5266861B2 (ja) リチウム二次電池用正極活物質の製造方法
JP4986098B2 (ja) 非水系リチウム二次電池用正極およびそれを用いた非水系リチウム二次電池
JP6476776B2 (ja) 正極活物質、正極、及びリチウムイオン二次電池
JP2013229339A (ja) 非水系二次電池用正極活物質及びその正極活物質を用いた非水系電解質二次電池
JP7371364B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
JP2016081626A (ja) 非水系二次電池用正極活物質、その製造方法、非水系二次電池用正極、非水系二次電池及び車載用非水系二次電池モジュール
JP2006286208A (ja) リチウムイオン二次電池及び正極活物質
JP2013095613A (ja) 炭素被覆LiVP2O7粒子とその製造方法、及びリチウムイオン二次電池
JP5010067B2 (ja) 正極活物質および非水電解液二次電池
JP4747482B2 (ja) リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP6493408B2 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2016081716A (ja) リチウムイオン二次電池用正極活物質及びその製造方法並びにリチウムイオン二次電池
CN114175315B (zh) 非水电解质二次电池用负极材料和非水电解质二次电池
JP4163410B2 (ja) 非水電解液二次電池用正極およびそれを用いた非水電解液二次電池
JP2006147500A (ja) 非水系電解質二次電池用正極活物質とその製造方法、およびこれを用いた非水系電解質二次電池
JP2015130272A (ja) 非水系二次電池用正極、非水系二次電池用正極活物質、非水系二次電池及び車載用非水系二次電池モジュール
JP2020140827A (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
KR101847769B1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
JP2020107602A (ja) 二次電池用正極活物質及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532916

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015818616

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015818616

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15321064

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE